WorldWideScience

Sample records for biotechnology resource laboratory

  1. Ergonomics problems and solutions in biotechnology laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.

    1995-03-01

    The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.

  2. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of biodiversity resources which, with the appropriate application of biotechnological tools for conservation and use, can serve as sources of wealth creation. Proper harnessing of the linkages between ...

  3. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    komla

    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of ... security and provide the genetic material needed for industry, agriculture and biotechnology. In agriculture .... benefit assessment in different fields is of fundamental importance in moulding any policy. Even.

  4. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  5. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  6. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  7. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  8. Reproductive biotechnologies and management of animal genetic resources

    Science.gov (United States)

    Global awareness has increased efforts to conserve animal genetic resources (AnGR). Ex-situ conservation and management of AnGR is exclusively dependent upon an array of reproductive and genetic biotechnologies. These technologies range from well established protocols, e.g., cryopreservation of sper...

  9. Adaptive laboratory evolution – principles and applications for biotechnology

    Science.gov (United States)

    2013-01-01

    Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering. PMID:23815749

  10. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  11. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  12. Biotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131 I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  13. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Preservation of plant genetic resources in the biotechnology era.

    Science.gov (United States)

    Börner, Andreas

    2006-12-01

    Thousands of years ago humans began domesticating crops as a food source. Among the wild germplasm available, they selected those that were best adapted for cultivation and utilization. Although wild ancestors have continued to persist in regions where domestication took place, there is a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices. Recognizing this danger, plant ex situ genebank collections were created since the beginning of the last century. World-wide, more than 6 million accessions have been accumulated including the German ex situ genebank in Gatersleben, one of the four largest global collections, housing 150,000 accessions belonging to 890 genera and 3032 species. This review summarizes the ex situ plant genetic resources conservation behavior with a special emphasis on German activities. Strategies for maintenance and management of germplasm collections are reviewed, considering modern biotechnologies (in vitro and cryo preservation). General aspects on genetic diversity and integrity are discussed.

  15. Plant genome resources at the national center for biotechnology information.

    Science.gov (United States)

    Wheeler, David L; Smith-White, Brian; Chetvernin, Vyacheslav; Resenchuk, Sergei; Dombrowski, Susan M; Pechous, Steven W; Tatusova, Tatiana; Ostell, James

    2005-07-01

    The National Center for Biotechnology Information (NCBI) integrates data from more than 20 biological databases through a flexible search and retrieval system called Entrez. A core Entrez database, Entrez Nucleotide, includes GenBank and is tightly linked to the NCBI Taxonomy database, the Entrez Protein database, and the scientific literature in PubMed. A suite of more specialized databases for genomes, genes, gene families, gene expression, gene variation, and protein domains dovetails with the core databases to make Entrez a powerful system for genomic research. Linked to the full range of Entrez databases is the NCBI Map Viewer, which displays aligned genetic, physical, and sequence maps for eukaryotic genomes including those of many plants. A specialized plant query page allow maps from all plant genomes covered by the Map Viewer to be searched in tandem to produce a display of aligned maps from several species. PlantBLAST searches against the sequences shown in the Map Viewer allow BLAST alignments to be viewed within a genomic context. In addition, precomputed sequence similarities, such as those for proteins offered by BLAST Link, enable fluid navigation from unannotated to annotated sequences, quickening the pace of discovery. NCBI Web pages for plants, such as Plant Genome Central, complete the system by providing centralized access to NCBI's genomic resources as well as links to organism-specific Web pages beyond NCBI.

  16. FAO/IAEA Agriculture and Biotechnology Laboratories. Activities Report 2010

    International Nuclear Information System (INIS)

    2012-02-01

    Almost two thirds of the world's farm population is raised in developing countries where livestock production constitutes an important resource for the subsistence of more than 70% of the impoverished people living there. Animals represent an essential source of protein and contribute to the economic development of these countries and to overall food security. However, production losses caused by animal diseases, estimated to be around 20% worldwide, have huge negative impact on livestock productivity. The Animal Production and Health Laboratory (APHL), within the Animal Production and Health Section, conducts applied research activities to develop diagnostic tools and assists in the transfer of these tools to FAO and IAEA Member States in their efforts to improve livestock productivity, ensure food security and fight against hunger. The aims of the Food and Environmental Protection Laboratory (FEPL), as a component of the Food and Environmental Protection (FEP) Section, are to provide assistance and support to developing countries in their efforts to ensure the safety and quality of food and agricultural commodities, thereby safeguarding the health of consumers and facilitating international trade. The focus of the FEPL's work is on improving Member States' laboratory and regulatory practices and methodologies, The main areas of activity in pursuit of the FEPL objectives are applied R and D, technology transfer and support of the development of international standards and guidelines. The Insect Pest Control Laboratory (IPCL) is an integral part of the Insect Pest Control Section and contributes to its global objectives of increasing food security, reducing food losses and insecticide use, overcoming constraints to sustainable rural development, and facilitating international trade in agriculture commodities. The IPCL achieves these goals through the development and transfer of the sterile insect technique (SIT) package for key insect pests of crops, livestock and

  17. Spider silk as a resource for future biotechnologies

    Czech Academy of Sciences Publication Activity Database

    Sponner, Alexander

    2007-01-01

    Roč. 37, č. 4 (2007), s. 238-250 ISSN 1738-2297 R&D Projects: GA AV ČR IAA5007402 Institutional research plan: CEZ:AV0Z50070508 Keywords : biomaterial * biotechnology * fiber Subject RIV: ED - Physiology

  18. Banana research in the FAO/IAEA agriculture and biotechnology laboratory

    International Nuclear Information System (INIS)

    Morpurgo, R.; Afza, R.; Brunner, H.; Roux, N.; Grasso, G.; Lee, K.S.; Duren, M. Van; Zapata-Arias, F.J.

    1997-01-01

    The primary activity of the Agriculture and Biotechnology Laboratory on banana has been to develop and transfer mutation techniques using nuclear and related biotechnology, provide training and mutagen treatment services and technical advice to the Member States. The complex genetic nature and lack of seed formation do not allow conventional breeding of Musa varieties. The FAO/IAEA laboratory has developed in vitro techniques to induce mutations, minimize chimerisms, and rapid propagation of banana. The most commonly used method of propagation is rapid proliferation of axillary and adventitious buds from meristem tip culture. Somatic embryogenesis has been induced in clones with different genomic constitution; however, the low germination rate of somatic embryos is still a major constraint. Investigations have been carried out on enzymes associated with resistance to Fusarium oxisporum f. sp. cubense. Molecular methods based on DNA oligonucleotide and DNA amplification fingerprinting are being developed for genomic characterization of species, cultivars and mutant clones. (author)

  19. Turning Russian specialized microbial culture collections into resource centers for biotechnology.

    Science.gov (United States)

    Ivshina, Irena B; Kuyukina, Maria S

    2013-11-01

    Specialized nonmedical microbial culture collections contain unique bioresources that could be useful for biotechnology companies. Cooperation between collections and companies has suffered from shortcomings in infrastructure and legislation, hindering access to holdings. These challenges may be overcome by the transformation of collections into national bioresource centers and integration into international microbial resource networks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  1. Biotechnologies for the management of genetic resources for food and agriculture.

    Science.gov (United States)

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  2. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    Science.gov (United States)

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-07-08

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. Biological risks and laboratory-acquired infections. A reality that cannot be ignored in health biotechnology

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Coelho

    2015-04-01

    Full Text Available Advances and research in biotechnology have applications over a wide range of areas such as microbiology, medicine, the food industry, agriculture, genetically modified organisms and nanotechnology, among others. However, research with pathogenic agents such as virus, parasites, fungi, rickettsia, bacterial microorganisms or genetic modified organisms has generated concern because of their potential biological risk - not only for people, but also for the environment due to their unpredictable behavior. In addition, concern for biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control. Biotechnology laboratories require biosafety measures designed to protect their staff, the population and the environment, which may be exposed to hazardous organisms and materials. Laboratory staff training and education is essential, not only to acquire a good understanding about the direct handling of hazardous biological agents but also knowledge of the epidemiology, pathogenicity and human susceptibility to the biological materials used in research. Biological risk can be reduced and controlled by the correct application of internationally recognized procedures such as proper microbiological techniques, proper containment apparatus, adequate facilities, protective barriers and special training and education of laboratory workers. To avoid occupational infections, knowledge about standardized microbiological procedures and techniques and the use of containment devices, facilities and protective barriers is necessary. Training and education about the epidemiology, pathogenicity and biohazards of the microorganisms involved may prevent or decrease the risk. In this way, the scientific community may benefit from the lessons learned in the past to anticipate future problems.

  4. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  5. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  6. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  7. Generating opportunity : human resources needs in the bioenergy, biofuels and industrial biotechnology subsectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Canada has a plentiful resource base and a long history of innovation in bioenergy, biofuels and industrial biotechnology. Success of the industry depends on having the required human resources capacity such as the right number of skilled, job-ready professionals to support companies as they develop and commercialize new solutions. This document presented the results of a human resources survey conducted by BioTalent regarding the national and global bioenergy, biofuels and industrial biotechnology subsectors. It addressed a variety of issues, such as the increasing demand for bioenergy; the near-term perspective; growth factors; and the role of public policy. A subsector snapshot of human resources was also presented, with particular reference to the principal areas of need; types of roles required in the bio-economy; human resources capacity and company size; regional variances; skills gaps; reliance on outsourcing; knowledge, learning and connectedness; recruitment, retention and turnover; and the road ahead. Conclusions and recommendations were also offered. It was concluded that once the economy recovers, demand for bioenergy, biofuels and industrial products and services is expected to increase. 3 tabs., 6 figs.

  8. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  9. First report on the state of the world's animal genetic resources. Views on biotechnology as expressed in country reports

    International Nuclear Information System (INIS)

    Cardellino, R.; Hoffmann, I.; Tempelman, K.A.

    2005-01-01

    As part of the country-driven strategy for the management of farm animal genetic resources, FAO invited 188 counties to participate in the First Report on the State of the World's Animal Genetic Resources, with 145 consenting. Their reports are an important source of information on the use of biotechnology, particularly biotechnical products and processes. This paper analyses information from country reports so far submitted, and is therefore preliminary. There is clearly a big gap in biotechnology applications between developed and developing countries, with artificial insemination the most common technology used in developing countries, although not everywhere. More complex techniques, such as embryo transfer (ET) and molecular tools, are even less frequent in developing countries. Most developing countries wish to expand ET and establish gene banks and cryoconservation techniques. There are very few examples in developing countries of livestock breeding programmes capable of incorporating molecular biotechnologies in livestock genetic improvement programmes. (author)

  10. Using Virtual Laboratories as Interactive Textbooks: Studies on Blended Learning in Biotechnology Classrooms

    Directory of Open Access Journals (Sweden)

    Hemalatha Sasidharakurup

    2015-07-01

    Full Text Available Virtual laboratories, an ICT-based initiative, is a new venture that is becoming more prevalent in universities for improving classroom education. With geographically remote and economically constrained institutes in India as the focus, we developed web-based virtual labs for virtualizing the wet-lab techniques and experiments with the aid of graphics favoured animations, mathematical simulators and remote triggered experimentations. In this paper, we analysed perceived usefulness of Biotechnology virtual labs amongst student groups and its role in improving the student’s performance when introduced as a learning tool in a blended classroom scenario. A pedagogical survey, via workshops and online feedback, was carried out among 600 university-level students and 100 remote users of various Indian universities. Comparing learning groups on usage of blended learning approach against a control group (traditional classroom methods and an experimental group (teacher-mediated virtual labs, our studies indicate augmented academic performance among students in blended environments. Findings also indicated usage of remotely-triggered labs aided enhancing interaction-based lab education enabling anytime-anywhere student participation scenarios.

  11. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances.

    Science.gov (United States)

    Sethurajan, Manivannan; van Hullebusch, Eric D; Nancharaiah, Yarlagadda V

    2018-04-01

    Solid metalliferous wastes (sludges, dusts, residues, slags, red mud and tailing wastes) originating from ferrous and non-ferrous metallurgical industries are a serious environmental threat, when waste management practices are not properly followed. Metalliferous wastes generated by metallurgical industries are promising resources for biotechnological extraction of metals. These wastes still contain significant amounts of valuable non-ferrous metals, sometimes precious metals and also rare earth elements. Elemental composition and mineralogy of the metallurgical wastes is dependent on the nature of mining site and composition of primary ores mined. Most of the metalliferous wastes are oxidized in nature and contain less/no reduced sulfidic minerals (which can be quite well processed by biohydrometallurgy). However, application of biohydrometallurgy is more challenging while extracting metals from metallurgical wastes that contain oxide minerals. In this review, origin, elemental composition and mineralogy of the metallurgical solid wastes are presented. Various bio-hydrometallurgical processes that can be considered for the extraction of non-ferrous metals from metal bearing solid wastes are reviewed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Institute of Laboratory Animal Resources (ILAR)

    Science.gov (United States)

    1994-05-12

    Roundworms ( Toxocara canis ) and hookworms (Ancylostoma caninum and A. braziliense) are endoparasites that commonly infect young pups. Roundworms are...spp., tri- chomonads, Cryptosporidium spp., Balantidium spp., and amebas. The hel- minths include ascarids (e.g., Toxocara canis and Toxascaris... Toxocara canis , is a common parasite of the small intestines of dogs, even in closed breeding colonies. ’A 1 60 DOGS: LABORATORY ANIMAL MANAGEMENT

  14. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    Science.gov (United States)

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  15. Bioremediation Approaches in a Laboratory Activity for the Industrial Biotechnology and Applied Microbiology (IBAM Course

    Directory of Open Access Journals (Sweden)

    L. Raiger Iustman

    2013-03-01

    Full Text Available Industrial Biotechnology and Applied Microbiology is an optional 128h-course for Chemistry and Biology students at the Faculty of Sciences, University of Buenos Aires, Argentina. This course is usually attended by 25 students, working in teams of two. The curriculum, with 8 lab exercises, includes an oil bioremediation practice covering an insight of bioremediation processes: the influence of pollutants on autochthonous microbiota, biodegrader isolation and biosurfactant production for bioavailability understanding. The experimental steps are: (A evaluation of microbial tolerance to pollutants by constructing pristine soil microcosms contaminated with diesel or xylene and (B isolation of degraders and biosurfactant production analysis. To check microbial tolerance, microcosms are incubated during one week at 25-28ºC. Samples are collected at 0, 4 and every 48 h for CFU/g soil testing. An initial decrease of total CFU/g related to toxicity is noticed. At the end of the experiment, a recovery of the CFU number is observed, evidencing enrichment in biodegraders. Some colonies from the CFU counting plates are streaked in M9-agar with diesel as sole carbon source. After a week, isolates are inoculated on M9-Broth supplemented with diesel to induce biosurfactant production. Surface tension and Emulsification Index are measured in culture supernatants to visualize tensioactive effect of bacterial products. Besides the improvement in the good microbiological practices, the students show enthusiasm in different aspects, depending on their own interests. While biology students explore and learn new concepts on solubility, emulsions and bioavailability, chemistry students show curiosity in bacterial behavior and manipulation of microorganisms for environmental benefits.

  16. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students

    Directory of Open Access Journals (Sweden)

    Dale L. Beach

    2015-08-01

    Full Text Available Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic “parts,” students construct a “reporter plasmid” expressing a reporter gene (GFP controlled by a hybrid promoter regulated by the lac-repressor protein (lacI. In combination with a “sensor plasmid,” the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey and end (post-survey of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05 for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe

  17. Hanford Cultural Resources Laboratory annual report for fiscal year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1991-11-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy Field Office, Richland (RL) in 1987 as part of Pacific Northwest Laboratory. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with federal statutes and regulations. This report summarizes activities of the HCRL during fiscal year (FY) 1990. The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan (HCRMP) as a prioritized list of tasks. The task list guided cultural resources management activities during FY 1990 and is the outline for this report. In order, these tasks were to (1) conduct cultural resource reviews, (2) develop an archaeological resources protection plan, (3) monitor the condition of known archaeological sites, (4) plan a curation system for artifacts and records, (5) evaluate cultural resources for potential nomination to the National Register of Historic Places, (6) educate the public about cultural resources, (7) conduct a sample archaeological survey of Hanford lands, and (8) gather ethnohistorical data from Native American elders.

  18. Hanford Cultural Resources Laboratory annual report for Fiscal Year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.

    1992-08-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Act of 1979 and the American Indian Religious Freedom Act of 1978. HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan (HCRMP) as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations and guidelines. For fiscal year 1991 these tasks were to (1) ensure compliance with NHPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, (5) conduct a sample archaeological survey of Hanford lands, and (6) gather ethnohistorical data from Indian elders. Research conducted as a spinoff from these tasks is also reported. The archaeological site monitoring program is designed to determine whether the RL's cultural resource management and protection policies are effective; results are used in planning for cultural resource site management and protection. Forty-one sites were monitored during this fiscal year.

  19. Hanford Cultural Resources Laboratory annual report for Fiscal Year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.

    1992-08-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Act of 1979 and the American Indian Religious Freedom Act of 1978. HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan (HCRMP) as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations and guidelines. For fiscal year 1991 these tasks were to (1) ensure compliance with NHPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, (5) conduct a sample archaeological survey of Hanford lands, and (6) gather ethnohistorical data from Indian elders. Research conducted as a spinoff from these tasks is also reported. The archaeological site monitoring program is designed to determine whether the RL`s cultural resource management and protection policies are effective; results are used in planning for cultural resource site management and protection. Forty-one sites were monitored during this fiscal year.

  20. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified

  1. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  2. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  3. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  4. Aquaculture, Biotechnological and Seafood Resource Potential of Sea Cucumbers from the Peniche coast (Portugal

    Directory of Open Access Journals (Sweden)

    Rita Alves Santos

    2014-06-01

    Full Text Available Sea cucumbers are highly marketable as food and medicinal product. This has resulted in an increasing overfishing and in a new interest in European species. In this work, the reproductive biology of Holothuria forskali and Holothuria mammata was performed by evaluating the gonadosomatic index and histological analyzes of the gonadal tubules. The biotechnological potential was assessed through the evaluation of the antioxidant, antimicrobial and antitumor potential. The antioxidant activity was evaluated through the quantification of the total phenolic content, DPPH radical scavenging activity and ORAC method. The antimicrobial activity was evaluated against Staphylococcus aureus, Candida albicans, Saccharomyces cerevisiae, Bacillus subtilis, Salmonella enteritidis, Pseudomonas aeruginosa and Escherichia coli through growth inhibition tests. The antitumor potential was performed on HepG-2 and MCF-7 human cells lines using the MTT and Calcein - AM methods. Finally, the fatty acid profile was evaluated through gas-chromatography analysis. The gonadosomatic index and histology revealed that the range from February to April corresponds to the peak of gonad maturation for both species. No significant antioxidant activity was detected. The methanolic fraction of H. forskali revealed the highest antimicrobial potential against Candida albicans with an IC50 of 233.2 µg ml-1 and also presented the highest cytotoxic and anti-proliferative activities through the MTT method in both cells lines, with an IC50 of 238.2 and 396.0 µg ml-1 for MCF-7 cells, respectively and 260.3 and 218.7 µg ml-1 for HepG-2 cells, respectively. Regarding the fatty acid profile, the total fat content was 1%, 3.36% and 4.83% for H. forskali, H. mammata and S. regalis, respectively and the highest values were obtained for C16:0 (9.96% and ARA (20.36% for H. forskali and C18:0 (12.43%, C18:1 n-7 (5.13%, EPA (12.49% and DHA (7.35% for S. regalis. These findings showed the potential

  5. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  6. Cryopreservation and conservation of microalgae: the development of a Pan-European scientific and biotechnological resource (the COBRA project).

    Science.gov (United States)

    Day, J G; Benson, E E; Harding, K; Knowles, B; Idowu, M; Bremner, D; Santos, L; Santos, F; Friedl, T; Lorenz, M; Lukesova, A; Elster, J; Lukavsky, J; Herdman, M; Rippka, R; Hall, T

    2005-01-01

    Microalgae are one of the most biologically important elements of worldwide ecology and could be the source of diverse new products and medicines. COBRA (The COnservation of a vital european scientific and Biotechnological Resource: microAlgae and cyanobacteria) is the acronym for a European Union, RTD Infrastructures project (Contract No. QLRI-CT-2001-01645). This project is in the process of developing a European Biological Resource Centre based on existing algal culture collections. The COBRA project's central aim is to apply cryopreservation methodologies to microalgae and cyanobacteria, organisms that, to date, have proved difficult to conserve using cryogenic methods. In addition, molecular and biochemical stability tests have been developed to ensure that the equivalent strains of microorganisms supplied by the culture collections give high quality and consistent performance. Fundamental and applied knowledge of stress physiology form an essential component of the project and this is being employed to assist the optimisation of methods for preserving a wide range of algal diversity. COBRA's "Resource Centre" utilises Information Technologies (IT) and Knowledge Management practices to assist project coordination, management and information dissemination and facilitate the generation of new knowledge pertaining to algal conservation. This review of the COBRA project will give a summary of current methodologies for cryopreservation of microalgae and procedures adopted within the COBRA project to enhance preservation techniques for this diverse group of organisms.

  7. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  8. Hanford Cultural Resources Laboratory annual report for fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Wright, M.K.; Crist, M.E.; Cadoret, N.A.; Dawson, M.V.; Simmons, K.A.; Harvey, D.W.; Longenecker, J.G.

    1994-09-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Operations Office (DOE-RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Agency of 1979, the Native American Grave Protection and Repatriation Act of 1990, and the American Indian Religious Freedom Act of 1978. The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the DOE-RL in compliance with federal statutes, regulations, and guidelines. For FY 1993, these tasks were to: conduct cultural resource reviews pursuant to Section 106 of the NHPA; monitor the condition of known historic properties; identify, recover, and inventory artifacts collected from the Hanford Site; educate the public about cultural resources values and the laws written to protect them; conduct surveys of the Hanford Site in accordance with Section 110 of the NHPA. Research also was conducted as a spin-off of these tasks and is reported here.

  9. Hanford Cultural Resources Laboratory annual report for fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Wright, M.K.; Crist, M.E.; Longenecker, J.G.; O`Neil, T.K.; Dawson, M.V.

    1993-06-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site located in southcentral Washington, in a manner consistent with the National Historic Preservation Act Amended 1992 (NBPA), the Archaeological Resources Protection Act of 1979 (ARPA), the Native American Grave Protection and Repatriation Act of 1990 (NAGPRA), and the American Indian Religious Freedom Act of 1978 (AIRFA). The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations, and guidelines. For FY 1992, these tasks were to (1) ensure compliance with NBPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, and (5) conduct a sample archaeological survey of Hanford lands. Research was also conducted as a spin-off of these tasks and is also reported here.

  10. Improved genomic resources and new bioinformatic workflow for the carcinogenic parasite Clonorchis sinensis: Biotechnological implications.

    Science.gov (United States)

    Wang, Daxi; Korhonen, Pasi K; Gasser, Robin B; Young, Neil D

    2018-02-15

    Clonorchis sinensis (family Opisthorchiidae) is an important foodborne parasite that has a major socioeconomic impact on ~35 million people predominantly in China, Vietnam, Korea and the Russian Far East. In humans, infection with C. sinensis causes clonorchiasis, a complex hepatobiliary disease that can induce cholangiocarcinoma (CCA), a malignant cancer of the bile ducts. Central to understanding the epidemiology of this disease is knowledge of genetic variation within and among populations of this parasite. Although most published molecular studies seem to suggest that C. sinensis represents a single species, evidence of karyotypic variation within C. sinensis and cryptic species within a related opisthorchiid fluke (Opisthorchis viverrini) emphasise the importance of studying and comparing the genes and genomes of geographically distinct isolates of C. sinensis. Recently, we sequenced, assembled and characterised a draft nuclear genome of a C. sinensis isolate from Korea and compared it with a published draft genome of a Chinese isolate of this species using a bioinformatic workflow established for comparing draft genome assemblies and their gene annotations. We identified that 50.6% and 51.3% of the Korean and Chinese C. sinensis genomic scaffolds were syntenic, respectively. Within aligned syntenic blocks, the genomes had a high level of nucleotide identity (99.1%) and encoded 15 variable proteins likely to be involved in diverse biological processes. Here, we review current technical challenges of using draft genome assemblies to undertake comparative genomic analyses to quantify genetic variation between isolates of the same species. Using a workflow that overcomes these challenges, we report on a high-quality draft genome for C. sinensis from Korea and comparative genomic analyses, as a basis for future investigations of the genetic structures of C. sinensis populations, and discuss the biotechnological implications of these explorations. Copyright © 2018

  11. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  12. Process oriented thinking as a key for integration of ecohydrology, biotechnology and engineering for sustainable water resources management and ecosystems

    Science.gov (United States)

    Zalewski, M.

    2015-04-01

    The recent high rate of environmental degradation due to unsustainable use of water and other natural resources and mismanagement, is, in many cases, the result of a dominant sectoral approach, limited communication between different users and agencies, and lack of knowledge transfer between different disciplines, and especially lack of dialogue between environmental scientists and engineers. There is no doubt that the genuine improvement of human well-being has to be based on understanding the complexity of interactions between abiotic, biotic and socio-economic systems. The major drivers of biogeosphere evolution and function have been the cycles of water and nutrients in a complex array of differing climates and catchment geomorphologies. In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science. Thus the principles of ecohydrology should be the basis for further integration of ecology, hydrology, engineering, biotechnology and other environmental sciences. Examples from UNESCO IHP VII show how the integration of these will not only increase the efficiency of measures to harmonize ecosystem potentials with societal needs, but also significantly reduce the costs of sustainable environmental management.

  13. Arctic Biotechnology – Sustainable Products and Processes from Arctic Biological Resources

    DEFF Research Database (Denmark)

    Thøgersen, Mariane Schmidt; Hennessy, Rosanna Catherine; Stougaard, Peter

    Biological resources from the Arctic hold the potential for development of sustainable products and/or processes within areas such as pharma, agriculture, and biotech. Here, we present the identification of cold-active enzymes and biocontrol agents isolated from cold-adapted bacteria. Truly cold...

  14. Virus variation resources at the National Center for Biotechnology Information: dengue virus

    Directory of Open Access Journals (Sweden)

    Rozanov Michael

    2009-04-01

    Full Text Available Abstract Background There is an increasing number of complete and incomplete virus genome sequences available in public databases. This large body of sequence data harbors information about epidemiology, phylogeny, and virulence. Several specialized databases, such as the NCBI Influenza Virus Resource or the Los Alamos HIV database, offer sophisticated query interfaces along with integrated exploratory data analysis tools for individual virus species to facilitate extracting this information. Thus far, there has not been a comprehensive database for dengue virus, a significant public health threat. Results We have created an integrated web resource for dengue virus. The technology developed for the NCBI Influenza Virus Resource has been extended to process non-segmented dengue virus genomes. In order to allow efficient processing of the dengue genome, which is large in comparison with individual influenza segments, we developed an offline pre-alignment procedure which generates a multiple sequence alignment of all dengue sequences. The pre-calculated alignment is then used to rapidly create alignments of sequence subsets in response to user queries. This improvement in technology will also facilitate the incorporation of additional virus species in the future. The set of virus-specific databases at NCBI, which will be referred to as Virus Variation Resources (VVR, allow users to build complex queries against virus-specific databases and then apply exploratory data analysis tools to the results. The metadata is automatically collected where possible, and extended with data extracted from the literature. Conclusion The NCBI Dengue Virus Resource integrates dengue sequence information with relevant metadata (sample collection time and location, disease severity, serotype, sequenced genome region and facilitates retrieval and preliminary analysis of dengue sequences using integrated web analysis and visualization tools.

  15. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  16. Hanford Cultural Resources Laboratory annual report for fiscal year 1994

    International Nuclear Information System (INIS)

    Nickens, P.R.; Wright, M.K.; Cadoret, N.A.; Dawson, M.V.; Harvey, D.W.; Simpson, E.M.

    1995-09-01

    The Hanford Site occupies 560 sq. miles of land along the Columbia River in SE Washington. The Hanford Reach of the river is one of the most archaeologically rich areas in the western Columbia Plateau. To manage the Hanford Site's archaeological, historical, and cultural resources, the Hanford Cultural Resources Laboratory (HCRL) was established in 1987. HCRL ensures DOE complies with federal statutes, regulations, and guidelines. In FY 1994, HCRL conducted cultural resource reviews, conducted programs to identify and monitor historic and archaeological sites, etc. HCRL staff conducted 511 reviews, 29 of which required archaeological surveys and 10 of which required building documentation. Six prehistoric sites, 23 historic sites, one paleontological site, and two sites with historic and prehistoric components were discovered

  17. Hanford Cultural Resources Laboratory annual report for fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nickens, P.R.; Wright, M.K.; Cadoret, N.A.; Dawson, M.V.; Harvey, D.W.; Simpson, E.M.

    1995-09-01

    The Hanford Site occupies 560 sq. miles of land along the Columbia River in SE Washington. The Hanford Reach of the river is one of the most archaeologically rich areas in the western Columbia Plateau. To manage the Hanford Site`s archaeological, historical, and cultural resources, the Hanford Cultural Resources Laboratory (HCRL) was established in 1987. HCRL ensures DOE complies with federal statutes, regulations, and guidelines. In FY 1994, HCRL conducted cultural resource reviews, conducted programs to identify and monitor historic and archaeological sites, etc. HCRL staff conducted 511 reviews, 29 of which required archaeological surveys and 10 of which required building documentation. Six prehistoric sites, 23 historic sites, one paleontological site, and two sites with historic and prehistoric components were discovered.

  18. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits.

    Science.gov (United States)

    Okano, Kenji; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-01-01

    Lactic acid (LA) is an important and versatile chemical that can be produced from renewable resources such as biomass. LA is used in the food, pharmaceutical, and polymers industries and is produced by microorganism fermentation; however, most microorganisms cannot directly utilize biomass such as starchy materials and cellulose. Here, we summarize LA production using several kinds of genetically modified microorganisms, such as LA bacteria, Escherichia coli, Corynebacterium glutamicum, and yeast. Using gene manipulation and metabolic engineering, the yield and optical purity of LA produced from biomass has been significantly improved. In this review, the drawbacks as well as improvements of LA production by fermentation is discussed.

  19. Natural Resource Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in

  20. Sigurd Lettow - Adapting resources to transform the Laboratory

    CERN Multimedia

    2009-01-01

    As a new physics era begins with the start-up of the LHC, one of the major tasks facing the Director for Administration and General Infrastructure is to transform CERN into a laboratory fit to receive more than 9 000 users. However, limited resources impose difficult trade-offs for a Director who also has to oversee the Laboratory’s finances. Sigurd Lettow is the only Director who has remained in place with the arrival of the new Director-General, Rolf Heuer, and, as Director for Administration and General Infrastructure, he continues to pursue the same priorities he has espoused since his arrival, namely to modernise the Laboratory and prepare it for the LHC’s operational phase. As Sigurd Lettow underlines, "With the new Director General, there is a change in spirit and style, due to his personality and his determination to strengthen communication and adopt an open attitude. However, our priorities are principally connected with...

  1. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, M.

    2005-04-01

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  2. Using Biotechnology in the Laboratory: Using an Immobilized-Laccase Reactor-System to Learn about Wastewater Treatment

    Science.gov (United States)

    Genc, Rukan; Rodriguez-Couto, Susana

    2009-01-01

    This article includes a practical guide, which was used to teach the phenomenon of immobilization of enzymes and their subsequent use for discoloration of dyes to under-graduate students of Biotechnology at the Rovira i Virgili University (Tarragona, Spain). Alginate was selected as a support for the immobilization of laccase. Remazol Brilliant…

  3. Deployable Laboratory Applications of Nano- and Bio-Technology (Applications de nanotechnologie et biotechnologie destinees a un laboratoire deployable)

    Science.gov (United States)

    2014-10-01

    Department of Biotechnology Engineering Ben-Gurion University of the Negev POB 653, Beer -Sheva 84105 ISRAEL Email: Rsmarks@bgumail.bgu.ac.il Dr...whatever the outside temperature (control of CO2 and O2 level by using CO2 and N2 compressed bottle , storage of data culture conditions). • Micro...Sets (CAIS) bottles containing various agents and industrial chemicals once used to train Soldiers. 6 - 2 STO-TR-HFM-177 CHARACTERISTICS OF THE

  4. Modern Biotechnology in China

    Science.gov (United States)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  5. Recycling and resource recovery at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hall, R.; Benson, C.E.; Grubb, R.G.; Patton, B.D.

    1991-01-01

    This paper discusses recycling and resource recovery strategies being developed to maintain continued operations at the Oak Ridge National Laboratory (ORNL). Several industrial decontamination techniques for minimization, segregation, and recycling of wastes volumes are presented. A wide variety of liquid wastewater streams are generated from the operations of these research facilities. The major chemical constituents -- bicarbonates of calcium, magnesium, and sodium -- are introduced by local river water and shallow drainage wells. Liquid low-level waste (LLLW), generated in support of DOE's nuclear energy technology programs over the past 40 years, are highly contaminated with fission products and transuranic (TRU) elements. These wastes are routinely collected in centralized collection tanks, concentrated by evaporation, and stored for future processing and disposal. The Resource Conservation and Recovery Act (RCRA) of 1976 mandated a nationwide system for the safe management of wastes that have been determined hazardous from their creation of their ultimate disposal (i.e., cradle-to-grave control). The Hazardous and Solid Waste Amendments of 1984 (HWSA) prohibited the continued placement of RCRA regulated hazardous wastes in or on the land without following Environmental Protection Agency (EPA) treatment standards. The EPA promulgated RCRA-LDR (land-disposal-restricted) regulations, minimizing short- and long-term threats arising from land disposal, will not allow facilities to store mixed LLLW after 1994 (56 FR 42730, August 29, 1991). Tank storage volume capacities are approaching maximum limits while treatment facilities to process and dispose these type wastes have been delayed indefinitely. As a result, these regulations and additional challenges have increased emphasis on recycling and resource recovery. 4 refs., 3 figs., 1 tab

  6. Recycling and resource recovery at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.; Benson, C.E.; Grubb, R.G.; Patton, B.D.

    1991-01-01

    This paper discusses recycling and resource recovery strategies being developed to maintain continued operations at the Oak Ridge National Laboratory (ORNL). Several industrial decontamination techniques for minimization, segregation, and recycling of wastes volumes are presented. A wide variety of liquid wastewater streams are generated from the operations of these research facilities. The major chemical constituents -- bicarbonates of calcium, magnesium, and sodium -- are introduced by local river water and shallow drainage wells. Liquid low-level waste (LLLW), generated in support of DOE's nuclear energy technology programs over the past 40 years, are highly contaminated with fission products and transuranic (TRU) elements. These wastes are routinely collected in centralized collection tanks, concentrated by evaporation, and stored for future processing and disposal. The Resource Conservation and Recovery Act (RCRA) of 1976 mandated a nationwide system for the safe management of wastes that have been determined hazardous from their creation of their ultimate disposal (i.e., cradle-to-grave control). The Hazardous and Solid Waste Amendments of 1984 (HWSA) prohibited the continued placement of RCRA regulated hazardous wastes in or on the land without following Environmental Protection Agency (EPA) treatment standards. The EPA promulgated RCRA-LDR (land-disposal-restricted) regulations, minimizing short- and long-term threats arising from land disposal, will not allow facilities to store mixed LLLW after 1994 (56 FR 42730, August 29, 1991). Tank storage volume capacities are approaching maximum limits while treatment facilities to process and dispose these type wastes have been delayed indefinitely. As a result, these regulations and additional challenges have increased emphasis on recycling and resource recovery. 4 refs., 3 figs., 1 tab.

  7. Cryopreservation and conservation of microalgae: the development of a pan-european scientific and biotechnological resource (The COBRA project)

    Czech Academy of Sciences Publication Activity Database

    Day, J. G.; Benson, E. E.; Harding, K.; Knowles, B.; Idowu, M.; Bremner, D.; Santos, L.; Santos, F.; Friedl, T.; Lorenz, M.; Lukešová, Alena; Elster, Josef; Lukavský, Jaromír; Herdman, M.; Rippka, R.; Hall, T.

    2005-01-01

    Roč. 26, č. 4 (2005), s. 231-238 ISSN 0143-2044 Grant - others:Evropská unie(XE) QLRI-CT-2001-01645 Institutional research plan: CEZ:AV0Z60660521 Keywords : algae * algal biotechnology * BRC Subject RIV: EH - Ecology, Behaviour Impact factor: 0.897, year: 2005

  8. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  9. Quality of Medical Laboratory Services in Resource-Limited Settings ...

    African Journals Online (AJOL)

    This report endorses the author's own views on the subject after taking up a laboratory adviser mission in Africa. Taking the example of laboratory services practice in sub-Saharan countries, it is shown that diagnosis of diseases which require the use of laboratory suffer from lapses in the quality of case-detection and ...

  10. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  11. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  12. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Julie B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  13. Human resource capacity building initiatives for public health laboratories in India.

    Science.gov (United States)

    Pandey, Anuja; Zodpey, Sanjay; Shrikhande, Sunanda; Sharma, Anjali

    2014-01-01

    Public health laboratories play a critical role in disease surveillance and response. With changes in disease dynamics and transmission, their role has evolved over time, and they serve a range of important public health functions. For their effective functioning, it is important to have specialized manpower in these laboratories, which can contribute to their maximum utilization. The present manuscript is an attempt to explore the human resource capacity building initiatives for public health laboratories in India. Using three parallel methods we have attempted to gather information regarding various human resource capacity building initiatives for public health laboratories in India. Our study results show that there is a paucity of programs providing specialized training for human resources in public health laboratories in India. It highlights the urgent need to address this scarcity and introduce capacity building measures to generate human resources for public health laboratories to strengthen their role in public health action.

  14. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  15. [Medical support on human resources and clinical laboratory in Myanmar].

    Science.gov (United States)

    Koide, Norio

    2012-03-01

    I have been involved in medical cooperation programs between Myanmar and Japan for over 10 years. The purpose of the first visit to Myanmar was the investigation of hepatitis C spreading among thalassemia patients. I learned that the medical system was underdeveloped in this country, and have initiated several cooperation programs together with Professor Shigeru Okada, such as the "Protection against hepatitis C in Myanmar", "Scientist exchange between the Ministry of Health, Myanmar and Okayama University", and "Various activities sponsored by a Non-Profit Organization". As for clinical laboratories, the laboratory system itself is pre-constructed and the benefit of a clinical laboratory in modern medicine is not given to patients in Myanmar. The donation of drugs and reagents for laboratory tests is helpful, but it will be more helpful to assist the future leaders to learn modern medicine and develop their own various systems to support modern medicine. Our activity in the cooperation program is described.

  16. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    OpenAIRE

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns Scho...

  17. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  18. World's particle physics laboratories join to create new communication resource

    CERN Multimedia

    2003-01-01

    "The worldwide particle physics community today (August 12) launched Interactions.org, a new global, Web-based resource developed to provide news, high-quality imagery, video and other tools for communicating the science of particle physics" (1 page).

  19. Designing Online Resources in Preparation for Authentic Laboratory Experiences.

    Science.gov (United States)

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology "boot camp" targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching.

  20. A New Resource for College Distance Education Astronomy Laboratory Exercises

    Science.gov (United States)

    Vogt, Nicole P.; Cook, Stephen P.; Muise, Amy Smith

    2013-01-01

    This article introduces a set of distance education astronomy laboratory exercises for use by college students and instructors and discusses first usage results. This General Astronomy Education Source exercise set contains eight two-week projects designed to guide students through both core content and mathematical applications of general…

  1. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  2. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  3. National Renewable Energy Laboratory Information Resources Catalog 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-01-01

    NREL's ninth annual Information Resources Catalog can keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. It includes five main sections with entries grouped according to subject area.

  4. Genome Resource Banking of Biomedically Important Laboratory Animals

    Science.gov (United States)

    Agca, Yuksel

    2014-01-01

    Genome resource banking (GRB) is the systematic collection, storage, and re-distribution of biomaterials in an organized, logistical, and secure manner. Genome cyrobanks usually contain biomaterials and associated genomic information essential for progression of biomedicine, human health, and research. In that regard, appropriate genome cryobanks could provide essential biomaterials for both current and future research projects in the form of various cell types and tissues, including sperm, oocytes, embryos, embryonic or adult stem cells, induced pluripotent stem cells, and gonadal tissues. In addition to cryobanked germplasm, cryobanking of DNA, serum, blood products, and tissues from scientifically, economically and ecologically important species has become a common practice. For revitalization of the whole organism, cryopreserved germplasm in conjunction with assisted reproductive technologies (ART), offer a powerful approach for research model management, as well as assisting in animal production for agriculture, conservation, and human reproductive medicine. Recently, many developed and developing countries have allocated substantial resources to establish genome resources banks which are responsible for safeguarding scientifically, economically and ecologically important wild type, mutant and transgenic plants, fish, and local livestock breeds, as well as wildlife species. This review is dedicated to the memory of Dr. John K. Critser, who had made profound contributions to the science of cryobiology and establishment of genome research and resources centers for mice, rats and swine. Emphasis will be given to application of GRBs to species with substantial contributions to the advancement of biomedicine and human health. PMID:22981880

  5. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...... for the production of non-native 3-hydroxypropionic acid (3HP).3HP can be chemically dehydrated into acrylic acid and thus can serve as a biosustainable building block for acrylate-based products (diapers, acrylic paints, acrylic polymers, etc.)...

  6. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    C and low temperature (+6°C, growth at low pH 2.6–3.0 (acid resistance, growth in the presence of 5, 10, and 15% ethanol (ethanol resistance, and growth in the presence of high concentration potassium bisulfite (bisulfite resistance. Hydrosulfide synthesis (H2S gassing production was studied in addition. Parameters of cellular metabolism in yeast suspension, such as concentration of nitrogen, protein, triglicerides, enzymatic activity and total sugar (which include glucose, fructose, and galactose were determined. Macro- and micro-element concentrations in fermented grape must, which contained pure yeast culture was determined and included: potassium, sodium, calcium, phosphorus, magnesium, iron, chlorides. In addition to identifying parameters of macro- and micro- element concentration in grape must during and following fermentation based on a principle of photometric analysis, carried out using a biochemical analyser Respons-920 (DiaSys Diagnostic Systems GmbH, Germany. Laboratory selected Saccharomyces cerevisiae wine yeast showed high enzymatic activity with short lag phase. Since of fermentation started on third day concentration of Triglicerides, Protein (total, Potassium and Sodium increased and then level of Protein (total on the 5th day of fermentation twice decreased. Trigliceride concentration on the 5th day of fermentation continued to increase. Concentration of Iron on the 5th day of fermentation increase in geometrical progression, concentration increase in 4-5 times. Contrary Chloride concentration on the 5th day of fermentation decreased in 3-4 times. Enzymatic activity on 3rd day of fermentation maximal for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase, Phosphatase. Since of 5th day of fermentation Enzymatic activity for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase 3-4 times. Especially level of Phosphatase activity very decreased in 6-7 times. Comparative assessment between our Laboratory

  7. Laboratory challenges conducting international clinical research in resource-limited settings.

    Science.gov (United States)

    Fitzgibbon, Joseph E; Wallis, Carole L

    2014-01-01

    There are many challenges to performing clinical research in resource-limited settings. Here, we discuss several of the most common laboratory issues that must be addressed. These include issues relating to organization and personnel, laboratory facilities and equipment, standard operating procedures, external quality assurance, shipping, laboratory capacity, and data management. Although much progress has been made, innovative ways of addressing some of these issues are still very much needed.

  8. The impact of industrial biotechnology.

    Science.gov (United States)

    Soetaert, Wim; Vandamme, Erick

    2006-01-01

    In this review, the impact of industrial (or "white") biotechnology can have on our society and economy is discussed. An overview is given of industrial biotechnology and its applications in a number of product categories ranging from food ingredients, vitamins, bio-colorants, solvents, plastics and biofuels. The use of fossil resources is compared with renewable resources as the preferred feedstock for industrial biotechnology. A brief discussion is also given of the expected changes in society and technology, ranging from the shift in the supply of resources, the growing need for efficiency and sustainability of the production systems, changing consumer perception and behaviour and changing agricultural systems and practices. Many of these changes are expected to speed up the transition from a fossil-based to a bio-based economy and society.

  9. From cell biology to biotechnology in space.

    Science.gov (United States)

    Cogoli, A

    2000-09-01

    In this article I discuss the main results of our research in space biology from the simple early investigations with human lymphocytes in the early eighties until the projects in tissue engineering of the next decade on the international space station ISS. The discovery that T lymphocyte activation is nearly totally depressed in vitro in 0 g conditions showed that mammalian single cells are sensitive to the gravitational environment. Such finding had important implications in basic research, medicine and biotechnology. Low gravity can be used as a tool to investigate complicated and still obscure biological process from a new perspective not available to earth-bound laboratories. Low gravity may also favor certain bioprocesses involving the growth of tissues and thus lead to commercial and medical applications. However, shortage of crew time and of other resources, lack of sophisticated instrumentation, safety constraints pose serious limits to biological endeavors in space laboratories.

  10. Global health: Integrating national laboratory health systems and services in resource-limited settings

    Directory of Open Access Journals (Sweden)

    Linda M. Parsons

    2012-06-01

    Full Text Available Laboratory systems worldwide are challenged not only by the need to compete for scarce resources with other sections of national health care programmes, but also with the lack of understanding of the critical role that laboratories play in the accurate diagnosis and monitoring of patients suffering from high-burdens of disease. An effective approach to establishing cost-effective laboratory systems that provide rapid and accurate test results for optimal impact on patient care is to move away from disease-specific programmes and establish integrated laboratory services. An integrated laboratory network provides all primary diagnostic services needed for care and treatment without requiring patients to go to different laboratory facilities for specific tests. Such a network focuses on providing quality-assured basic laboratory testing through the use of common specimen collection, reporting and diagnostic platforms that can be used across diseases. An integrated laboratory system also provides specimen transport to specialised laboratories and an environment conducive to the introduction and use of new and more complex technologies that would benefit the patient population and public health systems as a whole. As such, this article described various strategies for, and practical examples of, the successful integration of laboratory services.

  11. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-06-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA. Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  12. Global health: Integrating national laboratory health systems and services in resource-limited settings.

    Science.gov (United States)

    Parsons, Linda M; Somoskovi, Akos; Lee, Evan; Paramasivan, Chinnambedu N; Schneidman, Miriam; Birx, Deborah; Roscigno, Giorgio; Nkengasong, John

    2012-01-01

    Laboratory systems worldwide are challenged not only by the need to compete for scarce resources with other sections of national health care programmes, but also with the lack of understanding of the critical role that laboratories play in the accurate diagnosis and monitoring of patients suffering from high-burdens of disease. An effective approach to establishing cost-effective laboratory systems that provide rapid and accurate test results for optimal impact on patient care is to move away from disease-specific programmes and establish integrated laboratory services. An integrated laboratory network provides all primary diagnostic services needed for care and treatment without requiring patients to go to different laboratory facilities for specific tests. Such a network focuses on providing quality-assured basic laboratory testing through the use of common specimen collection, reporting and diagnostic platforms that can be used across diseases. An integrated laboratory system also provides specimen transport to specialised laboratories and an environment conducive to the introduction and use of new and more complex technologies that would benefit the patient population and public health systems as a whole. As such, this article described various strategies for, and practical examples of, the successful integration of laboratory services.

  13. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  14. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  15. Editorial: Biotechnology Journal's diverse coverage of biotechnology.

    Science.gov (United States)

    Wink, Michael

    2014-03-01

    This issue of Biotechnology Journal is a regular issue edited by Prof. Michael Wink. The issue covers all the major focus areas of the journal, including medical biotechnology, synthetic biology, and novel biotechnological methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spatial Diversity of Biotechnology Centres in Germany

    Directory of Open Access Journals (Sweden)

    Dorocki Sławomir

    2014-06-01

    Full Text Available Biotechnology is considered one of the key advanced technology sectors of the future. Its development is conditional on basic research in technologically advanced research institutes and appropriately qualified human resources. The optimum environment stimulating the development of biotechnology is that of production centres having joint industrial and R&D operations.

  17. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    The potential benefits of biotechnology are extraordinary and traverse sectors like agriculture, environment, health, industry, bio-informatics, and human resource development. In agriculture, biotechnology research has helped to improve the understanding of diseases, to improve the diagnosis and treatment of diseases, ...

  18. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  19. International Council for Laboratory Animal Science: International activities. Institute of Laboratory Animal Resources annual report, 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    In late 1987, the Interagency Research Animal Committee (IRAC) requested that the Institute of Laboratory Animal Resources (ILAR), National Research Council (NRC), National Academy of Sciences, reestablish US national membership in the International Council for Laboratory Animal Science (ICLAS). The ICLAS is the only worldwide organization whose goal is to foster the humane use of animals in medical research and testing. ILAR`s Mission Statement reflects its commitment to producing highly respected documents covering a wide range of scientific issues, including databases in genetic stocks, species specific management guides, guidelines for humane care of animals, and position papers on issues affecting the future of the biological sciences. As such, ILAR is recognized nationally and internationally as an independent, scientific authority in the development of animal sciences in biomedical research.

  20. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  1. The History of Industrial Research Laboratories as a Resource for Teaching about Science-Technology Relationships.

    Science.gov (United States)

    de Vries, Marc

    2001-01-01

    Studies the complex relationship between science and technology. Derives three different interaction patterns from the history of industrial research laboratories: (1) science as enabler for technology; (2) science as a forerunner of technology; and (3) science as a knowledge resource for technology. (Contains 21 references.) (DDR)

  2. Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports--1976.

    Science.gov (United States)

    Barlow, Esther M., Comp.

    This annotated bibliography presents a listing of technical reports (1976) dealing with personnel and training research conducted by the Air Force Human Resources Laboratory, an institution charged with the planning and execution of United States Air Force exploratory and advanced development programs for selection, motivation, training,…

  3. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  4. BIOTECHNOLOGY IN FRUIT GROWING

    Directory of Open Access Journals (Sweden)

    Z. Jurković

    2008-09-01

    Full Text Available Research studies in the area of biotechnologies in fruit growing started at the Agricultural Institute Osijek in 2006 with the establishment of the first experimental in vitro laboratory for micropropagation. The laboratory started an active research related to the Project "Biotechnological methods in fruit tree identification, selection and propagation" Project is part of program "Preservation and revitalization of grape and fruit autochthonous cultivars". The goal of this research is to determine genetic differences between autochthonous and introduced cultivars of cherry as well as cultivars and types of sour cherry, to find and optimize a method for fast recovery of clonal material. A great number of cherry cultivars and types within the population of cv. Oblacinska sour cherry exists in Croatia. A survey with the purpose of selecting autochthonous cultivars for further selection has been done in previous research. Differences have been found in a number of important agronomic traits within the populations of cv. Oblačinska sour cherry. Autochthonous cherry cultivars are suspected to be synonyms of known old cultivars which were introduced randomly and have been naturalized under a local name. Identification and description of cultivars and types of fruits is based on special visible properties which were measurable or notable. In this approach difficulties arise from the effect of non-genetic factors on expression of certain traits. Genetic-physiological problem of S allele autoincompatibility exists within cherry cultivars. Therefore it is necessary to put different cultivars in the plantation to pollinate each other. Apart form the fast and certain sort identification independent of environmental factors, biotechnological methods based on PCR enable faster virus detection compared with classical serologic methods and indexing and cover a wider range of plant pathogens including those undetectable by other methods. Thermotherapy and

  5. Argonne's Laboratory Computing Resource Center 2009 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B. (CLS-CI)

    2011-05-13

    Now in its seventh year of operation, the Laboratory Computing Resource Center (LCRC) continues to be an integral component of science and engineering research at Argonne, supporting a diverse portfolio of projects for the U.S. Department of Energy and other sponsors. The LCRC's ongoing mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting high-performance computing application use and development. This report describes scientific activities carried out with LCRC resources in 2009 and the broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. The LCRC Allocations Committee makes decisions on individual project allocations for Jazz. Committee members are appointed by the Associate Laboratory Directors and span a range of computational disciplines. The 350-node LCRC cluster, Jazz, began production service in April 2003 and has been a research work horse ever since. Hosting a wealth of software tools and applications and achieving high availability year after year, researchers can count on Jazz to achieve project milestones and enable breakthroughs. Over the years, many projects have achieved results that would have been unobtainable without such a computing resource. In fiscal year 2009, there were 49 active projects representing a wide cross-section of Laboratory research and almost all research divisions.

  6. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure

  7. Argonne's Laboratory computing resource center : 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff

  8. The Trope Tank: A Laboratory with Material Resources for Creative Computing

    Directory of Open Access Journals (Sweden)

    Nick Montfort

    2014-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-9288.2014v10n2p53 Principles for organizing and making use of a laboratory with material computing resources are articulated. This laboratory, the Trope Tank, is a facility for teaching, research, and creative collaboration and offers hardware (in working condition and set up for use from the 1970s, 1980s, and 1990s, including videogame systems, home computers, and an arcade cabinet. To aid in investigating the material history of texts, the lab has a small 19th century letterpress, a typewriter, a print terminal, and dot-matrix printers. Other resources include controllers, peripherals, manuals, books, and software on physical media. These resources are used for teaching, loaned for local exhibitions and presentations, and accessed by researchers and artists. The space is primarily a laboratory (rather than a library, studio, or museum, so materials are organized by platform and intended use. Textual information about the historical contexts of the available systems, and resources are set up to allow easy operation, and even casual use, by researchers, teachers, students, and artists.

  9. Idaho National Laboratory Cultural Resource Management Office FY 2011 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams; Brenda R. Pace; Hollie K. Gilbert; Christina L. Olson

    2012-09-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report is intended as a stand-alone document that summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2011. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders, serve as a planning tool for future INL cultural resource management work, and meet an agreed upon legal requirement.

  10. Idaho National Laboratory Cultural Resource Management Office FY 2010 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Hollie K. Gilbert; Clayton F. Marler; Christina L. Olson; Brenda R. Pace; Julie Braun Williams

    2011-09-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2010. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders and to serve as a planning tool for future INL cultural resource management work.

  11. Resources

    Science.gov (United States)

    ... Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family ...

  12. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  13. search GenBank: interactive orchestration and ad-hoc choreography of Web services in the exploration of the biomedical resources of the National Center For Biotechnology Information.

    Science.gov (United States)

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Siążnik, Artur

    2013-03-01

    Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user's query, advanced data searching based on the specified user's query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. search GenBank extends standard capabilities of the

  14. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  15. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

    1997-05-01

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

  16. Space Biotechnology and Commercial Applications University of Florida

    Science.gov (United States)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  17. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  18. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  19. Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.

    1999-04-07

    The National Renewable Energy Laboratory (NREL) has developed an automated technique for wind resource mapping to aid in the acceleration of wind energy deployment. The new automated mapping system was developed with the following two primary goals: (1) to produce a more consistent and detailed analysis of the wind resource for a variety of physiographic settings, particularly in areas of complex terrain; and (2) to generate high quality map products on a timely basis. Using computer mapping techniques reduces the time it takes to produce a wind map that reflects a consistent analysis of the distribution of the wind resource throughout the region of interest. NREL's mapping system uses commercially available geographic information system software packages. Regional wind resource maps using this new system have been produced for areas of the United States, Mexico, Chile, Indonesia (1), and China. Countrywide wind resource assessments are under way for the Philippines, the Dominican Re public, and Mongolia. Regional assessments in Argentina and Russia are scheduled to begin soon.

  20. Cultural Resource Investigations for the Remote Handled Low Level Waste Facility at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Hollie Gilbert; Julie Braun Williams; Clayton Marler; Dino Lowrey; Cameron Brizzee

    2010-06-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a facility for disposal of Idaho National Laboratory (INL) generated remote-handled low-level waste. Initial screening has resulted in the identification of two recommended alternative locations for this new facility: one near the Advanced Test Reactor (ATR) Complex and one near the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility (ICDF). In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, intensive archaeological field surveys, and initial coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by new construction within either one of these candidate locations. This investigation showed that construction within the location near the ATR Complex may impact one historic homestead and several historic canals and ditches that are potentially eligible for nomination to the National Register of Historic Places. No resources judged to be of National Register significance were identified in the candidate location near the ICDF. Generalized tribal concerns regarding protection of natural resources were also documented in both locations. This report outlines recommendations for protective measures to help ensure that the impacts of construction on the identified resources are not adverse.

  1. Cultural Resource Investigations for a Multipurpose Haul Road on the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Cameron Brizzee; Hollie Gilbert; Clayton Marler; Julie Braun Williams

    2010-08-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a multipurpose haul road to transport materials and wastes between the Materials and Fuels Complex (MFC) and other Idaho National Laboratory (INL) Site facilities. The proposed road will be closed to the public and designed for limited year-round use. Two primary options are under consideration: a new route south of the existing T-25 power line road and an upgrade to road T-24. In the Spring of 2010, archaeological field surveys and initial coordination and field reconnaissance with representatives from the Shoshone-Bannock Tribes were completed to identify any resources that may be adversely affected by the proposed road construction and to develop recommendations to protect any listed or eligible for listing on the National Register of Historic Places. The investigations showed that 24 archaeological resources and one historic marker are located in the area of potential effects for road construction and operation south of the T-25 powerline road and 27archaeological resources are located in the area of potential effects for road construction and operation along road T-24. Generalized tribal concerns regarding protection of natural resources were also documented in both road corridors. This report outlines recommendations for additional investigations and protective measures that can be implemented to minimize adverse impacts to the identified resources.

  2. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine.

    Science.gov (United States)

    Cui, Jian Dong

    2015-01-01

    Cordyceps militaris is a potential harborer of biometabolites for herbal drugs. For a long time, C. militaris has gained considerable significance in several clinical and biotechnological applications. Much knowledge has been gathered with regard to the C. militaris's importance in the genetic resources, nutritional and environmental requirements, mating behavior and biochemical pharmacological properties. The complete genome of C. militaris has recently been sequenced. This fungus has been the subject of many reviews, but few have focused on its biotechnological production of bioactive constituents. This mini-review focuses on the recent advances in the biotechnological production of bioactive compositions of C. militaris and the latest advances on novel applications from this laboratory and many others.

  3. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Proteomics: a biotechnology tool for crop improvement

    OpenAIRE

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  5. Strategic establishment of an International Pharmacology Specialty Laboratory in a resource-limited setting.

    Science.gov (United States)

    Mtisi, Takudzwa J; Maponga, Charles; Monera-Penduka, Tsitsi G; Mudzviti, Tinashe; Chagwena, Dexter; Makita-Chingombe, Faithful; DiFranchesco, Robin; Morse, Gene D

    2018-01-01

    A growing number of drug development studies that include pharmacokinetic evaluations are conducted in regions lacking a specialised pharmacology laboratory. This necessitated the development of an International Pharmacology Specialty Laboratory (IPSL) in Zimbabwe. The aim of this article is to describe the development of an IPSL in Zimbabwe. The IPSL was developed collaboratively by the University of Zimbabwe and the University at Buffalo Center for Integrated Global Biomedical Sciences. Key stages included infrastructure development, establishment of quality management systems and collaborative mentorship in clinical pharmacology study design and chromatographic assay development and validation. Two high performance liquid chromatography instruments were donated by an instrument manufacturer and a contract research organisation. Laboratory space was acquired through association with the Zimbabwe national drug regulatory authority. Operational policies, standard operating procedures and a document control system were established. Scientists and technicians were trained in aspects relevant to IPSL operations. A high-performance liquid chromatography method for nevirapine was developed with the guidance of the Clinical Pharmacology Quality Assurance programme and approved by the assay method review programme. The University of Zimbabwe IPSL is engaged with the United States National Institute of Allergy and Infectious Diseases Division of AIDS research networks and is poised to begin drug assays and pharmacokinetic analyses. An IPSL has been successfully established in a resource-limited setting through the efforts of an external partnership providing technical guidance and motivated internal faculty and staff. Strategic partnerships were beneficial in navigating challenges leading to laboratory development and training new investigators. The IPSL is now engaged in clinical pharmacology research.

  6. 2001 Industry Studies: Biotechnology

    National Research Council Canada - National Science Library

    2001-01-01

    .... The applications of biotechnology, such as medicine, agribusiness, forensics, informatics and the defense sector, offer many benefits, but also bring some risk, requiring public policy decisions...

  7. Agriculture and bio-technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hikoyuki

    1987-09-01

    The Japanese agriculture is going to be influenced by bio-technology. New style of production will be introduced through the entrance of other type of enterprises causing considerable change in agricultural fields. Bio-technology is a technology which utmost utilizes the functions of the living organism. Its practical target is to manifestate a new function by deliberately endowing it to an organism. Major technique is gene manipulation, tissue culture and utilization of microorganism and cells as well as the utilization of the biomass resources and a production means in the vegetable plant using nutricious solution. This report especially describes the following matters. Recombinant DNA (Super mouse, etc). Cell fusion (Monoclonal antigen, etc). Nucleus transplantation. Chromosome manipulation (Creation of tripoloid, etc). tissue culture (Growing of virus-free seedling, etc). Production of useful substances. Biomass (Forestry, Ocean, Livestock). (2 figs, 3 tabs, 12 refs)

  8. New challenges in microalgae biotechnology.

    Science.gov (United States)

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio

    2016-08-01

    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

    1999-09-20

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper.

  11. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

    1999-01-01

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper

  12. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  13. The Use of Reanalysis Data for Wind Resource Assessment at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Elliott, D.; Schwartz, M.; George, R.

    1999-01-01

    An important component of the National Renewable Energy Laboratory wind resource assessment methodology is the use of available upper-air data to construct detailed vertical profiles for a study region. Currently, the most useful upper-air data for this type of analysis are archived observations from approximately 1800 rawinsonde and pilot balloon stations worldwide. However, significant uncertainty exists in the accuracy of the constructed profiles for many regions. The United States Reanalysis Data Set, recently created by the National Center for Atmospheric Research and the National Centers for Environmental Prediction, has the potential to improve the quality of the vertical profiles. The initial evaluation of the usefulness of the Reanalysis data for wind resource assessment consisted of contrasting reanalysis-derived vertical profiles of the wind characteristics to those generated from upper-air observations for comparable locations. The results indicate that, while reanalysis data can be substituted for upper-air observation data in the assessment methodology for areas of the world where observation data are limited, enough discrepancies with observation data have been noticed to warrant further studies

  14. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary peer-reviews original research works and critical reviews on interdisciplinary studies in Biotechnology, Agriculture, Food and Environment interface; and is published twice a year. It serves scientists in the field of Agriculture, Food science and Technology; ...

  15. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  16. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Brenda Ringe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gilbert, Hollie Kae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  17. Climate Change and Food Security: the role of Biotechnology

    African Journals Online (AJOL)

    Robert M. Yawson

    2012-08-05

    Aug 5, 2012 ... significance of plant biotechnology in reversing the disturbing food insecurity trends on the continent. To move ... commit resources to capacity building and provision of infrastructure for biotechnology ... need for researchers to engage in effective education and communication with the general public so as ...

  18. Medical Biotechnology Trends and Achievements in Iran

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  19. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    May 2013. This Course is aimed at giving the participants a hands-on training on some modern biotechnological techniques including DNA/RNA isolation from various sources, molecular cloning, PCR and RT-PCR. A variety of teaching methods like lectures by eminent scientists, discussion and laboratory work focussing ...

  20. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  1. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.; McCormack, P.

    2011-04-01

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  2. From local strains to specific starters: the process structuring a research program on the activation and management of a biotechnological resource

    OpenAIRE

    Casalta, Erick; Bona, Pascale

    2009-01-01

    This study presents a research-action program carried out in Corsica with a group of cheese makers to develop specific starters. Based on the direct participation of the cheese makers, this study consisted in designing starters with lactic acid bacterial strains isolated from milks and cheeses of this group of cheese makers. This process modified an individually and empirically used resource, local strains, into a shared and collectively managed resource, specific starters. Patrimonial featur...

  3. Forest biotechnology advances to support global bioeconomy

    Directory of Open Access Journals (Sweden)

    Antoine Harfouche

    2015-01-01

    Full Text Available The world is shifting to an innovation economy and forest biotechnology can play a major role in the bio-economy by providing farmers, producers, and consumers with tools that can better advance this transition. First-generation or conventional biofuels are primarily produced from food crops and are therefore limited in their ability to meet challenges for petroleum-product substitution and climate change mitigation, and to overcome the food-versus-fuel dilemma. In the longer term, forest lignocellulosic biomass will provide a unique renewable resource for large-scale production of bioenergy, biofuels and bio-products. These second-generation or advanced biofuels and bio-products have also the potential to avoid many of the issues facing the first-generation biofuels, particularly the competition concerning land and water used for food production. To expand the range of natural biological resources the rapidly evolving tools of biotechnology can ameliorate the conversion process, lower the conversion costs and also enhance target yield of forest biomass feedstock and the product of interest. Therefore, linking forest biotechnology with industrial biotechnology presents a promising approach to convert woody lignocellulosic biomass into biofuels and bio-products. Major advances and applications of forest biotechnology that are being achieved to competitively position forest biomass feedstocks with corn and other food crops are outlined. Finally, recommendations for future work are discussed.

  4. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  5. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  6. Biotechnological applications of extremophiles, extremozymes and extremolytes.

    Science.gov (United States)

    Raddadi, Noura; Cherif, Ameur; Daffonchio, Daniele; Neifar, Mohamed; Fava, Fabio

    2015-10-01

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  7. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  8. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    Science.gov (United States)

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  9. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  10. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  11. Biotechnological uses of enzymes from psychrophiles

    Science.gov (United States)

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  12. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  13. Marine microbial biodiversity, bioinformatics and biotechnology (M2B3) data reporting and service standards.

    Science.gov (United States)

    Ten Hoopen, Petra; Pesant, Stéphane; Kottmann, Renzo; Kopf, Anna; Bicak, Mesude; Claus, Simon; Deneudt, Klaas; Borremans, Catherine; Thijsse, Peter; Dekeyzer, Stefanie; Schaap, Dick Ma; Bowler, Chris; Glöckner, Frank Oliver; Cochrane, Guy

    2015-01-01

    Contextual data collected concurrently with molecular samples are critical to the use of metagenomics in the fields of marine biodiversity, bioinformatics and biotechnology. We present here Marine Microbial Biodiversity, Bioinformatics and Biotechnology (M2B3) standards for "Reporting" and "Serving" data. The M2B3 Reporting Standard (1) describes minimal mandatory and recommended contextual information for a marine microbial sample obtained in the epipelagic zone, (2) includes meaningful information for researchers in the oceanographic, biodiversity and molecular disciplines, and (3) can easily be adopted by any marine laboratory with minimum sampling resources. The M2B3 Service Standard defines a software interface through which these data can be discovered and explored in data repositories. The M2B3 Standards were developed by the European project Micro B3, funded under 7(th) Framework Programme "Ocean of Tomorrow", and were first used with the Ocean Sampling Day initiative. We believe that these standards have value in broader marine science.

  14. Commercialization of animal biotechnology.

    Science.gov (United States)

    Faber, D C; Molina, J A; Ohlrichs, C L; Vander Zwaag, D F; Ferré, L B

    2003-01-01

    Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders. Copyright 2002 Elsevier Science Inc.

  15. Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

    2010-05-01

    The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

  16. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  17. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  18. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  19. [Diagnostic resources for sexually transmitted infections in laboratories in Catalonia (Spain)].

    Science.gov (United States)

    Calmet, Montserrat; Juvé, Rosa; Alberny, Mireia; Andreu, Antonia; Loureiro, Eva; Matas, Lourdes; Vilamala, Anna; Casabona, Jordi

    2009-01-01

    With the aim of describing both the capacity and organization of the laboratories in Catalonia to diagnose sexually transmitted infections, a cross-sectional study was performed between November 2005 and March 2006, which included 140 laboratories. Ninety-eight laboratories performed some STI tests, 45 received more than 50 vaginal swabs per month, 42 diagnosed Chlamydia trachomatis, but only six used polymerase chain reaction techniques. None diagnosed venereal lymphogranuloma. Eighty were able to detect Neisseria gonorrhoeae, 76 by means of culture and 63 analyzed its antibiotic resistance. A total of 23, 22, 22 and 14 laboratories received more than 500 blood samples for hepatitis B, hepatitis C, HIV and syphilis, respectively. Non-treponemic and treponemic tests were available in 84 and 52 laboratories, respectively. In Catalonia, most STIs can be diagnosed but new technologies need to be introduced. Moreover, the efficiency of biological sample circuits should be improved.

  20. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  1. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  2. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  3. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  4. Biotechnology and bioeconomy in China.

    Science.gov (United States)

    Li, Qing; Zhao, Qinghua; Hu, Yihong; Wang, Hongguang

    2006-11-01

    From the review of the achievements and advantages in the development of biotechnology (BT) and bioindustry in China, it is clear that the bioeconomy would provide a tremendous opportunity for China to develop sustainably or even surpass a few developed countries. A long-term vision has been made to guide the research and development and industrialization of BT in China. This review detailed the strategies, targets, priorities, and key technologies in each stage. Furthermore, the reviewers expatiated on the establishment of the favorable policies, the foundation of the professional groups, the establishment of the advanced laboratories or centers, the investment mechanisms, the development and evaluation of biosafety, the encouragement and support for the international collaborations and exchanges, and the establishment of the general organizational structure.

  5. Biotechnological advances in Lilium

    NARCIS (Netherlands)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; Tuyl, van Jaap M.

    2016-01-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to

  6. TSCA Biotechnology Notifications Status

    Science.gov (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  7. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  8. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  9. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  10. African Journal of Biotechnology

    African Journals Online (AJOL)

    The African Journal of Biotechnology (AJB), a new broad-based journal, was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly ...

  11. Biotechnology: interferon patent contested.

    Science.gov (United States)

    Earl, C; Beardsley, T

    Biogen, a biotechnology company based in Cambridge, Mass., and Geneva, Switzerland, has been notified by the European Patent Office that it will receive a product patent for its alpha interferon synthesized by recombinant DNA technology. Genentech, a San Francisco company which claims priority for producing mature interferon, is planning a vigorous appeal of the decision.

  12. Biotechnology and Innovation Systems

    International Development Research Centre (IDRC) Digital Library (Canada)

    His main research activities are connected to science and technology policies and national and local systems of innovation in less developed countries. ...... of the Brazilian productive structure in energy-related areas – bio-fuels, oil, and so on – biotechnology research has started to target energy-related activities. However ...

  13. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  14. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  15. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  16. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2003-07-01

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  17. Feasibility study for automation of the Central Laboratories, Water Resources Division, U.S. Geological Survey

    International Nuclear Information System (INIS)

    Morris, W.F.; Peck, E.S.; Fisher, E.R.; Barton, G.W. Jr.

    1976-01-01

    This study of the feasibility of further automating the Central Laboratories deals specifically with the combined laboratory operations in Salt Lake City, Utah, and Denver, Colorado and is prepared with the understanding that such a system will also be implemented at the Central Laboratories in Atlanta, Georgia, and Albany, New York. The goals of automation are defined in terms of the mission of a water analysis laboratory, propose alternative computer systems for meeting such goals, and evaluate these alternatives in terms of cost effectiveness and other specified criteria. It is found that further automation will be beneficial and an in-house system that incorporates dual minicomputers is recommended: one for time-shared data acquisition, processing, and control; the second for data management. High-use analytical instruments are placed on-line to the time-shared minicomputer, with a terminal at each instrument and backup data storage on magnetic tape. A third, standby computer is switched in manually should the time-shared computer go down. Field-proven, modular hardware and software are chosen. Also recommended is the incorporation of the highly developed, computer-integrated instruments that are commercially available for determining petrochemicals and other organic substances, and are essential to the Laboratories' mission

  18. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-03

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  19. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Brenda R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Julie B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existing nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic

  1. Biotechnology System Facility: Risk Mitigation on Mir

    Science.gov (United States)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  2. Industrial use of Biotechnology in Agriculture

    International Nuclear Information System (INIS)

    But, S.J.

    2006-01-01

    In the past the biological research was restricted within the boundary of laboratories and the subsequent results were often employed merely to strengthen the research knowledge and information. In life sciences, the traditional methods took years in proving the biological facts. At the leg of last century, the practical application of biotechnology provided a powerful tool to mankind that has led to a revolutionary change in modern agriculture. In the present era, the economy of agro-based countries all over the world is dependent on the adaptation of the pattern of crop-production and their improvement through modern biotechnological means. Biotechnology is in fact the name of a combination of techniques involved to make the full use of living organisms, either in total or in part, for the benefit of plants, animals or human beings. Progressive and dynamic investors, associated with researches/scientists, should be encouraged to step forward for the mobilization of emerging trend of biotechnological industry in agriculture. Researcher/Scientists of biological programmes in Pakistan should be encouraged at Government level to come forward in contributing their tremendous role to boost Agr- industry in the country. (author)

  3. Acid Rain: A Resource Guide for Classroom, Laboratory, Field, and Debate Topics.

    Science.gov (United States)

    Stoss, Frederick W.

    1987-01-01

    Provides a partially annotated bibliography of journals and book chapters which deal with acid rain. Includes selections which provide background information, ideas for introducing acid rain into science or social studies curricula, inventories of audio-visual aids, and non-print media to supplement classroom, laboratory, and field instruction.…

  4. Integrating and accessing medical data resources within the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Assel, M.; Nowakowski, P.; Bubak, M.

    2008-01-01

    This paper presents the data access solutions which have been developed in the ViroLab Virtual Laboratory infrastructure to enable medical researchers and practitioners to conduct experiments in the area of HIV treatment. Such experiments require access to a number of geographically distributed data

  5. Blended learning in chemistry laboratory courses: Enhancing learning outcomes and aligning student needs with available resources

    Science.gov (United States)

    Burchett, Shayna Brianne

    Freshman science courses are intended to prepare students for the rigor and expectations of subsequent college science. While secondary education aims to prepare students for the college curriculum, many incoming freshman lack the sense of responsibility for their own learning that is essential for success in a college-level course. The freshman general-chemistry laboratory course at Missouri University of Science and Technology (Missouri S&T) was identified as a bottleneck course with a demand beyond accommodation capacity. To address the bottleneck and develop a sense of learner responsibility, a decision was made to investigate laboratory course delivery strategies. As a result of the investigation into delivery strategies, a blended freshman general-chemistry laboratory course was designed and implemented at Missouri S&T, which increased student access to the bottleneck course and improved learner engagement while meeting American Chemical Society (ACS) guidelines. The implementation of the Missouri S&T project and its continued evolution at other institutions have a great potential to provide insight on the impact of blended teaching on learner success. This dissertation describes research and design of a blended laboratory course that economically improves capacity while intentionally focusing pedagogy to support learner success, meet industry expectations, and maintain ACS certification. To evaluate success, the project documented and analyzed student performance during the development of the transformation to a blended freshman chemistry laboratory course at Missouri S&T. The findings support the efficacy of the blended teaching model and offer a structure upon which future courses may build.

  6. The Current Developments of Agricultural Biotechnologies Market

    Directory of Open Access Journals (Sweden)

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  7. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Environmental Biotechnology in China

    Science.gov (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  9. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova

    2014-01-01

    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  10. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    Energy Technology Data Exchange (ETDEWEB)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  11. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2007-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodale’s Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor –I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex – CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location.

  12. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  13. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  14. Biotechnology in soybean breeding

    Directory of Open Access Journals (Sweden)

    Sudarić Aleksandra

    2010-01-01

    Full Text Available Biotechnology can be defined broadly as a set of tools that allows scientists to genetically characterize or improve living organisms. Several emerging technologies, such as molecular characterization and genetic transformation, are already being used extensively for the purpose of plant improvement. Other emerging sciences, including genomics and proteomics, are also starting to impact plant improvement. Tools provided by biotechnology will not replace classical breeding methods, but rather will help provide new discoveries and contribute to improved nutritional value and yield enhancement through greater resistance to disease, herbicides and abiotic factors. In soybeans, biotechnology has and will continue to play a valuable role in public and private soybean breeding programs. Based on the availability and combination of conventional and molecular technologies, a substantial increase in the rate of genetic gain for economically important soybean traits can be predicted in the next decade. In this paper, a short review of technologies for molecular markers analysis in soybean is given as well as achievements in the area of genetic transformation in soybean.

  15. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Hollie Kae [Idaho National Lab. (INL), Idaho Falls, ID (United States); Holmer, Marie Pilkington [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Christina Liegh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pace, Brenda Ringe [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2016. Overall monitoring included surveillance of the following 23 individual cultural resource localities: two locations with human remains, one of which is also a cave; seven additional caves; six prehistoric archaeological sites; four historic archaeological sites; one historic trail; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and one Arco Naval Proving Ground (NPG) property, CF-633 and related objects and structures. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On one occasion, ground disturbing activities within the boundaries of the Critical Infrastructure Test Range Complex (CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Additionally, the CRM office was notified during two Trespass Investigations conducted by INL Security. Most of the cultural resources monitored in FY 2016 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted five times. Three previously reported Type 2 impacts were once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National

  16. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  17. Educational digital resource for data analysis of Civil Engineering laboratory tests

    OpenAIRE

    Gustavo Henrique Nalon; Paulo Sergio de Almeida Barbosa; Walcyr Duarte Nascimento

    2018-01-01

    This work aims to implement and evaluate an interactive educational software that helps Civil Engineering students to perform and analyze the calculations related to different Soil Mechanics laboratory tests. This experience consists of an attempt to incorporate information and communication technologies (ICTs) into the engineering teaching-learning process. The content of the program is distributed into three different modules: “Compaction test”, “Consolidation test”, and “Direct shear test”...

  18. Laboratory animal science: a resource to improve the quality of science.

    Science.gov (United States)

    Forni, M

    2007-08-01

    The contribution of animal experimentation to biomedical research is of undoubted value, nevertheless the real usefulness of animal models is still being hotly debated. Laboratory Animal Science is a multidisciplinary approach to humane animal experimentation that allows the choice of the correct animal model and the collection of unbiased data. Refinement, Reduction and Replacement, the "3Rs rule", are now widely accepted and have a major influence on animal experimentation procedures. Refinement, namely any decrease in the incidence or severity of inhumane procedures applied to animals, has been today extended to the entire lives of the experimental animals. Reduction of the number of animals used to obtain statistically significant data may be achieved by improving experimental design and statistical analysis of data. Replacement refers to the development of validated alternative methods. A Laboratory Animal Science training program in biomedical degrees can promote the 3Rs and improve the welfare of laboratory animals as well as the quality of science with ethical, scientific and economic advantages complying with the European requirement that "persons who carry out, take part in, or supervise procedures on animals, or take care of animals used in procedures, shall have had appropriate education and training".

  19. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  20. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  2. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  3. Biotechnology for environmental management and resource recovery

    National Research Council Canada - National Science Library

    Kuhad, Ramesh Chander; Singh, Ajay

    2013-01-01

    ... and green. In my opinion, solid waste disposal has comparatively bigger challenges than liquid waste management. There are consistent efforts by researchers to continuously develop new technologies for utilizing the solid wastes, especially the plant biomass which represents a major part of the available solid wastes and represents a renewable source ...

  4. Biotechnology for harvesting marine-living resources

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 8 stream_content_type text/plain stream_name Environ_Problem_Prospect_1991_313.pdf.txt stream_source_info Environ_Problem_Prospect_1991_313.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  5. Energy and technology review, January--February 1995. State of the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A. [eds.

    1995-02-01

    This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

  6. Educational digital resource for data analysis of Civil Engineering laboratory tests

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Nalon

    2018-02-01

    Full Text Available This work aims to implement and evaluate an interactive educational software that helps Civil Engineering students to perform and analyze the calculations related to different Soil Mechanics laboratory tests. This experience consists of an attempt to incorporate information and communication technologies (ICTs into the engineering teaching-learning process. The content of the program is distributed into three different modules: “Compaction test”, “Consolidation test”, and “Direct shear test”. Using vector graphics, tables, illustrative figures, animations, equations, tip buttons, and immediate correction of mistakes, the software clarifies the relationship between theoretical concepts and practical laboratory results, instructs the students in the moments of doubt, attracts their interest, and motivates them to achieve the complete data interpretation. Based on the results of an applied evaluation questionnaire, it was observed that most of the students were satisfied with the contents and functionalities of the program. The developed tool can be an inspiration for the creation of new educational software that improve the quality of education in different engineering areas.

  7. Harvesting Environmental Microalgal Blooms for Remediation and Resource Recovery: A Laboratory Scale Investigation with Economic and Microbial Community Impact Assessment

    Directory of Open Access Journals (Sweden)

    Jagroop Pandhal

    2017-12-01

    Full Text Available A laboratory based microflotation rig termed efficient FLOtation of Algae Technology (eFLOAT was used to optimise parameters for harvesting microalgal biomass from eutrophic water systems. This was performed for the dual objectives of remediation (nutrient removal and resource recovery. Preliminary experiments demonstrated that chitosan was more efficient than alum for flocculation of biomass and the presence of bacteria could play a positive role and reduce flocculant application rates under the natural conditions tested. Maximum biomass removal from a hyper-eutrophic water retention pond sample was achieved with 5 mg·L−1 chitosan (90% Chlorophyll a removal. Harvesting at maximum rates showed that after 10 days, the bacterial diversity is significantly increased with reduced cyanobacteria, indicating improved ecosystem functioning. The resource potential within the biomass was characterized by 9.02 μg phosphate, 0.36 mg protein, and 103.7 μg lipid per mg of biomass. Fatty acid methyl ester composition was comparable to pure cultures of microalgae, dominated by C16 and C18 chain lengths with saturated, monounsaturated, and polyunsaturated fatty acids. Finally, the laboratory data was translated into a full-size and modular eFLOAT system, with estimated costs as a novel eco-technology for efficient algal bloom harvesting.

  8. Laboratory and field studies related to the Hydrologic Resources Management Program. Progress report, October 1, 1993--September 30, 1994

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1995-03-01

    This report describes the work done at Los Alamos in FY 1994 for the Hydrologic Resources Management Program, a multi-organization project funded by the US Department of Energy/Nevada Operations Office. The authors participated in cooperative collaborations with University of California (UC), Berkeley, the Yucca Mountain Project, the Underground Test Area Operable Unit, and other participating organizations within the Hydrologic Resources Management Program (HRMP). They provided operational support to the Nevada Test Site (NTS) organizations by testing a water-evaporation system, championing the use of high-sensitivity logging equipment during drillbacks, and participating in the planning and execution of drilling operations at two nuclear test sites. Los Alamos personnel cooperated in preparing a proposal to drill beside and under a nuclear test located in unsaturated media. The authors gave assistance in laboratory work related to colloid migration and actinide sorption. In conjunction with personnel from the Lawrence Livermore Laboratory, they collected water samples from 10 wells at the NTS that are known to contain radionuclides. Their analyses of these samples suggest that radionuclides may not be moving away from cavity zones at appreciable rates. Recent field sampling shows clearly the need to purge wells of materials introduced during drilling and illustrates the inconsistency between water samples taken by bailing and those taken by pumping. 36 refs

  9. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  10. How fifth grade Latino/a bilingual students use their linguistic resources in the classroom and laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-12-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a fifth grade science class entirely comprised of language minority students transitioning out of bilingual education. Therefore, English was the means of instruction in science, supported by informal peer-to-peer Spanish-language communication. This study is grounded in a social constructivist paradigm. From this standpoint, learning science is a social process where social, cultural, and linguistic factors are all considered crucial to the process of acquiring scientific knowledge. The study was descriptive in nature, examining specific linguistic behaviors with the purpose of identifying and analyzing the linguistic functions of students' utterances while participating in science learning. The results suggest that students purposefully adapt their use of linguistic resources in order to facilitate their participation in science leaning. What is underscored in this study is the importance of explicitly acknowledging, supporting, and incorporating bilingual students' linguistic resources both in Spanish and English into the science classroom in order to optimize students' participation and facilitate their understanding.

  11. Operational Changes in a Shared Resource Laboratory with the Use of a Product Lifecycle Management Approach: A Case Study.

    Science.gov (United States)

    Hexley, Philip; Smith, Victoria; Wall, Samantha

    2016-04-01

    Shared Resource Laboratories (SRLs) provide investigators access to necessary scientific and resource expertise to leverage complex technologies fully for advancing high-quality biomedical research in a cost-effective manner. At the University of Nebraska Medical Center, the Flow Cytometry Research Facility (FCRF) offered access to exceptional technology, but the methods of operation were outdated and unsustainable. Whereas technology has advanced and the institute has expanded, the operations at the facility remained unchanged for 35 yr. To rectify this, at the end of 2013, we took a product lifecycle management approach to affect large operational changes and align the services offered with the SRL goal of education, as well as to provide service to researchers. These disruptive operational changes took over 10 mo to complete and allowed for independent end-user acquisition of flow cytometry data. The results have been monitored for the past 12 mo. The operational changes have had a positive impact on the quality of research, increased investigator-facility interaction, reduced stress of facility staff, and increased overall use of the resources. This product lifecycle management approach to facility operations allowed us to conceive of, design, implement, and monitor effectively the changes at the FCRF. This approach should be considered by SRL management when faced with the need for operationally disruptive measures.

  12. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study and Open Learning Graduates. Narayan S Punekar. Book Review Volume 2 Issue 9 September 1997 pp 77-78 ...

  13. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  14. A suggested course detailing pharmaceutical biotechnology suitable for inclusion in undergraduate Pharmacy program in Iran

    Directory of Open Access Journals (Sweden)

    Pourahmad J

    2017-11-01

    Full Text Available A 51 hour (3 credit lecture course entitled pharmaceutical biotechnology is outlined which details the biochemistry and biotechnology of biological drug products. It is designed to equip students undertaking Pharmacy program with an understanding of concepts, both academic and applied, directly relevant to working in the biotechnological products sector. In addition to the course, a bank of relevant resource material is provided.

  15. The adoption of plant biotechnology by commercial cotton producers in South Africa

    OpenAIRE

    2012-01-01

    M.B.A. The debate over plant biotechnology and genetic engineering (GE) is surrounded with controversy. On the one side of the debate, phrases such as `Frankenfood' and `terminator seed' have been used to describe food and seed resulting from plant biotechnology. On the other hand, Agricultural Scientists see biotechnology and genetic engineering as a solution to keep feeding and clothing the increasing world population with static or reducing world resources. Many farmers in developing co...

  16. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  17. Forest biotechnology and environment

    Energy Technology Data Exchange (ETDEWEB)

    Kopriva, S.; Rennenberg, H. [Freiburg Univ. (Germany). Inst. fuer Forstbotanik und Baumphysiologie

    2000-02-01

    Forest biotechnology is a relatively young area of applied plant molecular biology that presently concentrates on (i) manipulation of lignin content and composition, (ii) pathogen-, pesticide-, and stress resistance, and (iii) improvement of growth. Transgenic trees have a great potential also in other areas of applied and environmental research, e.g. in the production of phytochemicals and in phytoremediation of polluted soils. To implement the use of biotechnology for these and other purposes improvement of the acceptance in public of genetic engineering general, and the application of transgenic technologies to trees species in particular, is essential. (orig.) [German] Bei der forstlichen Biotechnologie handelt es sich um ein vergleichsweise junges Gebiet der angewandten pflanzlichen Molekularbiologie, das sich derzeit auf folgende Fragestellungen konzentriert: (a) Manipulation des Ligningehalts und der Lignin-Zusammensetzung; (b) Verbesserung der Resistenz gegenueber Pathogenen, Pestiziden und verschiedenen Formen von Stress; (c) Verbesserung des Wachstums. Transgene Baeume haben darueber hinaus ein grosses Potential fuer andere Gebiete der angewandten Forschung und der Umweltforschung, so z.B. fuer die Produktion pflanzlicher Naturstoffe und die Phytosanierung belasteter Boeden. Um die Verwendung biotechnologischer Verfahren fuer diese und andere Zwecke zu implementieren, ist es dringend erforderlich, die Akzeptanz von 'genetic engineering' im allgemeinen und den Einsatz von Technologien zur Herstellung transgener Baeume im besonderen in der Oeffentlichkeit zu verbessern. (orig.)

  18. Environmental Biotechnology Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory supports aspects of the life cycle mission for ARDEC by investigating the performance of new treatment technologies to destroy waste streams from the...

  19. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    ... agriculture, silviculture, horticulture, environment and other important issues. This paper reviews some biotechnological tools that could be harnessed in promoting conservation and sustainable use of bioresources. Key words: Bioresources, genetic conservation, biotechnology. African Journal of Biotechnology Vol. 2 (12) ...

  20. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)

    Fred

    the growing science base, biotechnology companies can successfully be located and thrive in these countries. The rewards which can flow from the successful exploitation of research should encourage investment in biotechnological activities. Key words: Entrepreneur, biotechnology, investment. INTRODUCTION.

  1. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Department of Biotechnology. Department of Biotechnology Awards; National Woman Bioscientist Awards; Biotech Product & Process Development & Commercialization Awards; Awardees of National Bioscience Awards for Career Development. Department of Biotechnology Awardees. Year: 2012 Innovative Young ...

  2. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  3. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  4. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  5. Preface: Biocatalysis and Agricultural Biotechnology

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  6. Biotechnology Outlines for Classroom Use.

    Science.gov (United States)

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  7. Resources

    Science.gov (United States)

    English in Australia, 1973

    1973-01-01

    Contains seven short resources''--units, lessons, and activities on the power of observation, man and his earth, snakes, group discussion, colloquial and slang, the continuous story, and retelling a story. (DD)

  8. Savannah River Laboratory semiannual report, April-September 1979. Hydrogeochemical and stream sediment reconnaissance: National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the accomplishments, status, and program of the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. SRL has accepted responsibility for Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of 1,500,000 square miles in 30 eastern and 7 far-western states. The report is a progress report covering the period April 1979 through September 1979. SRL efforts in the following areas are discussed: reconnaissance and detailed studies in geological programs; management, analysis, and interpretation of analytical and field data; reporting of HSSR results; sample preparation methods; and neutron activation analysis and other analytical techniques. Appendix A to the report summarizes the SRL-NURE production of the April 1979-September 1979 period and the program plans for the first half of FY-1980. Page-scale maps are included that show the status of completed sampling, analysis, and data reports placed on open file

  9. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  10. Egyptian Journal of Biotechnology: Journal Sponsorship

    African Journals Online (AJOL)

    Egyptian Journal of Biotechnology: Journal Sponsorship. Journal Home > About the Journal > Egyptian Journal of Biotechnology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  11. Nigerian Journal of Biotechnology: Journal Sponsorship

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology: Journal Sponsorship. Journal Home > About the Journal > Nigerian Journal of Biotechnology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  12. Biotechnological advances in Lilium.

    Science.gov (United States)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.

  13. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  14. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  15. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  16. Laboratory capacity building for the International Health Regulations (IHR[2005] in resource-poor countries: the experience of the African Field Epidemiology Network (AFENET

    Directory of Open Access Journals (Sweden)

    Mukanga David

    2010-12-01

    Full Text Available Abstract Laboratory is one of the core capacities that countries must develop for the implementation of the International Health Regulations (IHR[2005] since laboratory services play a major role in all the key processes of detection, assessment, response, notification, and monitoring of events. While developed countries easily adapt their well-organized routine laboratory services, resource-limited countries need considerable capacity building as many gaps still exist. In this paper, we discuss some of the efforts made by the African Field Epidemiology Network (AFENET in supporting laboratory capacity development in the Africa region. The efforts range from promoting graduate level training programs to building advanced technical, managerial and leadership skills to in-service short course training for peripheral laboratory staff. A number of specific projects focus on external quality assurance, basic laboratory information systems, strengthening laboratory management towards accreditation, equipment calibration, harmonization of training materials, networking and provision of pre-packaged laboratory kits to support outbreak investigation. Available evidence indicates a positive effect of these efforts on laboratory capacity in the region. However, many opportunities exist, especially to support the roll-out of these projects as well as attending to some additional critical areas such as biosafety and biosecuity. We conclude that AFENET’s approach of strengthening national and sub-national systems provide a model that could be adopted in resource-limited settings such as sub-Saharan Africa.

  17. Culture collections and the biotechnology deal.

    Science.gov (United States)

    Sievers, Martin; Dasen, Gottfried; Wermelinger, Tobias; Landert, Silvano; Frasson, David

    2010-01-01

    Culture collections provide starting material for life science research, development and production. Especially in biotechnology, well characterised and pure microbial strains are essential for reproducible and safe bioprocesses. Culture collections also play a role as repositories of biological material for future applications and help to preserve biological diversity. In addition, they also maintain the know-how needed for more complex identification methods and help to develop new techniques. To enable culture collections to achieve higher quality standards, new certification guidelines for biological resource centres are currently being developed.

  18. A Methods-Based Biotechnology Course for Undergraduates

    Science.gov (United States)

    Chakrabarti, Debopam

    2009-01-01

    This new course in biotechnology for upper division undergraduates provides a comprehensive overview of the process of drug discovery that is relevant to biopharmaceutical industry. The laboratory exercises train students in both cell-free and cell-based assays. Oral presentations by the students delve into recent progress in drug discovery.…

  19. The ARS Culture Collection and Developments in Biotechnology

    Science.gov (United States)

    The ARS Culture Collection (NRRL) has played a prominent role in the development of biotechnology since its founding in 1940 when the Northern Regional Research Laboratory opened. Early discoveries included selection of production strains for penicillin, dextran blood extender, xanthan gum and the v...

  20. Science Academies' Refresher Course on Advances in Biotechnology

    Indian Academy of Sciences (India)

    A variety of teaching methods like lectures, discussion and laboratory work will facilitate the learning process. The course will help the participants to gain and sharpen their skills on biotechnology. This training will provide them necessary knowledge to boost their confidence in handling modern instruments used in the field ...

  1. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  2. FOOD BIOTECHNOLOGY - SUSTAINABLE DEVELOPMENT STRATEGY

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2017-05-01

    Full Text Available Biotechnology is the integral application of biological and engineering sciences for the technological use of living organisms, biologically active acellular structures and molecular analogues for the production of goods and services.The role of biotechnology is very important in the food industry; this is a biotechnology because agro-food raw materials are biological products and therefore their conservation until consumption, fresh or industrialization involves the control of the enzymatic activity of the vegetal and animal tissues or of the microflora contamination.

  3. Diagnostic cytogenetic testing following positive noninvasive prenatal screening results: a clinical laboratory practice resource of the American College of Medical Genetics and Genomics (ACMG).

    Science.gov (United States)

    Cherry, Athena M; Akkari, Yassmine M; Barr, Kimberly M; Kearney, Hutton M; Rose, Nancy C; South, Sarah T; Tepperberg, James H; Meck, Jeanne M

    2017-08-01

    Disclaimer: ACMG Clinical Laboratory Practice Resources are developed primarily as an educational tool for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these practice resources is voluntary and does not necessarily assure a successful medical outcome. This Clinical Laboratory Practice Resource should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with this Clinical Laboratory Practice Resource. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Noninvasive prenatal screening (NIPS) using cell-free DNA has been rapidly adopted into prenatal care. Since NIPS is a screening test, diagnostic testing is recommended to confirm all cases of screen-positive NIPS results. For cytogenetics laboratories performing confirmatory testing on prenatal diagnostic samples, a standardized testing algorithm is needed to ensure that the appropriate testing takes place. This algorithm includes diagnostic testing by either chorionic villi sampling or amniocentesis samples and encompasses chromosome analysis, fluorescence in situ hybridization, and chromosomal microarray.

  4. Public attitude towards modern biotechnology | Amin | African ...

    African Journals Online (AJOL)

    This article reviews the literature related to the main idea of the study, rooting from the definition of biotechnology, global status of commercialized biotechnology products, and global and local public attitudes towards modern biotechnology and past models for attitude towards modern biotechnology. The first section of the ...

  5. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  6. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    Biotechnological processes are used for wastewater treatment, gas treatment and disposal of solid wastes in environmental engineering. Also, these processes can be utilized for the production of biogas and hydrogen as new energy resources. For preventing environmental pollution in environmental engineering, activated ...

  7. In vitro propagation: A biotechnological tool capable of solving the ...

    African Journals Online (AJOL)

    South Africa has a very rich plant biodiversity, many of which are medicinally useful. The rich resource is decreasing at an alarming rate as a result of over- exploitation. Plant in vitro regeneration is a biotechnological tool that offers a potential solution to this problem as it provides a means of putting the plants onto the ...

  8. Roles of agricultural biotechnology in ensuring adequate food ...

    African Journals Online (AJOL)

    Agriculture is asked to satisfy two apparently contradictory needs; to become more productive and at the same time more sustainable, that is, to supply the food needed without depleting renewable resources. While agricultural biotechnology holds enormous promise for significantly increasing food production and relieving ...

  9. Environmental biotechnology for sustainability.

    Science.gov (United States)

    Verstraete, W

    2002-03-14

    In the post-industrial society, waste management is integrated in the concepts of responsibility, reliability and continuity. Therefore industry and public office are obliged to implement the concepts of structured environmental management systems more and more strictly. The endpoints are dependent on the type of wastes and on the priorities set by society. They will with time evolve towards more restriction of all kinds of emissions. This will require increasing inputs of labour, information technology and energy into waste treatment and overall waste management. Particularly for aqueous and gaseous wastes that are not contained, continuously improving treatment with maximum re-use and minimum dissipation in the ecosphere will be the trend of the future. Moreover, the public in general and the individual citizen in particular will request to have (bio)assays to monitor regularly and autonomously the quality of his environment. Such advanced waste management requires considerable energy input. It thus may come in conflict with current concerns about CO2-emissions and the Kyoto agreements. Innovative approaches to combine waste management and the International Climate Change Partnership (ICCP) directives, for instance by implementing biological carbon sequestration, are therefore warranted. Biotechnology has a major role to play particularly in terms of advanced treatment down to ng/l-levels and in terms of validating the quality of the environment by means of powerful and intelligent bio-monitoring devices.

  10. Feasibility of establishing a biosafety level 3 tuberculosis culture laboratory of acceptable quality standards in a resource-limited setting: an experience from Uganda.

    Science.gov (United States)

    Ssengooba, Willy; Gelderbloem, Sebastian J; Mboowa, Gerald; Wajja, Anne; Namaganda, Carolyn; Musoke, Philippa; Mayanja-Kizza, Harriet; Joloba, Moses Lutaakome

    2015-01-15

    Despite the recent innovations in tuberculosis (TB) and multi-drug resistant TB (MDR-TB) diagnosis, culture remains vital for difficult-to-diagnose patients, baseline and end-point determination for novel vaccines and drug trials. Herein, we share our experience of establishing a BSL-3 culture facility in Uganda as well as 3-years performance indicators and post-TB vaccine trials (pioneer) and funding experience of sustaining such a facility. Between September 2008 and April 2009, the laboratory was set-up with financial support from external partners. After an initial procedure validation phase in parallel with the National TB Reference Laboratory (NTRL) and legal approvals, the laboratory registered for external quality assessment (EQA) from the NTRL, WHO, National Health Laboratories Services (NHLS), and the College of American Pathologists (CAP). The laboratory also instituted a functional quality management system (QMS). Pioneer funding ended in 2012 and the laboratory remained in self-sustainability mode. The laboratory achieved internationally acceptable standards in both structural and biosafety requirements. Of the 14 patient samples analyzed in the procedural validation phase, agreement for all tests with NTRL was 90% (P 80% in all years from NTRL, CAP, and NHLS, and culture was 100% for CAP panels and above regional average scores for all years with NHLS. Quarterly DST scores from WHO-EQA ranged from 78% to 100% in 2010, 80% to 100% in 2011, and 90 to 100% in 2012. From our experience, it is feasible to set-up a BSL-3 TB culture laboratory with acceptable quality performance standards in resource-limited countries. With the demonstrated quality of work, the laboratory attracted more research groups and post-pioneer funding, which helped to ensure sustainability. The high skilled experts in this research laboratory also continue to provide an excellent resource for the needed national discussion of the laboratory and quality management systems.

  11. Obtaining valid laboratory data in clinical trials conducted in resource diverse settings: lessons learned from a microbicide phase III clinical trial.

    Directory of Open Access Journals (Sweden)

    Tania Crucitti

    2010-10-01

    Full Text Available Over the last decade several phase III microbicides trials have been conducted in developing countries. However, laboratories in resource constrained settings do not always have the experience, infrastructure, and the capacity to deliver laboratory data meeting the high standards of clinical trials. This paper describes the design and outcomes of a laboratory quality assurance program which was implemented during a phase III clinical trial evaluating the efficacy of the candidate microbicide Cellulose Sulfate 6% (CS [1].In order to assess the effectiveness of CS for HIV and STI prevention, a phase III clinical trial was conducted in 5 sites: 3 in Africa and 2 in India. The trial sponsor identified an International Central Reference Laboratory (ICRL, responsible for the design and management of a quality assurance program, which would guarantee the reliability of laboratory data. The ICRL provided advice on the tests, assessed local laboratories, organized trainings, conducted supervision visits, performed re-tests, and prepared control panels. Local laboratories were provided with control panels for HIV rapid tests and Chlamydia trachomatis/Neisseria gonorrhoeae (CT/NG amplification technique. Aliquots from respective control panels were tested by local laboratories and were compared with results obtained at the ICRL.Overall, good results were observed. However, discordances between the ICRL and site laboratories were identified for HIV and CT/NG results. One particular site experienced difficulties with HIV rapid testing shortly after study initiation. At all sites, DNA contamination was identified as a cause of invalid CT/NG results. Both problems were timely detected and solved. Through immediate feedback, guidance and repeated training of laboratory staff, additional inaccuracies were prevented.Quality control guidelines when applied in field laboratories ensured the reliability and validity of final study data. It is essential that sponsors

  12. Laboratory and field studies related to the hydrologic resources management program. Progress report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    Thompson, J.L.; Efurd, D.W.; Rokop, D.J.

    1997-03-01

    This report describes the work done at Los Alamos National Laboratory in FY 1996 for the Hydrologic Resources Management Program funded by the US Department of Energy/Nevada Operations Office. Despite declining financial support we have been able to maintain a significant analytical effort because the Underground Test Area Operable Unit at the Nevada Test Site has drilled several wells adjacent to cavities produced by nuclear tests. We measured the radionuclide content in groundwater samples and rock cores taken from near cavities at two sites on Pahute Mesa. At one of these sites we detected plutonium in the groundwater in significant concentrations. Also we detected 137 Cs deposition in soils high in a collapsed chimney above the working point at a location in the Low Level Waste Management facility in Area 3 of the Nevada Test Site. We analyzed samples from four wells suspected or known to contain radionuclides. Sampling efforts in wells completed with small-bore tubing or casing continue to be hampered by our inability to adequately purge the well prior to sampling. We presented our work at a number of meetings and published several review articles

  13. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  14. Fiscal 1993 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for environmental preservation using biotechnology, technology for effective use unused hydrocarbon resource, technology of solid electrolyte fuel cells for high-efficient electric vehicles); 1993 nendo kokusai kenkyu kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (biotechnology ni yoru kankyo taisaku gijutsu, miriyo tanka suiso shigen no yuko riyo gijutsu, kokoritsu denki jidosha no kotai denkaishitsu nenryo denchi gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: 1) environmental preservation technology using biotechnology, 2) technology for effective use of unused hydrocarbon resource, 3) solid electrolyte fuel cell (SOFC) technology for high-efficient electric vehicles. In 1), bio-remediation is a choice as the result of trially using technologies for remediation of the environment polluted by pollutant, but it is not a technically completed one, but one which will be improved by trial and error. By the application of gene engineering, the use of gene recombination enables wide spread of decomposition genes. In 2), technical subjects were studied such as superheavy distillate, oil shale, coalhead methane and methane hydrate. In 3), designed were cylinder type and planar type SOFC of 850degC operation and 10kW output. Accumulation and weight of a total SOFC system are 81 liters and 100 kg in cylinder type and 136 liters and 200 kg in planar type. The vehicle can be equipped with the SOFC. 171 refs., 72 figs., 54 tabs.

  15. Fiscal 1993 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for environmental preservation using biotechnology, technology for effective use of unused hydrocarbon resource, technology for development of environmental harmony type catalyst); 1995 nendo kokusai kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (biotechnology ni yoru kankyo taisaku gijutsu, miriyo tanka suiso shigen no yuko riyo gijutsu, kankyo chowagata shokubai kaihatsu gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: 1) environmental preservation technology using biotechnology, 2) technology for effective use of unused hydrocarbon resource, 3) technology for development of environmental harmony type catalyst. In 1), a survey was conducted of applicability of biological surfactant to prevention measures of pollution by heavy distillate. It showed that part of the biological surfactants is reaching a stage of its being industrially produced by gene recombination bacteria, but as a whole, biosynthetic genes have hardly been elucidated. In 2), a survey of high-grade treatment technology of petroleum coke was made. It pointed out that it is necessary to develop a technology which makes the most of features of petroleum coke and allows defects. In 3), scientists and engineers of Japan and Europe searched for themes on which they can jointly study in the fields of NOx removal catalyst, up-grading of fuel, and development of catalyst combustion of fuel. 287 refs., 136 figs., 128 tabs.

  16. Detection of T and B cells specific complement-fixing alloantibodies using flow cytometry: A diagnostic approach for a resource limited laboratory

    Directory of Open Access Journals (Sweden)

    Dharmendra Jain

    2017-01-01

    Conclusions: We postulate that this method incorporates most of the features of all the available modalities (i.e., National Institute of Health-complement dependent lymphocytotoxicity, FCXM, cytotoxic FCXM and C4d-flowPRA yet cost-effective and best suited for resource-limited laboratory/ies which is a common scenario in developing countries.

  17. INTELLECTUAL PROPERTY RIGHTS ISSUES FOR RESEARCH TOOLS IN BIOTECHNOLOGY RESEARCH

    Directory of Open Access Journals (Sweden)

    Rekha Chaturvedi

    2015-09-01

    Full Text Available The research tools refer to the resources researchers need to use in experimental work. In Biotechnology, these can include cell lines, monoclonal antibodies, reagents, animal models, growth factors, combinatorial chemistry libraries, drug and drug targets, clones and cloning tools (such as PCR, method, laboratory equipment and machines, database and computer software. Research tools therefore serve as basis for upstream research to improve the present product or process. There are several challenges in the way of using patented research tools. IP issues with regard to research tools are important and may sometime pose hindrance for researchers. Hence in the case of patented research tools, IPR issues can compose a major hurdle for technology development. In majority instances research tools are permitted through MTAs for academic research and for imparting education. TRIPS provides a provision for exception to patent rights for experimental use of patented technology in scientific research and several countries including India have included this provision in their patent legislation. For commercially important work, licensing of research tools can be based on royalty or one time lump sum payment. Some patent owners of important high-end research tools for development of platform technology create problems in licensing which can impede research. Usually cost of a commercially available research tool is built up in its price.

  18. Biotechnology software in the digital age: are you winning?

    Science.gov (United States)

    Scheitz, Cornelia Johanna Franziska; Peck, Lawrence J; Groban, Eli S

    2018-01-16

    There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.

  19. [Importance of reproductive biotechnology in cattle in Europe].

    Science.gov (United States)

    Wrenzycki, C; Stinshoff, H

    2015-01-01

    Reproductive biotechnology has manifold applications and includes a great innovation potential in livestock. Due to the global changes the new findings and techniques can aid to meet the future challenges. The use of biotechnology in animal production can guarantee enough high quality food for the whole population. Genetic resources of animals can be preserved via sperm and embryo banking. Early diagnosis of hereditary defects, generation of offspring with predetermined sex and the avoidance of animal transports for breeding employing shipment of frozen embryos will improve animal welfare. A special application is the use of animal models for human assisted reproductive technologies. Therefore, not only in Germany research related to the methodologies in reproductive biotechnology and their improvement need to be supported.

  20. Strategic management of biotechnology agents.

    Science.gov (United States)

    Huber, S L

    1993-07-01

    The use of biologic response modifiers to demonstrate a value-driven approach to strategic management by pharmacists is described. To participate in decisions on the use of technology in their institutions, pharmacists must practice strategic management. This process includes environmental scanning, analysis of clinical and pharmacoeconomic data, and development of clinical management approaches. It is ideal for analyzing biologic response modifiers such as filgrastim and sargramostim. Emphasis must be placed on maximizing the fit among the products, the institution, and the health care environment. Pharmacists will find plentiful opportunities for clinical management with biotechnology agents. Practitioners who specialize in determining the total cost of care by using pharmacoeconomic methods are needed, as are practitioners trained to monitor the complicated biotechnology agents. Also, the institution needs to forecast accurately the impact of emerging biotechnology agents. If pharmacists can develop and control clinical, pharmacoeconomic, and reimbursement information databases for biotechnology agents, the pharmacy profession will be in a strong position to meet the challenges of biotechnology and realize the inherent opportunities.

  1. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    Science.gov (United States)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  2. Showcase for Biotechnology 2005

    Science.gov (United States)

    2006-11-01

    predispose AAW to a more aggressive form of breast cancer. We collected normal breast tissue (reductive mammoplasty and/or disease-free biopsy...provide useful prognostic and therapeutic information. We propose to build a model of cancer progression based upon the cell cycle control...5680 T – 301-496-4119 F – 301-480-7456 E – royk@navmed.nci.nih.gov Laboratory of Clinical Trials Unit Developmental Therapeutics Program

  3. Is biotechnology the new alchemy?

    Science.gov (United States)

    Kirkham, Georgiana

    2009-03-01

    In this article I examine similarities between the science and ethics of biotechnology on the one hand, and those of alchemy on the other, and show that the understanding of nature and naturalness upon which many contemporary ethical responses to biotechnology are predicated is, in fact, significantly similar to the understanding of nature that was the foundation of the practice of alchemy. In doing so I demonstrate that the ethical issues and social responses that are currently arising from advances in the field of biotechnology are interestingly similar to those that arose in reaction to the practice and prevalence of alchemy from its inception in Europe in the mid-twelfth century until at least the early modern period. I argue that a proper conception of the ethical issues and a sensible interpretation of the power and the promise of the science of biotechnology are most likely if we understand such attitudes to nature, and to the ethical issues surrounding technological and scientific developments, in terms of an historical and cultural continuum. That is, we should regard biotechnology as merely the latest in a string of technological and scientific developments rather than, as is often alleged, as something entirely new, requiring its own special ethical response. Finally, I suggest that examining the parallels between the ethical issues generated by alchemy and by biotechnology show us that such issues are best situated and discussed within a framework of virtue ethics, as it allows us to think seriously about the relationship between art and nature and the proper role of humans in relation to their technology.

  4. Sitaxsentan (ICOS-Texas Biotechnology).

    Science.gov (United States)

    Wu-Wong, J R

    2001-04-01

    ICOS-Texas Biotechnology is developing the endothelin A (ETA) receptor antagonist, sitaxsentan, for the potential treatment of pulmonary hypertension, congestive heart failure (CHF), chronic obstructive pulmonary disease and subarachnoid hemorrhage [205713], [302200]. The compound is in phase IIa trials as an iv formulation for CHF and has completed phase I safety trials as an oral formulation [272071]. Phase II/III trials for pulmonary hypertension are planned for the first quarter of 2001 [3945711]. In June 2000, ICOS and Texas Biotechnology established a joint venture to develop and commercialize endothelin antagonists [370007]. US-05591761 was issued to Texas in January 1997, covering TBC-11251 and several related isomers [2309301.

  5. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  6. Past, Present, and Future Industrial Biotechnology in China

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  7. Past, present, and future industrial biotechnology in China.

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  8. Biotechnology developments in Uganda and associated challenges ...

    African Journals Online (AJOL)

    ... biotechnology programmes and strengthening interactions among the actors both locally and internationally; integrating biotechnology into institutional programmes and regulatory instruments; putting in place technology management policies and developing capacities for their implementation; encouraging private sector ...

  9. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  10. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  11. A survey of Asian life scientists :the state of biosciences, laboratory biosecurity, and biosafety in Asia.

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Jennifer Marie

    2006-02-01

    Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues compared to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.

  12. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  13. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  14. The Development of Plant Biotechnology.

    Science.gov (United States)

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  15. The Future of Plant Biotechnology

    Science.gov (United States)

    Plant biotechnology has been wildly successful and has literally transformed plant agriculture. There are still undulating concerns about safety and sustainability that critics demand to be addressed. In that light, there are some biotechnoloogies that are being developed that might not only improve...

  16. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  17. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  18. Biological Constraints in Algal Biotechnology

    Czech Academy of Sciences Publication Activity Database

    Torzillo, G.; Pushparaj, B.; Masojídek, Jiří; Vonshak, A.

    2003-01-01

    Roč. 8, - (2003), s. 338-348 ISSN 0006-3592 R&D Projects: GA MŠk LN00A141 Institutional research plan: CEZ:MSM 123100001 Keywords : outdoor cultures * photobioreactors * oxygen stress Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.173, year: 2003

  19. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  20. Ethical perception of modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... ensure food security and to boost the country's economy. (Latifah et al., 2007). Successful development and commercialisation of modern biotechnology products in. *Corresponding author. E-mail: nilam@ukm.my, Tel: + 603-. 89216907. Fax: +603-89252976. Abbreviations: GMOs, Genetically modified ...

  1. Seminar on Nano-biotechnology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 12. Seminar on Nano-biotechnology. Information and Announcements Volume 13 Issue 12 December 2008 pp 1191-1191. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/12/1191-1191 ...

  2. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  3. Maximising Resource Allocation in the Teaching Laboratory: Understanding Student Evaluations of Teaching Assistants in a Team-Based Teaching Format

    Science.gov (United States)

    Nikolic, Sasha; Suesse, Thomas F.; McCarthy, Timothy J.; Goldfinch, Thomas L.

    2017-01-01

    Minimal research papers have investigated the use of student evaluations on the laboratory, a learning medium usually run by teaching assistants with little control of the content, delivery and equipment. Finding the right mix of teaching assistants for the laboratory can be an onerous task due to the many skills required including theoretical and…

  4. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  5. The translations and the organizing of scientific practices in R&D biotechnology

    Directory of Open Access Journals (Sweden)

    Lorena Bezerra de Souza Matos

    Full Text Available Abstract Considering the scientific practices related to Research & Development in biotechnology and, based on the assumptions of Actor Network Theory (ANT, this study aimed to describe the main translations that influenced the composition of an actor-networks, reflecting on the organizing practices in a scientific laboratory Research & Development of Northeast Biotechnology Network (Brazil. The methodological procedures were based on the historical approach of biotechnology under study from an ethnographic posture. The composition of the corpus was organized in the form of reports, observing the historical passages. The history of biotechnology has been reported between the plots of design, patenting and commercialization practices, highlighting the creation of heterogeneous actors’ networks. Finally, he emphasized the influence of laboratory scientist's leadership in the way of organizing of scientific practices.

  6. Of biotechnology and man.

    Science.gov (United States)

    Knoppers, Bartha Maria

    2004-01-01

    Lessons learned from the arena of other genetic 'resources' (such as plants and animals) together with the past decade of experience in human genetic research requires a rethinking of policy approaches. Whether at the level of whole populations, the family or the individual, the determination of rights and responsibilities is necessarily situated in the context of relationships. From an appreciation of these relationships emerge ethical principles that reflect the complexity of both the human person and new technologies. The elaboration of principles such as individuality, mutuality, reciprocity, solidarity, equity, citizenry and universality foster the possibility that traditional human rights and bioethic principles can be interpreted in a new way so as to promote and protect human well-being.

  7. Thermo-mechanical controls on geothermal energy resources: case studies in the Pannonian Basin and other natural laboratories

    NARCIS (Netherlands)

    Cloetingh, S.; Wees, J.D. van; Wesztergom, V.

    2017-01-01

    Geothermal energy is an important renewable energy resource, whose share is growing rapidly in the energy mix. Geosciences provide fundamental knowledge on Earth system processes and properties, required for the development of new methods to identify prospective geothermal resources suitable for

  8. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China.

    Science.gov (United States)

    Xiang, Jianhai

    2015-08-01

    Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world's aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology.

  11. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    Science.gov (United States)

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  12. [Biotechnological aspects in "loco" larvae].

    Science.gov (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  13. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  14. Biotechnology for development: Human and animal health perspectives

    International Nuclear Information System (INIS)

    Yilma, Tilahun

    2001-01-01

    In much of the world, resources for human life are meager at best. While the developed parts of the world enjoy a standard of living higher than at any time in history, the benefits of technology and industrialization have not been available to developing countries. The extreme lack of resources leads to very slow progress despite intense interest and hard work; thus the technological gap between developing and developed nations continues to widen, as discoveries and advances accelerate in the more favored countries while technological accomplishments of developing nations are soon outmoded. It is apparent that developing nations will not be able to overcome this disadvantage if the situation is not addressed soon. Developing nations should not be condemned permanently to such status. It is essential for world political and economic stability to develop orderly plans to help struggling nations advance to technological production levels rather than exist as marginal consumers. It is essential that all projects in such countries have distinct, stated goals for conversion of the developing nation to a developed nation, and that such goals be the overriding consideration in the direction of the project. Cognizant of the significance of the recommendations and with a real desire for prompt implementation, we have established an 'International Laboratory of Molecular Biology for Tropical Disease Agents (ILMB)' whose main agenda is the transfer of biotechnology to developing countries. In this spirit, we have entered into partnership with a number of international organizations including the United States Agency for International Development (USAID), a number of United Nations Agencies such as the International Atomic Energy Agency (IAEA), the Organization for African Unity (OAU), and a number of countries from the developing nations in Africa and Asia. We are working with these partners toward: establishment of laboratories of molecular biology in developing countries

  15. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  16. Machining Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook, [and] Student Laboratory Manual.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 1-year vocational training program to prepare students for entry-level employment as machinists. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume begins with the MASTER…

  17. Laser Machining Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook, [and] Student Laboratory Manual.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 1-year vocational training program to prepare students for entry-level employment as laser machining technicians. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume…

  18. Advanced CNC and CAM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook [and] Student Laboratory Manual.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and student laboratory manual for a 1-year vocational training program to prepare students for entry-level positions as advanced computer numerical control (CNC) and computer-assisted manufacturing (CAM) technicians.. The program was developed through a modification of the DACUM…

  19. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  20. Improved laboratory resource utilization and patient care with the use of rapid on-site evaluation for endobronchial ultrasound fine-needle aspiration biopsy.

    Science.gov (United States)

    Collins, Brian T; Chen, Alexander C; Wang, Jeff F; Bernadt, Cory T; Sanati, Souzan

    2013-10-01

    Endobronchial ultrasound guided (EBUS) fine-needle aspiration (FNA) biopsy has become widely used to evaluate patients with thoracic abnormalities. Rapid on-site evaluation (ROSE) can provide the bronchoscopist with immediate evaluation findings during the procedure. This study examines EBUS FNA biopsy procedures with and without ROSE, and investigates the impact of ROSE service on the EBUS procedure and laboratory resource utilization. The cytopathology database at Washington University Medical Center, St. Louis, Missouri, was searched for EBUS FNA biopsy cases before and after introduction of ROSE service, and a matched cohort was collected. Reports were reviewed and pertinent data was collected, such as sites biopsied, ROSE performance, slide smears, cell blocks, and diagnostic categories. Statistical analysis of the results was performed. A matched case-controlled EBUS FNA cohort of 340 patients (680 total) for each category of non-ROSE and ROSE service were identified. There was a 33% reduction in the number of sites biopsied with ROSE. A total of 68% of patients with ROSE had just one biopsy site compared to only 36% of non-ROSE patients. There was a 30% decrease in total slides (mean, 5.27 slides) after the introduction of ROSE. All of these improvements were statistically significant. EBUS FNA biopsy ROSE service benefits patients by contributing to significantly fewer biopsies and improved utilization of health care resources. ROSE service results in substantially fewer total slides, which has a significant impact on the cytopathology laboratory work effort. The use of ROSE for EBUS FNA biopsy provides significant improvements in patient care and laboratory resource utilization. © 2013 American Cancer Society.

  1. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-15

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  2. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    Energy Technology Data Exchange (ETDEWEB)

    Clouse, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, M. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, M. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verdon, C. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  3. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The

  4. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  5. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will be presented. Clinical and postdoctoral fellows who want to learn about new biotechnology advances are encouraged to attend this course.

  6. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  8. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  9. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  10. Biotechnological uses of archaeal extremozymes.

    Science.gov (United States)

    Eichler, J

    2001-07-01

    Archaea have developed a variety of molecular strategies to survive the often harsh environments in which they exist. Although the rules that allow archaeal enzymes to fulfill their catalytic functions under extremes of salinity, temperature or pressure are not completely understood, the stability of these extremophilic enzymes, or extremozymes, in the face of adverse conditions has led to their use in a variety of biotechnological applications in which such tolerances are advantageous. In the following, examples of commercially important archaeal extremozymes are presented, potentially useful archaeal extremozyme sources are identified and solutions to obstacles currently hindering wider use of archaeal extremozymes are discussed.

  11. Biotechnology, Industry Study, Spring 2009

    Science.gov (United States)

    2009-01-01

    www.cdc.gov/niosh/nas/RDRP/ch6.2.htm. 12 In 2007, the US share of world production was 42.6% for corn, 32.0% for soybeans , 9.3% for wheat, and 1.5...for rice. Of global exports, the US accounted for 64.5% for corn, 39.4% for soybeans , 32.1% for wheat, and 9.7% for rice. Jim Monke, CRS Report...papers.cfm?abstract_id=1321054 28 Monsanto Company, "Conversations About Plant Biotechnology," April 25, 2009, http://www.monsanto.com/biotech- gmo /asp

  12. Biotechnological Advances for Restoring Degraded Land for Sustainable Development.

    Science.gov (United States)

    Tripathi, Vishal; Edrisi, Sheikh Adil; Chen, Bin; Gupta, Vijai K; Vilu, Raivo; Gathergood, Nicholas; Abhilash, P C

    2017-09-01

    Global land resources are under severe threat due to pollution and unsustainable land use practices. Restoring degraded land is imperative for regaining ecosystem services, such as biodiversity maintenance and nutrient and water cycling, and to meet the food, feed, fuel, and fibre requirements of present and future generations. While bioremediation is acknowledged as a promising technology for restoring polluted and degraded lands, its field potential is limited for various reasons. However, recent biotechnological advancements, including producing efficient microbial consortia, applying enzymes with higher degrees of specificity, and designing plants with specific microbial partners, are opening new prospects in remediation technology. This review provides insights into such promising ways to harness biotechnology as ecofriendly methods for remediation and restoration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fungal chitinases: diversity, mechanistic properties and biotechnological potential.

    Science.gov (United States)

    Hartl, Lukas; Zach, Simone; Seidl-Seiboth, Verena

    2012-01-01

    Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.

  14. 1994 - 1995 annual report of the NRC Biotechnology Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    One of the roles of the Biotechnology Research Institute is to promote leading edge research and development in biotechnology and molecular biology as they relate to industries in the natural resource sectors. To this end, researchers work with industry to develop less polluting, more efficient and economic processes and to solve environmental problems. Scientific studies undertaken in 1994 and 1995 included new analytical techniques and biosensors, bioprocesses for waste and ground water treatment, biopesticides, biodegradation of toxic compounds, biodesulfurization of bitumen, solvent- less sample preparation techniques to analyze environmental pollutants in soils and waste water, protocol for the analysis of petroleum hydrocarbons, gene probes and their applications, biodegradation of energetic compounds, and biofiltration of air emissions. These, and other noteworthy projects undertaken by the Institute, were reviewed and presented ,combined with institutional data. 2 tabs.

  15. Insect gut microbiome - An unexploited reserve for biotechnological application.

    Science.gov (United States)

    Krishnan, Muthukalingan; Bharathiraja, Chinnapandi; Pandiarajan, Jeyaraj; Prasanna, Vimalanathan Arun; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2014-05-01

    Metagenomics research has been developed over the past decade to elucidate the genomes of the uncultured microorganisms with an aim of understanding microbial ecology. On the other hand, it has also been provoked by the increasing biotechnological demands for novel enzymes, antibiotic and signal mimics. The gut microbiota of insects plays crucial roles in the growth, development and environmental adaptation to the host insects. Very recently, the insect microbiota and their genomes (microbiome), isolated from insects were recognized as a major genetic resources for bio-processing industry. Consequently, the exploitation of insect gut microbiome using metagenomic approaches will enable us to find novel biocatalysts and to develop innovative strategies for identifying smart molecules for biotechnological applications. In this review, we discuss the critical footstep in extraction and purification of metagenomic DNA from insect gut, construction of metagenomic libraries and screening procedure for novel gene identification. Recent innovations and potential applications in bioprocess industries are highlighted.

  16. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment.

    Science.gov (United States)

    Kalogerakis, Nicolas; Arff, Johanne; Banat, Ibrahim M; Broch, Ole Jacob; Daffonchio, Daniele; Edvardsen, Torgeir; Eguiraun, Harkaitz; Giuliano, Laura; Handå, Aleksander; López-de-Ipiña, Karmele; Marigomez, Ionan; Martinez, Iciar; Øie, Gunvor; Rojo, Fernando; Skjermo, Jorunn; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Ethiopian Field Epidemiology and Laboratory Training Program: strengthening public health systems and building human resource capacity.

    Science.gov (United States)

    Jima, Daddi; Mitike, Getnet; Hailemariam, Zegeye; Bekele, Alemayehu; Addissie, Adamu; Luce, Richard; Wasswa, Peter; Namusisi, Olivia; Gitta, Sheba Nakacubo; Musenero, Monica; Mukanga, David

    2011-01-01

    The Ethiopian Field Epidemiology and Laboratory Training Program (EFELTP) is a comprehensive two-year competency-based training and service program designed to build sustainable public health expertise and capacity. Established in 2009, the program is a partnership between the Ethiopian Federal Ministry of Health, the Ethiopian Health and Nutrition Research Institute, Addis Ababa University School of Public Health, the Ethiopian Public Health Association and the US Centers of Disease Control and Prevention. Residents of the program spend about 25% of their time undergoing didactic training and the 75% in the field working at program field bases established with the MOH and Regional Health Bureaus investigating disease outbreaks, improving disease surveillance, responding to public health emergencies, using health data to make recommendations and undertaking other field Epidemiology related activities on setting health policy. Residents from the first 2 cohorts of the program have conducted more than 42 outbreaks investigations, 27analyses of surveillance data, evaluations of 11 surveillance systems, had28oral and poster presentation abstracts accepted at 10 scientific conferences and submitted 8 manuscripts of which 2are already published. The EFELTP has provided valuable opportunities to improve epidemiology and laboratory capacity building in Ethiopia. While the program is relatively young, positive and significant impacts are assisting the country better detect and respond to epidemics and address diseases of major public health significance.

  18. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  19. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  20. Biotechnology for Solar System Exploration

    Science.gov (United States)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  1. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  2. South-South Collaboration in Health Biotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    To map entrepreneurial collaboration we conducted a brief survey on collaborations of health biotechnology/pharmaceutical firms in developing nations. The survey was sent to firms in five developing countries that have been identified as having relatively strong health biotechnology sectors, Brazil, China, Cuba, India and ...

  3. Biotechnology - The role of perceptions of consumers

    Directory of Open Access Journals (Sweden)

    P. Van Heerden

    2002-12-01

    Full Text Available The development of Biotechnology is aimed at creating improved products. Without the acceptance of biotechnology enhancements by consumers, the development of new products will be hampered. Consumers in different countries perceive genetic engineering differently. In this article the views of foreign and local consumers are investigated.

  4. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  5. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    Assessment of technology generating institutions in biotechnology innovation system of South-Eastern Nigeria. ... Results of the study revealed that some of the institutions have been involved in biotechnology research for the past two decades but have only significantly invested on bio-processing (58.8%) and cell and ...

  6. Some limitations of the biotechnological revolution | Onyia ...

    African Journals Online (AJOL)

    The objective of this paper is to challenge and possibly change the notion that biotechnology alone is the magic wand that brings solution to all of agriculture's pitfalls, by clarifying misconceptions concerning these underlying assumptions. The article reviews some of the highlights of modern plant biotechnology and ...

  7. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  8. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... farmers on the potentials of biotechnology for food security is expedient. Key words: Biotechnology, innovation system, ... security, increases in agricultural productivity is required. Furthermore, Bunders et al. (1996) had earlier ..... This may be as a result of “publish or perish” syndrome in the universities.

  9. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  10. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  11. Comparative genomics of biotechnologically important yeasts

    NARCIS (Netherlands)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the

  12. Biotechnology in Aquaculture: Prospects and Challenges | Edun ...

    African Journals Online (AJOL)

    Increased public demands for fish and dwindling natural marine habitats have encouraged scientists to study ways that biotechnology can increase the production of fish and shellfish. Biotechnology allows scientists to identify and combine traits in fish and shellfish to increase productivity and improve quality. This article ...

  13. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  14. Status and trends of essential learning tools as a potential source of knowledge creation for the subject "biotechnology" for students of direction "Veterinary Medicine"

    OpenAIRE

    NOWITSKA O.

    2011-01-01

    The current state and development trends of the main kinds of learning tools for the discipline "Biotechnology.". Actualize the content of discipline together with the logistics of training. Characterized by the prospects of using electronic training courses in conjunction with work in biotechnology laboratories.

  15. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  16. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  17. Plant biotechnology for lignocellulosic biofuel production.

    Science.gov (United States)

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  19. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. DNA polymerases and biotechnological applications.

    Science.gov (United States)

    Aschenbrenner, Joos; Marx, Andreas

    2017-12-01

    A multitude of biotechnological techniques used in basic research as well as in clinical diagnostics on an everyday basis depend on DNA polymerases and their intrinsic capability to replicate DNA strands with astoundingly high fidelity. Applications with fundamental importance to modern molecular biology, including the polymerase chain reaction and DNA sequencing, would not be feasible without the advances made in characterizing these enzymes over the course of the last 60 years. Nonetheless, the still growing application scope of DNA polymerases necessitates the identification of novel enzymes with tailor-made properties. In the recent past, DNA polymerases optimized for diverse PCR and sequencing applications as well as enzymes that accept a variety of unnatural substrates for the synthesis and reverse transcription of modified nucleic acids have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  2. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  3. Improving microalgae for biotechnology--From genetics to synthetic biology.

    Science.gov (United States)

    Hlavova, Monika; Turoczy, Zoltan; Bisova, Katerina

    2015-11-01

    Microalgae have traditionally been used in many biotechnological applications, where each new application required a different species or strain expressing the required properties; the challenge therefore is to isolate or develop, characterize and optimize species or strains that can express more than one specific property. In agriculture, breeding of natural variants has been successfully used for centuries to improve production traits in many existing plant and animal species. With the discovery of the concepts of classical genetics, these new ideas have been extensively used in selective breeding. However, many biotechnologically relevant algae do not possess the sexual characteristics required for traditional breeding/crossing, although they can be modified by chemical and physical mutagens. The resulting mutants are not considered as genetically modified organisms (GMOs) and their cultivation is therefore not limited by legislation. On the other hand, mutants prepared by random or specific insertion of foreign DNA are considered to be GMOs. This review will compare the effects of two genetic approaches on model algal species and will summarize their advantages in basic research. Furthermore, we will discuss the potential of mutagenesis to improve microalgae as a biotechnological resource, to accelerate the process from specific strain isolation to growth optimization, and discuss the production of new products. Finally, we will explore the potential of algae in synthetic biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Agricultural biotechnology and its contribution to the global knowledge economy.

    Science.gov (United States)

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  5. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  6. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  7. [The past 30 years of Chinese Journal of Biotechnology].

    Science.gov (United States)

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  8. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  9. Students' Perception of Interdisciplinary, Problem-Based Learning in a Food Biotechnology Course

    Science.gov (United States)

    Ng, Betsy L. L.; Yap, Kueh C.; Hoh, Yin K.

    2011-01-01

    Abstract: Students' perception of 8 criteria (rationale of the problem; interdisciplinary learning; facilitator asked essential questions; learner's skills; assessments; facilitation procedures; team's use of resources [team collaboration], and facilitator within a problem-based learning context) were assessed for a food biotechnology course that…

  10. Research gap analysis for application of biotechnology to sustaining US forests

    Science.gov (United States)

    R.W. Whetten; R. Kellison

    2010-01-01

    The expanding human population of the world is placing greater demand on forest resources, both natural forests and plantations. Both types of forests are being adversely affected in North America as well as in other parts of the world, due to the globalization of trade and to climate change and associated changes in pest and disease incidence. Biotechnology may help...

  11. Biotechnology Education: A Multiple Instructional Strategies Approach.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  12. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  13. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Key words: Biotechnology, innovation system, research institutions, universities and agricultural development programme. INTRODUCTION ... technology is the application of indigenous and / or scientific knowledge to the .... professionals, public attitude to genetic engineering organisms and products, and ...

  15. Immunoassays in monitoring biotechnological drugs.

    Science.gov (United States)

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C

    1996-08-01

    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials.

  16. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui

    2017-10-01

    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  17. Yeasts: From genetics to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Russo, S.; Poli, G. [Univ. of Milan (Italy); Siman-Tov, R.B. [Univ. of Jerusalem, Rehovot (Israel)

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  18. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez

    2015-08-01

    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4 are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  19. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    OpenAIRE

    Garda S. A.; S. G. Danilenko; G. S. Litvinov

    2014-01-01

    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  20. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike

    2018-01-01

    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  1. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  2. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Scheitlin, F.M. (ed.)

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories.

  3. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    International Nuclear Information System (INIS)

    Scheitlin, F.M.

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories

  4. The role of biotechnology in art preservation.

    Science.gov (United States)

    Ramírez, José Luis; Santana, María A; Galindo-Castro, Iván; Gonzalez, Alvaro

    2005-12-01

    Biotechnology has played a key role in medicine, agriculture and industry for over 30 years and has advanced our understanding of the biological sciences. Furthermore, the tools of biotechnology have a great and largely untapped potential for the preservation and restoration of our cultural heritage. It is possible that these tools are not often applied in this context because of the inherent separation of the worlds of art and science; however, it is encouraging to see that during the past six years important biotechnological applications to artwork preservation have emerged and advances in biotechnology predict further innovation. In this article we describe and reflect upon a unique example of a group of scientists and art restoration technicians working together to study and treat of a piece of colonial art, and review some of the new applications in biotechnology for the preservation of mankind's cultural heritage. We predict an expansion in this field and the further development of biotechnological techniques, which will open up new opportunities to both biologists and artwork preservers.

  5. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.

    Science.gov (United States)

    Krujatz, Felix; Lode, Anja; Seidel, Julia; Bley, Thomas; Gelinsky, Michael; Steingroewer, Juliane

    2017-10-25

    The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  7. Application of biotechnology for treatment of nitrogen compounds in gold mill effluents

    International Nuclear Information System (INIS)

    Kapoor, A.; Gould, W.D.; Bedard, P.; Morin, K.

    2004-01-01

    This paper presents the results of a research study that is being conducted by the Mine Effluents Program, Mining and Mineral Science Laboratory (MMSL), Natural Resources Canada aimed at evaluating biotechnology processes for the treatment of nitrogen compounds such as thiocyanide (CNS) and ammonia (NH 4- N) which are present in gold mill effluents. A sequencing batch reactor (SBR) technology, commonly used for the biological treatment of municipal and industrial effluents, was used in this study. In the SBR process, the micro-organisms were able to degrade CNS to NH 4- N and NH 4- N to nitrate (NO 3- N) at operating conditions of two 12 h treatment cycles per day, with pH maintained in the 7.4 to 7.6 range, and at room temperature (approximately 21 o C) and also at 12 o C. The end products of CNS and NH 4- N biological oxidation were NO 3- N and sulphate (SO 4 ) that are relatively non-toxic. Partial removal of NO 3- N was achieved by biological denitrification reactions in the SBR process. The SBR process effluent was measured to be non-toxic to rainbow trout based on the 96 h acute toxicity test. The microbial consortium isolated from the SBR treating a simulated effluent was able to effectively oxidize CNS and NH 4- N to NO 3- N in water samples (under batch conditions) collected at three mine sites located in Quebec, the Northwest Territories, and Yukon. (author)

  8. Incidence of the biotechnology in the academic development of the chemical engineering in Colombia

    International Nuclear Information System (INIS)

    Castellanos, Oscar Fernando; Rueda Maria Angelica; Ramirez, Julio Cesar

    1998-01-01

    In Colombia, the biotechnology, during the last years, it has been developed in a quick way, particularly in their fundamental and theoretical aspect. In the national market consumption there are products obtained with the help of the advances of the industrial biotechnology, which, for their implementation, it has had to appeal to import technologies and of transfer. This way, among the theoretical investigations in biotechnology and the applicability of their results in production processes in our country a direct relationship has not existed generally. At the moment, the necessities of scientific and technological progress demand the harmonic interaction of the different aspects of the biotechnology. For it, it is indispensable the formation of professionals, able to apply engineering concepts in the processes developed in biotechnical laboratories, like they have already made it other countries, with more scientific and economic advance. In the Colombian universities it is hour of reinforcing the line considerably in biochemical engineering of chemical engineering programs in the different pre and graduate levels; this profundity will allow significantly shortening distances between the different areas of the biotechnology and its industrial application

  9. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cooperation Agreements in Biotechnology Companies: An Advantage for the Acquisition of New Capabilities and Growth?

    Directory of Open Access Journals (Sweden)

    Tomás Gabriel Bas

    2006-08-01

    Full Text Available Cooperation agreements in biotechnology allow us to observe the complexity surrounding alliances. The market globalization, the exorbitant costs of R&D and the rapid changes in technology, are arguably amongst the principal reasons that push companies to establish cooperation agreements. Biotechnology companies use this instrument to develop external features in the search for resources and missing expertise. This paper sets out to identify if such cooperation agreements in biotechnology companies are an advantage in themselves, sufficient for the acquisition of new capabilities and if they help the growth of these companies. For this approach, a private database of companies in the two most advanced countries in this sector: United States and United Kingdom, will be used.

  11. Environmental biotechnology for the eco-efficient decontamination of petroleum hydrocarbon polluted sites in the NIS

    International Nuclear Information System (INIS)

    Kerstin, S.; Andreas, P. L.; Hildegard, A.

    2005-01-01

    Full text : Pollution of soil and ground water with petroleum hydrocarbons is a major environmental problem in many oil producing regions of the New Independent States. Decontamination of these areas using conventional technologies based on physical, chemical and / or thermal pollutant removal would require major financial resources and represent a great economical burden for these regions. Thus, contaminated land management (CLM) has to focus on efficient yet low-cost strategies yielding the optimum ecological outcome. Approaching such eco-efficient, i.e ecologically sound and economically feasible solutions includes the consideration of technical, scientific and socio-economic aspects. A comprehensive risk assessment states the basis for these CLM strategies, which considers both technical (e.g. soil type, groundwater characteristics) and regional aspects (e.g. demographic and socio-economic details). This requires a holistic understanding of these capacious problems and its communication to and the involvement of the stakeholders. Such eco-efficient technologies that are suitable for the clean-up of soils and aquifers polluted with organic chemicals (e.g. crude oil and its derivatives) are offered by environmental biotechnology. Decontamination techniques such as bioremediation, based on the engineered promotion of the soil's intrinsic microbiological capability to recover from environmental stresses, are fit to re-establish acceptable environmental conditions on a reasonable time-scale while requiring comparably little resources. Bioremediation techniques may be applied after excavation of the polluted soil (ex situ) or on the site as is, leaving contaminated material in place (in situ). Surface, ex situ, treatment (biopiles, landfarming) facilitates the homogenous addition of additives such as surfactants, nutrients or pollutant degrading microorganisms. By contrast, in situ technologies (e.g. bioventing, biosparging) are, as they do not require soil

  12. Plant biotechnology for deeper understanding, wider use and further development of agricultural and horticultural crops

    Directory of Open Access Journals (Sweden)

    P. ELOMAA

    2008-12-01

    Full Text Available Plants bind solar energy to organic matter via photosynthesis and assimilation of carbon dioxide from the atmosphere and comprise the major source of nutrition and bioenergy. Plant biotechnology contributes to solution of important constraints in food and feed production and creates new technologies and applications for the sustainable use of plant resources. Genome-wide approaches such as massive parallel sequencing and microarrays to study gene expression, molecular markers for selection of important traits in breeding, characterization of genetic diversity with the aforementioned approaches, and somatic hybridization and genetic transformation are important tools in plant biotechnology. In this paper, studies carried out on enhanced resistance to viruses and tolerance of cold stress in potato, genetic modification of flower pigmentation and morphology in gerbera, production of edible vaccines in transgenic barley seeds, and expression of heterologous proteins for pharmaceutical purposes from vector viruses were chosen to exemplify the general utility of biotechnological approaches and also how plant biotechnology research has developed on cultivated plants at University of Helsinki. The studies reveal cellular and genetic mechanisms and provide scientific information that can be used for widening the uses of crop plants. They can also be used to detect any putative risks associated with the use of the biotechnological application in agriculture and horticulture and to develop practises which reduce any inadvertent negative consequences that plant production may have to the environment.;

  13. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  14. The Biotechnology Facility for International Space Station

    Science.gov (United States)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  15. A Study into the Design of a Pre-Laboratory Software Resource in Effectively Assisting in the Chemistry Proficiency of Students of Chinese Origin Undertaking Post 16 Chemistry in the UK

    Science.gov (United States)

    O'Sullivan, Saskia Katarina Emily; Harrison, Timothy Guy

    2016-01-01

    This qualitative study indicates that Chinese origin students completing their pre-university education in a British school have particular difficulties related to sociocultural change, pedagogical differences, affective aspects, cognitive demand and language learning. These are discussed. The use of a pre-laboratory software resource to support…

  16. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.

    2002-01-01

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  17. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  18. Applications of Protein Hydrolysates in Biotechnology

    Science.gov (United States)

    Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.

    By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.

  19. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  20. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic......, translation, transformation and transmission of information. The idea is also to investigate how this debate may influence the “integrative agenda” in biology, especially at a time in which biotechnology is considered to be the industrial use of “biological information”. I introduce concepts....... Finally I make a connection between a sign-theoretic approach to biotechnology and sustainability, with a glimpse into the future....

  1. Biotechnology: Health care, agriculture, industry, environment

    Energy Technology Data Exchange (ETDEWEB)

    Sikyta, B.; Pavlasova, E.; Stejskalova, E.

    1986-01-01

    New developments in different branches of biotechnology are discussed. The production of peptide hormones, new interferons and other lymphokines by the microbial and cell cultures, and new enzyme inhibitors of microbial origin are the most important for health care and pharmacy. The main direction in research in the agriculture represents the development of the new, very effective methods of nitrogen fixation and the production of animal growth hormones by gene manipulated microorganisms. One of the most important field of application of biotechnology is the chemical industry, c.f. microbial production of polymers and biotransformation of compounds previously produced by chemical methods (acrylamide, adipic acid, naphthalene conversion, etc.). Several novel methods of degradation of the cellulosic materials are mentioned and exploitation of biotechnology in environmental protection is also discussed.

  2. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Wood production, wood technology, and biotechnological impacts.

    OpenAIRE

    2007-01-01

    In the year 2001, Prof. Dr. Ursula Kües was appointed at the Faculty of Forest Sciences and Forest Ecology of the Georg-August-University Göttingen to the chair Molecular Wood Biotechnology endowed by the Deutsche Bundesstiftung Umwelt (DBU). Her group studies higher fungi in basic and applied research. Research foci are on mushroom development and on fungal enzymes degrading wood and their applications in wood biotechnology. This book has been edited to thank the DBU for all support given to...

  4. The biotechnology of ethanol. Classical and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Roehr, M. [ed.] [Technische Univ., Vienna (Austria). Inst. fuer Biochemische Technologie und Mikrobiologie; Kosaric, N. [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Vardar-Sukan, F [Ege Univ., Izmir (Turkey). Dept. of Chemical Engineering; Pieper, H.J.; Senn, T. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmitteltechnologie

    2001-07-01

    Focusing on the biotechnology of ethanol, this book highlights its industrial relevance as one of the most important products of primary metabolism. The text covers the most advanced developments among classical methods as well as more unconventional techniques, before going on to outline various aspects of new applications and the increasing importance of ethanol as a renewable resource. Topics covered in this unique volume include alternative raw materials, such as municipal waste and waste paper or particular crops, innovative methods of production using genetically engineered microorganisms, and the role of ethanol as both a source of energy and a valuable commodity. The book is an indispensable reference in that it combines biotechnological and economic aspects, while also providing an overview of the state of the art in the production and use of ethanol. Throughout, special emphasis has been placed on a balanced presentation between developments in Europe as well as in North and South America. With contributions of T. Senn and H.J. Pieper and of N. Kosaric and F. Vardar-Sukan. (orig.)

  5. Agenda 21: biotechnology at the United Nations Conference on Environment and Development.

    Science.gov (United States)

    Taylhardat, A R; Zilinskas, R A

    1992-04-01

    Preparation has yet to be completed for the 1992 Earth Summit, UN Conference on Environment and Development (UNCED), in Rio de Janeiro, Brazil. Nonetheless, it has been planned as a forum in which recommendations will be made to governments and international organizations on how to alleviate environmental damage caused by human activities and how to prevent future damage without retarding development in the Third World. It will declare basic principles for national and individual conduct regarding environmental preservation and sustainable development; adopt international conventions to protect biodiversity and manage climatic change; lay out Agenda 21 activities as specified by UNCED; provide an agenda to help Third World governments manage environmental matters; and provide an agenda for improving the transfer of technology to developing countries. Where biotechnology is concerned, scientists and policy makers in developing countries have shown their interest. Limited resources and capabilities, however, constrain their abilities to engage in serious research and development. International organizations such as the UN Industrial Development Organization (UNIDO) may help UNCED and developing countries with biotechnology. Since 1986, UNIDO has held the International Centre for Genetic Engineering and Biotechnology (ICGEB) as a special project. The ICGEB conducts research and development (R&D) on high priority topics in developing countries; trains scientific and technical personnel from member countries in advanced biotechnology techniques; helps member countries implement and operate ICGEB-affiliated R&D and training centers; and manages an information exchange for internationally affiliated centers. To maximize the potential of biotechnology to help Third World nations clear their environments of pollutants while safely exploiting natural resources, organizations should promote full use of available training resources; promote biosafety and the dissemination of

  6. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  7. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  8. White House Announcement on the Regulation of Biotechnology

    Science.gov (United States)

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  9. Biotechnology Commercialization Strategies: Risk and Return in interfirm cooperation.

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, e; Claassen, E.

    2014-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  10. Biotechnology Commercialization Strategies: Risk and Return in Interfirm Cooperation

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, H.P.G.; Claassen, E.

    2015-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  11. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  12. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O.

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  13. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  14. STATE OF THE ART BIOTECHNOLOGY AND BIOSAFETY IN KENYA

    African Journals Online (AJOL)

    considering national priorities for application of biotechnology for more than a decade ... while safeguarding human health and environmental integrity. .... NACBAA, 1991. National Advisory Committee on Biotechnology Advances and Their. Applications. Ministry of Research, Technical. Training & Technology, Nairobi, Kenya.

  15. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  16. Agricultural Biotechnology: Opportunities and Challenges for the Philippines

    OpenAIRE

    Padolina, William G.

    2001-01-01

    Developing countries, still heavily dependent on agriculture, must now harness biotechnology to modernize agricultural production and diversify product outputs. The Philippines was one of the first Asian countries to establish a biotechnology research and development program. However, not much progress in harnessing the tools of biotechnology has been achieved, especially in the area of varietal improvement. Although there was an early realization of the importance of biotechnology in nationa...

  17. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    Science.gov (United States)

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    production and the economy of this depressed areas. However, the problems bound to environmental protection must not be forgotten; priority should be given to monitor the risks of introduction of foreign species. Red biotechnologies potentially bring a vast domain of powerful tools and processes to achieve better human health, most notably improved diagnostics by molecular techniques, better targeting of pathogens and a better knowledge of their sensitivities to drugs to permit better treatment. Biosafety regulatory frameworks had been initiated in several countries, starting with primary biosafety law. However, disparate attitudes to the purpose of biosafety regulation (e.g., fostering informed decision-making versus 'giving the green-light for a flood of GMOs') currently prevent a needed consensus for sub-regional harmonisation. To date, most R&D funding has come from North America with some commercial interests from Asia, but African biotechnology workers expressed strong desire for (re-)engagement with interested parties from the European Union. Although in some of the visited countries there are very well qualified personnel in molecular biology and biosafety/regulation, the main message received is that human resources and capacity building in-house are still needed. This could be achieved through home-based courses and capacity-building including funds for post-degree research to motivate and retain trained staff. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Wheaten ferments spontaneous fermantation in biotechnological methods

    OpenAIRE

    KAKHRAMON SANOQULOVICH RAKHMONOV; ISABAEV ISMAIL BABADJANOVICH

    2016-01-01

    In article are shown results of research of biotechnological properties of wheaten leavens of spontaneous fermentation (in the example of pea-anisetree leaven) and their analysis. Also is established influence of the given type of leavens on the basic biopolymers of the flour, on the property of the pastry and quality of bread from wheaten flour.

  19. Opportunities for energy conservation through biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  20. Democratization of Science and Biotechnological Development ...

    African Journals Online (AJOL)

    The Mandela government that came into power in 1994 made the democratization of science and technology a priority in post-apartheid South Africa. Attendant ideas of Science Communication and Public Understanding of Biotechnology have hitherto become currency in South Africa's public sector drive towards the ...

  1. PUTTING PLANT BIOTECHNOLOGY TO WORK FOR FOOD ...

    African Journals Online (AJOL)

    Plant biotechnology is safely bringing valuable new benefits to farmers around the world, including those in developing countries where the needs for food, nutrition and overall development may be greatest. >From the current base of experience, it is reasonable to expect even greater benefits in the future, provided that ...

  2. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    Admin

    technologies. The use of biotechnological tools and “bioprospecting” will open new vistas in medicine, agriculture, silviculture, horticulture, environment and other important issues. This paper reviews ... E-mail: rankangani@yahoo.com. human needs ..... (iii) Particle mediated gene transfer, using gene gun. REFERENCES.

  3. Magnetic nano- and microparticles in biotechnology

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2009-01-01

    Roč. 63, - (2009), s. 497-505 ISSN 0366-6352 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic particles * smart material Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.791, year: 2009

  4. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  5. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  6. African Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    The African Journal of Biotechnology (AJB), a new broad-based journal, was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly ...

  7. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  8. Optimizing the acceleration of biotechnology innovation in ...

    African Journals Online (AJOL)

    Science biotechnology has been attributed a superior platform in Malaysian government plan for wealth creation in the 9th Malaysian plan and policy of Malaysia's science and technology in 21st century; it has been accepted and categorized as a complicated emerging issue to illustrate high prominence combined with ...

  9. The dynamic and ubiquitous nature of biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... plant breeding, and tissue culture and the medical sciences in the area of gene therapy, production of bioactive products for the quick diagnosis and treatment of diseases, this paper discusses the use of biotechnology in other areas of human endeavours like computer science, physics, mathematics,.

  10. Dendritic platforms for biomimicry and biotechnological applications.

    Science.gov (United States)

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  11. Modern trends in biochemistry and biotechnology

    International Nuclear Information System (INIS)

    1996-01-01

    On the conference 'Modern trends in biochemistry and biotechnology' several lectures concerned influence of ionizing radiation on the animal cells. Changes in the cell division caused by radiation induced DNA damage were discussed. Application of single cell gel electrophoresis assay (comet assay) in assessment of DNA damages was the subject of dedicated session

  12. How Japanese students reason about agricultural biotechnology.

    Science.gov (United States)

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  13. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  14. Biotechnology and species development in aquaculture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... potential to improve the quality and quantity of fish reared in aquaculture, although, not without significant contro ... benefits both producers and consumers of aquacultural products. Areas of biotechnology in .... become easier with the development of artificial breeding techniques, such as the use of pituitary ...

  15. Biotechnological production of limonene in microorganisms

    NARCIS (Netherlands)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently

  16. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Data analysis found that tones in this study are more positive, (which is used by journalist to report issue concerning biotechnology) compared with negative tones. (Table 6). Analysis using the chi-square method revealed a chi-square value of 8.245 which was significant at the. 0.05 level (P = 0.004).

  17. Biotechnology from Microbiology Perspective | Mendie | Nigerian ...

    African Journals Online (AJOL)

    Biotechnology has scaled many hurdles of advancement into a science that now covers all realms of human endeavours. It has been elevated into a pedestal of solving many of man's intractable problems of survival in this planet. Researches in biotech has now been intensified in medical, pharmaceutical, agricultural, ...

  18. Design for values in agricultural biotechnology

    NARCIS (Netherlands)

    Belt, van den Henk

    2015-01-01

    Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have

  19. The Brave New World of Biotechnology

    Science.gov (United States)

    Reese, Susan

    2004-01-01

    Is it the science that will save the world from starvation, or will it mean the end of the world as it is known? While some people fear genetically altered "Frankenfoods" and DNA experiments with pathogenic microorganisms that could result in worldwide epidemics, others view biotechnology as using biological organisms to make products that benefit…

  20. Developing legal regulatory frameworks for modern biotechnology ...

    African Journals Online (AJOL)

    This paper looks at attempts that have been made to develop legal regulatory frameworks for modern biotechnology. The discussion is limited to the regulation of Genetically Modified Organisms (GMO) technology by the two leading producers and exporters of GMOs in Africa: South Africa and Kenya. The international and ...

  1. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  2. Assessing the Impacts of Agricultural Biotechnologies: Canadian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The workshop on which this volume is based represents one of the first formal activities of the "Canada–Latin America Initiative on Biotechnology, the Environment and Sustainable Development" (CamBioTec). The decision by IDRC to host this workshop reflects a recognition of the need for careful, rigorous analysis of the ...

  3. Regulation of Biotechnology in Cameroon W

    African Journals Online (AJOL)

    Nations Environment Programme (UNEP), Nairobi, enabled Cameroon to be among the pioneers in the African Region in enacting a national legislation on Biosafety. Law No. 2003/ O06 of 21*'. April 2003 regulating Safety in Modern Biotechnology in Cameroon, translates the Cartagena. Protocol into national realities.

  4. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this Course will help them effectively fulfill their role as better researchers and teachers. The Course will consist of 2–3 lectures everyday followed by equal duration of ...

  5. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and minimize (or totally obviate) the need for chemical fertilizers and pesticides.

  6. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    1999-10-01

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia [es

  7. Awareness and knowledge on modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... modern biotechnology among the Malaysian public in the. Klang Valley region and to compare their awareness and knowledge level across several demographic variables. MATERIALS AND METHODS. The research data was collected by means of a face to face survey of adult (age 18 years old and ...

  8. Biotechnology: Advances and Prospects for Sustainability, in Nigeria ...

    African Journals Online (AJOL)

    Biotechnology is a multi-disciplinary branch of science whose applications are diverse and because science is dynamic, there is tremendous development in the use of biotechnology in the world. Advances of biotechnology are prominent in Nigeria, where government initiative, the private sector as well as that of NGOs are ...

  9. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  10. The centrality of laboratory services in the HIV treatment and prevention cascade: The need for effective linkages and referrals in resource-limited settings.

    Science.gov (United States)

    Alemnji, George; Fonjungo, Peter; Van Der Pol, Barbara; Peter, Trevor; Kantor, Rami; Nkengasong, John

    2014-05-01

    Strong laboratory services and systems are critical for delivering timely and quality health services that are vital to reduce patient attrition in the HIV treatment and prevention cascade. However, challenges exist in ensuring effective laboratory health systems strengthening and linkages. In particular, linkages and referrals between laboratory testing and other services need to be considered in the context of an integrated health system that includes prevention, treatment, and strategic information. Key components of laboratory health systems that are essential for effective linkages include an adequate workforce, appropriate point-of-care (POC) technology, available financing, supply chain management systems, and quality systems improvement, including accreditation. In this review, we highlight weaknesses of and gaps between laboratory testing and other program services. We propose a model for strengthening these systems to ensure effective linkages of laboratory services for improved access and retention in care of HIV/AIDS patients, particularly in low- and middle-income countries.

  11. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    Science.gov (United States)

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  12. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Marijan Jošt

    2003-12-01

    Full Text Available The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs, the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generation of GMOs provide small benefits except corporate profit and marginally improved grower returns. The TRIPS agreement has allowed worldwide patenting of genes and microorganisms, as well as genetically engineered organisms. Granting patents on life encourages biopiracy and the theft of genetic resources belonging to the local community. At the same time, the patented products are sold at relatively high prices to developing countries – the same countries from which the product originated.

  13. Current challenges and future perspectives of plant and agricultural biotechnology.

    Science.gov (United States)

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  15. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  16. White biotechnology: ready to partner and invest in.

    Science.gov (United States)

    Kircher, Manfred

    2006-01-01

    It needs three factors to build an industry: market demand, product vision and capital. White biotechnology already produces high volume products such as feed additive amino acids and specialty products like enzymes for enantioselective biocatalysis. It serves large and diverse markets in the nutrition, wellness, pharmaceutical, agricultural and chemical industry. The total volume adds up to $ 50 billion worldwide. In spite of its proven track record, white biotechnology so far did not attract as much capital as red and even green biotechnology. However, the latest finance indicators confirm the continuously growing attractiveness of investment opportunities in white biotechnology. This article discusses white biotechnology's position and potential in the finance market and success factors.

  17. Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    PI: Lily Y. Young

    2009-06-04

    , laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.

  18. The first GCC Marine Biotechnology Symposium: Emerging Opportunities and Future Perspectives.

    Science.gov (United States)

    Goddard, Stephen; Delghandi, Madjid; Dobretsov, Sergey; Al-Oufi, Hamed; Al-Habsi, Saoud; Burgess, J Grant

    2015-06-01

    With its diverse, living marine resources and rapidly growing educational and research infrastructure, the Sultanate of Oman is well-positioned to take advantage of the commercial opportunities presented by marine biotechnology. In recognition of potential development, an international symposium, Marine Biotechnology-Emerging Opportunities and Future Perspectives, was held in Muscat, November 12-13, 2013. Three keynote addresses were given, 23 oral presentations made, and a poster exhibition held. The final session reviewed national and regional issues, and the delegates agreed informally on a number of future actions. The potential for future development of marine biotechnology was recognized by all delegates, and following the symposium, they were surveyed for their views on how best to sustain and develop new activities. One hundred percent of respondents found the meeting useful and would support future symposia in the region. Fifty-one percent of Omani respondents recognized major organizational challenges and obstacles to the development of marine biotechnology compared with 23 % of overseas respondents. The need for greater collaboration between research institutions within the GCC region was recognized by 98 % of all respondents. The presentations and survey outcomes are reviewed in this paper.

  19. New bioproduction systems: from molecular circuits to novel reactor concepts in cell-free biotechnology.

    Science.gov (United States)

    Rupp, Steffen

    2013-01-01

    : The last decades witnessed a strong growth in several areas of biotechnology, especially in fields related to health, as well as in industrial biotechnology. Advances in molecular engineering now enable biotechnologists to design more efficient pathways in order to convert a larger spectrum of renewable resources into industrially used biofuels and chemicals as well as into new pharmaceuticals and therapeutic proteins. In addition material sciences advanced significantly making it more and more possible to integrate biology and engineering. One of the key questions currently is how to develop new ways of engineering biological systems to cope with the complexity and limitations given by the cell. The options to integrate biology with classical engineering advanced cell free technologies in the recent years significantly. Cell free protein production using cellular extracts is now a well-established universal technology for production of proteins derived from many organisms even at the milligram scale. Among other applications it has the potential to supply the demand for a multitude of enzymes and enzyme variants facilitating in vitro metabolic engineering. This review will briefly address the recent achievements and limitations of cell free conversions. Especially, the requirements for reactor systems in cell free biotechnology, a currently underdeveloped field, are reviewed and some perspectives are given on how material sciences and biotechnology might be able to advance these new developments in the future.

  20. [Application of molecular biotechnology in Pharmacognosy].

    Science.gov (United States)

    Tong, Yuan-Yuan; Liu, Yang; Wang, Jun-Wen; Yang, Ce; Huang, Man-Ting; Li, Hai-Yan

    2016-02-01

    Using the methods of informetrics analysis, articles retrieved from the database of CNKI were statistically analyzed on development course and knowledge system, so as to reflect the overall situation of pharmacognostical studies by molecular biotechnology. The result shows that the research on pharmacognosy by molecular biotechnology is an inter-disciplinary research area, the major research fields can be divided into 7 categories, including molecular identification of Chinese medicinal materials, molecular systematics and genetic diversity analysis of Chinese medicinal materials, biosynthesis and bioregulation of secondary metabolites in medicinal plants, molecular mechanism and genetic basis of Dao-di Herbs, and tissue culture and molecular breeding in medicinal plants. The research on pharmacognosy by molecular have achieved remarkable progress in recent 20 years, and have broad development prospects. Copyright© by the Chinese Pharmaceutical Association.

  1. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  2. Forest biotechnology advances to support global bioeconomy

    OpenAIRE

    Antoine Harfouche; Sacha Khoury; Francesco Fabbrini; Giuseppe Scarascia Mugnozza

    2015-01-01

    The world is shifting to an innovation economy and forest biotechnology can play a major role in the bio-economy by providing farmers, producers, and consumers with tools that can better advance this transition. First-generation or conventional biofuels are primarily produced from food crops and are therefore limited in their ability to meet challenges for petroleum-product substitution and climate change mitigation, and to overcome the food-versus-fuel dilemma. In the longer term, forest lig...

  3. Biotechnological potential of marine natural products

    OpenAIRE

    Fusetani, Nobuhiro

    2010-01-01

    The number of marine natural products (MNPs) that have been applied to biotechnological industry is very limited, although nearly 20000 new compounds were discovered from marine organisms since the birth of MNPs in the early 1970s. However, it is apparent that they have a significant potential as pharmaceuticals, cosmetics, nutraceuticals, research tools, and others. This article focuses on selective antitumor metabolites isolated from marine sponges and tunicates, and their modes of action, ...

  4. UK: disputing boundaries of biotechnology regulation

    OpenAIRE

    Les Levidow; Susan Carr

    1996-01-01

    UK biotechnology regulation has developed ‘precautionary controls’ for GMO releases. Stringent legislation was drafted and eventually implemented by the Department of Environment (DoE). In parallel, the DoE established a broadly-based advisory committee, which included ecologists and an implicit public-interest representation. The committee was assigned the task to advise on the release of all “novel organisms” — a term which implies an analogy between GMOs and non-indigenous organisms. Copyr...

  5. Biotechnological production of limonene in microorganisms

    OpenAIRE

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial producti...

  6. Net Resource Assessment (NetRA): A Collaborative Effort Between USGS Science and Decisions Center, the Science Impact Laboratory for Policy and Economics (University of New Mexico) and Sandia National Laboratory

    Science.gov (United States)

    Brookshire, D.; Bernknopf, R.; Adhikari, D. R.; Babis, C.; Broadbent, C. D.; Tidwell, V. C.

    2015-12-01

    Department of Interior Secretarial Order No. 3330, "… establishes a Department-wide mitigation strategy that will ensure consistency and efficiency in the review and permitting of infrastructure development projects and in conserving our Nation's valuable natural and cultural resources." The USGS Organic Act authorizes resource assessments to estimate the in-place potential capacity of energy, mineral, hydrologic, and biologic resources (20 Stat. 394; 43 U.S.C. 31) and later amendments. These two statements form the basis for the development of the Net Resources Assessment (NetRA) framework. NetRA is a policy-relevant, interdisciplinary approach to assessing natural resources availability in examining the regional-scale interrelationships between energy or mineral extraction and impact on ecosystem services. The systems dynamics approach (SD) emphasizes the interdependence of natural resource development and its effect on collocated ecosystem services over space and time. The example of the NetRA that will be presented focuses on tradeoffs associated with land management decisions in the West. The Piceance Basin, CO example that will be discussed involves development of a continuous gas deposit and its impact on Mule Deer and water quality. The SD is the hub for generating a range of simulated landscape outcomes. The probabilistic model provides an economic indicator as to the expected net societal benefit of economic development and biophysical indicators for ecosystem services affected in the region. Both natural and economic indicators are associated with each outcome via a tradeoff analysis the can be used for risk analysis. The NetRA also retains map attributes for before and after map comparisons to specific alternatives for an existing baseline. The model has three stages: map-based scenario development with slider bars (choice variables), side-by-side extraction and ecosystem services sub-models, and integrated multiple resource trade-off outcomes.

  7. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  8. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. New biotechnological procedures in swine reproduction

    Directory of Open Access Journals (Sweden)

    Petrujkić Tihomir

    2002-01-01

    Full Text Available New biotechnological procedures and the use of hormones in swine breeding are aimed at increasing the number of piglets in the litter. In small herds and groups, selected sows with 16 mammary complexes (tits can yield up to 32 piglets, or porkers, per year per sow. In order to achieve such reproduction results, special, individual stalls for sow deliveries are used, in addition to biotechnological methods, with a warm core and floor heating, phased diet and clean facilities. The ovulation value in swine is determined by their genetic and paragenetic effects, and it is often provoked and increased with injections and preparations for superovulation. However, the results vary, since any administration of hormone injecions can reduce the reproductive cycle, shorten the duration of estrus, or disrupt the work of ovaries and create cystic follicles. The use of follicle-stimulating hormones in quantities up to 1000 IU per animal for the induction and synchronization of estrus has become customary for sows and gilts, as well as the use of prostaglandins, the use of GnRH for increasing ovulation in swine and increasing the number of follicles >4 mm in diameter in the implementation of new biotechnologies in swine breeding, increases the number of ovulations and fertility in swine. In this way, reproduction is raised to the highest possible level, and artificial insemination of sows has 12 separate rules which enable better and more successful artificial insemination of sows.

  10. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  11. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  12. Safety aspects in biotechnology. Classifications and safety precautions for handling of biological agents.

    Science.gov (United States)

    Frommer, W; Krämer, P

    1990-07-01

    The term "biotechnology" is today used much more widely than 10 years ago. According to the modern definition, biotechnology represents the "conveyor belt" which brings advances in the fields of molecular biology, cell biology, molecular genetics, microbiology, biochemistry and process engineering, etc., into the areas of application. It is attempted to indicate the development of safety standards concerning biotechnology. This development is in a state of flux, and the finding that the risks in handling r-DNA organisms are not larger than those arising when handling the known pathogens is becoming more accepted. Accordingly, these r-DNA organisms can also be classified into the known risk groups I-IV and handled under the corresponding safety conditions according to this classification: In the laboratory under the laboratory safety measures L1-L4 described in the BMFT-Guidelines or guidelines for occupational health and hygiene (UVV Biotechnologie) and on a process scale under the process safety measures described in the OECD report. The discussion of aspects on waste disposal, education/training and public perception in the field of biological safety completes the report.

  13. Development of health biotechnology in developing countries: can private-sector players be the prime movers?

    Science.gov (United States)

    Abuduxike, Gulifeiya; Aljunid, Syed Mohamed

    2012-01-01

    Health biotechnology has rapidly become vital in helping healthcare systems meet the needs of the poor in developing countries. This key industry also generates revenue and creates employment opportunities in these countries. To successfully develop biotechnology industries in developing nations, it is critical to understand and improve the system of health innovation, as well as the role of each innovative sector and the linkages between the sectors. Countries' science and technology capacities can be strengthened only if there are non-linear linkages and strong interrelations among players throughout the innovation process; these relationships generate and transfer knowledge related to commercialization of the innovative health products. The private sector is one of the main actors in healthcare innovation, contributing significantly to the development of health biotechnology via knowledge, expertise, resources and relationships to translate basic research and development into new commercial products and innovative processes. The role of the private sector has been increasingly recognized and emphasized by governments, agencies and international organizations. Many partnerships between the public and private sector have been established to leverage the potential of the private sector to produce more affordable healthcare products. Several developing countries that have been actively involved in health biotechnology are becoming the main players in this industry. The aim of this paper is to discuss the role of the private sector in health biotechnology development and to study its impact on health and economic growth through case studies in South Korea, India and Brazil. The paper also discussed the approaches by which the private sector can improve the health and economic status of the poor. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep.

    Science.gov (United States)

    García-Sancho, Miguel

    2015-09-01

    This paper addresses the 1996 cloning of Dolly the sheep, locating it within a long-standing tradition of animal breeding research in Edinburgh. Far from being an end in itself, the cell-nuclear transfer experiment from which Dolly was born should be seen as a step in an investigative pathway that sought the production of medically relevant transgenic animals. By historicising Dolly, I illustrate how the birth of this sheep captures a dramatic redefinition of the life sciences, when in the 1970s and 1980s the rise of neo-liberal governments and the emergence of the biotechnology market pushed research institutions to show tangible applications of their work. Through this broader interpretative framework, the Dolly story emerges as a case study of the deep transformations of agricultural experimentation during the last third of the twentieth century. The reorganisation of laboratory practice, human resources and institutional settings required by the production of transgenic animals had unanticipated consequences. One of these unanticipated effects was that the boundaries between animal and human health became blurred. As a result of this, new professional spaces emerged and the identity of Dolly the sheep was reconfigured, from an instrument for livestock improvement in the farm to a more universal symbol of the new cloning age.

  15. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    Science.gov (United States)

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  16. The role of biotechnology in combating climate change

    DEFF Research Database (Denmark)

    Aerni, Philipp; Gagalac, Florabelle; Scholderer, Joachim

    2016-01-01

    Biotechnology is a platform technology that may significantly contribute to climate change mitigation and adaptation. Yet, biotechnology is hardly ever referred to as “clean technology”. This paper investigates why biotechnology tends to be ignored in this context. A global stakeholder survey...... on biotechnology and climate change was conducted with 55 representatives of 44 institutions. The results of a perception pattern analysis show that the majority of stakeholder representatives had a neutral or positive attitude towards the use of biotechnology and regarded its potential to address climate change...... problems as significant. The survey results further reveal a significant relationship between a representative’s institutional and disciplinary background and his or her attitude. The respective background appears to determine to a considerable extent whether biotechnology is framed as a risk...

  17. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  18. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  19. Ex situ conservation of plant germplasm using biotechnology.

    Science.gov (United States)

    Villalobos, V M; Engelmann, F

    1995-07-01

    Conservation of plant genetic resources attracts more and more public interest as the only way to guarantee adequate food supplies for future human generations. However, the conservation and subsequent use of such resources are complicated by cultural, economical, technical and political issues. Over the last 30 years, there have been significant increases in the number of plant collections and in accessions in ex situ storage centres throughout the World. The present review is of these ex situ collections and the contribution biotechnology has made and can make to conservation of plant germplasm. The applications and limitations of the new, molecular approaches to germplasm characterization are discussed. In vitro slow growth is used routinely for conserving germplasm of plants such as banana, plantain, cassava and potato. More recently, cryopreservation procedures have become more accessible for long-term storage. New cryopreservation techniques, such as encapsulation-dehydration, vitrification and desiccation, lengthen the list of plant species that can not only tolerate low temperatures but also give normal growth on recovery. Extensive research is still needed if these techniques are to be fully exploited.

  20. Introduction and session summaries for the proceedings of the twelfth symposium on biotechnology fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E. (Oak Ridge National Lab., TN (USA)); Wyman, C.E. (Solar Energy Research Inst., Golden, CO (USA))

    1990-01-01

    This Twelfth Symposium on Biotechnology for Fuels and Chemicals continues to provide an annual forum for researchers from industry, universities, and government laboratories to exchange information on recent developments in emerging bioprocessing technologies. As in the past, innovative processing concepts are stressed that are in the early stages of development. The meeting began with a session on Thermal, Chemical, and Biological Processing, followed by two sessions on Applied Biological Research. Next, topics in Bioengineering Research were presented, and a special session on Biotechnology, Bioengineering, and the Solution of Environmental Problems concluded the Twelfth Symposium. Both presentations and posters provided information exchange among meeting participants, and several discussion groups were organized to consider special topics of interest to the meeting participants. This paper presents a brief description of the discussions.

  1. The potential of using biotechnology to improve cassava: a review

    OpenAIRE

    Chavarriaga-Aguirre, Paul; Brand, Alejandro; Medina, Adriana; Pr?as, M?nica; Escobar, Roosevelt; Martinez, Juan; D?az, Paula; L?pez, Camilo; Roca, Willy M; Tohme, Joe

    2016-01-01

    The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into ...

  2. Production and employment impacts of new technologies: analysis for biotechnology

    OpenAIRE

    Wydra, Sven

    2009-01-01

    Biotechnology is often regarded as a key technology with high potential for far-reaching social, environmental and economic impacts. Among others, the development and diffusion of biotechnology may have considerable economic effects on production and employment. This paper analyzes the economic impacts of different diffusion paths of biotechnology in some major application fields. Bottom-up technology information from literature, expert judgements and explicit scenario assumptions for variou...

  3. The role of plant biotechnology methods in sustainable agriculture

    OpenAIRE

    Koleva Gudeva, Liljana; Trajkova, Fidanka

    2016-01-01

    Plant biotechnology is set of different scientific approaches and methods that are utilized to improve and modify plants for human and environmental benefit. Plant biotechnology can be used to meet the increasing need for food by improving yields, improving the nutritional quality of crops and recuing the impact on the environment. Plant biotechnology can assist to creation of varieties resistant to frost, droughts and floods, pests and disease, and other abiotic and biotic stresses. Similarl...

  4. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  5. Forest service access to and use of the Germplasm Information Network (GRIN-Global) database and security backup at the National Laboratory for Genetic Resource Preservation

    Science.gov (United States)

    B. Loth; R.P. Karrfalt

    2017-01-01

    The U.S. Department of Agriculture Forest Service (USDA FS) National Seed Laboratory (NSL) began long term seed storage for genetic conservation, in 2005, for USDA FS units and cooperators. This program requires secure storage of both seeds and the data documenting the identification of the seeds. The Agricultural Research Service (ARS) has provided both of these...

  6. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  7. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  8. Biotechnological innovation impacts, social and ethical aspects and public acceptability; Sicurezza, implicazioni etico-sociali e percezione pubblica delle biotecnologie

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1997-11-01

    Biotechnology is a highly distinctive area of scientific activity and its applications can strongly influence human life. Biotechnological innovations impact on sanitary, environmental, social, ethical and economic aspects and it is particularly important a greater public understanding of biotechnology issues in the view of increasing its acceptability. Knowledge and acceptance do not go always in the same direction, as the last is influenced by various complex factors, but without a knowledgeable public there can be no effective democratic agreement. So it appears important that scientific community and industry can promote and diffuse more knowledge among citizens and consumers, taking into account also of social and ethical issues raised by public and public interest groups. In this report bio safety of biotechnology applications and social and ethical issues are analyzed. They receive much attention in the discussion in the biotechnology arena (scientists, industry, institutions and the public). In particular health and environmental risks, gene therapy, transgenic animals, patent issues and genetic resources access, consumers rights are considered. Since the media are central to the dissemination of information and views about science, is has been evidenced their role, in addition to a short analysis of public perception and communication strategies.

  9. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  10. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Daugsch, Andreas; Pastores, Glaucia . E-daugsch@fea.unicamp.br

    2005-01-01

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  11. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Blanco Picado, Patricia; Valdez Melara, Marta

    2015-01-01

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee [es

  12. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  13. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

    Science.gov (United States)

    Sun, Zhihong; Harris, Hugh M. B.; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C.; Kagawa, Todd F.; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C.; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P.; Paul Ross, R.; Yang, Ruifu; Briner, Alexandra E.; Felis, Giovanna E.; de Vos, Willem M.; Barrangou, Rodolphe; Klaenhammer, Todd R.; Caufield, Page W.; Cui, Yujun; Zhang, Heping; O'Toole, Paul W.

    2015-01-01

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. PMID:26415554

  14. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  15. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  16. The International Atomic Energy Agency's Laboratories Seibersdorf and Vienna. Meeting the challenges of research and international co-operation in the application of nuclear techniques

    International Nuclear Information System (INIS)

    Krippl, E.

    1999-08-01

    The International Atomic Energy Agency therefore maintains a unique, multidisciplinary, analytical, research and training centre: the IAEA Laboratories, located at Seibersdorf near Vienna and at the Agency's Headquarters in the Vienna International Centre. They are organized in three branches: (i) the FAO/IAEA Agriculture and Biotechnology Laboratory: Soil Science, Plant Breeding, Animal Production and Health, Entomology, Agrochemicals; (ii) the Physics, Chemistry and Instrumentation Laboratory: Chemistry, Instrumentation, Dosimetry, Isotope Hydrology; (iii) the Safeguards Analytical Laboratory: Isotopic Analysis, Chemical Analysis, Clean Laboratory. 'The Mission of the IAEA Laboratories is to contribute to the implementation of the Agency's programmes in food and agriculture, human health, physical and chemical sciences, water resources, industry, environment, radiation protection and safeguards verification'. Together with a General Services and Safety Section, which provides logistics, information, industrial safety and maintenance services and runs a mechanical workshop, the three groups form the 'Seibersdorf Laboratories' and are part of the IAEA Department of Nuclear Sciences and Applications. The Laboratories contribute an important share to projects fostering peaceful applications of radiation and isotopes and radiation protection, and play a significant part in the nuclear verification mechanism. All activities are therefore planned and implemented in close co-operation with relevant divisions and departments of the IAEA. In specific sectors, the Laboratories also operate in conjunction with other organizations in the UN system, such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO) and the World Meteorological Organization (WMO), and with networks of national laboratories in Member States

  17. [Tips to activate your laboratory technologists].

    Science.gov (United States)

    Kimura, Satoshi

    2009-01-01

    For about two decades, Japanese clinical laboratories have been suffering depression because of the government policy to reduce medical expenditure. Here are my proposals to re-vitalize laboratory science in Japan. (1) Do not keep laboratory technologists stay inside laboratories. Take them out to bedside to show what is going on. Show your technologists' face to medical professionals to experience clinical demand. (2) Invite doctors who cared severely ill patients to your laboratory. Every month my laboratory holds case study meetings using electronic medical records (EMR). Doctors and residents present how laboratory data saved the patient's life. Attending the meeting, laboratory technologists realize how they contributed to improve the patients' destiny. This "case study meeting" with EMR stimulates laboratory technologists to understand they are really one of major players in dramatic story of clinical medicine. (3) Establish a sophisticated industry of biotechnology. Populations of senior citizens are growing in all the developed nations in the world. The healthcare demand is very likely to increase. Because Japan is experiencing "aging society" most drastically, the Japanese could get the first major chance to develop new technologies to improve senior citizens' quality of life. The more government reduce medical expenditure, the less healthcare industry grows up. Without major biotechnology industry, the Japanese have to import expensive technologies from overseas. In conclusion, Japanese society of laboratory medicine, together with related industries should get united to appeal how they can contribute to the nation, in order to obtain appropriate fee, as an investment for future people's health.

  18. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  19. Siderophilic Cyanobacteria for the Development of Extraterrestrial Photoautotrophic Biotechnologies

    Science.gov (United States)

    Brown, I. I.; McKay, D. S.

    2010-01-01

    In-situ production of consumables (mainly oxygen) using local resources (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human exploration and settlement of the solar system, starting with the Moon. With few exceptions, nearly all technologies developed to date have employed an approach based on inorganic chemistry. None of these technologies include concepts for integrating the ISRU system with a bioregenerative life support system and a food production system. Therefore, a new concept based on the cultivation of cyanobacteria (CB) in semi-closed biogeoreactor, linking ISRU, a biological life support system, and food production, has been proposed. The key feature of the biogeoreactor is to use lithotrophic CB to extract many needed elements such as Fe directly from the dissolved regolith and direct them to any technological loop at an extraterrestrial outpost. Our studies showed that siderophilic (Fe-loving) CB are capable to corrode lunar regolith stimulants because they secrete chelating agents and can tolerate [Fe] up to 1 mM. However, lunar and Martian environments are very hostile (very high UV and gamma-radiation, extreme temperatures, deficit of water). Thus, the selection of CB species with high potential for extraterrestrial biotechnologies that may be utilized in 15 years must be sponsored by NASA as soon as possible. The study of the genomes of candidate CB species and the metagenomes of the terrestrial environments which they inhabit is critical to make this decision. Here we provide preliminary results about peculiarities of the genomes of siderophilic CB revealed by analyzing the genome of siderophilic cyanobacterium JSC-1 and the metagenome of iron depositing hot spring (IDHS) Chocolate Pots (Yellowstone National Park, Wyoming, USA). It has been found that IDHS are richer with ferrous iron than the majority of hot springs around the world. Fe2+ is known to increase the magnitude of oxidative stress in prokaryotes

  20. Progress and biotechnological prospects in fish transgenesis.

    Science.gov (United States)

    Tonelli, Fernanda M P; Lacerda, Samyra M S N; Tonelli, Flávia C P; Costa, Guilherme M J; de França, Luiz Renato; Resende, Rodrigo R

    2017-11-01

    The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements. Copyright © 2017. Published by Elsevier Inc.

  1. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  3. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  4. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Scientific underpinnings of biotechnology regulatory frameworks.

    Science.gov (United States)

    Gleim, Savannah; Smyth, Stuart J

    2018-05-25

    Part of what is presently missing at domestic regulatory levels (and that is important at the international level as well) is a detailed understanding of what the rules of, and for, regulation should be, who the actors, stakeholders and major decision makers are and finally, how to get agreement about the rules. Greater insights into the system of rules that underpin regulatory frameworks for agri-food and biotechnology products in genetically modified (GM) crop- adopting nations will provide value by clarifying the evidence used to commercialize these technologies. This article examines the public documents available from Canada, the United States, the European Union and the Organisation for Economic Cooperation and Development regarding the development of regulatory risk assessment frameworks for products of biotechnology to determine what science grounds these frameworks. The documentation used to provide the initial structure to the existing regulatory frameworks identifies the linkages, connections and relationships that exist between science, risk assessment and regulatory policy. The relationship between risk and regulation has never been more critical to the commercialization of innovative agricultural products. Documenting the role of science-based risk assessment in regulations and how this has changed over the 20 years of experience in regulating GM crops will identify changes in the risk/regulation relationship. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  6. Biotechnological potential of sponge-associated bacteria.

    Science.gov (United States)

    Santos-Gandelman, Juliana F; Giambiagi-deMarval, Marcia; Oelemann, Walter M R; Laport, Marinella S

    2014-01-01

    As sessile and filter-feeding metazoans, marine sponges represent an ecologically important and highly diverse component of marine benthic communities throughout the world. It has been suggested that marine sponges are hosts to many microorganisms which can constitute up to 40-60% of its biomass. Recently, sponges have attracted a high interest from scientific community because two important factors. First there is the fact that sponges have a wide range of associated bacteria; and, second, they are a rich source of bioactive substances. Since 1950, a number of bioactive substances with various pharmacological functions have been isolated from marine sponges. However, many of these substances were subsequently shown to be actually synthesized by sponge-associated bacteria. Bacteria associated with marine sponges constitute an interesting source of novel bioactive compounds with biotechnological potential such as antimicrobial substances, enzymes and surfactants. In addition, these bacteria may be biofilm forming and can act as bioindicators in bioremediation processes of environmental pollution caused by oil and heavy metals. This review focuses on the biotechnological applications of these microorganisms.

  7. The Catharanthus alkaloids: pharmacognosy and biotechnology.

    Science.gov (United States)

    van Der Heijden, Robert; Jacobs, Denise I; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert

    2004-03-01

    The Catharanthus (or Vinca) alkaloids comprise a group of about 130 terpenoid indole alkaloids. Vinblastine is now marketed for more than 40 years as an anticancer drug and became a true lead compound for drug development. Due to the pharmaceutical importance and the low content in the plant of vinblastine and the related alkaloid vincristine, Catharanthus roseus became one of the best-studied medicinal plants. Consequently it developed as a model system for biotechnological studies on plant secondary metabolism. The aim of this review is to acquaint a broader audience with the recent progress in this research and with its exciting perspectives. The pharmacognostical aspects of the Catharanthus alkaloids cover botanical (including some historical), phytochemical and analytical data. An up-to-date view on the biosynthesis of the alkaloids is given. The pharmacological aspects of these alkaloids and their semi-synthetic derivatives are only discussed briefly. The biotechnological part focuses on alternative production systems for these alkaloids, for example by in vitro culture of C. roseus cells. Subsequently it will be discussed to what extent the alkaloid biosynthetic pathway can be manipulated genetically ("metabolic engineering"), aiming at higher production levels of the alkaloids. Another approach is to produce the alkaloids (or their precursors) in other organisms such as yeast. Despite the availability of only a limited number of biosynthetic genes, the research on C. roseus has already led to a broad scientific spin-off. It is clear that many interesting results can be expected when more genes become available.

  8. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Directory of Open Access Journals (Sweden)

    DARNE GERMANO DE ALMEIDA

    2016-10-01

    Full Text Available The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulphate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernise petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  9. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    Science.gov (United States)

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  10. Effective Active Ingredients Obtained through Biotechnology

    Directory of Open Access Journals (Sweden)

    Claudia Zappelli

    2016-11-01

    Full Text Available The history of cosmetics develops in parallel to the history of man, associated with fishing, hunting, and superstition in the beginning, and later with medicine and pharmacy. Over the ages, together with human progress, cosmetics have changed continuously and nowadays the cosmetic market is global and highly competitive, where terms such as quality, efficacy and safety are essential. Consumers’ demands are extremely sophisticated, and thus scientific research and product development have become vital to meet them. Moreover, consumers are aware about environmental and sustainability issues, and thus not harming the environment represents a key consideration when developing a new cosmetic ingredient. The latest tendencies of cosmetics are based on advanced research into how to interfere with skin cell aging: research includes the use of biotechnology-derived ingredients and the analysis of their effects on the biology of the cells, in terms of gene regulation, protein expression and enzymatic activity measures. In this review, we will provide some examples of cosmetic active ingredients developed through biotechnological systems, whose activity on the skin has been scientifically proved through in vitro and clinical studies.

  11. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  12. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  13. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  14. Biotechnology policies and performance in central and eastern Europe

    NARCIS (Netherlands)

    Senker, J.; Enzing, C.; Reiss, T.

    2008-01-01

    This paper assesses how far ten Central and Eastern European (CEE) countries have 'caught up' in biotechnology on the basis of information about the policies and funding for biotechnology research and commercialisation from 2002-2005 and on the research and commercialisation performance of these

  15. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    Science.gov (United States)

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  16. Role of public sector in developing agricultural biotechnology in Iran ...

    African Journals Online (AJOL)

    Agricultural experts in the field of biotechnology in Iran were surveyed in order to explore their perception about factors influencing the participation of public sector in developing agricultural biotechnology in Iran. Based on the results of the study, policy making, marketing, infrastructural, educational and research factors ...

  17. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  18. Climate change and food security: The role of biotechnology | Quaye ...

    African Journals Online (AJOL)

    The task of eradicating extreme poverty and hunger by 2015, as per Millennium Development Goals, will require both regional and global research efforts and concrete actions among which biotechnology adoption plays a key role. Advances in biotechnology can lead to cutting-edge technologies in agriculture. However ...

  19. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  20. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…