WorldWideScience

Sample records for biotic storage technologies

  1. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  2. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  3. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the

  5. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  6. Mass storage technology in networks

    Science.gov (United States)

    Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo

    1990-08-01

    Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.

  7. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  8. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  9. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  10. Technology on the storage of laser power

    International Nuclear Information System (INIS)

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  11. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  12. Saying goodbye to optical storage technology.

    Science.gov (United States)

    McLendon, Kelly; Babbitt, Cliff

    2002-08-01

    The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.

  13. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  14. Technological alternatives for plutonium storage

    International Nuclear Information System (INIS)

    1978-12-01

    This paper discusses the problems of large long term storage since stores at fabrication plants may depend on the form of plutonium ultimately chosen for transport. The paper's conclusion includes: MOX can be regarded as more proliferation resistant than PUO 2 but no experience of long term storage is available, therefore further R and D is required; co-location of the store with reprocessing plants (and fuel fabrication plant) would appear to have advantages in non-proliferation, safeguards implementation, environmental protection and economic aspects; there are strong non-proliferation and security arguments for not moving plutonium away from the site where it was separated until there is an identifiable and scheduled end use. The design of the store, the form in which plutonium should be stored, particularly as MOX, and the costs and further R and D required are considered. The possible location of stores is also discussed and institutional questions briefly considered

  15. Characterisation of electrical energy storage technologies

    NARCIS (Netherlands)

    Lopes Ferreira, H.M.; Garde, R.; Fulli, G.; Kling, W.L.; Pecas Lopes, J.

    2013-01-01

    In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of

  16. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  17. Appendix A: Energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  18. Capacity Expansion Modeling for Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    2017-04-03

    The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.

  19. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  20. Technology for national asset storage systems

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  1. Biotic and abiotic catalysis of nitrate reduction in alkaline environment of repository storage cell for long-lived intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Bertron, A.; Jacquemet, N.; Escadeillas, G.; Erable, B.; Alquier, M.; Kassim, C.; Albasi, C.; Basseguy, R.; Strehaiano, P.; Sablayrolles, C.; Vignoles, M.; Albrecht, A.

    2013-01-01

    This study investigates the reactivity of nitrates at the bitumen-concrete interface with the aim of determining redox conditions inside a repository storage cell for long-lived intermediate-level radioactive wastes. The first part of the work aimed to identify, under abiotic conditions, the interactions between two components of the system: concrete (introduced as cement pastes in the system) and bitumen (represented by leachates composed of organic acids and nitrates). The second part of the study was conducted under biotic conditions with selected denitrifying heterotrophic bacteria (Pseudomonas stutzeri - Ps and Halomonas desiderata - Hd) and aimed to analyse the microbial reaction of nitrate reduction (kinetics, by-products, role of the organic matter) under neutral to alkaline pH conditions (i.e. imposed by a concrete environment). Results showed that strong interactions occurred between cementitious matrices and acetic and oxalic organic acids, likely reducing the bio-availability of this organic matter (oxalate in particular). Results also confirmed the stability of nitrates under these conditions. Under biotic conditions, nitrates were reduced by both Ps and Hd following an anaerobic denitrification metabolic pathway. Reduction kinetics was higher with Ps but the reaction was inhibited for pH ≥ 9. Hd was capable of denitrification at least up to pH 11. (authors)

  2. Smart storage technologies applied to fresh foods: A review.

    Science.gov (United States)

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  3. Economical evaluation on spent fuel storage technology away from reactor

    International Nuclear Information System (INIS)

    Itoh, Chihiro; Nagano, Koji; Saegusa, Toshiari

    2000-01-01

    Concerning the spent fuel storage away from reactor, economical comparison was carried out between metal cask and water pool storage technology. The economic index was defined by levelized cost (Unit storage cost) calculated on the assumption that the storage cost is paid at the receipt of the spent fuel at the storage facility. It is found that the cask storage is economical for small and large storage capacity. Unit storage cost of pool storage, however, is getting close to that of cask storage in case of storage capacity of 10,000 ton. Then, the unit storage cost is converted to power generation cost using data of the burn up of the fuel, etc. The cost is obtained as yen 0.09/kWh and yen 0. 15/kWh for cask storage and pool storage, respectively in case of the capacity of 5,000 tonU and the cooling time of 5 years. (author)

  4. The economics of aquifer storage recovery technology

    International Nuclear Information System (INIS)

    David, R.; Pyne, G.

    2014-01-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  5. The economics of aquifer storage recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    David, R.; Pyne, G.

    2014-10-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  6. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  7. Mass storage system by using broadcast technology

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Itoh, Ryosuke; Manabe, Atsushi; Miyamoto, Akiya; Morita, Youhei; Nozaki, Tadao; Sasaki, Takashi; Watase, Yoshiyuko; Yamasaki, Tokuyuki

    1996-01-01

    There are many similarities between data recording systems for high energy physics and broadcast systems; the data flow is almost one-way, requires real-time recording; requires large-scale automated libraries for 24-hours operation, etc. In addition to these functional similarities, the required data-transfer and data-recording speeds are also close to those for near future experiments. For these reasons, we have collaborated with SONY Broadcast Company to study the usability of broadcast devices for our data storage system. Our new data storage system consists of high-speed data recorders and tape-robots which are originally based on the digital video-tape recorder and the tape-robot for broadcast systems. We are also studying the possibility to use these technologies for the online data-recording system for B-physics experiment at KEK. (author)

  8. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2007-01-01

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  9. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    Directory of Open Access Journals (Sweden)

    Emily G I Payne

    Full Text Available The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(- (nitrate over the course of one inflow event. The immediate partitioning of 15NO3(- between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(- under typical stormwater concentrations (∼1-2 mg N/L, contributing an average 89-99% of 15NO3(- processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  10. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  11. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  12. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  13. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  14. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  15. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  16. Integrated Building Energy Systems Design Considering Storage Technologies

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 em...

  17. Radioactivity measurements using storage phosphor technology

    International Nuclear Information System (INIS)

    Cheng, Y.T.; Hwang, J.; Hutchinson, M.R.

    1995-01-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10 5 ), essential for quantitative analysis. These new sensors have an active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 μm. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots

  18. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  19. The Impact Of Optical Storage Technology On Image Processing Systems

    Science.gov (United States)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  20. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  1. Integrating new Storage Technologies into EOS

    Science.gov (United States)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  2. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  3. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  4. Integrating new Storage Technologies into EOS

    CERN Document Server

    Peters, Andreas J; Rocha, Joaquim; Lensing, Paul

    2015-01-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D; and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issu...

  5. Energetic and economic evaluations on hydrogen storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Arca, S.; Di Profio, P.; Germani, R. [Perugia Univ., Perugia (Italy). Centro di Eccellenza Materiali Innovativi Nanostrutturati, Dip. Chimica; Savelli, G.; Cotana, F.; Rossi, F.; Amantini, M. [Universita degli Studi di Perugia, Perugia (Italy). Dipartimento di Ingegneria Industriale, Sezione di Fisica Tecnica

    2008-07-01

    With the development of the hydrogen economy and fuel cell vehicles, a major technological issue has emerged regarding the storage and delivery of large amounts of hydrogen. Several hydrogen storage methodologies are available while other technologies are being developed aside from the classical compression and liquefaction of hydrogen. A novel technology is also in rapid process, which is based on clathrate hydrates of hydrogen. The features and performances of available storage systems were evaluated in an effort to determine the best technology throughout the hydrogen chain. For each of the storage solutions presented, the key parameters were compared. These key parameters included interaction energy between hydrogen and support; real and practical storage capacity; and specific energy consumption. The paper presented the study methods and discussed hydrogen storage technologies using compressed hydrogen; metal hydrides; liquefied hydrogen; carbon nanotubes; ammonia; and gas hydrates. Carbon dioxide emissions were also evaluated for each storage system analyzed. The paper also presented the worst scenario. It was concluded that a technology based on clathrate hydrates of hydrogen, while being far from optimized, was highly competitive with the classical approaches. 21 refs., 9 figs.

  6. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  7. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  8. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  9. Economic issues of storage technologies in different applications

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; De Noord, M.

    2004-09-01

    For evaluating energy storage technologies, economical parameters are of considerable importance. A qualitative assessment is given of storage technologies in general, contributing to success or failure of their use. Based on data of nine storage technologies that are defined in the INVESTIRE Network (Investigation on storage technologies for intermittent renewable energies: evaluation and recommended R and D strategy), results of a quantitative cost analysis are presented, based on device-specific key parameters. The costs have been defined as additional costs, effected by the required investments and operation and maintenance expenditures, the efficiency of a device and its lifetime. In order to compare the technologies properly, categories of typical use have been defined, ranging from stand-alone small applications (typical storage capacity of 0.1 kWh) to levelling of power production (approximately 1 MWh). The outcome is presented in such a way that for each category of typical use, the best technological options are identified, based on a cost analysis

  10. Feed-in tariffs for promotion of energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Krajacic, Goran, E-mail: Goran.Krajacic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Duic, Neven, E-mail: Neven.Duic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Instituto Superior Tecnico, Lisbon (Portugal); Tsikalakis, Antonis, E-mail: atsikal@corfu.power.ece.ntua.g [National Technical University of Athens, Athens (Greece); Zoulias, Manos, E-mail: mzoulias@cres.g [Centre for Renewable Energy Sources and Savings (CRES), Pikermi (Greece); Caralis, George, E-mail: gcaralis@central.ntua.g [National Technical University of Athens, Athens (Greece); Panteri, Eirini, E-mail: panteri@rae.g [Regulatory Authority for Energy (RAE), Athens (Greece); Carvalho, Maria da Graca, E-mail: mariadagraca.carvalho@europarl.europa.e [Instituto Superior Tecnico, Lisbon (Portugal)

    2011-03-15

    Faster market integration of new energy technologies can be achieved by use of proper support mechanisms that will create favourable market conditions for such technologies. The best examples of support mechanisms presented in the last two decades have been the various schemes for the promotion of renewable energy sources (RES). In the EU, the most successful supporting schemes are feed-in tariffs which have significantly increased utilisation of renewable energy sources in Germany, Spain, Portugal, Denmark and many other EU countries. Despite the successful feed-in tariffs for RES promotion, in many cases RES penetration is limited by power system requirements linked to the intermittency of RES sources and technical capabilities of grids. These problems can be solved by implementation of energy storage technologies like reversible or pumped hydro, hydrogen, batteries or any other technology that can be used for balancing or dump load. In this paper, feed-in tariffs for various energy storage technologies are discussed along with a proposal for their application in more appropriate regions. After successful application on islands and outermost regions, energy storage tariffs should be also applied in mainland power systems. Increased use of energy storage could optimise existing assets on the market. - Research highlights: {yields} Feed-in tariffs will promote development and use of energy storage technologies. {yields} Energy storage effectively increases RES penetration. {yields} Pumped Hydro Storage: an efficient solution for RES integration in islands. {yields} Remuneration of Batteries and Inverters as a service can increase RES Penetration. {yields} Desalination, apart from water can help in more efficient RES integration.

  11. Integrated building energy systems design considering storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Aki, Hirohisa (Lawrence Berkeley National Laboratory (United States)). e-mail: MStadler@lbl.gov; Siddiqui, Afzal (Dept. of Statistical Science at Univ. College London (United Kingdom))

    2009-07-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g. PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO{sub 2} emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO{sub 2} emissions. The problem is solved for a given test year at representative customer sites, e.g. nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Dept. of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO{sub 2} minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  12. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  13. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  14. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  15. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  16. Application of new physical storage technology in fruit and ...

    African Journals Online (AJOL)

    With the development of science and technology, consumers not only require food to be safe, but also require them to keep the original natural flavor and nutritional value as well, while the traditional chemical storage method has been increasingly unable to satisfy consumers' demand. When compared with chemical ...

  17. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  18. Carbon capture and storage as a corporate technology strategy challenge

    International Nuclear Information System (INIS)

    Bowen, Frances

    2011-01-01

    Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO 2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them. - Research highlights: → Presents a corporate technology strategy perspective on carbon capture and storage (CCS). → CCS technology is precautionary, sustaining, cumulative and situated. → Decision-makers need to look beyond cost and risk as barriers to investment in CCS.

  19. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  20. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  1. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  2. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  3. SGN multipurpose dry storage technology applied to the Italian situation

    International Nuclear Information System (INIS)

    Giorgio, M.; Lanza, R.

    1999-01-01

    SGN has gained considerable experience in the design and construction of interim storage facilities for spent fuel and various nuclear waste, and can therefore propose single product and multipurpose facilities capable of accommodating all types of waste in a single structure. The pooling of certain functions (transport cask reception, radiation protection) and the choice of optimized technologies to answer the specific needs of clients (transfer of nuclear packages by shielded handling cask or nuclearized crane), the use of the same type of storage pit to cool the heat releasing packages (vitrified nuclear waste, fuel elements) makes it possible to propose industrially proven and cost-effective solutions. Studies carried out for the Dutch company COVRA (HABOG facility currently under implementation phase) provide an example of a multipurpose dry storage facility designed to store spent fuel, vitrified reprocessing waste, cemented hulls and end-pieces, cemented technological waste and bituminized waste from fuel reprocessing, i e. high level waste and intermediate level wastes. The study conducted by SGN and GENESI (an Italian consortium formed by Ansaldo's Nuclear Division and Fiat Avio), on behalf of the Italian utility ENEL, offers another example of the multipurpose dry storage facility designed to store in a centralised site all the remaining irradiated fuel elements plus the vitrified waste. This paper presents SGN's experience through a short description of reference storage facilities for various types of products (HLW and spent fuel). It continues with the typical application to the Italian situation to show how these proven technologies are combined to obtain multipurpose facilities tailored to the client's specific requirements. (author)

  4. Storage potential of ‘SCS426 Venice’ apples under different storage technologies

    Directory of Open Access Journals (Sweden)

    Mariuccia Schlichting de Martin

    2018-04-01

    Full Text Available Abstract This study aimed to evaluate the storage potential of SCS426 Venice apples under different storage technologies. Fruits were harvested in an experimental orchard located in Fraiburgo, SC and stored for up to eight and ten months in 2013 and 2014, respectively. Apples were treated or not with methylcyclopropene (1-MCP and stored under air atmosphere (AA, 0.5±0.5 °C/RH 85±5% or controlled atmosphere (CA; 1.5 kPa of O2 and 1.5 kPa of CO2 at 0.7±0.5 °C/RH of 93±3%. Fruits were evaluated every two months of storage, after one and seven days of shelf life (23 ± 0.3 °C/RH 93±3%. The storage period of ‘SCS426 Venice’ apples under AA without 1-MCP application should not extend beyond six months. Under this storage condition, fruits had higher incidence of decay, ethylene production and respiratory rates, higher skin degreening, lower flesh firmness, titratable acidity and soluble solids content than fruits stored under CA or AA with 1-MCP. ‘SCS426 Venice’ apples develop flesh browning and superficial scald after long-term storage. ‘SCS426 Venice’ apples under AA treated with 1-MCP or under CA (regardless of 1-MCP application can be stored for more than eight months, keeping flesh firmness above 14 lb and low incidence of physiological disorders even after ten months of storage.

  5. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  6. JPL future missions and energy storage technology implications

    Science.gov (United States)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  7. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    Fleischer, T.; Juengst, K.P.; Brandl, V.; Maurer, W.; Nieke, E.

    1995-05-01

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM) [de

  8. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  9. Development of concrete cask storage technology for spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Shirai, Koji; Takeda, Hirofumi

    2010-01-01

    Need of spent fuel storage in Japan is estimated as 10,000 to 25,000 t by 2050 depending on reprocessing. Concrete cask storage is expected due to its economy and risk hedge for procurement. The CRIEPI executed verification tests using full-scale concrete casks. Heat removal performances in normal and accidental conditions were verified and analytical method for the normal condition was established. Shielding performance focus on radiation streaming through the air outlet was tested and confirmed to meet the design requirements. Structural integrity was verified in terms of fracture toughness of stainless steel canister for the cask of accidental drop tests. Cracking of cylindrical concrete container due to thermal stress was confirmed to maintain its integrity. Seismic tests of concrete cask without tie-down using scale and full-scale model casks were carried out to confirm that the casks do not tip-over and the spent fuel assembly keeps its integrity under severe earthquake conditions. Long-term integrity of concrete cask for 40 to 60 years is required. It was confirmed using a real concrete cask storing real spent fuel for 15 years. Stress corrosion cracking is serious issue for concrete cask storage in the salty air environment. The material factor was improved by using highly corrosion resistant stainless steel. The environmental factor was mitigated by the development of salt reduction technology. Estimate of surface salt concentration as a function of time became possible. Monitoring technology to detect accidental loss of containment of the canister by the stress corrosion cracking was developed. Spent fuel integrity during storage was evaluated in terms of hydrogen movement using spent fuel claddings stored for 20 years. The effect of hydrogen on the integrity of the cladding was found negligible. With these results, information necessary for real service of concrete cask was almost prepared. Remaining subject is to develop more economical and rational

  10. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  11. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  12. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  13. Medical image digital archive: a comparison of storage technologies

    Science.gov (United States)

    Chunn, Timothy; Hutchings, Matt

    1998-07-01

    A cost effective, high capacity digital archive system is one of the remaining key factors that will enable a radiology department to eliminate film as an archive medium. The ever increasing amount of digital image data is creating the need for huge archive systems that can reliably store and retrieve millions of images and hold from a few terabytes of data to possibly hundreds of terabytes. Selecting the right archive solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, conformance to open standards, archive availability and reliability, security, cost, achievable benefits and cost savings, investment protection, and more. This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. New technologies will be discussed, such as DVD and high performance tape. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on random and pre-fetch retrieval time will be analyzed. The concept of automated migration of images from high performance, RAID disk storage devices to high capacity, NearlineR storage devices will be introduced as a viable way to minimize overall storage costs for an archive.

  14. Advanced remediation, technology development in the underground storage tank

    International Nuclear Information System (INIS)

    Gates, T.E.; Gilchrist, R.L.

    1992-01-01

    Production of nuclear materials has been a major mission of the U. S. Department of Energy (DOE) over the last 50 years. These activities have contributed to a substantial accumulation of hazardous, radioactive, and mixed wastes. In 1989, the DOE established the Office of Environmental Restoration and Waste Management. This office coordinates and manages the DOE's remediation, waste minimization, and environmental compliance activities. It also has responsibility for waste generated by current operations. Within this office is the Office of Technology Development, which is responsible for providing technology improvements. This paper reports on integrated demonstrations which have been established to efficiently bring the best technologies to bear on the common needs of multiple DOE sites. One such need is resolution of the actions required for final closure and waste disposal of liquid (including sludge and salt cake) radioactive and chemical wastes that have been transferred to underground storage tanks

  15. ``Recent experiences and future expectations in data storage technology''

    Science.gov (United States)

    Pfister, Jack

    1990-08-01

    For more than 10 years the conventional media for High Energy Physics has been 9 track magnetic tape in various densities. More recently, especially in Europe, the IBM 3480 technology has been adopted while in the United States, especially at Fermilab, 8 mm is being used by the largest experiments as a primary recording media and where possible they are using 8 mm for the production, analysis and distribution of data summary tapes. VHS and Digital Audio tape have recurrently appeared but seem to serve primarily as a back-up storage media. The reasons for what appear to be a radical departure are many. Economics (media and controllers are inexpensive), form factor (two gigabytes per shirt pocket), and convenience (fewer mounts/dismounts per minute) are dominant among the reasons. The traditional data media suppliers seem to have been content to evolve the traditional media at their own pace with only modest enhancements primarily in ``value engineering'' of extant products. Meanwhile, start-up companies providing small system and workstations sought other media both to reduce the price of their offerings and respond to the real need of lower cost back-up for lower cost systems. This happening in a market context where traditional computer systems vendors were leaving the tape market altogether or shifting to ``3480'' technology which has certainly created a climate for reconsideration and change. The newest data storage products, in most cases, are not coming from the technologies developed by the computing industry but by the audio and video industry. Just where these flopticals, opticals, 19 mm tape and the new underlying technologies, such as, ``digital paper'' may fit in the HEP computing requirement picture will be reviewed. What these technologies do for and to HEP will be discussed along with some suggestions for a methodology for tracking and evaluating extant and emerging technologies.

  16. dCache, agile adoption of storage technology

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    For over a decade, dCache has been synonymous with large-capacity, fault-tolerant storage using commodity hardware that supports seamless data migration to and from tape. Over that time, it has satisfied the requirements of various demanding scientific user communities to store their data, transfer it between sites and fast, site-local access. When the dCache project started, the focus was on managing a relatively small disk cache in front of large tape archives. Over the project's lifetime storage technology has changed. During this period, technology changes have driven down the cost-per-GiB of harddisks. This resulted in a shift towards systems where the majority of data is stored on disk. More recently, the availability of Solid State Disks, while not yet a replacement for magnetic disks, offers an intriguing opportunity for significant performance improvement if they can be used intelligently within an existing system. New technologies provide new opportunities and dCache user communities' computi...

  17. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  18. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  19. dCache, agile adoption of storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Millar, A. P. [Hamburg U.; Baranova, T. [Hamburg U.; Behrmann, G. [Unlisted, DK; Bernardt, C. [Hamburg U.; Fuhrmann, P. [Hamburg U.; Litvintsev, D. O. [Fermilab; Mkrtchyan, T. [Hamburg U.; Petersen, A. [Hamburg U.; Rossi, A. [Fermilab; Schwank, K. [Hamburg U.

    2012-01-01

    For over a decade, dCache has been synonymous with large-capacity, fault-tolerant storage using commodity hardware that supports seamless data migration to and from tape. In this paper we provide some recent news of changes within dCache and the community surrounding it. We describe the flexible nature of dCache that allows both externally developed enhancements to dCache facilities and the adoption of new technologies. Finally, we present information about avenues the dCache team is exploring for possible future improvements in dCache.

  20. Carbon capture and storage: Fundamental thermodynamics and current technology

    International Nuclear Information System (INIS)

    Page, S.C.; Williamson, A.G.; Mason, I.G.

    2009-01-01

    Carbon capture and storage (CCS) is considered a leading technology for reducing CO 2 emissions from fossil-fuelled electricity generation plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. However considerable energy is required for the capture, compression, transport and storage steps involved. In this paper, energy penalty information in the literature is reviewed, and thermodynamically ideal and 'real world' energy penalty values are calculated. For a sub-critical pulverized coal (PC) plant, the energy penalty values for 100% capture are 48.6% and 43.5% for liquefied CO 2 , and for CO 2 compressed to 11 MPa, respectively. When assumptions for supercritical plants were incorporated, results were in broad agreement with published values arising from process modelling. However, we show that energy use in existing capture operations is considerably greater than indicated by most projections. Full CCS demonstration plants are now required to verify modelled energy penalty values. However, it appears unlikely that CCS will deliver significant CO 2 reductions in a timely fashion. In addition, many uncertainties remain over the permanence of CO 2 storage, either in geological formations, or beneath the ocean. We conclude that further investment in CCS should be seriously questioned by policy makers.

  1. Using Cloud-based Storage Technologies for Earth Science Data

    Science.gov (United States)

    Michaelis, A.; Readey, J.; Votava, P.

    2016-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and software systems developed for NASA data repositories were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Object storage services are provided through all the leading public (Amazon Web Service, Microsoft Azure, Google Cloud, etc.) and private (Open Stack) clouds, and may provide a more cost-effective means of storing large data collections online. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows superior performance for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  2. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  3. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  4. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  5. How to integrate geology, biology, and modern wireless technologies to assess biotic-abiotic interactions on coastal dune systems: a new multidisciplinary approach

    Science.gov (United States)

    Sarti, Giovanni; Bertoni, Duccio; Bini, Monica; Ciccarelli, Daniela; Ribolini, Adriano; Ruocco, Matteo; Pozzebon, Alessandro; Alquini, Fernanda; Giaccari, Riccardo; Tordella, Stefano

    2014-05-01

    Coastal dune systems are arguably one of the most dynamic environments because their evolution is controlled by many factors, both natural and human-related. Hence, they are often exposed to processes leading to erosion, which in turn determine serious naturalistic and economic losses. Most recent studies carried out on different dune fields worldwide emphasized the notion that a better definition of this environment needs an approach that systematically involves several disciplines, striving to merge every data collected from any individual analyses. Therefore, a new multidisciplinary method to study coastal dune systems has been conceived in order to integrate geology, biology, and modern wireless technologies. The aim of the work is threefold: i) to check the reliability of this new approach; ii) to provide a dataset as complete as ever about the factors affecting the evolution of coastal dunes; and iii) to evaluate the influence of any biotic and abiotic factors on plant communities. The experimentation site is located along the Pisa coast within the Migliarino - S. Rossore - Massaciuccoli Regional Park, a protected area where human influence is low (Tuscany, Italy). A rectangle of 100 x 200 m containing 50 grids of 20 x 20 m was established along the coastal dune systems from the coastline to the pinewood at the landward end of the backdune area. Sampling from each grid determined grain-size analysis carried out on surface sediment samples such as geologic aspects; topographic surveys performed by means of DGPS-RTK instruments; geophysical surveys conducted with a GPR equipment, which will be matched with core drilling activities; digital image analysis of high definition pictures taken by means of a remote controlled aircraft drone flying over the study area; biological data obtained by percent cover of each vascular plant species recorded in the sampling unit. Along with geologic and biologic methodologies, this research implemented the use of informatics

  6. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  7. Health information management using optical storage technology: case studies.

    Science.gov (United States)

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  8. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  9. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  10. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  11. Technology and demand forecasting for carbon capture and storage technology in South Korea

    International Nuclear Information System (INIS)

    Shin, Jungwoo; Lee, Chul-Yong; Kim, Hongbum

    2016-01-01

    Among the various alternatives available to reduce greenhouse gas (GHG) emissions, carbon capture and storage (CCS) is considered to be a prospective technology that could both improve economic growth and meet GHG emission reduction targets. Despite the importance of CCS, however, studies of technology and demand forecasting for CCS are scarce. This study bridges this gap in the body of knowledge on this topic by forecasting CCS technology and demand based on an integrated model. For technology forecasting, a logistic model and patent network analysis are used to compare the competitiveness of CCS technology for selected countries. For demand forecasting, a competition diffusion model is adopted to consider competition among renewable energies and forecast demand. The results show that the number of patent applications for CCS technology will increase to 16,156 worldwide and to 4,790 in Korea by 2025. We also find that the United States has the most competitive CCS technology followed by Korea and France. Moreover, about 5 million tCO_2e of GHG will be reduced by 2040 if CCS technology is adopted in Korea after 2020. - Highlights: • Carbon capture and storage (CCS) can help mitigate climate change globally. • It can both improve economic growth and meet GHG emission reduction targets. • We forecast CCS technology and demand based on an integrated model. • The US has the most competitive CCS technology followed by Korea and France. • 5 million tCO_2e of GHG will be reduced by 2040 if CCS is adopted in Korea.

  12. Societal acceptance of carbon capture and storage technologies

    International Nuclear Information System (INIS)

    Alphen, Klaas van; Voorst tot Voorst, Quirine van; Hekkert, Marko P.; Smits, Ruud E.H.M.

    2007-01-01

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is-to a certain extent-a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology

  13. Technical and Economic Assessment of Storage Technologies for Power-Supply Grids

    Directory of Open Access Journals (Sweden)

    H. Meiwes

    2009-01-01

    Full Text Available Fluctuating power generation from renewable energies such as wind and photovoltaic are a technical challenge for grid stability. Storage systems are an option to stabilise the grid and to maximise the utilisation factors of renewable power generators. This paper analyses the state of the art of storage technologies, including a detailed life cycle cost comparison. Beside this, benefits of using storage systems in electric vehicles are analysed and quantified. A comprehensive overview of storage technologies as well as possible applications and business cases for storage systems is presented. 

  14. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    International Nuclear Information System (INIS)

    Kangas, M.T.; Lund, P.D.

    1994-01-01

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, District heating and utilities

  15. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  16. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  17. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  18. Energy storage technology for electric and hybrid vehicles. Matching technology to design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, J. [Sycon Energikonsult AB, Malmoe (Sweden)

    1999-12-01

    A central issue when dealing with electrical vehicles has always been how to store energy in sufficient quantities. On April 27 through 28 1999 a workshop was held on this matter at University of California Davis (UC Davis). Organizer and host was Dr. Andrew Burke and the Institute of Transportation Studies (ITS) at UC Davis. The workshop included battery technology, ultra capacitors and fly wheels, but did not include fuel cell technology. In this paper the conference is reviewed with the emphasis on battery development. A section on ultra capacitors and flywheels is also included. The overall observation made at the conference is that most of the effort on energy storage in electric and hybrid vehicles are put into batteries. There is some development on ultra capacitors but almost none on flywheels. The battery also seems to be the choice of the car industry at this point, especially the pulse battery for engine dominant hybrid vehicles, like the Toyota Prius. The battery manufacturers seem to focus more on technology development than cost reduction at this point. An important technological issue as of now is to improve thermal management in order to increase life of the batteries. But when the technological goals are met focus must shift to cost minimization and marketing if the battery electric vehicle shall make a market break through.

  19. Physics and technology of optical storage in polymer thin films

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, Søren; Ujhelyi, F.

    2001-01-01

    We discuss different strategies for optical storage of information in polymeric films. An outline of the existing trends is given. The synthesis and characterization of side-chain azobenzene polyester films for holographic storage of information is described. A compact holographic memory card...... system based on polarization holography is described. A storage density of greater than 10MB/cm2 has been achieved so far, with a potential increase to 100MB/cm(2) using multiplexing techniques and software correction. Finally the role of surface relief in azobenzene polymers on irradiation...

  20. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  1. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  2. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  3. Periodic inspections of lightning protection systems in intermediate storage facilities of nuclear technological plants

    International Nuclear Information System (INIS)

    Witzel, Andre; Schulz, Olav

    2013-01-01

    Especially for nuclear technological plants, periodic inspections of lightning protection systems are of great importance. This article shows the sequence of maintenance programs using the examples of the intermediate storage facilities of the nuclear technological plants Grohnde and Unterweser as well as the central intermediate storage facility in Gorleben and gives a description of the extensive measures of inspecting the external and internal lightning protection and the global earth termination system.

  4. TECHNOLOGY OF FRESH HERBS STORAGE USING HYDROGEL AND ANTIOXIDANT COMPOSITION

    Directory of Open Access Journals (Sweden)

    Olesia PRISS

    2017-12-01

    Full Text Available There is a stable consumer demand for fresh culinary herbs. Also, the greenery contains a large number of valuable phytonutrients. Despite high efficiency and increasing annual production of fresh herbs, the problem of preserving their quality in the post-harvest period remains unresolved. Because of the high specific surface area of evaporation, in the green crops droop quickly, they lose their marketable quality, and, as a result, the level of profitability of greenery production in general is being reduced. It is necessary to use new effective approaches to leafy greens storage in order to reduce product losses during transportation and storage. For example, agrarian hydrogel can be used for storage of greenery. Hydrogel is an acrylic potassium polymer that is non-toxic and has a high environmental standard. The hydrogel granules can absorb up to 250 times more moisture than their weight. We propose the following procedure as the method of greenery preservation: the greens are packed in bundles and put in sticks in polyethylene bags with a fastener, pre-filled with hydrogel solutions. The storage temperature is maintained optimally for each species of fresh herbs, the relative humidity is 95 ± 3%. Usage of the proposed method allows obtaining environment-friendly products, preserving their high biological value and increasing the shelf life. The accumulation of peroxide products, which cause physiological disorders, is inhibited as the result of such storage. The use of hydrogel reduces the natural loss of mass by 10% as compared with the control. Duration of greenery storage increases by 30 days.

  5. Technology of sprouting inhibition by irradiation for ginger storage

    International Nuclear Information System (INIS)

    Feng Shuangqing; Wang Shoujing; Yu Zihou; Sun Shouyi; Zou Jiwan; Lei Peng

    2003-01-01

    The study results showed that the proper irradiation dose for ginger sprouting inhibition was 0.08-0.40 kGy and the maximum tolerable irradiation dose for ginger was 0.4 kGy. Treatment with proper irradiation combined with PE film package could keep ginger fresh after 120 days of storage and the fresh ratio was above 90%. In order to obtain good storage results, keeping lower absorbed dose ununiformity was necessary. Content of V C and Ca was not affected by the irradiation with 0.08-0.25 kGy

  6. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  7. Biomethane storage: Evaluation of technologies, end uses, business models, and sustainability

    International Nuclear Information System (INIS)

    Budzianowski, Wojciech M.; Brodacka, Marlena

    2017-01-01

    Highlights: • Biomethane storage integrates the different energy subsystems. • It facilitates adoption of solar and wind energy sources. • It is essential to adequately match storages with their end uses and business models. • Business models must propose, create, and capture value linked with gas storage. • Sustainable is economically viable, environmentally benign, and socially beneficial. - Abstract: Biomethane is a renewable gas that can be turned into dispatchable resource through applying storage techniques. The storage enables the discharge of stored biomethane at any time and place it is required as gas turbine power, heat or transport fuel. Thus the stored biomethane could more efficiently serve various energy applications in the power, transport, heat, and gas systems as well as in industry. Biomethane storage may therefore integrate the different energy subsystems making the whole energy system more efficient. This work provides an overview and evaluation of biomethane storage technologies, end uses, business models and sustainability. It is shown that storage technologies are versatile, have different costs and efficiencies and may serve different end uses. Business models may be created or selected to fit regional spatial contexts, realistic demands for gas storage related services, and the level of available subsidies. By applying storage the sustainability of biomethane is greatly improved in terms of economic viability, reduced environmental impacts and greater social benefits. Stored biomethane may greatly facilitate adoption of intermittent renewable energy sources such as solar and wind. Other findings show that biomethane storage needs to be combined with grid services and other similar services to reduce overall storage costs.

  8. Assessment of Energy Storage Technologies for Army Facilities.

    Science.gov (United States)

    1986-05-01

    pentraerythritol, penta- glycerine, and neopentyl glycol , and is intended for use as thermal storage in passive solar architecture. In a broad interpretation of...Candidate binaries include (1) glycols and :. ,..polyhedric alcohols that are mixed with water and (2) certain alkane-alcohol combina- I .,, tions. Since use...transferred from a lower to a higher temperature and combined with the solid absorbent. Liquid absorbents include sulfuric acid, the alkene glycols , and

  9. Interim dry storage system technologies and innovations VARNA 2002

    International Nuclear Information System (INIS)

    Chollet, P.; Guenon, Y.

    2002-01-01

    The main concepts of the TN24 Family and NUHOMS System are explained in the paper. It is discussed how the NPPs specific requirements and economics trends contributes to the growing families of interim dry storage systems delivered under COGEMA LOGICTICS license. It is concluded that modular solutions are currently dominating because they are derived from main concepts evolved over time, benefited from both the transport aspects with internationally recognised stringent regulations, and various specific ISFSI requirements and economic trends

  10. Physics and technology of superthin internal targets in storage rings

    International Nuclear Information System (INIS)

    Popov, S.G.

    1989-01-01

    The new generation of accelerators for coincidence electronuclear investigations is discussed. The luminosity and beam parameters are calculated for an electron storage ring with an internal target operating in the superthin regime. The advantages and disadvantages in comparison with conventional operation using an external beam and target are described. The intermediate results for 2 GeV electron scattering on polarized internal deuterium target are given (joint Novosibirsk-Argonne experiment). 32 refs.; 5 figs

  11. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  12. Exploiting database technology for object based event storage and retrieval

    International Nuclear Information System (INIS)

    Rawat, Anil; Rajan, Alpana; Tomar, Shailendra Singh; Bansal, Anurag

    2005-01-01

    This paper discusses the storage and retrieval of experimental data on relational databases. Physics experiments carried out using reactors and particle accelerators, generate huge amount of data. Also, most of the data analysis and simulation programs are developed using object oriented programming concepts. Hence, one of the most important design features of an experiment related software framework is the way object persistency is handled. We intend to discuss these issues in the light of the module developed by us for storing C++ objects in relational databases like Oracle. This module was developed under the POOL persistency framework being developed for LHC, CERN grid. (author)

  13. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  14. A survey of contemporary enterprise storage technologies from a digital forensics perspective

    Directory of Open Access Journals (Sweden)

    Gregory H. Carlton

    2011-09-01

    Full Text Available As the proliferation of digital computational systems continue to expand, increasingly complex technologies emerge, including those regarding large, enterprise-wide, information storage and retrieval systems. Within this study, we examine four contemporary enterprise storage technologies. Our examination of these technologies is presented with an overview of the technological features of each offering and then followed with a discussion of the impact of these technologies on digital forensics methods, particularly regarding forensic data acquisition. We offer a general opinion concerning a recommended data acquisition method when faced with the task of obtaining a forensic image of data contained within these technologies, we discuss limitations of our study, and lastly, we suggest areas in which additional research would benefit the field of digital forensics.

  15. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  16. Profitability of different storage technologies in the mid-term; Wirtschaftlichkeit unterschiedlicher Speichertechnologien im mittelfristigen Zeitbereich

    Energy Technology Data Exchange (ETDEWEB)

    Witzenhausen, A.; Drees, T.; Breuer, C.; Stein, D. vom; Moser, A. [RWTH Aachen (Germany). Inst. fuer Elektrische Anlagen und Energiewirtschaft (IAEW)

    2013-07-01

    The transition of the energy system to a system based on renewable energies leads to new requirements for the balancing of load and generation at any time. One of the main flexibility options, besides flexibility of thermal generation and demand side management, are storages. Therefore, a strong discussion on cost-efficiency of storages in the future electricity system exists. Consequently this paper aims at developing a methodology to evaluate the profitability of storages under special consideration of the different electricity markets (e. g. spot and balancing). For this, future prices for spot and balancing (both power and energy) are simulated by application of a fundamental model of the future electricity market. Based on these prices the profitability of storages is analyzed by methods of power plant dispatch. Concluding different storage technologies (e. g. pumped hydro, batteries) are compared considering necessary investment costs and achieved contribution margins.

  17. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    OpenAIRE

    Daniel Akinyele; Juri Belikov; Yoash Levron

    2017-01-01

    Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an ove...

  18. Third international spent fuel storage technology symposium/workshop: proceedings. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 2 contains the papers from the poster session and workshops that were conducted during the meeting. There were 18 poster presentations. Four workshops were held: Fuel Integrity; Storage System Modeling and Analysis; Rod Consolidation Technology; and System Integration and Optimization. Individual papers were processed for inclusion in the Energy Data Base

  19. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  20. A methodology to assess the economic impact of power storage technologies.

    Science.gov (United States)

    El-Ghandour, Laila; Johnson, Timothy C

    2017-08-13

    We present a methodology for assessing the economic impact of power storage technologies. The methodology is founded on classical approaches to the optimal stopping of stochastic processes but involves an innovation that circumvents the need to, ex ante , identify the form of a driving process and works directly on observed data, avoiding model risks. Power storage is regarded as a complement to the intermittent output of renewable energy generators and is therefore important in contributing to the reduction of carbon-intensive power generation. Our aim is to present a methodology suitable for use by policy makers that is simple to maintain, adaptable to different technologies and easy to interpret. The methodology has benefits over current techniques and is able to value, by identifying a viable optimal operational strategy, a conceived storage facility based on compressed air technology operating in the UK.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  1. Vacuum technologies developed for at-400A Type B transportation and storage package

    International Nuclear Information System (INIS)

    Franklin, K.W.; Cockrell, G.D.

    1995-01-01

    The AT-400A TYPE B transportation and storage container will be used at Pantex Plant for the transportation and interim storage of plutonium pits. The AT-400A was designed by a joint effort between Sandia National Labs, Los Alamos National Labs, Lawrence Livermore National Laboratory, and Mason and Hanger-Silas Mason Co., Inc. In order to meet the requirements for transportation and storage, five different vacuum technologies had to be developed. The goals of the various vacuum technologies were to verify the plutonium pit was sealed, perform the assembly verification leak check in accordance with ANSI N-14.5 and to provide a final inert gas backfill in the containment vessel. This paper will discuss the following five vacuum technologies: (1) Pit Leak Testing, (2) Containment Vessel Purge and Backfill with tracer gas, (3) Containment Vessel Leak Testing, (4) Containment Vessel Purge and Final Backfill, and (5) Leak Testing of the Containment Vessel Gas Transfer tube

  2. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...... developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention...

  3. Implementation of heat production and storage technology and devices in power systems

    International Nuclear Information System (INIS)

    Romanovsky, G.; Mutale, J.

    2012-01-01

    Implementation of heat storage devices and technologies at power generation plants is a promising way to provide more efficient use of natural energy resources. Heat storage devices can partly replace conventional heating technologies (such as direct use of fossil fuels) during peak energy demand or in the situations where heat and electricity supply and demand do not coincide and to obtain low cost heat energy which can be further transmitted to industrial, commercial and domestic consumers. This paper presents the innovative Heat Production and Storage Device and its application at conventional, nuclear and renewable power generation plants for optimization and balancing of electricity grids. The Heat Production and Storage Device is a vessel type induction-immersion heat production and storage device which produces pre-heated water under pressure for heat energy conservation. Operation of this device is based on simultaneous and/or sequential action of an inductor and an immersion heater and can be easily connected to the electricity network as a single or a three phase unit. Heat energy accumulated by the Heat Production and Storage Device can be utilized in different industrial technological processes during periods of high energy prices. - Highlights: ► Heat Production and Storage Device for energy conservation within low load hours. ► Simultaneous and/or sequential operation of the inductor and immersion heater. ► Transform the energy of low frequency electrical current (50 Hz) into heat energy. ► Connection to the electricity network either in single or three phase unit. ► Heat Production and Storage Device will enhance the economic value of the system.

  4. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  5. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Pinsky, Naum [Southern California Edison, Rosemead, CA (United States); O' Neill, Lori [Southern California Edison, Rosemead, CA (United States)

    2017-03-31

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing system capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.

  6. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  7. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  8. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  9. Center for Alternative Energy Storage Research and Technology

    Science.gov (United States)

    2013-03-28

    and civilian markets . Research at CAESRT has been directed primarily at Defense Department (Army) applications to provide effective technology...applications are sensitive to the characteristics of the applications. Often it takes more than 3nS 2pS 4pS 1pS 3pS 2nS 4nS 1Li 3Li 1C 2C 3C 4C 5C 2Li

  10. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  11. Electric energy storage systems in a market-based economy. Comparison of emerging and traditional technologies

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, M. Parsa; Haghifam, M.R.; Yousefi, G.R.

    2009-01-01

    Unlike markets for storable commodities, electricity markets depend on the real-time balance of supply and demand. Although much of the present-day grid operate effectively without storage technologies, cost-effective ways of storing electrical energy can make the grid more efficient and reliable. This work addresses an economic comparison between emerging and traditional Electric Energy Storage (EES) technologies in a competitive electricity market. In order to achieve this goal, an appropriate Self-Scheduling (SS) approach must first be developed for each of them to determine their maximum potential of expected profit among multi-markets such as energy and ancillary service markets. Then, these technologies are economically analyzed using Internal Rate of Return (IRR) index. Finally, the amounts of needed financial supports are determined for choosing the emerging technologies when an investor would like to invest on EES technologies. Among available EES technologies, we consider NaS battery (Natrium Sulfur battery) and pumped-storage plants as emerging and traditional technologies, respectively. (author)

  12. Key Technologies of Phone Storage Forensics Based on ARM Architecture

    Science.gov (United States)

    Zhang, Jianghan; Che, Shengbing

    2018-03-01

    Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.

  13. Influence of methane in CO2 transport and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  14. Technology Application of Environmental Friendly Refrigeration (Green Refrigeration) on Cold Storage for Fishery Industry

    Science.gov (United States)

    Rasta, IM; Susila, IDM; Subagia, IWA

    2018-01-01

    The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.

  15. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    The density of digital storage media in our information-intensive society increases by a factor of four every three years, while the rate at which this data can be migrated to viable long-term storage has been increasing by a factor of only four every nine years. Meanwhile, older data stored on increasingly obsolete media, are at considerable risk. When the systems for which the media were designed are no longer serviced by their manufacturers (many of whom are out of business), the data will no longer be accessible. In some cases, older media suffer from a physical breakdown of components - tapes simply lose their magnetic properties after a long time in storage. The scale of the crisis is compatible to that facing the Social Security System. Greater financial and intellectual resources to the development and refinement of new storage media and migration technologies in order to preserve as much data as possible.

  16. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  17. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P. [All-Russia Research Institute of Preservation Technology (Russian Federation); Egorkin, A. V.; Chasovskikh, A. V. [Research Institute of Technical Physics and Automation (Russian Federation); Pavlov, Yu. S., E-mail: rad05@bk.ru [Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (Russian Federation); Prokopenko, A. V., E-mail: pav14@mail.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation); Strokova, N. E. [Moscow State University (Russian Federation); Artem’ev, S. A. [Russian Research Institute of Baking Industry (Russian Federation); Polyakova, S. P. [Russian Research Institute of Confectionery Industry (Russian Federation)

    2016-12-15

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  18. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    International Nuclear Information System (INIS)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P.; Egorkin, A. V.; Chasovskikh, A. V.; Pavlov, Yu. S.; Prokopenko, A. V.; Strokova, N. E.; Artem’ev, S. A.; Polyakova, S. P.

    2016-01-01

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  19. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure.

    Science.gov (United States)

    Bialecki, Brian; Park, James; Tilkin, Mike

    2016-08-01

    The intent of this project was to use object storage and its database, which has the ability to add custom extensible metadata to an imaging object being stored within the system, to harness the power of its search capabilities, and to close the technology gap that healthcare faces. This creates a non-disruptive tool that can be used natively by both legacy systems and the healthcare systems of today which leverage more advanced storage technologies. The base infrastructure can be populated alongside current workflows without any interruption to the delivery of services. In certain use cases, this technology can be seen as a true alternative to the VNA (Vendor Neutral Archive) systems implemented by healthcare today. The scalability, security, and ability to process complex objects makes this more than just storage for image data and a commodity to be consumed by PACS (Picture Archiving and Communication System) and workstations. Object storage is a smart technology that can be leveraged to create vendor independence, standards compliance, and a data repository that can be mined for truly relevant content by adding additional context to search capabilities. This functionality can lead to efficiencies in workflow and a wealth of minable data to improve outcomes into the future.

  20. Evaluating the development of carbon capture and storage technologies in the United States

    NARCIS (Netherlands)

    Alphen, K. van; Noothout, P.M.; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies

  1. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  2. CA-storage : technology, application and research. State of the art in the Netherlands

    NARCIS (Netherlands)

    Schaik, van A.C.R.; Verschoor, J.A.

    2003-01-01

    CA-technology in the Netherlands is used mostly for storage of apples and pears; main varieties for apples are Elstar and Jonagold. The main pear variety Conference is stored in CA after a specific delay time to prevent the pears from getting internal defects. For a wide range of produce (e.g.

  3. Energy storage and the environment: the role of battery technology

    Science.gov (United States)

    Ruetschi, Paul

    Batteries can store energy in a clean, convenient and efficient manner. Battery-powered electric vehicles are expected to contribute to a cleaner environment. In today's world, batteries are used everywhere: in electronic watches, pocket calculators, flashlights, toys, radios, tape recorders, cameras, camcorders, laptop computers, cordless telephones, paging devices, hearing aids, heart pacers, instruments, detectors, sensors, memory back-up devices, drug dispensing, wireless tools, toothbrushes, razors, stationary emergency power equipment, automobile starters, electric vehicles, boats, submarines, airplanes and satellites. Worldwide, about 15 billion primary batteries, and well over 200 million starter batteries are produced per year. What is the impact of this widespread use of batteries on the environment? What role can battery technology play in order to reduce undue effects on the environment? Since this paper is presented at a lead/acid battery conference, the discussion refers, in particular, to this system. The following aspects are covered: (i) the three "E" criteria that are applicable to batteries: Energy, Economics, Environment; (ii) service life and environment; (iii) judicious use and service life; (iv) recycling.

  4. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  5. Status analysis for the confinement monitoring technology of PWR spent nuclear fuel dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chang Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    Leading national R and D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

  6. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Cassone, Egidio; Distaso, Elia; Tamburrano, Paolo

    2017-01-01

    Highlights: • World energy demand is analyzed. • Promising energy storage systems are shown to explore their potentials. • Different storage are considered and compared. • The efficiency and costs of each are shown. • Easy guidelines for selection of energy storage are provided. - Abstract: Energy production is changing in the world because of the need to reduce greenhouse gas emissions, to reduce the dependence on carbon/fossil sources and to introduce renewable energy sources. Despite the great amount of scientific efforts, great care to energy storage systems is necessary to overcome the discontinuity in the renewable production. A wide variety of options and complex characteristic matrices make it difficult and so in this paper the authors show a clear picture of the available state-of-the-art technologies. The paper provides an overview of mechanical, electrochemical and hydrogen technologies, explaining operation principles, performing technical and economic features. Finally a schematic comparison among the potential utilizations of energy storage systems is presented.

  7. Technology roadmap study on carbon capture, utilization and storage in China

    International Nuclear Information System (INIS)

    Zhang, Xian; Fan, Jing-Li; Wei, Yi-Ming

    2013-01-01

    Carbon capture, utilization and storage (CCUS) technology will likely become an important approach to reduce carbon dioxide (CO 2 ) emissions and optimize the structure of energy consumption in China in the future. In order to provide guidance and recommendations for CCUS Research, Development and Demonstration in China, a high level stakeholder workshop was held in Chongqing in June 2011 to develop a technology roadmap for the development of CCUS technology. This roadmap outlines the overall vision to provide technically viable and economically affordable technological options to combat climate change and facilitate socio-economic development in China. Based on this vision, milestone goals from 2010 to 2030 are set out in accordance with the technology development environment and current status in China. This study identifies the critical technologies in capture, transport, utilization and storage of CO 2 and proposes technical priorities in the different stages of each technical aspect by evaluating indices such as the objective contribution rate and technical maturity, and gives recommendations on deployment of full-chain CCUS demonstration projects. Policies which would support CCUS are also suggested in this study. - Highlights: • A technology roadmap for CCUS development in China from 2010 to 2030 is presented. • Sound data and analysis in combination with expert workshops are used. • Critical technologies in CCUS are identified. • Priority actions of all stages are identified and proposed. • Guidance and recommendations for CCUS RD and D are provided

  8. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.

    Science.gov (United States)

    Salunkhe, Vishal; De Cuyper, Iris M; Papadopoulos, Petros; van der Meer, Pieter F; Daal, Brunette B; Villa-Fajardo, María; de Korte, Dirk; van den Berg, Timo K; Gutiérrez, Laura

    2018-03-19

    Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to

  9. Horizontal drilling in a natural gas storage horizon of 4 m thickness using reservoir navigation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bastert, Thomas [E.ON Gas Storage GmbH, Essen (Germany); Liewert, Mathias; Rohde, Uwe [Baker Hughes INTEQ GmbH, Celle (Germany); Haberland, Joachim

    2010-09-15

    With a working gas capacity of 1,44 billion m{sup 3} (Vn) the natural gas storage facility at Bierwang is one of the largest storage facilities of E.ON Gas Storage (in Germany) and also one of the largest porous rock storages in Germany. The natural gas is stored in the tertiary storage horizons of the Chattian Hauptsand and Nebensand. To increase the storage capacity a second development well was planned for the Chattian Nebensand II (approx. 1680 m below ground). Following a comprehensive technical investigation the BW 502 well was planned as a horizontal well intended to provide a 300 m exposed section length through the reservoir. In a first step a pilot well was drilled to examine the Nebensand II which had been explored only to a limited extent before; the pilot well was also to provide accurate data on depth, thickness and dip. The results obtained indicated that the Nebensand II was only 4 m thick instead of 6 m as originally assumed. An azimuthal LWD resistivity tool was therefore used for reservoir navigation to allow horizontal drilling despite the lower thickness found. The technology allowed drilling of the horizontal well over its entire length of 315 m within a max. 1.5 m corridor relative to the reservoir top. Drilling confirmed that the actual formation found corresponded to the reservoir formation plan. Drilling operations were completed successfully. The well has been commissioned in the spring of 2010. (orig.)

  10. Plutonium stabilization and storage research in the DNFSB 94-1 core technology program

    International Nuclear Information System (INIS)

    Eller, P.G.; Avens, L.R.; Roberson, G.D.

    1998-04-01

    Recommendation 94-1 of the Defense Nuclear Facility Safety Board (DNFSB) addresses legacy actinide materials left in the US nuclear defense program pipeline when the production mission ended in 1989. The Department of Energy (DOE) Implementation Plan responding to this recommendation instituted a Core Technology program to augment the knowledge base about general chemical and physical processing and storage behavior and to assure safe interim nuclear material storage, until disposition policies are formulated. The Core Technology program focuses on plutonium, in concert with a complex-wide applied R/D program administered by Los Alamos National Laboratory. This paper will summarize the Core Technology program's first two years, describe the research program for FY98, and project the overall direction of the program in the future

  11. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  12. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  13. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  14. Monitoring innovation in electrochemical energy storage technologies: A patent-based approach

    International Nuclear Information System (INIS)

    Mueller, Simon C.; Sandner, Philipp G.; Welpe, Isabell M.

    2015-01-01

    Highlights: • Grid effects of intermittent sources show increasing need for decentralized storage. • Novel patent classification is applied to monitor competing technologies. • Up-to-date geographical, organizational, and qualitative insight is given. • Redox flow patenting shows strong growth, lithium also strong absolute numbers. • Revealed patents allow the expectation of improved modules in the future. - Abstract: Due to the suitability to balance the intermittency in decentralized systems with renewable sources, electrochemical energy storage possibilities have been analyzed in several studies, all highlighting the need for improvements in relevant techno-economic parameters. Particularly a reduction in the costs per cycle is much needed, which could either come from innovation in more cost-efficient manufacturing methods, a higher endurance of charge/discharge sequences or higher capacities. Looking at patent applications as a metric allows us to determine whether the necessary technological progress is indeed occurring, as the mandatory publication of the underlying inventions provides access to otherwise hidden R and D activities. Our paper contributes to the literature with a compilation of technological classes related to important battery types in the novel Cooperative Patent Classification (CPC), which can be used to identify relevant patent applications of the competing technologies. Using the worldwide patent statistical database (PATSTAT), we find that promising technologies have been showing increasing patent counts in recent years. For example, the number of patent applications related to regenerative fuel cells (e.g. redox flow batteries) doubled from 2009 to 2011. Nevertheless, the volume of patent filings in technologies related to lithium remains unchallenged. Patent applications in this area are still growing, which indicates that the introduction of improved modules will continue. Using citation analysis, we have identified

  15. Safety of parsley intended for processing depending on the cultivation technology and storage

    Directory of Open Access Journals (Sweden)

    Pobereżny Jarosław

    2016-09-01

    Full Text Available The factors that affect the value of parsley for consumption include its taste, flavour and dietary utility (vitamins C and E, β-carotene, potassium, calcium, phosphorus and iron, raw fibre, proteins as well as the content of hazardous substances, especially nitrogen compounds. A study was carried out in 2013–2015 to determine the effect of the cultivation technology and storage on the safety of parsley intended for processing. The study material was taken from an experiment where the following fertilisers were applied to the ground: nitrogen (0, 40, 80, 120 kg N∙ha−1 and magnesium (0; 30 kg Mg∙ha−1. Parsley roots were stored for six months in a storage room at +1°C and RH 95%. The content of nitrates (V and (III was determined by the ion selective method immediately after the harvest and after storage in parsley roots.

  16. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  17. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    International Nuclear Information System (INIS)

    Nur, M; Kusdiyantini, E; Wuryanti, W; Winarni, T A; Widyanto, S A; Muharam, H

    2015-01-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog. (paper)

  18. Presentation of a methodology for measuring social acceptance of three hydrogen storage technologies and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, I.; Bigay, C. N.

    2005-07-01

    Hydrogen storage is a key technology for the extensive use of H2 as energy carrier. As none of the current technologies satisfies all of the hydrogen storage attributes required by manufacturers and end users, there is intense research works aiming at developing viable solutions. A broad objective of the StorHy European project is to provide technological storage solutions, which are attractive from an economical, environmental and safety point of view. A specific sub-project is dedicated to the comparison of three different potential storage technologies for transport applications (compressed gas, cryogenic liquid, solid media). This evaluation is carried out in a harmonised way, based on common tools and assessment strategies that could be useful for decision makers and stakeholders. The assessment is achieved in a 'sustainable development' spirit, taking into consideration the technical, environmental, economical, safety and social requirements. The latter ones have newly emerged in such evaluations, based on the Quality Function Deployment (QFD) approach, and would require to be further studied. Hydrogen acceptability studies have been conducted in previous projects. They have been reviewed by LBST in the AcceptH2 project Public acceptance of Hydrogen Transport Technologies : Analysis and comparisons of existing studies (www. accepth2. com - August 2003). During these hydrogen acceptance surveys, mainly fuel cell bus passengers from demonstration projects around the world have been questioned. The work presented in this paper goes further in the methodology refinement as it focuses on the evaluation of hydrogen storage solutions. It proposes a methodological tool for efficient social evaluation of new technologies and associated preliminary results concerning France. In a global approach to sustainable development, the CEA has developed a new methodology to evaluate its current research projects : Multicriteria Analysis for Sustainable Industrial

  19. The Future of Hydropower: Assessing the Impacts of Climate Change, Energy Prices and New Storage Technologies

    Science.gov (United States)

    Gaudard, Ludovic; Madani, Kaveh; Romerio, Franco

    2016-04-01

    The future of hydropower depends on various drivers, and in particular on climate change, electricity market evolution and innovation in new storage technologies. Their impacts on the power plants' profitability can widely differ in regards of scale, timing, and probability of occurrence. In this respect, the risk should not be expressed only in terms of expected revenue, but also of uncertainty. These two aspects must be considered to assess the future of hydropower. This presentation discusses the impacts of climate change, electricity market volatility and competing energy storage's technologies and quantifies them in terms of annual revenue. Our simulations integrate a glacio-hydrological model (GERM) with various electricity market data and models (mean reversion and jump diffusion). The medium (2020-50) and long-term (2070-2100) are considered thanks to various greenhouse gas scenarios (A1B, A2 and RCP3PD) and the stochastic approach for the electricity prices. An algorithm named "threshold acceptance" is used to optimize the reservoir operations. The impacts' scale, and the related uncertainties are presented for Mauvoisin, which is a storage-hydropower plant situated in the Swiss Alps, and two generic pure pumped-storage installations, which are assessed with the prices of 17 European electricity markets. The discussion will highlight the key differences between the impacts brought about by the drivers.

  20. Technology-base research project for electrochemical storage report for 1981

    Science.gov (United States)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  1. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoll, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work, we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage

  2. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Nutt, Mark; Shuler, James

    2012-01-01

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  3. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  4. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  5. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  6. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  7. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  8. THE IMPACT OF ORGANIZATIONAL AND TECHNOLOGICAL FACTORS ON THE EXPENSE STRUCTURE OF THE GRAIN STORAGES CONSTRUCTION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    MENEJLYUK A. I.

    2016-12-01

    Full Text Available Formulation of the problem. The deficit of grain storage capacities in Ukraine is about 15-20 mln. tons. Specific conditions of the realization of grain storage construction projects require systemic research to improve the efficiency of organizational and technological solutions in the management of specialized companies, to reduce costs of construction works and to increase the profit margin. Purpose. Research changes in the structure and the amount of the total production costs of the grain storage construction enterprise under the influence of organizational and technological factors. Conclusion. The account of features of grain storage construction, as well as developed research methodology: have resulted in analysis and the construction of a computer model of the operating activity of the grain storage construction enterprise; have allowed exploring experimental and statistical regularities of indicators changes of such operating activity from the influence of organizational and technological factors.

  9. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  10. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun, E-mail: varun@stanford.ed [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States); Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  11. Carbon capture and storage at scale. Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun; Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost. (author)

  12. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    International Nuclear Information System (INIS)

    Rai, Varun; Victor, David G.; Thurber, Mark C.

    2010-01-01

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO 2 -scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  13. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  14. The technology of storage of a geno-fund of seeds of plants and animals

    International Nuclear Information System (INIS)

    Ombayev, A.M.; Tokhanov, M.T.; Burtebayeva, D.T.; Burtebayev, N.

    2002-01-01

    waves, of special frequencies and of a gaseous medium, created by the liquid nitrogen. There is established, that such way of the storage of ram sperms improves essentially a fertilization-ability of sheep and of a quality of sperms. The final object of our investigations consists in a creation of a new complex technology for the storage of the geno-fund of plant seeds, including various combinations of three ecologically - pure technological techniques. These are a pyramid, a gaseous medium and electromagnetic waves. It is necessary to note, that in some cases a choice of storages in the form of pyramids does not require a construction of special spaces with refrigerating machinery and large energetic and labour - consuming expenditures

  15. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  16. Disordering fantasies of coal and technology: Carbon capture and storage in Australia

    International Nuclear Information System (INIS)

    Marshall, Jonathan Paul

    2016-01-01

    One of the main ways that continued use of coal is justified, and compensated for, is through fantasies of technology. This paper explores the politics of 'Carbon Capture and Storage' (CCS) technologies in Australia. These technologies involve capturing CO 2 emissions, usually to store them 'safely' underground in a process called 'geo-sequestration'. In Australia the idea of 'clean coal' has been heavily promoted, and is a major part of CO 2 emissions reduction plans, despite the technological difficulties, the lack of large scale working prototypes, the lack of coal company investment in such research, and the current difficulties in detecting leaks. This paper investigates the ways that the politics of 'clean coal' have functioned as psycho-social defence mechanisms, to prolong coal usage, assuage political discomfort and anxiety, and increase the systemic disturbance produced by coal power. - Highlights: • Clean coal and geological sequestration is part of Australian climate policy. • Governments have offered much to carbon capture and storage (CCS) projects. • Coal, and coal power, industries have been relatively uninterested. • Progress with CCS is problematic and has not lived up to expectations. • CCS defends against tackling the connection between coal and climate.

  17. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  18. Sentinel 2 MMFU: The first European Mass Memory System Based on NAND-Flash Storage Technology

    Science.gov (United States)

    Staehle, M.; Cassel, M.; Lonsdorfer, U.; Gliem, F.; Walter, D.; Fichna, T.

    2011-08-01

    Sentinel-2 is the multispectral optical mission of the EU-ESA GMES (Global Monitoring for Environment and Security) program, currently under development by Astrium-GmbH in Friedrichshafen (Germany) for a launch in 2013. The mission features a 490 Mbit/s optical sensor operating at high duty cycles, requiring in turn a large 2.4 Tbit on-board storage capacity.The required storage capacity motivated the selection of the NAND-Flash technology which was already secured by a lengthy period (2004-2009) of detailed testing, analysis and qualification by Astrium GmbH, IDA and ESTEC. The mass memory system is currently being realized by Astrium GmbH.

  19. Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

  20. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  1. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage

  2. Biotic elements of NPP techno-ecosystem

    International Nuclear Information System (INIS)

    Protasov, A.A.; Silaeva, A.A.

    2013-01-01

    Specific features of biotic elements in the NPP techno-ecosystems were considered and compared with natural ecosystems. Relationships between biotic communities and environmental factors that are specific to the techno-ecosystems were discussed, and the problems of limitation of biological hindrances in operation of equipment, principles of hydrobiological and environmental monitoring were considered.

  3. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  4. Definition of Storage Complex for the Technological Development Plant and the Evaluation Scenarios

    International Nuclear Information System (INIS)

    Recreo, F.; Hurtado, A.; Eguilior, S.

    2015-01-01

    This report intends a geological description of the site for the Technological Development Plant that CIUDEN is conducting in Hontomín (Burgos) for the improvement, both technological and economic, of the key aspects of geological storage of CO2 in deep permeable formations. Safety studies of this site began in 2008 with a preliminary appraisal of several pre-selected areas in the western part of the so-called "Cantabrian Basin". However, the modelling of the processes acting in the permanent sequestration of CO2 requires a much more detailed knowledge of the geological formations that form the complex storage and of its lithologic, petrophysical, hydrogeological, geochemical and geomechanical characteristics. This report presents a summary of the geological and hydrogeological information available from the documentation provided by the Geological Survey of Spain (IGME) and the published studies conducted in the area for oil research campaigns between 1965-68 and 1991–96. This information has allowed to deriving a preliminary conceptualization of what would be the system model of the geological system where the Technological Development Plant will be installed as well as identifying the remaining uncertainties.

  5. Evaluating the development of carbon capture and storage technologies in the United States

    International Nuclear Information System (INIS)

    van Alphen, Klaas; Noothout, Paul M.; Hekkert, Marko P.; Turkenburg, Wim C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies in the US between 2000 and 2009 and to come up with policy recommendations for technology managers that wish to accelerate the deployment of CCS. The analysis describes the successful built-up of an innovation system around CCS and pinpoints the key determinants for this achievement. However, the evaluation of the system's performance also indicates that America's leading role in the development of CCS should not be taken for granted. It shows that the large CCS R and D networks, as well as the extensive CCS knowledge base, which have been accumulated over the past decade, have not yet been valorized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. Therefore, it is argued that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS technologies in the US. This study provides a clear understanding of the current barriers to the technology's future deployment and outlines a policy strategy that (1) stimulates technological learning; (2) facilitates collaboration and coordination in CCS actor networks; (3) creates financial and market incentives for the technology; and (4) provides supportive regulation and sound communication on CCS. (author)

  6. Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger

    KAUST Repository

    Baoua, Ibrahim B.

    2012-10-01

    Triple bagging technology for protecting postharvest cowpea grain from losses to the bruchid, Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae) is currently being adopted on a fairly large scale in ten West and Central African countries, including Niger. The triple bag consists of two inner high-density polyethylene bags acting as oxygen barriers, which in turn are encased in an outer woven polypropylene bag that serves primarily for mechanical strength. These hermetic bags, available in either 50 or 100 kg capacity, are called Purdue Improved Cowpea Storage (PICS) bags. Adoption of PICS technology in West and Central Africa has been driven by its effectiveness, simplicity, low cost, durability, and manufacture within the region. From surveys on adoption we discovered that farmers have begun to re-use bags they had used the previous year or even the previous two years. In the present study, we compared the performance of three different types of PICS bags: (1) new 50 kg (2) new 100 kg bags and (3) once-used 50 kg bags, all filled with naturally infested untreated cowpeas. In these PICS bags the O 2 levels within the bags initially fell to about 3 percent (v/v) while the CO 2 rose to nearly 5 percent (v/v). After five months of storage, new and used 50 kg bags and new 100 kg bags preserved the grain equally well. There were greatly reduced numbers of adults and larvae in the PICS bags versus the controls, which consisted of grain stored in single layer woven bags. The proportion of grain having C. maculatus emergence holes after five months of storage in PICS bags was little changed from that found when the grain was first put into the bags. The PICS technology is practical and useful in Sahelian conditions and can contribute to improved farmers\\' incomes as well as increase availability of high quality, insecticide-free cowpea grain as food. © 2012 Elsevier Ltd.

  7. Slowing global warming biotically - Options for the United States

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Each of the five biotic approaches introduced in Chapter 2 is applicable to some extent in the US. Taking US land-use characteristics into account, a menu of policy options tailored to US carbon storage opportunities is presented. Several of the options are capable of significantly reducing net US carbon emissions; several offer corollary benefits in areas other than global warming mitigation. The time frame and costs of the different options vary widely, although in most cases some level of implementation appears economically justified even without considering global warming. The approach, projected costs, and advantages of seven different policy options are profiled

  8. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  9. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO 2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO 2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  10. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim [ed.

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  11. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    Science.gov (United States)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  12. A Highly Scalable Data Service (HSDS) using Cloud-based Storage Technologies for Earth Science Data

    Science.gov (United States)

    Michaelis, A.; Readey, J.; Votava, P.; Henderson, J.; Willmore, F.

    2017-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy, security mechanisms and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and legacy software systems developed for online data repositories within the federal government were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Moreover, services bases on object storage are well established and provided through all the leading cloud service providers (Amazon Web Service, Microsoft Azure, Google Cloud, etc…) of which can often provide unmatched "scale-out" capabilities and data availability to a large and growing consumer base at a price point unachievable from in-house solutions. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows a performance advantage for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  13. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  14. Assessment of derelict soil quality: Abiotic, biotic and functional approaches.

    Science.gov (United States)

    Vincent, Quentin; Auclerc, Apolline; Beguiristain, Thierry; Leyval, Corinne

    2018-02-01

    The intensification and subsequent closing down of industrial activities during the last century has left behind large surfaces of derelict lands. Derelict soils have low fertility, can be contaminated, and many of them remain unused. However, with the increasing demand of soil surfaces, they might be considered as a resource, for example for non-food biomass production. The study of their physico-chemical properties and of their biodiversity and biological activity may provide indications for their potential re-use. The objective of our study was to investigate the quality of six derelict soils, considering abiotic, biotic, and functional parameters. We studied (i) the soil bacteria, fungi, meso- and macro-fauna and plant communities of six different derelict soils (two from coking plants, one from a settling pond, two constructed ones made from different substrates and remediated soil, and an inert waste storage one), and (ii) their decomposition function based on the decomposer trophic network, enzyme activities, mineralization activity, and organic pollutant degradation. Biodiversity levels in these soils were high, but all biotic parameters, except the mycorrhizal colonization level, discriminated them. Multivariate analysis showed that biotic parameters co-varied more with fertility proxies than with soil contamination parameters. Similarly, functional parameters significantly co-varied with abiotic parameters. Among functional parameters, macro-decomposer proportion, enzyme activity, average mineralization capacity, and microbial polycyclic aromatic hydrocarbon degraders were useful to discriminate the soils. We assessed their quality by combining abiotic, biotic, and functional parameters: the compost-amended constructed soil displayed the highest quality, while the settling pond soil and the contaminated constructed soil displayed the lowest. Although differences among the soils were highlighted, this study shows that derelict soils may provide a

  15. Archiving and Managing Remote Sensing Data using State of the Art Storage Technologies

    Science.gov (United States)

    Lakshmi, B.; Chandrasekhara Reddy, C.; Kishore, S. V. S. R. K.

    2014-11-01

    Integrated Multi-mission Ground Segment for Earth Observation Satellites (IMGEOS) was established with an objective to eliminate human interaction to the maximum extent. All emergency data products will be delivered within an hour of acquisition through FTP delivery. All other standard data products will be delivered through FTP within a day. The IMGEOS activity was envisaged to reengineer the entire chain of operations at the ground segment facilities of NRSC at Shadnagar and Balanagar campuses to adopt an integrated multi-mission approach. To achieve this, the Information Technology Infrastructure was consolidated by implementing virtualized tiered storage and network computing infrastructure in a newly built Data Centre at Shadnagar Campus. One important activity that influences all other activities in the integrated multi-mission approach is the design of appropriate storage and network architecture for realizing all the envisaged operations in a highly streamlined, reliable and secure environment. Storage was consolidated based on the major factors like accessibility, long term data protection, availability, manageability and scalability. The broad operational activities are reception of satellite data, quick look, generation of browse, production of standard and valueadded data products, production chain management, data quality evaluation, quality control and product dissemination. For each of these activities, there are numerous other detailed sub-activities and pre-requisite tasks that need to be implemented to support the above operations. The IMGEOS architecture has taken care of choosing the right technology for the given data sizes, their movement and long-term lossless retention policies. Operational costs of the solution are kept to the minimum possible. Scalability of the solution is also ensured. The main function of the storage is to receive and store the acquired satellite data, facilitate high speed availability of the data for further

  16. Technological challenges in the retrieval of spent fuel from storage in sea vessels

    International Nuclear Information System (INIS)

    Egorov, N.N.; Ershov, V.N.; Tohernaenko, L.M.; Yanovskaya, N.S.; Barskov, M.K.; Grigorov, S.I.

    1999-01-01

    As discussed in this presentation, the decommissioning of scrapped nuclear vessels in Russia has been too fast for the existing waste management plants to keep pace with. Existing facilities were designed to service the fleet in operation and are filled up. The development of new infrastructure for handling radioactive waste and spent nuclear fuel is impeded by the lack of financial means. A large number of nuclear submarines are now laid up with the nuclear fuel still loaded, but the President and the Government have decided to speed up unloading of the spent fuel. The bottleneck is the discharge of the spent nuclear fuel. The Navy has three floating storage facilities for the purpose. The Navy performs many technological decommissioning operations that would have been more appropriately left for shipyards and specialised civil industrial enterprises. Coastal discharge plants at larger shipyards are planned on the North and the Pacific regions of Russia. These are built with US support. The containers used for transport to the Mayak storage are discussed. A metal-concrete container programme is executed in co-operation with Norway and the US. Mayak does not have the capacity for long-term storage of spent nuclear fuel. A temporary storage facility at Mayak has been designed by a consortium of enterprises from Norway, Sweden, UK and France. Lepse, a service-ship for the nuclear icebreaker fleet, was laid up in 1990. It contains spent nuclear fuel assemblies in such bad condition that they cannot easily be discharged. There is an international project for decommissioning Lepse. The Russians consider this a pilot project. The problems of the civil nuclear fleet are similar to those of the Navy

  17. Remote technology related to the handling, storage and disposal of spent fuel. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Reduced radiation exposure, greater reliability and cost savings are all potential benefits of the application of remote technologies to the handling of spent nuclear fuel. Remote equipment and technologies are used to some extent in all facilities handling fuel and high-level wastes whether they are for interim storage, processing/repacking, reprocessing or disposal. In view of the use and benefits of remote technologies, as well as recent technical and economic developments in the area, the IAEA organized the Technical Committee Meeting (TCM) on Remote Technology Related to the Handling, Storage and/or Disposal of Spent Fuel. Twenty-one papers were presented at the TCM, divided into five general areas: 1. Choice of technologies; 2. Use of remote technologies in fuel handling; 3. Use of remote technologies for fuel inspection and characterization; 4. Remote maintenance of facilities; and 5. Current and future developments. Refs, figs and tabs.

  18. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  19. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  20. CO2 capture and storage in the subsurface - A technological pathway for combating climate change

    International Nuclear Information System (INIS)

    2007-10-01

    The Earth is warning abnormally. The guilty parties are so-called 'greenhouse gases' (GHG), the main one being carbon dioxide (CO 2 ). Produced in large quantities by human activities such as transportation, domestic uses and industry, this gas is essentially given off when fossil fuels - coal, oil or gas - are burned. In addition to efforts to reduce energy consumption and develop renewable energy sources, CO 2 capture and storage emerges as an option insofar as fossil fuels will continue to be exploited. Since release of the IPCC special report in 2005, mobilization has flourished worldwide for the development of this technological pathway enabling the use of fossil fuels without CO 2 emissions, thus biding time until the arrival of alternate energy resources. This brochure goes back over the context of greenhouse gas emissions reductions and addresses at length the achievements and projects in the field of CO 2 capture and storage. It also provides a detailed description of on-going technological research and development programmes, highlighting both accomplishments and orientations where progress is expected. It takes stock of recent progress, particularly in France and Europe: - the consideration by political bodies of this option that contributes to reducing greenhouse gas emissions, - the first industrial operations worldwide, - the new European demonstration projects in Europe to generate electricity and produce hydrogen or steam, - the mounting interest amongst France's industry outside the energy sector: steel sector, cement production, waste processing, bio-fuel production, - the most pertinent achievements and new research initiatives in Europe for CO 2 capture, transport and storage, - the appropriate regulations and legal framework as well as economic incentives for cutting the costs and increasing the commitments of States

  1. Transmutation technologies to solve the problem of long-term spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Hosnedl, P.; Valenta, V.; Blahut, O.

    2000-01-01

    The paper gives a brief description of the transmutation process for actinides and long-lived fission products which are present in spent nuclear fuel. Transmutation technologies can solve the problem of long-term spent nuclear fuel storage and reduce the requirements for storage time and conditions. The basic data and requirements for the detailed design of the transmutor are summarized, and the views upon how to address the fuel purification and dry reprocessing issues are discussed. The results of activities of SKODA JS are highlighted; these include, for instance, the fluoride salt-resistant material MONICR, test loops, and electrowinners. The preliminary design of the transmutor is also outlined. Brief information regarding activities in the field of transmutation technologies in the Czech Republic and worldwide is also presented. The research and design activities to be developed for the whole design of the demonstration and basic units are summarized. It is emphasized that SKODA JS can join in international cooperation without constraints. The Attachment presents a simple assessment of how the radioactivity balance can be reduced, based on the actinide and long-lived fission product transmutation half-lives, is presented in the Attachment. (author)

  2. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  3. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    Science.gov (United States)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  4. Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    Directory of Open Access Journals (Sweden)

    ABDULLAH MENGAL

    2017-04-01

    Full Text Available The CCS (Carbon Capture and Storage is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan.

  5. A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping

    Directory of Open Access Journals (Sweden)

    Hong-Hua Qiu

    2018-05-01

    Full Text Available As a useful technical measure to deal with the problem of carbon dioxide (CO2 emissions, carbon capture and storage (CCS technology has been highly regarded in both theory and practice under the promotion of the Intergovernmental Panel on Climate Change (IPCC. Knowledge mapping is helpful for understanding the evolution in terms of research topics and emerging trends in a specific domain. In this work knowledge mapping of CCS technology was investigated using CiteSpace. Several aspects of the outputs of publications in the CCS research area were analyzed, such as annual trends, countries, and institutions. The research topics in this particular technology area were analyzed based on their co-occurring keyword networks and co-citation literature networks, while, the emerging trends and research frontiers were studied through the analysis of burst keywords and citation bursts. The results indicated that the annual number of publications in the research field of CCS technology increased rapidly after 2005. There are more CCS studies published in countries from Asia, North America, and Europe, especially in the United States and China. The Chinese Academy of Sciences not only has the largest number of publications, but also has a greater impact on the research area of CCS technology, however, there are more productive institutions located in developed countries. In the research area of CCS technology, the main research topics include carbon emissions and environmental protection, research and development activities, and social practical issues, meanwhile, the main emerging trends include emerging techniques and processes, emerging materials, evaluation of technological performance, and socioeconomic analysis.

  6. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  7. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  8. Manipulation technology optimization for the interim storage of HAW transport and storage containers; Optimierung der Handhabungstechnik zur Zwischenlagerung von HAW-Transport- und Lagerbehaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Emmrich, Uwe; Krueger, Michael; Schulze, Hartmut [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The handling of high-level radioactive waste transport and storage containers from reprocessing plants is determined by the cask configuration and the radiation protection measures with respect to the safe enclosure of the radioactive inventory and shielding of gamma and neutron radiation. The new of CASTOR {sup registered} HAW28M was designed for higher radioactive inventories, the heat generation is has rarely been changed with respect to the former design. The essential structural modifications are shock absorbers that have to be demounted before storage in the interim storage facility Gorleben. Due to public acceptance forcings the ALARA principle is not the only basis for manipulation technology optimizations, the minimization of dose rate for the operational personnel is of increasing importance. The authors describe the optimizations and the resulting dose reductions.

  9. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  10. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  11. Biotic and Biogeochemical Feedbacks to Climate Change

    Science.gov (United States)

    Torn, M. S.; Harte, J.

    2002-12-01

    Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental

  12. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  13. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments

    Science.gov (United States)

    Haszeldine, R. Stuart; Flude, Stephanie; Johnson, Gareth; Scott, Vivian

    2018-05-01

    How will the global atmosphere and climate be protected? Achieving net-zero CO2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO2 yr-1, not the minimum 6000 Mt CO2 yr-1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO2 storage. A second simple action is to assign a Certificate of CO2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO2 to be stored. No CCS means no 2°C. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  14. Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  15. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  17. Monitoring Conformance and Containment for Geological Carbon Storage: Can Technology Meet Policy and Public Requirements?

    Science.gov (United States)

    Lawton, D. C.; Osadetz, K.

    2014-12-01

    The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.

  18. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Staiger, M. Daniel; Swenson, Michael C.

    2011-01-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  19. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  20. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  1. Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  2. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  3. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  4. Quality assurance of underground energy storage. The development of a quality mark by Kiwa and IF Technology; Kwaliteitsborging ondergrondse energieopslag. Kiwa en IF Technology ontwikkelen een kwaliteitskeur

    Energy Technology Data Exchange (ETDEWEB)

    Bakema, G. [IF Technology, Arnhem (Netherlands); Veldhuizen, A.G. [KIWA Inspectie, Rijswijk (Netherlands)

    2005-12-01

    In the last few years the market for energy storage showed a strong development from an innovative technology to a demonstrated technology. In the coming years the number of energy storage systems will increase. Therefore, quality control and assurance will be necessary and the development of a quality mark is required. [Dutch] De markt voor energieopslag heeft de laatste jaren een sterke ontwikkeling doorgemaakt. De opslag van energie is doorgegroeid van een innovatieve technologie naar een bewezen techniek. De verwachting is dat het aantal systemen zich de komende jaren nog sterk zal gaan uitbreiden. Kwaliteitsborging is een logisch gevolg, en een kwaliteitskeur een eerste aanzet.

  5. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    Roland, V.; Solignac, Y.; Chiguer, M.; Guenon, Y.

    2003-01-01

    The current international trend towards expanding Spent Fuel Interim Dry Storage capabilities goes with an improvement of the performance of the proposed systems which have to accommodate Spent fuel Assemblies characterized by ever increasing burn-up, fissile isotopes contents, thermal releases, and total inventory. Due to heterogeneous worldwide reactor pools and specific local constraints the proposed solutions have also to cope with a wide fuel design variety. Moreover, the Spent fuel Assemblies stored temporarily for cooling may have to be transported either to reprocessing facilities or to interim storage facilities before direct disposal; it is the reason why the retrievability, including or not transportability of the proposed systems, is often specified by the Utilities for the design of their Storage systems and sometimes by law. This paper shows on examples developed within companies of AREVA Group the key parameters and elements that can direct toward the selection of a technology in a user specific context. Some of the constraints are ability to dry store at once a large number of spent fuel assemblies, readily available, on a given site. No urgent need for further move of the fuel is foreseen. Then clearly a Vault Type Storage system developed and implemented by SGN is an excellent solution: It combines passive safety with immediate large capacity, which allows quick amortization of fuel receiving equipment. In addition the versatile storage position can easily accept in the same facility different fuel types, and also intermediate and High Level Waste. This is the reason why a vault system is often a preferred solution for a long-term dry interim centralized storage, for a multiplicity of spent fuel. It can be also a choice solution when the ISFSI stands on a site that is dedicated permanently to many different nuclear activities.In most cases, the producers of spent fuel require a large capacity that is cumulated over many years, each reload at a

  6. CODE ACCEPTANCE OF A NEW JOINING TECHNOLOGY FOR STORAGE CONTAINMENTS (REISSUE)

    International Nuclear Information System (INIS)

    Cannel, G.R.; Grant, G.J.; Hill, B.E.

    2009-01-01

    One of the activities associated with cleanup throughout the Department of Energy (DOE) complex is packaging radioactive materials into storage containers. Much of this work will be performed in high-radiation environments requiring fully remote operations, for which existing, proven systems do not currently exist. These conditions require a process that is capable of producing acceptable (defect-free) welds on a consistent basis; the need to perform weld repair, under fully-remote operations, can be extremely costly and time consuming. Current closure-welding technologies (fusion welding) are not well suited for this application and will present risk to cleanup cost and schedule. To address this risk, Fluor and the Pacific Northwest National Laboratory (PNNL) are proposing that a new and emerging joining technology, Friction Stir Welding (FSW), be considered for this work. FSW technology has been demonstrated in other industries (aerospace and marine) to produce near flaw-free welds on a consistent basis. FSW is judged capable of providing the needed performance for fully-remote closure welding of containers for radioactive materials for the following reasons: FSW is a solid-state process; material is not melted. FSW does not produce the type of defects associated with fusion welding, e.g., solidification-induced porosity, cracking, and distortion due to weld shrinkage. In addition, because FSW is a low-heat input process, material properties (mechanical, corrosion and environmental) experience less degradation in the heat affected zones than do fusion welds. When compared to fusion processes, FSW produces extremely high weld quality. FSW is performed using machine-tool technology. The equipment is simple and robust and well-suited for high radiation, fully-remote operations compared to the relatively complex equipment associated with fusion-welding processes. Additionally, for standard wall thicknesses of radioactive materials containers, the FSW process can

  7. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Cormos, Calin-Cristian

    2012-01-01

    IGCC (Integrated Gasification Combined Cycle) is a power generation technology in which the solid feedstock is partially oxidized with oxygen and steam to produce syngas. In a conventional IGCC design without carbon capture, the syngas is purified for dust and hydrogen sulphide removal and then it is sent to a CCGT (Combined Cycle Gas Turbine) for power generation. CCS (Carbon capture and storage) technologies are expected to play a significant role in the coming decades for reducing the greenhouse gas emissions. IGCC is one of the power generation technologies having the highest potential to capture CO 2 with low penalties in term of plant energy efficiency, capital and operational costs. This paper investigates the most important techno-economic and environmental indicators (e.g. power output, ancillary consumption, energy efficiency, CW consumption, normalised mass and energy balances and plant construction materials, capital and O and M (operational and maintenance) costs, specific CO 2 emissions, cost of electricity, CO 2 removal and avoidance costs etc.) for IGCC with CCS. Coal-based IGCC cases produce around 400–450 MW net electricity with 90% carbon capture rate. Similar IGCC plants without CCS were presented as references. Future IGCC developments for energy vectors poly-generation were also presented. -- Highlights: ► Techno-economical evaluations of coal-based IGCC power generation with CCS. ► Model development for capital, O and M, CO 2 capture costs and cash flow estimations. ► Technical and economic investigations of key plant design characteristics. ► Evaluations of carbon capture options for IGCC power generation technology.

  8. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    Science.gov (United States)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  9. Coevolutionary aesthetics in human and biotic artworlds.

    Science.gov (United States)

    Prum, Richard O

    2013-01-01

    This work proposes a coevolutionary theory of aesthetics that encompasses both biotic and human arts. Anthropocentric perspectives in aesthetics prevent the recognition of the ontological complexity of the aesthetics of nature, and the aesthetic agency of many non-human organisms. The process of evaluative coevolution is shared by all biotic advertisements. I propose that art consists of a form of communication that coevolves with its own evaluation. Art and art history are population phenomena. I expand Arthur Danto's Artworld concept to any aesthetic population of producers and evaluators. Current concepts of art cannot exclusively circumscribe the human arts from many forms of non-human biotic art. Without assuming an arbitrarily anthropocentric perspective, any concept of art will need to engage with biodiversity, and either recognize many instances of biotic advertisements as art, or exclude some instances of human art. Coevolutionary aesthetic theory provides a heuristic account of aesthetic change in both human and biotic artworlds, including the coevolutionary origin of aesthetic properties and aesthetic value within artworlds. Restructuring aesthetics, art criticism, and art history without human beings at the organizing centers of these disciplines stimulate new progress in our understanding of art, and the unique human contributions to aesthetics and aesthetic diversity.

  10. Public acceptance of CO2 capture and storage technology : a survey of public opinion to explore influential factors

    International Nuclear Information System (INIS)

    Itaoka, K.; Saito, A.; Akai, M.

    2005-01-01

    A potentially effective tool in managing carbon emissions is carbon capture and storage technology (CCS). However, its effectiveness depends on its acceptability by the public, and very little is known about how willing the general public will accept various options of CCS. This paper presented the results of a study that assessed general perceptions of various forms of CCS and identified various factors that influence public acceptance of CCS. Two versions of a survey were administered and conducted in Tokyo and Sapporo, Japan in December 2003. The paper discussed the design of the questionnaire as well as the administration of the survey. One version of the survey provided limited education about CCS, while another version, provided more extensive information about CCS. The data analysis methodology was also described with reference to factor analysis, comparisons of means and rank order distributions, and multiple regression. Last, the study findings and results were presented. The findings suggest that the general public was supportive of CCS as part of a larger national climate policy, although it was opposed to the implementation of specific CCS options involving deep-sea dilution option of ocean storage, lake type option of ocean storage, onshore option of geological storage, and offshore option of geological storage. In addition, it was found that education about CCS affected public acceptance. The more information respondents obtained about CCS, the more likely they were to be supportive of those storage options, except for onshore option of geological storage. 4 refs., 3 tabs

  11. Effect of Recipe and Production Technology of Chocolate Products on Their Quality During Storage

    Directory of Open Access Journals (Sweden)

    Lenka Machálková

    2017-01-01

    Full Text Available The effect of four storage temperature modes (6, 12, 20 and 30 °C on sensory properties of chocolate products and their colour changes in the experiment over a period of 6 months. The results were evaluated with regard to the production technology and composition of chocolate products. The experiment was performed on filled milk chocolate product called Orion Pistachio made in four versions such as a standard containing cocoa mass of 35 % referred to retempered variant (RS and not treated by retempering (NS variant and with higher proportion of cocoa mass (45 % stated as retempered variant (R45 and not treated by retempering (N45 variant. Retempering means the exposure of products for 24 hours at 24 °C immediately after the production and packaging. The results show that the technology of retempering can effectively increase the resistance of chocolate products to the fat bloom as reflected in the improved colour stability. Sensory most acceptable products were stored at 6 and 12 °C throughout the experiment.

  12. Binary codes storage and data encryption in substrates with single proton beam writing technology

    International Nuclear Information System (INIS)

    Zhang Jun; Zhan Furu; Hu Zhiwen; Chen Lianyun; Yu Zengliang

    2006-01-01

    It has been demonstrated that characters can be written by proton beams in various materials. In contributing to the rapid development of proton beam writing technology, we introduce a new method for binary code storage and data encryption by writing binary codes of characters (BCC) in substrates with single proton beam writing technology. In this study, two kinds of BCC (ASCII BCC and long bit encrypted BCC) were written in CR-39 by a 2.6 MeV single proton beam. Our results show that in comparison to directly writing character shapes, writing ASCII BCC turned out to be about six times faster and required about one fourth the area in substrates. The approach of writing long bit encrypted BCC by single proton beams supports preserving confidential information in substrates. Additionally, binary codes fabricated by MeV single proton beams in substrates are more robust than those formed by lasers, since MeV single proton beams can make much deeper pits in the substrates

  13. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  14. Cleaner fossil power generation in the 21st century: a technology strategy for carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    The document describes how the research, development and demonstration (RD&D) components of the United Kingdom Government's Carbon Abatement Technologies (CATs) Strategy should be developed and extended, with particular reference to a 2020 target for carbon dioxide capture and storage (CCS) commercialisation and the 2050 UK Committee on Climate Change (CCC) dioxide target. It sets out a strategy for RD&D through the establishment of a collaborative programme linking industry, and academia, and involving different funding sources. The proposed RD& D programme has seven strategic themes: Power plant: focus on cost, increasing efficiency, biomass co-firing; Capture technologies: focus on cost, efficiency penalty, waste heat utilisation; storage: focus on security, monitoring and verification; transport: focus on logistics and transport network; whole system: focus on risks, transient capability, economics, environmental issues; advanced and novel capture technologies; and underpinning technology support. 11 refs., 10 figs., 15 tabs.

  15. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    International Nuclear Information System (INIS)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment

  16. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  17. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  18. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  19. Digital radiography - usability of experience in medical technology with fluorescent storage material for technical X-ray testing

    International Nuclear Information System (INIS)

    Mattis, A.; Winterberg, K.H.

    1992-01-01

    In nearly 100 years' development of X-ray technique, synergy effects between medical technology and non-destructive material testing (NDT) have repeatedly led to new applications. Thus digital radiography in medicine is a 'low dose' process introduced years ago which, by using a specially developed storage foil technique, offers extensive possibilities of application for NDT. (orig.) [de

  20. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  1. Materials flow systems. Haulage- and storage technology. 3. new rev. ed.; Materialflusssysteme. Foerder- und Lagertechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hompel, Michael ten; Juenemann, Reinhardt (eds.); Schmidt, Thorsten; Nagel, Lars [Fraunhofer-Institut fuer Materialfluss und Logistik (IML), Dortmund (Germany)

    2007-07-01

    This basic textbook of intralogistics focuses on material flow systems as a symbiosis of in-house organisation and its physical implementation. There are many tables, graphs and technical data, as well as a multitude of examples and options that give the reader a comprehensive survey of the key components of transport and storage techniques. To design efficient material flow systems, one must have knowledge of the state of the art of currently available technologies for material flow operations and their interactions in the many envisageable applications. The book is a decision aid for students, practicians, planners and decision-makers. There is also an introduction to the design and analytical calculation of material flow systems that provides a comprehensive outline of the available components for meeting the central logistic functions of storage, transport, joining of material flow, and distribution. (orig.) [German] Materialflusssysteme als Symbiose aus betrieblicher Organisation und physischer, foerdertechnischer Umsetzung stehen im Mittelpunkt dieses Grundlagenwerks der Intralogistik. Zahlreiche Tabellen, Grafiken und technische Daten sowie eine Fuelle von Systembeispielen und Auswahlmoeglichkeiten liefern dem Leser einen vollstaendigen Ueberblick ueber die wesentlichen Komponenten der Foerder- und Lagertechnik. Die Gestaltung effizienter Materialflusssysteme setzt Kenntnisse ueber den Stand der heute verfuegbaren Technologien fuer die vielfaeltigen Materialflussoperationen und deren Wechselwirkungen in den zahlreichen Anwendungen voraus. Beim Abwaegen der grossen Auswahl an Gestaltungsmoeglichkeiten, die aus den vielen Technologien hervorgeht, steht dieses Buch sowohl Studierenden als auch Praktikern, Planern und Entscheidern zur Seite. Eine Einfuehrung in die Planung und analytische Berechnung von Materialflusssystemen vervollstaendigt den grundlegenden Ueberblick ueber die Komponenten zur Erfuellung der zentralen logistischen Funktionen, Dinge zu lagern

  2. Dry storage technologies: Optimized solutions for spent fuels and vitrified residues

    International Nuclear Information System (INIS)

    Roland, Vincent; Verdier, Antoine; Sicard, Damien; Neider, Tara

    2006-01-01

    ancillary equipment, Ready to move to final or centralized repository or reprocessing facility or other ISFSI, Compact systems, Easy rearrangement, Easy handling; - In favor of concrete shielded canisters based systems: Economics when initial quantity is sufficient to spread out up front equipment investment significant cost - Shielding advantage, Easy local production of the relatively light canisters. Both approaches of dry storage technologies can have a positive impact on their public acceptance because of their non-permanent characteristics and because their transport license refers to internationally recognized rules, standards and methods. Currently, more than 1,000 COGEMA Logistics/Transnuclear Inc. dry storage systems have been ordered in Belgium, Germany, Japan, Switzerland, Armenia and the US. Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues cannot be transported in the existing cask designs presently used. Therefore, COGEMA LOGISTICS has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN TM 81 casks currently in use in Switzerland and the TN TM 85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues. The TN TM 81 and the TN TM 85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production in existing reprocessing facilities. They also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing casks such as the TN TM 28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. In addition, years of feedback and experience in design and operations - together with ever improved

  3. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Dooner, Mark; Clarke, Jonathan

    2015-01-01

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  4. The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology

    Science.gov (United States)

    Valverde, Jose Manuel

    2018-02-01

    The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the

  5. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  6. NEDO Forum 2001. Session on advanced power generation and storage technology development; NEDO Forum 2001. Shindenryoku gijutsu kaihatsu session

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session and remarks made at the panel discussion of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Predicted by Deputy Chairman Tanaka of International Superconductivity Technology Center in his lecture entitled 'Energy problem in IT (information technology) oriented society' were that possibilities were high that power consumption would rapidly increase in line with the progress of broad band and wireless, that energy conservation and environmental technologies should be developed urgently, and that superconductivity technology would assume an important role. Discussed at the panel on 'Prospect of distributed power sources in power systems' were 'Power utilization by information communication in IT-oriented days and needs for development,' 'Energy utilization involving buildings and needs for development,' 'Tasks to discharge in cogeneration technology development and coordination with power systems,' 'Technical problems involving interconnection of distributed power sources and needs for development,' 'Present state of distributed power sources and needs for development,' and 'From Fuel and Storage Technology Development Department to Advanced Power Generation and Storage Technology Development Department.' (NEDO)

  7. A review of technology for verification of waste removal from Hanford Underground Storage Tanks (WHC Issue 30)

    International Nuclear Information System (INIS)

    Thunborg, S.

    1994-09-01

    Remediation of waste from Underground Storage Tanks (UST) at the Hanford Waste storage sites will require removal of all waste to a nearly clean condition. Current requirements are 99% clean. In order to meet remediation legal requirements, a means to remotely verify that the waste has been removed to sufficient level is needed. This report discusses the requirements for verification and reviews major technologies available for inclusion in a verification system. The report presents two operational scenarios for verification of residual waste volume. Thickness verification technologies reviewed are Ultrasonic Sensors, Capacitance Type Sensors, Inductive Sensors, Ground Penetrating Radar, and Magnetometers. Of these technologies Inductive (Metal Detectors) and Ground Penetrating Radar appear to be the most suitable for use as waste thickness sensors

  8. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  9. NEDO fuel/storage technology subcommittee. 18th project report meeting; NEDO nenryo chozo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, reports fuel and storage technologies, taking reference to the research and development of technologies relating to fuel cell power generation, cell power storage system of a novel type, ceramic gas turbine, superconductor-generated power application, wide-area energy utilization network system (urbane eco-energy system), high-temperature superconductor-supported flywheel power storage, demonstration of a novel method of load levelling, demonstration test for the establishment of a centralized control system, and so forth. Reported also is research and development involving a molten carbonate fuel cell power generation system, current status of distributed cell power storage system development (large lithium secondary storage battery technology development), current status of superconductor-generated power application technology, regenerative cycle type 2-shaft ceramic gas turbine for a 300kW-class cogeneration system, high-density latent heat transportation, and so forth. (NEDO)

  10. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power

    Science.gov (United States)

    Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison

    2018-04-01

    Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.

  11. Control of quality and silo storage of sunflower seeds using near infrared technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-05-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  12. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    Obana, Takeshi; Hamada, Yasumitsu; Ooeda, Kaoru; Katou, Masahide; Ootsuka, Toshihiro; Toyoda, Seiichi; Hosogane, Atsushi

    2007-01-01

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  13. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  14. Control of quality and silo storage of sunflower seeds using near infrared technology

    International Nuclear Information System (INIS)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-01-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  15. Design, engineering and utility of biotic games.

    Science.gov (United States)

    Riedel-Kruse, Ingmar H; Chung, Alice M; Dura, Burak; Hamilton, Andrea L; Lee, Byung C

    2011-01-07

    Games are a significant and defining part of human culture, and their utility beyond pure entertainment has been demonstrated with so-called 'serious games'. Biotechnology--despite its recent advancements--has had no impact on gaming yet. Here we propose the concept of 'biotic games', i.e., games that operate on biological processes. Utilizing a variety of biological processes we designed and tested a collection of games: 'Enlightenment', 'Ciliaball', 'PAC-mecium', 'Microbash', 'Biotic Pinball', 'POND PONG', 'PolymerRace', and 'The Prisoner's Smellemma'. We found that biotic games exhibit unique features compared to existing game modalities, such as utilizing biological noise, providing a real-life experience rather than virtual reality, and integrating the chemical senses into play. Analogous to video games, biotic games could have significant conceptual and cost-reducing effects on biotechnology and eventually healthcare; enable volunteers to participate in crowd-sourcing to support medical research; and educate society at large to support personal medical decisions and the public discourse on bio-related issues.

  16. The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland

    International Nuclear Information System (INIS)

    Yazdanie, Mashael; Densing, Martin; Wokaun, Alexander

    2016-01-01

    This study presents a framework to quantitatively evaluate decentralized generation and storage technology (DGST) performance and policy impacts in a rural setting. The role of DGSTs in the future energy systems planning of a rural agglomeration in Switzerland is examined using a cost optimization modeling approach. Heat and electricity demand for major sectors are considered. Scenarios introduce DGSTs in a stepwise manner to measure incremental impacts on future capacity planning compared to a baseline scenario. Sub-scenarios also examine the impacts of carbon mitigation policies, and a sensitivity analysis is carried out for key energy carriers and conversion technologies. DGSTs enable a significant reduction in electricity grid usage for the community considered. Small hydro with a storage reservoir and photovoltaics enable the community to become largely self-sufficient with over 80% reductions in grid imports by 2050 compared to the baseline scenario. Storage enables maximum usage of the available hydro potential which also leads to network upgrade deferrals and a significant increase in photovoltaic installations. Investment decisions in small hydro are robust against cost variations, while heating technology investment decisions are sensitive to oil and grid electricity prices. Carbon pricing policies are found to be effective in mitigating local fossil fuel emissions. - Highlights: •Rural case study on decentralized generation and storage technology (DGST) benefits. •Cost optimization model and scenarios developed to assess DGSTs until 2050. •Small hydro and photovoltaics (PV) increase self-sufficiency of community. •Storage enables full hydro potential usage and increased PV penetration. •Carbon price policies effective in mitigating local fossil fuel emissions.

  17. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    Energy Technology Data Exchange (ETDEWEB)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen [Galson Sciences Ltd. Oakham, Rutland (United Kingdom); Bolton, Gary [National Nuclear Laboratory Risley, Warrington (United Kingdom); McKinney, James; Morris, Darrell [Nuclear Decommissioning Authority Moor Row, Cumbria (United Kingdom); Angus, Mike [National Nuclear Laboratory Risley, Warrington (United Kingdom); Cann, Gavin; Binks, Tracey [National Nuclear Laboratory Sellafield (United Kingdom)

    2013-07-01

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. During the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)

  18. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  19. Factors Influencing the Adoption of Cloud Storage by Information Technology Decision Makers

    Science.gov (United States)

    Wheelock, Michael D.

    2013-01-01

    This dissertation uses a survey methodology to determine the factors behind the decision to adopt cloud storage. The dependent variable in the study is the intent to adopt cloud storage. Four independent variables are utilized including need, security, cost-effectiveness and reliability. The survey includes a pilot test, field test and statistical…

  20. Status and recommendadtions for RD&D on energy storage technologies in a Danish context

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Christensen, Claus Hviid; Kjøller, Claus

    2014-01-01

    The report briefly describes analyses of the future need for energy storage in a Danish perspective and assesses which sectors of the energy system, where energy storage can be expected to play a role and what kind of services it could provide to give flexibility in the sustainable energy system....

  1. Dual technology energy storage system applied to two complementary electricity markets using a weekly differentiated approach

    NARCIS (Netherlands)

    Ferreira, H.L.; Staňková, K.; Peças Lopes, J.; Slootweg, J.G.; Kling, W.L.

    2017-01-01

    This paper deals with integration of energy storage systems into electricity markets. We explain why the energy storage systems increase flexibility of both power systems and energy markets and why such flexibility is desirable, particularly when variable renewable energy sources are being used in

  2. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  3. National hydrogen technology competitiveness analysis with an integrated fuzzy AHP and TOPSIS approaches: In case of hydrogen production and storage technologies

    Science.gov (United States)

    Lee, Seongkon; Mogi, Gento

    2017-02-01

    The demand of fossil fuels, including oil, gas, and coal has been increasing with the rapid development of developing countries such as China and India. U.S., Japan, EU, and Korea have been making efforts to transfer to low carbon and green growth economics for sustainable development. And they also have been measuring to cope with climate change and the depletion of conventional fuels. Advanced nations implemented strategic energy technology development plans to lead the future energy market. Strategic energy technology development is crucial alternative to address the energy issues. This paper analyze the relative competitiveness of hydrogen energy technologies in case of hydrogen production and storage technologies from 2006 to 2010. Hydrogen energy technology is environmentally clean technology comparing with the previous conventional energy technologies and will play a key role to solve the greenhouse gas effect. Leading nations have increasingly focused on hydrogen technology R&D. This research is carried out the relative competitiveness of hydrogen energy technologies employed by an integrated fuzzy analytic hierarchy process (Fuzzy AHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches. We make four criteria, accounting for technological status, R&D budget, R&D human resource, and hydrogen infra. This research can be used as fundamental data for implementing national hydrogen energy R&D planning for energy policy-makers.

  4. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    International Nuclear Information System (INIS)

    COWGILL, M.G.; MOSKOWITZ, P.D.; CHERNAENKO, L.M.; NAZARIAN, A.; GRIFFITH, A.; DIASHEV, A.; ENGOY, T.

    2000-01-01

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  5. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  6. A proposal to address the governance of carbon capture and storage technologies in Spain: Trust, communication and public involvement

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Sala, R.; Oltra, C.; Gamero, N.

    2007-07-01

    Carbon dioxide capture and storage (CCS) is a process consisting of the separation of CO{sub 2} from industrial and energy-related sources, transport to a storage location and long-term isolation from the atmosphere. The intergovernmental Panel on Climate Change (IPCC) considers it an option in the portfolio of mitigation actions for stabilization of atmospheric greenhouse gas concentrations. But the widespread application of CCs would depend on different issues such as technical feasibility, regulatory aspects, environmental issues and public acceptability, CCS, in spite of being a very important and necessary technology for the mitigation of climate change, involves some risks that should be managed. When dealing with technologies that involve some kind of environmental or health risk, risk governance is a key part of the development and deployment process. (Author) 63 refs.

  7. Nondestructive detection of total viable count changes of chilled pork in high oxygen storage condition based on hyperspectral technology

    Science.gov (United States)

    Zheng, Xiaochun; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    The plate count method is commonly used to detect the total viable count (TVC) of bacteria in pork, which is timeconsuming and destructive. It has also been used to study the changes of the TVC in pork under different storage conditions. In recent years, many scholars have explored the non-destructive methods on detecting TVC by using visible near infrared (VIS/NIR) technology and hyperspectral technology. The TVC in chilled pork was monitored under high oxygen condition in this study by using hyperspectral technology in order to evaluate the changes of total bacterial count during storage, and then evaluate advantages and disadvantages of the storage condition. The VIS/NIR hyperspectral images of samples stored in high oxygen condition was acquired by a hyperspectral system in range of 400 1100nm. The actual reference value of total bacteria was measured by standard plate count method, and the results were obtained in 48 hours. The reflection spectra of the samples are extracted and used for the establishment of prediction model for TVC. The spectral preprocessing methods of standard normal variate transformation (SNV), multiple scatter correction (MSC) and derivation was conducted to the original reflectance spectra of samples. Partial least squares regression (PLSR) of TVC was performed and optimized to be the prediction model. The results show that the near infrared hyperspectral technology based on 400-1100nm combined with PLSR model can describe the growth pattern of the total bacteria count of the chilled pork under the condition of high oxygen very vividly and rapidly. The results obtained in this study demonstrate that the nondestructive method of TVC based on NIR hyperspectral has great potential in monitoring of edible safety in processing and storage of meat.

  8. Cost-efficient demand-pull policies for multi-purpose technologies – The case of stationary electricity storage

    International Nuclear Information System (INIS)

    Battke, Benedikt; Schmidt, Tobias S.

    2015-01-01

    Highlights: • A definition of multi-purpose technologies (MPTs) is proposed. • Opportunities for a cost-efficient demand-pull policy strategy for MPTs are derived. • The multi-purpose character of stationary electricity storage (SES) is shown. • An exemplary profitability assessment of one SES technology supports the argument. - Abstract: Stationary electricity storage technologies (SES) allow to increase the shares of intermittent renewable energy technologies in electricity networks. As SES currently exhibit high costs, policy makers have started introducing demand-pull policies in order to foster their diffusion and drive these technologies further down the learning curve. However, as observed in the case of renewable energy technologies, demand-pull policies for technologies can come at high costs in cases where the profitability gap that needs to be covered by the policy support is large. Yet, SES can create value in multiple distinct applications in the power system – making it a “multi-purpose technology”. We argue that policy makers can make use of the multi-purpose character of SES to limit costs of demand-pull policies. We propose a policy strategy which grants support based on the profitability gap in the different applications, thereby moving down the learning curve efficiently. To support our argumentation, we firstly conduct a comprehensive literature review of SES applications exemplifying the multi-purpose character of these technologies. Second, we assess the profitability of one SES technology (vanadium redox flow battery) in five SES applications, highlighting a strong variation of the profitability gap across these applications

  9. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  10. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Science.gov (United States)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  11. SOFTWARE AND TECHNOLOGY FOR COLLECTING AND STORAGE SERIAL OBSERVATIONS OF THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. V. Tokarev

    2014-01-01

    Full Text Available Some aspects of the collecting and storage serial observations of the environment is considered. The paper considers the creation of a storage subsystem and climate data collection, which will enable users to perform data collection, integration, storage and analysis. Developed server data collector prototype implement basic functions of the program interface (API and administrative webinterface. Several data flows from different data sources is created – public sources of climate data, autonomous weather stations, information systems of monitoring. Work is underway to establish a means for effective access to observational data, services, reporting and analysis of information.

  12. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  13. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  14. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  15. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Mihail KANTOR

    2018-03-01

    Full Text Available Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. The present review discusses how genetic selection and breeding combined with geospatial technologies (precision agriculture may help enhance watermelon varieties for resistance to biotic and abiotic stress. Gene loci identified and selected in undomesticated watermelon accessions are responsible for resistance to diseases, pests and abiotic stress. Vegetable breeding programs use traditional breeding methodologies and genomic tools to introduce gene loci conferring biotic or abiotic resistance into the genome background of elite watermelon cultivars. This continuous approach of collecting, evaluating and identifying useful genetic material is valuable for enhancing genetic diversity and tolerance and combined with precision agriculture could increase food security in the Southeast.

  16. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  17. Impact of an innovated storage technology on the quality of preprocessed switchgrass bales

    Directory of Open Access Journals (Sweden)

    Christopher N. Boyer

    2016-03-01

    Full Text Available The purpose of this study was to determine the effects of three particle sizes of feedstock and two types of novel bale wraps on the quality of switchgrass by monitoring the chemical changes in cellulose, hemicellulose, lignin, extractives, and ash over a 225-day period. Using NIR (Near-infrared modeling to predict the chemical composition of the treated biomass, differences were found in cellulose, lignin, and ash content across switchgrass bales with different particle sizes. Enclosing bales in a net and film impacted the cellulose, lignin, and ash content. Cellulose, hemicellulose, lignin, extractives, and ash were different across the 225-day storage period. A quadratic response function made better prediction about cellulose, lignin, and ash response to storage, and a linear response function best described hemicellulose and extractives response to storage. This study yields valuable information regarding the quality of switchgrass at different intervals between the start and end date of storage, which is important to conversion facilities when determining optimal storage strategies to improve quality of the biomass feedstock, based on potential output yield of a bale over time.

  18. A novel technology for control of variable speed pumped storage power plant

    Institute of Scientific and Technical Information of China (English)

    Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar

    2016-01-01

    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  19. Economic evaluation of innovative storage technologies in energy systems with a high share of renewable energies

    International Nuclear Information System (INIS)

    Kondziella, Hendrik

    2017-01-01

    This work addresses the question of whether the ongoing transformation to a low-carbon energy system in Germany will also create market opportunities for innovative market participants, in particular for storage operators. The economic effects that occur in energy systems with high levels of variable renewable energy (vEE) can be measured by their integration costs. Scientific research into the additional storage and flexibility needs of such an energy system often addresses imbalances in the system balance sheet. The respective methods are, however, based on different assumptions and framework conditions, so that the results can only be compared with one another to a limited extent. The hourly fluctuating wholesale price on the electricity exchange is an important indicator to signal the need for flexibility. Many analyzes use historical or predicted pricing time series to evaluate storage options. However, while the feedback of the operation of an energy storage on the market prices is left out. Therefore, a method is developed in this work to estimate the impact of an increasing market volume of storage and other flexibility options on spot market prices. The influence of storage use on electricity demand and spot market prices in 2020 and 2030 is examined. The scenarios to be defined for the electricity market are model-based and evaluated. To answer the question, techno-economic models, e.g. The MICOES power market model for power plant deployment planning, the DeSiflex model for smoothing residual load through integrated flexibility options and the Arturflex model for estimating arbitrage gains through the use of flexibility options on the spot market. [de

  20. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  1. Energy storage technologies and hybrid architectures for specific diesel-driven rail duty cycles: Design and system integration aspects

    International Nuclear Information System (INIS)

    Meinert, M.; Prenleloup, P.; Schmid, S.; Palacin, R.

    2015-01-01

    Highlights: • We assessed integration of energy storage systems into hybrid system architectures. • We considered mechanical and electrical energy storage systems. • Potential of different combinations has been analyzed by standardized duty cycles. • Most promising are diesel-driven suburban, regional and shunting operations. • Double-layer capacitors and Lithium-ion batteries have the highest potential. - Abstract: The use of diesel-driven traction is an intrinsic part of the functioning of railway systems and it is expected to continue being so for the foreseeable future. The recent introduction of more restrictive greenhouse gas emission levels and other legislation aiming at the improvement of the environmental performance of railway systems has led to the need of exploring alternatives for cleaner diesel rolling stock. This paper focuses on assessing energy storage systems and the design of hybrid system architectures to determine their potential use in specific diesel-driven rail duty cycles. Hydrostatic accumulators, flywheels, Lithium-ion batteries and double-layer capacitors have been assessed and used to design hybrid system architectures. The potential of the different technology combinations has been analyzed using standardized duty cycles enhanced with gradient profiles related to suburban, regional and shunting operations. The results show that double-layer capacitors and Lithium-ion batteries have the highest potential to be successfully integrated into the system architecture of diesel-driven rail vehicles. Furthermore, the results also suggest that combining these two energy storage technologies into a single hybridisation package is a highly promising design that draws on their strengthens without any significant drawbacks.

  2. Dynamics of Selected Bioactive Substances Changes in Cucurbita Moschata Duch. Ex Poir. After Storage and Different Methods of Technological Processing

    Directory of Open Access Journals (Sweden)

    Alena Andrejiová

    2016-01-01

    Full Text Available The winter squash is an important source of antioxidants, especially carotenoids. The aim of submitted research work was to determine the effect of genotype, storage and different methods of technological processing (baking, boiling and sterilization on the content of ascorbic acid and total carotenoids in fruits of winter squash (Cucurbita moschata Duch. ex Poir.. The small-plot field experiment was established at Slovak University of Agriculture in Nitra in 2013. Five cultivars of winter squash (‘Liscia’, ‘Orange’, ‘Hannah’, ‘UG 205 F1’ and ‘Waltham’ were examined in experiment. The total carotenoids content in the pulp of fresh fruits was ranged from 9.33 to 15.10 mg.100 g−1. Its highest value was determined in case of ‘Orange’ variety. The storage and the thermal treatment of fruit pulp in case of baking had positive impact from the total carotenoid content point of view. The baking resulted in the increase of its value in winter squash. On the contrary, sterilization tended to the decrease of total carotenoid content in edible part of squash. The total carotenoids content in the baking pulp was ranged from 14.27 to 31.87 mg.100 g−1. The vitamin C content before storage and technological processing ranged in interval from 13.88 to 18.69 mg.100 g−1. Particular thermal methods of processing and storage resulted in decrease of vitamin C content in the pulp of all winter squash varieties.

  3. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  4. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  5. 40 CFR 63.119 - Storage vessel provisions-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... storage vessel in a continuous fashion. (iv) If the external floating roof is equipped with a liquid... air pollutants; (iii) Incorporated into a product; and/or (iv) Recovered. (2) If the emissions are... all reasons (except start-ups/shutdowns/malfunctions or product changeovers of flexible operation...

  6. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    Science.gov (United States)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in

  7. Calcium Signalling in Plant Biotic Interactions

    Directory of Open Access Journals (Sweden)

    Didier Aldon

    2018-02-01

    Full Text Available Calcium (Ca2+ is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs, Ca2+-dependent protein kinases (CDPKs and calcineurin B-like proteins (CBLs indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.

  8. Comparison of monitoring technologies for CO2 storage and radioactive waste disposal

    International Nuclear Information System (INIS)

    Ryu, Jihun; Koh, Yongkwon; Choi, Jongwon; Lee, Jongyoul

    2013-01-01

    The monitoring techniques used in radioactive waste disposal have fundamentals of geology, hydrogeology, geochemistry etc, which could be applied to CO 2 sequestration. Large and diverse tools are available to monitoring methods for radioactive waste and CO 2 storage. They have fundamentals on geophysical and geochemical principles. Many techniques are well established while others are both novel and at an early stage of development. Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for radioactive waste disposal and CO 2 storage. In study, we discuss the monitoring techniques and the role of these techniques in providing insight in the risks of radioactive waste disposal and CO 2 sequestration

  9. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  10. Modern Hardware Technologies and Software Techniques for On-Line Database Storage and Access.

    Science.gov (United States)

    1985-12-01

    of the information in a message narrative. This method employs artificial intelligence techniques to extract information, In simalest terms, an...disf ribif ion (tape replacemenf) systemns Database distribution On-fine mass storage Videogame ROM (luke-box I Media Cost Mt $2-10/438 $10-SO/G38...trajninq ot tne great intelligence for the analyst would be required. If, on’ the other hand, a sentence analysis scneme siTole enouq,. for the low-level

  11. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice......, the proposed method is potentially useful for designing market rules and evaluating different design options. Following works is underway on application and simulation of proposed method using the realistic distribution system of Bornholm Island in Denmark....

  12. Large-area printed supercapacitor technology for low-cost domestic green energy storage

    International Nuclear Information System (INIS)

    Tehrani, Z.; Thomas, D.J.; Korochkina, T.; Phillips, C.O.; Lupo, D.; Lehtimäki, S.; O'Mahony, J.; Gethin, D.T.

    2017-01-01

    In this research we demonstrate that a flexible ultra-thin supercapacitor can be fabricated using high volume screen printing process. This has enabled the sequential deposition of current collector, electrode, electrolyte materials and adhesive onto a Polyethylene terephthalate (PET) substrate in order to form flexible electrodes for reliable energy storage applications. The electrodes were based on an activated carbon ink and gel electrolyte each of which were formulated for this application. Supercapacitors that have surface areas from 100 to 1600 mm"2 and an assembled device thickness of 375 μm were demonstrated. The capacitance ranged from 50 to 400 mF. Capacitance of printed carbon electrodes is rarely reported in literature and no references were found. The chemistry developed during this study displayed long-term cycling potential and demonstrated the stability of the capacitor for continued usage. The gel electrolyte developed within this work showed comparable performance to that of a liquid counterpart. This improvement resulted in the reduction in gel resistance from 90Ω to 0.5Ω. Significant reduction was observed for all resistances. The solid-state supercapacitors with the gel electrolyte showed comparable performance to the supercapacitors that used a liquid electrolyte. This large area printed device can be used in future houses for reliable green energy storage. - Highlights: • It has been demonstrated that a flexible supercapacitors with large area storage has been developed. • The simplified architecture has the potential to lead to a new class of printable, thin storage devices. • The specific capacitance of 21 F/g was measured.

  13. IMPACT OF AMARANTH (AMARANTH SP. ON TECHNOLOGICAL QUALITY OF BAKERY PRODUCTS DURING FROZEN STORAGE

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2014-02-01

    Full Text Available Frozen baking semi-finished meals and dough bring to consumer daily fresh products with the added value from the point of view of comfort and storage, as well as fresh products of comparable quality with baking yeasts products. The aim of this study was to observe the impact of adding 30% of flour from amaranth to the wheat flour T 650 on the quality of immediately baked products stored one, three and six months in a freezer at the temperature of -18°. The overall quality of baked loaves from frozen dough was declining gradually depending on the length of storage in the freezing box, while the highest decline in quality was recorded after three and six months of storage. Specifically, after one month there was a decline in the loaf volume - the one of the most important indicators for bakery quality - by 10.5% and after three and six months by 26.3% in comparison to fresh loaves. The decline in bakery quality was caused mainly by decreasing activity of yeast cells which were damaged by crystals of ice, by the afterward loss of their ability to yeast and by gradual decrease of dough firmness.

  14. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  15. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the

  16. Next-generation fabrication technologies for optical pickup devices in high-density optical disk storage systems

    Science.gov (United States)

    Hosoe, Shigeru

    1999-05-01

    This paper shows a direction of friction technologies to make aspherical plastic objective lens with higher optical performance for high density optical disk storage systems. Specifically, a low birefringence and low water absorption (less than 0.1%) optical resin, low tool abrasion mold material, high circularity diamond tool which nose circularity is less than 30 nm, and 1 nm axis resolution precision lathe which tool position is stabilized against drift by environmental change are referred. Cut optical surface of a mold sample was constantly attained in less than 5 nmRtm surface roughness. Using these new technologies, aspherical plastic objective lens (NA0.6) for DVD which wave aberration is less than 35 m (lambda) rms was realized.

  17. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  18. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials

    International Nuclear Information System (INIS)

    Conte, M.; Prosini, P.P.; Passerini, S.

    2004-01-01

    A sustainable energy economy will be demanding primary energy sources, preferably renewable and mainly domestically available, using energy carriers, such as hydrogen and electricity, able to solve environmental problems and to assure adequate energy security. Instrumental to such goals will be the research and development of storage systems with performance characteristics compatible with major application requirements. Lithium or nickel are replacing lead in batteries, in order to better meet the extremely varying technical and economical requirements in fast growing conventional and new applications. Moreover, few technologies now permit to store hydrogen by modifying its physical state in gaseous or liquid form. The variety of hydrogen needs in the energy systems and in the vehicular sector is justifying the effort on solid state (metal hydrides and carbon nanostructures) or chemical systems (chemical hydrides). In this overview, emphasis is given to the major achievements in the field of electrical energy and hydrogen storage, in relation to the technological goals, which have been proposed in the major public research and collaborative programs throughout the world

  19. Introduction of storage integrated PV systems as an enabling technology for smart energy grids

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, H.P.; Kling, W.L.

    2013-01-01

    Merging advanced control and information and communication technology (ICT) technology with the power grid is an appropriate approach for realizing the promising potential of massive distributed energy resources (DERs) integration, that is necessary for the vision of a sustainable society. This

  20. Biotic Interaction in Space and Time

    DEFF Research Database (Denmark)

    Schmidt, Andreas Kelager

    Myrmica host ants by using chemical and acoustic mimicry to coerce the ant workers to feed and nurture the caterpillar preferentially over their own brood. Maculinea alcon is thus an extreme dietary specialist as absence of just one of the hosts precludes presence of the butterfly and as a result...... further enhance the risk of extinction. Maculinea alcon is selected as an umbrella for conservation and numerous aspects of its biology has been studied extensively. This thesis explores the spatio-temporal impact of the tight biotic dependence in this tritrophic interaction system and integrates...... in host ant use as expected, and is an example of a genetic barrier operating on a temporal scale rather than spatial. In chapter II, we developed habitat suitability models for M. alcon and G. pneumonanthe potentially useful in locating undocumented populations and for improving management of them...

  1. Rapid biotic homogenization of marine fish assemblages

    Science.gov (United States)

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  2. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Rychel, Dwight [Petroleum Tech Transfer Council, Oak Hill, VA (United States)

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  3. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  4. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  5. Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage

    DEFF Research Database (Denmark)

    Panagou, Efstathios Z.; Papadopoulou, Olga; Carstensen, Jens Michael

    2014-01-01

    counts, namely Class 1 (TVC7.0log10CFU/g). Furthermore, PLS regression models were developed to provide quantitative estimations of microbial counts during meat storage. In both cases model validation was implemented with independent experiments at intermediate storage temperatures (2 and 10°C) using....... thermosphacta, and TVC, respectively. The results indicated that multispectral vision technology has significant potential as a rapid and non-destructive technique in assessing the microbiological quality of beef fillets....

  6. Box Energy: rental of energy-storage systems and alternative fuel technologies for vehicles; Box-energy. Rental of energy. Storage systems and alternative-fuel. Technologies for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bautz, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of study on the rental of energy-storage systems and alternative fuel technologies for vehicles. Experience gained in the area of battery-rental is discussed. The aims of the 'Box Energy' project are described, as is its market environment. The 'Box Energy' concept is described and possible customers and partners listed. Logistics aspects are discussed. The organisation of 'Box Energy' is described and the concept's chances and weaknesses are discussed. The launching of a pilot project in Switzerland is discussed. Recommendations on further work to be done are made.

  7. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  8. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark [Quantum Fuel Systems Technologies Worldwide, Inc., Irvine, CA (United States); Lam, Patrick [Boeing Research and Technology (BR& T), Seattle, WA (United States)

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  9. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    Science.gov (United States)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  10. Cost update: Technology, safety, and costs of decommissioning reference independent spent fuel storage installations

    International Nuclear Information System (INIS)

    Miles, T.L.

    1994-07-01

    The cost estimates originally developed in NUREG/CR-2210 for decommissioning five conceptual Independent Spent Fuel Storage Installations (ISFSIs) and their supporting ancillaries (hot cell and transporter) are updated from 1981 to 1993 dollars. The costs for labor and materials increased approximately at the rate of inflation, the cost of energy increased more slowly than the rate of inflation, and the cost of low-level radioactive waste disposal increased much more rapidly than the rate of inflation. A methodology and a formula are presented for estimating the cost of decommissioning the ISFSIs at some future time, based on these current cost estimates. The formula contains essentially the same elements as the formula given in 10 CFR 50.75 for escalating the decommissioning costs for nuclear power reactors to some future time

  11. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  12. Technology Development for Integrated Safety Test of Spent Nuclear Fuel Transportation and Storage System

    International Nuclear Information System (INIS)

    Seo, Kiseog; Seo, J. S.; Lee, J. C.

    2012-05-01

    A dedicated review on the U. S. NRC Regulation 10 CFR Part 72 and regulatory guide NUREG/1536 has been performed. The safety requirements for spent nuclear fuel dry storage cask are analyzed and summarized in structural, thermal, shielding, criticality, materials, tests and maintenance aspects. Also a guideline for preparing the safety analysis report is provided. The heat flow analysis was performed by varying the dimensions of the heat flow test facility. From the heat flow analysis for the test facility, as the test facility became test facility. From the heat flow analysis for the test facility, as the test facility became bigger; the thermal effect became smaller. Therefore, the dimensions of the heat flow test facility was designed with 5m Χ 5m Χ 6m(H). Analyses of heat transfer characteristics and mechanism for spent PWR fuel assemblies, option study for production of the effective thermal conductivity and option study for effective thermal conductivity test have been performed to obtain the basic data for production of the effective thermal conductivity. It became clear that the diffusion coefficient of chloride ion of concrete remarkably increases along with the temperature rise, and that there is a linear relation between the logarithm values of the diffusion coefficients and the reciprocal of the temperature. It is understood to be able to express the temperature dependency of the diffusion coefficient roughly by an Arrhenius equation as the velocity coefficient is provided as the diffusion coefficient. The specifications and characteristics of storage facilities under operation including dual purpose casks were investigated. Components subject to material degradation were examined. Based on literature survey, investigating a drop analysis incorporating with material degradation, the basic data to develop an analysis methodology was obtained

  13. Carbon Capture and Storage Investment and Management in an Environment of Technological and Price Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Geske, Joachim; Herold, Johannes [Forschungszentrum Juelich and TU Dresden (Germany)

    2009-07-01

    In this paper we use a real options approach to analyze investment in a CCS postcombustion technology. Uncertainties in the development of efficiency and certificate prices are taken into account. We therefore propose a bounded monotone stochastic process to model energy efficiency development which is in line with thermodynamic limitations. The option not to employ the technology is allowed for. Parameter values are selected carefully. Numerical analysis shows plausible qualitative features. Furthermore there exist investment barriers for each uncertain parameter alone which reduce if interaction of the independent processes is permitted.

  14. Increasing the quality and safety of meat products through high technology methods during their storage

    International Nuclear Information System (INIS)

    Miteva, D.; Nacheva, I.; Georgieva, L.

    2008-01-01

    The aim of this study was to increase the quality and safety of different meat products by applying two high technology methods – lyophilization and gamma-irradiation. Object of study were chicken, pork and beef meat products. The organoleptic, physicochemical and microbiological properties after lyophilization, irradiation with gamma-rays and during the preservation of the samples were studied. The results indicated that the application of the two original technologies for preservation could ensure qualitative and long-lasting preservation of meat products with excellently preserved taste and organoleptic properties

  15. The additive technology for obtaining thermal storages based on nanomodified materials

    Directory of Open Access Journals (Sweden)

    Shchegolkov Alexander

    2017-01-01

    Full Text Available The approaches for the implementation of an additive technology for obtaining heat accumulators are considered. The implementation of the provided technology can be realized on the standard 3D printers, which are aimed to obtain plastic materials. However, the software of the printers has to include adjusting analytical expressions, which take into account thermophysical properties of the heat-retaining materials. The analytical expressions have been derived by solving a mathematical model. The mathematical model contains the main data on thermophysical and mechanical and physical properties of the nanomodified material. These properties of the nanomodified material are defined during the experimental studies.

  16. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  17. Technological file for high energy storage power capacitors; Filiere technologique pour condensateurs de puissance a haute energie stockee

    Energy Technology Data Exchange (ETDEWEB)

    Michalczyk, P.

    1996-03-28

    The `Megajoule` project driven by the Commissariat a l`Energie atomique, needs the storage of an 450 MJ energy in a capacitor bank. Each unitary 78 kJ capacitor must be build in a safe technology. The life time of such a capacitor is materialized by a loss of capacitance for a given number of discharge and not by a short circuit which can damage a part of the installation. The answer to the specifications use the combination of two existing technologies. Impregnated film foil capacitors; dry metallized polymer film capacitors. The energy induced by internal dielectric failures is limited by self-healing; the right arrangement of influential parameters, which are the resistivity of the metallization and the drawing of the segmentation is necessary to achieve this phenomenon. Appropriate manufacturing process, space factor, impregnation and thermal treatments are required to optimise the dielectric strength of the capacitors. The first test results valid this developed technology and our conclusions suggest some ways to improve the volume energy. (author) 13 refs.

  18. Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Tzamalis, G. [Center for Renewable Energy Sources (CRES), RES and Hydrogen Technologies, 19th km Marathon Avenue, GR 19009 Pikermi (Greece); Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece); Zoulias, E.I.; Stamatakis, E.; Varkaraki, E. [Center for Renewable Energy Sources (CRES), RES and Hydrogen Technologies, 19th km Marathon Avenue, GR 19009 Pikermi (Greece); Lois, E.; Zannikos, F. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2011-01-15

    Two different options for the autonomous power supply of rural or/and remote buildings are examined in this study. The first one involves a PV - diesel based power system, while the second one integrates RES and hydrogen technologies for the development of a self - sustained power system. The main objective is the replacement of the diesel generator and a comparison between these two options for autonomous power supply. Model simulations of the two power systems before and after the replacement, an optimization of the component sizes and a techno - economic analysis have been performed for the purpose of this study. A sensitivity analysis taking into account future cost scenarios for hydrogen technologies is also presented. The results clearly show that the Cost of Energy Produced (COE) from the PV - hydrogen technologies power system is extremely higher than the PV - diesel power system. However, the adopted PV - hydrogen technologies power system reduces to zero the Green - House Gas (GHG) emissions. Moreover, the sensitivity analysis indicates that COE for the latter system can be further reduced by approximately 50% compared to its initial value. This could be achieved by reducing critical COE's parameters, such as PEM electrolyser and fuel cell capital costs. Hence, a possible reduction on the capital costs of hydrogen energy equipment in combination with emissions reduction mentioned above could make hydrogen - based power systems more competitive. (author)

  19. Architecture and Implementation of a Scalable Sensor Data Storage and Analysis System Using Cloud Computing and Big Data Technologies

    Directory of Open Access Journals (Sweden)

    Galip Aydin

    2015-01-01

    Full Text Available Sensors are becoming ubiquitous. From almost any type of industrial applications to intelligent vehicles, smart city applications, and healthcare applications, we see a steady growth of the usage of various types of sensors. The rate of increase in the amount of data produced by these sensors is much more dramatic since sensors usually continuously produce data. It becomes crucial for these data to be stored for future reference and to be analyzed for finding valuable information, such as fault diagnosis information. In this paper we describe a scalable and distributed architecture for sensor data collection, storage, and analysis. The system uses several open source technologies and runs on a cluster of virtual servers. We use GPS sensors as data source and run machine-learning algorithms for data analysis.

  20. End-Triassic nonmarine biotic events

    Directory of Open Access Journals (Sweden)

    Spencer G. Lucas

    2015-10-01

    Full Text Available The Late Triassic was a prolonged interval of elevated extinction rates and low origination rates that manifested themselves in a series of extinctions during Carnian, Norian and Rhaetian time. Most of these extinctions took place in the marine realm, particularly affecting radiolarians, conodonts, bivalves, ammonoids and reef-building organisms. On land, the case for a Late Triassic mass extinction is much more tenuous and has largely focused on tetrapod vertebrates (amphibians and reptiles, though some workers advocate a sudden end-Triassic (TJB extinction of land plants. Nevertheless, an extensive literature does not identify a major extinction of land plants at the TJB, and a comprehensive review of palynological records concluded that TJB vegetation changes were non-uniform (different changes in different places, not synchronous and not indicative of a mass extinction of land plants. Claims of a substantial perturbation of plant ecology and diversity at the TJB in East Greenland are indicative of a local change in the paleoflora largely driven by lithofacies changes resulting in changing taphonomic filters. Plant extinctions at the TJB were palaeogeographically localized events, not global in extent. With new and more detailed stratigraphic data, the perceived TJB tetrapod extinction is mostly an artifact of coarse temporal resolution, the compiled correlation effect. The amphibian, archosaur and synapsid extinctions of the Late Triassic are not concentrated at the TJB, but instead occur stepwise, beginning in the Norian and extending into the Hettangian. There was a disruption of the terrestrial ecosystem across the TJB, but it was more modest than generally claimed. The ecological severity of the end-Triassic nonmarine biotic events are relatively low on the global scale. Biotic turnover at the end of the Triassic was likely driven by the CAMP (Central Atlantic Magmatic Province eruptions, which caused significant environmental

  1. Development of superconductor application technology - Flywheel energy storage system using superconducting magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Oh, Hueng Kuk; Yun, Keyng Reyl; Lee, Jeung Kun [Ahju University, Suwon (Korea, Republic of)

    1996-06-01

    Electricity must be used simultaneously with its generation. Existing storage methods either are dependent on special geography, are too expensive,= or are too inefficient. Electricity demand changes by as much as 30% over a 12-hour period and result in significant costs for utilities as power output get adjusted to meet these changes. The purpose of HTS FES is to store unused nighttime electricity until it is needed during the daytime. If every element of a rotating flywheel is stressed to a prescribed allowable value, the flywheel material will clearly be used in most efficient manner. The uniformlt stressed flywheel is about 25% stronger than a flat disk. The gap between superconductor and permanent magnet was 1.85 mm, and using bearing connector with the values, joining superconductor to permanent magnet Using bolt connector, joining permanent magnet to flywheel. Joined system is excited by exciting function that magnitude is 1, range is 0 up to 4000 HZ. 3 rd and 4 th natural frequency, 1857 HZ and 2340 HZ, in X direction and 2 nd natural frequency, 28.57 HZ, are avoided to prevent resonance. 15 refs., 11 tabs., 53 figs. (author)

  2. Spent fuel dry storage technology development: report of consolidated thermal data

    International Nuclear Information System (INIS)

    Lundberg, W.L.

    1980-09-01

    Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada Test Site soil without exceeding the current fuel clad temperature limit (715 0 F). The document also assesses the ability to thermally analyze near-surface drywells and above-ground storage casks and it identifies analysis development areas. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Analysis uncertainties, however, still exist but they lie mainly in the numerical input area. Soil thermal conductivity, of primary importance in analysis, requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed. In the experimental area, tests with two BWR spent fuel assemblies encapsulated in a single canister should be performed to establish the fuel clad and canister temperature relationship. This is needed to supplement similar experimental work which has already been completed with PWR fuel

  3. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables.

    Science.gov (United States)

    Ali, Asgar; Yeoh, Wei Keat; Forney, Charles; Siddiqui, Mohammed Wasim

    2017-10-26

    Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.

  4. Preliminary study on detection technology of the cladding weld of spent fuel storage pool

    Science.gov (United States)

    Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei

    2018-04-01

    As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.

  5. Microencapsulation of plum (Prunus salicina Lindl. phenolics by spray drying technology and storage stability

    Directory of Open Access Journals (Sweden)

    Yibin LI

    2017-10-01

    Full Text Available Abstract To improve the stability of the phenolic extracts from plum fruit (Prunus salicina Lindl., the microencapsulation conditions of spray drying were optimized by the response surface method. The Box-Behnken experimental results indicated the optimal conditions involved an inlet air temperature of 142.8 °C, a core material content of 23.7% and a feed solids content of 11.7%. The maximum microencapsulating efficiency was 87.7% at optimal conditions. Further, the physicochemical properties of the microcapsule powders were improved overall due to the addition of the coating agents. There were no statistically significant differences in phenolic content of the obtained microcapsules for the first 40 days of storage at 25 °C in dark condition (p > 0.05, and the retention rate of total phenol remained above 85% after 60 days. Microcapsules can be potentially developed as a source of natural pigment or functional food based on the advantages of rich phenolic compounds and red color.

  6. Impact of haylage harvest and storage technologies on forage microbial contamination

    OpenAIRE

    Artemyeva, O.; Duborezov, V.; Pavlyuchenkova, O.; Kotkovskaya, E.; Ralkova, V.; Peresyolkova, D.

    2014-01-01

    To develop bacteriological regulations for harvesting and storing haylage, microbial contamination of feeds has been studied using different technologies for harvesting haylage and laying fodder in trench and concrete ring silos, and rolls. It was noted that the analyzed forage samples had no pathogenic microorganisms and Enterobacteriaceae, including Salmonella. There was a lack of toxicity in all analyzed silage samples. The values for the number of mesophilic aerobic and elective anaerobic...

  7. Assessing environmental impacts of storage technologies and competing options for balancing demand and supply in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Droste-Franke, Bert [Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Bad Neuenahr-Ahrweiler (Germany)

    2012-07-01

    The major aim of using renewable energies for electricity production is to realise a sustainable and environmental friendly energy system which can be operated viably in the long term. One major indicator to reach this aim is the overall emission of CO2 resulting from the use of a certain technology. However, further environmental aspects have to be taken into account for an adequate evaluation of technologies. With respect to preserving the environmental basis for future generations several environmental pressures have to be considered which can either lead to small and substitutable, marginal environmental damages or to environmental impacts which contribute to burdens which could become critical, i.e., jeopardising important environmental functions. Thus, it should be accounted for the societal acceptability of their (potential) environmental impacts. The analysis presented here deals with the assessment of environmental effects of both types, marginal and potentially critical, for current and advanced technologies which can be used for balancing fluctuations in the electricity production from renewable sources in an economic environment of 2050. The basic results used were derived in a study carried out by the Europaeische Akademie GmbH (Droste-Franke et al. 2012).

  8. Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies

    International Nuclear Information System (INIS)

    Tola, Vittorio; Pettinau, Alberto

    2014-01-01

    Highlights: • Techno-economic performance of coal-fired power plants (without and with CCS). • Without CCS system, USC is more efficient and cost-competitive than IGCC. • CCS energy penalties are more relevant for USC than IGCC. • Higher SNOX system costs are partially compensated by better USC performance. • CCS technologies cannot be profitable without adequate policies and incentives. - Abstract: Worldwide energy production requirements could not be fully satisfied by nuclear and renewables sources. Therefore a sustainable use of fossil fuels (coal in particular) will be required for several decades. In this scenario, carbon capture and storage (CCS) represents a key solution to control the global warming reducing carbon dioxide emissions. The integration between CCS technologies and power generation plants currently needs a demonstration at commercial scale to reduce both technological risks and high capital and operating cost. This paper compares, from the technical and economic points of view, the performance of three coal-fired power generation technologies: (i) ultra-supercritical (USC) plant equipped with a conventional flue gas treatment (CGT) process, (ii) USC plant equipped with SNOX technology for a combined removal of sulphur and nitrogen oxides and (iii) integrated gasification combined cycle (IGCC) plant based on a slurry-feed entrained-flow gasifier. Each technology was analysed in its configurations without and with CO 2 capture, referring to a commercial-scale of 1000 MW th . Technical assessment was carried out by using simulation models implemented through Aspen Plus and Gate-Cycle tools, whereas economic assessment was performed through a properly developed simulation model. USC equipped with CGT systems shows an overall efficiency (43.7%) comparable to IGCC (43.9%), whereas introduction of SNOX technology increases USC efficiency up to 44.8%. Being the CCS energy penalties significantly higher for USC (about 10.5% points vs. about 8

  9. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  10. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Energy Technology Data Exchange (ETDEWEB)

    Elaine Hale, Brady Stoll, and Trieu Mai

    2016-05-01

    Power systems of the future are likely to require additional flexibility due to the operating characteristics of many clean energy technologies, particularly those relying on renewable energy sources. This subject has been well studied from an operational perspective, but it has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. The primary purpose of this report is to present new capabilities that were developed for a particular CEM, NREL's Resource Planning Model (RPM), to better reflect the impact of variable wind and solar generation on system operations and resource adequacy, and, complementarily, to model energy-constrained flexibility resources.

  11. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  12. Development of technology to utilize existing tobacco kilns and/or tobacco storage barns for curing (drying) and/or storage of other crops

    Energy Technology Data Exchange (ETDEWEB)

    VanHooren, D L; Scott, J J

    1988-01-01

    This report investigates methods to utilize existing bulk tobacco kilns for curing (drying) of shelled corn, peanuts, and baled hay. In recent years Ontario tobacco producers have had to reduce production levels due to a declining demand for flue-cured tobacco. Many tobacco producers are currently diversifying into other crops. Some of these crops require curing and/or storage. Because of high capital costs to purchase conventional curing and/or storage facilities, tobacco producers wish to reduce their initial diversification costs by modifying their existing tobacco kilns (tobacco drying structures) and/or tobacco storage barns for this purpose. The investigation included high profile and low profile downdraft stick kilns, bulk kilns, and tobacco storage (pack) barns. Corn, peanuts, and hay were considered in relation to bulk kiln specifications and modifications, handling, drying and storage methods, energy requirements, cost, and quality of end product. The conclusions drawn from the study of each product are presented. Results from the projects indicate that: shelled corn can be dried from about 26% moisture content (w.b.) or less; baled hay can be dried from about 27% moisture content (w.b.) or less; and peanuts cured at airflow rates ranging from 169 to 645 l/s/m/sup 3/ of peanuts exhibited no significant differences when evaluated for appearance and flavour. 1 ref., 23 figs., 15 tabs.

  13. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  16. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  17. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  18. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 2: Carbon dioxide (CO{sub 2}) storage and utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews geological sequestration of CO{sub 2}, from saline aquifer sequestration to oil and gas reservoir and coal bed storage, including coverage of reservoir sealing, and monitoring and modelling techniques used to verify geological sequestration of CO{sub 2}. Terrestrial and ocean sequestration are also reviewed, along with the environmental impact and performance assessments for these routes. The final section reviews advanced concepts for CO{sub 2} storage and utilization, such as industrial utilization, biofixation, mineral carbonation and photocatalytic reduction.

  19. Biotic interactions reduce microbial carbon use efficiency

    Science.gov (United States)

    Bradford, M.; Maynard, D. S.

    2017-12-01

    The efficiency by which microbes decompose organic matter governs the amount of carbon that is retained in microbial biomass versus lost to the atmosphere as respiration. This carbon use efficiency (CUE) is affected by various abiotic conditions, such as temperature and nutrient availability. In biogeochemical model simulations, CUE is a key variable regulating how much soil carbon is stored or lost from ecosystems under simulated global changes, such as climate warming. Theoretically, the physiological costs of biotic interactions such as competition should likewise alter CUE, yet the direction and magnitude of these costs are untested. Here we conduct a microcosm experiment to quantify how competitive interactions among saprotrophic fungi alter growth, respiration, and CUE. Free-living decomposer fungi representing a broad range of traits and phylogenies were grown alone, in pairwise competition, and in multi-species (up to 15) communities. By combing culturing and stable carbon isotope approaches, we could resolve the amount of carbon substrate allocated to fungal biomass versus respiration, and so estimate CUE. By then comparing individual performance to community-level outcomes, we show that species interactions induce consistent declines in CUE, regardless of abiotic conditions. Pairwise competition lowers CUE by as much as 25%, with the magnitude of these costs equal to or greater than the observed variation across abiotic conditions. However, depending on the competitive network structure, increasing species richness led to consistent gains or declines in CUE. Our results suggest that the extent to which microbial-mediated carbon fluxes respond to environmental change may be influenced strongly by competitive interactions. As such, knowledge of abiotic conditions and community composition is necessary to confidently project CUE and hence ecosystem carbon dynamics.

  20. Status of Closure Welding Technology of Canister for Transportation and Storage of High Level Radioactive Material and Waste

    International Nuclear Information System (INIS)

    Lee, H. J.; Bang, K. S.; Seo, K. S.; Seo, C. S.

    2010-10-01

    Closure seal welding is one of the key technologies in fabricating and handling the canister which is used for transportation and storage of high radioactive material and waste. Simple industrial fabrication processes are used before filling the radioactive waste into the canister. But, automatic and remote processes should be used after filling the radioactive material because the thickness of canister is not sufficient to shield the high radiation from filled material or waste. In order to simplify the welding process the closure structure of canister and the sealing method are investigated and developed properly. Two types of radioactive materials such as vitrified waste and compacted solid waste are produced in nuclear industry. Because the filling method of two types of waste is different, the shapes of closure and opening of canister and welding method is also different. The canister shape and sealing method should be standardized to standardize the handling facilities and inspection process such as leak test after closure welding. In order to improve the productivity of disposal and compatibility of the canister, the structure and shape of canister should be standardized considering the type of waste. Two kind of welding process such as arc welding and resistance welding are reported and used in the field. In the arc welding process GTAW and PAW are considered proper processes for closure welding. The closure seal welding process can be selected by considering material of canister, thickness of body, productivity, and applicable codes and rules. Because the storage time of nuclear waste in canister is very long, at least 20 years, the long-time corrosion at the weld should be estimated including mechanical integrity. Recently, the mitigation of residual stress around weld region, which causes stress corrosion cracking, is also interesting research issue

  1. Physico-chemical and biotic factors influencing microalgal seed ...

    African Journals Online (AJOL)

    Physico-chemical and biotic factors influencing microalgal seed culture propagation for inoculation of a ... African Journal of Biotechnology ... used to inoculate an open raceway pond for large scale biomass production for biodiesel production.

  2. Biotic interactions mediate soil microbial feedbacks to climate change

    Czech Academy of Sciences Publication Activity Database

    Crowther, T. W.; Thomas, S.M.; Maynard, D.S.; Baldrian, Petr; Covey, K.; Frey, S. D.; van Diepen, L. T. A.; Bradford, M.A.

    2015-01-01

    Roč. 112, č. 22 (2015), s. 7033-7038 ISSN 0027-8424 Institutional support: RVO:61388971 Keywords : global change * soil feedback * biotic interaction Subject RIV: EE - Microbiology, Virology Impact factor: 9.423, year: 2015

  3. Biotic and surface catalyzed reactivity of nitrates at alkaline pH

    International Nuclear Information System (INIS)

    Rafrafi, Y.; Erable, B.; Ranaivomanana, H.; Bertron, A.; Albrecht, A.

    2015-01-01

    This study investigates the reactivity of nitrates in abiotic and biotic conditions at alkaline pH in the context of a repository for long-lived intermediate- level radioactive wastes. The work, carried out under environmental conditions closed to those prevailing in the storage: alkaline pH, no oxygen, solid materials (cement paste, steel), aims to identify the by-products of the nitrate reduction, to evaluate reaction kinetics and to determine the role of organic matter in these reactions with and without the presence of denitrifying microbial activity. This paper demonstrated that in the extreme conditions of pH in nuclear waste storage cells, nitrate reduction is a really possible scenario in the presence of microorganisms. (authors)

  4. SIGNIFICANT PROGRESS IN THE DEPLOYMENT OF NEW TECHNOLOGIES FOR THE RETRIEVAL OF HANFORD RADIOACTIVE WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    RAYMOND RE; DODD RA; CARPENTER KE; STURGES MH

    2008-01-01

    Significant enhancements in the development and deployment of new technologies for removing waste from storage tanks at the Hanford Site have resulted in accelerated progress and reduced costs for tank cleanup. CH2M HILL Hanford Group, Inc. is the U.S. Department of Energy, Office of River Protection's prime contractor responsible for safely storing and retrieving approximately 53 million gallons of highly-radioactive and hazardous waste stored in 177 underground tanks. The waste is stored in 149 older single-shell tanks (SST) and 28 newer double-shell tanks (DST) that are grouped in 18 so-called farms near the center of the Hanford Site, located in southeastern Washington State. Tank contents include materials from years of World-War II and post-war weapons production, which account for 60 percent by volume of the nation's high-level radioactive waste. A key strategy for improved cleanup is the development and deployment of innovative technologies, which enhance worker safety, resolve technical challenges, streamline retrieval processes, and cut project costs and durations. During the past seven years of tank cleanout projects we have encountered conditions and waste chemistry that defy conventional approaches, requiring a variety of new tools and techniques. Through the deployment of advanced technology and the creative application of resources, we are finding ways to accomplish the retrieval process safely, swiftly, and economically. To date, retrieval operations have been completed in seven tanks, including a record six tanks in a two-year period. Retrieval operations are in progress for another three tanks. This paper describes the following tank cleanup technologies deployed at Hanford in the past few years: Modified waste sluicing, High pressure water lance, Mobile retrieval tools, Saltcake dissolution, Vacuum retrieval, Sparging of wastes, Selective dissolution for waste treatment, Oxalic acid dissolution, High-pressure water mixers, Variable height pumps

  5. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  6. Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses.

    Science.gov (United States)

    Awad, Faez; Baylis, Matthew; Jones, Richard C; Ganapathy, Kannan

    2014-01-01

    The feasibility of using Flinders Technology Associates (FTA) cards for the molecular detection of avian metapneumovirus (aMPV) by reverse transcriptase-polymerase chain reaction (RT-PCR) was investigated. Findings showed that no virus isolation was possible from aMPV-inoculated FTA cards, confirming viral inactivation upon contact with the cards. The detection limits of aMPV from the FTA card and tracheal organ culture medium were 10(1.5) median ciliostatic doses/ml and 10(0.75) median ciliostatic doses/ml respectively. It was possible to perform molecular characterization of both subtypes A and B aMPV using inoculated FTA cards stored for up to 60 days at 4 to 6°C. Tissues of the turbinate, trachea and lung of aMPV-infected chicks sampled either by direct impression smears or by inoculation of the tissue homogenate supernatants onto the FTA cards were positive by RT-PCR. However, the latter yielded more detections. FTA cards are suitable for collecting and transporting aMPV-positive samples, providing a reliable and hazard-free source of RNA for molecular characterization.

  7. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  8. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  9. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement

    International Nuclear Information System (INIS)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ''Pneumatic Excavator'' which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions

  10. Modular battery design for reliable, flexible and multi-technology energy storage systems

    International Nuclear Information System (INIS)

    Rothgang, Susanne; Baumhöfer, Thorsten; Hoek, Hauke van; Lange, Tobias; De Doncker, Rik W.; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Collection of existing battery topologies in electric vehicles. • Analysis of load profiles and the power consumption for electric vehicles. • Composition of battery packs and their passive components. • Modular, hybrid battery architecture with a dc-link. - Abstract: With large scale battery systems being more and more used in demanding applications regarding lifetime, performance and safety, it is of great importance to utilize not only cells with a high cyclic and calendric lifetime but also to optimize the whole system architecture. The aim of this work is therefore, to highlight the benefits of a modular system architecture allowing the use of hybrid battery systems combining high power and high energy cells in a multi-technology system. To achieve an optimized performance, efficiency and lifetime for an electric vehicle the complete drive train topology has to be taken into account instead of optimizing one of the components individually. Consequently, the topic will be analyzed from the system’s point of view, addressing in particular the modularization of the battery as well as the power electronics needed to do so. It will be shown that a highly flexible battery system can be realized by dc-to-dc converters between a modular, hybrid battery system and the drive inverter. By the dc-to-dc converters the battery output voltages and the inverter input voltages are decoupled. Hence, the battery’s topology can be chosen unrestrictedly within a wide range and easily be interconnected to a common dc-link of a different voltage. The benefits of this flexibility will be analyzed in detail showing especially how the lifetime of the battery system can be improved and the impact on system weight

  11. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses

    NARCIS (Netherlands)

    Lange, de H.J.; Griethuysen, van C.; Koelmans, A.A.

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the

  12. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    Science.gov (United States)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  13. Changes during storage of quality parameters and in vitro antioxidant activity of extra virgin monovarietal oils obtained with two extraction technologies.

    Science.gov (United States)

    Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A

    2012-10-01

    Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 5. Development of hydrogen transportation and storage technology - Edition 3. Development of liquid hydrogen storage facility); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 5: Suiso yuso chozo gijutsu no kaihatsu - Dai 3 hen. Ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    With an intention to establish a technology required to build a hydrogen storage tank with a storage capacity of 50,000 m{sup 3} as the target shown in the basic plan for WE-NET, the current fiscal year has performed the technical literature surveys to identify the existing technologies. In the survey on the similar large storage system, a liquefied natural gas (LNG) was taken up, and the survey on the LNG bases in Japan was carried out. With regard to the existing liquefied hydrogen storage system, surveys were performed on the test site for developing the liquefied hydrogen/liquefied oxygen engines, the rocket launch sites, and liquefied hydrogen manufacturing plant. In relation with peripheral technologies for the underground storage tank being an excellent anti-seismic form, the LNG underground storage facilities were surveyed. Regarding the rock mass storage tank, surveys were carried out on the LPG rock mass storage having been used practically, and the LNG rock mass storage that is in the demonstration phase. In the research on storage facilities, surveys were executed on the forms and heat insulation structures of the similar large low-temperature storage tanks, the use record of the existing liquefied hydrogen storage tanks, heat insulating materials, and heat insulating structures. (NEDO)

  15. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-01-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility

  16. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  17. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  18. Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas.

    Science.gov (United States)

    Chanthap, Lon; Ariey, Frédéric; Socheat, Duong; Tsuyuoka, Reiko; Bell, David

    2010-01-23

    With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM) developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs) for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.

  19. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  20. Assessment of technologies for CO{sub 2} capture and storage. Final report; Verfahren zur CO{sub 2}-Abscheidung und -Speicherung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, Peter; Cremer, Clemens; Warkentin, Sebastian [Fraunhofer-Inst. fuer Systemtechnik und Innovationsforschung, Karlsruhe (Germany); Gerling, Peter; May, Franz; Knopf, Stephan [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2006-08-15

    The aim of this study was to summarize the actual status for carbon capture, transport and storage for CO{sub 2} emissions from power stations. Special interest was given to the implications from the introduction of carbon capture and storage in power stations on the efficiency, emissions and cost for electricity generation. In the beginning a detailed analyses of the national, European and international activities in this field have been conducted. The analysis focussed on the identification of main actors and the different co-operation of actors. To do so, the available literature has been studied and analysed with a bibliometric approach, which has taken also presentations at national and international conferences into account. In a second step a technical analysis has been undertaken for the three main routes for carbon capture (pre-combustion capture; post-combustion capture, oxy-fuel combustion) with a special emphasis on the impact to the Environment. Truck, ship and pipeline transport have been analysed as means for transporting the CO{sub 2} from the power station to the storage site. In addition the different storage options for a secure long term storage of the captured CO{sub 2} are studied in the report. Special attention was given to the storage options in gasfields and saline aquifers which will be the most promising options in Germany. The report gives an actual overview on the status of carbon capture and storage in the world. It therefore supports the decision making process when introducing this new technology, taking into account the environmental effects. (orig.)

  1. A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies

    Directory of Open Access Journals (Sweden)

    Jason Moore

    2016-08-01

    Full Text Available This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique, it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California and high penetration rates of residential solar photovoltaics (PV (Germany. Therefore, Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.

  2. Technology Development And Deployment Of Systems For The Retrieval And Processing Of Remote-Handled Sludge From Hanford K-West Fuel Storage Basin

    International Nuclear Information System (INIS)

    Raymond, R.E.

    2011-01-01

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 μm to 6350 μm mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled

  3. Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas

    Directory of Open Access Journals (Sweden)

    Tsuyuoka Reiko

    2010-01-01

    Full Text Available Abstract Background With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. Methods To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Results Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p Discussion and Conclusions The CCB was an effective tool for storage of RDTs at optimal conditions, and extended the effective life-span of the tests. The concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.

  4. Modeling nurses' attitude toward using automated unit-based medication storage and distribution systems: an extension of the technology acceptance model.

    Science.gov (United States)

    Escobar-Rodríguez, Tomás; Romero-Alonso, María Mercedes

    2013-05-01

    This article analyzes the attitude of nurses toward the use of automated unit-based medication storage and distribution systems and identifies influencing factors. Understanding these factors provides an opportunity to explore actions that might be taken to boost adoption by potential users. The theoretical grounding for this research is the Technology Acceptance Model. The Technology Acceptance Model specifies the causal relationships between perceived usefulness, perceived ease of use, attitude toward using, and actual usage behavior. The research model has six constructs, and nine hypotheses were generated from connections between these six constructs. These constructs include perceived risks, experience level, and training. The findings indicate that these three external variables are related to the perceived ease of use and perceived usefulness of automated unit-based medication storage and distribution systems, and therefore, they have a significant influence on attitude toward the use of these systems.

  5. The Role of Silicon under Biotic and Abiotic Stress Conditions

    Directory of Open Access Journals (Sweden)

    İlkay YAVAŞ

    2017-06-01

    Full Text Available Biotic and abiotic stress factors can adversely affect the agricultural productivity leading to physiological and biochemical damage to crops. Therefore, the most effective way is to increase the resistance to stresses. Silicon plays a ro le in reducing the effects of abiotic and biotic stresses (drought, salt stress, disease and insect stress etc. on plants. Silicon is accumulated in the cell walls and intercellular spaces and thus it has beneficial effects on disease infestations in especially small grains. The application of silicon may reduce the effects of environmental stresses on plants while making effective use of plant nutrients such as nitrogen and phosphorous. Also, silicon may reduce the toxic effects of heavy metals in soil. I t may protect the foliage and increase light uptake and reduce respiration. Therefore, in this review, we discussed the effects of silicon on abiotic and biotic stresses in especially field crops.

  6. Opportunities to integrate solar technologies into the Chilean lithium mining industry - reducing process related GHG emissions of a strategic storage resource

    Science.gov (United States)

    Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo

    2017-06-01

    The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.

  7. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    Science.gov (United States)

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  8. FY 1999 research and development results. Technological development of superconducting power storage systems; Chodendo denryoku chozo system gijutsu kaihatsu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for technological surveys on the superconducting power storage system (SMES) for cost reduction and high-temperature SMES, and the FY 1999 results are reported. The SMES cost analysis/evaluation program establishes the (basic flow for cost analysis/evaluation) for cost evaluation. The program for the SMES systems for system stabilization sets the specifications of 100MW as output and 15kWh as storage capacity at the generator end and intermediate switching station. The program for SMES systems for load fluctuation compensation and frequency control sets the specifications of 100MW as output and 500kWh as storage capacity at the installation site as the load end, and the investigation of high-temperature SMES technology is conducted on the conceptual designs of the SMES for system stabilization application (100MW, 15kWh) of toroidal coil type. The optimization designs are made for these systems. The investigation of the technology for high-temperature superconducting wires involves fabrication on a trial basis and evaluation for the characteristic evaluation coils, and characteristic measurement and applicability investigation for the large-current short conductor. (NEDO)

  9. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture (Gothia Power AB, Goeteborg (Sweden))

    2008-12-15

    In this report a survey of different techniques for storage of electrical energy. The following alternatives are described regarding method, characteristics, potential and economy. Batteries; Capacitors; Flywheels; Pump storage hydro power plants; Hydrogen gas generation; Air compression. Regarding evaluation of methods for storage of electrical energy. Battery storage: The development of Lithium-ion batteries are of great interest. In the present situation it is however difficult of classify battery storage as a good alternation in applications with frequent re-charging cycles and re-charging of large energy volumes. The batteries have limited life length compared to other alternatives. Also the power is limited at charging and discharging. Energy storage in capacitors: 'Super-capacitors' having large power capacity is considered to be of interest in applications where fast control of power is necessary. The ongoing development of based on carbon-nanotubes will increase the energy storage capacity compared with the today existing super-capacitors. This can in the future be an alternative to battery storage. Of further interest is also the idea to combine battery and capacitor based storage to achieve longer life-time of the batteries and faster power control. Flywheel energy storage: The energy storage capacity is relatively limited but power control can be fast. This system can be an alternative to capacitor based energy storage. Pump-storage hydro power plant: This type of energy storage is well suited and proven for time frame up to some days. In the Swedish power system there is today not any large demand of energy storage in this time frame as there is a large capacity in conventional hydro power plants with storage capacity. Pump-storage can however be of interest in the southern part of Sweden. In some operation stages the grid is loaded up to its limit due to large power transmission from the north. The pump-storage can reduce this power transfer

  10. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture [Gothia Power AB, Goeteborg (Sweden)

    2008-12-15

    In this report a survey of different techniques for storage of electrical energy. The following alternatives are described regarding method, characteristics, potential and economy. Batteries; Capacitors; Flywheels; Pump storage hydro power plants; Hydrogen gas generation; Air compression. Regarding evaluation of methods for storage of electrical energy. Battery storage: The development of Lithium-ion batteries are of great interest. In the present situation it is however difficult of classify battery storage as a good alternation in applications with frequent re-charging cycles and re-charging of large energy volumes. The batteries have limited life length compared to other alternatives. Also the power is limited at charging and discharging. Energy storage in capacitors: 'Super-capacitors' having large power capacity is considered to be of interest in applications where fast control of power is necessary. The ongoing development of based on carbon-nanotubes will increase the energy storage capacity compared with the today existing super-capacitors. This can in the future be an alternative to battery storage. Of further interest is also the idea to combine battery and capacitor based storage to achieve longer life-time of the batteries and faster power control. Flywheel energy storage: The energy storage capacity is relatively limited but power control can be fast. This system can be an alternative to capacitor based energy storage. Pump-storage hydro power plant: This type of energy storage is well suited and proven for time frame up to some days. In the Swedish power system there is today not any large demand of energy storage in this time frame as there is a large capacity in conventional hydro power plants with storage capacity. Pump-storage can however be of interest in the southern part of Sweden. In some operation stages the grid is loaded up to its limit due to large power transmission from the north. The pump-storage can reduce this power transfer during

  11. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  12. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  13. Scaled biotic disruption during early Eocene global warming events

    Directory of Open Access Journals (Sweden)

    S. J. Gibbs

    2012-11-01

    Full Text Available Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM, Eocene Thermal Maximum 2 (ETM2 and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.

  14. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.

    Science.gov (United States)

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G; Romero-Gomez, Sergio de J; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V; Alvarez-Arquieta, Luz de L; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.

  15. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  16. River Quality Investigations, Part 1: Some Diversity and Biotic Indices.

    Science.gov (United States)

    Hewitt, G.

    1991-01-01

    The following indices for assessing river water quality are described: Shannon-Weiner Diversity Index, Sorenson Quotient of Similarity, Czekanowski's Index of Similarity, Trent Biotic Index, Chandler Score, and Biological Monitoring Working Party Score. Their advantages and disadvantages are outlined. (Author)

  17. Development and Validation of an Aquatic Fine Sediment Biotic Index

    Science.gov (United States)

    Relyea, Christina D.; Minshall, G. Wayne; Danehy, Robert J.

    2012-01-01

    The Fine Sediment Biotic Index (FSBI) is a regional, stressor-specific biomonitoring index to assess fine sediment (Plecoptera (5), Trichoptera (3), and Ephemeroptera (2) contained all but one of the species or species groups classified as extremely sensitive. Index validation with an independent data set of 255 streams found FSBI scores to accurately predict both high and low levels of measured fine sediment.

  18. Biotic diversity interfaces with urbanization in the Lake Tahoe basin

    Science.gov (United States)

    Patricia N. Manley; Dennis D. Murphy; Lori A. Campbell; Kirsten E. Heckmann; Susan Merideth; Sean A. Parks; Monte P. Sanford; Matthew D. Schlesinger

    2006-01-01

    In the Lake Tahoe Basin, the retention of native ecosystems within urban areas may greatly enhance the landscape’s ability to maintain biotic diversity. Our study of plant, invertebrate and vertebrate species showed that many native species were present in remnant forest stands in developed areas; however, their richness and abundance declined in association with...

  19. The interactions of ants with their biotic environment.

    Science.gov (United States)

    Chomicki, Guillaume; Renner, Susanne S

    2017-03-15

    This s pecial feature results from the symposium 'Ants 2016: ant interactions with their biotic environments' held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this s pecial feature After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. © 2017 The Author(s).

  20. STRESS ECOLOGY IN FUCUS : ABIOTIC, BIOTIC AND GENETIC INTERACTIONS

    NARCIS (Netherlands)

    Wahl, Martin; Jormalainen, Veijo; Eriksson, Britas Klemens; Coyer, James A.; Molis, Markus; Schubert, Hendrik; Dethier, Megan; Karez, Rolf; Kruse, Inken; Lenz, Mark; Pearson, Gareth; Rohde, Sven; Wikstrom, Sofia A.; Olsen, Jeanine L.; Lesser, M

    2011-01-01

    Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global

  1. Hydrolysis and biotic transformation in water in the pesticide model

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Beltman, W.H.J.; Adriaanse, P.I.; Mulder, H.M.

    2017-01-01

    The TOXSWA model has been extended with the functionality to simulate hydrolysis and biotic transformation in water. TOXSWA simulates the fate of pesticides in water bodies to calculate exposure calculations for aquatic organisms or sediment-dwelling organisms as part of the aquatic risk assessment

  2. Legumes affect alpine tundra community composition via multiple biotic interactions

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Aksenova, A.A.; Makarov, M.I.; Onipchenko, V.G.; Logvinenko, O.A.; Braak, ter C.J.F.; Cornelissen, J.H.C.

    2012-01-01

    The soil engineering function of legumes in natural ecosystems is paramount but associated solely with soil nitrogen (N) subsidies, ignoring concomitant biotic interactions such as competitive or inhibitory effects and exchange between mycorrhizas and rhizobia. We aim to (1) disentangle legume

  3. Experimental reduction in interaction intensity strongly affects biotic selection.

    Science.gov (United States)

    Sletvold, Nina; Ågren, Jon

    2016-11-01

    The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.

  4. Does prescribed burning result in biotic homogenization of coastal heathlands?

    Science.gov (United States)

    Velle, Liv Guri; Nilsen, Liv Sigrid; Norderhaug, Ann; Vandvik, Vigdis

    2014-05-01

    Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north-western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land-use practice over the past 6000 years. We compare the beta-diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat-specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic 'heterogenisation' after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land-use practices can instead be crucial for the maintenance of the diversity and ecological

  5. A direct-gradient multivariate index of biotic condition

    Science.gov (United States)

    Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.

    2012-01-01

    Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.

  6. Increase in the number of distributed power generation installations in electricity distribution grids - Storage technologies; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Grundlagen der Speicher

    Energy Technology Data Exchange (ETDEWEB)

    Luechinger, P.

    2003-07-01

    This is the fifth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This fourth appendix to the main report describes six ways of storing electricity, including accumulators, super caps, super-conducting magnetic and flywheel energy storage units. The accumulator technologies discussed include lead-acid, nickel-cadmium and sodium-sulphur batteries. Each of these types of power storage technologies is briefly described. The characteristics of these various types of storage are compared.

  7. Energy storage. Technologies and potentials to compensate supply and demand; Energiespeicherung. Technologien und Potentiale zum Ausgleich von Angebot und Nachfrage

    Energy Technology Data Exchange (ETDEWEB)

    Kruhl, Joerg [E.ON New Build and Technology, Gelsenkirchen (Germany); Doll, Markus [RWE Power AG, Essen (Germany)

    2011-07-01

    Future energy systems will be based on a high proportion of renewable and fluctuating power generation. This will result in system states in which the merging of supply and demand represents a significant challenge. Energy storages are a measure to overcome this challenge. However, energy storages are not the sole solution. So there exist alternative measures such as network expansion and load management as a cost-effective solutions. Energy storages as an important building block for future energy systems must be a function of other measures such as network expansion and demand management designed specifically. This includes a financial support for technical development and also the attendance of the launch by means of appropriate economic incentives.

  8. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  9. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  10. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  11. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    Science.gov (United States)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  12. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  13. An integrative approach to the Carbon Capture and Storage (CCS) technologies inside a Water-Energy Nexus Framework

    NARCIS (Netherlands)

    Vaca Jiménez, Santiago David; Nonhebel, Sanderine; Dijkema, Gerhard

    2016-01-01

    The energy sector is a major source of the anthropogenic CO2 emissions. Therefore, the sector’s de-carbonization is imperative if we intend to curb the progression of Climate Change. Carbon Capture and Storage (CCS) was created in an attempt to reduce the carbon footprint of energy production.

  14. Development of Integrity Evaluation Technology for the Long-term Spent Fuel Dry Storage System (1st year Report)

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kook, Dong Hak; Kim, Jun Sub

    2010-05-01

    Korea has operated 16 Pressurized Water Reactors(PWR) and has a plan to construct additional nuclear power reactors as only PWR. This causes a big issue of PWR spent fuel accumulation problem now and in the future. KRMC(Korea Radioactive waste Management Coorporation) which was established in 2009 is charged with managing all kinds of radioactive waste that is produced in Korea. KRMC is considering spent fuel dry storage as an option to solve this spent fuel problem and developing the related engineering techniques. KAERI(Korea Atomic Energy Research Institute) also participated in this development and focused on evaluating the spent fuel dry storage system integrity for a long term operation. This report is the first year research product. The aims of the first year work scope are surveying and analyzing models which could anticipate degradation phenomena of the all dry storage components(spent fuel, structure materials, and equipment materials) and selecting items of the tests which are planned to perform in the next project stage. The major work areas consist of 'spent fuel degradation evaluation model development', 'test senario development', 'long-term evaluation of structural material characteristics', and 'dry storage system structure degradation model development'. These works were successfully achieved. This report is expected to contribute for the second year work which includes degradation model development and test senario development, and next project stage

  15. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    Science.gov (United States)

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  16. Directed technical change and the adoption of CO{sub 2} abatement technology. The case of CO{sub 2} capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Vincent M.; Reilly, John [Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2008-11-15

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO{sub 2}-trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO{sub 2} abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO{sub 2} emissions associated with energy use, directed technical change and the economy. We specify CO{sub 2} capture and storage (CCS) as a discrete CO{sub 2} abatement technology. We find that combining CO{sub 2}-trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  17. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  18. Biotic turnover rates during the Pleistocene-Holocene transition

    Science.gov (United States)

    Stivrins, Normunds; Soininen, Janne; Amon, Leeli; Fontana, Sonia L.; Gryguc, Gražyna; Heikkilä, Maija; Heiri, Oliver; Kisielienė, Dalia; Reitalu, Triin; Stančikaitė, Miglė; Veski, Siim; Seppä, Heikki

    2016-11-01

    The Northern Hemisphere is currently warming at the rate which is unprecedented during the Holocene. Quantitative palaeoclimatic records show that the most recent time in the geological history with comparable warming rates was during the Pleistocene-Holocene transition (PHT) about 14,000 to 11,000 years ago. To better understand the biotic response to rapid temperature change, we explore the community turnover rates during the PHT by focusing on the Baltic region in the southeastern sector of the Scandinavian Ice Sheet, where an exceptionally dense network on microfossil and macrofossil data that reflect the biotic community history are available. We further use a composite chironomid-based summer temperature reconstruction compiled specifically for our study region to calculate the rate of temperature change during the PHT. The fastest biotic turnover in the terrestrial and aquatic communities occurred during the Younger Dryas-Holocene shift at 11,700 years ago. This general shift in species composition was accompanied by regional extinctions, including disappearance of mammoth (Mammuthus primigenius) and reindeer (Rangifer tarandus) and many arctic-alpine plant taxa, such as Dryas octopetala, Salix polaris and Saxifraga aizoides, from the region. This rapid biotic turnover rate occurred when the rate of warming was 0.17 °C/decade, thus slightly lower than the current Northern Hemisphere warming of 0.2 °C/decade. We therefore conclude that the Younger Dryas-Holocene shift with its rapid turnover rates and associated regional extinctions represents an important palaeoanalogue to the current high latitude warming and gives insights about the probable future turnover rates and patterns of the terrestrial and aquatic ecosystem change.

  19. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  20. Development of a new biotic index to assess freshwater pollution

    International Nuclear Information System (INIS)

    Jiang Jianguo

    2006-01-01

    We developed a new biotic index of species pollution value (SPV) and community pollution value (CPV) based on the correlation of protozoan communities with chemical water quality to assess freshwater pollution. Five hundred and twenty-three species of protozoa SPV were established based on the data of River Hangjiang and Lake Donghu. The present research was conducted in order to further consummate the biotic index. Protozoa of the water system in Changde City were collected from 16 stations using the PFU method and the water chemical parameters of the stations were analyzed. The results showed that CPV calculated from SPV had a close correlation with the degree of water pollution (p < 0.00001), which indicated that the method is reliable. By combining the data of River Hangjiang, Lake Donghu and Changde City, the final form of SPV was accomplished and the SPV list increased to 757. The ultimate water standard evaluated by CPV calculated from SPV was proposed. - A new biotic index of water quality based on protozoa is described

  1. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    Science.gov (United States)

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Pattern and process of biotic homogenization in the New Pangaea.

    Science.gov (United States)

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  3. Development of a new biotic index to assess freshwater pollution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jianguo [College of Food and Bioengineering, South China University of Technology, Guangzhou 510640 (China)]. E-mail: jgjiang@scut.edu.cn

    2006-01-15

    We developed a new biotic index of species pollution value (SPV) and community pollution value (CPV) based on the correlation of protozoan communities with chemical water quality to assess freshwater pollution. Five hundred and twenty-three species of protozoa SPV were established based on the data of River Hangjiang and Lake Donghu. The present research was conducted in order to further consummate the biotic index. Protozoa of the water system in Changde City were collected from 16 stations using the PFU method and the water chemical parameters of the stations were analyzed. The results showed that CPV calculated from SPV had a close correlation with the degree of water pollution (p < 0.00001), which indicated that the method is reliable. By combining the data of River Hangjiang, Lake Donghu and Changde City, the final form of SPV was accomplished and the SPV list increased to 757. The ultimate water standard evaluated by CPV calculated from SPV was proposed. - A new biotic index of water quality based on protozoa is described.

  4. Development of shelf stable pork sausages using hurdle technology and their quality at ambient temperature (37±1°C) storage.

    Science.gov (United States)

    Thomas, R; Anjaneyulu, A S R; Kondaiah, N

    2008-05-01

    Shelf stable pork sausages were developed using hurdle technology and their quality was evaluated during ambient temperature (37±1°C) storage. Hurdles incorporated were low pH, low water activity, vacuum packaging and post package reheating. Dipping in potassium sorbate solution prior to vacuum packaging was also studied. Reheating increased the pH of the sausages by 0.17units as against 0.11units in controls. Incorporation of hurdles significantly decreased emulsion stability, cooking yield, moisture and fat percent, yellowness and hardness, while increasing the protein percent and redness. Hurdle treatment reduced quality deterioration during storage as indicated by pH, TBARS and tyrosine values. About 1 log reduction in total plate count was observed with the different hurdles as were reductions in the coliform, anaerobic, lactobacilli and Staphylococcus aureus counts. pH, a(w) and reheating hurdles inhibited yeast and mold growth up to day 3, while additional dipping in 1% potassium sorbate solution inhibited their growth throughout the 9 days storage. Despite low initial sensory appeal, the hurdle treated sausages had an overall acceptability in the range 'very good' to 'good' up to day 6.

  5. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    Science.gov (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.

    2017-10-01

    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  6. Memory mass storage

    CERN Document Server

    Campardo, Giovanni; Iaculo, Massimo

    2011-01-01

    Covering all the fundamental storage technologies such as semiconductor, magnetic, optical and uncommon, this volume details their core characteristics. In addition, it includes an overview of the 'biological memory' of the human brain and its organization.

  7. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  8. Fuel storage

    International Nuclear Information System (INIS)

    Palacios, C.; Alvarez-Miranda, A.

    2009-01-01

    ENSA is a well known manufacturer of multi-system primary components for the nuclear industry and is totally prepared to satisfy future market requirements in this industry. At the same time that ENSA has been gaining a reputation world wider for the supply of primary components, has been strengthening its commitment and experience in supplying spent fuel components, either pool racks or storage and transportation casks, and offers not only fabrication but also design capabilities for its products. ENSA has supplied Spent Fuel Pool Racks, in spain, Finland, Taiwan, Korea, China, and currently it is in the process of licensing its own rack design in the United States of America for the ESBWR along with Ge-Hitachi. ENSA has supplied racks for 20 pools and 22 different reactors and it has also manufactured racks under all available technologies and developed a design known as Interlock Cell Matrix whose main features are outlined in this article. Another ENSA achievement in rack technology is the use of remote control for re-racking activities instead of using divers, which improves the ALARA requirements. Regarding casks for storage and transportation, ENSA also has al leading worldwide position, with exports prevailing over the Spanish market where ENSA has supplied 16 storage and transportation casks to the Spanish nuclear power Trillo. In some cases, ENSA acts as subcontractor for other clients. Foreign markets are still a major challenge for ENSA. ENSA-is well known for its manufacturing capabilities in the nuclear industry, but has been always involved in design activities through its engineering division, which carries out different tasks: components Design; Tooling Design; Engineering and Documentation; Project Engineering; Calculations, Design and Development Engineering. (Author)

  9. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  10. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  11. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    Science.gov (United States)

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  12. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  13. Influence of the xanthan gum addition on the technological and sensory quality of baking products during the freezing storage

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2016-07-01

    Full Text Available The influence of the 0.16% xanthan gum addition in the recipe of the bread production and its influence on the baking and sensory quality of products was monitored during the process of our research. Prepared dough was inserted in the freezing box directly (-18°C and it was stored for one, two, three, four, five and six months. When the baking process was finished, the products with xanthan gum and the products without it were compared and evaluated by both objective and subjective methods. It was found that freezing, cooling and storage of the products without xanthan gum addition influenced the volume, vaulting and general appearance of the products in a negative way and loaves of bread were evaluated as unacceptable after four months of freezing. The quality of experimental loaves of bread with xanthan gum was, even after six months of freezing storage, comparable with freshly baked products. Despite the freezing, the volume of the products had an increased value. After first month of freezing the volume increased by 28.6% and after two months of freezing it increased by 23.8% both compared to the control. The vaulting in products processed by freezing was in the required optimal level during the whole period of freezing. Sensory evaluation results of loaves of bread with xanthan gum were the best after three, four and five months of storage in a freezer, when 98 points were achieved. During the monitored period of freezing, the addition of 0.16% of xanthan gum markedly contributed to the preservation of sensory and baking quality of the frozen wheat dough.

  14. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  15. α- and β-Carotene Stability During Storage of Microspheres Obtained from Spray-Dried Microencapsulation Technology

    Directory of Open Access Journals (Sweden)

    Przybysz Marzena Anna

    2018-03-01

    Full Text Available This study was aimed at comparing the stability of carotenes (α- and β-carotene in oil solutions with their stability when spray-dried encapsulation is applied. The carotenes were isolated from carrot. A storage test was subsequently performed. The stability of carotenes in oil solutions was determined with the HPLC method. The color of the samples was also analyzed. The oil solutions of carotenes were microencapsulated with the spray-drying method. A mixture of gum Arabic and maltodextrin was used as a matrix.

  16. Present situation of the electric power storage technology and its future outlook. IV. ; Compressed air energy storage. Denryoku Chozo gijutsu no genjo to shorai tenbo ni tsuibe. IV. ; Asshuku kuki chozo

    Energy Technology Data Exchange (ETDEWEB)

    Kadoyu, M. (Central Research Institute of Electric Power Industry, Tokyo (Japan))

    1991-03-20

    The compressed air energy storage gas turbine power generation system is paid attetion to as a load levelling power source in view of the recent increase in electric power demand. The paper describes features, cavern construction technology, economy and future expansion of the system. In this system compressed air made by use of cheap night-time electric power is stored in underground spaces or underwater facilities. Burning the fuel together with this compressed air in the daytime, the gas turbine power generation is conducted. Several examples overseas of this system are reported including a 290,000KW class in Germany. A key technology of the system is how safely and cheaply a large amount of hih-pressure air can be stored. In Europe and America, caverns of hundreds of thousand m {sub 3} are constructed in the rock salt cavern which can be excavated by a water jet. In consideration of storing it in rock beds in Japan where there are no rock salt caverns, NEDO started 1990 a 9-year construction plan of a 35,000 KW class pilot plant at Kamisunagawa, Hokkaido. 2 refs., 5 figs., 1 tab.

  17. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    JA Bamberger

    2000-08-02

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

  18. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    International Nuclear Information System (INIS)

    JA Bamberger

    2000-01-01

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, but not specifically evaluated for radioactive waste retrieval

  19. Testing and evaluating storage technology to build a distributed Tier1 for SuperB in Italy

    International Nuclear Information System (INIS)

    Pardi, S; Delprete, D; Russo, G; Fella, A; Corvo, M; Bianchi, F; Ciaschini, V; Giacomini, F; Simone, A Di; Donvito, G; Santeramo, B; Gianoli, A; Luppi, E; Manzali, M; Tomassetti, L; Longo, S; Stroili, R; Luitz, S; Perez, A; Rama, M

    2012-01-01

    The SuperB asymmetric energy e + e −- collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 75 ab −-1 and a luminosity target of 10 36 cm −-2 s −-1 . This luminosity translate in the requirement of storing more than 50 PByte of additional data each year, making SuperB an interesting challenge to the data management infrastructure, both at site level as at Wide Area Network level. A new Tier1, distributed among 3 or 4 sites in the south of Italy, is planned as part of the SuperB computing infrastructure. Data storage is a relevant topic whose development affects the way to configure and setup storage infrastructure both in local computing cluster and in a distributed paradigm. In this work we report the test on the software for data distribution and data replica focusing on the experiences made with Hadoop and GlusterFS.

  20. Clean coal technologies. The capture and geological storage of CO{sub 2} - Panorama 2008; Les technologies du charbon propre. Captage et stockage geologique du CO{sub 2} - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO{sub 2} emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO{sub 2} capture and storage technologies are implemented, it will be very difficult to contain global warming.

  1. Role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. Simulation and optimization; Rolle und Bedeutung der Stromspeicher bei hohen Anteilen erneuerbarer Energien in Deutschland. Speichersimulation und Betriebsoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Niklas

    2013-06-13

    The share of renewable electricity generation of gross electricity consumption in Germany increased from 6.8 % to about 20 % during the years of 2000 and 2011. This share will increase even more in the future. The greater part of the renewable electricity generation is characterized by significant fluctuations, which can only be planned to a limited extent. Hence, the electricity system in Germany faces the challenge to integrate an increasing amount of fluctuating renewable electricity generation. Additionally the system stability needs to be ensured, despite a decreasing capacity in conventional power plants. One option to support the integration of large amounts of renewable electricity generation and to enhance system stability is the deployment of storage technologies. The aim of this research was to analyze the role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. To achieve this aim, adiabatic compressed air energy storage, diabatic compressed air energy storage and mobile battery storage systems were simulated and compared with a pumped hydro storage as the reference storage system. Key characteristics of these storage systems were modeled within a fundamental stochastic unit commitment model of the German power markets (Joint-Market-Model) in order to analyze the effect of the implementation of these storage systems on the overall cost of the electricity system. Additionally, the operation of the storages in an electricity system with high shares of renewable energy was evaluated. The results show that the integration of large shares of renewable electricity generation into the grid can only be achieved with a substantial implementation of storage systems. To integrate 50 % of renewable energy, a storage power of 27 GW and storage capacity of 245 GWh is needed. For a renewable energy share of 80 %, a storage power of 78 GW and a storage capacity of 6.3 TWh are necessary. A 100

  2. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications-Production, storage and fuel cell drivetrain considerations

    Science.gov (United States)

    Hart, David; Anghel, Alexandra T.; Huijsmans, Joep; Vuille, François

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address.

  3. Local biotic adaptation of trees and shrubs to plant neighbors

    Science.gov (United States)

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  4. Citrus flush shoot ontogeny modulates biotic potential of Diaphorina citri.

    Science.gov (United States)

    Cifuentes-Arenas, Juan Camilo; de Goes, António; de Miranda, Marcelo Pedreira; Beattie, George Andrew Charles; Lopes, Silvio Aparecido

    2018-01-01

    The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have been extensively studied with respect to host preferences, thermal requirements, and responses to visual and chemical volatile stimuli. However, development of the psyllid in relation to the ontogeny of immature citrus flush growth has not been clearly defined or illustrated. Such information is important for determining the timing and frequency of measures used to minimize populations of the psyllid in orchards and spread of HLB. Our objective was to study how flush ontogeny influences the biotic potential of the psyllid. We divided citrus flush growth into six stages within four developmental phases: emergence (V1), development (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri oviposition and nymph development were assessed on all flush stages in a temperature controlled room, and in a screen-house in which ambient temperatures varied. Our results show that biotic potential of Diaphorina citri is not a matter of the size or the age of the flushes (days after budbreak), but the developmental stage within its ontogeny. Females laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition, nymph survival and development, and adult emergence, which showed evidence of protandry. Flush shoots at emerging and developmental phases should be the focus of any chemical or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree from Liberibacter infection and to minimize HLB dissemination.

  5. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  6. The application of research and technology in the Highly Active Liquor storage and treatment facilities at Sellafield

    International Nuclear Information System (INIS)

    Nixon, C.R.

    2004-01-01

    At the Sellafield nuclear site, Highly Active Liquor (HAL) produced from Magnox and Oxide reprocessing operations is evaporated and interim stored in the Highly Active Liquor Evaporation and Storage (HALES) complex prior to vitrification in one of three Waste Vitrification Plant (WVP) processing lines. These plants are integral to the current commercial activities at Sellafield and also in safely discharging liabilities in the future. The management and operation of HALES and WVP are subject to significant regulatory and public scrutiny and there is the requirement to deliver a reduction in the HAL volumes stored in HALES in accordance with a regulator imposed HAL stock reduction specification. In delivering the required reduction BNFL has faced a number of technical and operational challenges which have resulted in the development and execution of significant programmes of research and development and technical and engineering projects. The key challenges faced are briefly presented. (author)

  7. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  8. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  9. Guidebook on spent fuel storage

    International Nuclear Information System (INIS)

    1984-01-01

    The Guidebook summarizes the experience and information in various areas related to spent fuel storage: technological aspects, the transport of spent fuel, economical, regulatory and institutional aspects, international safeguards, evaluation criteria for the selection of a specific spent fuel storage concept, international cooperation on spent fuel storage. The last part of the Guidebook presents specific problems on the spent fuel storage in the United Kingdom, Sweden, USSR, USA, Federal Republic of Germany and Switzerland

  10. Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA

    International Nuclear Information System (INIS)

    Stephens, Jennie C.; Jiusto, Scott

    2010-01-01

    This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources - particularly public resources - is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.

  11. Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

  12. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  13. Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Leanne M.; Byrd, Thomas M., Jr.; Murray, Aaron T.; Ginn, Jerry W.; Symons, Philip C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA); Corey, Garth P.

    2005-08-01

    This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

  14. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  15. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  16. Storage evaporator for vehicles with start-stop technology; Speicherverdampfer fuer Fahrzeuge mit Start-Stopp-Funktion

    Energy Technology Data Exchange (ETDEWEB)

    Wawzyniak, Markus; Link, Joachim [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-04-15

    Today, the use of engine start-stop technology - a system designed to cut fuel consumption when the vehicle stops or, in future applications, when vehicles are in coasting or ''sailing'' mode - is gaining ground in more and more vehicle classes. Shutting off the internal combustion engine, though, detrimentally affects cabin air conditioning because the belt-driven A/C compressor is likewise deactivated, thus bringing the vapor compression process to a standstill. As a result, during extended stop periods and in warm weather vent temperatures and air humidity rapidly increase.

  17. Efeito do armazenamento sobre as propriedades tecnológicas da farinha, de variedades de trigo cultivadas no Brasil Effect of storage on technological properties of wheat flour of Brazilian grown wheats

    Directory of Open Access Journals (Sweden)

    Mônica R. Pirozi

    1998-06-01

    Full Text Available The aim of this work was to evaluate changes in technological properties of newly milled flours of BR-23, BR-35 and Anahuac varieties (Brazilian grown wheat during storage for 180 days. Quality of samples was analysed for their rheological properties, acidity, falling number, glutomatic test and baking test, after periods of 0, 7, 15, 30, 60, 90, 120, 150 and 180 days. Most evident changes were the increase in flour acitidy and dough elasticity. The other characteristics did not show expressive changes. The flour of Anahuac variety was less influenced by the storage than the other ones. The results showed an increment in the flour quality, during 60-90 days of storage, althoug the baking test did not show expressive changes during all the period of storage.

  18. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  19. Research and development in fiscal 2000 on element technologies for superconducting for electric power storage by using flywheels; 2000 nendo flywheel denryoku chozoyo chodendo jikuuke gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    With an objective to put flywheel electric power storage system into practical use, developmental research has been made on superconducting bearings that can support a rotating body having large load and rotating at high speed. This paper summarizes the achievements in fiscal 2000. In the study of enhancing the loading force for developing the element technologies for the superconducting bearings, specifications were established and fabrication was performed on the Y-based superconducting bulk for bearings, whereas the healthiness thereof was verified by measuring the trapped magnetic field distribution. This bulk was applied with vacuum impregnation treatment of an epoxy-based resin, to have fabricated a superconducting bearing model with a diameter of 180 mm class. Regarding the RE-based superconducting bulk, studies were carried out on a synthesizing method including optimization of the fabricating conditions, a columnar Sm-based bulk body with a diameter of 60 mm was fabricated, and its healthiness was verified. In the research of a rotation loss reducing technology, discussions were given on optimizing the magnetic circuitry to reduce the magnetic variation, by using the three-dimensional magnetic field simulation. In the evaluation test utilizing the existing test machine, the loading force of a 180-mm class-bearing model has shown 2105N at maximum. (NEDO)

  20. Development of Seasonal Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    National survey on seasonal (thermal, large-scale) storage activities in Denmark. A storage programme under the Danish Energy Agency. Programme background, objectives, activities, projects and results.Technologies presented: Pit water storage, gravel water storage with pipe heat exchangers, lining...... materials for pit and lid designs....

  1. Views on Biotic Nature and the Idea of Sustainable Development

    Science.gov (United States)

    Łepko, Zbigniew

    2017-12-01

    The search for balance between humankind's civilisational aspirations and the durable protection of nature is conditioned by contemporaneous views of biotic nature. Of particular importance in this regard are physiocentric and physiological views that may be set against one another. The first of these was presented by Hans Jonas, the second by Lothar Schäfer. This paper does not confine itself to setting one view against the other, but rather sets minimum conditions for cooperation between their promoters in the interests of balance between the aspirations of the present generation and those of future generations. Both views of nature are in their own way conducive to a break with the illusion present in some areas of the modern natural sciences - that nature is a boundless area of are inexhaustible resources.

  2. Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics

    Directory of Open Access Journals (Sweden)

    S. P. Seibert

    2017-06-01

    Full Text Available The baffling diversity of runoff generation processes, alongside our sketchy understanding of how physiographic characteristics control fundamental hydrological functions of water collection, storage, and release, continue to pose major research challenges in catchment hydrology. Here, we propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in catchment inter-comparison. More specifically, we present dimensionless double mass curves (dDMC which allow inference of information on runoff generation and the water balance at the seasonal and annual timescales. By separating the vegetation and winter periods, dDMC furthermore provide information on the role of biotic and abiotic controls in seasonal runoff formation. A key aspect we address in this paper is the derivation of dimensionless expressions of fluxes which ensure the comparability of the signatures in space and time. We achieve this by using the limiting factors of a hydrological process as a scaling reference. We show that different references result in different diagnostics. As such we define two kinds of dDMC which allow us to derive seasonal runoff coefficients and to characterize dimensionless streamflow release as a function of the potential renewal rate of the soil storage. We expect these signatures for storage controlled seasonal runoff formation to remain invariant, as long as the ratios of release over supply and supply over storage capacity develop similarly in different catchments. We test the proposed methods by applying them to an operational data set comprising 22 catchments (12–166 km2 from different environments in southern Germany and hydrometeorological data from 4 hydrological years. The diagnostics are used to compare the sites and to reveal the dominant controls on runoff formation. The key findings are that dDMC are meaningful signatures for catchment runoff formation at the seasonal to annual scale and that the type of

  3. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  4. Biotic homogenization of three insect groups due to urbanization.

    Science.gov (United States)

    Knop, Eva

    2016-01-01

    Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity. © 2015 John Wiley & Sons Ltd.

  5. Early Triassic marine biotic recovery: the predators' perspective.

    Science.gov (United States)

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  6. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  7. Early Triassic marine biotic recovery: the predators' perspective.

    Directory of Open Access Journals (Sweden)

    Torsten M Scheyer

    Full Text Available Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became

  8. Evaluation of the Flinders Technology Associates Cards for Storage and Temperature Challenges in Field Conditions for Foot-and-Mouth Disease Virus Surveillance.

    Science.gov (United States)

    Madhanmohan, M; Yuvaraj, S; Manikumar, K; Kumar, R; Nagendrakumar, S B; Rana, S K; Srinivasan, V A

    2016-12-01

    Foot-and-mouth disease virus (FMDV) samples transported to the laboratory from far and inaccessible areas for diagnosis and identification of FMDV pose a major problem in a tropical country like India, where wide fluctuation of temperature over a large geographical area is common. Inadequate storage methods lead to spoilage of FMDV samples collected from clinically positive animals in the field. Such samples are declared as non-typeable by the typing laboratories with the consequent loss of valuable epidemiological data. In this study, an attempt was made to evaluate the robustness of Flinders Technology Associates (FTA) cards for storage and transportation of FMDV samples in different climatic conditions which will be useful for FMDV surveillance. Simulation transport studies were conducted using FTA impregnated FMDV samples during post-monsoon (September-October 2010) and summer season (May-June 2012). FMDV genome or serotype could be identified from the FTA cards after the simulation transport studies with varying temperature (22-45°C) and relative humidity (20-100%). The stability of the viral RNA, the absence of infectivity and ease of processing the sample for molecular methods make the FTA cards an useful option for transport of FMDV genome for identification and type determination. The method can be used routinely for FMDV research as it is economical and the cards can be transported easily in envelopes by regular courier/postal systems. The absence of live virus in FTA card can be viewed as an advantage as it restricts the risk of transmission of live virus. © 2015 Blackwell Verlag GmbH.

  9. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  10. Early biotic stress detection in tomato ( Solanum lycopersicum ) by BVOC emissions

    NARCIS (Netherlands)

    Kasal-Slavik, Tina; Eschweiler, Julia; Kleist, Einhard; Mumm, Roland; Goldbach, Heiner E.; Schouten, Sander; Wildt, Jürgen

    2017-01-01

    We investigated impacts of early and mild biotic stress on Biogenic Volatile Organic Compounds (BVOC) emissions from tomato in order to test their potential for early (biotic) stress detection. Tomato plants were exposed to two common fungal pathogens, Botrytis cinerea and Oidium neolycopesici and

  11. Enhanced effects of biotic interactions on predicting multispecies spatial distribution of submerged macrophytes after eutrophication.

    Science.gov (United States)

    Song, Kun; Cui, Yichong; Zhang, Xijin; Pan, Yingji; Xu, Junli; Xu, Kaiqin; Da, Liangjun

    2017-10-01

    Water eutrophication creates unfavorable environmental conditions for submerged macrophytes. In these situations, biotic interactions may be particularly important for explaining and predicting the submerged macrophytes occurrence. Here, we evaluate the roles of biotic interactions in predicting spatial occurrence of submerged macrophytes in 1959 and 2009 for Dianshan Lake in eastern China, which became eutrophic since the 1980s. For the four common species occurred in 1959 and 2009, null species distribution models based on abiotic variables and full models based on both abiotic and biotic variables were developed using generalized linear model (GLM) and boosted regression trees (BRT) to determine whether the biotic variables improved the model performance. Hierarchical Bayesian-based joint species distribution models capable of detecting paired biotic interactions were established for each species in both periods to evaluate the changes in the biotic interactions. In most of the GLM and BRT models, the full models showed better performance than the null models in predicting the species presence/absence, and the relative importance of the biotic variables in the full models increased from less than 50% in 1959 to more than 50% in 2009 for each species. Moreover, co-occurrence correlation of each paired species interaction was higher in 2009 than that in 1959. The findings suggest biotic interactions that tend to be positive play more important roles in the spatial distribution of multispecies assemblages of macrophytes and should be included in prediction models to improve prediction accuracy when forecasting macrophytes' distribution under eutrophication stress.

  12. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems

    NARCIS (Netherlands)

    Petruzella, A.; Grutters, B.M.C.; Thomaz, S.M.; Bakker, E.S.

    2017-01-01

    Invasions of tropical and subtropical aquatic plants threaten biodiversity and cause ecological and economic impacts worldwide. An urgent question is whether native herbivores are able to inhibit the spread of these alien species thus providing biotic resistance. The potential for biotic resistance

  13. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  14. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  15. Pro biotic as Alternative to Antibiotic for Broiler Chicken fed Food Industrial Residual Oil

    International Nuclear Information System (INIS)

    EL-Faramawy, A.A.; El-Maghraby, A.F.; El-Danasoury, M.M.; Hussien, H.A.; Hegazy, E.S.

    2016-01-01

    This study aimed to evaluate the effect of pro biotic (some lactic acid bacteria) with different levels of food industrial residual oil in broiler commercial diets on growth performance, meat yield, internal organs, economical efficiency and performance index. One hundred and eighty one day old Cobb chicks (45 ± 0.4 g) were equally and randomly divided into 6 groups namely; the antibiotic with fresh oil (FO), the antibiotic with mixed oil (MO) [FO+RO ( 1:1 w/w)], the antibiotic with food industrial residual oil (RO), the pro biotic with FO, the pro biotic with MO and the pro biotic with RO. Virginiamycin, Phibro, USA (15 ppm), was the antibiotic, while a mixture of lactic acid bacteria is chosen as pro biotic. Both were added to the water. During the experiment which lasted for 42 days, the body weight, the feed intake and the mortality rate were recorded at 2, 4 and 6 weeks of age then the body weight gain, feed conversion ratio, economical efficiency and performance index were calculated. The results revealed that the average body weight, body weight gain and feed consumption significantly (P 0.05) while liver increased significantly (P<0.05) in pro biotic FO and gizzard in all pro biotic group and antibiotic MO. The highest performance index was observed in groups of birds treated with pro biotic with MO followed by birds treated with pro biotic FO without significant difference. It could be concluded that supplementation of pro biotic in broiler diet containing different levels of RO was economically more beneficial than antibiotic

  16. Natural biotic resources in LCA: Towards an impact assessment model for sustainable supply chain management.

    Science.gov (United States)

    Crenna, Eleonora; Sozzo, Sara; Sala, Serenella

    2018-01-20

    Natural resources, biotic and abiotic, are fundamental from both the ecological and socio-economic point of view, being at the basis of life-support. However, since the demand for finite resources continues to increase, the sustainability of current production and consumption patterns is questioned both in developed and developing countries. A transition towards an economy based on biotic renewable resources (bio-economy) is considered necessary in order to support a steady provision of resources, representing an alternative to an economy based on fossil and abiotic resources. However, to ensure a sustainable use of biotic resources, there is the need of properly accounting for their use along supply chains as well as defining a robust and comprehensive impact assessment model. Since so far naturally occurring biotic resources have gained little attention in impact assessment methods, such as life cycle assessment, the aim of this study is to enable the inclusion of biotic resources in the assessment of products and supply chains. This paper puts forward a framework for biotic resources assessment, including: i) the definition of system boundaries between ecosphere and technosphere, namely between naturally occurring and man-made biotic resources; ii) a list of naturally occurring biotic resources which have a commercial value, as basis for building life cycle inventories (NOBR, e.g. wild animals, plants etc); iii) an impact pathway to identify potential impacts on both resource provision and ecosystem quality; iv) a renewability-based indicator (NOBRri) for the impact assessment of naturally occurring biotic resources, including a list of associated characterization factors. The study, building on a solid review of literature and of available statistical data, highlights and discusses the critical aspects and paradoxes related to biotic resource inclusion in LCA: from the system boundaries definition up to the resource characterization.

  17. The subtle attractions of dry vault storage

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1993-01-01

    Utilities in the United States of America, Scotland and Hungary have all adopted dry vault technology in their plans for spent fuel storage. This article looks at what makes dry storage an attractive option. (author)

  18. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    Science.gov (United States)

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  19. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  20. Cryptography from noisy storage.

    Science.gov (United States)

    Wehner, Stephanie; Schaffner, Christian; Terhal, Barbara M

    2008-06-06

    We show how to implement cryptographic primitives based on the realistic assumption that quantum storage of qubits is noisy. We thereby consider individual-storage attacks; i.e., the dishonest party attempts to store each incoming qubit separately. Our model is similar to the model of bounded-quantum storage; however, we consider an explicit noise model inspired by present-day technology. To illustrate the power of this new model, we show that a protocol for oblivious transfer is secure for any amount of quantum-storage noise, as long as honest players can perform perfect quantum operations. Our model also allows us to show the security of protocols that cope with noise in the operations of the honest players and achieve more advanced tasks such as secure identification.

  1. Wet storage integrity update

    International Nuclear Information System (INIS)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables

  2. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  3. H2-rich fluids from serpentinization: geochemical and biotic implications.

    Science.gov (United States)

    Sleep, N H; Meibom, A; Fridriksson, Th; Coleman, R G; Bird, D K

    2004-08-31

    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life. Copyright 2004 The National Academy of Sciencs of the USA

  4. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  5. Evolution of clustered storage

    CERN Multimedia

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  6. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 3. development of liquid hydrogen storage equipment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 3 hen ekitai suiso chozo setsubi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the WE-NET development of large capacity liquid hydrogen storage technology, a study has been continued with a target of 50000 m{sup 3} storage development. As to the result of conceptual design and various types of the thermal insulating structure, to confirm the performance, studies were made on the thermal insulating performance test and the strength test on thermal insulating materials to be started in fiscal 1998. The large-capacity common testing equipment for thermal insulation performance to be used in and after fiscal 1998 was fabricated, and the basic performance of the equipment was confirmed by the preliminary cooling test. Further, the test pieces simulated of various thermal insulating structures were designed to study the thermal insulation performance, reformation during the test, strength, etc. It is required to solve problems such as weight reduction of test pieces, prevention of reformation, retention of vacuum, etc. In the test on strength of thermal insulating materials, a test is conducted to confirm strength of thermal insulating materials at temperatures of hydrogen by the extremely low temperature strength test equipment. The studies on test pieces to be used were summed up including the items to be paid attention to during the test because the test situation is different from that in testing metal materials. Since hydrogen is a very flammable gas, much attention should be paid to safety during the test. 13 refs., 63 figs., 32 tabs.

  7. Secure Storage Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  8. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  9. Storage of radioactive waste

    International Nuclear Information System (INIS)

    Pittman, F.K.

    1974-01-01

    Four methods for managing radioactive waste in order to protect man from its potential hazards include: transmutation to convert radioisotopes in waste to stable isotopes; disposal in space; geological disposal; and surface storage in shielded, cooled, and monitored containers. A comparison of these methods shows geologic disposal in stable formations beneath landmasses appears to be the most feasible with today's technology. (U.S.)

  10. Potential role of biotic transport models in low-level-waste management

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Soldat, J.K.; Cadwell, L.L.; McKenzie, D.H.

    1982-01-01

    This paper is a summary of the initial results of a study being conducted for the US Nuclear Regulatory Commission (NRC) to determine the relevance of biotic pathways to the regulation of nuclear waste disposal. Biotic transport is defined as the actions of plants and animals that result in the transport of radioactive materials from a LLW burial ground to a location where they can enter exposure pathways to man. A critical review of the role of modeling in evaluating biotic transport is given. Both current applications and the need for future modeling development are discussed

  11. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johannes Bernardus Charles; Khatib, M.G.; Koelmans, W.W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data

  12. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  13. Electricity storage - A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Cagnac, Albannie; Brisse, Annabelle; Jeandel, Elodie; Lefebvre, Thierry; Penneau, Jean-Francois; Radvanyi, Etienne; Delille, Gautier; Hinchliffe, Timothee; Lancel, Gilles; Loevenbruck, Philippe; Soler, Robert; Stevens, Philippe; Torcheux, Laurent

    2017-01-01

    After a presentation of the energetic context and of its issues, this collective publication proposes presentations of various electricity storage technologies with a distinction between direct storage, thermal storage and hydrogen storage. As far as direct storage is concerned, the following options are described: pumped energy transfer stations or PETS, compressed air energy storage or CAES, flywheels, various types of electrochemical batteries (lead, alkaline, sodium, lithium), metal air batteries, redox flow batteries, and super-capacitors. Thermal storage comprises power-to-heat and heat-to-power technologies. Hydrogen can be stored under different forms (compressed gas, liquid), in saline underground cavities, or by using water electrolysis and fuel cells. The authors propose an overview of the different services provided by energy storage to the electricity system, and discuss the main perspectives and challenges for tomorrow's storage (electric mobility, integration of renewable energies, electrification of isolated areas, scenarios of development)

  14. Development of hydrogen storage technologies

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-10-01

    Full Text Available The use of hydrogen to deliver energy for cars, portable devices and buildings is seen as one of the key steps to reduce greenhouse gas emissions. South Africa’s national hydrogen strategy, HySA, aims to develop and guide innovation along the value...

  15. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of storage facility for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the storage facility for a large amount of liquid hydrogen (LH) was studied. Gasification loss caused by heat input of LH delivery pumps was studied for liquefaction and power generation bases assuming an pump efficiency of 70%, and the total heat and mass balance such as interface conditions for calculating the amount of boil-off gas was reviewed. The target storage capacity of 50,000m{sup 3} was reasonable, however, the performance of loading arms should be examined. The capacity around 5,000m{sup 3} of coastal localized bases was reasonable for control delivery loss caused by coastal tanker or LH container system to 2.6%. The capacity of 500m{sup 3} was suitable for inland bases, resulting in the loss of 1.2%. The concept design of the storage tank of 50,000m{sup 3} extracted confirmation of low-temperature characteristics of adiabatic materials and structures, and development of leakage inspection technology and vacuum holding technology as issues. The concept design of the underground storage tank showed that the material specifications for LNG ones are applicable to it by using proper adiabatic structures. 4 refs., 72 figs., 27 tabs.

  16. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    Science.gov (United States)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  17. Robust RNA silencing-mediated resistance to Plum pox virus under variable abiotic and biotic conditions.

    Science.gov (United States)

    Di Nicola, Elisa; Tavazza, Mario; Lucioli, Alessandra; Salandri, Laura; Ilardi, Vincenza

    2014-10-01

    Some abiotic and biotic conditions are known to have a negative impact on post-transcriptional gene silencing (PTGS), thus representing a potential concern for the production of stable engineered virus resistance traits. However, depending on the strategy followed to achieve PTGS of the transgene, different responses to external conditions can be expected. In the present study, we utilized the Nicotiana benthamiana–Plum pox virus (PPV) pathosystem to evaluate in detail the stability of intron-hairpin(ihp)-mediated virus resistance under conditions known to adversely affect PTGS. The ihp plants grown at low or high temperatures were fully resistant to multiple PPV challenges, different PPV inoculum concentrations and even to a PPV isolate differing from the ihp construct by more than 28% at the nucleotide level. In addition, infections of ihp plants with viruses belonging to Cucumovirus, Potyvirus or Tombusvirus, all known to affect PTGS at different steps, were not able to defeat PPV resistance. Low temperatures did not affect the accumulation of transgenic small interfering RNAs (siRNAs), whereas a clear increase in the amount of siRNAs was observed during infections sustained by Cucumber mosaic virus and Potato virus Y. Our results show that the above stress factors do not represent an important concern for the production,through ihp-PTGS technology, of transgenic plants having robust virus resistance traits.

  18. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  19. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  20. The influence of α-amylase supplementation, γ-irradiation (60Co) as well as long time of storage of wheat grain on flour technological properties

    International Nuclear Information System (INIS)

    Warchalewski, J.R.

    1989-01-01

    The varieties of winter wheat, Aria and Beta, were studied. The Aria variety was stored for the period of four years. The part of wheat grain from Beta variety was irradiated with γ rays ( 60 Co). In extracts from wheat kernels and flour protein content, total α- and β-amylolytic activity as well as α-amylolytic activity were determined, α-amylases of native and fungal origin were added to the flour obtained from samples of stored wheat kernels (Aria), irradiated and non-irradiated (Beta). Consequently native α-amylase activity of flour increased by 25% and 50%, respectively. Extensive technological estimation of grain and flour with amylase supplements was carried out. The study included: sedimentation analysis, falling number test, milling experiment, farinogram and extensogram analyses, measurement of the degree of damaged starch and flour colour, as well as baking experiment. The obtained experimental loaves of bread were tested for their ability to remain fresh. It was found out that the stored grain flour was characterized by the highest α-amylolytic activity and the lowest falling number value, whereas the irradiated grain flour showed the highest degree of starch damage and water absorption. When α-amylase supplementation to doughs was not accompanied by either irradiation or storage of grain, it definitely changed their physical properties for the worse. The negative influence of native α-amylases appeared to be less significant than that of fungal α-amylases. The positive influence of α-amylase supplementations, especially of those increasing by 25% the native α-amylolytic activity of flour on volume, and freshness of loaves of bread was observed. (author)

  1. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  2. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  3. Understanding the Effects of Defect Modification on the Structure and Properties of Fluorinated Polymers and Implications for Capacitive Energy Storage Technologies

    Science.gov (United States)

    Gadinski, Matthew R.

    As the world begins to turn to alternative energy technologies and our electronic devices have become more both mobile and integral to everyday life, increasing interest has been focused on energy storage technologies. Capacitors are one of these energy storage technologies that utilize the polarization of an insulating material sandwiched by two electrodes as a means to store electric charge. Polymers are a preferred dielectric material for capacitors because of both their performance and practicality. However, polymer dielectrics are limited in energy density by low dielectric constant, and high loss at elevated temperature. This work aims to address these issues in order to enable polymer dielectrics for future applications and demands. As most polymer tend to have low dielectric constants (˜2-3), but impressive breakdown strengths, only a moderate improvement in dielectric constant has the potential to vastly improve the energy density of polymer capacitors. As such tremendous interest has been placed on poly(vinylidene fluoride) (PVDF) which has a dielectric of 10+ due to the highly polar C-F bonds of its backbone. To improve PVDF's performance defect monomers have been introduced to tailor the polymorphic crystalline phase to tune its properties. Additionally, this defect modification has implications for piezoelectric, electrocaloric, and thermoelectric applications of PVDF. In Chapter 2 a copolymer of VDF and bromotrifluoroethylene (BTFE) was produced. The effect of BTFE on the structure and dielectric properties of the resulting copolymer had not been previously evaluated, and its synthesis allowed for the comparison to previously reported VDF based copolymers including P(VDF-CTFE) and P(VDF-HFP). Through 19F NMR it was determined due to reactivity ratio differences of BTFE in comparison to previously explored copolymers, BTFE during synthesis is much more likely to link with itself. This results in long runs of BTFE-BTFE defects along with isolated

  4. Comparison of wet and dry storage of spent nuclear fuels

    International Nuclear Information System (INIS)

    Soederman, E.

    1998-06-01

    Technologies for interim storage of spent nuclear fuels are reviewed. Pros and cons of wet and dry storage are discussed. No conclusions about preferences for one or the other technologies can be made

  5. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen (WE-NET) (Sub-task 5. Development of hydrogen transportation and storage technology) (Edition 5. Development of hydrogen absorbing alloys for discrete transportation and storage); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) . Sub tusk 5. Suiso yuso chozo gijutsu no kaihatsu - Dai 5 hen. Bunsan yuso chozo you suiso kyuzo gokin no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Surveys and researches have been performed with an objective to accumulate knowledge required for R and D of a hydrogen transportation and storage technology. With respect to the hydrogen absorbing alloys for hydrogen transportation and storage, surveys have been carried out on the rare earth-nickel based alloy, magnesium based alloy, titanium/zirconium based alloy, vanadium based alloy, and other alloys. Regarding the hydrogen transportation and storage technology using hydrogen absorbing alloys, surveys have been made on R and D cases for hydrogen transporting containers, stationary hydrogen storing equipment, and hydrogen fuel tank for mobile equipment such as automobiles. For the R and D situation in overseas countries, site surveys have been executed on research organizations in Germany and Switzerland, the leader nations in R and D of hydrogen absorbing alloys. As a result of the surveys, the hydrogen absorbing alloys were found to have such R and D assignments as increase of effective hydrogen absorbing quantity, compliance with operating conditions, life extension, development of alloys easy in initial activation and fast in hydrogen discharge speed, and cost reduction. Items of the transportation and storage equipment have such assignments as making them compact, acceleration of heat conduction in alloy filling layers, handling of volume variation and internal stress, and long-term durability. (NEDO)

  6. Environmental conditions and biotic communities in Foz de Almargem and Salgados coastal lagoons, Algarve (South Portugal)