WorldWideScience

Sample records for biotic storage technologies

  1. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  2. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  3. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  4. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  5. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  6. Identification of Abiotic and Biotic Factors Causing Deterioration During Storage and Development of Storage Techniques for Mahua (Madhuca indica Syn. Bassia latifolia flowers

    Directory of Open Access Journals (Sweden)

    Basanta Kumar Das

    2010-09-01

    Full Text Available Mahua (Madhuca indica syn. Bassia latifolia flowers, occupy an important position in the life of the tribal in many parts of India. Particularly, the flowers of the plant are sugar rich and in certain cases it is the only source of livelihood for those people. However, its nutrient quality deteriorates during the postharvest storage and thus, poses a serious problem of adequate storage. In order to determine the cause of spoilage and to develop the measures to check it, collected flowers were stored using two methods in this investigation; first, under normally practiced conditions (NPS, i.e., the practice adopted by the flower’s collectors, and second, oven dried, powdered with liquid nitrogen, and stored at 00C (±10C in different small airtight sterilized vials labelled as laboratory processed samples (LPS. Both LPS and NPS were stored for a year i.e. from one harvesting season to the next. Experiments were carried out, at every month interval, to identify the factors responsible for spoilage of flowers during storage. LPS did not exhibit deterioration in the nutrient value throughout the year of storage, but NPS showed spoilage due to various biotic and abiotic factors comprised of moisture, temperature and microorganisms. To check postharvest spoilage various innovative storage techniques like physical and chemical treatments were experimented. Results revealed that storage at low temperature by liquid nitrogen treatment and chemical conversion to oxalic acid were the most effective techniques for a long-term storage.

  7. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  8. Temperature behaviour: Comparison for nine storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Marion; Malbranche, Philippe; Lemaire-Potteau, Elisabeth [GENEC, CEA de Cadarache, 13108 St. Paul Lez Durance (France); Willer, B. [ISET, Kassel (Germany); Soria, M.L. [EXIDE Tudor, Azuqueca de Menares (Spain); Jossen, A. [ZSW, Ulm (Germany); Dahlen, M. [Catella-Generics, Jaerfaella (Sweden); Ruddell, A. [CCRLC, Oxfordshire (United Kingdom); Cyphelly, I. [CMR Alternativas, Las Palmas de Gran Canaria (Spain); Semrau, G. [ZOXY AG, Bretten (Germany); Sauer, D.U. [RWTH-ISEA, Aachen (Germany); Sarre, G. [SAFT, Bordeaux (France)

    2006-03-21

    Within the INVESTIRE Thematic Network, 33 partners worked together in order to compare nine storage technologies for renewable energy applications. For this purpose, storage technology reports were written that presented the state of the art of*lead-acid batteries; *lithium batteries; *double-layer capacitors; *nickel-based batteries; *flywheel; *redox flow battery; *compressed air; *hydrogen-based energy storage; *metal/air systems, e.g. Zn/O{sub 2}. The technology reports include detailed consideration of the technical characteristics, including thermal behaviour. Parallel tasks defined categories of storage requirements and technical criteria in renewable energy applications and conducted a detailed analysis of the economic and environmental aspects. This paper summarises the technology reports to show the differences of behaviour between the storage technologies, with particular focus on the thermal performance according to environmental and other operational conditions. The thermal characteristics of each technology are considered in the context of the storage requirements in various renewable energy applications. (author)

  9. Energy Storage (II): Developing Advanced Technologies

    Science.gov (United States)

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  10. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  11. Innovation in transport storage technology

    International Nuclear Information System (INIS)

    'TN international' has developed a capacity to envision and realize innovative products and services for the transport and storage of radioactive materials. This is our innovation policy, whose aim is managing change by design. The paper describes a new concept, internally known as ID school. It is a unique combination of innovation tools and methods. It blends an all-round technological watch, a idea management system, an extensive research/development program, state-of-the-art research and problem-solving software, a network of experts, an array of innovation methods and facilities that promote an innovative spirit. These tools apply to engineering, freight forwarding, organization... and favour both individual initiative and teamwork. For instance, AREVA has developed a special method for an innovation called the EFICA method. This method alternates diverging and converging phases to conclude with a set of innovative ideas and an action plan to develop them. In this method, brainstorming is stimulated by facilitators. These are engineers who receive a specific training. More than twenty EFICA projects have been carried out very successfully by TN International, allowing many new ideas to emerge. These ideas are patented and implemented in cask designs. Examples are shown of success coming from innovation challenges: more capacious packaging, accommodation of hotter materials, reduction of dose rates, quicker approvals. The expected benefits are: -) shorter time-to-market, -) cheaper products, -) differentiated products, and -) safer products. Moreover, our experience of innovation initiatives show that the challenges from Safety Authorities can also be met: increased safety, thorough justifications, implementation of good existing ideas to new problems. Therefore, innovation can be looked upon favourably by competent authorities

  12. Storage technology for television home server

    International Nuclear Information System (INIS)

    The progress of high-density recording technology has brought about new fields in storage applications. A television home server is a home storage system for the age of digital broadcasting. It records the viewer's favorite programs automatically for subsequent viewing at any time. We propose an architecture for the home server realizing a high-speed recording/ playback capability with very large capacity

  13. Selection criteria for spent fuel storage technologies

    International Nuclear Information System (INIS)

    Fissile fuel material contained in cladding or encapsulation material that has been irradiated in a power reactor is considered spent fuel. There are several types of spent fuel, including pressurized water reactor (PWR) fuel, boiling water reactor (BWR) fuel, mixed oxide (MOX) fuel, Canada Deuterium uranium (CANDU) fuel, other pressurized heavy water reactor (PHWR) fuels, high temperature reactor (HTR) fuel and advanced gas cooled reactor (AGR) fuel. There are two principal alternatives for managing spent fuel: the direct disposal route: spent fuel, conditioned after a sufficient decay period, is directly disposed of without the separation of fissile components; and the reprocessing route: spent fuel is reprocessed, and high level waste (HLW) containing mostly fission products and a small proportion of the actinides is disposed of after proper conditioning. The initial phase for spent nuclear fuel is storage under wet conditions in reactor pools after discharge from the reactor cores. This cooling phase is necessary for further handling of the spent fuel. After this initial phase sooner or later spent fuel needs to be transferred to another storage facility. This situation occurs for two reasons: first there is not enough capacity in the reactor pool; and second, the reactor has to be decommissioned. Because of these reasons, away from reactor storage (AFR) technology has to be taken into consideration at the beginning. This paper presents the main factors for selection of storage technologies. These factors are important for determination of basic requirements (storage space and storage time). The main factors begin with the spent fuel characteristics. These are: fuel type and dimensions, enrichment ratio, rods, cooling time after discharge, cladding and other materials, fuel integrity and (short and long term) production amounts. Lifetime of the storage facility is another factor to be determined before the design stage. A reasonable lifetime is more than 100

  14. Overview of Probe-based Storage Technologies.

    Science.gov (United States)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices. PMID:27456500

  15. Overview of Probe-based Storage Technologies

    Science.gov (United States)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  16. Technological alternatives for plutonium storage

    International Nuclear Information System (INIS)

    This paper discusses the problems of large long term storage since stores at fabrication plants may depend on the form of plutonium ultimately chosen for transport. The paper's conclusion includes: MOX can be regarded as more proliferation resistant than PUO2 but no experience of long term storage is available, therefore further R and D is required; co-location of the store with reprocessing plants (and fuel fabrication plant) would appear to have advantages in non-proliferation, safeguards implementation, environmental protection and economic aspects; there are strong non-proliferation and security arguments for not moving plutonium away from the site where it was separated until there is an identifiable and scheduled end use. The design of the store, the form in which plutonium should be stored, particularly as MOX, and the costs and further R and D required are considered. The possible location of stores is also discussed and institutional questions briefly considered

  17. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  18. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    ), Battery Energy Storage (BES), Flow Battery Energy Storage (FBES), Flywheel Energy Storage (FES), Supercapacitor Energy Storage (SCES), Superconducting Magnetic Energy Storage (SMES), Hydrogen Energy Storage System (HESS), Thermal Energy Storage (TES), and Electric Vehicles (EVs). The objective was to...

  19. Diffraction-limited storage-ring vacuum technology

    International Nuclear Information System (INIS)

    A compact lattice and small magnet apertures will be the main characteristics of future diffraction-limited storage rings, adding difficulties for the design of the vacuum system of these machines. The use of NEG coatings and distributed absorbers could provide a solution to overcome these challenges. Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings

  20. Biotic and abiotic catalysis of nitrate reduction in alkaline environment of repository storage cell for long-lived intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    This study investigates the reactivity of nitrates at the bitumen-concrete interface with the aim of determining redox conditions inside a repository storage cell for long-lived intermediate-level radioactive wastes. The first part of the work aimed to identify, under abiotic conditions, the interactions between two components of the system: concrete (introduced as cement pastes in the system) and bitumen (represented by leachates composed of organic acids and nitrates). The second part of the study was conducted under biotic conditions with selected denitrifying heterotrophic bacteria (Pseudomonas stutzeri - Ps and Halomonas desiderata - Hd) and aimed to analyse the microbial reaction of nitrate reduction (kinetics, by-products, role of the organic matter) under neutral to alkaline pH conditions (i.e. imposed by a concrete environment). Results showed that strong interactions occurred between cementitious matrices and acetic and oxalic organic acids, likely reducing the bio-availability of this organic matter (oxalate in particular). Results also confirmed the stability of nitrates under these conditions. Under biotic conditions, nitrates were reduced by both Ps and Hd following an anaerobic denitrification metabolic pathway. Reduction kinetics was higher with Ps but the reaction was inhibited for pH ≥ 9. Hd was capable of denitrification at least up to pH 11. (authors)

  1. Economical evaluation on spent fuel storage technology away from reactor

    International Nuclear Information System (INIS)

    Concerning the spent fuel storage away from reactor, economical comparison was carried out between metal cask and water pool storage technology. The economic index was defined by levelized cost (Unit storage cost) calculated on the assumption that the storage cost is paid at the receipt of the spent fuel at the storage facility. It is found that the cask storage is economical for small and large storage capacity. Unit storage cost of pool storage, however, is getting close to that of cask storage in case of storage capacity of 10,000 ton. Then, the unit storage cost is converted to power generation cost using data of the burn up of the fuel, etc. The cost is obtained as yen 0.09/kWh and yen 0. 15/kWh for cask storage and pool storage, respectively in case of the capacity of 5,000 tonU and the cooling time of 5 years. (author)

  2. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    Directory of Open Access Journals (Sweden)

    Emily G I Payne

    Full Text Available The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(- (nitrate over the course of one inflow event. The immediate partitioning of 15NO3(- between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(- under typical stormwater concentrations (∼1-2 mg N/L, contributing an average 89-99% of 15NO3(- processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  3. The economics of aquifer storage recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    David, R.; Pyne, G.

    2014-10-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  4. The economics of aquifer storage recovery technology

    International Nuclear Information System (INIS)

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  5. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  6. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  7. Mass storage system by using broadcast technology

    International Nuclear Information System (INIS)

    There are many similarities between data recording systems for high energy physics and broadcast systems; the data flow is almost one-way, requires real-time recording; requires large-scale automated libraries for 24-hours operation, etc. In addition to these functional similarities, the required data-transfer and data-recording speeds are also close to those for near future experiments. For these reasons, we have collaborated with SONY Broadcast Company to study the usability of broadcast devices for our data storage system. Our new data storage system consists of high-speed data recorders and tape-robots which are originally based on the digital video-tape recorder and the tape-robot for broadcast systems. We are also studying the possibility to use these technologies for the online data-recording system for B-physics experiment at KEK. (author)

  8. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  9. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  10. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  11. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  12. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  13. Identification of Abiotic and Biotic Factors Causing Deterioration During Storage and Development of Storage Techniques for Mahua (Madhuca indica Syn. Bassia latifolia) flowers

    OpenAIRE

    Basanta Kumar Das

    2010-01-01

    Mahua (Madhuca indica syn. Bassia latifolia) flowers, occupy an important position in the life of the tribal in many parts of India. Particularly, the flowers of the plant are sugar rich and in certain cases it is the only source of livelihood for those people. However, its nutrient quality deteriorates during the postharvest storage and thus, poses a serious problem of adequate storage. In order to determine the cause of spoilage and to develop the measures to check it, collected flowers wer...

  14. Existing Condition Analysis of Dry Spent Fuel Storage Technology

    Institute of Scientific and Technical Information of China (English)

    LI Ning; XU Lan; HAO Jian-sheng

    2016-01-01

    As in some domestic nuclear power plants, spent fuel pools near capacity, away-from-reactor type storage should be arranged to transfer spent fuel before the pool capacity is full and the plants can operate in safety. This study compares the features of wet and dry storage technology, analyzes the actualities of foreign dry storage facilities and then introduces structural characteristics of some foreign dry storage cask. Finally, a glance will be cast on the failure of away-from-reactor storage facilities of Pressurized Water Reactor(PWR)to meet the need of spent-fuel storage. Therefore, this study believes dry storage will be a feasible solution to the problem.

  15. The Impact Of Optical Storage Technology On Image Processing Systems

    Science.gov (United States)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  16. Special biotic

    Energy Technology Data Exchange (ETDEWEB)

    Furman, N.S. (Univ. of New Mexico (US))

    1989-01-01

    This book reveals in human, technological, and political detail, the story of the nation's premier nuclear ordnance laboratory during its formative years. As the only externally published history of Sandia National Laboratories, this volume fills a gap in the history of the atomic era. Through the use of primary sources from numerous archives and oral history collections, as well as laboratory records, the author places the development of the laboratory in both national and international context. The simple narration of events is expanded to include the hows and whys of technological innovations, their subsequent impact, and the political temper of the times.

  17. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  18. History of nuclear wastes storage, technologies improvements

    International Nuclear Information System (INIS)

    This paper gives an historical review of the management, and in particular the storage, of radioactive wastes in France. French storage started with the creation of the Manche surface storage facility which has allowed to define the principal safety rules of packaging, identification, tightness, drainage and water recuperation. The check of the Saint-Priest abandoned mine storage project has led to the creation of the National Agency for Radioactive Waste Management (ANDRA). New sites were selected (Aube, Vienne) for the ground storage of short-life radioactive wastes according to new containment rules. Deep geologic repository projects for the storage of long-life or high-level radioactive wastes have encountered a severe controversy from the public opinion and have led to the December 30, 1991 law and to the creation of underground laboratories. This analysis shows the technical, economical, political, and public opinion and communication aspects that influence the choice and the acceptance of a storage site. (J.S.)

  19. Economical evaluation on spent fuel storage technology away from reactor

    International Nuclear Information System (INIS)

    Concerning the spent storage away from reactor, economical comparison was carried out between metal cask and water pool storage technology. The economical index was defined by levelized cost (Unit storage cost) calculated on the assumption that the storage cost is paid at the receipt of the spent fuel at the storage facility. Storage period is assumed to be 40 years. It is found that the cask storage is economical for small and large storage capacity. Unit storage cost of pool storage, however, is getting close to that of cask storage in case of storage capacity of 10,000 ton. Then, the unit storage cost is converted to power generation cost using data of the burn up of the fuel, etc. The cost is obtained as yen 0.09/kWh and yen 0.15/kWh for cask storage and pool storage, respectively in case of the capacity of 5,000 tonU and the cooling time of 5 years. (author)

  20. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  1. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  2. Industrial Storage Technology Applied to Library Requirements.

    Science.gov (United States)

    Kountz, John

    1987-01-01

    Comparison of conventional book stacks, moving aisle book stacks, and industrial storage techniques shows that the industrial technique is the least expensive to build, maintain, and operate. Characteristics of automated storage and retrieval systems are discussed, and formulas for calculating the size and costs of a library system are presented.…

  3. Integrating new Storage Technologies into EOS

    CERN Document Server

    Peters, Andreas J; Rocha, Joaquim; Lensing, Paul

    2015-01-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D; and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issu...

  4. Radioactivity measurements using storage phosphor technology

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.T. [NeuTek, Darnestown, MD (United States); Hwang, J. [Advanced Technologies and Labs. International, Rockville, MD (United States); Hutchinson, M.R. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1995-10-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10{sup 5}), essential for quantitative analysis. These new sensors have an Active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 {mu}m. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots. Tests with SPP sensors have found that a single alpha particle effect can be observed and an alpha field of 100 dpm/100 cm{sup 2} or a beta activity of 0.1 dpm/mm{sup 2} or gamma radiation of few {mu}R/hr can all be measured in minutes. Radioactive isotopes can further be identified by energy discrimination which is accomplished by placing different thicknesses of filter material in front of the sensor plate. For areas with possible neutron contamination, the sensors can be coupled to a neutron to charged particle converter screen, such as dysprosium foil to detect neutrons. Our study has shown that this approach can detect a neutron flux of 1 n/cm{sup 2}s or lower, again with only minutes of exposure time. The utilization of these new sensors can significantly reduce the time and cost required for many site characterization and environmental monitoring tasks. The {open_quotes}exposure{close_quotes} time for mapping radioactivity in an environmental sample may be in terms of minutes and offer a positional resolution not obtainable with presently used counting equipment. The resultant digital image will lend itself to ready analysis.

  5. Radiation protection technology with waste intermediate storage

    International Nuclear Information System (INIS)

    Based on the 1984 safety reports the concept of the federal intermediate storage was revised and adapted to meet the new official regulations and guide lines. The most important points such as building architecture and safety, type, quantity and activities with the material being stored, along with in-company flow are described and the resulting radiation exposure to the surroundings and the personnel as well as the costs revealed. Particular emphasis is placed on an improved radiation protection for the operating personnel and the combination of 200 l drums in crates in comparison to individual drum storage. Satisfying result: the above improvements increase the storage capacity keeping additional costs low. 6 figs

  6. EMC Corporation Provides Colleges with a Course in Storage Technologies

    Science.gov (United States)

    Van Sickle, Ed

    2008-05-01

    EMC Corporation, the world leader in data storage, created the EMC Academic Alliance Program to educate students on storage and close the education gap that exists. EMC developed a Storage Technology course to teach students about the design of storage technologies and the "big picture" of an information infrastructure. The course is "open" and focused on storage technologies, not products. College and universities use the course to teach students about a very important topic in IT: Storage. EMC collaborates with colleges and universities by providing the course, knowledge transfer sessions to faculty and program support. There is no cost to join and no cost to obtain the courses. EMC requires partners to sign an agreement for course use. Several colleges are using the course as an upper level elective and the course is taught by faculty. The alliance program has reduced faculty time to develop a storage course and time to learn the topic. Faculty is responsible for credentialing students and they supplement the course with additional materials. Students are being recruited for jobs by EMC and others, including internships. The Alliance program provides academic institutions with a way to differentiate. This paper will explain the program and the Storage Technology course.

  7. Material demands for storage technologies in a hydrogen economy

    OpenAIRE

    Kunowsky, M.; Marco-Lózar, J. P.; Linares-Solano, A.

    2013-01-01

    A hydrogen economy is needed, in order to resolve current environmental and energy-related problems. For the introduction of hydrogen as an important energy vector, sophisticated materials are required. This paper provides a brief overview of the subject, with a focus on hydrogen storage technologies for mobile applications. The unique properties of hydrogen are addressed, from which its advantages and challenges can be derived. Different hydrogen storage technologies are described and evalua...

  8. Canada's CO2 capture and storage technology roadmap : a preview

    International Nuclear Information System (INIS)

    The presentation consists of a PowerPoint slide presentation on the development, conclusions, recommendations and path forward for Canada's CO2 Capture and Storage Technology Roadmap. The Roadmap was developed over three years with input from industry, academia, research organizations and international experts as well as provincial and federal governments. The document identifies both the challenges and opportunities for CO2 Capture and Storage (CCS), the technology pathways and identifies concrete requirements and critical objectives for the path forward

  9. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  10. Workshop on compact storage ring technology: applications to lithography

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  11. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper...... discusses the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the......The penetration of renewable sources (particularly wind power) in to the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve...

  12. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  13. Flywheel Energy Storage Technology Being Developed

    Science.gov (United States)

    Wolff, Frederick J.

    2001-01-01

    A flywheel energy storage system was spun to 60,000 rpm while levitated on magnetic bearings. This system is being developed as an energy-efficient replacement for chemical battery systems. Used in groups, the flywheels can have two functions providing attitude control for a spacecraft in orbit as well as providing energy storage. The first application for which the NASA Glenn Research Center is developing the flywheel is the International Space Station, where a two-flywheel system will replace one of the nickel-hydrogen battery strings in the space station's power system. The 60,000-rpm development rotor is about one-eighth the size that will be needed for the space station (0.395 versus 3.07 kWhr).

  14. Key technologies for tritium storage bed development

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.H.; Chang, M.H.; Kang, H.G.; Chung, D.Y.; Oh, Y.H.; Jung, K.J. [National Fusion Research Institute, Yusung-gu, Daejeon (Korea, Republic of); Chung, H.; Koo, D. [Korea Atomic Energy Research Institute, Yusung-gu, Daejeon (Korea, Republic of); Sohn, S.H.; Song, K.M. [Korea Hydro and Nuclear Power Co, Yusung-daero, Yusung-gu, Daejeon (Korea, Republic of)

    2015-03-15

    ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heat loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.

  15. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  16. Key technologies for tritium storage bed development

    International Nuclear Information System (INIS)

    ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heat loss. Another important point is to introduce the real-time gas analysis in the He3 collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium

  17. Influence of technology on magnetic tape storage device characteristics

    Science.gov (United States)

    Gniewek, John J.; Vogel, Stephen M.

    1994-01-01

    There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.

  18. LWR spent fuel storage technology: Advances and experience

    International Nuclear Information System (INIS)

    By 2003, the year the US Department of Energy (DOE) currently predicts a repository will be available, 58 domestic commercial nuclear-power plant units are expected to run out of wet storage space for LWR spent fuel. To alleviate this problem, utilities implemented advances in storage methods that increased storage capacity as well as reduced the rate of generating spent fuel. Those advances include (1) transhipping spent-fuel assemblies between pools within the same utility system, (2) reracking pools to accommodate additional spent-fuel assemblies, (3) taking credit for fuel burnup in pool storage rack designs, (4) extending fuel burnup, (5) rod consolidation, and (6) dry storage. The focus of this paper is on advances in rod consolidation and dry storage. Wet storage continues to be the predominant US spent-fuel management technology, but as a measure to enhance at-reactor storage capacity, the Nuclear Waste Policy Act of 1982 authorized DOE to assist utilities with licensing at-reactor dry storage. Information exchanges with other nations, laboratory testing and modeling, and cask tests cooperatively funded by US utilities and DOE produced a strong technical basis to develop confidence that LWR spent fuel can be stored safely for several decades in both wet and dry modes. Licensed dry storage of spent fuel in an inert atmosphere was first achieved in the US in 1986. Studies are underway in several countries to determine acceptable conditions for storing LWR spent fuel in air. Rod-consolidation technology is being developed and demonstrated to enhance the capacity for both wet and dry storage. Large-scale commercial implementation is awaiting optimization of practical and economical mechanical systems. 22 refs., 1 fig

  19. Development of Researches on Preservation and Storage Technology of Shrimps

    Institute of Scientific and Technical Information of China (English)

    刘海玲; 杨春莉; 杨春瑜

    2015-01-01

    With the rapid development of the world’s fisheries, shrimp consumption and trade are occupying an increasingly important position in the international aquatic products market. China is the world’s largest producer of shrimp and is also the main exporter of shrimp, however, compared with developed countries, technology level of shrimp production and processing in our country is still low at present, especially in aspect of shrimp preservation and storage techniques. So it is necessary to study various technologies and applications of sterilization and conclude the effective methods of shrimp preservation and storage. Traditional storage, chemical and biological technology, low temperature preservation, heat treatment, gas preservation and physical sterilization technology are reviewed in this paper based on shrimp preservation aiming to provide certain theoretical reference and practical basis for shelf life extension of shrimp.

  20. Review on the Distributed Energy Storage Technology in the Application of the Micro Network

    OpenAIRE

    Huang Qiyuan; Wang Zhijie; Zhu Jun; Wang Dongwei; Du Bin

    2015-01-01

    This paper summarized the application process of energy storage technology in the micro-grid, elaborated on the development of energy storage technology concisely, and illustrated the roles of battery energy storage, flywheel energy storage, superconducting magnetic energy storage (SMES), super capacitor energy storage and other energy storage and so on in micro-hybrid. Then it compared the performances of some sorts of the storage method. As characteristics and actual demands of micro-grid w...

  1. Feed-in tariffs for promotion of energy storage technologies

    International Nuclear Information System (INIS)

    Faster market integration of new energy technologies can be achieved by use of proper support mechanisms that will create favourable market conditions for such technologies. The best examples of support mechanisms presented in the last two decades have been the various schemes for the promotion of renewable energy sources (RES). In the EU, the most successful supporting schemes are feed-in tariffs which have significantly increased utilisation of renewable energy sources in Germany, Spain, Portugal, Denmark and many other EU countries. Despite the successful feed-in tariffs for RES promotion, in many cases RES penetration is limited by power system requirements linked to the intermittency of RES sources and technical capabilities of grids. These problems can be solved by implementation of energy storage technologies like reversible or pumped hydro, hydrogen, batteries or any other technology that can be used for balancing or dump load. In this paper, feed-in tariffs for various energy storage technologies are discussed along with a proposal for their application in more appropriate regions. After successful application on islands and outermost regions, energy storage tariffs should be also applied in mainland power systems. Increased use of energy storage could optimise existing assets on the market. - Research highlights: → Feed-in tariffs will promote development and use of energy storage technologies. → Energy storage effectively increases RES penetration. → Pumped Hydro Storage: an efficient solution for RES integration in islands. → Remuneration of Batteries and Inverters as a service can increase RES Penetration. → Desalination, apart from water can help in more efficient RES integration.

  2. Overview of Energy Storage Technologies for Space Applications

    Science.gov (United States)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  3. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  4. Integrated Building Energy Systems Design Considering Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  5. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  6. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  7. Review on the Distributed Energy Storage Technology in the Application of the Micro Network

    Directory of Open Access Journals (Sweden)

    Huang Qiyuan

    2015-01-01

    Full Text Available This paper summarized the application process of energy storage technology in the micro-grid, elaborated on the development of energy storage technology concisely, and illustrated the roles of battery energy storage, flywheel energy storage, superconducting magnetic energy storage (SMES, super capacitor energy storage and other energy storage and so on in micro-hybrid. Then it compared the performances of some sorts of the storage method. As characteristics and actual demands of micro-grid work were given full into consideration, the current micro-grid energy storage technology research problems and development trend in the future were pointed out.

  8. Carbon capture and storage as a corporate technology strategy challenge

    International Nuclear Information System (INIS)

    Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them. - Research highlights: → Presents a corporate technology strategy perspective on carbon capture and storage (CCS). → CCS technology is precautionary, sustaining, cumulative and situated. → Decision-makers need to look beyond cost and risk as barriers to investment in CCS.

  9. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  10. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  11. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  12. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  13. SGN multipurpose dry storage technology applied to the Italian situation

    International Nuclear Information System (INIS)

    SGN has gained considerable experience in the design and construction of interim storage facilities for spent fuel and various nuclear waste, and can therefore propose single product and multipurpose facilities capable of accommodating all types of waste in a single structure. The pooling of certain functions (transport cask reception, radiation protection) and the choice of optimized technologies to answer the specific needs of clients (transfer of nuclear packages by shielded handling cask or nuclearized crane), the use of the same type of storage pit to cool the heat releasing packages (vitrified nuclear waste, fuel elements) makes it possible to propose industrially proven and cost-effective solutions. Studies carried out for the Dutch company COVRA (HABOG facility currently under implementation phase) provide an example of a multipurpose dry storage facility designed to store spent fuel, vitrified reprocessing waste, cemented hulls and end-pieces, cemented technological waste and bituminized waste from fuel reprocessing, i e. high level waste and intermediate level wastes. The study conducted by SGN and GENESI (an Italian consortium formed by Ansaldo's Nuclear Division and Fiat Avio), on behalf of the Italian utility ENEL, offers another example of the multipurpose dry storage facility designed to store in a centralised site all the remaining irradiated fuel elements plus the vitrified waste. This paper presents SGN's experience through a short description of reference storage facilities for various types of products (HLW and spent fuel). It continues with the typical application to the Italian situation to show how these proven technologies are combined to obtain multipurpose facilities tailored to the client's specific requirements. (author)

  14. SIMULATING IMPACT OF PECAN STORAGE TECHNOLOGY ON FARM PRICE AND GROWERSÂ’ INCOME

    OpenAIRE

    Wojciech J. FLORKOWSKI; Wu, Xi-Ling

    1990-01-01

    Pecan growers can increase income by storing pecans if economically feasible storage technology is available. The marginal conditions under which growers would store pecans were derived. Revenue changes due to storage and impact of storage on price variations were simulated, suggesting the price that growers could pay for new storage technology.

  15. Groundwater storage change detection using micro-gravimetric technology

    Science.gov (United States)

    El-Diasty, Mohammed

    2016-06-01

    In this paper, new perspectives and developments in applying a ground-based micro-gravimetric method to detect groundwater storage change in Waterloo Moraine are investigated. Four epochs of gravity survey were conducted using absolute gravimeter (FG5), two relative gravity meters (CG5) and two geodetic global positioning systems (GPS) in the Waterloo Moraine in May and August of 2010 and 2011, respectively. Data were processed using the parametric least-squares method and integrated with geological and hydrological studies. The gravity differences between May and August for 2010 and 2011 epochs were inverted to provide the estimated total water storage changes. Changes in soil water content obtained from land surface models of Ecological Assimilation of Land and Climate Observations (EALCO) and the Global Land Data Assimilation System (GLDAS) program were employed to estimate the groundwater storage change. The ratios between the estimated groundwater storage changes and measured water table changes (specific yields) were determined at a local monitoring well located in the survey area. The results showed that the estimates of specific yields between May and August of 2010 and 2011 were consistent at a significant confidence level and are also within the range of the specific yield from geological and hydrological studies. Therefore, the micro-gravimetric (absolute and relative gravity meters) technology has demonstrated the great potential in detecting groundwater storage change and specific yield for local scale aquifers such as Waterloo Moraine.

  16. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  17. JPL future missions and energy storage technology implications

    Science.gov (United States)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  18. Expanding Renewable Energy by Implementing Dynamic Support through Storage Technologies

    OpenAIRE

    Bouckaert, Stéphanie; Wang, Pengbo; Mazauric, Vincent; Maïzi, Nadia

    2014-01-01

    In order to address significant share of intermittency in the generation mix, a dynamic reliability constraint on kinetic energy was endogenized in the technical optimum TIMES model. Dedicated to La Réunion island: (i) The potential contribution of electrochemical storage technology, especially NaS, to the power dynamics and the reliability has been demonstrated; and (ii) A high share of variable renewable plants (around 50%) can be considered without jeopardize power transmission, provided a...

  19. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM)

  20. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  1. Finite Element Analysis of Flat Spiral Spring on Mechanical Elastic Energy Storage Technology

    OpenAIRE

    Jingqiu Tang; Zhangqi Wang; Zengqiang Mi; Yang Yu

    2014-01-01

    Energy storage technology has become an effective way of storing energy and improving power output controllability in modern power grid. The mechanical elastic energy storage technology on flat spiral spring is a new energy storage technology. This study states the mechanical elastic energy storage technology, models the mechanical model. Aimed to three kinds of structure and size of flat spiral spring, the finite element model are modeled, modal analysis is completed and the natural frequenc...

  2. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  3. How to integrate geology, biology, and modern wireless technologies to assess biotic-abiotic interactions on coastal dune systems: a new multidisciplinary approach

    Science.gov (United States)

    Sarti, Giovanni; Bertoni, Duccio; Bini, Monica; Ciccarelli, Daniela; Ribolini, Adriano; Ruocco, Matteo; Pozzebon, Alessandro; Alquini, Fernanda; Giaccari, Riccardo; Tordella, Stefano

    2014-05-01

    Coastal dune systems are arguably one of the most dynamic environments because their evolution is controlled by many factors, both natural and human-related. Hence, they are often exposed to processes leading to erosion, which in turn determine serious naturalistic and economic losses. Most recent studies carried out on different dune fields worldwide emphasized the notion that a better definition of this environment needs an approach that systematically involves several disciplines, striving to merge every data collected from any individual analyses. Therefore, a new multidisciplinary method to study coastal dune systems has been conceived in order to integrate geology, biology, and modern wireless technologies. The aim of the work is threefold: i) to check the reliability of this new approach; ii) to provide a dataset as complete as ever about the factors affecting the evolution of coastal dunes; and iii) to evaluate the influence of any biotic and abiotic factors on plant communities. The experimentation site is located along the Pisa coast within the Migliarino - S. Rossore - Massaciuccoli Regional Park, a protected area where human influence is low (Tuscany, Italy). A rectangle of 100 x 200 m containing 50 grids of 20 x 20 m was established along the coastal dune systems from the coastline to the pinewood at the landward end of the backdune area. Sampling from each grid determined grain-size analysis carried out on surface sediment samples such as geologic aspects; topographic surveys performed by means of DGPS-RTK instruments; geophysical surveys conducted with a GPR equipment, which will be matched with core drilling activities; digital image analysis of high definition pictures taken by means of a remote controlled aircraft drone flying over the study area; biological data obtained by percent cover of each vascular plant species recorded in the sampling unit. Along with geologic and biologic methodologies, this research implemented the use of informatics

  4. ``Recent experiences and future expectations in data storage technology''

    Science.gov (United States)

    Pfister, Jack

    1990-08-01

    For more than 10 years the conventional media for High Energy Physics has been 9 track magnetic tape in various densities. More recently, especially in Europe, the IBM 3480 technology has been adopted while in the United States, especially at Fermilab, 8 mm is being used by the largest experiments as a primary recording media and where possible they are using 8 mm for the production, analysis and distribution of data summary tapes. VHS and Digital Audio tape have recurrently appeared but seem to serve primarily as a back-up storage media. The reasons for what appear to be a radical departure are many. Economics (media and controllers are inexpensive), form factor (two gigabytes per shirt pocket), and convenience (fewer mounts/dismounts per minute) are dominant among the reasons. The traditional data media suppliers seem to have been content to evolve the traditional media at their own pace with only modest enhancements primarily in ``value engineering'' of extant products. Meanwhile, start-up companies providing small system and workstations sought other media both to reduce the price of their offerings and respond to the real need of lower cost back-up for lower cost systems. This happening in a market context where traditional computer systems vendors were leaving the tape market altogether or shifting to ``3480'' technology which has certainly created a climate for reconsideration and change. The newest data storage products, in most cases, are not coming from the technologies developed by the computing industry but by the audio and video industry. Just where these flopticals, opticals, 19 mm tape and the new underlying technologies, such as, ``digital paper'' may fit in the HEP computing requirement picture will be reviewed. What these technologies do for and to HEP will be discussed along with some suggestions for a methodology for tracking and evaluating extant and emerging technologies.

  5. Thermal management technology for hydrogen storage: Fullerene option

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C.; Chen, F.C.; Murphy, R.W. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Fullerenes are selected as the first option for investigating advanced thermal management technologies for hydrogen storage because of their potentially high volumetric and gravimetric densities. Experimental results indicate that about 6 wt% of hydrogen (corresponding to C{sub 60}H{sub 48}) can be added to and taken out of fullerenes. A model assuming thermally activated hydrogenation and dehydrogenation processes was developed to explain the experimental findings. The activation energies were estimated to be 100 and 160 kJ/mole (1.0 and 1.6 eV/H{sub 2}) for the hydrogenation and dehydrogenation processes, respectively. The difference is interpreted as the heat released during hydrogenation. There are indications that the activation energies and the heat of hydrogenation can be modified by the use of catalysts. Preliminary hydrogen storage simulations for a conceptually simple device were performed. A 1-m long hollow metal cylinder with an inner diameter of 0.02 m was assumed to be filled with fullerene powders. The results indicate that the thermal diffusivity of the fullerenes controls the hydrogenation and dehydrogenation rates. The rates can be significantly modified by changing the thermal diffusivity of the material inside the cylinder, e.g., by incorporating a metal mesh. Results from the simulation suggest that thermal management is essential for efficient hydrogen storage devices using fullerenes. While the preliminary models developed in this study explain some of the observation, more controlled experiments, rigorous model development, and physical property determinations are needed for the development of practical hydrogen storage devices. The use of catalysts to optimize the hydrogen storage characteristics of fullerenes also needs to be pursued. Future cooperative work between Oak Ridge National Laboratory (ORNL) and Material & Electrochemical Research Corporation (MER) is planned to address these needs.

  6. dCache, agile adoption of storage technology

    CERN Document Server

    CERN. Geneva

    2012-01-01

    For over a decade, dCache has been synonymous with large-capacity, fault-tolerant storage using commodity hardware that supports seamless data migration to and from tape. Over that time, it has satisfied the requirements of various demanding scientific user communities to store their data, transfer it between sites and fast, site-local access. When the dCache project started, the focus was on managing a relatively small disk cache in front of large tape archives. Over the project's lifetime storage technology has changed. During this period, technology changes have driven down the cost-per-GiB of harddisks. This resulted in a shift towards systems where the majority of data is stored on disk. More recently, the availability of Solid State Disks, while not yet a replacement for magnetic disks, offers an intriguing opportunity for significant performance improvement if they can be used intelligently within an existing system. New technologies provide new opportunities and dCache user communities' computi...

  7. dCache, agile adoption of storage technology

    International Nuclear Information System (INIS)

    For over a decade, dCache has been synonymous with large-capacity, fault-tolerant storage using commodity hardware that supports seamless data migration to and from tape. In this paper we provide some recent news of changes within dCache and the community surrounding it. We describe the flexible nature of dCache that allows both externally developed enhancements to dCache facilities and the adoption of new technologies. Finally, we present information about avenues the dCache team is exploring for possible future improvements in dCache.

  8. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  9. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO2) capture and storage. There has been growing interest in the implementation of components of CO2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO2 and simultaneous CO2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  10. Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system

    International Nuclear Information System (INIS)

    Highlights: ► The techno-economic feasibility of four ESSs is studied. ► The hybrid ESS applied on a renewable energy generation system is feasible. ► From the technical and economic viewpoint, case 3 is the optimal hybrid ESS. -- Abstract: Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted

  11. Technology Base Research Project for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim (ed.)

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  12. Spent fuel dry storage technology development: electrically heated drywell storage test (3kW operation)

    International Nuclear Information System (INIS)

    An electrically heated drywell storage cell test has been in operation since March 1978 at the Engine-Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data obtained at electric heater power output of 3.0 kW and compares the data with that for heater power outputs of 1.0 kW and 2.0 kW. The simulated drywell storage cell consists of a stainless steel canister (representative of the spent fuel canisters being tested at E-MAD) containing an electrical heater assembly, a concrete-filled shield plug to which the canister is attached, and a carbon steel liner that encloses the canister and shield plug. The entire test drywell is grouted into a hole drilled in the soil adjacent to E-MAD. Temperature instrumentation is provided on the exterior of the canister and liner, in the grout around the liner, and at six radial locations in the soil surrounding the drywell. Peak measured canister and liner temperatures are 7850F and 7470F, respectively. Previous testing showed peak measured canister and liner temperatures of 2760F and 2320F for 1.0 kW and 5060F and 4580F for 2.0 kW, respectively. A previously developed computer model was utilized to predict the thermal response of the test configuration. Computer predictions of the transient and steady-state temperatures of the drywell components and surrounding soil are presented and are compared with the test data

  13. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  14. Societal acceptance of carbon capture and storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Alphen, Klaas van [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands)]. E-mail: k.vanalphen@geo.uu.nl; Voorst tot Voorst, Quirine van [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Hekkert, Marko P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Smits, Ruud E.H.M. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands)

    2007-08-15

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is-to a certain extent-a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology.

  15. Societal acceptance of carbon capture and storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Van Alphen, Klaas; Van Voorst tot Voorst, Quirine; Hekkert, Marko P.; Smits, Ruud E.H.M. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-08-15

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  16. Societal acceptance of carbon capture and storage technologies

    International Nuclear Information System (INIS)

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  17. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    International Nuclear Information System (INIS)

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, District heating and utilities

  18. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  19. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  20. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  1. Physics and technology of optical storage in polymer thin films

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, Søren; Ujhelyi, F.;

    2001-01-01

    We discuss different strategies for optical storage of information in polymeric films. An outline of the existing trends is given. The synthesis and characterization of side-chain azobenzene polyester films for holographic storage of information is described. A compact holographic memory card...

  2. Technologies and possibilities for CO2 capture and storage

    International Nuclear Information System (INIS)

    In the form of overhead sheets an overview is given of the title subject, focusing on the need for deep reductions in greenhouse gas emissions, the portfolio of options for reducing emissions; sources of CO2; stages of the process (capture of CO2, transport of CO2, geological storage of CO2); and performances and costs of CO2 capture and storage (CCS)

  3. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  4. Development on Energy Storage Technology%储能技术发展综述

    Institute of Scientific and Technical Information of China (English)

    李佳琦

    2015-01-01

    Energy storage technology is the key to sustainable development of energy. It can be used in power system, transportation, industrial process and so on. In this paper, existing energy storage technologies are discussed, including pumped hydro energy storage, compressed air energy storage, flywheel energy storage, battery energy storage, flow battery energy storage, superconducting magnetic energy storage, super capacitor energy storage, hydrogen energy storage and thermal energy storage. Then their technical characteristics and cost are compared.%储能技术是实现能源可持续发展的关键,可用于电力、交通、工业生产等方面.本文讨论了现有的储能技术,包括抽水蓄能、压缩空气储能、飞轮储能、电池储能、液流电池储能、超导磁储能、超级电容储能、储氢技术及储热技术等,并对他们的技术特征及成本等进行了比较.

  5. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    OpenAIRE

    Burke, Andy; Gardiner, Monterey

    2005-01-01

    This report is concerned with the characterization and comparison of various technologies for hydrogen storage for light-duty vehicle applications. The storage technologies considered are compressed gas, cryogenic liquid, metallic and chemical hydrides, and activated carbon at 77 K. The technologies were evaluated in terms of weight and volume metrics - %wt H2/ system kg and gm H2/system and an energy intensity metric kJ/kg H2 for preparing the hydrogen fuel and placing it into storage for us...

  6. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  7. Try out of technology for dry container storage of spent nuclear fuel of research reactors

    International Nuclear Information System (INIS)

    Full text: At present a great attention is paid to the technology for fuel storage. As for uranium-aluminum fuel applied in the majority of research reactors, recommendations were elaborated on the basis of multiple investigations regarding the water-chemical conditions of wet storage as well as criteria and mechanisms of fuel degradation evaluation during its storage. Technology of dry storage of such fuel is recommended. Dry storage of spent nuclear fuel is an alternative to the wet one but it does not exclude the preliminary cooling of fuel in water so as to decrease the radioactivity level and heat release. At SSC RF RIAR a 'Program of experimental testing of technology for dry container storage of spent nuclear fuel of the research reactors using transport packaging 108/1' is implemented. The aim of the Program is to try out the technology for dry storage of spent fuel assemblies of the research reactors in the advance surveillance mode; determine the limiting admissible period and conditions of dry and wet storage; try out of the monitoring technology of spent assembly conditions; investigate various conditions of the spent fuel assembly storage (temperature and inner medium); determine periodically the spent fuel assembly conditions after stage-by-stage testing; evaluate the container structural material conditions; try out the product drying technology before dry storage; control the cladding integrity state and perform the physical inspection of spent fuel assemblies before dry storage. Only standard spent fuel assemblies of the MIR reactor after their operation and dry storage within the time period from 4 to 40 years are the objects of the first investigation stage. The temperature in the container does not exceed 180 deg. C due to the spent fuel assembly heat release. Air is used as medium. The examinations are performed at the bench located in the open railway platform. To evaluate the external conditions of the assembly and perform the cladding

  8. Improved metal hydride technology for the storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Ramachandran, S. [Energy Conversion Devices, Inc., Troy, MI (United States)] [and others

    1995-09-01

    Low cost, high density storage of hydrogen will remove the most serious barrier to large-scale utilization of hydrogen as a non-polluting, zero-emission fuel. An important challenge for the practical use of Mg-based, high capacity hydrogen storage alloys has been the development of a low-cost, bulk production technique. Two difficulties in preparation of Mg-based alloys are the immiscibility of Mg with many transition metals and the relatively high volatility of Mg compared to many transition metals. These factors preclude the use of conventional induction melting techniques for the Mg-based alloy preparation. A mechanical alloying technique, in which Mg immiscibility and volatility do not present a problem, was developed and shows great promise for production of Mg-based alloys. A number of Mg-based alloys were prepared via modified induction melting and mechanical alloying methods. The alloys were tested for gas phase hydrogen storage properties, composition, structure and morphology. The mechanically alloyed samples are multi-component, multi-phase, highly disordered materials in their as-prepared state. These unoptimized alloys have shown reversible H-storage capacity of more than 5 wt.% hydrogen. After 2000 absorption/desorption cycles, the alloys show no decline in storage capacity or desorption kinetics. The alloys have also demonstrated resistance to CH{sub 4} and CO poisoning in preliminary testing. Upon annealing, with an increase in crystallinity, the H-storage capacity decreases, indicating the importance of disorder.

  9. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  10. Storage technologies of spent fuel. For the stable operation of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Spent fuel requires an interim storage under dry conditions until reprocessing. This paper reports the dry storage technologies. The main dry storage technologies include three methods: metal cask storage, concrete cask storage, and vault storage. The metal cask storage and vault storage have been adopted in Japan. Metal cask is a cylindrical container made of steel, and has four safety functions such as prevention of criticality, confinement, heat removal, and shielding. The dimensions of the largest one are about 2.5 m in diameter and 5 m in height, weighing about 120 tons. In the concrete cask storage, spent fuel is placed in a thin-walled cylindrical container called canister, and the canister is placed in a concrete reservoir in a vertical posture and stored. The concrete cask has a weight of about 180 tons. The atmosphere in the container is helium gas, the same as the case of the metal cask. In the vault storage, the canisters filled with spent fuel are stored side by side in a large space of concrete building, and cooled by air flow. As common challenge, there is the establishment of a thermal analysis technique for evaluating the aging deterioration and soundness of the structural materials. (A.O.)

  11. Finite Element Analysis of Flat Spiral Spring on Mechanical Elastic Energy Storage Technology

    Directory of Open Access Journals (Sweden)

    Jingqiu Tang

    2014-02-01

    Full Text Available Energy storage technology has become an effective way of storing energy and improving power output controllability in modern power grid. The mechanical elastic energy storage technology on flat spiral spring is a new energy storage technology. This study states the mechanical elastic energy storage technology, models the mechanical model. Aimed to three kinds of structure and size of flat spiral spring, the finite element model are modeled, modal analysis is completed and the natural frequencies and the first 10-order vibration modes of the spring are analyzed, the relationship of natural frequency and vibration mode of spiral spring and structure and size is analyzed. The research results can provide the reference for the structure design and dynamics analysis.

  12. Plant biotic interactions

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    occurring after infestation by olive fly larvae. The last research article by Niu et al.(2016) describes a growth-promoting rhizobacterium that primes induced systemic resistance by suppressing a host R gene-targeting micro RNA pairs and activating host immune responses. This finding further supports the important roles of plant endogenous small RNAs in plant-pathogen interactions. Hailing Jin, Professor Special Issue Editor UC President’s Chair Director of Genetics, Genomics and Bioinformatics Graduate Program, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, USA doi:10.1111/jipb.12476 ©2016 Institute of Botany, Chinese Academy of Sciences REFERENCES Alagna F, Kal enbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L (2016) Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. J Integr Plant Biol 58:413–425 Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372 da GraSca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant Biol 58:373–387 Giovino A, Martinel i F, Saia S (2016) Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J Integr Plant Biol 58:388–396 Huang J, Yang M, Zhang X (2016) The function of smal RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327 Kaloshian I, Wal ing LL (2016) Hemipteran and dipteran pests: Effectors and plant host immune regulators. J Integr Plant Biol 58:350–361 Mermigka G, Verret F, Kalantidis K (2016) RNA silencing movement in plants. J Integr Plant Biol 58:328–342 Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacil us cereus AR156

  13. A study of mass data storage technology for rocket engine data

    Science.gov (United States)

    Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.

    1990-01-01

    The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.

  14. Analysis and comparison of battery energy storage technologies for grid applications

    OpenAIRE

    SAEZ-DE-IBARRA, A.; Milo, Aitor; Gaztañaga, Haizea; Etxeberria Otadui, Ion; Rodríguez Cortés, Pedro; BACHA, Seddik; Debusschere, V.

    2013-01-01

    Battery Energy Storage Systems (BESSs) could contribute to the generation/consumption balance of the grid and could provide advanced functionalities at different grid levels (generation, T&D, end-user and RES integration). In this paper an analysis and comparison of Battery Energy Storage (BES) technologies for grid applications is carried out. The comparison is focused on the most installed technologies in the recent experimental BESS installations. Furthermore, the pape...

  15. Progress in materials and technologies for ultrahigh density data storage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the development of information superhighway, nanometer-scale data storage has been proposed and attracted great interest in recent years. This article reviews the research achievements in this field, and especially focuses on the materials for data recording by using an atomic force microscope (AFM) and scanning tunneling microscope (STM).

  16. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  17. Interim dry storage system technologies and innovations VARNA 2002

    International Nuclear Information System (INIS)

    The main concepts of the TN24 Family and NUHOMS System are explained in the paper. It is discussed how the NPPs specific requirements and economics trends contributes to the growing families of interim dry storage systems delivered under COGEMA LOGICTICS license. It is concluded that modular solutions are currently dominating because they are derived from main concepts evolved over time, benefited from both the transport aspects with internationally recognised stringent regulations, and various specific ISFSI requirements and economic trends

  18. Stoking residue from extraction of cassava starch without the use of storage technologies

    Directory of Open Access Journals (Sweden)

    Cleovani Rossi Javorski

    2015-03-01

    Full Text Available The purpose of this paper was to study the storage of the residue from the extraction of cassava starch without the use of storage technologies, through chemical evaluation, pH values, temperature, development of microorganisms and mycotoxins. A randomized block design was used with eight treatments (different storage periods: 0, 3, 6, 9, 12, 15, 18 and 21 days and five replications. There was a significant difference for DM content, as a function of days in storage. The chemical composition of the residue from the extraction of cassava starch did not changed throughout the storage period. A negative linear effect was obtained for the pH values, which decreased with days in storage. There was significance of the storage period only for the fungus and yeast population, which increased up to 17 days of storage, with subsequent reduction. Mycotoxins were detected in the residue from the extraction of cassava starch. Despite it did not showed changes in the chemical composition the storage of residue from the extraction of cassava starch for 21 days proved to be an inefficient preservation process, due to the development of molds and mycotoxins

  19. Exploiting database technology for object based event storage and retrieval

    International Nuclear Information System (INIS)

    This paper discusses the storage and retrieval of experimental data on relational databases. Physics experiments carried out using reactors and particle accelerators, generate huge amount of data. Also, most of the data analysis and simulation programs are developed using object oriented programming concepts. Hence, one of the most important design features of an experiment related software framework is the way object persistency is handled. We intend to discuss these issues in the light of the module developed by us for storing C++ objects in relational databases like Oracle. This module was developed under the POOL persistency framework being developed for LHC, CERN grid. (author)

  20. Modeling Carbon Capture and Storage Technologies in Energy and Economic Models

    International Nuclear Information System (INIS)

    There is a growing body of literature that points to the significant potential of carbon capture and storage technologies as a means for addressing concerns relating to climate change. In particular, carbon capture and storage technologies could be fundamental to controlling the costs of addressing climate change - not only in sectors such as electric power production from fossil fuels, but it may also be key to facilitating the emergence of an affordable global hydrogen economy which is one potential promising pathway for decarbonizing the transportation sector. This paper examines the current state-of-the-art in modeling these carbon capture and storage technologies within 'top-down' and 'bottom-up' models, and explores what these types of models tell us about the potential deployment of these technologies. Generally, 'top-down' models represent the overall energy-economic system while 'bottom-up' models are more narrowly focused on the physical or geographical details of the entity being modeled. The paper identifies key knowledge gaps that need to be closed in order to improve the resolution and accuracy of these models' projections of the deployment of carbon capture and storage technology in the near term and over the course of this century. The paper concludes by emphasizing which features of the different types of models must be combined in order to strengthen our understanding of the global potential for carbon capture and storage as a mechanism for emissions mitigation

  1. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  2. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  3. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  4. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  5. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    International Nuclear Information System (INIS)

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 2000F and 1400F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data

  6. Third international spent fuel storage technology symposium/workshop: proceedings. Volume 2

    International Nuclear Information System (INIS)

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 2 contains the papers from the poster session and workshops that were conducted during the meeting. There were 18 poster presentations. Four workshops were held: Fuel Integrity; Storage System Modeling and Analysis; Rod Consolidation Technology; and System Integration and Optimization. Individual papers were processed for inclusion in the Energy Data Base

  7. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  8. Uranium Isotopes Fingerprint Biotic Reduction

    OpenAIRE

    Stylo, Malgorzata Alicja; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and t...

  9. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... system ability to integrate RES inputs between 0 and 100 percent of the electricity demand....... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used to...

  10. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  11. Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion

    Science.gov (United States)

    Millis, Marc G.

    1996-01-01

    Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.

  12. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  13. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.; Hassenzahl, William V. (, - Advanced Energy Analysis, Piedmont, CA)

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  14. On-Farm Evaluation of Hermetic Technology Against Maize Storage Pests in Kenya.

    Science.gov (United States)

    Likhayo, Paddy; Bruce, Anani Y; Mutambuki, Kimondo; Tefera, Tadele; Mueke, Jones

    2016-08-01

    On-farm trial with a total of 32 farmers in eight villages of Naivasha and Nakuru areas of Kenya was conducted between December 2013 and September 2014 to evaluate hermetic grain storage technologies under farmers' management conditions. The storage technologies evaluated were metal silo and SuperGrain IV-R bag alongside the standard woven polypropylene bag with or without Actellic super dust. Moisture content, insect population, grain discoloration, and weight loss were analyzed 90, 180, and 270 d after storage. Grain moisture content remained stable over the storage period. Both metal silo and SuperGrain IV-R bag suppressed insect population, prevented grain loss and cross-infestation of insects from the surrounding environment. On the contrary, polypropylene bags allowed rapid build up of insect population and re-infestation from the surrounding environment. Grain weight losses were 1.5% in the metal silo and 1.8% in the SuperGrain IV-R bags compared to 32% in the polypropylene bags without Actellic Super dust, 270 d after storage. The present study, therefore, demonstrates that storing grains either in metal silo or SuperGrain IV-R bags would benefit farmers in reducing grain losses and improving quality. The study was of great interest to the farmers, grain storage scientists, and food security experts. PMID:27341889

  15. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2

    Science.gov (United States)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  16. Inducing the international diffusion of carbon capture and storage technologies in the power sector

    OpenAIRE

    Vallentin, Daniel

    2007-01-01

    Although CO2 capture and storage(CCS) technologies are heatedly debated, many politicians and energy producers consider them to be a possible technical option to mitigate carbon dioxide from large-point sources. Hence, both national and international decision-makers devote a growing amount of capacities and financial resources to CCS in order to develop and demonstrate the technology and enable ist broad diffusion.The presented report concentrates on the influence of policy incentives on CCS ...

  17. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    NARCIS (Netherlands)

    van Alphen, K.

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only t

  18. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...

  19. Evaluating the development of carbon capture and storage technologies in the United States

    NARCIS (Netherlands)

    Alphen, K. van; Noothout, P.M.; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies i

  20. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure.

    Science.gov (United States)

    Bialecki, Brian; Park, James; Tilkin, Mike

    2016-08-01

    The intent of this project was to use object storage and its database, which has the ability to add custom extensible metadata to an imaging object being stored within the system, to harness the power of its search capabilities, and to close the technology gap that healthcare faces. This creates a non-disruptive tool that can be used natively by both legacy systems and the healthcare systems of today which leverage more advanced storage technologies. The base infrastructure can be populated alongside current workflows without any interruption to the delivery of services. In certain use cases, this technology can be seen as a true alternative to the VNA (Vendor Neutral Archive) systems implemented by healthcare today. The scalability, security, and ability to process complex objects makes this more than just storage for image data and a commodity to be consumed by PACS (Picture Archiving and Communication System) and workstations. Object storage is a smart technology that can be leveraged to create vendor independence, standards compliance, and a data repository that can be mined for truly relevant content by adding additional context to search capabilities. This functionality can lead to efficiencies in workflow and a wealth of minable data to improve outcomes into the future. PMID:26872657

  1. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  2. Epistemologies of uncertainty : governing CO2 capture and storage science and technology

    OpenAIRE

    Evar, Benjamin

    2014-01-01

    This thesis progresses from a ‘science and technology studies’ (STS) perspective to consider the ways that expert stakeholders perceive and communicate uncertainties and risks attached to carbon dioxide (CO2) capture and storage (CCS) research and development, and how this compares with policy framings and regulatory requirements. The work largely ...

  3. Development of repair technology with underwater laser welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    From the viewpoint of risk management in spent fuel storage pools and pits of reprocessing plant, the necessity occurs to quickly develop underwater maintenance welding technology by remote operation without discharge of water. First, as welding technology for immediate practical use, we first selected and developed underwater TIG welding technology. This technology is at the stage of practical use at present, because the development of welding equipment system for practical use and the mock examination for simulating the real environment are finished. However, there is demerit that is existed big restraint to apply for narrow part of spent fuel storage pools and pits, because the welding equipment of this underwater TIG welding technology is relatively large compared with underwater laser welding technology. In the meantime, the underwater laser welding technology has several advantages in terms of simple structure equipment system, compact welding head designing, long-distance transmission of high quality laser beam through optical fiber, and low heat input and high accuracy welding. In this paper, we report results of development of underwater TIG welding technology and progress of development of underwater laser welding technology. (author)

  4. Distributed Parallel Network Data Storage Technology%分布式并行网络数据存储技术

    Institute of Scientific and Technical Information of China (English)

    杨峰; 刘心松; 罗朝劲

    2002-01-01

    The bases of distributed parallel network data storage technology(DPNDS) are high speed network tech-nology, database technology, artificial intelligence and multimedia technology. It will become the foundation of mod-ern information society because of the excellent management efficiency, reliability, availability, expansibility and lowcost. In this paper, we discuss the key technology of DPNDS which includes data distributing, parallel data process-ing, data network storage, object-oriented data storage and then give some suggestions about the new research direc-tion.

  5. Interim storage technology of spent fuel and high-level waste in Germany

    International Nuclear Information System (INIS)

    The idea of using casks for interim storage of spent fuel arose at GNS after a very controversial political discussion in 1978, when total passive safety features (including aircraft crash conditions) were required for an above ground spent fuel storage facility. In the meantime, GNS has loaded more than 1000 casks at 25 different storage sites in Germany. GNS cask technology is used in 13 countries. Spent fuel assemblies of PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high level waste containers are stored in full metal casks of the CASTORR type. Also MOX fuel of PWR and BWR has been stored. More than two decades of storage have shown that the basic requirements (safe confinement, criticality safety, sufficient shielding and appropriate heat transfer) have been fulfilled in any case - during normal operation and in case of severe accidents, including aircraft crash. There is no indication of problems arising in the future. Of course, the experience of more than 20 years has resulted in improvements of the cask design. The CASTORR casks have been thoroughly investigated by many experiments. There have been approx. 50 full and half scale drop tests and a significant number of fire tests, simulations of aircraft crash, investigations with anti tank weapons, and an explosion of a railway tank with liquid gas neighbouring a loaded CASTORR cask. According to customer and site specific demands, different types of storage facilities are realized in Germany. Firstly, there are facilities for long-term storage, such as large ventilated central storage buildings away from reactor or ventilated storage buildings at the reactor site, ventilated underground tunnels or concrete platforms outside a building. Secondly, there are facilities for temporary storage, where casks have been positioned in horizontal orientation under a ventilated shielding cover outside a building. (authors)

  6. Uranium isotopes fingerprint biotic reduction

    Science.gov (United States)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  7. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  8. Technology roadmap study on carbon capture, utilization and storage in China

    International Nuclear Information System (INIS)

    Carbon capture, utilization and storage (CCUS) technology will likely become an important approach to reduce carbon dioxide (CO2) emissions and optimize the structure of energy consumption in China in the future. In order to provide guidance and recommendations for CCUS Research, Development and Demonstration in China, a high level stakeholder workshop was held in Chongqing in June 2011 to develop a technology roadmap for the development of CCUS technology. This roadmap outlines the overall vision to provide technically viable and economically affordable technological options to combat climate change and facilitate socio-economic development in China. Based on this vision, milestone goals from 2010 to 2030 are set out in accordance with the technology development environment and current status in China. This study identifies the critical technologies in capture, transport, utilization and storage of CO2 and proposes technical priorities in the different stages of each technical aspect by evaluating indices such as the objective contribution rate and technical maturity, and gives recommendations on deployment of full-chain CCUS demonstration projects. Policies which would support CCUS are also suggested in this study. - Highlights: • A technology roadmap for CCUS development in China from 2010 to 2030 is presented. • Sound data and analysis in combination with expert workshops are used. • Critical technologies in CCUS are identified. • Priority actions of all stages are identified and proposed. • Guidance and recommendations for CCUS RD and D are provided

  9. Towards the Interoperability of Web, Database, and Mass Storage Technologies for Petabyte Archives

    Science.gov (United States)

    Moore, Reagan; Marciano, Richard; Wan, Michael; Sherwin, Tom; Frost, Richard

    1996-01-01

    At the San Diego Supercomputer Center, a massive data analysis system (MDAS) is being developed to support data-intensive applications that manipulate terabyte sized data sets. The objective is to support scientific application access to data whether it is located at a Web site, stored as an object in a database, and/or storage in an archival storage system. We are developing a suite of demonstration programs which illustrate how Web, database (DBMS), and archival storage (mass storage) technologies can be integrated. An application presentation interface is being designed that integrates data access to all of these sources. We have developed a data movement interface between the Illustra object-relational database and the NSL UniTree archival storage system running in a production mode at the San Diego Supercomputer Center. With this interface, an Illustra client can transparently access data on UniTree under the control of the Illustr DBMS server. The current implementation is based on the creation of a new DBMS storage manager class, and a set of library functions that allow the manipulation and migration of data stored as Illustra 'large objects'. We have extended this interface to allow a Web client application to control data movement between its local disk, the Web server, the DBMS Illustra server, and the UniTree mass storage environment. This paper describes some of the current approaches successfully integrating these technologies. This framework is measured against a representative sample of environmental data extracted from the San Diego Ba Environmental Data Repository. Practical lessons are drawn and critical research areas are highlighted.

  10. Horizontal drilling in a natural gas storage horizon of 4 m thickness using reservoir navigation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bastert, Thomas [E.ON Gas Storage GmbH, Essen (Germany); Liewert, Mathias; Rohde, Uwe [Baker Hughes INTEQ GmbH, Celle (Germany); Haberland, Joachim

    2010-09-15

    With a working gas capacity of 1,44 billion m{sup 3} (Vn) the natural gas storage facility at Bierwang is one of the largest storage facilities of E.ON Gas Storage (in Germany) and also one of the largest porous rock storages in Germany. The natural gas is stored in the tertiary storage horizons of the Chattian Hauptsand and Nebensand. To increase the storage capacity a second development well was planned for the Chattian Nebensand II (approx. 1680 m below ground). Following a comprehensive technical investigation the BW 502 well was planned as a horizontal well intended to provide a 300 m exposed section length through the reservoir. In a first step a pilot well was drilled to examine the Nebensand II which had been explored only to a limited extent before; the pilot well was also to provide accurate data on depth, thickness and dip. The results obtained indicated that the Nebensand II was only 4 m thick instead of 6 m as originally assumed. An azimuthal LWD resistivity tool was therefore used for reservoir navigation to allow horizontal drilling despite the lower thickness found. The technology allowed drilling of the horizontal well over its entire length of 315 m within a max. 1.5 m corridor relative to the reservoir top. Drilling confirmed that the actual formation found corresponded to the reservoir formation plan. Drilling operations were completed successfully. The well has been commissioned in the spring of 2010. (orig.)

  11. Plutonium stabilization and storage research in the DNFSB 94-1 core technology program

    International Nuclear Information System (INIS)

    Recommendation 94-1 of the Defense Nuclear Facility Safety Board (DNFSB) addresses legacy actinide materials left in the US nuclear defense program pipeline when the production mission ended in 1989. The Department of Energy (DOE) Implementation Plan responding to this recommendation instituted a Core Technology program to augment the knowledge base about general chemical and physical processing and storage behavior and to assure safe interim nuclear material storage, until disposition policies are formulated. The Core Technology program focuses on plutonium, in concert with a complex-wide applied R/D program administered by Los Alamos National Laboratory. This paper will summarize the Core Technology program's first two years, describe the research program for FY98, and project the overall direction of the program in the future

  12. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  13. A Review of Energy Storage Technologies:For the integration of fluctuating renewable energy

    OpenAIRE

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES), Battery Energy Storage (BES), Flow Battery Energy Storage (FBES), Flywheel Energy Storage (FES), Supercapacitor Energy Storage (SCES), Superconducting Magnetic Energy Storage (SMES), Hydrogen Energy ...

  14. Monitoring innovation in electrochemical energy storage technologies: A patent-based approach

    International Nuclear Information System (INIS)

    Highlights: • Grid effects of intermittent sources show increasing need for decentralized storage. • Novel patent classification is applied to monitor competing technologies. • Up-to-date geographical, organizational, and qualitative insight is given. • Redox flow patenting shows strong growth, lithium also strong absolute numbers. • Revealed patents allow the expectation of improved modules in the future. - Abstract: Due to the suitability to balance the intermittency in decentralized systems with renewable sources, electrochemical energy storage possibilities have been analyzed in several studies, all highlighting the need for improvements in relevant techno-economic parameters. Particularly a reduction in the costs per cycle is much needed, which could either come from innovation in more cost-efficient manufacturing methods, a higher endurance of charge/discharge sequences or higher capacities. Looking at patent applications as a metric allows us to determine whether the necessary technological progress is indeed occurring, as the mandatory publication of the underlying inventions provides access to otherwise hidden R and D activities. Our paper contributes to the literature with a compilation of technological classes related to important battery types in the novel Cooperative Patent Classification (CPC), which can be used to identify relevant patent applications of the competing technologies. Using the worldwide patent statistical database (PATSTAT), we find that promising technologies have been showing increasing patent counts in recent years. For example, the number of patent applications related to regenerative fuel cells (e.g. redox flow batteries) doubled from 2009 to 2011. Nevertheless, the volume of patent filings in technologies related to lithium remains unchallenged. Patent applications in this area are still growing, which indicates that the introduction of improved modules will continue. Using citation analysis, we have identified

  15. Effect of freezing technology and storage conditions on folate content in selected vegetables.

    Science.gov (United States)

    Czarnowska, Marta; Gujska, Elzbieta

    2012-12-01

    Folates (B vitamins) are essential for the proper function of many bodily processes. Although a rich natural source are vegetables, the literature lacks data on the effect of the pre-treatment and freezing technologies used in vegetable processing and frozen storage time on the folate content in these materials. Moreover, since folates are very unstable nutrients, the amount available in processed and stored foods can be significantly lower than in raw products. In tested vegetables (green beans, yellow beans, peas, cauliflower, broccoli and spinach), one folate form was identified, 5-methyltetrahydrofolate (5-CH₃-H₄folate). It was observed that pre-treatment and freezing technology significantly (p peas). In all analyzed samples, the 5-CH₃-H₄folate content decreased with the time of frozen storage. In frozen cauliflower, the 5-CH₃-H₄folate loss exceeded 95 % compared to the fresh product just after the third month of frozen storage. Meanwhile, in green and yellow beans, significant 5-CH₃-H₄folate losses (at the level of 75 % and 95 %, respectively) were observed no earlier than after the 9th month of frozen storage. PMID:22983767

  16. The Future of Hydropower: Assessing the Impacts of Climate Change, Energy Prices and New Storage Technologies

    Science.gov (United States)

    Gaudard, Ludovic; Madani, Kaveh; Romerio, Franco

    2016-04-01

    The future of hydropower depends on various drivers, and in particular on climate change, electricity market evolution and innovation in new storage technologies. Their impacts on the power plants' profitability can widely differ in regards of scale, timing, and probability of occurrence. In this respect, the risk should not be expressed only in terms of expected revenue, but also of uncertainty. These two aspects must be considered to assess the future of hydropower. This presentation discusses the impacts of climate change, electricity market volatility and competing energy storage's technologies and quantifies them in terms of annual revenue. Our simulations integrate a glacio-hydrological model (GERM) with various electricity market data and models (mean reversion and jump diffusion). The medium (2020-50) and long-term (2070-2100) are considered thanks to various greenhouse gas scenarios (A1B, A2 and RCP3PD) and the stochastic approach for the electricity prices. An algorithm named "threshold acceptance" is used to optimize the reservoir operations. The impacts' scale, and the related uncertainties are presented for Mauvoisin, which is a storage-hydropower plant situated in the Swiss Alps, and two generic pure pumped-storage installations, which are assessed with the prices of 17 European electricity markets. The discussion will highlight the key differences between the impacts brought about by the drivers.

  17. Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network

    Science.gov (United States)

    Benato, Roberto; Cosciani, Nicola; Crugnola, Giorgio; Dambone Sessa, Sebastian; Lodi, Giuseppe; Parmeggiani, Carlo; Todeschini, Marco

    2015-10-01

    The extensive application of Sodium-Nickel Chloride (Na-NiCl2) secondary batteries in electric and hybrid vehicles, in which the safety requirements are more restrictive than these of stationary storage applications, depicts the Na-NiCl2 technology as perfectly suitable for the stationary storage applications. The risk of fire is negligible because of the intrinsic safety of the cell chemical reactions, related to the sodium-tetrachloroaluminate (NaAlCl4) content into the cell, which acts as a secondary electrolyte (the primary one being the ceramic β″-alumina as common for Na-Beta batteries). The 3 h rate discharge time makes this technology very attractive for load levelling, voltage regulation, time shifting and the power fluctuation mitigation of the renewable energy sources in both HV and EHV networks.

  18. Supercapacitor energy storage technology and its application in renewable energy power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Sibo [Inst. of Electrical Engineering, CAS, BJ (China); Graduate School of Chinese Academy Science, BJ (China); Wei Tongzhen; Qi Zhiping [Inst. of Electrical Engineering, CAS, BJ (China)

    2008-07-01

    Supercapacitor is an emerging technology in the field of energy storage systems that can offer higher power density than batteries and higher energy density over traditional capacitors. Supercapacitor will become an attractive power solution to an increasing number of applications, such as renewable energy power generation, transportation, power system and many others, because of its advantages which include high charge/discharge current capability, very high efficiency, wide temperature range, etc. In this paper, the advantages and disadvantages of supercapacitor are discussed and some critical technologies for designing supercapacitor energy storage system are presented in detail. Finally, the role of the supercapacitor in renewable energy power system is discussed and a supercapacitor based uninterrupted power system (UPS) for the wind turbine pitch systems is presented as a design example. (orig.)

  19. Technology-base research project for electrochemical storage report for 1981

    Science.gov (United States)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  20. Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

    2005-03-01

    This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

  1. RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL GAS STORAGE--A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Yasuhiko H. Mori

    2003-01-01

    Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies necessary for realizing this possibility may be classified into those relevant to the four serial processes (a) the formation of a hydrate, (b) the processing (dewatering, pelletizing, etc. ) of the formed hydrate, (c) the storage and transportation of the processed hydrate, and (d) the regasification (dissociation) of the hydrate. The technological development of any of these processes is still at an early stage. For hydrate formation, for example, various rival operations have been proposed. However,many of them have never been subjected to actual tests for practical use. More efforts are required for examining the different hydrate-formation technologies and for rating them by comparison. The general design of the processing of the formed hydrate inevitably depends on both the hydrate-formation process and the storage/transportation process, hence it has a wide variability. The major uncertainty in the storage-process design lies in the as-yet unclarified utility of the "self-preservation" effect of the naturalgas hydrates. The process design as well as the relevant cost evaluation should strongly depend on whether the hydrates are well preserved at atmospheric pressure in large-scale storage facilities. The regasification process has been studied less extensively than the former processes. The state of the art of the technological development in each of the serial processes is reviewed, placing emphasis on the hydrate formation process.

  2. Micromycete control in storages of succulent agricultural produce by organic technological means

    OpenAIRE

    Raila, Algirdas; Novošinskas, Henrikas; Albinas LUGAUSKAS; Zvicevičius, Egidijus

    2006-01-01

    Storages of succulent agricultural produce are special biological systems. There proceed complex processes through which heat, moisture and carbon dioxide are released to the environment. They provide favorable conditions for micromycetes to develop. The employed means of microclimate control facilitate the spread of micromycetes in the environment and into the deeper layers of bulk piles. In the paper data on the efficiency of technological protection means suppressing the dispersion and dev...

  3. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoll, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work, we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage

  4. The Design of Food Storage Guided Vehicle System Based on RFID Technology

    Directory of Open Access Journals (Sweden)

    Rui Xue

    2015-08-01

    Full Text Available According to the characteristics of the food transport system, RFID technology is integrated in the AGV automatic guided vehicle system in the food warehousing. The node RFID oriented method is chosen and the RFID note positioning function is used to realize more types and over horizon identification loading, handling and automatic storage function that improves the system flexibility through the design of tag oriented system.

  5. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    OpenAIRE

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be use...

  6. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  7. Cryogenic Propellant Storage and Transfer Technology Demonstration: Prephase A Government Point-of-Departure Concept Study

    Science.gov (United States)

    Mulqueen, J. A.; Addona, B. M.; Gwaltney, D. A.; Holt, K. A.; Hopkins, R. C.; Matis, J. A.; McRight, P. S.; Popp, C. G.; Sutherlin, S. G.; Thomas, H. D.; Baysinger, M. F.; Maples, C. D.; Capizzo, P. D.; Fabisinski, L. L.; Hornsby, L. S.; Percy, T. K.; Thomas, S. D.

    2012-01-01

    The primary purpose of this study was to define a point-of-departure prephase A mission concept for the cryogenic propellant storage and transfer technology demonstration mission to be conducted by the NASA Office of the Chief Technologist (OCT). The mission concept includes identification of the cryogenic propellant management technologies to be demonstrated, definition of a representative mission timeline, and definition of a viable flight system design concept. The resulting mission concept will serve as a point of departure for evaluating alternative mission concepts and synthesizing the results of industry- defined mission concepts developed under the OCT contracted studies

  8. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  9. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  10. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  11. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  12. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  13. The technology of storage of a geno-fund of seeds of plants and animals

    International Nuclear Information System (INIS)

    waves, of special frequencies and of a gaseous medium, created by the liquid nitrogen. There is established, that such way of the storage of ram sperms improves essentially a fertilization-ability of sheep and of a quality of sperms. The final object of our investigations consists in a creation of a new complex technology for the storage of the geno-fund of plant seeds, including various combinations of three ecologically - pure technological techniques. These are a pyramid, a gaseous medium and electromagnetic waves. It is necessary to note, that in some cases a choice of storages in the form of pyramids does not require a construction of special spaces with refrigerating machinery and large energetic and labour - consuming expenditures

  14. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  15. Adsorbing/dissolving Lyoprotectant Matrix Technology for Non-cryogenic Storage of Archival Human Sera

    Science.gov (United States)

    Solivio, Morwena J.; Less, Rebekah; Rynes, Mathew L.; Kramer, Marcus; Aksan, Alptekin

    2016-04-01

    Despite abundant research conducted on cancer biomarker discovery and validation, to date, less than two-dozen biomarkers have been approved by the FDA for clinical use. One main reason is attributed to inadvertent use of low quality biospecimens in biomarker research. Most proteinaceous biomarkers are extremely susceptible to pre-analytical factors such as collection, processing, and storage. For example, cryogenic storage imposes very harsh chemical, physical, and mechanical stresses on biospecimens, significantly compromising sample quality. In this communication, we report the development of an electrospun lyoprotectant matrix and isothermal vitrification methodology for non-cryogenic stabilization and storage of liquid biospecimens. The lyoprotectant matrix was mainly composed of trehalose and dextran (and various low concentration excipients targeting different mechanisms of damage), and it was engineered to minimize heterogeneity during vitrification. The technology was validated using five biomarkers; LDH, CRP, PSA, MMP-7, and C3a. Complete recovery of LDH, CRP, and PSA levels was achieved post-rehydration while more than 90% recovery was accomplished for MMP-7 and C3a, showing promise for isothermal vitrification as a safe, efficient, and low-cost alternative to cryogenic storage.

  16. Adsorbing/dissolving Lyoprotectant Matrix Technology for Non-cryogenic Storage of Archival Human Sera.

    Science.gov (United States)

    Solivio, Morwena J; Less, Rebekah; Rynes, Mathew L; Kramer, Marcus; Aksan, Alptekin

    2016-01-01

    Despite abundant research conducted on cancer biomarker discovery and validation, to date, less than two-dozen biomarkers have been approved by the FDA for clinical use. One main reason is attributed to inadvertent use of low quality biospecimens in biomarker research. Most proteinaceous biomarkers are extremely susceptible to pre-analytical factors such as collection, processing, and storage. For example, cryogenic storage imposes very harsh chemical, physical, and mechanical stresses on biospecimens, significantly compromising sample quality. In this communication, we report the development of an electrospun lyoprotectant matrix and isothermal vitrification methodology for non-cryogenic stabilization and storage of liquid biospecimens. The lyoprotectant matrix was mainly composed of trehalose and dextran (and various low concentration excipients targeting different mechanisms of damage), and it was engineered to minimize heterogeneity during vitrification. The technology was validated using five biomarkers; LDH, CRP, PSA, MMP-7, and C3a. Complete recovery of LDH, CRP, and PSA levels was achieved post-rehydration while more than 90% recovery was accomplished for MMP-7 and C3a, showing promise for isothermal vitrification as a safe, efficient, and low-cost alternative to cryogenic storage. PMID:27068126

  17. Storage of spent fuel from the nation's nuclear reactors: Status, technology, and policy options

    International Nuclear Information System (INIS)

    Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the ''spent fuel'' elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report

  18. Cloud data storage technology%云数据安全存储技术探讨

    Institute of Scientific and Technical Information of China (English)

    谭昕

    2015-01-01

    云数据计算因为其计算速度快、方便快捷、造价低廉等优势逐渐成为备受关注和欢迎的计算存储模式,但是随之而来的信息存储安全问题却困扰着众多的云数据用户,更使得众多的计算机用户望而却步。本文着重介绍了密文访问、加密存储、数据销毁三个方面对云数据安全存储技术进行了分析。%Cloud data because of its calculation speed is fast, convenient and quick, low cost and other advantages gradually become attention and welcome to the calculation of the storage mode, but the resulting information storage security problem has plagued many of cloud data users, more make many computer users. This paper introduces the ciphertext access, encryption storage, data destruction of three aspects of cloud data storage technology are analyzed.

  19. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    Science.gov (United States)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  20. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  1. Subsurface barrier technologies as potential interim actions for Department of Energy underground storage tanks

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company administers the US Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID) Program, which is designed to demonstrate technologies for the retrieval, treatment, and closure to DOE USTs and tank waste at five facilities throughout the US. In February 1992, Bovay Northwest conducted an UST workshop for Westinghouse Hanford. The scope of the workshop included a variety of applied subsurface barrier technologies that could be installed around an UST or series of USTs. This paper summarizes the information presented in the workshop. Once selected, screened technologies will be tested in the field in a full-scale demonstration and development project (also funded by the UST-ID program)

  2. Improving the nutritional quality of the barley and wheat grain storage proteins by antisense technology

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Lange, Mette; Aaslo, Per;

    2011-01-01

    genetic modification with antisense or the more drastic RNAi suppression technology and study the change in protein pattern under different environmental conditions. We have five antisense and 12 RNAi C-hordein lines of barley (RNAi lines are under characterisation) and wheat RNAi lines (gamma and alpha...... result, a considerable amount of research is focused on improving the quality and quantity of seed storage protein both by traditional plant breeding and by modern genetic engineering technology. In our research program we are trying to enrich the nutritional quality of barley and wheat grains using...... plan to construct wheat omega RNAi lines using RNAi technology. The cloning of the omega gliadin from wheat is in progress. Finally, the agronomic properties and nutritional values of the genetically modified barley and wheat will be evaluated. References Hansen, M., Lange, M., Friis, M., Dionisio. G...

  3. Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

  4. A beta test of linear tape-open (LTO) ultrium data storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Cholia, Shreyas; Meyer, Nancy

    2001-10-31

    NERSC is participating in several HPSS (High Performance Storage System) research and development projects as part of the Probe testbed. One of these projects involved beta testing of the IBM 3584 UltraScalable Tape Library, which uses the new ultra-high-density Linear Tape-Open (LTO) Ultrium tape drives. Ultrium tape cartridges have a capacity of up to 300 GB of compressed data, greatly reducing the number of cartridges needed to store massive scientific datasets. NERSC's preliminary performance testing indicates that LTO Ultrium technology, with compatible products and media available from several vendors, may be a viable alternative for computer centers seeking higher-density archival storage media with a small footprint and relatively low cost per drive.

  5. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage

  6. Evaluating the development of carbon capture and storage technologies in the United States

    International Nuclear Information System (INIS)

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies in the US between 2000 and 2009 and to come up with policy recommendations for technology managers that wish to accelerate the deployment of CCS. The analysis describes the successful built-up of an innovation system around CCS and pinpoints the key determinants for this achievement. However, the evaluation of the system's performance also indicates that America's leading role in the development of CCS should not be taken for granted. It shows that the large CCS R and D networks, as well as the extensive CCS knowledge base, which have been accumulated over the past decade, have not yet been valorized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. Therefore, it is argued that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS technologies in the US. This study provides a clear understanding of the current barriers to the technology's future deployment and outlines a policy strategy that (1) stimulates technological learning; (2) facilitates collaboration and coordination in CCS actor networks; (3) creates financial and market incentives for the technology; and (4) provides supportive regulation and sound communication on CCS. (author)

  7. Cloud Storage Technology and Development%云存储技术及其发展

    Institute of Scientific and Technical Information of China (English)

    孙小雁

    2014-01-01

    Along with the rapid development of cloud computing, researchers are getting more and more interested in this area. Since there is abundant of cloud data in cloud and a large number of users, cloud storage technology is becoming a key technology in cloud computing. The mainstream cloud platform and cloud storage technology are introduced in detail in this study. And the challenges under new situation and requirements are also discussed.%云计算的迅速发展吸引了研究人员的深入研究与普通民众的广泛关注,随着云端数据越来丰富、用户数量越来越庞大,云存储技术的发展越来越受到重视。对当前主流的云存储平台及平台中采用的云存储技术进行了详细的介绍,并剖析了新形势、新需求下云存储技术中存在的若干问题。

  8. Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger

    KAUST Repository

    Baoua, Ibrahim B.

    2012-10-01

    Triple bagging technology for protecting postharvest cowpea grain from losses to the bruchid, Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae) is currently being adopted on a fairly large scale in ten West and Central African countries, including Niger. The triple bag consists of two inner high-density polyethylene bags acting as oxygen barriers, which in turn are encased in an outer woven polypropylene bag that serves primarily for mechanical strength. These hermetic bags, available in either 50 or 100 kg capacity, are called Purdue Improved Cowpea Storage (PICS) bags. Adoption of PICS technology in West and Central Africa has been driven by its effectiveness, simplicity, low cost, durability, and manufacture within the region. From surveys on adoption we discovered that farmers have begun to re-use bags they had used the previous year or even the previous two years. In the present study, we compared the performance of three different types of PICS bags: (1) new 50 kg (2) new 100 kg bags and (3) once-used 50 kg bags, all filled with naturally infested untreated cowpeas. In these PICS bags the O 2 levels within the bags initially fell to about 3 percent (v/v) while the CO 2 rose to nearly 5 percent (v/v). After five months of storage, new and used 50 kg bags and new 100 kg bags preserved the grain equally well. There were greatly reduced numbers of adults and larvae in the PICS bags versus the controls, which consisted of grain stored in single layer woven bags. The proportion of grain having C. maculatus emergence holes after five months of storage in PICS bags was little changed from that found when the grain was first put into the bags. The PICS technology is practical and useful in Sahelian conditions and can contribute to improved farmers\\' incomes as well as increase availability of high quality, insecticide-free cowpea grain as food. © 2012 Elsevier Ltd.

  9. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  10. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  11. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and int

  12. Advances in membrane technology for the NASA redox energy storage system

    Science.gov (United States)

    Ling, J. S.; Charleston, J.

    1980-01-01

    Anion exchange membranes used in the system serve as a charge transferring medium as well as a reactant separator and are the key enabling component in this storage technology. Each membrane formulation undergoes a series of screening tests for area-resistivity, static (non-flow) diffusion rate determination, and performance in Redox systems. The CDIL series of membranes has, by virtue of its chemical stability and high ion exchange capacity, demonstrated superior properties in the redox environment. Additional resistivity results at several acid and iron solution concentrations, iron diffusion rates, and time dependent iron fouling of the various membrane formulations are presented in comparison to past standard formulations.

  13. 云存储数据缩减技术研究%Research on cloud storage data reduction technology

    Institute of Scientific and Technical Information of China (English)

    胡新海

    2012-01-01

    基于云计算应用中的云存储技术,使数据存储变得安全可靠和易管理。在云存储技术数据存储的过程中,不仅考虑数据读写的速度,还得处理数据存储效率,以便满足当前海量信息存储的需求。云存储中的数据缩减技术可以缩减数据信息量,提高存储的效率,满足数据存储急剧的要求。通过对几种数据缩减技术进行比较研究分析,探讨了对数据处理后存储的效率以及每项技术发展状况,为用户选择云存储数据缩减技术提供有力的参考。%Based on cloud storage technology applied in cloud computing applications, data storage has become more safer, reliable and manageable. During the process of cloud data storage,we not only consider the speed of data read and write,but also deal with the efficiency of data storage,in order to meet the needs of the vast amounts of information storage. Cloud storage data reduction technology can reduce the data amount of information to improve the efficiency of the storage to meet drastic re- quirements of data storage. Through a comparative study of several pairs of data reduction technology carried out, the author discuss and analyze the efficiency of the stored after the data processing and the technological development status to provide strong reference for the user to select the cloud storage data reduction technology.

  14. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    International Nuclear Information System (INIS)

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH4. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H2) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system

  15. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  16. Remote technology related to the handling, storage and disposal of spent fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Reduced radiation exposure, greater reliability and cost savings are all potential benefits of the application of remote technologies to the handling of spent nuclear fuel. Remote equipment and technologies are used to some extent in all facilities handling fuel and high-level wastes whether they are for interim storage, processing/repacking, reprocessing or disposal. In view of the use and benefits of remote technologies, as well as recent technical and economic developments in the area, the IAEA organized the Technical Committee Meeting (TCM) on Remote Technology Related to the Handling, Storage and/or Disposal of Spent Fuel. Twenty-one papers were presented at the TCM, divided into five general areas: 1. Choice of technologies; 2. Use of remote technologies in fuel handling; 3. Use of remote technologies for fuel inspection and characterization; 4. Remote maintenance of facilities; and 5. Current and future developments. Refs, figs and tabs

  17. Technological challenges in the retrieval of spent fuel from storage in sea vessels

    International Nuclear Information System (INIS)

    As discussed in this presentation, the decommissioning of scrapped nuclear vessels in Russia has been too fast for the existing waste management plants to keep pace with. Existing facilities were designed to service the fleet in operation and are filled up. The development of new infrastructure for handling radioactive waste and spent nuclear fuel is impeded by the lack of financial means. A large number of nuclear submarines are now laid up with the nuclear fuel still loaded, but the President and the Government have decided to speed up unloading of the spent fuel. The bottleneck is the discharge of the spent nuclear fuel. The Navy has three floating storage facilities for the purpose. The Navy performs many technological decommissioning operations that would have been more appropriately left for shipyards and specialised civil industrial enterprises. Coastal discharge plants at larger shipyards are planned on the North and the Pacific regions of Russia. These are built with US support. The containers used for transport to the Mayak storage are discussed. A metal-concrete container programme is executed in co-operation with Norway and the US. Mayak does not have the capacity for long-term storage of spent nuclear fuel. A temporary storage facility at Mayak has been designed by a consortium of enterprises from Norway, Sweden, UK and France. Lepse, a service-ship for the nuclear icebreaker fleet, was laid up in 1990. It contains spent nuclear fuel assemblies in such bad condition that they cannot easily be discharged. There is an international project for decommissioning Lepse. The Russians consider this a pilot project. The problems of the civil nuclear fleet are similar to those of the Navy

  18. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  19. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  20. CO2 capture and storage in the subsurface - A technological pathway for combating climate change

    International Nuclear Information System (INIS)

    The Earth is warning abnormally. The guilty parties are so-called 'greenhouse gases' (GHG), the main one being carbon dioxide (CO2). Produced in large quantities by human activities such as transportation, domestic uses and industry, this gas is essentially given off when fossil fuels - coal, oil or gas - are burned. In addition to efforts to reduce energy consumption and develop renewable energy sources, CO2 capture and storage emerges as an option insofar as fossil fuels will continue to be exploited. Since release of the IPCC special report in 2005, mobilization has flourished worldwide for the development of this technological pathway enabling the use of fossil fuels without CO2 emissions, thus biding time until the arrival of alternate energy resources. This brochure goes back over the context of greenhouse gas emissions reductions and addresses at length the achievements and projects in the field of CO2 capture and storage. It also provides a detailed description of on-going technological research and development programmes, highlighting both accomplishments and orientations where progress is expected. It takes stock of recent progress, particularly in France and Europe: - the consideration by political bodies of this option that contributes to reducing greenhouse gas emissions, - the first industrial operations worldwide, - the new European demonstration projects in Europe to generate electricity and produce hydrogen or steam, - the mounting interest amongst France's industry outside the energy sector: steel sector, cement production, waste processing, bio-fuel production, - the most pertinent achievements and new research initiatives in Europe for CO2 capture, transport and storage, - the appropriate regulations and legal framework as well as economic incentives for cutting the costs and increasing the commitments of States

  1. Development of Strip Casting Technology in Rare Earth Permanent Magnet Alloys and Hydrogen Storage Alloys in China

    Institute of Scientific and Technical Information of China (English)

    Han Weiping; Guo Binglin; Yu Xiaojun; Zhu Jinghan; Cheng Xinghua

    2007-01-01

    The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.

  2. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  3. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  4. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid an

  5. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  6. Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  7. Holographic Grid Cloud, a futurable high storage technology for the next generation astronomical facilities

    CERN Document Server

    Gallozzi, Stefano

    2011-01-01

    In the immediate future holographic technology will be available to store a very large amount of data in HVD (Holographic Versatile Disk) devices. This technology make extensive use of the WORM (Write-Once-Read-Many) paradigm: this means that such devices allow for a simultaneous and parallel reading of millions of volumetric pixels (i.e. voxels). This characteristic will make accessible wherever the acquired data from a telescope (or satellite) in a quite-simultaneous way. With the support of this new technology the aim of this paper is to identify the guidelines for the implementation of a distributed RAID system, a sort of "storage block" to distribute astronomical data over different geographical sites acting as a single remote device as an effect of a property of distributed computing, the abstraction of resources. The end user will only have to take care on connecting in a opportune and secure mode (using personal certificates) to the remote device and will have access to all (or part) of this potential...

  8. When to invest in carbon capture and storage technology: A mathematical model

    International Nuclear Information System (INIS)

    We present two models of the optimal investment decision in carbon capture and storage technology (CCS)—one where the carbon price is deterministic (based on the newly introduced carbon floor price in Great Britain) and one where the carbon price is stochastic (based on the ETS permit price in the rest of Europe). A novel feature of this work is that in both models investment costs are time dependent which adds an extra dimension to the decision problem. Our deterministic model allows for quite general dependence on carbon price and consideration of time to build and simple calculus techniques determine the optimal time to invest. We then analyse the effect of carbon price volatility on the optimal investment decision by solving a Bellman equation with an infinite planning horizon. We find that increasing the carbon price volatility increases the critical investment threshold and that adoption of this technology is not optimal at current prices, in agreement with other works. However reducing carbon price volatility by switching from carbon permits to taxes or by introducing a carbon floor as in Great Britain would accelerate the adoption of carbon abatement technologies such as CCS. - Highlights: • Analytic solution for the critical ETS permit price for optimal investment in CCS • Solution for the optimal time for investment in CCS in GB subject to carbon floor • Time varying investment cost included • Not optimal to invest at current ETS prices • ETS permit price volatility increases the optimal investment threshold

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  10. The application of mature dry storage technology and remote handling robotics to nuclear plant extension, clean-up and decommissioning

    International Nuclear Information System (INIS)

    This paper reviews a mature dry storage technology developed by GEC ALSTHOM Engineering Systems Limited (GAES) which offers a passive, economical and licensable method of providing irradiated fuel storage capacity at operational nuclear power stations. The evolution of the modular vault dry store (MVDS) technology has taken place over 25 years of operational experience, culminating in a product which meets all of the concerns of licensing authorities regarding safety and fuel integrity. The application of remote handling robotics to nuclear fuel and active component handling as a routine process rather than as an intervention technique is also reviewed. The growth of the application of this technology is governed by several factors which include: statutory requirements, safety assurance, risk reduction and economic pressures. The availability of a mature MVDS technology with an evolving process-capable robotics technology opens up opportunities for exploring proven UK products. (Author)

  11. Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  12. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  13. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  14. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1994-09-01

    The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  15. CODE ACCEPTANCE OF A NEW JOINING TECHNOLOGY FOR STORAGE CONTAINMENTS (REISSUE)

    International Nuclear Information System (INIS)

    One of the activities associated with cleanup throughout the Department of Energy (DOE) complex is packaging radioactive materials into storage containers. Much of this work will be performed in high-radiation environments requiring fully remote operations, for which existing, proven systems do not currently exist. These conditions require a process that is capable of producing acceptable (defect-free) welds on a consistent basis; the need to perform weld repair, under fully-remote operations, can be extremely costly and time consuming. Current closure-welding technologies (fusion welding) are not well suited for this application and will present risk to cleanup cost and schedule. To address this risk, Fluor and the Pacific Northwest National Laboratory (PNNL) are proposing that a new and emerging joining technology, Friction Stir Welding (FSW), be considered for this work. FSW technology has been demonstrated in other industries (aerospace and marine) to produce near flaw-free welds on a consistent basis. FSW is judged capable of providing the needed performance for fully-remote closure welding of containers for radioactive materials for the following reasons: FSW is a solid-state process; material is not melted. FSW does not produce the type of defects associated with fusion welding, e.g., solidification-induced porosity, cracking, and distortion due to weld shrinkage. In addition, because FSW is a low-heat input process, material properties (mechanical, corrosion and environmental) experience less degradation in the heat affected zones than do fusion welds. When compared to fusion processes, FSW produces extremely high weld quality. FSW is performed using machine-tool technology. The equipment is simple and robust and well-suited for high radiation, fully-remote operations compared to the relatively complex equipment associated with fusion-welding processes. Additionally, for standard wall thicknesses of radioactive materials containers, the FSW process can

  16. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    The current international trend towards expanding Spent Fuel Interim Dry Storage capabilities goes with an improvement of the performance of the proposed systems which have to accommodate Spent fuel Assemblies characterized by ever increasing burn-up, fissile isotopes contents, thermal releases, and total inventory. Due to heterogeneous worldwide reactor pools and specific local constraints the proposed solutions have also to cope with a wide fuel design variety. Moreover, the Spent fuel Assemblies stored temporarily for cooling may have to be transported either to reprocessing facilities or to interim storage facilities before direct disposal; it is the reason why the retrievability, including or not transportability of the proposed systems, is often specified by the Utilities for the design of their Storage systems and sometimes by law. This paper shows on examples developed within companies of AREVA Group the key parameters and elements that can direct toward the selection of a technology in a user specific context. Some of the constraints are ability to dry store at once a large number of spent fuel assemblies, readily available, on a given site. No urgent need for further move of the fuel is foreseen. Then clearly a Vault Type Storage system developed and implemented by SGN is an excellent solution: It combines passive safety with immediate large capacity, which allows quick amortization of fuel receiving equipment. In addition the versatile storage position can easily accept in the same facility different fuel types, and also intermediate and High Level Waste. This is the reason why a vault system is often a preferred solution for a long-term dry interim centralized storage, for a multiplicity of spent fuel. It can be also a choice solution when the ISFSI stands on a site that is dedicated permanently to many different nuclear activities.In most cases, the producers of spent fuel require a large capacity that is cumulated over many years, each reload at a

  17. Exploratory technology research program for electrochemical energy storage. Annual report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1997-06-01

    The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

  18. 储氢技术综述及在氢储能中的应用展望%Overview of Hydrogen Storage Technologies and Their Application Prospects in Hydrogen-based Energy Storage

    Institute of Scientific and Technical Information of China (English)

    徐丽; 马光; 盛鹏; 李瑞文; 刘志伟; 李平

    2016-01-01

    氢储能技术是解决大规模风电储存的一种新途径,高效储氢技术是氢储能系统得以应用的关键环节之一。综述储氢技术的国内外研究进展,对适于商业应用的高压气态储氢技术、低温液态储氢技术、金属氢化物储氢技术,以及低温高压、高压金属氢化物复合储氢技术展开比较和分析。通过对氢储能系统应用过程的分析,认为氢储能系统对储氢技术的要求,更侧重于安全性、成本和体积密度。综合考虑各种储氢方式在氢储能应用上的优缺点,认为金属氢化物储氢技术和高压金属氢化物储氢技术具有显著的优势。%Hydrogen storage technology is a new way to solve large-scale wind power storage, and high efficient hydrogen storage technology is one of the key links in the application of hydrogen energy storage system. This paper reviews its domestic and foreign research progresses of hydrogen storage technology. Comparative analysis of high pressure gaseous hydrogen storage technology, cryogenic liquid hydrogen storage technology, metal hydride hydrogen storage technology, cryogenic high pressure and high-pressure metal hydride composite hydrogen storage technology for commercial application is carried out. According to the analysis of hydrogen energy storage system’s application process, it could be deemed that the requirements of hydrogen energy storage system for hydrogen storage technology are more focused on safety, cost and volume density. The advantages and disadvantages of various hydrogen storage ways in hydrogen energy storage applications are synthetically considered. It can draw the conclusion that metal hydride hydrogen storage technology and high-pressure metal hydride hydrogen storage technology have remarkable advantages.

  19. Biotic Interaction in Space and Time

    DEFF Research Database (Denmark)

    Schmidt, Andreas Kelager

    further enhance the risk of extinction. Maculinea alcon is selected as an umbrella for conservation and numerous aspects of its biology has been studied extensively. This thesis explores the spatio-temporal impact of the tight biotic dependence in this tritrophic interaction system and integrates...

  20. On the challenge of developing advanced technologies for electrochemical energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Hyun Deog Yoo

    2014-04-01

    Full Text Available The accelerated production of sophisticated miniaturized mobile electronic devices, challenges such as the electrochemical propulsion of electric vehicles (EVs, and the need for large-scale storage of sustainable energy (i.e. load-levelling applications motivate and stimulate the development of novel rechargeable batteries and super-capacitors. While batteries deliver high energy density but limited cycle life and power density, super-capacitors provide high power density and very prolonged cycling. Lithium-ion batteries are the focus of intensive R&D efforts because they promise very high energy density that may be suitable for electrical propulsion. Here, we review research on batteries with an emphasis on Li-ion battery technology, examining its suitability for EV applications. We also briefly examine other battery systems that may be of importance for load-levelling applications, including rechargeable magnesium batteries. We give a short review of the status of technologies beyond Li-ion batteries, including Li–sulfur and Li–oxygen systems. Finally, we briefly discuss recent progress in the R&D of advanced super-capacitors.

  1. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    International Nuclear Information System (INIS)

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment

  2. Cleaner fossil power generation in the 21st century: a technology strategy for carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    The document describes how the research, development and demonstration (RD&D) components of the United Kingdom Government's Carbon Abatement Technologies (CATs) Strategy should be developed and extended, with particular reference to a 2020 target for carbon dioxide capture and storage (CCS) commercialisation and the 2050 UK Committee on Climate Change (CCC) dioxide target. It sets out a strategy for RD&D through the establishment of a collaborative programme linking industry, and academia, and involving different funding sources. The proposed RD& D programme has seven strategic themes: Power plant: focus on cost, increasing efficiency, biomass co-firing; Capture technologies: focus on cost, efficiency penalty, waste heat utilisation; storage: focus on security, monitoring and verification; transport: focus on logistics and transport network; whole system: focus on risks, transient capability, economics, environmental issues; advanced and novel capture technologies; and underpinning technology support. 11 refs., 10 figs., 15 tabs.

  3. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  4. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  5. Dry storage technologies: Optimized solutions for spent fuels and vitrified residues

    International Nuclear Information System (INIS)

    ancillary equipment, Ready to move to final or centralized repository or reprocessing facility or other ISFSI, Compact systems, Easy rearrangement, Easy handling; - In favor of concrete shielded canisters based systems: Economics when initial quantity is sufficient to spread out up front equipment investment significant cost - Shielding advantage, Easy local production of the relatively light canisters. Both approaches of dry storage technologies can have a positive impact on their public acceptance because of their non-permanent characteristics and because their transport license refers to internationally recognized rules, standards and methods. Currently, more than 1,000 COGEMA Logistics/Transnuclear Inc. dry storage systems have been ordered in Belgium, Germany, Japan, Switzerland, Armenia and the US. Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues cannot be transported in the existing cask designs presently used. Therefore, COGEMA LOGISTICS has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TNTM81 casks currently in use in Switzerland and the TNTM85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues. The TNTM81 and the TNTM85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production in existing reprocessing facilities. They also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing casks such as the TNTM28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. In addition, years of feedback and experience in design and operations - together with ever improved materials

  6. Research on Key Technologies of Cloud Storage%云存储关键技术研究

    Institute of Scientific and Technical Information of China (English)

    许志龙; 张飞飞

    2012-01-01

    Since the advent of mass storage system and the development of the parallel file system and distributed file systems, cloud storage system which is based on cloud computing technology, will become an important storage in future with the characteristics of low cost and scalability. Intro- duces the technology and implementation related to cloud storage and the application of cloud storage in some fields.%随着海量存储系统的出现与并行文件系统、分布式文件系统的发展.云存储系统建立在云计算技术前提之上,以其成本低、可扩展的特点,将成为未来的主要存储方式。介绍云存储相关的技术与实现及云存储在目前几个主要领域的应用。

  7. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Science.gov (United States)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  8. A review of technology for verification of waste removal from Hanford Underground Storage Tanks (WHC Issue 30)

    International Nuclear Information System (INIS)

    Remediation of waste from Underground Storage Tanks (UST) at the Hanford Waste storage sites will require removal of all waste to a nearly clean condition. Current requirements are 99% clean. In order to meet remediation legal requirements, a means to remotely verify that the waste has been removed to sufficient level is needed. This report discusses the requirements for verification and reviews major technologies available for inclusion in a verification system. The report presents two operational scenarios for verification of residual waste volume. Thickness verification technologies reviewed are Ultrasonic Sensors, Capacitance Type Sensors, Inductive Sensors, Ground Penetrating Radar, and Magnetometers. Of these technologies Inductive (Metal Detectors) and Ground Penetrating Radar appear to be the most suitable for use as waste thickness sensors

  9. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  10. Control of quality and silo storage of sunflower seeds using near infrared technology

    International Nuclear Information System (INIS)

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  11. Control of quality and silo storage of sunflower seeds using near infrared technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-05-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  12. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  13. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  14. The geographic scaling of biotic interactions

    OpenAIRE

    Araújo, Miguel B.; Rozenfeld, Alejandro

    2014-01-01

    A central tenet of ecology and biogeography is that the broad outlines of species ranges are determined by climate, whereas the effects of biotic interactions are manifested at local scales. While the first proposition is supported by ample evidence, the second is still a matter of controversy. To address this question, we develop a mathematical model that predicts the spatial overlap, i.e. co-occurrence, between pairs of species subject to all possible types of interactions. We then identify...

  15. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    International Nuclear Information System (INIS)

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data

  16. Combat erosion prone conditions with biotic growth mediums

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-10-01

    This article discussed methods of preserving soils in order to support remediation activities at 2 sites with sandy subsoil conditions and a lack of organic materials. An advanced hydroseeding technology was used to control erosion at the sites. Biotic Earth is a wheat straw-based hydromulch mixed with peat moss. The straw is used as an erosion control material, while the peat moss is used as an organic addition to the soil. Biotic Earth was applied at a site near James Bay where topsoil could not be salvaged. The aim of the project was to establish vegetation within a single season without the use of topsoil. The product was also used to combat the erosion challenges at a wastewater lagoon development in Manitoba that involved the protection of 70,000 m{sup 2} of eroded slopes and channels that threatened to undermine the lagoon structure. Vegetation was established on the sand beams surrounding the lagoon. Erosion control blankets were used to kick-start vegetation growth. The specialized hydroseeding proposal was selected as the lowest cost option among several alternatives. It was concluded that vegetation growth in the region was rapid and consistent through the planted areas. 12 figs.

  17. Thermal energy storage : a key technology for the food cold chain

    OpenAIRE

    Leducq, D.; Schalbart, P.; Trinquet, F.; Alvarez, G.; Verlinden, B.; Verboven, P.; Van Der Sluis, S.; Wessink, E.; Jay, F.; Pirani, M.; Indergård, E.

    2011-01-01

    In a context of greenhouse gas emissions, oil price rising and intermittent renewable energy sources, energy storage, and more specifically thermal energy storage is one of the best candidates to reduce and optimize the energy use of refrigerating systems. Moreover, the temperature stability and the autonomy of those systems in case of power failure, related to the use of thermal energy storage devices, is also an important factor of food quality and security enhancement. The thermal energy s...

  18. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  19. Application of phase change energy storage technology in heat storage during the electricity valley%相变储能技术在谷电蓄热供暖中的应用研究

    Institute of Scientific and Technical Information of China (English)

    张继皇; 孙利; 杨强; 李文

    2016-01-01

    The phase change energy storage is an advanced technology for heat storage, which realizes electric heat storage using phase change energy storage technology in the valley electricity time, and is applied to electric heat storage building heating. The technolo⁃gy has the very good value for heating power load of power grid and the user operation cost. In this paper, the phase change heat storage technology is compared with the other heating technologies. The phase change heat storage products are tested on specific perfor⁃mance. A commercial center heat storage in Tianjin using valley elec⁃tricity is introduced and analyzed as the application case.%相变储能是一种先进的储热技术,在谷电时间采用相变储能技术进行电热蓄热,并将电热蓄热应用于建筑供暖,对电网的电力调峰以及用户供暖运行成本都具有很好的价值。对相变蓄热技术与其它供暖技术进行对比分析,对相变蓄热产品进行具体的性能测试,并对天津某商业中心采用谷电蓄热供暖的应用案例进行了介绍分析。

  20. Research advances on rice storage technology%大米贮藏保鲜技术研究进展

    Institute of Scientific and Technical Information of China (English)

    段小明; 戴慧媛; 冯叙桥; 张蓓; 蔡茜彤; 范林林

    2013-01-01

    Rice (Oryza sativa L.) is one of the staple foods for human beings as it is rich in nutrients. However, occurance of various biological and biochemical changes of starch, protein, fat and other components in rice during long period storage result in the decline of rice edible quality. To an extent, rice storage technol-ogy can inhibits the growth of insect pests, mildew and aging process of rice. Research advances on rice storage technology, including the control of storage temperature and relative humidity, ionizing radiation, dielectric heating, coating preservation, packaging technology and preservation with fresh keeping agents, were reviewed in this paper. Present storage technology of the rice is, overall, outdated. And most technologies for rice storage are in the stage of laboratory research and still far away to be applied in the rice industry. In addition, research on rice storage is not comprehensive and extensive. Trends of technological development for rice storage in-clude but not limited to the application of compound preservation technology, selection of best rice variety for storage, and implementation of rice preservation at molecular level.%大米(Oryza sativa L.)营养物质丰富,是人类最重要的粮食作物之一。大米经长时间贮藏后,其中的淀粉、蛋白质、脂肪等组分会发生各种变化,使其食用品质下降。大米贮藏保鲜技术能够在一定程度上抑制大米生虫、霉变和陈化现象的发生,延长大米的贮藏期。本文从贮藏温度和相对湿度的控制、电离辐射保鲜、介电加热保鲜、涂膜保鲜、包装保鲜和保鲜剂保鲜等方面,概述了大米贮藏保鲜技术的研究和应用现状。目前,大米的贮藏方式落后,贮藏保鲜技术大多仅处于实验室研究阶段、较难实现工业化应用,有关大米贮藏保鲜方面的研究还不够全面和深入是大米贮藏保鲜中主要存在的问题。大米复合保鲜和大米品种

  1. Factors Influencing the Adoption of Cloud Storage by Information Technology Decision Makers

    Science.gov (United States)

    Wheelock, Michael D.

    2013-01-01

    This dissertation uses a survey methodology to determine the factors behind the decision to adopt cloud storage. The dependent variable in the study is the intent to adopt cloud storage. Four independent variables are utilized including need, security, cost-effectiveness and reliability. The survey includes a pilot test, field test and statistical…

  2. National Center of Excellence for Energy Storage Technology 168.10

    Energy Technology Data Exchange (ETDEWEB)

    Guezennec, Yann

    2011-12-31

    This report documents the performance of the Ohio State University (OSU) and Edison Welding Institute (EWI) in the period from 10/1/2010 to 12/31/2012. The objective of the project is to establish a Center of Excellence that leverages the strengths of the partners to establish a unique capability to develop and transfer energy storage industries to establish a unique capability in the development and transfer of energy storage system technology through a fundamental understanding of battery electrical and thermal performance, damage and aging mechanisms, and through the development of reliable, high-speed processes for joining substrates in battery cell, module and pack assemblies with low manufacturing variability. During this period, the OSU activity focused on procuring the equipment, materials and supplies necessary to conduct the experiments planned in the statement of project objectives. In detail, multiple laboratory setups were developed to enable for characterizing the open-circuit potential of cathode and anode materials for Li-ion batteries, perform experiments on calorimetry, and finally built multiple cell and module battery cyclers to be able to perform aging campaign on a wide variety of automotive grade battery cells and small modules. This suite of equipment feeds directly into the development, calibration of battery models ranging from first principle electrochemical models to electro-thermal equivalent circuit models suitable for use in control and xEV vehicle simulations. In addition, it allows to develop and calibrate ‘aging’ models for Li-ion batteries that enable the development of diagnostics and prognostics tools to characterize and predict battery degradation from automotive usage under a wide array of environmental and usage scenarios. The objective of the EWI work scope is to develop improved processes for making metal-tometal joints in advanced battery cells and packs. It will focus on developing generic techniques for making

  3. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  4. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    International Nuclear Information System (INIS)

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  5. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    OpenAIRE

    Yong Li; Xiangjun Li; Fang Chen; Xiwang Cui; Xiaojuan Han

    2012-01-01

    Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and th...

  6. Analysis of Principle and Key Technology of the Hybrid Power Generation System with Wind Turbine, Photovoltaic and Electric Storage

    OpenAIRE

    Ming Xu; Hongchun Yao

    2013-01-01

    This paper proposes the meaning and essentiality of developing the hybrid power generation system with wind turbine, photovoltaic and electric storage, and expatiates the basic principle of the system. Then, this paper discusses the key technology of Wind-PV-ES ratio optimization algorithm, hybrid power generation system optimization integration, power estimation, integrated monitoring, and maintenance. Finally, the development and application outlook of the system in China is analyses and pr...

  7. When to invest in carbon capture and storage technology in the presence of uncertainty: A mathematical model

    OpenAIRE

    Walsh, D. M.; O'Sullivan, K; Lee, W. T.; Devine, M.

    2013-01-01

    We present a model for determining analytically the critical threshold for investment in carbon capture and storage technology in a region where carbon costs are volatile and assuming the cost of investment decreases. We first study a deterministic model with quite general dependence on carbon price and then analyse the effect of carbon price volatility on the optimal investment decision by solving a Bellman equation with an infinite planning horizon. We find that increasing the expected carb...

  8. Cost-efficient demand-pull policies for multi-purpose technologies – The case of stationary electricity storage

    International Nuclear Information System (INIS)

    Highlights: • A definition of multi-purpose technologies (MPTs) is proposed. • Opportunities for a cost-efficient demand-pull policy strategy for MPTs are derived. • The multi-purpose character of stationary electricity storage (SES) is shown. • An exemplary profitability assessment of one SES technology supports the argument. - Abstract: Stationary electricity storage technologies (SES) allow to increase the shares of intermittent renewable energy technologies in electricity networks. As SES currently exhibit high costs, policy makers have started introducing demand-pull policies in order to foster their diffusion and drive these technologies further down the learning curve. However, as observed in the case of renewable energy technologies, demand-pull policies for technologies can come at high costs in cases where the profitability gap that needs to be covered by the policy support is large. Yet, SES can create value in multiple distinct applications in the power system – making it a “multi-purpose technology”. We argue that policy makers can make use of the multi-purpose character of SES to limit costs of demand-pull policies. We propose a policy strategy which grants support based on the profitability gap in the different applications, thereby moving down the learning curve efficiently. To support our argumentation, we firstly conduct a comprehensive literature review of SES applications exemplifying the multi-purpose character of these technologies. Second, we assess the profitability of one SES technology (vanadium redox flow battery) in five SES applications, highlighting a strong variation of the profitability gap across these applications

  9. Overview of Carbon Capture and Storage Technology%碳捕获与封存技术综述

    Institute of Scientific and Technical Information of China (English)

    韩东升; 任吉萍; 吴干学; 郭家秀; 尹华强

    2012-01-01

    人类活动排放的二氧化碳将导致全球温度上升,从而引发各种灾难。CCS是短期内减缓全球变暖速度的重要手段。文中综述了碳捕获和碳封存的技术方法,以及CCS技术存在的问题。碳捕获分为燃烧前捕获、富氧燃烧捕获和燃烧后捕获。碳封存方式有地址封存、洋封存、矿石碳化、工业利用、生态封存等,其中地质封存是主流方式。%Carbon dioxide emissions from human activities will cause global temperatures to rise, which cause all kinds of disasters. CCS is an important technology to slow down the speed of global warming. In this paper, we introduce some technology methods on carbon capture and sequestration, and some prob- lems about CCS technology. Carbon capture includes pre-combustion capture, capture and oxyfuel combus- tion capture. The ways of carbon sequestration include address sequestration, ocean storage, mineral carbonation, industrial use and storage of ecology, geological storage is a main approach.

  10. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  11. Modeling biotic habitat high risk areas

    Science.gov (United States)

    Despain, D.G.; Beier, P.; Tate, C.; Durtsche, B.M.; Stephens, T.

    2000-01-01

    Fire, especially stand replacing fire, poses a threat to many threatened and endangered species as well as their habitat. On the other hand, fire is important in maintaining a variety of successional stages that can be important for approach risk assessment to assist in prioritizing areas for allocation of fire mitigation funds. One example looks at assessing risk to the species and biotic communities of concern followed by the Colorado Natural Heritage Program. One looks at the risk to Mexican spottled owls. Another looks at the risk to cutthroat trout, and a fourth considers the general effects of fire and elk.

  12. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  13. Research on Using Natural Coating Materials on the Storage Life of Mango Fruit cv. Nam Dok Mai and Technology Dissemination

    Directory of Open Access Journals (Sweden)

    Apiradee MUANGDECH

    2016-03-01

    Full Text Available This study was designed to assess the suitable type and concentration of 3 natural coating materials, namely, Aloe vera gel, chitosan and carnaubar wax, on postharvest storage life of mango (Mangifera indica L. cv. Nam Dok Mai. The experiment was divided into 3 treatments to compare the 3 types of coating materials and each appropriate concentration, to find the appropriate combination treatment, and to evaluate the benefit of this technology. The objectives of this research were to compare different concentrations and study the type of natural coating materials. At 20 % Aloe vera jelly, 1 % chitosan and 4 % carnaubar wax gave the longest storage life with good quality at 12 days at a storage temperature of 25 °C and 75±5 % relative humidity (p ≤ 0.05. Further investigation was done by using these optimal concentrations alone or in combination under 2 different conditions, 25 °C with 75±5 % relative humidity and 13 °C with 90±5 % relative humidity. It was found that coating with combination of 20 % Aloe vera jelly and 1 % chitosan gave the best result in alleviating the formation of brown spot and extended the storage life up to 12 days as well as slowing down the weight loss, changes in peel and pulp color, firmness, texture, quality such as concentrate by titratable acidity, total soluble solids and respiratory rate significantly compared to control and other treatment (p ≤ 0.05. The use of the coating materials did not alter the quality of the fruit when ripe. Technology dissemination to farmers and exporters was performed by using the training manuals created by the author. The results of the pre-test and after training post-test showed that farmers and exporters increased their knowledge, attitudes, awareness and skills in the use of the natural coating materials for prolonging storage life of mangos.

  14. High Temperature Energy Storage for In Situ Planetary Atmospheric Measurement Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of energy storage capable of operational temperatures of 380:C and 486oC with a specific capacity 200 Wh/kg for use as a power source on the Venusian...

  15. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  16. 云数据安全存储技术分析%Analysis on Cloud Data Storage Technology Related to Security

    Institute of Scientific and Technical Information of China (English)

    朱斌

    2015-01-01

    文章对云数据存储模式进行分析,对云数据安全存储存在的问题进行研究,对云数据安全存储技术进行了探讨。%The paper analyzed cloud data storage mode,cloud data storage problems of security research,security of cloud data storage technologies were discussed.

  17. Control of quality and silo storage of sunflower seeds using near infrared technology

    Directory of Open Access Journals (Sweden)

    González-Martín, I.

    2013-03-01

    Full Text Available This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low oleic acid composition. The discriminant model allows the classification of sunflower seeds with high or low oleic acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation.

    En este trabajo se evalúa la espectroscopía de infrarrojo cercano para su uso en el control de calidad y almacenamiento de semillas de girasol. Los resultados indican que el método analítico empleado puede utilizarse como método de determinación rápida de humedad, grasa y contenidos altos/bajos de ácido oleico. Los rangos de aplicación son comparables con los valores que se han determinado mediante métodos clásicos de análisis, encontrándose entre 4.6-21.4% la humedad, 38.4-49.6% la grasa y 60.0- 93.1% de ácido oleico del total de los ácidos grasos. Además se ha utilizado un análisis discriminarte lineal por pasos determinando las longitudes de onda más adecuadas para la clasificación de semillas de girasol en los grupos alto/bajo oleico. El modelo generado permitió la clasificación de semillas de girasol en los grupos alto y bajo oleico con unos porcentajes de muestras correctamente clasificadas de un 90.5% en validación interna y de un 89.4% en

  18. Biotic Resources Abundance and the Corresponding Causes in Panxi Area

    Institute of Scientific and Technical Information of China (English)

    XU Yun; SU Chunjiang; LIU Xingliang; MAN Zhenchuang; LI Ping

    2006-01-01

    This paper gives a detailed introduction to the biotic resources in Panxi Area and lists the most typical biotic resources in this area. The authors of this paper adopt the biotic resource abundance evaluation index model Ri=(S0i-S1i)×S1i-1(i=1,2,3,…n) to make a quantitative calculation of the biotic resource abundance in this area, and the calculation results show that this area abounds in biotic resources. Through the analysis of the causes of abundant biotic resources in this area, the luxuriant biotic resources in Panxi Area are largely attributed to the complex and varied environment, atrocious climate in history and the introduction of alien species. The purpose of this paper is to point out that biotic resource exploitation is one of the driving forces of economic development in this area, and to emphasize the necessity of biotic resource preservation and its harmonious development with the environment.

  19. SET-Plan - Scientific Assessment in Support of the Materials Roadmap Enabling Low Carbon Energy Technologies - Fossil Fuel Energies Sector, Including Carbon Capture and Storage

    OpenAIRE

    GOMEZ-BRICEÑO Dolores; Jong, Martin; DRAGE Trevor; Falzetti, Marco; Hedin, Niklas; Snijkers, Frans

    2011-01-01

    This document is part of a series of Scientific Assessment reports that underpin the Materials Roadmap enabling Low Carbon Energy Technologies. This report deals with the Fossil Fuel Energies Sector, including Carbon Capture and Storage.

  20. Impact of an innovated storage technology on the quality of preprocessed switchgrass bales

    Directory of Open Access Journals (Sweden)

    Christopher N. Boyer

    2016-03-01

    Full Text Available The purpose of this study was to determine the effects of three particle sizes of feedstock and two types of novel bale wraps on the quality of switchgrass by monitoring the chemical changes in cellulose, hemicellulose, lignin, extractives, and ash over a 225-day period. Using NIR (Near-infrared modeling to predict the chemical composition of the treated biomass, differences were found in cellulose, lignin, and ash content across switchgrass bales with different particle sizes. Enclosing bales in a net and film impacted the cellulose, lignin, and ash content. Cellulose, hemicellulose, lignin, extractives, and ash were different across the 225-day storage period. A quadratic response function made better prediction about cellulose, lignin, and ash response to storage, and a linear response function best described hemicellulose and extractives response to storage. This study yields valuable information regarding the quality of switchgrass at different intervals between the start and end date of storage, which is important to conversion facilities when determining optimal storage strategies to improve quality of the biomass feedstock, based on potential output yield of a bale over time.

  1. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John;

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a...... for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the...... project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  2. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  3. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    Science.gov (United States)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    Atmospheric CO2 concentrations increased an estimated 35% since preindustrial levels two centuries ago, reportedly due to the burning of fossil fuels combined with increased deforestation. In the U.S., energy-related activities account for 75% of anthropogenic greenhouse gas (GHG) emissions, with more than 50% from large stationary sources such as power plants and about one-third from transportation. Mitigation technologies for CO2 atmospheric stabilization based on energy and economic scenarios include coal-based power plant- carbon capture and storage (CCS), and the U.S. Department of Energy (DOE) is assessing CCS operations and supporting technologies at U.S. locations and opportunities abroad reported here. The Algerian In Salah Joint Industry Project injecting 1 million tons CO2 (MtCO2)/year into a gas field sandstone, and the Canadian Weyburn-Midale CO2 Monitoring and Storage Project injecting over 1.8 MtCO2/year into carbonate oil reservoirs are ongoing industrial-scale storage operations DOE participates in. DOE also supports mid-scale CCS demonstrations at the Australian Otway Project and CO2SINK in Germany. Enhanced oil recovery operations conducted for decades in west Texas and elsewhere have provided the industrial experience to build on, and early pilots such as Frio-I Texas in 2004 have spearheaded technology deployment. While injecting 1,600 tons of CO2 into a saline sandstone at Frio, time-lapse borehole and surface seismic detected P-wave velocity decreases and reflection amplitude changes resulting from the replacement of brine with CO2 in the reservoir. Just two of many cutting-edge technologies tested at Frio, these and others are now deployed by U.S. researchers with international teams to evaluate reservoir injectivity, capacity, and integrity, as well as to assess CO2 spatial distribution, trapping, and unlikely leakage. Time-lapse Vertical Seismic Profiling at Otway and microseismic at In Salah and Otway, monitor injection and reservoir

  4. Energy storage. Technologies and potentials to balance supply and demand of energy; Energiespeicherung. Technologien und Potenziale zum Ausgleich von Angebot und Nachfrage

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Markus [RWE Power AG, Essen (Germany); Kruhl, Joerg [E.ON New Build and Technology GmbH, Gelsenkirchen (Germany)

    2012-07-01

    Following political and public intention, future energy systems will be based on a high share of renewable energy with fluctuating behaviour. This will lead to system states in which the matching of supply and demand will be a main challenge. Energy storage is one measure to overcome this challenge. However, energy storage is not the only solution, there are alternative measures such as grid extension, load management or building backup capacity. This paper will present the existing and new storage technologies with their specific application areas and opportunities. The focus is on the large-scale storage applications in Germany. (orig.)

  5. Estimating the capital costs of energy storage technologies for levelling the output of renewable energy sources

    OpenAIRE

    Mignard, Dimitri

    2014-01-01

    In remote areas and islands north and west of Scotland and in many other parts of the world, the high cost of connecting wind farms and other renewable energy converters to the grid may make energy storage an attractive alternative. We estimated the installed capital costs of advanced adiabatic compressed air storage (ACAES), vanadium redox flow cells (VRB) and Li-ion batteries inthe range of 0.5–50 MW and 0.7–30 MWh. These costs were all of the order of £1 million per MWh, confirming that th...

  6. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  7. Research on Carbon Dioxide Capture and Storage Technology%碳捕捉与封存技术研究

    Institute of Scientific and Technical Information of China (English)

    于德龙; 吴明; 赵玲; 汪宇彤

    2014-01-01

    碳捕捉与封存技术指将二氧化碳从工业生产过程中最大限度分离出来,输送到指定地点封存,并与大气长期隔绝过程。CO2捕捉技术有燃烧前捕捉、燃烧后捕捉和富氧燃烧捕捉三类,且各具优缺点和适用情况,实际应用应根据具体情况具体分析;CO2常用输送方式有管道输送、船舶输送和罐车输送三类,对于大规模长距离应首选管道输送,长距离海洋输送应首选船舶输送,对于短距离小输量应首选罐车输送;CO2封存一般有四大类封存方式:海洋封存、矿石碳化、地质封存和工业利用,其中地质封存对减排贡献最大,矿石碳化和工业利用贡献有限,海洋封存仍处研究之中。%Carbon dioxide capture and storage technology is to separate CO2 from industry and to transport to a pointed place for storage. CO2 capture technologies include three measures:pre-combustion capture, post-combustion capture and oxygen-enriched combustion capture. Each measure has advantages and disadvantages, and the suitable technology should be chosen according to particular case. CO2 common transportation methods include three modes of pipeline transportation, marine transportation and tanker transportation. For long distance and large quantities,the pipeline transportation should be chosen; for long distance ocean transportation,shipping transportation should be chosen;For little throughput and short distance, the tanker transportation should be chosen. CO2 storage methods include four types in general. They are ocean sequestration, mineral carbonation, geological storage and industrial use. Among them the geological storage has the largest contribution to emission reduction, the mineral carbonation and industrial use have limited contribution, and the ocean sequestration is still in studying.

  8. Carbon Capture and Storage (CCS) Technologies and Economic Investment Opportunities in the UK

    OpenAIRE

    CHEVALLIER, Julien

    2010-01-01

    This article reviews the role played by carbon and capture (CCS) technologies in order to facilitate the transition to low-carbon emitting technologies in the medium term. More precisely, we address the following central questions: how will the development of CCS technologies impact energy policies in order to yield to sustainable energy solutions? At what costs will pollution reductions be achieved? And most importantly, which CCS technologies will turn out to offer the most effective and ef...

  9. Bag-in-box technology: Storage stability of process-ready, fermented cucumbers

    Science.gov (United States)

    Process-ready, fermented cucumbers were microbiologically stable for up to 6 months when held at 4% salt, and up to 12 months when 0.1% sodium benzoate also was present. At 2% salt, some fermentations were unstable at 6 months of storage. Microbial instability was associated with a rise in brine p...

  10. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice, the...

  11. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  12. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  13. A study of the storage technology of geological big data%地质大数据存储技术

    Institute of Scientific and Technical Information of China (English)

    李婧; 陈建平; 王翔

    2015-01-01

    Under the background of the age of big data, the study of geological data and the technology of big data provide effective support for the development and realization of the modernization of the geological work. The deep-seated reason of the contempo⁃rary trend of big data lies in mass data storage and data forms of more and more things. In this paper, through analyzing the key tech⁃nology of data processing, the authors sum up the existing storage technologies under the background of big data. Based on geological data and geological cloud architecture, the authors discuss the geological data storage technology suitable for current geological work. Geological data are characterized by multiple sources, diversity, heterogeneity, space-time nature, directivity, correlation and random⁃ness, fuzziness, and nonlinear nature. Therefore, the choice of the means of storage and management should be a specific issue deserv⁃ing concrete analysis, and only the establishment of large data structure under multiple technologies can meet the demand of geologi⁃cal applications of big data.%在大数据时代背景下,地质大数据的研究及大数据相关技术为实现地质工作的现代化发展和信息化提供了有效的支撑。而当代大数据发展趋势,就是海量数据的存储及越来越多的事物的数据存在形式。通过梳理大数据处理的关键技术,总结归纳了大数据背景下现有存储技术及数据库的类型。在地质大数据和地质云架构的基础上,讨论适合当前地质大数据的存储技术,地质数据具有多源、多元、异构、时空性、方向性、相关性、随机性、模糊性、非线性等特征。因此,对于存储与管理方式的选择应该是具体问题具体分析,建立多技术支持下的大数据架构,才能满足地质大数据的应用需求。

  14. Comparison of monitoring technologies for CO2 storage and radioactive waste disposal

    International Nuclear Information System (INIS)

    The monitoring techniques used in radioactive waste disposal have fundamentals of geology, hydrogeology, geochemistry etc, which could be applied to CO2 sequestration. Large and diverse tools are available to monitoring methods for radioactive waste and CO2 storage. They have fundamentals on geophysical and geochemical principles. Many techniques are well established while others are both novel and at an early stage of development. Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for radioactive waste disposal and CO2 storage. In study, we discuss the monitoring techniques and the role of these techniques in providing insight in the risks of radioactive waste disposal and CO2 sequestration

  15. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  16. A beta test of linear tape-open (LTO) ultrium data storage technology

    OpenAIRE

    Cholia, Shreyas; Meyer, Nancy

    2001-01-01

    NERSC is participating in several HPSS (High Performance Storage System) research and development projects as part of the Probe testbed. One of these projects involved beta testing of the IBM 3584 UltraScalable Tape Library, which uses the new ultra-high-density Linear Tape-Open (LTO) Ultrium tape drives. Ultrium tape cartridges have a capacity of up to 300 GB of compressed data, greatly reducing the number of cartridges needed to store massive scientific datasets. NERSC's preliminary p...

  17. On the challenge of developing advanced technologies for electrochemical energy storage and conversion

    OpenAIRE

    Hyun Deog Yoo; Elena Markevich; Gregory Salitra; Daniel Sharon; Doron Aurbach

    2014-01-01

    The accelerated production of sophisticated miniaturized mobile electronic devices, challenges such as the electrochemical propulsion of electric vehicles (EVs), and the need for large-scale storage of sustainable energy (i.e. load-levelling applications) motivate and stimulate the development of novel rechargeable batteries and super-capacitors. While batteries deliver high energy density but limited cycle life and power density, super-capacitors provide high power density and very prolonged...

  18. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  19. CASE STUDY OF ACTIVE FREE COOLING WITH THERMAL ENERGY STORAGE TECHNOLOGY

    OpenAIRE

    Gravoille, Pauline

    2011-01-01

    May 25, 2011, Reuters’ headline read: "New York State is prepared for summerelectricity demand". The NY operator forecasts for next summer a peak of 33GW, close to therecord ever reached. With soaring cooling demands, the electricity peak load represents a substantialconcern to the energy system. In the goal of peak shaving, research on alternative solutions based onThermal Energy Storage (TES), for both cooling and heating applications, has been largely performed.This thesis addresses therma...

  20. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the

  1. Advanced Technology of Automated Storage and Retrieval System Using PLC Integration

    Directory of Open Access Journals (Sweden)

    Ashna Joy

    2014-03-01

    Full Text Available This article proposes an highly developed fully automatic ASRS (automatic storage and retrieval system. This main material management support system is generally used for storing and retrieving the unprocessed materials in the manufacturing unit. The necessities of ASRS are increasingly of a more dynamic nature for which new models will need to be developed to overcome the time consumption. ASRS consists of a range of controlled systems for automatically retrieving and storing loads from preferred storage spaces. It is usually used in applications where there is a very high quantity of loads being moved into and out of storage. This system is mainly used for storing and retrieving the unprocessed materials in a manufacturing unit. The main aim of this paper is to build up an automatic system from the present system. The original idea of the article is to help public those who work as operators by designing a system where it is capable of managing the drawer without interference of an operator. The performance of the present system is enhanced by using PLC integration where it coordinates the operation and control of ASRS.

  2. 浅析云盘技术及存储原理%Analysis of Cloud Disk Storage Technology and the Principle

    Institute of Scientific and Technical Information of China (English)

    王伟

    2015-01-01

    along with the computer technology and modern more advanced, cloud disk technology has penetrated into people's work, this article mainly discusses the principle of cloud storage technology, cloud and cloud disk storage space partition principle.%随着现代的计算机技术越来越先进,云盘的技术已经渗透到很多人的工作中,本篇文章主要来探讨云盘技术、云盘的储存原理以及云盘存储空间划分原理。

  3. End-Triassic nonmarine biotic events

    Institute of Scientific and Technical Information of China (English)

    Spencer G. Lucas; Lawrence H. Tanner

    2015-01-01

    The Late Triassic was a prolonged interval of elevated extinction rates and low origination rates that manifested themselves in a series of extinctions during Carnian, Norian and Rhaetian time. Most of these extinctions took place in the marine realm, particularly af-fecting radiolarians, conodonts, bivalves, ammonoids and reef-building organisms. On land, the case for a Late Triassic mass extinction is much more tenuous and has largely focused on tetrapod vertebrates (amphibians and reptiles), though some workers advocate a sudden end-Triassic (TJB) extinction of land plants. Nevertheless, an extensive literature does not identify a major extinction of land plants at the TJB, and a comprehensive review of palynological records concluded that TJB vegetation changes were non-uniform (different changes in dif-ferent places), not synchronous and not indicative of a mass extinction of land plants. Claims of a substantial perturbation of plant ecology and diversity at the TJB in East Greenland are indicative of a local change in the paleolfora largely driven by lithofacies changes resulting in changing taphonomic iflters. Plant extinctions at the TJB were palaeogeographically localized events, not global in extent. With new and more detailed stratigraphic data, the perceived TJB tetrapod extinction is mostly an artifact of coarse temporal resolution, the compiled cor-relation effect. The amphibian, archosaur and synapsid extinctions of the Late Triassic are not concentrated at the TJB, but instead occur stepwise, beginning in the Norian and extending into the Hettangian. There was a disruption of the terrestrial ecosystem across the TJB, but it was more modest than generally claimed. The ecological severity of the end-Triassic non-marine biotic events are relatively low on the global scale. Biotic turnover at the end of the Triassic was likely driven by the CAMP (Central Atlantic Magmatic Province) eruptions, which caused signiifcant environmental perturbations (cooling

  4. Holographic Grid Cloud, a futurable high storage technology for the next generation astronomical facilities

    OpenAIRE

    Gallozzi, Stefano

    2011-01-01

    In the immediate future holographic technology will be available to store a very large amount of data in HVD (Holographic Versatile Disk) devices. This technology make extensive use of the WORM (Write-Once-Read-Many) paradigm: this means that such devices allow for a simultaneous and parallel reading of millions of volumetric pixels (i.e. voxels). This characteristic will make accessible wherever the acquired data from a telescope (or satellite) in a quite-simultaneous way. With the support o...

  5. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  6. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  7. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212

  8. 蓄能空调技术及其发展%The Technology and Development of Energy-storage Air-conditioners

    Institute of Scientific and Technical Information of China (English)

    叶水泉

    2002-01-01

    In this article importance of using energy storage technology in peak-clipping and valley-filling of the demandside management in our country' s power systems is generally discussed. With a practical application in projects, superiorityof the energy-storage air-conditioner is tested and proved. This article comprehensively presents some methods taken byadministration branches of domestic and international governments in supporting its application as well as its current appli-cation situation abroad.

  9. Box Energy: rental of energy-storage systems and alternative fuel technologies for vehicles; Box-energy. Rental of energy. Storage systems and alternative-fuel. Technologies for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bautz, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of study on the rental of energy-storage systems and alternative fuel technologies for vehicles. Experience gained in the area of battery-rental is discussed. The aims of the 'Box Energy' project are described, as is its market environment. The 'Box Energy' concept is described and possible customers and partners listed. Logistics aspects are discussed. The organisation of 'Box Energy' is described and the concept's chances and weaknesses are discussed. The launching of a pilot project in Switzerland is discussed. Recommendations on further work to be done are made.

  10. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark [Quantum Fuel Systems Technologies Worldwide, Inc., Irvine, CA (United States); Lam, Patrick [Boeing Research and Technology (BR& T), Seattle, WA (United States)

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  11. Biotic versus geomorphic control of landscape soil carbon accumulation

    Science.gov (United States)

    Van Hemelryck, Hendrik; Govers, Gerard; Van Oost, Kristof

    2013-04-01

    Soil organic matter (SOM) is the largest terrestrial pool of carbon. In order to assess the impact of increasing human-induced land use changes and future climate on this huge reservoir, it is important to understand the complex process of carbon cycling at different temporal and spatial scales. A key challenge in this effort is the correct representation in global assessments and models of those processes that vary strongly over small scales and are strongly affected by the spatial distribution of carbon stocks (both horizontally and vertically) within the landscape. Many studies have shown that spatial variation of SOC storage at the landscape scale is related to topography as a result of either the redistribution of soil or spatial variation in biological C fluxes (input and decomposition). The objective of this study, is to assess the relative importance of biotic versus geomorphic controls in determining SOC patterns and their potential interactions. Therefore the relationships between topography on the one hand and SOC and carbon isotopes on the other hand, were quantified along an erosional gradient. For this purpose, a grassland area and two agricultural fields with a different management regime (conventional tillage, reduced tillage) were selected. All field sites have a similar topography but are characterized by different rates of soil redistribution, related to management regime. Our results show clearly that for temperate climate regions without moisture/nutrient deficit, soil redistribution is the main driver for spatial variations in SOC, dwarfing any biological effects. From the results, the impact of soil redistribution on carbon dynamics by the continued maintenance of a disequilibrium between carbon in-and output at different landscape positions is reconstructed and we discuss the implications for C sequestration processes.

  12. Cost update: Technology, safety, and costs of decommissioning reference independent spent fuel storage installations

    International Nuclear Information System (INIS)

    The cost estimates originally developed in NUREG/CR-2210 for decommissioning five conceptual Independent Spent Fuel Storage Installations (ISFSIs) and their supporting ancillaries (hot cell and transporter) are updated from 1981 to 1993 dollars. The costs for labor and materials increased approximately at the rate of inflation, the cost of energy increased more slowly than the rate of inflation, and the cost of low-level radioactive waste disposal increased much more rapidly than the rate of inflation. A methodology and a formula are presented for estimating the cost of decommissioning the ISFSIs at some future time, based on these current cost estimates. The formula contains essentially the same elements as the formula given in 10 CFR 50.75 for escalating the decommissioning costs for nuclear power reactors to some future time

  13. Lu2O3:Pr,Hf Storage Phosphor: Compositional and Technological Issues

    Directory of Open Access Journals (Sweden)

    Aneta Wiatrowska

    2013-12-01

    Full Text Available Lu2O3:Pr,Hf ceramics were investigated using mainly thermoluminescence (TL technique. Their ability to efficiently store energy acquired upon irradiation with X-rays was proven. The best TL performance was achieved for compositions containing 0.025%–0.05% of Pr and about 0.1% of Hf. Further enhancement of TL efficiency was attained by increasing the temperature of sintering of the ceramics up to 1700 °C and applying reducing atmosphere of forming gas. It was also proven that fast cooling after the sintering at 1700 °C significantly enhanced the storage phosphor performance. TL glow curve contained three components peaking around 130, 250 and 350 °C. Among them, the one at 250 °C contributed the most to the total TL.

  14. Trends in mass storage technology and possible impacts on high energy physics experiments

    International Nuclear Information System (INIS)

    The reasons for the wide-spread use of magnetic tapes to record data from high energy physics experiments are analysed. Problems due to the sequential nature of the medium and to the large amount of human intervention required are discussed. It is suggested that a high capacity removable disk might resolve these problems. An analysis of track-to-track spacing in magnetic recording shows that multi-track tape is unlikely to be of major interest. A discussion of helical recording shows that the proposed Ampex Super High Bit Rate Recorder might allow for extremely high data rates at future general-purpose facilities. A review of optical disk recording shows that it has great potential for physics data recording. Several areas needing careful attention to product design are indicated. Holographic tape storage is briefly reviewed. (orig.)

  15. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  16. Technology Development for Integrated Safety Test of Spent Nuclear Fuel Transportation and Storage System

    International Nuclear Information System (INIS)

    A dedicated review on the U. S. NRC Regulation 10 CFR Part 72 and regulatory guide NUREG/1536 has been performed. The safety requirements for spent nuclear fuel dry storage cask are analyzed and summarized in structural, thermal, shielding, criticality, materials, tests and maintenance aspects. Also a guideline for preparing the safety analysis report is provided. The heat flow analysis was performed by varying the dimensions of the heat flow test facility. From the heat flow analysis for the test facility, as the test facility became test facility. From the heat flow analysis for the test facility, as the test facility became bigger; the thermal effect became smaller. Therefore, the dimensions of the heat flow test facility was designed with 5m Χ 5m Χ 6m(H). Analyses of heat transfer characteristics and mechanism for spent PWR fuel assemblies, option study for production of the effective thermal conductivity and option study for effective thermal conductivity test have been performed to obtain the basic data for production of the effective thermal conductivity. It became clear that the diffusion coefficient of chloride ion of concrete remarkably increases along with the temperature rise, and that there is a linear relation between the logarithm values of the diffusion coefficients and the reciprocal of the temperature. It is understood to be able to express the temperature dependency of the diffusion coefficient roughly by an Arrhenius equation as the velocity coefficient is provided as the diffusion coefficient. The specifications and characteristics of storage facilities under operation including dual purpose casks were investigated. Components subject to material degradation were examined. Based on literature survey, investigating a drop analysis incorporating with material degradation, the basic data to develop an analysis methodology was obtained

  17. Increasing the quality and safety of meat products through high technology methods during their storage

    International Nuclear Information System (INIS)

    The aim of this study was to increase the quality and safety of different meat products by applying two high technology methods – lyophilization and gamma-irradiation. Object of study were chicken, pork and beef meat products. The organoleptic, physicochemical and microbiological properties after lyophilization, irradiation with gamma-rays and during the preservation of the samples were studied. The results indicated that the application of the two original technologies for preservation could ensure qualitative and long-lasting preservation of meat products with excellently preserved taste and organoleptic properties

  18. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  19. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ines Ben Rejeb

    2014-10-01

    Full Text Available Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS. In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.

  20. Biotic interactions mediate soil microbial feedbacks to climate change

    Czech Academy of Sciences Publication Activity Database

    Crowther, T. W.; Thomas, S.M.; Maynard, D.S.; Baldrian, Petr; Covey, K.; Frey, S. D.; van Diepen, L. T. A.; Bradford, M.A.

    2015-01-01

    Roč. 112, č. 22 (2015), s. 7033-7038. ISSN 0027-8424 Institutional support: RVO:61388971 Keywords : global change * soil feedback * biotic interaction Subject RIV: EE - Microbiology, Virology Impact factor: 9.674, year: 2014

  1. Biotic recovery from mass extinction : IGCP project No. 335

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich

    Prague : Czech Geological Survey, 2013 - (Pašava, J.; Vymazalová, A.), s. 70-73 ISBN 978-80-7075-844-1 Institutional support: RVO:67985831 Keywords : geology * biotic recovery Subject RIV: DB - Geology ; Mineralogy

  2. Preliminary Biotic Survey of Cane Creek, Calhoun County, AL

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A biotic survey of Cane Creek (Calhoun County, AL) was completed in the Fall (1992) and Winter (1993) at six sites within Cane Creek to determine the effects of...

  3. Technological file for high energy storage power capacitors; Filiere technologique pour condensateurs de puissance a haute energie stockee

    Energy Technology Data Exchange (ETDEWEB)

    Michalczyk, P.

    1996-03-28

    The `Megajoule` project driven by the Commissariat a l`Energie atomique, needs the storage of an 450 MJ energy in a capacitor bank. Each unitary 78 kJ capacitor must be build in a safe technology. The life time of such a capacitor is materialized by a loss of capacitance for a given number of discharge and not by a short circuit which can damage a part of the installation. The answer to the specifications use the combination of two existing technologies. Impregnated film foil capacitors; dry metallized polymer film capacitors. The energy induced by internal dielectric failures is limited by self-healing; the right arrangement of influential parameters, which are the resistivity of the metallization and the drawing of the segmentation is necessary to achieve this phenomenon. Appropriate manufacturing process, space factor, impregnation and thermal treatments are required to optimise the dielectric strength of the capacitors. The first test results valid this developed technology and our conclusions suggest some ways to improve the volume energy. (author) 13 refs.

  4. Veinal-mesophyll interaction under biotic stress.

    Science.gov (United States)

    Nosek, Michał; Rozpądek, Piotr; Kornaś, Andrzej; Kuźniak, Elżbieta; Schmitt, Annegret; Miszalski, Zbigniew

    2015-08-01

    According to microscopic observations, germinating hyphae of Botrytis cinerea, though easily penetrating Mesembryanthemum crystallinum mesophyll tissue, are limited in growth in mid-ribs and only occasionally reach vascular bundles. In mid-ribs of C3 and CAM leaves, we found significantly lower rbcL (large RubisCO subunit) abundance. Moreover, in CAM leaves, minute transcript contents for pepc1 (phosphoenolpyruvate carboxylase) and nadpme1 (malic enzyme) genes found in the mid-ribs suggest that they perform β-carboxylation at a low rate. The gene of the main H2O2-scavenging enzyme, catL (catalase), showed lower expression in C3 mid-rib parts in comparison to mesophyll. This allows maintenance of higher H2O2 quantities in mid-rib parts. In C3 leaves, pathogen infection does not impact photosynthesis. However, in CAM plants, the expression profiles of rbcL and nadpme1 were similar under biotic stress, with transcript down-regulation in mid-ribs and up-regulation in mesophyll (however, in case of rbcL not significant). After B. cinerea infection in C3 plants, transcripts for both antioxidative proteins strongly increased in mid-ribs, but not in mesophyll. In infected CAM plants, a significant transcript increase in the mesophyll was parallel to its decrease in the mid-rib region (however, in the case of catL this was not significant). Pathogen infection modified the expression of carbon and ROS metabolism genes in mid-ribs and mesophyll, resulting in the establishment of successful leaf defense. PMID:26276405

  5. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    International Nuclear Information System (INIS)

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed

  6. Colony maintenance and mass-rearing: Using cold storage technology for extending the shelf-life of insects

    International Nuclear Information System (INIS)

    . To date, 7 species of dipterans representing 4 families have been successfully cryopreserved as late stage embryos and, of these 7 species, protocols for Musca domestica, Cochliomyia hominivorax, Ceratitis capitata, Anastrepha suspensa, and A. ludens have been developed in our laboratory. Because of inherent barriers to using conventional cryopreservation techniques that these dipteran embryos exhibit, development of a protocol for liquid nitrogen storage requires that each protocol be customised to accommodate the characteristics of each species. Some of the major barriers to using cryopreservation technology include: membrane impermeability, chilling sensitivity, abundance of yolk, and post storage fragility. The techniques that are used to deal with membrane impermeability involve chorion removal and membrane lipid extraction. For overcoming the chilling sensitivity of embryos equipped with abundant yolk, correct stage selection and the use of vitrification technology is required. And, to combat post storage recovery weakness, providing an adequate thawing medium and a fortified larval diet is necessary for obtaining sufficient numbers of adults to recolonise a particular species. The yield of adults after cryopreservation during their embryonic stage varies between species and also among strains within species. Recent work with 15 different screwworm strains, including wild-type, mutant, and transgenic forms, showed that hatching of cryopreserved embryos can vary between 20-78%. Evaluation of the quality of the cryopreserved insects and their progeny has been conducted under laboratory and field conditions. These tests included assessments of pupal weight, sex ratio, survival, fertility, fecundity, mating propensity and competitiveness, flight ability and endurance, and genetic diversity. Of all these observations, we found that cryopreserved screwworms had a 15% lower pupal weight, which returned to the control level during the next generation. Also, there is an

  7. Genetic improvement of rice for biotic and abiotic stress tolerance

    OpenAIRE

    ANSARI, MAHMOOD UR RAHMAN; Shaheen, Tayyaba; BUKHARI, SHAZAI; Husnain, Tayyab

    2015-01-01

    Rice (Oryza sativa L.) is among the most important food crops that provide a staple food for nearly half of the world's population. Rice crops are prone to various types of stresses, both biotic and abiotic. Biotic stresses include insect pests, fungus, bacteria, viruses, and herbicide toxicity. Among abiotic stresses, drought, cold, and salinity are also well studied in rice. Various genes have been identified, cloned, and characterized to combat these stresses and protect rice crops. T...

  8. High Temperature Superconducting Magnetic Energy Storage and Its Power Control Technology

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Chen; Jian-Xun Jin; Kai-Meng Ma; Ju Wen; Ying Xin; Wei-Zhi Gong; An-Lin Ren; Jing-Yin Zhang

    2008-01-01

    High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.

  9. Technological demonstrators. Researches and studies on the storage and disposal of long living intermediate level and high level radioactive wastes

    International Nuclear Information System (INIS)

    This brochure presents the technological demonstrators made by the French national agency of radioactive wastes (ANDRA) and exhibited at Limay (Yvelines, France). These demonstrators, built at scale 1, have been an essential support to the establishment of the 'Dossier 2005' which demonstrates the feasibility of a reversible disposal of long living-intermediate level and high level radioactive wastes in the Callovo-Oxfordian argillite of Meuse-Haute Marne. Two type of demonstrators were built: demonstrators of storage containers for long living-intermediate level wastes and for spent fuels, and dynamic demonstrators for containers handling. This brochure presents these different demonstrators, their characteristics and the results of their tests. (J.S.)

  10. APPLICATION OF ENERGY STORAGE TECHNOLOGY IN WIND POWER GENERATION%储能技术在风力发电中的应用

    Institute of Scientific and Technical Information of China (English)

    杨苹; 马艺玮

    2012-01-01

    在分析风电输出波动问题的基础上,首先重点介绍了机械储能技术中的抽水蓄能和飞轮储能,电磁储能技术中的超导磁体储能和超级电容储能,电化学储能技术,并比较分析了各自在储存容量、功率、效率、响应速度、存储周期和转换次数等重点参数上的性能,其次分析了风力发电对储能技术的关键要求,然后提出了适合风电的多元混合储能方案来改善风电的可靠性和稳定性问题,最后通过多元混合储能方案在实际风力发电运行中的应用证明了储能技术能够切实改善风电输出的稳定性和有效的储能调峰等作用提高风电的利用率.%Based on wind power holding a large proportion of all renewable energy generation and aiming to resolve volatile characteristics of wind power output, firstly the paper introduces water pumped storage and flywheel energy storage of mechanical storage technology, superconducting magnet storage and super-capacitor storage of electrical energy storage, and electrochemistry storage technology, and compares their key functions in storage volume, power, efficiency, response speed, storage cycle and transform time, and analyzes key requirements of wind power generation to storage system. Then the paper proposes multi-component mixed storage to improve reliability and stability problems of wind power. Finally, the simulation results of 2 types of multi-component storage applications in real wind power generation projects are given to prove the effectiveness of the storage technique and to improve wind power's reliability, stability problems, and wind power utilization ratio.

  11. Technique and technological aspects of transport and storage of fruit in controlled atmospheres conditions

    OpenAIRE

    Dobrynin, Alexey Vladimirovich

    2012-01-01

    Banana belongs to the list of top-20 commodities produced in the world, and is 10th commodity imported into the European Union. International dessert banana trade relays on long-distance transportation, mostly transoceanic. Maintaining the consistent high quality of the product requires special techniques applied to the marketing chain: from the field to the customer. This Diploma Thesis focuses on the post-harvest technology of dessert bananas with accent on the transportation and the ripeni...

  12. IMPACT OF HAYLAGE HARVEST AND STORAGE TECHNOLOGIES ON FORAGE MICROBIAL CONTAMINATION

    OpenAIRE

    Artemyeva, O.; Duborezov, V.; Pavlyuchenkova, O.; Kotkovskaya, E.; Ralkova, V.; Peresyolkova, D.

    2014-01-01

    To develop bacteriological regulations for harvesting and storing haylage, microbial contamination of feeds has been studied using different technologies for harvesting haylage and laying fodder in trench and concrete ring silos, and rolls. It was noted that the analyzed forage samples had no pathogenic microorganisms and Enterobacteriaceae, including Salmonella. There was a lack of toxicity in all analyzed silage samples. The values for the number of mesophilic aerobic and elective anaerobic...

  13. Development of Retrieving and Conditioning Technologies of Low- and Intermediate- level Solid Waste From Storage Pits

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    During the past 40 years or so, large volumes of the low- and intermediate-level radioactive solid wastes (LILW) have been generated from different nuclear facilities in China. All these wastes are temporarily stored in pit-type repositories in different sites of China, of which most of the facilities are seriously aged and damaged. Focusing on this situation, we had developed some key technologies and equipment of retrieving, sorting and compaction of LILW, The following

  14. Assessing environmental impacts of storage technologies and competing options for balancing demand and supply in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Droste-Franke, Bert [Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Bad Neuenahr-Ahrweiler (Germany)

    2012-07-01

    The major aim of using renewable energies for electricity production is to realise a sustainable and environmental friendly energy system which can be operated viably in the long term. One major indicator to reach this aim is the overall emission of CO2 resulting from the use of a certain technology. However, further environmental aspects have to be taken into account for an adequate evaluation of technologies. With respect to preserving the environmental basis for future generations several environmental pressures have to be considered which can either lead to small and substitutable, marginal environmental damages or to environmental impacts which contribute to burdens which could become critical, i.e., jeopardising important environmental functions. Thus, it should be accounted for the societal acceptability of their (potential) environmental impacts. The analysis presented here deals with the assessment of environmental effects of both types, marginal and potentially critical, for current and advanced technologies which can be used for balancing fluctuations in the electricity production from renewable sources in an economic environment of 2050. The basic results used were derived in a study carried out by the Europaeische Akademie GmbH (Droste-Franke et al. 2012).

  15. Spent fuel dry storage technology development: report of consolidated thermal data

    International Nuclear Information System (INIS)

    Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada Test Site soil without exceeding the current fuel clad temperature limit (7150F). The document also assesses the ability to thermally analyze near-surface drywells and above-ground storage casks and it identifies analysis development areas. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Analysis uncertainties, however, still exist but they lie mainly in the numerical input area. Soil thermal conductivity, of primary importance in analysis, requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed. In the experimental area, tests with two BWR spent fuel assemblies encapsulated in a single canister should be performed to establish the fuel clad and canister temperature relationship. This is needed to supplement similar experimental work which has already been completed with PWR fuel

  16. Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies

    International Nuclear Information System (INIS)

    Highlights: • Techno-economic performance of coal-fired power plants (without and with CCS). • Without CCS system, USC is more efficient and cost-competitive than IGCC. • CCS energy penalties are more relevant for USC than IGCC. • Higher SNOX system costs are partially compensated by better USC performance. • CCS technologies cannot be profitable without adequate policies and incentives. - Abstract: Worldwide energy production requirements could not be fully satisfied by nuclear and renewables sources. Therefore a sustainable use of fossil fuels (coal in particular) will be required for several decades. In this scenario, carbon capture and storage (CCS) represents a key solution to control the global warming reducing carbon dioxide emissions. The integration between CCS technologies and power generation plants currently needs a demonstration at commercial scale to reduce both technological risks and high capital and operating cost. This paper compares, from the technical and economic points of view, the performance of three coal-fired power generation technologies: (i) ultra-supercritical (USC) plant equipped with a conventional flue gas treatment (CGT) process, (ii) USC plant equipped with SNOX technology for a combined removal of sulphur and nitrogen oxides and (iii) integrated gasification combined cycle (IGCC) plant based on a slurry-feed entrained-flow gasifier. Each technology was analysed in its configurations without and with CO2 capture, referring to a commercial-scale of 1000 MWth. Technical assessment was carried out by using simulation models implemented through Aspen Plus and Gate-Cycle tools, whereas economic assessment was performed through a properly developed simulation model. USC equipped with CGT systems shows an overall efficiency (43.7%) comparable to IGCC (43.9%), whereas introduction of SNOX technology increases USC efficiency up to 44.8%. Being the CCS energy penalties significantly higher for USC (about 10.5% points vs. about 8

  17. Wind farm battery energy storage technology based on power dispatching%基于电网调度的风电场蓄电池储能技术

    Institute of Scientific and Technical Information of China (English)

    孔飞飞; 晁勤; 袁铁江

    2012-01-01

    阐述了风电场蓄电池储能技术的原理和特点,分别介绍了国内外基于几种不同控制目标的风电场储能技术;分析了风电场储能容量估算的研究现状;提出了基于电网调度的风电场蓄电池储能技术是最可行的方案,并简要分析了应用基于电网调度的风电场蓄电池储能的技术课题.%The technical principle and application status of wind farm energy storage system were presented,several wind farm energy storage technologies based on different control goals at home and abroad were introduced respectively,the research status of wind farm energy storage capacity calculation were analyzed,the most feasible scheme,namely wind farm battery energy storage technology based on power dispatching was proposed,and some technical issues of applying wind farm battery energy storage technology based on power dispatching were simply analyzed.

  18. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  19. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  20. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  1. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  2. Coupled Climate–Economy–Biosphere (CoCEB) model – Part 2: Deforestation control and investment in carbon capture and storage technologies

    OpenAIRE

    K. B. Z. Ogutu; F. D'Andrea; M. Ghil; C. Nyandwi; M. M. Manene; J. N. Muthama

    2015-01-01

    This study uses the global climate–economy–biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume – as in Part 1 – that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics...

  3. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  4. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement

    International Nuclear Information System (INIS)

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ''Pneumatic Excavator'' which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions

  5. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  6. The occurrence and biotic activity of Phomopsis diachenii Sacc.

    Directory of Open Access Journals (Sweden)

    Zofia Machowicz-Stefaniak

    2012-12-01

    Full Text Available Phomopsis diachenii was isolated from caraway cultivars Konczewicki, firstly in 2006 and next in 2007. Single cultures were obtained from the roots and the stem base of eight six-week-old seedlings and from the stems of two plants with symptoms of necrosis, in the second year of planting. This fungus was isolated from the plant parts superficially disinfected on malt agar medium with an addition 0.01% of streptomycin. The identification of the species was made on PDA medium. The biotic interactions between P. diachenii and S. carvi and other species of phyllosphere fungi of caraway were studied. Interactions among the fungi, i.e. between P. diachenii and one of the fungi representing the studied community, were examined using the biotic series method. The biotic effects of the fungi in dual cultures were evaluated after 10 and 20 days of common growth and were expressed as the individual biotic effect (IBE. It was shown that P. diachenii is a weak competitor because its growth was limited by numerous species of phyllosphere fungi. The obtained results indicated the dominance of biotic activity of P. diachenii over that of S. carvi. It is possible that P. diachenii has a greater ability to survive in the phyllosphere fungal community than S. carvi, causing septoriosis of caraway.

  7. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 2: Carbon dioxide (CO{sub 2}) storage and utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews geological sequestration of CO{sub 2}, from saline aquifer sequestration to oil and gas reservoir and coal bed storage, including coverage of reservoir sealing, and monitoring and modelling techniques used to verify geological sequestration of CO{sub 2}. Terrestrial and ocean sequestration are also reviewed, along with the environmental impact and performance assessments for these routes. The final section reviews advanced concepts for CO{sub 2} storage and utilization, such as industrial utilization, biofixation, mineral carbonation and photocatalytic reduction.

  8. Draft environmental impact statement on a proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Volume 2, Appendix F, Description and impacts of storage technology alternatives

    International Nuclear Information System (INIS)

    This appendix presents a description and evaluation of currently available spent nuclear fuel storage technologies, and their applicability to foreign research reactor spent nuclear fuel. These technologies represent the range of alternatives dW would be available to implement the proposed action. Some of these technologies are currently in use at US Department of Energy (DOE) facilities. Several dry storage cask and/or building designs have been licensed by the US Nuclear Regulatory Commission (NRC) and are operational with commercial nuclear power plant spent fuel at several locations. This appendix also discusses potential storage sites and impacts of foreign research reactor spent nuclear fuel storage at these locations

  9. Modular battery design for reliable, flexible and multi-technology energy storage systems

    International Nuclear Information System (INIS)

    Highlights: • Collection of existing battery topologies in electric vehicles. • Analysis of load profiles and the power consumption for electric vehicles. • Composition of battery packs and their passive components. • Modular, hybrid battery architecture with a dc-link. - Abstract: With large scale battery systems being more and more used in demanding applications regarding lifetime, performance and safety, it is of great importance to utilize not only cells with a high cyclic and calendric lifetime but also to optimize the whole system architecture. The aim of this work is therefore, to highlight the benefits of a modular system architecture allowing the use of hybrid battery systems combining high power and high energy cells in a multi-technology system. To achieve an optimized performance, efficiency and lifetime for an electric vehicle the complete drive train topology has to be taken into account instead of optimizing one of the components individually. Consequently, the topic will be analyzed from the system’s point of view, addressing in particular the modularization of the battery as well as the power electronics needed to do so. It will be shown that a highly flexible battery system can be realized by dc-to-dc converters between a modular, hybrid battery system and the drive inverter. By the dc-to-dc converters the battery output voltages and the inverter input voltages are decoupled. Hence, the battery’s topology can be chosen unrestrictedly within a wide range and easily be interconnected to a common dc-link of a different voltage. The benefits of this flexibility will be analyzed in detail showing especially how the lifetime of the battery system can be improved and the impact on system weight

  10. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights into...... the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as...... interactions and cross-regulations within and between these signalling pathways allow very specific and fine-tuned modulation of plant immunity. The endoplasmic reticulum (ER)-associated protein degradation system (ERAD) is a quality control system that degrades improperly folded proteins from the secretory...

  11. Cloud Storage Technology and Applications for Big Data%大数据场景下的云存储技术与应用

    Institute of Scientific and Technical Information of China (English)

    陈杰

    2012-01-01

    With the expansion of big data applications, mass cloud storage has become a more important requirement. To meet service demands, cloud storage needs a new framework and new networking and management methods. In this paper, we discuss the various scenarios of cloud storage and discuss the demands and key technology of cloud storage. Big data requirements promote the development of cloud storage, and cloud storage development creates new service applications.%文章认为随着大数据应用规模的扩大,新业务环境和场景对海量云存储需求的迫切,云存储平台需要打破原有的框架,改变组网和管理方式,以满足新的业务需求.文章分析了各种场景,提出了云存储的需求及关键技术等.文章指出大数据需求促进了云存储的发展,而云存储的发展则带动了新的业务应用.

  12. Energy Storage Technology and Application in Power System%储能技术在电力系统中的应用

    Institute of Scientific and Technical Information of China (English)

    耿晓超; 朱全友; 郭昊; 段春明; 崔寒松

    2016-01-01

    电力储能技术是保证电力系统可靠运行的重要措施.介绍各种储能系统的技术原理和应用现状,比较其经济技术优势,并结合电力系统的发展趋势展望储能技术的应用前景.针对目前电力系统应用需求和发展方向,介绍储能系统在整流和逆变技术中的应用,在分布式发电中的作用.最后,通过搭建储能在可再生能源并网系统中应用的基本模型及仿真分析,说明储能在电力系统中的重要作用.%Electricity storage technology is an important measure to ensure reliable operation of the power system. The technical principles and application status of various energy storage systems are introduced, and their economic and technical advantages are compared. Through combining with the development trend of the power system, the application prospects of energy storage technology are given. For the current application requirements and development direction of the power system, the application of energy storage systems in the rectifier and inverter technology and their functions in distributed generation is introduced. Finally, by building the base model and simulation analysis of storage application in renewable energy grid-connected system, the important role of energy storage in the power system is indicated.

  13. TOPOLOGY DESIGN OPTIMIZATION BASED ON BIOTIC BRANCH NET

    Institute of Scientific and Technical Information of China (English)

    Ding Xiaohong; Li Guojie; Yamazaki Koestu

    2005-01-01

    The biotic branch nets are extreme high-tech product. In order to achieve a certain functional objective, they can adjust their growth direction and growth velocity by according to the varying growth environment. An innovative and effective methodology of topology design optimization based on the growth mechanism of biotic branch nets is suggested, and it is applied to a layout design problem of a conductive cooling channel in a heat transfer system. The effectiveness of the method is validated by the FEM analysis.

  14. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility

  15. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  16. A concept of an electricity storage system with 50 MWh storage capacity

    OpenAIRE

    Józef Paska; Mariusz Kłos; Paweł Antos; Grzegorz Błajszczak

    2012-01-01

    Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy), and direct storage (in an electric or magnetic fi eld). Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers an...

  17. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  18. Biotic Communities. [Project ECOLogy ELE Pak, Amoe-Thorson Pak].

    Science.gov (United States)

    Amoe, Ruth; Thorson, Michael

    This is one of a series of units for environmental education developed by the Highline Public Schools. This unit provides a number of activities to introduce students to ways of studying biotic communities, help them become good observers, and provide them with opportunities to use their skills. The materials include suggested activities, and…

  19. Scaled biotic disruption during early Eocene global warming events

    Directory of Open Access Journals (Sweden)

    S. J. Gibbs

    2012-11-01

    Full Text Available Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM, Eocene Thermal Maximum 2 (ETM2 and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.

  20. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  1. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  2. Assessment of technologies for CO{sub 2} capture and storage. Final report; Verfahren zur CO{sub 2}-Abscheidung und -Speicherung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, Peter; Cremer, Clemens; Warkentin, Sebastian [Fraunhofer-Inst. fuer Systemtechnik und Innovationsforschung, Karlsruhe (Germany); Gerling, Peter; May, Franz; Knopf, Stephan [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2006-08-15

    The aim of this study was to summarize the actual status for carbon capture, transport and storage for CO{sub 2} emissions from power stations. Special interest was given to the implications from the introduction of carbon capture and storage in power stations on the efficiency, emissions and cost for electricity generation. In the beginning a detailed analyses of the national, European and international activities in this field have been conducted. The analysis focussed on the identification of main actors and the different co-operation of actors. To do so, the available literature has been studied and analysed with a bibliometric approach, which has taken also presentations at national and international conferences into account. In a second step a technical analysis has been undertaken for the three main routes for carbon capture (pre-combustion capture; post-combustion capture, oxy-fuel combustion) with a special emphasis on the impact to the Environment. Truck, ship and pipeline transport have been analysed as means for transporting the CO{sub 2} from the power station to the storage site. In addition the different storage options for a secure long term storage of the captured CO{sub 2} are studied in the report. Special attention was given to the storage options in gasfields and saline aquifers which will be the most promising options in Germany. The report gives an actual overview on the status of carbon capture and storage in the world. It therefore supports the decision making process when introducing this new technology, taking into account the environmental effects. (orig.)

  3. A Critical Study of Stationary Energy Storage Polices in Australia in an International Context: The Role of Hydrogen and Battery Technologies

    Directory of Open Access Journals (Sweden)

    Jason Moore

    2016-08-01

    Full Text Available This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique, it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California and high penetration rates of residential solar photovoltaics (PV (Germany. Therefore, Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.

  4. 民间艺术资源的云存储技术研究%Research on cloud storage technology of folk art resources

    Institute of Scientific and Technical Information of China (English)

    李小波; 田中娟; 叶振

    2016-01-01

    The construction and research of Chinese folk art resources platform is an important and urgent task in the culture and art field, and there are many challenges. In the big data era, the use of cloud computing and cloud storage technology is an inevitable trend. This paper introduces the Hadoop cloud computing and cloud storage technology, puts forward the development scheme of folk art resources cloud storage platform based on Hadoop. The construction of folk art resources cloud storage platform based on Hadoop is feasible and effective.%我国民间艺术资源平台的建设和研究是当前文化艺术领域面临的一项重要而紧迫的课题,存在着诸多挑战。在大数据时代背景下,采用云计算和云存储技术是一个必然的趋势。文中介绍了Hadoop云计算与云存储技术,提出了基于Hadoop的民间艺术资源云存储平台建设方案。构建基于Hadoop的民间艺术资源云存储平台具有可行性和有效性。

  5. Technology Development And Deployment Of Systems For The Retrieval And Processing Of Remote-Handled Sludge From Hanford K-West Fuel Storage Basin

    International Nuclear Information System (INIS)

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 μm to 6350 μm mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled

  6. A direct-gradient multivariate index of biotic condition

    Science.gov (United States)

    Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.

    2012-01-01

    Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.

  7. Numerical evaluation of community-scale aquifer storage, transfer and recovery technology: A case study from coastal Bangladesh

    Science.gov (United States)

    Barker, Jessica L. B.; Hassan, Md. Mahadi; Sultana, Sarmin; Ahmed, Kazi Matin; Robinson, Clare E.

    2016-09-01

    Aquifer storage, transfer and recovery (ASTR) may be an efficient low cost water supply technology for rural coastal communities that experience seasonal freshwater scarcity. The feasibility of ASTR as a water supply alternative is being evaluated in communities in south-western Bangladesh where the shallow aquifers are naturally brackish and severe seasonal freshwater scarcity is compounded by frequent extreme weather events. A numerical variable-density groundwater model, first evaluated against data from an existing community-scale ASTR system, was applied to identify the influence of hydrogeological as well as design and operational parameters on system performance. For community-scale systems, it is a delicate balance to achieve acceptable water quality at the extraction well whilst maintaining a high recovery efficiency (RE) as dispersive mixing can dominate relative to the small size of the injected freshwater plume. For the existing ASTR system configuration used in Bangladesh where the injection head is controlled and the extraction rate is set based on the community water demand, larger aquifer hydraulic conductivity, aquifer depth and injection head improve the water quality (lower total dissolved solids concentration) in the extracted water because of higher injection rates, but the RE is reduced. To support future ASTR system design in similar coastal settings, an improved system configuration was determined and relevant non-dimensional design criteria were identified. Analyses showed that four injection wells distributed around a central single extraction well leads to high RE provided the distance between the injection wells and extraction well is less than half the theoretical radius of the injected freshwater plume. The theoretical plume radius relative to the aquifer dispersivity is also an important design consideration to ensure adequate system performance. The results presented provide valuable insights into the feasibility and design

  8. Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas

    Directory of Open Access Journals (Sweden)

    Tsuyuoka Reiko

    2010-01-01

    Full Text Available Abstract Background With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. Methods To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Results Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p Discussion and Conclusions The CCB was an effective tool for storage of RDTs at optimal conditions, and extended the effective life-span of the tests. The concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.

  9. Information-computational system for storage, search and analytical processing of environmental datasets based on the Semantic Web technologies

    Science.gov (United States)

    Titov, A.; Gordov, E.; Okladnikov, I.

    2009-04-01

    In this report the results of the work devoted to the development of working model of the software system for storage, semantically-enabled search and retrieval along with processing and visualization of environmental datasets containing results of meteorological and air pollution observations and mathematical climate modeling are presented. Specially designed metadata standard for machine-readable description of datasets related to meteorology, climate and atmospheric pollution transport domains is introduced as one of the key system components. To provide semantic interoperability the Resource Description Framework (RDF, http://www.w3.org/RDF/) technology means have been chosen for metadata description model realization in the form of RDF Schema. The final version of the RDF Schema is implemented on the base of widely used standards, such as Dublin Core Metadata Element Set (http://dublincore.org/), Directory Interchange Format (DIF, http://gcmd.gsfc.nasa.gov/User/difguide/difman.html), ISO 19139, etc. At present the system is available as a Web server (http://climate.risks.scert.ru/metadatabase/) based on the web-portal ATMOS engine [1] and is implementing dataset management functionality including SeRQL-based semantic search as well as statistical analysis and visualization of selected data archives [2,3]. The core of the system is Apache web server in conjunction with Tomcat Java Servlet Container (http://jakarta.apache.org/tomcat/) and Sesame Server (http://www.openrdf.org/) used as a database for RDF and RDF Schema. At present statistical analysis of meteorological and climatic data with subsequent visualization of results is implemented for such datasets as NCEP/NCAR Reanalysis, Reanalysis NCEP/DOE AMIP II, JMA/CRIEPI JRA-25, ECMWF ERA-40 and local measurements obtained from meteorological stations on the territory of Russia. This functionality is aimed primarily at finding of main characteristics of regional climate dynamics. The proposed system represents

  10. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume II. Final report, Appendix A: selected DSG technologies and their general control requirements

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

  11. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture (Gothia Power AB, Goeteborg (Sweden))

    2008-12-15

    In this report a survey of different techniques for storage of electrical energy. The following alternatives are described regarding method, characteristics, potential and economy. Batteries; Capacitors; Flywheels; Pump storage hydro power plants; Hydrogen gas generation; Air compression. Regarding evaluation of methods for storage of electrical energy. Battery storage: The development of Lithium-ion batteries are of great interest. In the present situation it is however difficult of classify battery storage as a good alternation in applications with frequent re-charging cycles and re-charging of large energy volumes. The batteries have limited life length compared to other alternatives. Also the power is limited at charging and discharging. Energy storage in capacitors: 'Super-capacitors' having large power capacity is considered to be of interest in applications where fast control of power is necessary. The ongoing development of based on carbon-nanotubes will increase the energy storage capacity compared with the today existing super-capacitors. This can in the future be an alternative to battery storage. Of further interest is also the idea to combine battery and capacitor based storage to achieve longer life-time of the batteries and faster power control. Flywheel energy storage: The energy storage capacity is relatively limited but power control can be fast. This system can be an alternative to capacitor based energy storage. Pump-storage hydro power plant: This type of energy storage is well suited and proven for time frame up to some days. In the Swedish power system there is today not any large demand of energy storage in this time frame as there is a large capacity in conventional hydro power plants with storage capacity. Pump-storage can however be of interest in the southern part of Sweden. In some operation stages the grid is loaded up to its limit due to large power transmission from the north. The pump-storage can reduce this power transfer

  12. Evaluation of storage technologies. Decoupling of supply and demand; Bewertung von Speichertechnologien. Entkopplung von Angebot und Nachfrage

    Energy Technology Data Exchange (ETDEWEB)

    Kurp, Frank; Didycz, Michael [Process Management Consulting, Koeln (Germany)

    2009-11-02

    The increase in power production from heavily fluctuating sources places growing requirements on the management of networks. Energy storage will in future play an even more important role in decoupling supply and demand.

  13. Study of cloud storage technology and its application%云存储技术及其应用研究

    Institute of Scientific and Technical Information of China (English)

    陈一明

    2014-01-01

    Cloud computing is a new network application model,cloud storage is a data storage and management as the core of cloud computing systems.Describes cloud computing and cloud storage principles and application characteristics,design of a university-based teaching and learning environment of wisdom cloud storage - cloud teaching platform,the platform analysis principles,characteristics and so on.%云计算是一种新的网络应用模式,云存储是一个以数据存储和管理为核心的云计算系统。阐述云计算与云存储的原理及应用特点,设计一种基于云存储的高校智慧教学环境--云教学平台,分析该平台的原理、特点等。

  14. EDP: A computer program for analysis of biotic interactions

    Science.gov (United States)

    Gibson, Michael A.; Bolton, James C.

    1992-07-01

    Analyzing fossils for evidence of biotic interactions such as parasitism, commensalism, and predation can be accomplished using skeletal relationships (e.g. overlapping growth) on individual specimens and statistical information on populations of specimens. The latter approach provides information for use in larger scale paleocommunity analyses. This approach requires a large data set and extensive amounts of information management. The types of information that are needed include data concerning the identity of host and epibiont species, orientation of epibionts on hosts, position of encrustation, growth directions, region of occurrence, and associated fauna. We have written the Epibiont Digitizing Program (EDP) to collect the data necessary to study biotic interactions in the fossil record. The program is operator-interactive at all stages and versatile enough to allow modification depending upon the specific needs of the researcher.

  15. AA-CAES. Opportunities and challenges of advanced adiabatic compressed-air energy storage technology as a balancing tool in interconnected grids

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Roland; Moser, Peter [RWE Power AG, Essen (Germany). Forschung und Entwicklung, Neue Technologien; Hoffmann, Stephanie [GE Global Research Europe, Garching (Germany); Pazzi, Simone [GE Infrastructure, Oil and Gas, Firenze (Italy); Klafki, Michael [ESK GmbH (RWE Group), Freiberg (Germany); Zunft, Stefan [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    2008-07-01

    An expansion of CO{sub 2}-neutral energy supply is in the focus of European and national environmental policy and will be crucially supported by offshore wind power generation in future. Grid-compatible integration of these fluctuating electricity quantities will - in the medium term already - require substantial adjustments of the German grid and power plant system in order to cope with the upcoming new boundary conditions. The development of new technologies for large-scale electricity storage is a key element in future flexible European electricity transmission systems. Electricity storage in Adiabatic CAES power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. Before this concept can be implemented, however, several technical problems must be solved and technical development work done, especially in the field of turbomachinery and the required heat storage device. This paper outlines the technical possibilities and the need for development. Ongoing development activities are described and first interim results presented. (orig.)

  16. Early Triassic Marine Biotic Recovery: The Predators' Perspective

    OpenAIRE

    Scheyer, Torsten M.; Carlo Romano; Jim Jenks; Hugo Bucher

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis e...

  17. Managing biotic interactions for ecological intensification of agroecosystems

    OpenAIRE

    Gaba, Sabrina; Bretagnolle, François; Rigaud, Thierry; Philippot, Laurent

    2014-01-01

    Agriculture faces the challenge of increasing food production while simultaneously reducing the use of inputs and delivering other ecosystem services. Ecological intensification of agriculture is a paradigm shift, which has recently been proposed to meet such challenges through the manipulation of biotic interactions. While this approach opens up new possibilities, there are many constraints related to the complexity of agroecosystems that make it difficult to implement. Future advances, whic...

  18. Crosstalk in Plant Responses to Biotic and Abiotic Stresses

    OpenAIRE

    Keceli, Mehmet Ali

    2015-01-01

    In order to protect themselves against several biotic and abiotic stresses, plants are equipped with an array of defense mechanisms. Induced defenses and stress responses play a major role in plant disease resistance and are regulated by a network of interconnected signal transduction pathways with the plant hormones ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) as the crucial mediators. These specific hormone-mediated signaling cascades trigger the expression of distinct sets of ...

  19. Development of a new biotic index to assess freshwater pollution

    International Nuclear Information System (INIS)

    We developed a new biotic index of species pollution value (SPV) and community pollution value (CPV) based on the correlation of protozoan communities with chemical water quality to assess freshwater pollution. Five hundred and twenty-three species of protozoa SPV were established based on the data of River Hangjiang and Lake Donghu. The present research was conducted in order to further consummate the biotic index. Protozoa of the water system in Changde City were collected from 16 stations using the PFU method and the water chemical parameters of the stations were analyzed. The results showed that CPV calculated from SPV had a close correlation with the degree of water pollution (p < 0.00001), which indicated that the method is reliable. By combining the data of River Hangjiang, Lake Donghu and Changde City, the final form of SPV was accomplished and the SPV list increased to 757. The ultimate water standard evaluated by CPV calculated from SPV was proposed. - A new biotic index of water quality based on protozoa is described

  20. Application of radiation processing to produce biotic elicitor for sugarcane

    International Nuclear Information System (INIS)

    Sugarcane is the main raw material for production of sugar and ethanol. In Vietnam, it was reported in 1998 that the area for sugar cane growth was about 257,000 ha. Up to now, the biotic elicitor, oligosaccharide has not been used for sugarcane yet. This study has been carried out to investigate the elicitation and the growth promotion effect of irradiated chitosan (oligochitosan) for sugarcane. The field test results indicated that alpha chitosan (shrimp shell) and beta chitosan (squid pen) samples with the content of water soluble oligomer of about 75% and 70% respectively were the most effective. The disease ratio of sugar cane tree-trunk treated with irradiated chitosan before harvesting time decreased to 30-40% compared to non-treated one. In addition, the productivity of sugarcane increased to about 20%. The combination of metal ion (Zn2+, Cu2+) with oligochitosan did not show the synergic elicitation effect. The results revealed that biotic elicitor made from chitosan by radiation degradation method is very promising for field application not only for protection of disease infection but also for growth promotion of plants. It is believed that this biotic elicitor could be used for safe and sustainable development of agriculture. (author)

  1. Fragrance Allergens, Overview with a Focus on Recent Developments and Understanding of Abiotic and Biotic Activation

    Directory of Open Access Journals (Sweden)

    Johanna Bråred Christensson

    2016-06-01

    Full Text Available Fragrances and fragranced formulated products are ubiquitous in society. Contact allergies to fragrance chemicals are among the most common findings when patch-testing patients with suspected allergic contact dermatitis, as well as in studies of contact allergy in the general population. The routine test materials for diagnosing fragrance allergy consist mainly of established mixes of fragrance compounds and natural extracts. The situation is more complex as several fragrance compounds have been shown to be transformed by activation inside or outside the skin via abiotic and/or biotic activation, thus increasing the risk of sensitization. For these fragrance chemicals, the parent compound is often non-allergenic or a very weak allergen, but potent sensitizers will be formed which can cause contact allergy. This review shows a series of fragrance chemicals with well-documented abiotic and/or biotic activation that are indicative and illustrative examples of the general problem. Other important aspects include new technologies such as ethosomes which may enhance both sensitization and elicitation, the effect on sensitization by the mixtures of fragrances found in commercial products and the effect of antioxidants. A contact allergy to fragrances may severely affect quality of life and many patients have multiple allergies which further impact their situation. Further experimental and clinical research is needed to increase the safety for the consumer.

  2. 安全云存储系统与关键技术综述%Survey of Secure Cloud Storage System and Key Technologies

    Institute of Scientific and Technical Information of China (English)

    傅颖勋; 罗圣美; 舒继武

    2013-01-01

    随着云存储的迅猛发展,越来越多的用户选择使用云存储存放自己的资料.云存储的最大特点在于存储即服务,用户可以通过公有API将自己的数据上传到云端保存.但由于用户丧失了对数据的绝对控制权,一些数据安全的隐患也由此产生.为了消除安全隐患,并在保证安全性的同时尽可能地提高系统的服务质量,近年来国内外机构作了大量研究,从而开启了云存储中的一个研究方向——安全云存储系统.首先介绍了云存储系统的安全需求,然后阐述了安全云存储系统的研究现状,并总结了现有安全云存储系统中的一些关键技术的现状与不足之处,其中包括密钥分发与管理、基于属性的加密机制、基于数据密文的搜索机制与删冗机制、数据的持有性证明与恢复以及数据的可信删除等;最后指出了安全云存储系统未来的研究方向.%With the rapid development of cloud storage, more and more people prefer to store their owner data in remote cloud storage to avoid troublesome data management in local storage systems. The most famous feature of cloud storage is the concept that storage as a service, users can store their own data into clouds by public APIs. However, because of losing absolute control of data, users storing their own data in cloud storage will suffer a series of security problems, such as data peeping, data tampering, and so on. In order to solute those security problems and improve the quality of secure cloud system based on enhance its security, researchers have investigated lots about cloud security problem in recent years, which established a research branch of the cloud storage- -secure cloud storage system. This paper introduces the security demand of secure cloud storage system; expounds the current status of cloud storage system; summarizes the key technologies of currently secure cloud storage systems, such as encryption key's distribution and

  3. Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  4. Energy storage. Technologies and potentials to compensate supply and demand; Energiespeicherung. Technologien und Potentiale zum Ausgleich von Angebot und Nachfrage

    Energy Technology Data Exchange (ETDEWEB)

    Kruhl, Joerg [E.ON New Build and Technology, Gelsenkirchen (Germany); Doll, Markus [RWE Power AG, Essen (Germany)

    2011-07-01

    Future energy systems will be based on a high proportion of renewable and fluctuating power generation. This will result in system states in which the merging of supply and demand represents a significant challenge. Energy storages are a measure to overcome this challenge. However, energy storages are not the sole solution. So there exist alternative measures such as network expansion and load management as a cost-effective solutions. Energy storages as an important building block for future energy systems must be a function of other measures such as network expansion and demand management designed specifically. This includes a financial support for technical development and also the attendance of the launch by means of appropriate economic incentives.

  5. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  6. Proceedings of the international workshop on irradiated fuel storage: operating experience and development programs

    International Nuclear Information System (INIS)

    Irradiated fuel storage was discussed under the following major topic headings: irradiated fuel management strategies, water pool storage, dry storage technology and engineering studies, dry storage economics, standards and licensing, dry storage - fuel behaviour, and dry storage - the future

  7. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  8. Development of Integrity Evaluation Technology for the Long-term Spent Fuel Dry Storage System (1st year Report)

    International Nuclear Information System (INIS)

    Korea has operated 16 Pressurized Water Reactors(PWR) and has a plan to construct additional nuclear power reactors as only PWR. This causes a big issue of PWR spent fuel accumulation problem now and in the future. KRMC(Korea Radioactive waste Management Coorporation) which was established in 2009 is charged with managing all kinds of radioactive waste that is produced in Korea. KRMC is considering spent fuel dry storage as an option to solve this spent fuel problem and developing the related engineering techniques. KAERI(Korea Atomic Energy Research Institute) also participated in this development and focused on evaluating the spent fuel dry storage system integrity for a long term operation. This report is the first year research product. The aims of the first year work scope are surveying and analyzing models which could anticipate degradation phenomena of the all dry storage components(spent fuel, structure materials, and equipment materials) and selecting items of the tests which are planned to perform in the next project stage. The major work areas consist of 'spent fuel degradation evaluation model development', 'test senario development', 'long-term evaluation of structural material characteristics', and 'dry storage system structure degradation model development'. These works were successfully achieved. This report is expected to contribute for the second year work which includes degradation model development and test senario development, and next project stage

  9. 基于分布式的网络存储和数据保护系统%Research of Network Storage and Data Protection System Based on Distributed Technology

    Institute of Scientific and Technical Information of China (English)

    陈广清

    2014-01-01

    Storage technology develops rapidly with the growth of data storage demand, distributed storage technology comes to being. Research of Network storage and data protection system based on distributed technology in this paper has important practical significance for the research of power system. According to the current storage equipment and the actual situation of Meizhou power supply bureau, distributed storage technology and data protection system are researched in order to improve the storage system management and reduce the cost.%持续增长的数据存储需求带动了存储技术的快速发展,分布式存储技术应运而生。所研究的基于分布式的网络存储系统和数据保护系统对于电力系统有重要的实际意义。针对梅州供电局现存的存储设备问题及实际情况,开展分布式存储技术及数据保护系统的研究,以改进存储系统管理,降低成本。

  10. An Empirical Analysis on the Patent Activities of Cloud Storage Technology Worldwide%国内外云存储技术专利实证分析

    Institute of Scientific and Technical Information of China (English)

    刘友华; 周素芳

    2014-01-01

    基于国内外云存储技术现有研究,利用“Innography专利信息检索分析平台”和“国家知识产权局专利信息检索平台”,对国内外云存储技术领域的专利进行全面检索,形成专利研究数据库,从年度趋势、申请人、发明人、技术域分布等多个角度,对该技术领域的专利活动进行统计和分析,得出该技术领域的专利现状、发展趋势以及竞争态势等信息,进而为云存储领域的创新活动提供参考。%This paper first summarizes the existing study on cloud storage technology at home and abroad. Then, using the"State Intellec-tual Property Office ( patent information) platform" and the "INNOGRAPHY" to facilitate the formation of Patent Database, the paper makes a comprehensive search for the patents in the area of cloud storage technology domestically and overseas. Moreover, the patent ac-tivities in relation to cloud storage technology are explored and analyzed from a wide perspective ranging from annual trends, patent appli-cant, patent inventor to technical components.

  11. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  12. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  13. 清洁煤技术与CO2地质封存%Clean coal technology and CO2 geological storage

    Institute of Scientific and Technical Information of China (English)

    柳迎红; 马丽

    2014-01-01

    中国能源资源特点决定现在以煤为主的消费结构,但煤炭在消费过程中存在高污染和低效率的问题,因此为提高资源利用率,煤炭行业面临结构调整。煤炭行业的清洁化、高效化、低碳化将是产业发展方向,煤炭高效洁净转化将取代传统的转化技术,如何解决煤炭利用过程中产生的CO2是清洁煤技术面临的新问题。通过研究清洁煤技术与CO2地质封存技术,特别是深部盐水层封存技术,为煤炭利用中产生的CO2排放提供了一种大规模、安全、稳定的存储方式,从而解决目前中国能源结构造成的CO2排放问题。%To improve the utilization rate of coal and speed up clean,efficiency and low carbonization of coal industry,provide that the tra-ditional coal conversion technologies should be replaced by efficient and clean technologies.Investigate the clean coal technologies and CO2 geological storage technologies,especially the technologies of CO2 storage in saline formation.The way stores large quantities of CO2 safely and stably.The method also solves the problems of CO2 emissions due to China̓s energy structure.

  14. Study and Evaluation of Liquid Air Energy Storage Technology For a Clean and Secure Energy Future Challenges and opportunities for Alberta wind energy industry

    Directory of Open Access Journals (Sweden)

    Hadi H. Alyami

    2015-08-01

    Full Text Available Global energy demand is steadily increasing each year. Many jurisdictions are seeking to incorporate sustainable and renewable energy sources to help meeting the demand and doing so in a responsible method to the environment and the next generation. In a wide-context, renewable energy sources are promising, yet cannot be controlled in such a way that is responsive to energy demand fluctuation. Liquid Air Energy Storage (LAES technology seeks to bridge the gap that exists between energy supply and demand in an effort to mitigate the current demand deficiency. The volume ratio of air to liquid air is nearly 700:1. Liquid air is a dense energy carrier that is by converting renewable energy at off-peak periods into liquid air the energy can be stored until a peak-demand period when energy producers are maximising output to meet the demand. The energy is then retrieved from the liquid air through rapid expansion as it re-gasifies through a gas turbine and converted into electricity. A commercial scale pilot plant in Slough, UK illustrates the application of this technology empirically. The application of this technology in Canada might have challenges as public policy respective jurisdictions play a role. A case of point of applications where LAES can be integrated is the renewable energy market; particularly the wind power in Alberta. This paper’s analysis embraces wind power industry in Alberta from the perspective of both the electric system operator and the power generation plant. As such, it serves as an alleviating proposal of the current wind energy issues in Alberta – including the uncertainty of forecasting system. The analysis assumed energy storage technologies as a viable stand-alone mitigation with no consideration of the current technological and operational advancements in power systems such HVDC grids, distributed generation concepts and among others.

  15. Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel: dynamic rheological properties and technological behaviour during chill storage.

    Science.gov (United States)

    Delgado-Pando, G; Cofrades, S; Ruiz-Capillas, C; Triki, M; Jiménez-Colmenero, F

    2012-09-01

    Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel were formulated by replacing (total or partially) pork backfat by a combination of healthier oils (olive, linseed and fish oils) and konjac gel. Dynamic rheological properties and technological behaviour of pâtés during chill storage (2 °C, 85 days) were analysed. Cooking yields were affected (Pkonjac gel could provide a mixture of ingredients that effectively mimics the normal animal fat content in pâtés. PMID:22542074

  16. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  17. The Internet Open Source Data Storage and Analysis Technology Research%互联网开源数据存储与分析技术研究

    Institute of Scientific and Technical Information of China (English)

    郝文江

    2013-01-01

    当前网络环境中的开源数据量巨大,传统数据采集技术难以满足对开源数据的采集和分析需求。文章提出采用云存储的方法进行开源数据收集处理,从而解决了开源数据存储的难题。同时,文中阐述了基于云存储的开源数据计算分析技术设计思路,对开源数据存储与计算各环节进行了分析研究。%Great open source data currently in the network environment, the traditional data acquisition technology to meet the open source data collection and analysis requirements. This paper put forward the method of open source cloud storage of data collecting and processing, in order to solve the problem of open source data storage. At the same time, this paper expounds the design idea of open source data analysis technique based on cloud computing, based on the analysis of the open source data storage and calculation of each link.

  18. Study on Safe Storage Technology of Cloud Computing Service Date%云计算服务数据安全储存技术研究

    Institute of Scientific and Technical Information of China (English)

    于颖

    2016-01-01

    根据当前云计算服务数据的发展趋势,在介绍云计算和云存储概念的基础上,分析云存储数据存在的主要安全问题,提出确保云计算服务数据安全的存储对策,为云计算服务数据在互联网及其他领域的安全储存提供技术方面的借鉴。%According to the development tendency of cloud computing service data at present, based on introducing the concept of cloud computing and cloud storage, this article analyzed the main safety problems existing in cloud storage data, put forward the storage countermeasure to ensure the safety of cloud computing service data, in order to provide technological reference for cloud computing service data stored safely on the internet and other fields.

  19. Massive Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Dan Feng; Hai Jin

    2006-01-01

    store data but also adopt the attributes and methods of objects that encapsulate the data. The adaptive policy triggering mechanism (APTM), which borrows proven machine learning techniques to improve the scalability of object storage systems, is the embodiment of the idea about smart storage device and facilitates the self-management of massive storage systems. A typical offline massive storage system is used to backup data or store documents, for which the tape virtualization technology is discussed. Finally, a domain-based storage management framework for different types of storage systems is presented in the paper.

  20. Managing biotic interactions for ecological intensification of agroecosystem

    Directory of Open Access Journals (Sweden)

    SabrinaGaba

    2014-06-01

    Full Text Available Agriculture faces the challenge of increasing food production while simultaneously reducing the use of inputs and delivering other ecosystem services. Ecological intensification of agriculture is a paradigm shift, which has recently been proposed to meet such challenges through the manipulation of biotic interactions. While this approach opens up new possibilities, there are many constraints related to the complexity of agroecosystems that make it difficult to implement. Future advances, which are essential to guide agricultural policy, require an eco-evolutionary framework to ensure that ecological intensification is beneficial in the long term.

  1. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects

    OpenAIRE

    Kear, Gareth; Shah , Akeel; Walsh, Frank C.

    2011-01-01

    The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all-vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot-scale developments in many countries. The po...

  2. Application of Chlorophyll Fluorescence Imaging Technology for Fresh Quality Control of Grape Fruit Preserved Under Different Storage Conditions

    OpenAIRE

    Sung Yung Yoo; Sok Samait; Jong Yong Park; Tae Wan Kim

    2014-01-01

    The objective of this study was to find a rapid determination of the freshness of grape (Vitis vinifera. L.) fruits using portable chlorophyll fluorescence imaging instrument. To assess the fresh quality of grape fruits, an imaging technique of the photochemical responses of pericarp of grape fruit was performed with fruits preserved under the different storage conditions. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlo...

  3. 存储测试技术中采样策略的研究%Research on the Sampling Strategy in Storage Testing Technology

    Institute of Scientific and Technical Information of China (English)

    王鹏; 裴东兴; 张红艳; 王亚军

    2012-01-01

    在设计应用于高温、高压、高冲击等环境下的存储测试系统时,必须同时兼顾信号精度、完整性与系统有限的存储资源.针对这种测试特点,总结归纳了存储测试中几种典型测试系统的采样策略设计方法.分别从采样频率和系统增益两个角度深入探讨,提出了自适应性采样策略的实现手段.实测结果表明,该研究对于确保存储测试技术中数据采集的合理性以及完整性具有十分重要的意义.%For designing storage test system that is applied under environment of high temperature, high pressure and high impact, the accuracy, integrity of signals and limited storage resources of the system have to be taken into account at the same time. In accordance with the features of such lest specification, the design methods of sampling strategies of several typical test systems in storage test are summarized. In addition, the topic is investigated thoroughly from two aspects, i. e. , the sampling frequency and system gain, and the implementing measure of adaptive sampling strategy is proposed. Practical test indicates that the research possesses great significance to ensure the reasonability and integrity of data acquisition in storage testing technology.

  4. Technology Analysis of CO2 Capture and Storage in Firing Power Plant%火电厂CO2 CCS技术分析

    Institute of Scientific and Technical Information of China (English)

    胡月红

    2012-01-01

    After introducing the CO2 emission characteristics from firing power plant,this paper discussed two parts in both CO2 capture and storage,and put forward four main technological lines for CO2 capture in firing power plants.The paper also analyzed and compared the features and appliances of every capture measures,and pointed out some problems needed to be solved for using the existing capture methods to firing power plant in China.Finally it analyzed and summarized CO2 storage technology and comprehensive utilization.%介绍了火电厂CO2排放特点,将CO2减排技术分为捕集与封存两个部分进行讨论,提出了火电厂CO2捕集的4种主要技术路线;比较分析了几种主要捕集方法的技术特点和火力发电适用性,CO2应用于我国火电厂需解决的问题;综述了CO2的封存技术和综合利用。

  5. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  6. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  7. Influence of the xanthan gum addition on the technological and sensory quality of baking products during the freezing storage

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2016-07-01

    Full Text Available The influence of the 0.16% xanthan gum addition in the recipe of the bread production and its influence on the baking and sensory quality of products was monitored during the process of our research. Prepared dough was inserted in the freezing box directly (-18°C and it was stored for one, two, three, four, five and six months. When the baking process was finished, the products with xanthan gum and the products without it were compared and evaluated by both objective and subjective methods. It was found that freezing, cooling and storage of the products without xanthan gum addition influenced the volume, vaulting and general appearance of the products in a negative way and loaves of bread were evaluated as unacceptable after four months of freezing. The quality of experimental loaves of bread with xanthan gum was, even after six months of freezing storage, comparable with freshly baked products. Despite the freezing, the volume of the products had an increased value. After first month of freezing the volume increased by 28.6% and after two months of freezing it increased by 23.8% both compared to the control. The vaulting in products processed by freezing was in the required optimal level during the whole period of freezing. Sensory evaluation results of loaves of bread with xanthan gum were the best after three, four and five months of storage in a freezer, when 98 points were achieved. During the monitored period of freezing, the addition of 0.16% of xanthan gum markedly contributed to the preservation of sensory and baking quality of the frozen wheat dough.

  8. Clean coal technologies. The capture and geological storage of CO{sub 2} - Panorama 2008; Les technologies du charbon propre. Captage et stockage geologique du CO{sub 2} - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO{sub 2} emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO{sub 2} capture and storage technologies are implemented, it will be very difficult to contain global warming.

  9. Development of an archive image database within the framework of modern technologies of image processing and storage

    Science.gov (United States)

    Bockstein, Ilia M.; Kuznetsov, Nikolai A.; Merzlyakov, Nikolay S.; Rubanov, Lev I.

    1998-02-01

    The paper outlines our investigations devoted to creation of an efficient database of archive images of various types.Possible architecture of this database is briefly described. The attention is paid to methods and means of high-quality digital presentation of images, and to methods of their quality enhancement. The possibilities of compact and lossless storage of images are discussed. A prototype of the multifunctional database is described; this database can contain black-and-white, gray-scale, and true color images. It will be used to keep the representations of cultural treasures of various kinds, and to solve various problems of art-critics, linguistics, etc.

  10. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    JA Bamberger

    2000-08-02

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

  11. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    International Nuclear Information System (INIS)

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, but not specifically evaluated for radioactive waste retrieval

  12. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications - Production, storage and fuel cell drivetrain considerations

    Energy Technology Data Exchange (ETDEWEB)

    Hart, David; Vuille, Francois [E4tech Sarl, Avenue Juste-Olivier 2, 1006 Lausanne (Switzerland); Anghel, Alexandra T.; Huijsmans, Joep [Shell Hydrogen B.V., Carel van Bylandtlaan 23, 2596 HR The Hague (Netherlands)

    2009-08-01

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address. (author)

  13. Testing and evaluating storage technology to build a distributed Tier1 for SuperB in Italy

    International Nuclear Information System (INIS)

    The SuperB asymmetric energy e+e−- collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 75 ab−-1 and a luminosity target of 1036 cm−-2 s−-1. This luminosity translate in the requirement of storing more than 50 PByte of additional data each year, making SuperB an interesting challenge to the data management infrastructure, both at site level as at Wide Area Network level. A new Tier1, distributed among 3 or 4 sites in the south of Italy, is planned as part of the SuperB computing infrastructure. Data storage is a relevant topic whose development affects the way to configure and setup storage infrastructure both in local computing cluster and in a distributed paradigm. In this work we report the test on the software for data distribution and data replica focusing on the experiences made with Hadoop and GlusterFS.

  14. Testing and evaluating storage technology to build a distributed Tier1 for SuperB in Italy

    Science.gov (United States)

    Pardi, S.; Fella, A.; Bianchi, F.; Ciaschini, V.; Corvo, M.; Delprete, D.; Di Simone, A.; Donvito, G.; Giacomini, F.; Gianoli, A.; Longo, S.; Luitz, S.; Luppi, E.; Manzali, M.; Perez, A.; Rama, M.; Russo, G.; Santeramo, B.; Stroili, R.; Tomassetti, L.

    2012-12-01

    The SuperB asymmetric energy e+e-- collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 75 ab--1 and a luminosity target of 1036 cm--2 s--1. This luminosity translate in the requirement of storing more than 50 PByte of additional data each year, making SuperB an interesting challenge to the data management infrastructure, both at site level as at Wide Area Network level. A new Tier1, distributed among 3 or 4 sites in the south of Italy, is planned as part of the SuperB computing infrastructure. Data storage is a relevant topic whose development affects the way to configure and setup storage infrastructure both in local computing cluster and in a distributed paradigm. In this work we report the test on the software for data distribution and data replica focusing on the experiences made with Hadoop and GlusterFS.

  15. Role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. Simulation and optimization; Rolle und Bedeutung der Stromspeicher bei hohen Anteilen erneuerbarer Energien in Deutschland. Speichersimulation und Betriebsoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Niklas

    2013-06-13

    The share of renewable electricity generation of gross electricity consumption in Germany increased from 6.8 % to about 20 % during the years of 2000 and 2011. This share will increase even more in the future. The greater part of the renewable electricity generation is characterized by significant fluctuations, which can only be planned to a limited extent. Hence, the electricity system in Germany faces the challenge to integrate an increasing amount of fluctuating renewable electricity generation. Additionally the system stability needs to be ensured, despite a decreasing capacity in conventional power plants. One option to support the integration of large amounts of renewable electricity generation and to enhance system stability is the deployment of storage technologies. The aim of this research was to analyze the role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. To achieve this aim, adiabatic compressed air energy storage, diabatic compressed air energy storage and mobile battery storage systems were simulated and compared with a pumped hydro storage as the reference storage system. Key characteristics of these storage systems were modeled within a fundamental stochastic unit commitment model of the German power markets (Joint-Market-Model) in order to analyze the effect of the implementation of these storage systems on the overall cost of the electricity system. Additionally, the operation of the storages in an electricity system with high shares of renewable energy was evaluated. The results show that the integration of large shares of renewable electricity generation into the grid can only be achieved with a substantial implementation of storage systems. To integrate 50 % of renewable energy, a storage power of 27 GW and storage capacity of 245 GWh is needed. For a renewable energy share of 80 %, a storage power of 78 GW and a storage capacity of 6.3 TWh are necessary. A 100

  16. Cold storage in the field of modern refrigeration and air conditioning technology. Possible applications, particularities and economic efficiency; Eisspeicher in der modernen Kaelte- und Klimatechnik. Einsatzmoeglichkeiten, Besonderheiten und Wirtschaftlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Grandegger, K. [FAFCO Deutschland, Echterdingen (Germany)

    2007-01-15

    In the frame of the present discussion about energy efficiency, electric current and operational cost savings at favourable investment costs only few expert planers, architects and operators take into consideration that cold storage plants could be the solution for several problems in the field of modern refrigeration and air conditioning technology. Many realised plants have shown that performance optimised refrigerating machines combined with cold storage systems are a very useful and economic alternative to conventional cold generation. (orig.)

  17. Increased biotic metabolism of the biosphere inferred from observed data and models

    Institute of Scientific and Technical Information of China (English)

    田汉勤[1; CharlesA.S.Hall[2; 叶琦[3

    2000-01-01

    A 35 year record ot production and respiration in tne Northern Hemisphere bas been derived from monthly records of atmospheric concentration, fossil fuel combustion, and oceanic absorption of carbon dioxide using a method developed by Hall et al. The original conclusion of Hall et al. that there was no significant change in biotic metabolism, is confirmed by measuring both production and respiration from 1958 to 1972. But the analysis of the subsequent record shows that both production and respiration have been enhanced since the early 1970s by some large scale global change, probably of human origin. Our results also show that high-latitude regions in the Northern Hemisphere are changing more than regions further south. Nevertheless, the ratio of production to respiration (P/R) remains unchanged during the time period examined. Thus, no argument can be made for net carbon storage of or release from the biosphere from this analysis, although the turnover rate of the biosphere appears to be enhanced.

  18. Increased biotic metabolism of the biosphere inferred from observed data and models

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 35 year record of production and respiration in the Northern Hemisphere bas been derived from monthly records of atmospheric concentration, fossil fuel combustion, and oceanic absorption of carbon dioxide using a method developed by Hall et al. The original conclusion of Hall et al. that there was no significant change in biotic metabolism, is confirmed by measuring both production and respiration from 1958 to 1972. But the analysis of the subsequent record shows that both production and respiration have been enhanced since the early 1970s by some large scale global change, probably of human origin. Our results also show that high-latitude regions in the Northern Hemisphere are changing more than regions further south. Nevertheless, the ratio of production to respiration (P/R) remains unchanged during the time period examined. Thus, no argument can be made for net carbon storage of or release from the biosphere from this analysis, although the turnover rate of the biosphere appears to be enhanced.

  19. The application of research and technology in the Highly Active Liquor storage and treatment facilities at Sellafield

    International Nuclear Information System (INIS)

    At the Sellafield nuclear site, Highly Active Liquor (HAL) produced from Magnox and Oxide reprocessing operations is evaporated and interim stored in the Highly Active Liquor Evaporation and Storage (HALES) complex prior to vitrification in one of three Waste Vitrification Plant (WVP) processing lines. These plants are integral to the current commercial activities at Sellafield and also in safely discharging liabilities in the future. The management and operation of HALES and WVP are subject to significant regulatory and public scrutiny and there is the requirement to deliver a reduction in the HAL volumes stored in HALES in accordance with a regulator imposed HAL stock reduction specification. In delivering the required reduction BNFL has faced a number of technical and operational challenges which have resulted in the development and execution of significant programmes of research and development and technical and engineering projects. The key challenges faced are briefly presented. (author)

  20. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John; Viswanathan, Vilayanur; Nyeng, Preben; McManus, Bart; Pease, John

    2008-01-01

    rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel......Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a...... project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  1. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    Science.gov (United States)

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process. PMID:26947573

  2. Development and Validation of an Aquatic Fine Sediment Biotic Index

    Science.gov (United States)

    Relyea, Christina D.; Minshall, G. Wayne; Danehy, Robert J.

    2012-01-01

    The Fine Sediment Biotic Index (FSBI) is a regional, stressor-specific biomonitoring index to assess fine sediment (Chironomidae. This reduced the 685 taxa from all data sets to 206. Of these 93 exhibited some sensitivity to fine sediment which we classified into four categories: extremely, very, moderately, and slightly sensitive; containing 11, 22, 30, and 30 taxa, respectively. Categories were weighted and a FSBI score calculated by summing the sensitive taxa found in a stream. There were no orders or families that were solely sensitive or resistant to fine sediment. Although, among the three orders commonly regarded as indicators of high water quality, the Plecoptera (5), Trichoptera (3), and Ephemeroptera (2) contained all but one of the species or species groups classified as extremely sensitive. Index validation with an independent data set of 255 streams found FSBI scores to accurately predict both high and low levels of measured fine sediment.

  3. Location and foraging as basis for classification of biotic interactions.

    Science.gov (United States)

    Khabibullin, Viner F

    2016-06-01

    Ecologists face an overwhelming diversity of ecological relationships in natural communities. In this paper, I propose to differentiate various types of the interspecific relations on the basis of two factors: relative localization and foraging activity of interacting partners. I advocate recognition of four types of environments: internal, surface, proximate external and distant external. Then I distinguish four types of synoikia-one partner lives in different degree of proximity to another; and four types of synmensalism: one partner forages in different degree of proximity to another. Intersection of localization-based (four subtypes of synoikia) and foraging-based (four subtypes of synmensalism) rows results in 16 types of interactions. This scheme can serve as a framework that manages diverse biotic interactions in a standardized way. I have made the first step to set up nomenclature standards for terms describing interspecific interactions and hope that this will facilitate research and communication. PMID:27160993

  4. [Philosophy of the mutual biotic system of man-environment].

    Science.gov (United States)

    Mertz, D P

    2009-06-01

    With regard to environmental changes, outstanding importance is meanwhile to be attached to the cultural side of human evolution. The evolution both of mankind and of its environment are mutually dependent as processes of change and together they form a complete biotic system. First disorders of balance concerning the close relationship network between mankind and environment eventually developed following man's change from the biosphere to the "noosphere" created by him. In the course of the "neolithic revolution" mankind, while becoming more and more settled, began to become increasingly estranged from its ecological surroundings. Environmental problems caused by man led to climatic changes already about 8,000 years ago. So far they have caused an extraordinary climatic stability following the Ice Age. "Environmental art" i. e. an improved evolution - is required to escape an imminent "collapse" caused by pollution. Nowadays mankind is on the way to being the almost exclusive carrier of future evolution of this planet. PMID:19544720

  5. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    Science.gov (United States)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  6. Coupled Climate–Economy–Biosphere (CoCEB model – Part 2: Deforestation control and investment in carbon capture and storage technologies

    Directory of Open Access Journals (Sweden)

    K. B. Z. Ogutu

    2015-04-01

    Full Text Available This study uses the global climate–economy–biosphere (CoCEB model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS technologies as policy measures for climate change mitigation. We assume – as in Part 1 – that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  7. Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservative and reactive tracer approach

    Science.gov (United States)

    Petrone, Kevin; Buffam, Ishi; Laudon, Hjalmar

    2007-06-01

    Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3- + NH4+) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate "conservative" N export (hydrologic mixing only) and compared it with "reactive" N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3-, which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3-, suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4+. In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the

  8. Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA

    International Nuclear Information System (INIS)

    This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources - particularly public resources - is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.

  9. Early Triassic marine biotic recovery: the predators' perspective.

    Directory of Open Access Journals (Sweden)

    Torsten M Scheyer

    Full Text Available Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became

  10. Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

  11. The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Blanchard, V.G.; Bouwman, R.H.M.; Lettinga, G.; Field, J.A.

    2003-01-01

    Azo dye reduction results from a combination of biotic and abiotic processes during the anaerobic treatment of dye containing effluents. Biotic processes are due to enzymatic reactions whereas the chemical reaction is due to sulfide. In this research, the relative impact of the different azo dye red

  12. Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Leanne M.; Byrd, Thomas M., Jr.; Murray, Aaron T.; Ginn, Jerry W.; Symons, Philip C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA); Corey, Garth P.

    2005-08-01

    This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

  13. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  14. Historic and potential technology transition paths of grid battery storage: Co-evolution of energy grid, electric mobility and batteries

    OpenAIRE

    Baumann, Manuel

    2015-01-01

    Scarcity of fuels, changes in environmental policy and in society increased the interest in generating electric energy from renewable energy sources (RES) for a sustainable energy supply in the future. The main problem of RES as solar and wind energy, which represent a main pillar of this transition, is that they cannot supply constant power output. This results inter alia in an increased demand of backup technologies as batteries to assure electricity system safety. The diffusion of energy s...

  15. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  16. Thermal Energy Storage: Fourth Annual Review Meeting

    Science.gov (United States)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  17. Biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River basin

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghani, A.; Pramar, Y.; Mandal, T.

    1996-05-02

    This project assesses the levels of xenobiotics in Devils Swamp and studies their biological fate, transport, ecotoxicity, and potential toxicity to man. This article reports on the following studies: assessment of the acute toxicity of individual xenobiotics and toxicity of organic compounds hexachlorobutadience (HCB) and hexachlorobenzene (HCBD) on juvenile crayfish; determination of the biotic influence of temperature, salinity, pH, oxidation-reduction potential, and sediment composition on the migration of xenobiotics; development of a pharmacokinetics model for xenobiotic absorption and storage, distribution and excretion by fish and crayfish.

  18. IAEA spent fuel storage glossary

    International Nuclear Information System (INIS)

    The aim of this glossary is to provide a basis for improved international understanding of terms used in the important area of spent fuel storage technology. The glossary is the product of an IAEA Consultant Group with valuable input from a substantial list of reviewers. The glossary emphasizes fuel storage relevant to power reactors, but is also widely applicable to research reactors. The intention is to define terms from current technologies. Terms are limited to those directly related to spent fuel storage

  19. Power System Concepts for the Lunar Outpost: A Review of the Power Generation, Energy Storage, Power Management and Distribution (PMAD) System Requirements and Potential Technologies for Development of the Lunar Outpost

    Science.gov (United States)

    Khan, Z.; Vranis, A.; Zavoico, A.; Freid, S.; Manners, B.

    2006-01-01

    This paper will review potential power system concepts for the development of the lunar outpost including power generation, energy storage, and power management and distribution (PMAD). In particular, the requirements of the initial robotic missions will be discussed and the technologies considered will include cryogenics and regenerative fuel cells (RFC), AC and DC transmission line technology, high voltage and low voltage power transmission, conductor materials of construction and power beaming concepts for transmitting power to difficult to access locations such as at the bottom of craters. Operating conditions, component characteristics, reliability, maintainability, constructability, system safety, technology gaps/risk and adaptability for future lunar missions will be discussed for the technologies considered.

  20. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory; Successful Integration & Deployment of Technologies Results in Remediated Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, K.; Bolling, D.

    2002-02-27

    This paper presents an overview of the underground technologies deployed during the cleanup of nine large underground storage tanks (USTs) that contained residual radioactive sludge, liquid low-level waste (LLLW), and other debris. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory (ORNL) was successfully completed in 2001, ending with the stabilization of the USTs and the cleanup of the South Tank Farm. This U.S. Department of Energy (DOE) project was the first of its kind completed in the United States of America. The Project integrated robotic and remotely operated technologies into an effective tank waste retrieval system that safely retrieved more than 348 m3 (92,000 gal) of radioactive sludge and 3.15E+15 Bq (85,000 Ci) of radioactive contamination from the tanks. The Project successfully transferred over 2,385 m3 (630,000 gal) of waste slurry to ORNL's active tank waste management system. The project team avoided over $120 Million in costs and shortened the original baseline schedule by over 10 years. Completing the Gunite Tanks Remediation Project eliminated the risks posed by the aging USTs and the waste they contained, and avoid the $400,000 annual costs associated with maintaining and monitoring the tanks.

  1. Evidence for biotic controls on topography and soil production

    Science.gov (United States)

    Roering, Joshua J.; Marshall, Jill; Booth, Adam M.; Mort, Michele; Jin, Qusheng

    2010-09-01

    The complex interplay of biological, physical, and chemical processes in pedogenesis and hillslope evolution limits our ability to predict and interpret landscape dynamics. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range to analyze the role of trees in topographic modification and bedrock-to-soil conversion. Using topographic data derived from airborne lidar, we demonstrate that the topographic signature of forest-driven soil and bedrock disturbance is pervasive. For length scales greater than 7.5 m, the land surface is defined by ridge-valley landforms, whereas smaller scales are dominated by pit-mound features generated by the turnover of large coniferous trees. From field surveys, the volume of bedrock incorporated in overturned rootwads increases rapidly with diameter for large conifers, reflecting the highly nonlinear increase in root biomass with tree diameter. Because trees younger than 60 years detach negligible bedrock, short timber harvest intervals may limit the extent to which root systems penetrate bedrock and facilitate bedrock fracturing and biogeochemical weathering. Using ground-penetrating radar, we show that the rootwads of large trees root achieve substantial penetration (1-3 m) into shallow bedrock. The radar transects also reveal that variations in soil thickness have characteristic length scales of 1 to 5 m, consistent with the scale of large rootwads, indicating that both the landscape surface and soil-bedrock interface exhibit a biogenic imprint. In our study area, the residence time of bedrock within dense rooting zones directly below large trees is similar to the time required for trees to occupy the entire forest floor through multiple cycles of forest succession, suggesting that biological modification of shallow bedrock is ubiquitous. Given increases in erosion rate, the ability of roots to initiate soil production may decline as bedrock exhumation through the biotic zone is rapid relative to the

  2. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  3. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    Science.gov (United States)

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bestias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  4. Flywheel Energy Storage Systems

    OpenAIRE

    Daoud, Mohammed; Abdel-Khalik, Ayman; Elserogi, Ahmed; Ahmed, Shehab; Massoud, Ahmed

    2015-01-01

    Flywheels are one of the oldest and most popular energy storage media owing to the simplicity of storing kinetic energy in a rotating mass. Flywheel energy storage systems (FESSs) can be used in different applications, for example, electric utilities and transportation. With the development of new technologies in the field of composite materials and magnetic bearings, higher energy densities are allowed in the design of flywheels. The amount of stored energy in FESS depends on the mass and th...

  5. The Technology Design Research Based on Massive Data Cloud Storage of Geographical National Conditions%地理国情海量数据云存储技术设计研究

    Institute of Scientific and Technical Information of China (English)

    朱力维; 王志强; 王军

    2014-01-01

    This research has geographic conditions mass data features and the data content .For current data storage problems , this re-search studies cloud storage concept and the related key technologies , and HDFS technology used has cloud environment for geographic conditions mass data organization and resources shared by cloud storage model , through cloud service interface access application by cloud storage service , which can effective settle geographic conditions data resources mass storage and service problems for geographic conditions data management way serving reference to data transformation .%研究了地理国情海量数据特征及数据内容,针对目前数据存储中存在的问题,研究了云存储概念及相关的关键技术,采用HDFS技术提出了云环境下地理国情海量数据组织与资源共享的云存储模型,通过云应用服务接口访问云存储服务,能够有效解决地理国情数据资源海量存储和服务问题,为地理国情数据管理方式的转变提供借鉴。

  6. Application of Hurdle Technology in Meat Storage%肉类保藏技术(十七)栅栏技术在肉类保藏中的应用

    Institute of Scientific and Technical Information of China (English)

    刘琳

    2009-01-01

    Hurdle technology is the scientific and rational combination made up of many technologies. It not only can effectively extend the meat shelf life,but also conducive to maintaining the nutrition and flavor of meat,so it is widely used in meat storage.The article mainly introduced the hurdle technology, the main hurdle factor affecting meat storage,and the application of hurdle technology in meat storage.In addition,the future development trend of hurdle technology was introduced too.%栅栏技术是多种保藏技术科学、合理的结合,它不仅可有效延长肉类的保质期,而且有利于保持肉类的营养和风味,故在肉类保藏中广泛应用.本文主要介绍了栅栏技术,肉类保藏中涉及的主要栅栏因子,以及栅栏技术在肉类保藏中的应用,并对栅栏技术的未来发展趋势进行了展望.

  7. BOOTSTRAPPING AND MONTE CARLO METHODS OF POWER ANALYSIS USED TO ESTABLISH CONDITION CATEGORIES FOR BIOTIC INDICES

    Science.gov (United States)

    Biotic indices have been used ot assess biological condition by dividing index scores into condition categories. Historically the number of categories has been based on professional judgement. Alternatively, statistical methods such as power analysis can be used to determine the ...

  8. Research of Storage Container Irrigation Technology mode%蓄流灌溉农业节水技术模式研究与应用

    Institute of Scientific and Technical Information of China (English)

    吴旭春; 周和平

    2016-01-01

    为有效解决节水灌溉中存在的灌水时间长、能耗过多、灌溉水温低等问题,提出了蓄流分离式灌溉技术理论,基于供水与灌溉不连续、不同步、相互独立的用水机制,将作物灌溉的需用水量通过供、输水方式输至田间蓄流灌水容器之中,作物灌溉用水在自重作用下自流灌溉,即一种供水“蓄”与作物自流灌溉的“流”之间彻底分离的灌溉方法。通过该技术在果树等稀植经济作物灌溉中的应用表明,该技术与常规灌溉(沟畦灌)相比,节水30%~50%,果树增产5%~20%;与高效节水灌溉技术相比,节能降耗75%以上,用水时间减少50%以上;与常规灌(沟畦灌)和高效节水灌溉技术相比,提升灌溉水温10%~35%。%There are some problems in efficient irrigation such as long irrigation duration, high energy consumption and low temperature of irrigation water. Hence the author put forward the theory of storage⁃flow departure irrigation to solve the problems mentioned above. Based on the principles of discontinuous, asynchronous and inter⁃independent between water supply and irrigation, the irrigation water was shipped to a container used for storing water. The water would flow into the field by gravity. The irrigation system separated the storage process from the water flowing process completely. The storage container irrigation technology had been used in fruits field. Compared with furrow irrigation, this irrigation system could save 30%⁃50% water, meanwhile got 50% increase of fruits yield;compared with efficient irrigation, 75% energy consumption could be saved and 50% irrigation duration decreased. Compared with both furrow and efficient irrigation system, the storage container irrigation system could increase the water temperature by 10%⁃35%. This new irrigation technology is effective for saving energy and water, increasing yields and water temperature and

  9. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  10. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    OpenAIRE

    Milca PETROVICI; Maria - Mirela BOGDĂNESCU; Mălina PÎRVU

    2012-01-01

    Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT), Total Invertebrates index (T), Chironomidae index (Ch), EPT / Total invertebrates index (EPT / T), EPT / Chironomidae index (EPT / Ch) and % Chironomidae index (% Chironomidae). Considering all the...

  11. Biotic potential and reproductive parameters of Spodoptera eridania (Stoll) (Lepidoptera, Noctuidae) in the laboratory

    OpenAIRE

    Débora Goulart Montezano; Alexandre Specht; Daniel Ricardo Sosa-Gómez; Vânia Ferreira Roque-Specht; Neiva Monteiro de Barros

    2013-01-01

    Biotic potential and reprodutcive parameters of Spodoptera eridania (Stoll) (Lepidoptera, Noctuidae) in the laboratory: This study aimed to evaluate the biotic potential and reproductive parameters of Spodoptera eridania (Stoll, 1782) under controlled conditions (25 ± 1ºC, 70 ± 10% RH and 14 hour photophase). The longevity, pre-, post- and oviposition periods, fecundity and fertility of 15 couples was evaluated. The longevity of females (10.80 days) was not significantly higher than those of ...

  12. Biotic and abiotic factors affecting territorial and reproductive behaviour of dragonflies (Odonata)

    OpenAIRE

    KYBICOVÁ, Tereza

    2015-01-01

    Habitat selection, territorial behaviour and reproductive behaviour of dragonflies (Odonata) are discussed and biotic and abiotic factors affecting their territorial and reproductive behaviour are reviewed. The most important biotic factors are predation risk affecting larval survival and the presence of aquatic vegetation, which provides spatial structure. The review is complemented by a field study of territorial and reproductive behavior of dragonflies at an experimental site, at which the...

  13. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  14. Designing Surface Monitoring Meshes for Geologic Carbon Capture and Storage Sites: Accurate Emissions Accounting for an Essential 2°C Mitigation Technology

    Science.gov (United States)

    Augustin, C. M.; Swart, P. K.; Broad, K.

    2014-12-01

    Geologic carbon capture and storage (CCS) is a feasible solution to the international greenhouse gas (GHG) emissions problem and it has recently been called a "vital" mitigation tool by the International Energy Agency. However, there exists uncertainty concerning the terminal fate of stored carbon dioxide (CO2.) In this regard, reliable monitoring, verification and accounting (MVA) technologies are essential for making CCS publicly acceptable. Chiefly, MVA addresses safety and environmental concerns by providing a warning system to prevent or alleviate CO2 leakages. A secondary purpose of MVA technologies is to prove compliance with CO2 reduction standards through inventory verification. A key MVA tool for tracking CO2 leakages is surface (atmospheric) monitoring. Demonstrating its value, industry actors feel an impetus to invest in surface monitoring as a low-risk, high-value technology to mitigate liability in cases of potential leakages. Despite how necessary this tool is, to date, all surface monitoring mesh designs and best practices have been proposed locally, without discussion of standardization or optimization on a regional, national or international level. We identify the fundamental problem of surface monitoring mesh design as locating the monitoring sites to record CO2 levels over the designated geographic area at lowest cost with maximum impact. We approach this problem from both an operations research (OR) perspective and atmospheric dispersion perspective. From an OR perspective, we approach mesh design using multiobjective optimization models - we specify the relative placement of candidate sites, observation time interval, and optimality criteria. In the second approach, we model CO2 leakage scenarios to test the effectiveness of proposed mesh design from the first approach. We use atmospheric dispersion modeling softwares AERMOD and SCREEN3 - both tools developed by the United States Environmental Protection Agency and codified into law - for

  15. Engineering technology classification of processing and storage for agricultural product producing area%农产品产地加工与储藏工程技术分类

    Institute of Scientific and Technical Information of China (English)

    王丹阳; 沈瑾; 孙洁; 刘清; 刘丽; 赵靓; 程勤阳

    2013-01-01

    Processing and storage of agricultural producing area is an important link in the chain of China agricultural production chain and technical short-board,which is in urgent need to be developed into a supporting technology of the pre-treating industry of agricultural producing area. Technical classification is a frame work to reveal the structural framework and organization relationship of the engineering technical system of processing and storage of agricultural producing area, to orderly guide the technology constitute innovation, development and reserve, and to promote technology integration and promotion, the subject development and industrial upgrade, which is in urgent need of breakthrough in the theoretical methods and classification pragmatic to better guide the engineering technology of processing and storage for the agricultural production area to have a comprehensive and sustainable development. in the base of a grasp on the law of motion and the different technologies constitute special contradiction.The research is based on the broader category of contemporary agricultural produce processing and storage engineering technology, following the principle of reality, hierarchy, stability and openness. Through the analysis of the technical content and technical classification of the processing and storage engineering technology for agricultural producing area, four level line classification method have been determined, which could reflect the professional sequence, technical functions, technical means and technology form of the processing and storage engineering technology for agricultural producing area. According to the complete function of agricultural production area as the basic foundation of classification, the results of horizontal and vertical technology classification have been obtained respectively. The complete function of industrial chain of agricultural production area is to obtain the optimal and comprehensive using for resources, while to

  16. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  17. Seasonal sensible thermal energy storage solutions

    OpenAIRE

    Lavinia Gabriela SOCACIU

    2012-01-01

    The thermal energy storage can be defined as the temporary storage of thermal energy at high or low temperatures. Thermal energy storage is an advances technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. Seasonal thermal energy storage has a longer thermal storage period, generally three or more months. This can contribute significantly to meeting society`s need for heating and cooling. The objectives of thermal...

  18. Storage Area Networks and The High Performance Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, H; Graf, O; Fitzgerald, K; Watson, R W

    2002-03-04

    The High Performance Storage System (HPSS) is a mature Hierarchical Storage Management (HSM) system that was developed around a network-centered architecture, with client access to storage provided through third-party controls. Because of this design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to provide cost effective, large-scale storage systems and high performance global file access for clients. Key attributes of SAN file systems are found in HPSS today, and more complete SAN file system capabilities are being added. This paper traces the HPSS storage network architecture from the original implementation using HIPPI and IPI-3 technology, through today's local area network (LAN) capabilities, and to SAN file system capabilities now in development. At each stage, HPSS capabilities are compared with capabilities generally accepted today as characteristic of storage area networks and SAN file systems.

  19. Probe-based data storage

    CERN Document Server

    Koelmans, Wabe W; Abelmann, L

    2015-01-01

    Probe-based data storage attracted many researchers from academia and industry, resulting in unprecendeted high data-density demonstrations. This topical review gives a comprehensive overview of the main contributions that led to the major accomplishments in probe-based data storage. The most investigated technologies are reviewed: topographic, phase-change, magnetic, ferroelectric and atomic and molecular storage. Also, the positioning of probes and recording media, the cantilever arrays and parallel readout of the arrays of cantilevers are discussed. This overview serves two purposes. First, it provides an overview for new researchers entering the field of probe storage, as probe storage seems to be the only way to achieve data storage at atomic densities. Secondly, there is an enormous wealth of invaluable findings that can also be applied to many other fields of nanoscale research such as probe-based nanolithography, 3D nanopatterning, solid-state memory technologies and ultrafast probe microscopy.

  20. Wet storage integrity update

    International Nuclear Information System (INIS)

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables

  1. Development of Seasonal Storage in Denmark:Status of Storage Programme 1997-2000

    OpenAIRE

    Heller, Alfred

    2000-01-01

    National survey on seasonal (thermal, large-scale) storage activities in Denmark. A storage programme under the Danish Energy Agency. Programme background, objectives, activities, projects and results.Technologies presented: Pit water storage, gravel water storage with pipe heat exchangers, lining materials for pit and lid designs.

  2. Grain Handling and Storage Safety

    OpenAIRE

    Webster, Jill

    2005-01-01

    Agricultural Health and Safety Fact Sheet AHS-02 Grain Handling and Storage Safety Jill Webster Ph.D., S. Christian Mariger, Graduate Assistant Agricultural Systems Technology and Education There are several hazards that should be considered when working with grain. Storage structures, handling equipment, and the grain itself have all caused serious injuries and deaths. Storage structures (bins, silos, and granaries), like all confined spaces, have significant hazards associated with them. Be...

  3. Evolution of clustered storage

    CERN Document Server

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  4. Data Center Storage Cost-Effective Strategies, Implementation, and Management

    CERN Document Server

    Smith, Hubbert

    2011-01-01

    We overspend on data center storage ! yet, we fall short of business requirements. It's not about the technologies. It's about the proper application of technologies to deliver storage services efficiently and affordably. It's about meeting business requirements dependent on data center storage. Spend less, deliver more. Data Center Storage: Cost-Effective Strategies, Implementation, and Management provides an industry insider's insight on how to properly scope, plan, evaluate, and implement storage technologies to maximize performance, capacity, reliability, and power savings. It provides bus

  5. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    OpenAIRE

    Ghiassi-Farrokhfal, Yashar; Rosenberg, C; Keshav, Srinivasam; Adjaho, Marie-Benedicte

    2015-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the sizing of each storage element, and deciding when to charge and discharge each underlying storage element (the operating strategy.We formulate the problem of jointly optimizing the sizing and the oper...

  6. The influence of α-amylase supplementation, γ-irradiation (60Co) as well as long time of storage of wheat grain on flour technological properties

    International Nuclear Information System (INIS)

    The varieties of winter wheat, Aria and Beta, were studied. The Aria variety was stored for the period of four years. The part of wheat grain from Beta variety was irradiated with γ rays (60Co). In extracts from wheat kernels and flour protein content, total α- and β-amylolytic activity as well as α-amylolytic activity were determined, α-amylases of native and fungal origin were added to the flour obtained from samples of stored wheat kernels (Aria), irradiated and non-irradiated (Beta). Consequently native α-amylase activity of flour increased by 25% and 50%, respectively. Extensive technological estimation of grain and flour with amylase supplements was carried out. The study included: sedimentation analysis, falling number test, milling experiment, farinogram and extensogram analyses, measurement of the degree of damaged starch and flour colour, as well as baking experiment. The obtained experimental loaves of bread were tested for their ability to remain fresh. It was found out that the stored grain flour was characterized by the highest α-amylolytic activity and the lowest falling number value, whereas the irradiated grain flour showed the highest degree of starch damage and water absorption. When α-amylase supplementation to doughs was not accompanied by either irradiation or storage of grain, it definitely changed their physical properties for the worse. The negative influence of native α-amylases appeared to be less significant than that of fungal α-amylases. The positive influence of α-amylase supplementations, especially of those increasing by 25% the native α-amylolytic activity of flour on volume, and freshness of loaves of bread was observed. (author)

  7. Nanotechnology for Data Storage Applications

    Science.gov (United States)

    Sarid, Dror; McCarthy, Brendan; Jabbour, Ghassan

    This chapter considers atomic force microscopy (AFM) as an enabling technology for data storage applications, considering already existing technologies such as hard disk drives (HDD), optical disk drives (ODD) and flash memories that currently dominate the nonvolatile data storage market, together with future devices based on magnetoresistive and phase change effects. The issue at hand is the question of whether the novel AFM-based storage, dubbed probe storage, can offer a competing approach to the currently available technologies by playing the role of a disruptive technology. Probe storage will be contrasted to HDD and ODD, which are purely mechanical as they are based on a rotating disk that uses just a single probe to address billions of bits of data, and nonvolatile random-access memory (RAM) that has no moving parts yet requires billions of interconnects. In particular, capacity, areal density, transfer rate, form factor and the cost of various data storage devices will be discussed and the unique opportunity offered by probe storage in employing massive parallelism will be outlined. It will be shown that probe storage bridges the gap between HDD, ODD and other nonvolatile RAM, drawing from the strength of each one of these and adding a significant attribute neither of these has; namely, the possibility of addressing a very large number of nanoscale bits of data in parallel. This chapter differs from the other chapters in this book in that it addresses the important issue of whether a given scientific effort, namely, probe storage, is mature enough to evolve into a commercially viable technology. The answer seems to indicate that there is indeed a huge niche in the data storage arena that such a technology is uniquely qualified to fill, which is large enough to justify a major investment in research and development. Indeed, as other chapters indicate, such an effort is developing at a rapid pace, with hopes of having a viable product within a few years.

  8. Hydrogen storage: beyond conventional methods.

    Science.gov (United States)

    Dalebrook, Andrew F; Gan, Weijia; Grasemann, Martin; Moret, Séverine; Laurenczy, Gábor

    2013-10-01

    The efficient storage of hydrogen is one of three major hurdles towards a potential hydrogen economy. This report begins with conventional storage methods for hydrogen and broadly covers new technology, ranging from physical media involving solid adsorbents, to chemical materials including metal hydrides, ammonia borane and liquid precursors such as alcohols and formic acid. PMID:23964360

  9. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  10. Secure Storage Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  11. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  12. Terrestrial Energy Storage SPS Systems

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  13. Design and operational experience of dry cask storage systems

    International Nuclear Information System (INIS)

    This paper (Power Point presentation) describes cask storage design features and available dry cask storage technology, cask types used for dry storage, design characteristics of CASTOR casks, the German licensing basis for cask storage systems, shielding requirements, thermal layout, mechanical design, criticality safety and containment, licensing procedure, operational experience of dry cask storage in Germany and worldwide

  14. Research on Security Protection Technology of Distributed Storage Based on Cloud Computing%基于云计算的分布式存储安全保护技术研究

    Institute of Scientific and Technical Information of China (English)

    陈克明

    2016-01-01

    In this paper,through cloud computing environment safety threat and the cloud computing distributed storage security protection technology research status analysis,research on Design of cloud computing in distributed data storage security protection technology of three security protocols,in cloud computing distributed storage security protection technology research and design continue to improve and make a contribution.%文章通过对云计算环境下安全隐患的威胁和云计算分布式存储安全保护技术研究现状进行分析,进行对云计算中分布式存储数据安全保护技术的3个安全协议方案的设计研究,以期在云计算下分布式存储安全保护技术的设计研究中不断进行完善并做出贡献。

  15. Enhanced nitrobenzene removal and column longevity by coupled abiotic and biotic processes in zero-valent iron column

    DEFF Research Database (Denmark)

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin;

    2015-01-01

    In this study, abiotic zero-valent iron (ZVI) column and biotic ZVI column were employed to investigate abiotic and biotic effects between iron and microorganisms on NB removal and column longevity. Physical removal and kinetics analysis revealed that NB was largely removed through adsorption and....../or co-precipitation and the reduction of NB to aniline (AN) via abiotic reaction in the abiotic column and via both abiotic and biotic reactions in the biotic column. Due to the interactive effect of ZVI and microorganisms, more effective iron consumption and more reactive minerals such as green rust...... and iron sulfide were found in the biotic column. This led to approximately 50% higher total NB removal and 6 times higher AN production in the biotic column as compared to the abiotic column during the entire operation. According to the NB breakthrough curves, longer stability and longer life-span of...

  16. Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts?

    Science.gov (United States)

    Martin, T.E.

    2001-01-01

    Species are commonly segregated along gradients of microclimate and vegetation. I explore the question of whether segregation is the result of microhabitat partitioning (biotic effects) or choice of differing microclimates (abiotic effects). I explored this question for four ground-nesting bird species that are segregated along a microclimate and vegetation gradient in Arizona. Birds shifted position of their nests on the microhabitat and microclimate gradient in response to changing precipitation over nine years. Similarly, annual bird abundance varied with precipitation across 12 yr. Those shifts in abundance and nesting microhabitat with changing precipitation demonstrate the importance of abiotic influences on bird distributions and habitat choice. However, nest-site shifts and microhabitat use also appear to be influenced by interactions among coexisting species. Moreover, shifts in habitat use by all species caused nest predation (i.e., biotic) costs that increased with increasing distance along the microclimate gradient. These results indicate that abiotic and biotic costs can strongly interact to influence microhabitat choice and abundances of coexisting species. Global climate change impacts have been considered largely in terms of simple distributional shifts, but these results indicate that shifts can also increase biotic costs when species move into habitat types for which they are poorly adapted or that create new biotic interactions.

  17. An evaluation of biotic ligand models predicting acute copper toxicity to Daphnia magna in wastewater effluent.

    Science.gov (United States)

    Constantino, Carlos; Scrimshaw, Mark; Comber, Sean; Churchley, John

    2011-04-01

    The toxicity of Cu to Daphnia magna was investigated in a series of 48-h immobilization assays in effluents from four wastewater treatment works. The assay results were compared with median effective concentration (EC50) forecasts produced by the HydroQual biotic ligand model (BLM), the refined D. magna BLM, and a modified BLM that was constructed by integrating the refined D. magna biotic ligand characterization with the Windermere humic aqueous model (WHAM) VI geochemical speciation model, which also accommodated additional effluent characteristics as model inputs. The results demonstrated that all the BLMs were capable of predicting toxicity by within a factor of two, and that the modified BLM produced the most accurate toxicity forecasts. The refined D. magna BLM offered the most robust assessment of toxicity in that it was not reliant on the inclusion of effluent characteristics or optimization of the dissolved organic carbon active fraction to produce forecasts that were accurate by within a factor of two. The results also suggested that the biotic ligand stability constant for Na may be a poor approximation of the mechanisms governing the influence of Na where concentrations exceed the range within which the biotic ligand stability constant value had been determined. These findings support the use of BLMs for the establishment of site-specific water quality standards in waters that contain a substantial amount of wastewater effluent, but reinforces the need for regulators to scrutinize the composition of models, their thermodynamic and biotic ligand parameters, and the limitations of those parameters. PMID:21184526

  18. Transgenic crops with an improved resistance to biotic stresses. A review

    Directory of Open Access Journals (Sweden)

    Tohidfar, M.

    2015-01-01

    Full Text Available Introduction. Pests, diseases and weeds (biotic stresses are significant limiting factors for crop yield and production. However, the limitations associated with conventional breeding methods necessitated the development of alternative methods for improving new varieties with higher resistance to biotic stresses. Molecular techniques have developed applicable methods for genetic transformation of a wide range of plants. Genetic engineering approach has been demonstrated to provide enormous options for the selection of the resistance genes from different sources to introduce them into plants to provide resistance against different biotic stresses. Literature. In this review, we focus on strategies to achieve the above mentioned objectives including expression of insecticidal, antifungal, antibacterial, antiviral resistance and herbicide detoxification for herbicide resistance. Conclusion. Regardless of the concerns about commercialization of products from genetically modified (GM crops resistant to biotic stresses, it is observed that the cultivation area of these crops is growing fast each year. Considering this trend, it is expected that production and commercialization of GM crops resistant to biotic stresses will continue to increase but will also extend to production of crops resistant to abiotic stresses (e.g. drought, salinity, etc. in a near future.

  19. Atomic storage

    CERN Multimedia

    Ricadela, A

    2003-01-01

    IBM is supplying CERN, the European Organization for Nuclear Research, with its Storage Tank file system virtualization software, 20 terabytes of storage capacity, and services under a three-year deal to build computer systems that will support the Large Hadron Collider accelerator (1 paragraph).

  20. Do Karst Rivers “deserve” their own biotic index? A ten years study on macrozoobenthos in Croatia

    Directory of Open Access Journals (Sweden)

    Rađa Biljana

    2010-07-01

    Full Text Available In this study we present the results of a ten year survey of the aquatic macroinvertebrate fauna along four karst rivers: Jadro, Žrnovnica, Grab and Ruda, all of them situated in the Middle Dalmatia region of Croatia, in an attempt to construct the Iliric Biotic Index, which will be more applicable for the water quality analysis than the most frequently applied biotic index in Croatia, the Italian Modification of Extended Biotic Index. The rivers geologically belong to the Dinaric karst, unique geological phenomena in Europe. Benthic macroinvertebrates were collected along each river at 15 sites by standard methods of sampling along with several physicochemical parameters, including: temperature, dissolved oxygen, carbon dioxide, alkalinity, hardness and pH. Univariate and multivariate techniques revealed differences in the macroinvertebrate community structure as well as in physicochemical parameters between the Karst rivers and continental rivers. Based on those differences, the Iliric Biotic Index was proposed as the standard of karst river water quality in Croatia in accordance with the EU Water Framework Directive. Differences between the Iliric Biotic Index and the most commonly used biotic indices in the European Community and the USA (The Biological Monitoring Working Party (B.M.W.P. scores, i.e. Extended Biotic Index, Indice Biotique, Family Biotic Index suggest that karst rivers need a new biotic index.

  1. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  2. Discussion on the Information Resource Storage Architecture Model in Digital Library Based on Cloud Storage Technology%基于云存储技术的数字图书馆信息资源存储架构模型探讨

    Institute of Scientific and Technical Information of China (English)

    金志敏

    2015-01-01

    Cloud computing is a hotspot of current research and application problems,cloud storage as the bottom lay-er of cloud computing service,provides an important support role to upper layers. With the rapid increase of the digital library information resources,the traditional way of storage in the face of mass data storage requirements,there is the bottleneck of capacity and performance. Cloud storage as a new mode of storage service,for the huge amounts of digital library information resource construction provides a new choice This article introduces the cloud computing and cloud storage,cloud storage technology based on digital library,discusses the model of the digital library information resource storage architecture. Finally the application of digital library ,the advantage of the cloud storage.%云计算是当前研究与应用的热点问题,云存储作为云计算的底层服务,对上层应用提供了重要的支持作用。随着数字图书馆信息资源总量的快速增加,传统的存储方式在面对海量数据存储的需求上,存在着容量和性能的瓶颈。云存储作为一种新型的存储服务模式,为数字图书馆的海量信息资源建设提供了一种新的选择。。本文在介绍云计算与云存储、数字图书馆云存储技术基础上,探讨了数字图书馆信息资源存储架构模型。最后阐述了数字图书馆应用云存储的优势。

  3. Research of cloud storage system and technology service platform based on the Microsoft%基于微软云计算存储系统及技术服务平台研究

    Institute of Scientific and Technical Information of China (English)

    李爱国; 殷锋社

    2013-01-01

    云计算技术的兴起和发展,正逐渐改变人们使用服务和资源的方式,同时也成为计算机应用领域的研究热点.云存储可实现云端海量数据的高效存储,是云计算的重要基础云存储可实现云端海量数据的高效存储,是云计算的重要基础.对如何保证云存储系统的服务质量及可靠性,对于保证海量用户的访问效率,维护海量数据存储的可用性及用户技术服务平台的开发有着重大意义.%Cloud computing technology is arisen with development, is gradually changing people using services and resources, but also become the research hotspot in the field of computer application. Cloud storage can realize the efficient storage of massive data cloud, cloud computing is the important basis of cloud storage can realize the efficient storage of massive data cloud, cloud computing is the important foundation of. On how to ensure that the cloud storage service system to ensure the quality and reliability, large numbers of users accessing efficiency, maintain the huge data storage of usability and user technical service platform for the development has the significant significance.

  4. The relative contribution of climatic, edaphic, and biotic drivers to risk of tree mortality from drought

    Science.gov (United States)

    March, R. G.; Moore, G. W.; Edgar, C. B.; Lawing, A. M.; Washington-Allen, R. A.

    2015-12-01

    In recorded history, the 2011 Texas Drought was comparable in severity only to a drought that occurred 300 years ago. By mid-September, 88% of the state experienced 'exceptional' conditions, with the rest experiencing 'extreme' or 'severe' drought. By recent estimates, the 2011 Texas Drought killed 6.2% of all the state's trees, at a rate nearly 9 times greater than average. The vast spatial scale and relatively uniform intensity of this drought has provided an opportunity to examine the comparative interactions among forest types, terrain, and edaphic factors across major climate gradients which in 2011 were subjected to extreme drought conditions that ultimately caused massive tree mortality. We used maximum entropy modeling (Maxent) to rank environmental landscape factors with the potential to drive drought-related tree mortality and test the assumption that the relative importance of these factors are scale-dependent. Occurrence data of dead trees were collected during the summer of 2012 from 599 field plots distributed across Texas with 30% used for model evaluation. Bioclimatic variables, ecoregions, soils characteristics, and topographic variables were modeled with drought-killed tree occurrence. Their relative contribution to the model was seen as their relative importance in driving mortality. To test determinants at a more local scale, we examined Landsat 7 scenes in East and West Texas with moderate-resolution data for the same variables above with the exception of climate. All models were significantly better than random in binomial tests of omission and receiver operating characteristic analyses. The modeled spatial distribution of probability of occurrence showed high probability of mortality in the east-central oak woodlands and the mixed pine-hardwood forest region in northeast Texas. Both regional and local models were dominated by biotic factors (ecoregion and forest type, respectively). Forest density and precipitation of driest month also

  5. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  6. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  7. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  8. 基于光盘库的云存储系统架构设计%Cloud Storage Systems Based on Technology of Optical Disk Library

    Institute of Scientific and Technical Information of China (English)

    薛寅颖; 万晓冬

    2013-01-01

    Efficiency, scalability, and low cost of cloud storage trends of storage services, but the uncertainty of the storage nodes and network transmission, making its safety has been questioned. This article erasures codes and CD library into cloud storage to store data in secure storage management and transmission of data in the system, to provide a solution for improving the security of cloud storage system.%云存储的高效、可扩展性、廉价等优点成为存储服务的发展趋势,但是其存储节点的不确定性以及网络传输,使得其安全性受到质疑.本文将纠删码技术和光盘库引入到云存储中,实现存储数据在系统中的安全存储管理和传榆,为提高云存储系统安全性提供一个解决方案.

  9. The abundance of biotic exoplanets and life on planets of Red Dwarf stars

    Science.gov (United States)

    Wandel, Amri; Gale, Joseph

    2016-07-01

    The Kepler mission has shown that Earthlike planets orbiting within the Habitable Zones of their host stars are common. We derive an expression for the abundance of life bearing (biotic) extra-solar-system planets (exoplanets) in terms of the (yet unknown) probability for the evolution of biotic life. This "biotic probability" may be estimated by future missions and observations, e.g. spectral analyses of the atmospheres of exoplanets, looking for biomarkers. We show that a biotic probability in the range 0.001-1 implies that a biotic planet may be expected within ~10-100 light years from Earth. Of particular interest in the search for exolife are planets orbiting Red Dwarf (RD) stars, the most frequent stellar type. Previous researches suggested that conditions on planets near RDs would be inimical to life, e.g. the Habitable Zone of RDs is small, so their habitable planets would be close enough to be tidally locked. Recent calculations show that this and other properties of RDs, presumed hostile for the evolution of life, are less severe than originally estimated. We conclude that RD planets could be hospitable for the evolution of life as we know it, not less so than planets of solar-type stars. This result, together with the large number of RDs and their Kepler planet-statistics, makes finding life on RD planets ~10-1000 times more likely than on planets of solar-type stars. Our nearest biotic RD-planet is likely to be 2-10 times closer than the nearest solar-type one.

  10. Application of Irradiated Pro biotic Microorganism in Black Tiger Shrimp (Penaeus monodon Fabricius) Culture

    International Nuclear Information System (INIS)

    Marine shrimp culture in Thailand has been developed continuously for the past two decades. This development will ensure the highest level of shrimp quality that will be suitable for the consumption of the people in the country and also aboard. The trend of culture system emphasizes on disease prevention more than treatment which will consequently limit the application of drug and chemicals. Application of pro biotic has been one means of this prevention that are commonly practiced by shrimp farmers. This research was conducted to compare the efficacy of normal Bacillus subtilis isolate from shrimp intestine and an irradiated B. subtilis as a pro biotic in shrimp feed. It was found that overall results were quite the same. These included the broth Co-culture assay. Effects on immune functions were conducted with Penaeus monodon with initial average weight of 17 gms by feeding with 3 gms/kg feed of spore of these two pro biotic for two mouths. The results indicated that both pro biotic caused significant improvement on percent phagocytosis only at the forth week of feeding trial and the overall enhancement of bactericidal activity. However, total haemocyte count and phenoloxidase activity were not altered. Total bacterial count in shrimp intestine was also conducted during the two month trial. the results indicated significant reduction of Vibrio spp. of both pro biotic groups when compared with the control. Number of Bacillus spp. in intestine were continuously high even after pro biotic treatment had been stopped Growth rate of experiment and control shrimp was not significantly different.

  11. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  12. Optimization of comb-drive actuators : nanopositioners for probe-based data storage and musical MEMS

    OpenAIRE

    Engelen, Johannes Bernardus Charles

    2011-01-01

    The era of infinite storage seems near. To reach it, data storage capabilities need to grow, and new storage technologies must be developed.This thesis studies one aspect of one of the emergent storage technologies: optimizing electrostatic combdrive actuation for a parallel probe-based data storage system. It is no longer possible to store all created information. New storage technologies must be developed as current commercial technologies reach their fundamental limits. One promising techn...

  13. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  14. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    NARCIS (Netherlands)

    Y. Ghiassi-Farrokhfal (Yashar); C. Rosenberg; S. Keshav (Srinivasam); M.-B. Adjaho (Marie-Benedicte)

    2015-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the siz

  15. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    Science.gov (United States)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  16. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    Directory of Open Access Journals (Sweden)

    Milca PETROVICI

    2012-01-01

    Full Text Available Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT, Total Invertebrates index (T, Chironomidae index (Ch, EPT / Total invertebrates index (EPT / T, EPT / Chironomidae index (EPT / Ch and % Chironomidae index (% Chironomidae. Considering all these indices, it was found existence of a medium to best quality water in Mureş tributaries from Harghita Mountains and a good quality water which comes from the Maramureş Mountains and Transylvania Plateau.

  17. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?

    Science.gov (United States)

    Boyd, P. W.; Strzepek, R. F.; Ellwood, M. J.; Hutchins, D. A.; Nodder, S. D.; Twining, B. S.; Wilhelm, S. W.

    2015-07-01

    Dissolved iron supply is pivotal in setting global phytoplankton productivity and pelagic ecosystem structure. However, most studies of the role of iron have focussed on carbon biogeochemistry within pelagic ecosystems, with less effort to quantify the iron biogeochemical cycle. Here we compare mixed-layer biotic iron inventories from a low-iron (~0.06 nmol L-1) subantarctic (FeCycle study) and a seasonally high-iron (~0.6 nmol L-1) subtropical (FeCycle II study) site. Both studies were quasi-Lagrangian, and had multi-day occupation, common sampling protocols, and indirect estimates of biotic iron (from a limited range of available published biovolume/carbon/iron quotas). Biotic iron pools were comparable (~100 ± 30 pmol L-1) for low- and high-iron waters, despite a tenfold difference in dissolved iron concentrations. Consistency in biotic iron inventories (~80 ± 24 pmol L-1, largely estimated using a limited range of available quotas) was also conspicuous for three Southern Ocean polar sites. Insights into the extent to which uniformity in biotic iron inventories was driven by the need to apply common iron quotas obtained from laboratory cultures were provided from FeCycle II. The observed twofold to threefold range of iron quotas during the evolution of FeCycle II subtropical bloom was much less than reported from laboratory monocultures. Furthermore, the iron recycling efficiency varied by fourfold during FeCycle II, increasing as stocks of new iron were depleted, suggesting that quotas and iron recycling efficiencies together set biotic iron pools. Hence, site-specific differences in iron recycling efficiencies (which provide 20-50% and 90% of total iron supply in high- and low-iron waters, respectively) help offset the differences in new iron inputs between low- and high-iron sites. Future parameterization of iron in biogeochemical models must focus on the drivers of biotic iron inventories, including the differing iron requirements of the resident biota

  18. 电动汽车能量存储技术概况%Overview of energy storage technology for electric vehicles

    Institute of Scientific and Technical Information of China (English)

    程夕明; 孙逢春

    2001-01-01

    叙述了电动汽车能量存储技术的发展,说明了不同类型电动汽车对动力电池的要求不同,着重分析了动力电池(包括铅酸电池、MH-Ni电池,锂离子蓄电池和ZEBRA电池等)技术现状以及优缺点。铅酸电池比能量低,技术成熟,价格便宜,在电动车辆中应用普遍。镍金属电池,特别是MH-Ni电池,比能量和比功率较高,实现了商品化,目前已经作为铅酸电池的可替代动力电池。锂离子蓄电池是动力电池的发展热点,与前两种动力电池相比,具有更高的比能量和比功率,寿命长,是一种绿色环保电池。此外,对燃料电池、超级电容器和飞轮电池作了扼要介绍。动力电池的发展与电动车辆的需求密切相关,目前混合电动车辆发展迅速,其辅助动力电池需要高比功率特性,以提高车辆的动力性和经济性。%Development of energy storage technology for electric vehicles (EVs) and different requirements of traction batteries for various EVs were stated. The technical status, the advan tages and the disadvantages of various traction batteries, such as lead-acid, Ni-Cd, Ni-MH, Li-ion, LPB, ZEBRA, etc., were analyzed em-phatically. Lower specific energy it performs, lead-acid battery has been applied in EVs commonly due to its ripe technology and low cost. Nickel metal batteries, especially Ni-MH battery, which have higher specific energy and specific power, have been commercialized and have substituted for lead-acid battery as the power of EVs.Compared with the two batteries mentioned above, Li-ion battery has much higher specific energy, and specific power as well as long cycle life and environmental friendly feature, thus it has been the program of general inter-est. Fuel cell, supercapacitor and flywheel battery were also introduced. Development of traction batteries are directly interrelated with the requirements of EVs. As the EVs were developed quickly, their

  19. Advanced research in solar-energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  20. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  1. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions

    NARCIS (Netherlands)

    Ionescu, Danny; Heim, Christine; Polerecky, L.; Thiel, Volker; de Beer, Dirk

    2015-01-01

    Oxidation and reduction of iron can occur through abiotic (chemical) and biotic (microbial) processes. Abiotic iron oxidation is a function of pH and O2 concentration. Biotic iron oxidation is carried out by a diverse group of bacteria, using O2 or NO3 as terminal electron acceptors. At circumneutra

  2. Contrasting intra-annual patterns of six biotic groups with different dispersal mode and ability in Mediterranean temporary ponds

    OpenAIRE

    Boix, Dani; Caria, Maria Carmela; Gascón, Stéphanie; Mariani, Maria Antonietta; Sala, Jordi; Ruhi, Albert; Compte Ciurana, Jordi; Bagella, Simonetta

    2015-01-01

    The temporal patterns of six biotic groups (amphibians, macroinvertebrates with active and passive dispersal mode, microcrustaceans, vascular plants and phytoplankton) and the responses of each biotic group to environmental variation (water, pond and landscape variables) were studied in a set of Sardinian temporary ponds.

  3. Electricity storage using a thermal storage scheme

    International Nuclear Information System (INIS)

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance

  4. Electricity storage using a thermal storage scheme

    Science.gov (United States)

    White, Alexander

    2015-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  5. Research and design of mass data storage system with digital campus based on Hadoop technology%基于Hadoop技术的数字化校园海量数据存储系统研究与设计

    Institute of Scientific and Technical Information of China (English)

    程蓓; 孙胜春; 李忠猛; 耿洪健; 周维

    2015-01-01

    With the rapid growth of digital teaching resources of colleges and universities ,the storage and application of big data have become a new topic in the study of digital campus technology in military colleges and universities .There are many shortcomings in traditional data processing methods ,such as high cost ,data management difficulty ,low reliability ,inefficiency ,parallel processing programming difficulty ,etc .Hadoop , which is an open source ,distributed data processing framework being used to handle huge amounts of data efficiently ,has the scalability ,high reliability ,low cost ,high efficiency ,etc .In view of the problems existing in traditional storage architecture ,the big data storage model based on Hadoop technology is proposed ,and on the basis ,the Hadoop distributed data storage system is designed .%基于 Hadoop技术开发了数字化校园海量数据存储系统,提出了基于 Hadoop的大数据存储模型。将整个系统设计为系统管理、业务应用、数据处理、数据采集等4个大模块,采用开源分布式数据处理框架,高效处理海量数据。系统具有可伸缩性、高可靠性、低成本和高效性等优点,解决了传统数据处理成本高、数据管理困难、可靠性低、效率低、并行处理程序编写困难等诸多问题。

  6. Effect of gamma rays on corn grains. Pt. 3. Effect of post-irradiation storage on some technological properties of corn grains and fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Roushdi, M.; Fahmi, A.A.; Sarhan, M.A.

    1981-05-01

    The effect of storage after irradiation of corn grains on steeping process, starch isolation, quality of by-products and fatty acids composition of germ oil was investigated. It was found that post-irradiation storage led to a decrease in water absorption and protein solubilization during steeping process. The starch yield was lower, contained a high percentage of protein and was darker from above 500 Krads. Post-irradiation caused a change in the proportions and disappearance or induced new fatty acids in the corn germ oil.

  7. Biotic regulation of CO2 uptake-climate responses: links to vegetation proproperties

    Science.gov (United States)

    Identifying the plant traits and patterns of trait distribution in communities that are responsible for biotic regulation of CO2 uptake-climate responses remains a priority for modelling terrestrial C dynamics. We used remotely-sensed estimates of GPP from plots planted to different combinations of...

  8. Genetics and regulation of combined abiotic and biotic stress tolerance in tomato

    NARCIS (Netherlands)

    Kissoudis, C.

    2016-01-01

    Projections on the impact of climate change on agricultural productivity foresee prolonged and/or increased stress intensities and enlargement of a significant number of pathogens habitats. This significantly raises the occurrence probability of (new) abiotic and biotic stress combinations. With str

  9. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

    Science.gov (United States)

    Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...

  10. Development of a wireless computer vision instrument to detect biotic stress in wheat

    Science.gov (United States)

    Knowledge of soil water deficits, crop water stress, and biotic stress from disease or insect pressure is important for optimal irrigation scheduling and water management. While spectral reflectance and thermometry provide a means to quantify crop stress remotely, measurements can be cumbersome, exp...

  11. The influences of forest stand management on biotic and abiotic risks of damage

    NARCIS (Netherlands)

    Jactel, H.; Nicoll, B.C.; Branco, M.; Gonzalez-Olabarria, J.R.; Grodzki, W.; Långström, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D.; Santos, H.; Schelhaas, M.J.; Tojic, K.; Vodde, F.

    2009-01-01

    • This article synthesizes and reviews the available information on the effects of forestry practices on the occurrence of biotic and abiotic hazards, as well as on stand susceptibility to these damaging agents, concentrating on mammal herbivores, pest insects, pathogenic fungi, wind and fire. • The

  12. Biotic and abiotic variables show little redundancy in explaining tree species distributions

    DEFF Research Database (Denmark)

    Meier, Elaine S.; Kienast, Felix; Pearman, Peter B.;

    2010-01-01

    Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic var...

  13. 3store: Efficient Bulk RDF Storage

    OpenAIRE

    Harris, Stephen; Gibbins, Nicholas

    2003-01-01

    The development and deployment of practical Semantic Web applications requires technologies for the storage and retrieval of RDF data that are robust and scalable. In this paper, we describe the 3store RDF storage and query engine developed within the Advanced Knowledge Technologies project, and discuss the design rationale and optimisations behind it which enable the efficient handling of large RDF knowledge bases.

  14. Spent fuel storage practices and perspectives for WWER fuel in Eastern Europe

    International Nuclear Information System (INIS)

    In this lecture the general issues and options in spent fuel management and storage are reviewed. Quantities of spent fuel world-wide and spent fuel amounts in storage as well as spent fuel capacities are presented. Selected examples of typical spent fuel storage facilities are discussed. The storage technologies applied for WWER fuel is presented. Description of other relevant storage technologies is included

  15. Optimization of comb-drive actuators : nanopositioners for probe-based data storage and musical MEMS

    NARCIS (Netherlands)

    Engelen, Johannes Bernardus Charles

    2011-01-01

    The era of infinite storage seems near. To reach it, data storage capabilities need to grow, and new storage technologies must be developed.This thesis studies one aspect of one of the emergent storage technologies: optimizing electrostatic combdrive actuation for a parallel probe-based data storage

  16. Energy storage in evaporated brine

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  17. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  18. The importance of biotic entrainment for base flow fluvial sediment transport

    Science.gov (United States)

    Rice, Stephen P.; Johnson, Matthew F.; Mathers, Kate; Reeds, Jake; Extence, Chris

    2016-05-01

    Sediment transport is regarded as an abiotic process driven by geophysical energy, but zoogeomorphological activity indicates that biological energy can also fuel sediment movements. It is therefore prudent to measure the contribution that biota make to sediment transport, but comparisons of abiotic and biotic sediment fluxes are rare. For a stream in the UK, the contribution of crayfish bioturbation to suspended sediment flux was compared with the amount of sediment moved by hydraulic forcing. During base flow periods, biotic fluxes can be isolated because nocturnal crayfish activity drives diel turbidity cycles, such that nighttime increases above daytime lows are attributable to sediment suspension by crayfish. On average, crayfish bioturbation contributed at least 32% (474 kg) to monthly base flow suspended sediment loads; this biotic surcharge added between 5.1 and 16.1 t (0.21 to 0.66 t km-2 yr-1) to the annual sediment yield. As anticipated, most sediment was moved by hydraulic forcing during floods and the biotic contribution from baseflow periods represented between 0.46 and 1.46% of the annual load. Crayfish activity is nonetheless an important impact during baseflow periods and the measured annual contribution may be a conservative estimate because of unusually prolonged flooding during the measurement period. In addition to direct sediment entrainment by bioturbation, crayfish burrowing supplies sediment to the channel for mobilization during floods so that the total biotic effect of crayfish is potentially greater than documented in this study. These results suggest that in rivers, during base flow periods, bioturbation can entrain significant quantities of fine sediment into suspension with implications for the aquatic ecosystem and base flow sediment fluxes. Energy from life rather than from elevation can make significant contributions to sediment fluxes.

  19. Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage

    DEFF Research Database (Denmark)

    Panagou, Efstathios Z.; Papadopoulou, Olga; Carstensen, Jens Michael;

    2014-01-01

    The performance of a multispectral imaging system has been evaluated in monitoring aerobically packaged beef filet spoilage at different storage temperatures (0, 4, 8, 12, and 16°C). Spectral data in the visible and short wave near infrared area (405–970nm) were collected from the surface of meat...

  20. High temperature superconducting magnetic energy storage for future NASA missions

    Science.gov (United States)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.