WorldWideScience

Sample records for biotechnology genetic engineering

  1. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  2. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  3. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Science.gov (United States)

    2013-02-27

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by the Syngenta Biotechnology... evaluation of data submitted by Syngenta Biotechnology, Inc., in its petition for a determination of...

  4. Perception of risks and benefits of in vitro fertilization, genetic engineering and biotechnology.

    Science.gov (United States)

    Macer, D R

    1994-01-01

    The use of new biotechnology in medicine has become an everyday experience, but many people still express concern about biotechnology. Concerns are evoked particularly by the phrases genetic engineering and in vitro fertilization (IVF), and these concerns persist despite more than a decade of their use in medicine. Mailed nationwide opinion surveys on attitudes to biotechnology were conducted in Japan, among samples of the public (N = 551), high school biology teachers (N = 228), scientists (N = 555) and nurses (N = 301). People do see more benefits coming from science than harm when balanced against the risks. There were especially mixed perceptions of benefit and risk about IVF and genetic engineering, and a relatively high degree of worry compared to other developments of science and technology. A discussion of assisted reproductive technologies and surrogacy in Japan is also made. The opinions of people in Japan were compared to the results of previous surveys conducted in Japan, and international surveys conducted in Australia, China, Europe, New Zealand, U.K. and U.S.A. Japanese have a very high awareness of biotechnology, 97% saying that they had heard of the word. They also have a high level of awareness of IVF and genetic engineering. Genetic engineering was said to be a worthwhile research area for Japan by 76%, while 58% perceived research on IVF as being worthwhile, however 61% were worried about research on IVF or genetic engineering. Japanese expressed more concern about IVF and genetic engineering than New Zealanders. The major reason cited for rejection of genetic manipulation research in Japan and New Zealand was that it was seen as interfering with nature, playing God or as unethical. The emotions concerning these technologies are complex, and we should avoid using simplistic public opinion data as measures of public perceptions. The level of concern expressed by scientists and teachers in Japan suggest that public education "technology promotion

  5. Biotechnology, Genetic Engineering and Society. Monograph Series: III.

    Science.gov (United States)

    Kieffer, George H.

    New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…

  6. Genetic engineering in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bedate, C.A.; Morales, J.C.; Lopez, E.H.

    1981-09-01

    The objective of this book is to encourage the use of genetic engineering for economic development. The report covers: (1) Precedents of genetic engineering; (2) a brief description of the technology, including the transfer of DNA in bacteria (vectors, E. coli and B. subtilis hosts, stages, and technical problems), practical examples of techniques used and their products (interferon; growth hormone; insulin; treatment of blood cells, Talasemia, and Lesch-Nyhan syndrome; and more nutritious soya), transfer to higher organisms, and cellular fusion; (3) biological risks and precautions; (4) possible applications (production of hydrogen, hydrocarbons, alcohol, chemicals, enzymes, peptides, viral antigens, monoclonal antibodies, genes, proteins, and insecticides; metal extraction; nitrogen fixation; biodegradation; and new varieties of plants and animals; and (5) international activities.

  7. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  8. 75 FR 20560 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Science.gov (United States)

    2010-04-20

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by Syngenta Biotechnology, Inc... Biotechnology, Inc., in its petition for a determination of nonregulated status, our analysis of other...

  9. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  10. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  11. University Students' Knowledge and Attitude about Genetic Engineering

    Science.gov (United States)

    Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun

    2007-01-01

    Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…

  12. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  13. Recent Advances in Genetic Engineering - A Review

    OpenAIRE

    Sobiah Rauf; Zubair Anwar; Hussain Mustatab Wahedi; Jabar Zaman Khan Khattak; Talal Jamil

    2012-01-01

    Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial imp...

  14. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  15. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available Molecular Profiling Techniques as Tools to Detect Potential Unintended Effects in Genetically Engineered Maize Eugenia Barros Introduction In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants... systems. In a recent paper published in Plant Biotechnology Journal,4 we compared two transgenic white maize lines with the non-transgenic counterpart to investigate two possible sources of variation: genetic engineering and environmental variation...

  16. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting Biotechnology Regulatory Policy Processes in Southeast Asia. Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and ...

  17. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  19. Biotechnology: challenges and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, A.

    1985-04-01

    Rapidly occurring technological breakthroughs in the wake of numerous discoveries in different fields, such as biochemistry, genetic engineering as well as cellular and molecular biology as described in this paper have a variety of industrial applications, and forcasts covering these and various other fields have been made. The emerging bio-industry, covering diverse industries, such as chemical, food, pharmaceutical, etc., as well as the domains of health, environmental protection and abatement of pollution present challenging prospects. Several biotechnology processes relating to bioenergy, fermentation, waste transformation, vaccines, etc. are of particular interest to the developing countries. The 'functioning systems' resulting from the breakthrouth in genetic engineering, entailing extraordinary refinement of analytical techniques and technological progress, pose the challenging task of harnessing them to the advantage of mankind. Providing effective legal protection, conducive to the development of biotechnologies-their innovative process and technological change-is a matter of serious concern, involving practical and economical considerations. Several other issues and questions, such as risk prevention and management of potential dangers and hazards in genetic recombination operation by way of safety regulations and necessary guidelines, questions relating to the clinical trials of the interferons-the wonder drug-as well as questions of professional ethics are raised by biotechnologies. Industry-funded research in biotechnology, where scientific and commercial imperatives are interlocked, has for instance, its repercussions on the traditional thrust of university system, specially the sanctity of autonomy for basic research.

  20. [Research progress of genetic engineering on medicinal plants].

    Science.gov (United States)

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  1. Reproductive cloning, genetic engineering and the autonomy of the child: the moral agent and the open future.

    Science.gov (United States)

    Mameli, M

    2007-02-01

    Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans.

  2. German politics of genetic engineering and its deconstruction.

    Science.gov (United States)

    Gottweis, H

    1995-05-01

    Policy-making, as exemplified by biotechnology policy, can be understood as an attempt to manage a field of discursivity, to construct regularity in a dispersed multitude of combinable elements. Following this perspective of politics as a textual process, the paper interprets the politicization of genetic engineering in Germany as a defence of the political as a regime of heterogeneity, as a field of 'dissensus' rather than 'consensus', and a rejection of the idea that the framing of technological transformation is an autonomous process. From its beginning in the early 1970s, genetic engineering was symbolically entrenched as a key technology of the future, and as an integral element of the German politics of modernization. Attempts by new social movements and the Green Party to displace the egalitarian imaginary of democratic discourse into the politics of genetic engineering were construed by the political élites as an attack on the political order of post-World War II Germany. The 1990 Genetic Engineering Law attempted a closure of this controversy. But it is precisely the homogenizing idiom of this 'settlement' which continues to nourish the social movements and their radical challenge to the definitions and codings of the politics of genetic engineering.

  3. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  4. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  5. Comparing Artificial Intelligence and Genetic Engineering: Commercialization Lessons

    OpenAIRE

    Dickson, Edward M.

    1984-01-01

    Artificial Intelligence is rapidly leaving its academic home and moving into the marketplace. There are few precedents for an arcane academic subject becoming commercialized so rapidly. But, genetic engineering, which recently burst forth from academia to become the foundation for the hot new biotechnology industry, provides useful insights into the rites of passage awaiting the commercialization of artificial intelligence. This article examines the structural similarities and dissimilarities...

  6. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  7. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    Science.gov (United States)

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  9. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  10. Genetic engineering of crops: a ray of hope for enhanced food security.

    Science.gov (United States)

    Gill, Sarvajeet Singh; Gill, Ritu; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    Crop improvement has been a basic and essential chase since organized cultivation of crops began thousands of years ago. Abiotic stresses as a whole are regarded as the crucial factors restricting the plant species to reach their full genetic potential to deliver desired productivity. The changing global climatic conditions are making them worse and pointing toward food insecurity. Agriculture biotechnology or genetic engineering has allowed us to look into and understand the complex nature of abiotic stresses and measures to improve the crop productivity under adverse conditions. Various candidate genes have been identified and transformed in model plants as well as agriculturally important crop plants to develop abiotic stress-tolerant plants for crop improvement. The views presented here are an attempt toward realizing the potential of genetic engineering for improving crops to better tolerate abiotic stresses in the era of climate change, which is now essential for global food security. There is great urgency in speeding up crop improvement programs that can use modern biotechnological tools in addition to current breeding practices for providing enhanced food security.

  11. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  12. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  13. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  14. Biotechnologies for the management of genetic resources for food and agriculture.

    Science.gov (United States)

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  15. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  16. Current issues in plant disease control: Biotechnology and plant ...

    African Journals Online (AJOL)

    Biotechnology is the genetic manipulation and multiplication of any living organism through novel techniques and technologies such as tissue culture and genetic engineering in order to produce new organisms and or products that can be used in variety of ways. It is theoretically possible to express virtually any genetic trait ...

  17. The dynamic and ubiquitous nature of biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... In agriculture, gene cloning, an aspect of biotechnology has provided new ... which genetic engineering techniques are used to inactivate one or more ..... medicine, research regulatory agencies, ethics and legal experts in the ...

  18. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Year: 2012 Innovative Young Biotechnologist Award ... Indian Institute of Science Education and Research, Mohali ... International Centre for Genetic Engineering and Biotechnology, New Delhi ... Institute of Microbial Technology, Chandigarh

  19. Food safety evaluation of crops produced through genetic engineering--how to reduce unintended effects?

    Science.gov (United States)

    Jelenić, Srećko

    2005-06-01

    Scientists started applying genetic engineering techniques to improve crops two decades ago; about 70 varieties obtained via genetic engineering have been approved to date. Although genetic engineering offers the most precise and controllable genetic modification of crops in entire history of plant improvement, the site of insertion of a desirable gene cannot be predicted during the application of this technology. As a consequence, unintended effects might occur due to activation or silencing of genes, giving rise to allergic reactions or toxicity. Therefore, extensive chemical, biochemical and nutritional analyses are performed on each new genetically engineered variety. Since the unintended effects may be predictable on the basis of what is known about the insertion place of the transgenic DNA, an important aim of plant biotechnology is to define techniques for the insertion of transgene into the predetermined chromosomal position (gene targeting). Although gene targeting cannot be applied routinely in crop plants, given the recent advances, that goal may be reached in the near future.

  20. [Aerobic methylobacteria as promising objects of modern biotechnology].

    Science.gov (United States)

    Doronina, N V; Toronskava, L; Fedorov, D N; Trotsenko, Yu A

    2015-01-01

    The experimental data of the past decade concerning the metabolic peculiarities of aerobic meth ylobacteria and the prospects for their use in different fields of modern biotechnology, including genetic engineering techniques, have been summarized.

  1. Potential role of biotechnology tools for genetic improvement of “lost ...

    African Journals Online (AJOL)

    The paper considers the potential role of biotechnology applications like DNA markers in understanding the evolution, origin, distribution and diversity of fonio in Africa; somaclonal variation in generating genetic variability in fonio; and genetic transformation in circumventing fonio breeding barriers to introduce alien genes ...

  2. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  3. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  4. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  5. Commodifying animals: ethical issues in genetic engineering of animals.

    Science.gov (United States)

    Almond, B

    2000-03-01

    The genetic modification of living beings raises special ethical concerns which go beyond general discussion of animal rights or welfare. Although the goals may be similar, biotechnology has accelerated the process of modification of types traditionally carried out by cross-breeding. These changes are discussed in relation to two areas: biomedicine, and animal husbandry. Alternative ethical approaches are reviewed, and it is argued that the teleological thesis underlying virtue ethics has special relevance here. The case for and the case against genetic engineering and patenting of life-forms are examined, and conclusions are drawn which favour regulation, caution and respect for animals and animal species.

  6. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  7. Nutrition by design: a review of biotechnology in functional food

    Directory of Open Access Journals (Sweden)

    Thomas Reynolds

    2016-02-01

    Full Text Available Medical institutions in industrial and developing countries are increasingly turning to functional foods as intervention in chronic disease. Advances in genetic engineering have provided methods of purposefully designing functional foods and bioactive compound-producing organisms. This literature review examines the recent history of biotechnological applications in functional food, the state of bioagricultural engineering for high-value compound production, and the challenges that developers face in promulgatingfunctional foods from biotechnological sources. Based on the literature reviewed, it is predicted that adding biotechnologically-produced compounds will be more successful in producing novel functional foods. Conclusion: Current functional food application is frequently hampered by a dearth of foods suitable to the purpose. The concurrent advent of biotechnology means that producers and clinicians are not constrained by limited and precarious natural development. Biotechnology has already produced altered dietary staples that can safely induce real health benefits, but the social approval of genetically modified foodstuffs is inconsistent at best. Modifying microalgae to produce micro and macronutrients, for harvest and incorporation into functional food products, provides the ideal specificity and reliability for bioactive compound use. However, its application in biomedical science is impeded by technical difficulty. It remains to be seen if microorganism engineering willbe able to meet the needs of its many stakeholders, including the functional food community. Nonetheless,the prospect of a flourishing functional food market, and the healthier population it will bring about, certainly makes it worth a try.

  8. Incidence of the biotechnology in the academic development of the chemical engineering in Colombia

    International Nuclear Information System (INIS)

    Castellanos, Oscar Fernando; Rueda Maria Angelica; Ramirez, Julio Cesar

    1998-01-01

    In Colombia, the biotechnology, during the last years, it has been developed in a quick way, particularly in their fundamental and theoretical aspect. In the national market consumption there are products obtained with the help of the advances of the industrial biotechnology, which, for their implementation, it has had to appeal to import technologies and of transfer. This way, among the theoretical investigations in biotechnology and the applicability of their results in production processes in our country a direct relationship has not existed generally. At the moment, the necessities of scientific and technological progress demand the harmonic interaction of the different aspects of the biotechnology. For it, it is indispensable the formation of professionals, able to apply engineering concepts in the processes developed in biotechnical laboratories, like they have already made it other countries, with more scientific and economic advance. In the Colombian universities it is hour of reinforcing the line considerably in biochemical engineering of chemical engineering programs in the different pre and graduate levels; this profundity will allow significantly shortening distances between the different areas of the biotechnology and its industrial application

  9. Biotechnology and industrial ecology: new challenges for a ...

    African Journals Online (AJOL)

    Admin

    Key words: Biotechnology, industrial ecology, energy, agriculture, biofuels, climate change, desertification, genetic engineering. INTRODUCTION. The human population is growing at an exponential rate and average per capita consumption of natural resources is also increasing. These growth patterns are leading to.

  10. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  11. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects

    Science.gov (United States)

    Al-Haj, Lamya; Lui, Yuen Tin; Abed, Raeid M.M.; Gomaa, Mohamed A.; Purton, Saul

    2016-01-01

    Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future. PMID:27916886

  12. Why people like genetically engineered drugs but do not like genetic engineering

    International Nuclear Information System (INIS)

    Bruggemann, A.; Jungermann, H.

    1998-01-01

    Full test of publication follows: people seem to have difficulties to form a consistent opinion about biotechnology. They often express negative attitudes when asked about 'biotechnology', but they express positive attitudes when asked about specific 'applications of biotechnology'. This discrepancy is irritating if the specific applications are considered to constitute biotechnology. And it is significant because it raises doubts about the meaning of responses in surveys: when we ask for evaluations of applications, can we infer from the responses an overall opinion about biotechnology? And when we ask or overall judgments, what do the responses tell us about the acceptance or rejection of specific biotechnological products? We assume that evaluations of risks and benefits are influenced by the level of concreteness with which biotechnology is presented. In an empirical study, we distinguished three levels: bio-technology a) 'as such', i.e. as a technology, b) as domains of application, e.g. agriculture, and c) as products or effects, e.g. genetically manipulated tomatoes. Benefits were represented by pro-arguments, supposedly. more important for the formation of a judgment on the level of concrete products. Risks were represented by contra-arguments, supposedly more important on an abstract level of presentation than on a concrete level. 99 subjects read statements about biotechnology resp. biotechnological applications, together with pro-arguments and contra-arguments. They evaluated the items on 5-point scales with respect to weight and personal relevance of pros and cons. The data show the hypothesized relation between the level of concreteness and the importance of risks and benefits, but the relation is domain specific: in the pharmaceutical domain, benefits are more important on the concrete level of presentation, and risks are more important on the abstract level. In the agricultural domain, however, the risks are more important on the concrete level, and

  13. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: A biodiesel plant

    KAUST Repository

    Kumar, Nitish; Singh, Amritpal S.; Kumari, Swati; Reddy, Muppala P.

    2015-01-01

    . In this review, an effort is made to project the current biotechnology and molecular biology tools employed in the direction of, evaluating the genetic diversity and phylogeny revelation of Jatropha spp., identification of genetic markers for desirable traits

  14. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  15. BIOTECHNOLOGY AND MOLECULAR-BASED METHODS FOR GENETIC IMPROVEMENT OF TULIPS

    Directory of Open Access Journals (Sweden)

    Aurel Popescu

    2012-04-01

    Full Text Available Although the conventional methods of improvement have changed significantly throughout the last fifty years, additional tools and novel approaches are needed in order to fasten the process of creation new and highly valuable tulip varieties. The genetic base of tulip production can be preserved and widen by an integration of biotechnology tools in conventional breeding. Micropropagation in vitro may produce very fast large numbers of vigorous plants with high quality and free of endogenous pathogens. The in vitro rescue of embryos resulted from interspecific crosses between more or less distant species, chromosome doubling, somaclonal variation, transformation, and marker-aided selection and breeding are just a few of the examples of the applications of biotechnology in tulip improvement. This review provides an overview of the opportunities presented by the integration of plant biotechnology into the tulip improvement efforts.

  16. Biotechnology and genetic optimization of fast-growing hardwoods

    Energy Technology Data Exchange (ETDEWEB)

    Garton, S.; Syrkin-Wurtele, E.; Griffiths, H.; Schell, J.; Van Camp, L.; Bulka, K. (NPI, Salt Lake City, UT (United States))

    1991-02-01

    A biotechnology research program was initiated to develop new clones of fast-growing Populus clones resistant to the herbicide glyphosate and resistant to the leaf-spot and canker disease caused by the fungus Septoria musiva. Glyphosate-resistant callus was selected from stem segments cultured in vitro on media supplemented with the herbicide. Plants were regenerated from the glyphosate-resistant callus tissue. A portion of plants reverted to a glyphosate susceptible phenotype during organogenesis. A biologically active filtrate was prepared from S. musiva and influenced fresh weight of Populus callus tissue. Disease-resistant plants were produced through somaclonal variation when shoots developed on stem internodes cultured in vitro. Plantlets were screened for disease symptoms after spraying with a suspension of fungal spores. A frequency of 0.83 percent variant production was observed. Genetically engineered plants were produced after treatment of plant tissue with Agrobacterium tumefasciens strains carrying plasmid genes for antibiotic resistance. Transformers were selected on media enriched with the antibiotic, kanamycin. Presence of foreign DNA was confirmed by Southern blot analysis. Protoplasts of popular were produced but did not regenerate into plant organs. 145 refs., 12 figs., 36 tabs.

  17. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biotechnology Industry, 2006

    Science.gov (United States)

    2006-01-01

    for commercial or other purposes. Because it is a process resting on the understanding of genetics, proteomics , and life science, biotechnology has...Luhnow & Samor, 2006). Novel biotechnologies could bring down the costs of making ethanol. Iogen Corporation has genetically modified a fungus to

  19. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  20. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  1. Special Issue: Plant Genetics and Biotechnology in Biodiversity

    Directory of Open Access Journals (Sweden)

    Giandomenico Corrado

    2018-03-01

    Full Text Available The rapid progress and increasing affordability of novel investigation tools in plant genetics and biotechnology offer previously inaccessible opportunities for the exploitation of plant genetic diversity in agriculture. The Special Issue was lunched to highlight how new technologies are improving both genotyping and phenotyping methods, thus allowing us to uncover crop diversity and use genetic variability for plant breeding with remarkable precision and speed. Three thematic reviews report on scientific, technological, and legal advances in plant diversity and agriculture. Three contributions provide specific examples of the exploitation of different kinds of genetic resources, ranging from landraces to mutant populations. Six research articles are illustrative examples of the study of molecular and/or phenotypic diversity to address basic or applied questions in different plant species. Finally, this SI was also launched to honor the memory of Prof. Gian Tommaso Scarascia Mugnozza and a dedicated Editorial acknowledges his work in plant breeding and biodiversity protection.

  2. Identification of Conceptual Understanding in Biotechnology Learning

    Science.gov (United States)

    Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.

    2018-04-01

    Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.

  3. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  4. Procedure for implementing the system of quality management in the testing laboratory of the Center for Genetic Engineering and Biotechnology in Sancti Spiritus.

    Directory of Open Access Journals (Sweden)

    Lídice Peraza Cruz

    2014-03-01

    Full Text Available Implementation of Quality Management System in testing laboratories offers the possibility of its accreditation and a frame for cooperation with other organizations, supporting information and experience exchange, as well as standards and procedures harmonization. To improve the performance of the Center for Genetic Engineering and Biotechnology of Sancti Spíritus testing laboratory, assuring technically valid data and results which promote technical competence and credibility of in vitro diagnostics and biological reagents products, a procedure was designed to implement a Quality Management System. This procedure applies Deming´s Quality Cycle and considers all relevant requirements in NC ISO/IEC 17025:2006 “General requirements for the competence of testing and calibration laboratories” and Regulation No. 20 2004 “Good Manufacturing Practices for in vitro Diagnostics” of Center for State Control of Drugs, Equipment and Medical Devices. We recommend an auto evaluation method, designed by authors, to verify quality management system accomplishment.

  5. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  6. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  8. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  9. History and future of genetically engineered food animal regulation: an open request.

    Science.gov (United States)

    Wells, Kevin D

    2016-06-01

    Modern biotechnology resulted from of a series of incremental improvements in the understanding of DNA and the enzymes that nature evolved to manipulate it. As the potential impact of genetic engineering became apparent, scientists began the process of trying to identify the potential unintended consequences. Restrictions to recombinant DNA experimentation were at first self-imposed. Collaborative efforts between scientists and lawyers formalized an initial set of guidelines. These guidelines have been used to promulgate regulations around world. However, the initial guidelines were only intended as a starting point and were motivated by a specific set of concerns. As new data became available, the guidelines and regulations should have been adapted to the new knowledge. Instead, other social drivers drove the development of regulations. For most species and most applications, the framework that was established has slowly allowed some products to reach the market. However, genetically engineered livestock that are intended for food have been left in a regulatory state of limbo. To date, no genetically engineered food animal is available in the marketplace. A short history and a U.S.-based genetic engineer's perspective are presented. In addition, a request to regulatory agencies is presented for consideration as regulation continues to evolve. Regulators appear to have shown preference for the slow, random progression of evolution over the efficiency of intentional design.

  10. Biotechnology: Two Decades of Experimentation with Genetically Modified Foods

    Directory of Open Access Journals (Sweden)

    Marjan Ajami

    2016-10-01

    Full Text Available Background and Objective: Over the recent years, genetically modified food in varieties of corn, soybeans, canola and cotton have been introduced to the global market. This study reviews the health and nutritional value of genetically modified foods in the past two decades.Results and Conclusions: Contrary to the present biotechnological claims, transgenic products did not prove to be so flawless, and actually failed to maintain social satisfaction. Genetically modified foods could not gain an increase in the yield potential. Planting natural products and genetically modified products in parallel lines will absolutely result in genetic infection from the side of genetically modified foods. One of the major anxieties of the anti- genetically modified foods activism is the claim that genetically modified crops would alter the consumable parts of the plant quality and safety. Genetically modified foods have shown to have inadequate efficiency and potential adverse effects in both fields of health and biodiversity. This review has presented studies of genetically modified foods performances in the past two decades, and concludes that the wide application and the over generalization of genetically modified foods are not fundamentally recommended.Conflict of interest: Authors declare that there is no conflict of interest.

  11. MODERN BIOTECHNOLOGICAL APPROACHES TO LIFESPAN EXTENSION OF ANIMALS AND HUMANS

    Directory of Open Access Journals (Sweden)

    E. L. Levitsky

    2017-04-01

    Full Text Available The purpose of the research was to analyze current data concerning the problem of extending the life of multicellular animals and humans. The modern views about the processes of aging and prolongation of life are presented. The analysis focused on the genetic mechanisms of aging and mainly biotechnological approaches (genetic engineering, gene therapy, the use of stem cells, and the reprogramming of the genome to prolong the life of multicellular organisms. For comparison, some traditional methods of prolonging life are described (drug therapy, exercise training, calorically restricted nutrition. This analysis allows to postulate the perspectives and advantages of using biotechnological methods for prolonging life in comparison with traditional ones.

  12. Food biotechnology's challenge to cultural integrity and individual consent.

    Science.gov (United States)

    Thompson, P B

    1997-01-01

    Consumer response to genetically altered foods has been mixed in the United States. While transgenic crops have entered the food supply with little comment, other foods, such as the bioengineered tomato, have caused considerable controversy. Objections to genetically engineered food are varied, ranging from the religious to the aesthetic. One need not endorse these concerns to conclude that food biotechnology violates procedural protections of consumer sovereignty and religious liberty. Consumer sovereignty, a principle especially valued in this country, requires that information be made available so each individual or group may make food choices based on their own values. And as yet, there is no policy provision for informing consumers about the degree to which food has been genetically engineered.

  13. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  14. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  15. An Exploration of High School (12-17 Year Old) Students' Understandings of, and Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille

    2007-01-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal…

  16. Comparing Perceptions of Biotechnology in Fresh versus Processed Foods: A Cross-Cultural Study

    OpenAIRE

    Kim, Hyeyoung; House, Lisa

    2013-01-01

    This study focused on investigating how respondents’ perceptions of biotechnology used in food production differs depending on the level of product transformation (i.e. fresh versus processed food). Using cluster analysis, respondents were clustered into two groups, genetically engineered (GE) tolerant and GE sensitive, based on changes in their perceptions about fresh apples and apple juice produced with and without biotechnology. Comparisons of respondents from six countries were performed ...

  17. Development of transgenic crops based on photo-biotechnology.

    Science.gov (United States)

    Ganesan, Markkandan; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2017-11-01

    The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses. © 2016 John Wiley & Sons Ltd.

  18. Biotechnology Opens New Routes to High-Performance Materials for Improved Photovoltaics, Batteries, Uncooled IR Detectors, Ferroelectrics and Optical Applications

    National Research Council Canada - National Science Library

    Morse, Daniel E

    2006-01-01

    ... the capabilities of present human engineering. Using the tools of biotechnology and genetic engineering, we discovered the unanticipated mechanism of simultaneous catalysis and templating governing the nanofabrication of silica in a biological system...

  19. Genetically engineered plants in the product development pipeline in India.

    Science.gov (United States)

    Warrier, Ranjini; Pande, Hem

    2016-01-02

    In order to proactively identify emerging issues that may impact the risk assessment and risk management functions of the Indian biosafety regulatory system, the Ministry of Environment, Forests and Climate Change sought to understand the nature and diversity of genetically engineered crops that may move to product commercialization within the next 10 y. This paper describes the findings from a questionnaire designed to solicit information about public and private sector research and development (R&D) activities in plant biotechnology. It is the first comprehensive overview of the R&D pipeline for GE crops in India.

  20. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  1. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Science.gov (United States)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  2. Review of biotechnology applications to nuclear waste treatment

    International Nuclear Information System (INIS)

    Ashley, N.V.; Roach, D.J.W.

    1990-01-01

    This paper gives an overview of the feasibility of the application of biotechnology to nuclear waste treatment. Many living and dead organisms accumulate heavy metals and radionuclides. The controlled use of this phenomenon forms the basis for the application of biotechnology to the removal of radionuclides from nuclear waste streams. An overview of biotechnology areas, namely the use of biopolymers and biosorption using biomass applicable to the removal of radionuclides from industrial nuclear effluents is given. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology is also to be examined. The most appropriate technologies to develop for radionuclide removal in the short term appear to be those based on biosorption of radionuclides by biomass and the use of modified and unmodified biopolymers in the medium term. (author)

  3. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Sarah R. [J. Craig Venter Inst., Rockville, MD (United States); Rodemeyer, Michael [Univ. of Virginia, Charlottesville, VA (United States); Garfinkel, Michele S. [EMBO, Heidelberg (Germany); Friedman, Robert M. [J. Craig Venter Inst., Rockville, MD (United States)

    2014-05-01

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods for genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic

  4. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  6. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis.

    Science.gov (United States)

    Kell, Douglas B; Swainston, Neil; Pir, Pınar; Oliver, Stephen G

    2015-04-01

    Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Biotechnological and molecular approaches for vanillin production: a review.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-02-01

    Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.

  8. Preservation of plant genetic resources in the biotechnology era.

    Science.gov (United States)

    Börner, Andreas

    2006-12-01

    Thousands of years ago humans began domesticating crops as a food source. Among the wild germplasm available, they selected those that were best adapted for cultivation and utilization. Although wild ancestors have continued to persist in regions where domestication took place, there is a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices. Recognizing this danger, plant ex situ genebank collections were created since the beginning of the last century. World-wide, more than 6 million accessions have been accumulated including the German ex situ genebank in Gatersleben, one of the four largest global collections, housing 150,000 accessions belonging to 890 genera and 3032 species. This review summarizes the ex situ plant genetic resources conservation behavior with a special emphasis on German activities. Strategies for maintenance and management of germplasm collections are reviewed, considering modern biotechnologies (in vitro and cryo preservation). General aspects on genetic diversity and integrity are discussed.

  9. Keystone conference on environmental biotechnology. Summary -- Results of conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This symposium brought together a unique mix of scientists, engineers and policy makers to discuss the latest applications of biotechnology to in situ bioremediation and ex situ biodegradation of pollutants and industrial wastes. Several new topics were prominent in the discussions. Chief among these were issues related to environmentally acceptable endpoints, command and control versus incentive driven regulations, bioavailability of pollutants to microbial action, delivery of biodegrading organisms to pollutant plumes, value added production, and genetic probes for monitoring the status of soil consortia. These new issues gave a new perspective to the more traditional topics of the molecular genetics of microorganisms, marine bioremediation, bioprocessing of industrial and agricultural wastes, and engineered bioremediation systems which were featured.

  10. Biotechnology Process Engineering Center at MIT Home

    Science.gov (United States)

    has provided a focal point for biotechnology research and education at MIT. Prominent examples include the NIH Training Program in Biotechnology and the NIH Training Program in Genomics; both of these are -genomic biology. Another example is the new DuPont-MIT Alliance (DMA), focused on materials biotechnology

  11. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  12. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Design and Implementation of an Interdepartmental Biotechnology Program across Engineering Technology Curricula

    Science.gov (United States)

    Clase, Kari

    2008-01-01

    The health industry is an important and growing economic engine. Advances are being made in pharmaceutical and biotechnology discoveries and their applications (including manufacturing), as well as in health care services. As a result, there is an increasing sophistication of the products and services available and being developed, with an…

  14. First report on the state of the world's animal genetic resources. Views on biotechnology as expressed in country reports

    International Nuclear Information System (INIS)

    Cardellino, R.; Hoffmann, I.; Tempelman, K.A.

    2005-01-01

    As part of the country-driven strategy for the management of farm animal genetic resources, FAO invited 188 counties to participate in the First Report on the State of the World's Animal Genetic Resources, with 145 consenting. Their reports are an important source of information on the use of biotechnology, particularly biotechnical products and processes. This paper analyses information from country reports so far submitted, and is therefore preliminary. There is clearly a big gap in biotechnology applications between developed and developing countries, with artificial insemination the most common technology used in developing countries, although not everywhere. More complex techniques, such as embryo transfer (ET) and molecular tools, are even less frequent in developing countries. Most developing countries wish to expand ET and establish gene banks and cryoconservation techniques. There are very few examples in developing countries of livestock breeding programmes capable of incorporating molecular biotechnologies in livestock genetic improvement programmes. (author)

  15. Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Industrial biotechnology has been defined as the use and application of biotechnology for the sustainable processing and production of chemicals, materials and fuels. It makes use of biocatalysts such as microbial communities, whole-cell microorganisms or purified enzymes. In the review these processes are described. Drug design is an iterative process which begins when a chemist identifies a compound that displays an interesting biological profile and ends when both the activity profile and the chemical synthesis of the new chemical entity are optimized. Traditional approaches to drug discovery rely on a stepwise synthesis and screening program for large numbers of compounds to optimize activity profiles. Over the past ten to twenty years, scientists have used computer models of new chemical entities to help define activity profiles, geometries and relativities. This article introduces inter alia the concepts of molecular modelling and contains references for further reading.

  16. Establishing a Taxonometric Structure for the Study of Biotechnology in Secondary School Technology Education.

    Science.gov (United States)

    Wells, John G.

    1994-01-01

    A Delphi panel of 19 experts identified 8 main knowledge areas of biotechnology: bioprocessing, foundations, genetic engineering, agriculture, biochemistry, medicine, environment, and bioethics. Round 2 elicited 84 subdivisions and round 3 adjusted the ratings. The resulting classification suggests a different context and focus for technology…

  17. Adaptive laboratory evolution – principles and applications for biotechnology

    Science.gov (United States)

    2013-01-01

    Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering. PMID:23815749

  18. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov (United States)

    | Facsimile (617) 253-2400 | e-mail: bpec-www@mit.edu THERAPEUTIC GENE BIOTECHNOLOGY INDUSTRIAL CONSORTIUM Board (ICAB) in Therapeutic Gene Biotechnology. ICAB Member Representatives review our research progress

  19. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    Science.gov (United States)

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  20. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  1. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  2. An Exploration of High School (12 17 Year Old) Students' Understandings of, and Attitudes Towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille

    2007-03-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal decisions. The aim of this study was to examine the development of understandings and attitudes about biotechnology processes as students progress through high school. In a cross-sectional case study, data was obtained from student interviews and written surveys of students aged 12 to 17 years. The results indicate that students' ability to provide a generally accepted definition and examples of biotechnology, cloning and genetically modified foods was relatively poor amongst 12 13 year old students but improved in older students. Most students approved of the use of biotechnology processes involving micro-organisms, plants and humans and disapproved of the use of animals. Overall, 12 13 year old students' attitudes were less favourable than older students regardless of the context. An awareness of the development and range of students' understandings and attitudes may lead to a more appropriate use of biotechnology curriculum materials and thus improved biotechnology education in schools.

  3. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  4. Role of biotechnology in future agriculture. Korekarano nogyo to biotechnology eno kitai

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T. (Kyoto Univ., Kyoto (Japan). Faculty of Agriculture)

    1992-09-01

    In comparison with ancient times when everything is handled empirically, biological matter suitable for purposes can be produced and utilized faster and more reliably these days when life science has made a great advance. The advancement is related to new breeding technology and production means, and those means offer the point of contact between biotechnology and agriculture. The application fields of biotechnology are microbiology, cell technology, enzyme technology (bioreactor), and gene engineering. High yield, high content of high value ingredients as foods, adaptability to environment, resistance to disease and insect damage, etc. may be the subjects expected for future agricultural organisms. There may be many areas where biotechnology is related to those organisms, but a discussion is made in this report centering around the problem in breeding. Outlines are given on the applied cases of cell technological method, gene engineering method, and recombinant DNA technology, as well as on gene engineering for plants and animals. 10 refs., 7 figs.

  5. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  6. Genetically engineered foods

    Science.gov (United States)

    Bioengineered foods; GMOs; Genetically modified foods ... helps speed up the process of creating new foods with desired traits. The possible benefits of genetic engineering include: More nutritious food Tastier food Disease- and ...

  7. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  8. Biotechnology in China II. Chemicals, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T. [Purdue Univ., West Lafayette, IN (United States). Lab. Renewable Resources Engineering; Ouyang, Pingkai [Nanjing Univ. of Technology (China). College of Life Science and Pharmaceutical Engineering; Chen, Jian (eds.) [Jiangnan Univ., Wuxi (China). School of Biotechnology

    2010-07-01

    The biochemical engineering and biotechnology is now becoming the most important industry all over the world. China, as a country that has more than 1.3 billion people, has become one of the fastest growing countries in the world during the last several decades. Both the Chinese government and companies pay more and more attention on the research and the application of biotechnology. In the 11th five-year plan (2006-2010), Chinese government unprecedented enhanced the support on the biotechnology in both policy and finance. Currently, the biotechnology gains the most R and D funding in China. With the great support and the increasingly frequent exchanges from abroad, the biotechnology in China becomes more and more important in the world. In recognition of the enormous advances in biotechnology in China, we are pleased to present the second volume of Advances in Biochemical Engineering/ Biotechnology: Biotechnology in China II, edited by P. K. Ouyang, J. Chen and G. T. Tsao, relatively soon after the introduction of the first volume of this multivolume comprehensive books. Since the previous volume was extremely well accepted by the scientific community, we have maintained the overall goal of creating a number of chapters, each devoted to a certain topic by several Chinese research groups working in the field, which provide scientists in academia and public institutions with a well-balanced and comprehensive overview of this growing field in China. We have fully revised the volume and expanded it from bioreaction, bioseparation and bioremediation to more extensive issues in order to cover all recent developments in China into account as much as possible. The new volume of Advances in Biochemical Engineering/Biotechnology: Biotechnology in China II is a comprehensive description of the state-of-the-art in China, and a guide to the understanding the work of Chinese biochemical engineering and biotechnology researchers. It is specifically directed to microbiologists

  9. Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

    KAUST Repository

    Lindblad, Peter

    2016-01-25

    With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research has emerged within the interfaces of advanced genetic engineering, computational science, and molecular biotechnology. We have initiated the development of a genetic toolbox, using a synthetic biology approach, to custom design, engineer and construct cyanobacteria for selected function and metabolism. One major bottleneck is a controlled transcription and translation of introduced genetic constructs. An additional major issue is genetic stability. I will present and discuss recent progress in our development of genetic tools for advanced cyanobacterial biotechnology. Progress on understanding the electron pathways in native and engineered cyanobacterial enzymes and heterologous expression of non-native enymzes in cyanobacterial cells will be highlighted. Finally, I will discuss our attempts to merge synthetic biology with synthetic chemistry to explore fundamantal questions of protein design and function.

  10. Ten years of biotechnology development at the Central Research Roentgenological Institute of the Ministry of Health of the Russian Federation

    International Nuclear Information System (INIS)

    Rozenberg, O.A.; Klimovich, V.B.; Volchkov, V.A.; Evtushenko, V.I.

    1993-01-01

    Sums up the progress in and prospects for research at the medical biotechnology department of the Institute. The department includes four laboratories: for genetic engineering, hydridoma technology, biotechnogoly of preparations for radiodiagnosis and therapy and for preclinical trials of biotechnologic products. Fundamental researh carried out at the department are described friefly, namely, studies and modification of molecular genetic mechanisms of cellular death, modification of pro- and eukaryote cell radiosensitivity, as well as the results and trends of applied research, such as derivation of an original murine myeloma strain, a partner for the creation of stable monoclonal antibody-producing hybridomata

  11. Genetic Engineering Workshop Report, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Slezak, T

    2010-11-03

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected and characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industries that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of

  12. Selected Readings in Genetic Engineering

    Science.gov (United States)

    Mertens, Thomas R.; Robinson, Sandra K.

    1973-01-01

    Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)

  13. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  14. Genetic variability in Sudanese Acacia senegal (L.) assessed by ...

    African Journals Online (AJOL)

    TUOYO

    2010-07-26

    Jul 26, 2010 ... Full Length Research Paper. Genetic variability in Sudanese Acacia senegal (L.) assessed by random amplified polymorphic DNA. Rami S. Habeballa*, Nada B. Hamza and Eisa I. El Gaali. Commission for Biotechnology and Genetic Engineering, National Centre for Research, Khartoum, Sudan. P. O. Box.

  15. Biotechnology in Switzerland and a glance at Germany.

    Science.gov (United States)

    Fiechter, A

    2000-01-01

    The roots of biotechnology go back to classic fermentation processes, which starting from spontaneous reactions were developed by simple means. The discovery of antibiotics made contamination-free bioprocess engineering indispensable, which led to a further step in technology development. On-line analytics and the use of computers were the basis of automation and the increase in quality. On both sides of the Atlantic, molecular biology emerged at the same time, which gave genetic engineering in medicine, agriculture, industry and environment new opportunities. The story of this new advanced technology in Switzerland, with a quick glance at Germany, is followed back to the post-war years. The growth of research and teaching and the foundation of the European Federation of Biotechnology (EFB) are dealt with. The promising phase of the 1960s and 1970s soon had to give way to a restrictive policy of insecurity and anxiousness, which, today, manifests itself in the rather insignificant contributions of many European countries to the new sciences of genomics, proteomics and bioinformatics, as well as in the resistance to the use of transgenic agricultural crops and their products in foods.

  16. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  17. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  18. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review.

    Science.gov (United States)

    Bilal, Muhammad; Guo, Shuqi; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-03

    Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.

  19. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  20. Biotechnology in Turkey: an overview.

    Science.gov (United States)

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  1. Study of genetic diversity in Sudanese sesame (Sesamum indicum L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Study of genetic diversity in Sudanese sesame. (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. E. Abdellatef 1*, R. Sirelkhatem 1, M. M. Mohamed Ahmed1, K. H. Radwan2 and. M. M. Khalafalla1. 1Commission for Biotechnology and Genetic Engineering, ...

  2. Feasibility study of the application of biotechnology to nuclear waste treatment

    International Nuclear Information System (INIS)

    Ashley, N.V.; Pope, N.R.; Roach, D.J.W.

    1987-12-01

    A number of biotechnology areas applicable to the removal of radionuclides from industrial nuclear effluents were considered, namely: use of Biopolymers; Biosorption using biomass; microbial leaching and solubilisation of metal ions. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology was also examined. It appeared that the most appropriate technologies to develop for radionuclide removal in the short term were based on biosorptions of radionuclides by biomass and modified and unmodified biopolymers. (author)

  3. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  4. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Genetically modified food--unnecessary controversy?].

    Science.gov (United States)

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  6. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.

    Science.gov (United States)

    Graf, Nadja; Altenbuchner, Josef

    2014-01-01

    Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficient to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86% within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.

  7. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Marijan Jošt

    2003-12-01

    Full Text Available The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs, the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generation of GMOs provide small benefits except corporate profit and marginally improved grower returns. The TRIPS agreement has allowed worldwide patenting of genes and microorganisms, as well as genetically engineered organisms. Granting patents on life encourages biopiracy and the theft of genetic resources belonging to the local community. At the same time, the patented products are sold at relatively high prices to developing countries – the same countries from which the product originated.

  8. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  9. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  11. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  12. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    Science.gov (United States)

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  13. The Future of Bio-technology

    Science.gov (United States)

    Trent, Jonathan

    2005-01-01

    Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum

  14. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genetic transformation of olive somatic embryos through ...

    African Journals Online (AJOL)

    Administrator

    2011-06-20

    Jun 20, 2011 ... 2Department of Biochemistry, National Center of Genetic Engineering and Biotechnology, Tehran, Iran. Accepted 9 March, 2011. Transformed olive plants were regenerated from inoculated somatic embryos with Agrobacterium tumefacience strain GV3101, which carries the plasmid pBI-P5CS containing ...

  16. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biotechnology for Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal

    Directory of Open Access Journals (Sweden)

    Bal Krishna Joshi

    2017-05-01

    Full Text Available Agricultural biodiversity is the basis of human life and food security. Nepal with 577 cultivated species possesses huge diversity at varietal as well as landrace levels. In most agricultural crops the rapid genetic erosion due to several reasons is a common phenomenon. Thus, considering the importance of agricultural biodiversity declared by Convention on Biological Diversity for sustainable food production, National Agriculture Genetic Resources Center (NAGRC has been established for conservation and sustainable utilization of agricultural biodiversity. This paper thus delineates the application of biotechnological tools adopted by NAGRC for effective and efficient conservation and use of agricultural plant genetic resources (APGRs. Among the adopted technologies, tissue bank using shoot tip culture of vegetatively propagating and recalcitrant crops eg potato, sugarcane, banana, sweet potato, etc are in function. Under the molecular marker technology, currently random amplified polymorphic DNA (RAPD and simple sequence repeat (SSR markers have been used for developing DNA profiles, identifying duplicates in the collections, assessing genetic diversity and screening accessions against economic traits. DNA bank has also been created for storing DNA of indigenous crops and these DNA can be accessed for research and study. Genotypic database has been developed for chayote, finger millet, wheat and maize for identification and selection of the accessions.

  18. Moral Fantasy in Genetic Engineering.

    Science.gov (United States)

    Boone, C. Keith

    1984-01-01

    Discusses the main ethical issues generated by the new genetics and suggests ways to think about them. Concerns include "playing God," violation of the natural order of the universe, and abuse of genetic technology. Critical distinctions for making difficult decisions about genetic engineering issues are noted. (DH)

  19. International Conference on Biotechnology for Salinity and Drought Tolerance in Plants

    International Nuclear Information System (INIS)

    Malik, K.A.; Mahmood, K.

    2005-01-01

    International Conference on Biotechnology for Salinity and Drought Tolerance in Plants was held from 28-29 March, 2005 at Islamabad, Pakistan. Abstracts of this conference have been presented in this proceeding. There were six technical sessions like 1) Stress Physiology/Ion Transport, 2) Stress Sensing and Signaling, 3) Genomis, Metabolomics and Proteomics, 4) Genetic Engineering, 5) Gene Expression, 6) Field Studies and Management. This seminar was quite useful specially drought resistance and salinity in the soil. Researches exchange their views in the seminar. (A.B.)

  20. Radiative decay engineering: the role of photonic mode density in biotechnology

    International Nuclear Information System (INIS)

    Lakowicz, Joseph R; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt; Geddes, Chris D

    2003-01-01

    Fluorescence detection is a central technology in biological research and biotechnology. A vast array of fluorescent probes are available with diverse spectral properties. These properties were 'engineered' into fluorophores by modification of the chemical structures. Essentially, all present uses of fluorescence rely on the radiation of energy into optically transparent media, the free space which surrounds the fluorophores. In this paper, we summarize an opportunity for novel fluorescence technology based on modification of the photonic mode density around the fluorophore and thus control of its spectral properties. This modification can be accomplished by proximity of fluorophores to metallic particles of gold, silver and possibly others. By engineering the size and shape of the metal particles, and the location of the fluorophores relative to the surfaces, fluorophores can be quenched, display increases in quantum yield, and changes in lifetime. Fluorophore-metal surface combinations can even display directional rather than isotropic emission. We describe recent experimental results and suggest potential biomedical applications of fluorophore-metal particle interactions. (topical review)

  1. Biotechnology 2000: a new German R&D programme

    OpenAIRE

    Ekkehard Warmuth

    1991-01-01

    Biotechnology 2000 is a German programme to continue the development of biotechnology started in 1982. It includes two new scientific fields for industrial innovation — genome research and neurobiology. Together with industry and the science community, the biotechnology programme will create a basis for future generations of biologically derived products and processes, including the development of safety precautions for the contained use of genetically modified organisms (GMOs) and of univers...

  2. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  3. Limits Legal Ethics of Biotechnology in XXI Century

    Directory of Open Access Journals (Sweden)

    Melissa Cabrini Morgato

    2016-06-01

    Full Text Available The present paper discusses the ethical and legal consequences of developments in biotechnological science, with a focus on the field of genetic engineering. We classify situations originating from developments in biotechnological science depending on their ethical and legal justification, based on Habermas’ reflections in his work “The future of human nature”, and differentiate between negative eugenics, representing ethically and legally justified situations, given their therapeutic potential of bringing benefits to human beings; and positive eugenics, describing situations, which are not justified by Ethics and Law, since they represent risks for the ethical self-understanding of the human species and are also incompatible with the imperative nature of human life protection, which is struc- tured by the Ibero-American constitutional states. We conclude that all moral judgments must follow the principle of human dignity as a major guideline, because the prevention of harmful practices against human beings requires, apart from legal and ethical rules, the responsibility to exclusively employ technologies for therapeutic purposes and to impede that the consumer society and its by-products completely artificialize the human nature.

  4. The biotechnology of ethanol. Classical and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Roehr, M. [ed.] [Technische Univ., Vienna (Austria). Inst. fuer Biochemische Technologie und Mikrobiologie; Kosaric, N. [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Vardar-Sukan, F [Ege Univ., Izmir (Turkey). Dept. of Chemical Engineering; Pieper, H.J.; Senn, T. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmitteltechnologie

    2001-07-01

    Focusing on the biotechnology of ethanol, this book highlights its industrial relevance as one of the most important products of primary metabolism. The text covers the most advanced developments among classical methods as well as more unconventional techniques, before going on to outline various aspects of new applications and the increasing importance of ethanol as a renewable resource. Topics covered in this unique volume include alternative raw materials, such as municipal waste and waste paper or particular crops, innovative methods of production using genetically engineered microorganisms, and the role of ethanol as both a source of energy and a valuable commodity. The book is an indispensable reference in that it combines biotechnological and economic aspects, while also providing an overview of the state of the art in the production and use of ethanol. Throughout, special emphasis has been placed on a balanced presentation between developments in Europe as well as in North and South America. With contributions of T. Senn and H.J. Pieper and of N. Kosaric and F. Vardar-Sukan. (orig.)

  5. Possible people, complaints, and the distinction between genetic planning and genetic engineering.

    Science.gov (United States)

    Delaney, James J

    2011-07-01

    Advances in the understanding of genetics have led to the belief that it may become possible to use genetic engineering to manipulate the DNA of humans at the embryonic stage to produce certain desirable traits. Although this currently cannot be done on a large scale, many people nevertheless object in principle to such practices. Most often, they argue that genetic enhancements would harm the children who were engineered, cause societal harms, or that the risks of perfecting the procedures are too high to proceed. However, many of these same people do not have serious objections to what is called 'genetic planning' procedures (such as the selection of sperm donors with desirable traits) that essentially have the same ends. The author calls the view that genetic engineering enhancements are impermissible while genetic planning enhancements are permissible the 'popular view', and argues that the typical reasons people give for the popular view fail to distinguish the two practices. This paper provides a principle that can salvage the popular view, which stresses that offspring from genetic engineering practices have grounds for complaint because they are identical to the pre-enhanced embryo, whereas offspring who are the result of genetic planning have no such grounds.

  6. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  7. Novel Techniques and Their Wide Applications to Health Foods, Medical and Agricultural Biotechnology in Relation to Policy Making on Genetically Modified Crops and Foods

    CERN Document Server

    Baianu, I C; Lozano, P; Lin, H C

    2004-01-01

    Selected applications of novel techniques in Agricultural Biotechnology, Health Food formulations and Medical Biotechnology are being reviewed with the aim of unraveling future developments and policy changes that are likely to open new markets for Biotechnology and prevent the shrinking or closing of existing ones. Amongst the selected novel techniques with applications in both Agricultural and Medical Biotechnology are: immobilized bacterial cells and enzymes, microencapsulation and liposome production, genetic manipulation of microorganisms, development of novel vaccines from plants, epigenomics of mammalian cells and organisms, and biocomputational tools for molecular modeling related to disease and Bioinformatics. Both fundamental and applied aspects of the emerging new techniques are being discussed in relation to their anticipated, marked impact on future markets and present policy changes that are needed for success in either Agricultural or Medical Biotechnology. The novel techniques are illustrated ...

  8. Genetically modified foods and social concerns.

    Science.gov (United States)

    Maghari, Behrokh Mohajer; Ardekani, Ali M

    2011-07-01

    Biotechnology is providing us with a wide range of options for how we can use agricultural and commercial forestry lands. The cultivation of genetically modified (GM) crops on millions of hectares of lands and their injection into our food chain is a huge global genetic experiment involving all living beings. Considering the fast pace of new advances in production of genetically modified crops, consumers, farmers and policymakers worldwide are challenged to reach a consensus on a clear vision for the future of world food supply. The current food biotechnology debate illustrates the serious conflict between two groups: 1) Agri-biotech investors and their affiliated scientists who consider agricultural biotechnology as a solution to food shortage, the scarcity of environmental resources and weeds and pests infestations; and 2) independent scientists, environmentalists, farmers and consumers who warn that genetically modified food introduces new risks to food security, the environment and human health such as loss of biodiversity; the emergence of superweeds and superpests; the increase of antibiotic resistance, food allergies and other unintended effects. This article reviews major viewpoints which are currently debated in the food biotechnology sector in the world. It also lays the ground-work for deep debate on benefits and risks of Biotech-crops for human health, ecosystems and biodiversity. In this context, although some regulations exist, there is a need for continuous vigilance for all countries involved in producing genetically engineered food to follow the international scientific bio-safety testing guidelines containing reliable pre-release experiments and post-release track of transgenic plants to protect public health and avoid future environmental harm.

  9. Review: Biotechnological strategies for conservation of rare and endangered medicinal plants

    Directory of Open Access Journals (Sweden)

    MAHENDRA KUMAR RAI

    2010-07-01

    Full Text Available Rai MK (2010 Review: Biotechnological strategies for conservation of rare and endangered medicinal plants. Biodiversitas 11: 157-166. The use of medicinal plants is as old as human civilization. The biotechnological tools play a crucial role in conservation of rare and endangered medicinal plants. The rapid depletion of plant genetic diversity has made essential to develop new in situ and ex situ conservation methods. Advances in biotechnology offer new methods for conservation of rare and endangered medicinal plants. The present review is focused on biotechnological tools like in vitro culture, micropropagation, mycorrhization, genetic transformation and development of DNA banks. These are imperative and important alternatives for the conservation of rare and endangered medicinal plants.

  10. Safe genetically engineered plants

    International Nuclear Information System (INIS)

    Rosellini, D; Veronesi, F

    2007-01-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work

  11. Safe genetically engineered plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosellini, D; Veronesi, F [Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Universita degli Studi di Perugia, Borgo XX giugno 74, 06121 Perugia (Italy)

    2007-10-03

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  12. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis.

  13. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  14. Exploring the Effects of Active Learning on High School Students' Outcomes and Teachers' Perceptions of Biotechnology and Genetics Instruction

    Science.gov (United States)

    Mueller, Ashley L.; Knobloch, Neil A.; Orvis, Kathryn S.

    2015-01-01

    Active learning can engage high school students to learn science, yet there is limited understanding if active learning can help students learn challenging science concepts such as genetics and biotechnology. This quasi-experimental study explored the effects of active learning compared to passive learning regarding high school students'…

  15. Biosafety Assessment of Microbial Strains Used in Biotechnology According to Their Taxonomy

    Directory of Open Access Journals (Sweden)

    Natalia I. Sheina

    2017-03-01

    Full Text Available A great variety of biotechnological products are now widely used in different ways in agriculture, medicine, food manufacturing and other areas of our life. Industrialized societies now more than ever depend on the use of genetically engineered products, with many of them synthesized using recombinant strains of microorganisms. There is an opinion that microbial strains used in biotechnology are potentially harmful for human health and the environment. Similar to many other countries, we have enacted environmental legislation in an effort to balance the risks and benefits of using biotechnological strains. Although environmental monitoring rules focus mainly on safety assessments of chemicals, the biosafety assessment of microbial strains used in biotechnology is a very important issue as well. This article summarizes 15 years of research on the biotechnological strains of microbes widely used as producers of various biological substances for industrial purposes, and their environmental and biotechnological applications. In our survey, we tried to evaluate possible adverse effects (general toxicity and damage to the immune system, potential sensitizing effects, and damage to normal microbiota caused by these microbes. It was shown that microscopical fungi of genera Aspergillus, Penicillium and Candida, and some gram-negative bacteria can affect the immune system and disrupt the normal balance of microbial flora of the intestinal tract in rats. The actinomycetes are less dangerous in that they cause fewer side effects. The investigation data obtained can be used to develop safety and hygienic standards for industrial microbes that will help decrease or minimize the occupational risk of infection or damage to the immune system when working with biotechnological strains of microbes.

  16. A systems engineering perspective on process integration in industrial biotechnology

    NARCIS (Netherlands)

    Kiss, Anton A.; Grievink, Johan; Rito-Palomares, Marco

    2015-01-01

    Biotechnology has many applications in health care, agriculture, industry and the environment. By using renewable raw materials, biotechnology contributes to lowering greenhouse gas emissions and moving away from a petro-based towards a circular sustainable economy. However, major developments are

  17. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  18. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: A biodiesel plant

    KAUST Repository

    Kumar, Nitish

    2015-08-14

    Ever increasing demand for energy sources and reduction of non-renewable fossil fuel reserves have lead to exploration of alternative and renewable energy sources. Due to wide distribution, agronomic suitability, and desirable oil properties, J. curcas has been identified as a renewable and alternative energy source of biodiesel. Large scale commercial cultivation of this crop would not only be environmentally friendly and be worthwhile in carbon sequestration but also in decreasing the energy supply pressures. Wide adaptation across geographic regions, short gestation period compared to most tree species, rapid growth, hardiness, optimum plant size, and easy propagation in combination make this species suitable for large scale cultivation on barren lands. The limited information of the genetics and inheritance of desirable traits, unpredictable and low yields, the limited diversity and susceptibility to diseases and insects are however, key limitations in fruitful farming of J. curcas. In this review, an effort is made to project the current biotechnology and molecular biology tools employed in the direction of, evaluating the genetic diversity and phylogeny revelation of Jatropha spp., identification of genetic markers for desirable traits, development of efficient micropropagation and regeneration system, and genetic transformation methods for J. curcas. © 2015 Elsevier B.V.

  19. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  20. Genome engineering and parthenocloning in the silkworm, Bombyx mori

    Czech Academy of Sciences Publication Activity Database

    Zabelina, V.; Klymenko, V.; Tamura, T.; Doroshenko, K.; Liang, H.; Sezutsu, H.; Sehnal, František

    2015-01-01

    Roč. 40, č. 3 (2015), s. 645-655 ISSN 0250-5991 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GAP502/10/2382 Institutional support: RVO:60077344 Keywords : genomic cloning * genetic engineering * insect biotechnology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.419, year: 2015 http://www. ias .ac.in/jbiosci/sep2015/645.pdf

  1. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  2. Application of biotechnology for the domestication of Dacryodes edulis

    African Journals Online (AJOL)

    Biotechnology applications give a scope for rapid improvement and also facilitate the breeding program. Advantages of biotechnology application using molecular markers in breeding programs includes: study of genetic diversity, DNA fingerprinting of individuals, easy identification of specific traits or genes of interest, rapid ...

  3.   Biotechnology in Danish forestry - Christmas trees and Biofuels

    DEFF Research Database (Denmark)

    Find, Jens

    for development of additional biotechnological breeding technologies as e.g. genetic transformation, and because SE allows for storage of elite germ plasm over extended periods in liquid nitrogen. The combination of SE and other biotechnological breeding tools permit for relative fast and market oriented breeding...

  4. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  5. Transboundary movements of genetically modified organisms and ...

    African Journals Online (AJOL)

    Biotechnology or the engineering of the genetic material of species can give way to avenues of possibilities for the benefit of people, fauna and flora but also has the potential of posing untold and undiscovered threats to human beings and other living organisms. One of the first attempts to legislate on international rules on ...

  6. Applied optics fundamentals and device applications nano, MOEMS, and biotechnology

    CERN Document Server

    Mentzer, Mark

    2011-01-01

    How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines

  7. Genetic Engineering of Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min

    2016-01-01

    Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.

  8. Flavonoid engineering of flax potentiate its biotechnological application

    Directory of Open Access Journals (Sweden)

    Prescha Anna

    2011-01-01

    Full Text Available Abstract Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol, phenolic acids (coumaric, ferulic, synapic acids and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a

  9. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    Admin

    technologies. The use of biotechnological tools and “bioprospecting” will open new vistas in medicine, agriculture, silviculture, horticulture, environment and other important issues. This paper reviews ... E-mail: rankangani@yahoo.com. human needs ..... (iii) Particle mediated gene transfer, using gene gun. REFERENCES.

  10. Teacher-to-Teacher: An Annotated Bibliography on DNA and Genetic Engineering.

    Science.gov (United States)

    Mertens, Thomas R., Comp.

    1984-01-01

    Presented is an annotated bibliography of 24 books on DNA and genetic engineering. Areas considered in these books include: basic biological concepts to help understand advances in genetic engineering; applications of genetic engineering; social, legal, and moral issues of genetic engineering; and historical aspects leading to advances in…

  11. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  12. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    Science.gov (United States)

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  14. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  15. Knowledge and Attitudes Towards Biotechnology of Elementary Education Preservice Teachers: The first Spanish experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-11-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.

  16. Plant responses to environmental stresses-from gene to biotechnology.

    Science.gov (United States)

    Ahanger, Mohammad Abass; Akram, Nudrat Aisha; Ashraf, Muhammad; Alyemeni, Mohammed Nasser; Wijaya, Leonard; Ahmad, Parvaiz

    2017-07-01

    Increasing global population, urbanization and industrialization are increasing the rate of conversion of arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that agriculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver. Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental extremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean. The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and challenges in developing stress-tolerant crop cultivars are discussed.

  17. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  18. Role of Biotechnology in Animal Production Systems in Hot Climates

    Directory of Open Access Journals (Sweden)

    P. J. Hansen

    1996-01-01

    Full Text Available Developments in the biological sciences in the last three decades have revolutionized mankind's ability to manipulate the genetics, cell biology and physiology of biological organisms. These techniques, collectively termed biotechnology, create the opportunity for modifying domestic animals in ways that markedly increase the efficiency of production. Among the procedures being developed for animal production systems are marker-assisted selection of specific alleles of a gene that are associated with high production, production of transgenic animals , super ovulation and embryo transfer, in vitro fertilization, embryo sexing and cloning, production of large amounts of previously-rare proteins through use of genetically -engineered bacteria or other cells, and identification of new biologically-active molecules as potential regulators of animal function. To date, most uses of biotechnology have concentrated on problems of general relevance to animal agriculture rather than specific problems related to livestock production in hot climates. However, it is likely that biotechnology will be used for this latter purpose also. Strategies to increase disease resistance using marker-assisted selection, production of transgenic animals expressing viral proteins, and recombinant cytokines to enhance immune function should prove useful to reducing the incidence and seventy of various tropical diseases. Additionally, there are methods to reduce effects of heat stress on oestrus detection and establishment of pregnancy. These include remote sensing of oestrus, ovulation synchronization systems and embryo transfer. More research regarding the physiological processes determining heat tolerance and of the pathways through which heat stress alters physiological function will be required before molecular biology techniques can be used to reduce the adverse effects of heat stress on animal production.

  19. International Trade in Biotechnology Products and Strategic Mandatory Labelling

    OpenAIRE

    Jinji, Naoto

    2003-01-01

    This paper examines strategic motives to impose mandatory labelling of biotechnology products when consumers perceive these products as being of lower quality. When a foreign dominant firm produces a biotechnology product, it is shown that without mandatory labelling fringe firms, which produce a conventional product, provide voluntary labelling as long as voluntary labelling is fully credible. Information on which product is biotechnologically engineered is hence completely disclosed without...

  20. Paper Genetic Engineering.

    Science.gov (United States)

    MacClintic, Scott D.; Nelson, Genevieve M.

    Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…

  1. Genetically engineered trees for plantation forests: key considerations for environmental risk assessment.

    Science.gov (United States)

    Häggman, Hely; Raybould, Alan; Borem, Aluizio; Fox, Thomas; Handley, Levis; Hertzberg, Magnus; Lu, Meng-Zu; Macdonald, Philip; Oguchi, Taichi; Pasquali, Giancarlo; Pearson, Les; Peter, Gary; Quemada, Hector; Séguin, Armand; Tattersall, Kylie; Ulian, Eugênio; Walter, Christian; McLean, Morven

    2013-09-01

    Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment. © 2013 ILSI Research Foundation. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Experimental Engineering Section semiannual progress report, March 1-August 31, 1976. Volume 2. Biotechnology and environmental programs

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Mrochek, J. E. [comps.

    1978-03-01

    This volume contains the progress report of the biotechnology and environmental programs in the Experimental Engineering Section of the Chemical Technology Division. Research efforts in these programs during this report period have been in five areas: (1) environmental research; (2) centrifugal analyzer development; (3) advanced analytical systems development; (4) bioengineering research; and (5) bioengineering development. Summaries of these programmatic areas are contained in Volume I.

  4. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    Science.gov (United States)

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  5. Application of biotechnology in genetics and breeding of tall fescue

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Tall fescue (Festuca arundinacea Schred.) is an important lawn and pasture grass in agriculture, animal husbandy and lawn industry. The historical and present situations of tall fescue breeding were briefly introduced, and advances in the researches of molecular biology and germplasm enhancement by biotechnology in tall fescue were reviewed in the paper, which would provide the references for tall fescue breeding by biotechnology. (authors)

  6. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  7. Is Judgement of Biotechnological Ethical Aspects Related to High School Students' Knowledge?

    Science.gov (United States)

    Črne-Hladnik, Helena; Hladnik, Aleš; Javornik, Branka; Košmelj, Katarina; Peklaj, Cirila

    2012-05-01

    Quantitative and qualitative studies of various aspects of the perception of biotechnology were conducted among 469 Slovenian high school students of average age 17 years. Our research aimed to explore relationships among students' pre-knowledge of molecular and human genetics, and their attitudes to four specific biotechnological applications. These applications-Bt corn, genetically modified (GM) salmon, somatic and germ line gene therapy (GT)-were investigated from the viewpoints of usefulness, moral acceptance and risk perception. In addition, patterns and quality of moral reasoning related to the biotechnological applications from the aspect of moral acceptability were examined. Clear gender differences were found regarding the relationship between our students' pre-knowledge of genetics and their attitudes to biotechnological applications. While females with a better genetics background expressed a higher risk perception in the case of GM salmon, their similarly well-educated male colleagues emphasized the risk associated with the use of germ line GT. With all four biotechnological applications, patterns of both rationalistic-deontological and teleological-and intuitive moral reasoning were identified. Students with poorer genetics pre-knowledge applied an intuitive pattern of moral reasoning more frequently than their peers with better pre-knowledge. A pattern of emotive reasoning was detected only in the case of GM salmon. A relatively low quality of students' moral reasoning, as demonstrated by their brief and small number of supporting justifications (explanations), show that there is a strong need for practising skills of argumentation about socio-scientific issues in Slovenian high schools on a much larger scale. The implications for future research and classroom applications are discussed.

  8. Applications of biotechnology in olive | Cançado | African Journal of ...

    African Journals Online (AJOL)

    Many scientific and technological fields make use of biotechnology. Among the most important applications of biotechnology in agriculture are large-scale commercial micropropagation, genetic transformation and the development of transgenic varieties, embryo rescue in plant breeding programs, genotyping based on ...

  9. Yeast biotechnology: teaching the old dog new tricks.

    Science.gov (United States)

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  10. From applied microbiology to biotechnology: science, medicine and industrial renewal.

    Science.gov (United States)

    Bud, Robert

    2010-09-20

    In the late 1970s politicians and civil servants were acutely aware of the chronic decline of the manufacturing sector as a source of employment in Britain. At a time of fear of mass unemployment, sources of new work were urgently sought. Biotechnology had been promoted by visionaries since the early twentieth century. With oil prices soaring, its potential to produce substitutes for petroleum derivatives seemed newly attractive. At the beginning of 1976, John Bu'Lock at Manchester brought the attention of the new President of the Royal Society, Lord Todd, to the developments in enzyme and fermentation technologies. Both the Society and government began to take biotechnology seriously. In 1979 the Society organized a groundbreaking meeting, 'New horizons in industrial microbiology'. In parallel, John Ashworth, the chief scientist of the government think-tank the Central Policy Review Staff, prompted by American developments in genetic engineering, its commercial exploitation and regional development, led thinking among government officials. The Spinks enquiry into biotechnology was consequently formed in 1979 as a collaborative enterprise of the Advisory Council for Applied Research and Development, the Advisory Board for the Research Councils and the Royal Society. The recommendations for far-reaching collaboration between research councils, government and industry were not fully implemented. However, even the limited implementation led to new models of science that would be significant in the emergence of a reconstruction of science.

  11. Genetically engineered orange petunias on the market

    OpenAIRE

    Bashandy, Hany; Teeri, Teemu Heikki

    2017-01-01

    Main conclusion Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20?years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce. Electronic supplementary material The online version of ...

  12. Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles.

    Science.gov (United States)

    Zhang, Yu; Li, Xuegong; Bartlett, Douglas H; Xiao, Xiang

    2015-06-01

    A key aspect of marine environments is elevated pressure; for example, ∼70% of the ocean is at a pressure of at least 38MPa. Many types of Bacteria and Archaea reside under these high pressures, which drive oceanic biogeochemical cycles and catalyze reactions among rocks, sediments and fluids. Most marine prokaryotes are classified as piezotolerant or as (obligate)-piezophiles with few cultivated relatives. The biochemistry and physiology of these organisms are largely unknown. Recently, high-pressure cultivation technology has been combined with omics and DNA recombination methodologies to examine the physiology of piezophilic marine microorganisms. We are now beginning to understand the adaptive mechanisms of these organisms, along with their ecological functions and evolutionary processes. This knowledge is leading to the further development of high-pressure-based biotechnology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Engineering synergy in biotechnology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Fussenegger, Martin; Keasling, Jay

    2014-01-01

    In this article, the author focuses on approaches in metabolic engineering and synthetic biology for the creation of efficient cell factories, which can be bused to convert biomass and other feedstocks for the generation of chemicals. Topics discussed include development of restriction enzymes......, engineering plasmids and recyclable markers, production of 1,3-propanediol using a metabolically engineered Escherichia coli and production of isobutanol by using metabolically engineered yeast....

  14. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  15. The plant biotechnology flight: Is Africa on board? | Obembe | African ...

    African Journals Online (AJOL)

    The development of plant biotechnologies has been very rapid in recent times, especially in the developed countries. The technologies have created a new branch of biotechnology known as molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in large quantities. An evaluation ...

  16. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  17. Perspectives of genetic engineering in radiobiology

    International Nuclear Information System (INIS)

    Khanson, K.P.; Zvonareva, N.B.; Evtushenko, V.I.

    1988-01-01

    Present evidence on the use of genetic engineering methods in studying the molecular mechanism of radiation damage and repair of DNA, as well as radiation mutagenesis and carcinogenesis has been summarized. The new approach to radiobiological research has proved to be extremely fruitful. Some previously unknown types of structural disorders in DNA molecule have been discovered, some repair genes isolated and their primary structure established, some aspects of radiation mutagenesis elucidated, and research into disiphering the molecular bases of neoplastic transformations of exposed cells are being successfully investigated. The perspectives of using genetic engineering methods in radiobiology are discussed

  18. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    Science.gov (United States)

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  20. Biotecnologia aplicada ao melhoramento genético do cafeeiro Biotechnology applied to the genetic improvement of coffee plant

    Directory of Open Access Journals (Sweden)

    Tâmara Prado de Morais

    2011-05-01

    Full Text Available O melhoramento genético do cafeeiro mediante técnicas convencionais é trabalhoso e demorado. A biotecnologia oferece estratégias alternativas para auxiliar na multiplicação e no desenvolvimento de novas variedades com resistência a estresses bióticos e abióticos, melhor qualidade de bebida e maturação mais uniforme dos frutos. As técnicas de cultura de tecidos têm possibilitado a obtenção de grande número de plantas e a garantia da uniformidade genética do material. O emprego de marcadores moleculares, principalmente através da seleção assistida, facilitou o rápido progresso do melhoramento genético da cultura, assim como a transformação genética, via cultura e fusão de protoplastos, biobalística ou mediada por Agrobacterium sp. Esta revisão objetiva sumarizar o histórico, situação atual e perspectivas da biotecnologia no melhoramento genético do cafeeiro.Genetic improvement of coffee through classical breeding is laborious and time consuming. Biotechnology offers alternative strategies to assist multiplication and development of new and improved coffee varieties, including those resistant to biotic and abiotic stresses, with better cup quality, and with uniform fruit maturation. Tissue culture techniques have enabled the production of a large number of plants with genetic uniformity. The use of molecular markers, especially through assisted selection, led to rapid progress of coffee plant breeding, as well as the use of genetic transformation by protoplasts culture and fusion, biobalistics, or Agrobacterium-mediated. This review provides a summary of biotechnology history, current situation and directions applied to the genetic improvement of coffee plant.

  1. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.

  2. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering

    Science.gov (United States)

    Ramsey, Paul

    1972-01-01

    Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)

  3. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    Science.gov (United States)

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  4. MAJOR ADVANCES IN BIOTECHNOLOGY USED ON ARTIFIAL INSEMINATION OF HORSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    C. P. T. Carvalho

    2015-10-01

    Full Text Available The equine industry is increasingly gaining prominence in sports and in generating income. The growing interest in horses resulted in the emergence of biotechnologies that provide the solution for most reproductive problems. Several biotechnology have been used in AI, including the sperm sexing by flow cytometry, embryo transfer (ET associated with sexed semen and the use of fluorescent probes for observation of plasma membrane integrity, acrosome and sperm mitochondria. The purpose of the review was to address some impact of biotechnologies used in equine reproduction. These technologies have contributed in increasing the genetic potential of animals of zootechnical interest, the preservation of genetic material and as well as overcome fertility problems

  5. Genetic Engineering: The Modification of Man

    Science.gov (United States)

    Sinsheimer, Robert L.

    1970-01-01

    Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…

  6. The biotechnology (genetic transformation and molecular biology) of Bixa orellana L. (achiote).

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Dobránszki, Judit; Rivera-Madrid, Renata

    2018-05-10

    Genetic transformation allows for greater bixin or norbixin production in achiote. Knowledge of genes that control the biosynthesis of these important secondary metabolites will allow for targeted amplification in transgenic plants. Annatto is a natural dye or coloring agent derived from the seeds, or their arils, of achiote (Bixa orellana L.), and is commercially known as E160b. The main active component of annatto dye is water-insoluble bixin, although water-soluble norbixin also has commercial applications. Relative to other antioxidants, bixin is light- and temperature stable and is thus safe for human consumption. Bixin is, therefore, widely applied as a dye and as an antioxidant in the medico-pharmaceutical, food, cosmetic, and dye industries. Even though bixin has also been isolated from leaves and bark, yield is lower than from seeds. More biotechnology-based research of this industrial and medicinal plant is needed. Building on provisional genetic transformation studies, it would be advantageous to transform genes that could result in greater bixin or norbixin production. Reliable protocols for the extraction of bixin and norbixin, as well as deeper knowledge of the genes that control the biosynthesis of these important secondary metabolites will allow for targeted amplification in transgenic plants.

  7. Nigerian Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology publishes original research papers, shot ... State Univ., Mubi, Nigeria. yada525@adsu.edu.ng, Molecular biology and bioremediation ... Dr. Kelechi C. Njoku, Dept. of Cell Biology & Genetics, University of Lagos, Lagos, kecynjoku@gmail.com, Environmental Biology ... HOW TO USE AJOL.

  8. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  9. Where will the wood come from? Plantation forests and the role of biotechnology.

    Science.gov (United States)

    Fenning, Trevor M; Gershenzon, Jonathan

    2002-07-01

    Wood is almost as important to humanity as food, and the natural forests from which most of it is harvested from are of enormous environmental value. However, these slow-growing forests are unable to meet current demand, resulting in the loss and degradation of forest. Plantation forests have the potential to supply the bulk of humanity's wood needs on a long-term basis, and so reduce to acceptable limits the harvest pressures on natural forests. However, if they are to be successful, plantation forests must have a far higher yield of timber than their natural counterparts, on much shorter rotation times. To achieve this in reasonable time, biotechnology must be applied to the tree-improvement process, for which large increases in public and private capital investment are needed. However, additional obstacles exist in the form of opposition to plantations, some forest ecocertification schemes, and concerns about aspects of forest biotechnology, especially genetic engineering. It is the intention of this article to explain, in detail, why plantation forests are needed to sustainably meet the world's demand for wood, why they are not being developed fast enough, and why the application of biotechnology to tree improvement is essential to speeding up this process.

  10. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    Science.gov (United States)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  11. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  12. Development and Validation of an Instrument to Measure University Students' Biotechnology Attitude

    Science.gov (United States)

    Erdogan, Mehmet; Ozel, Murat; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The impact of biotechnologies on peoples' everyday lives continuously increases. Measuring young peoples' attitudes toward biotechnologies is therefore very important and its results are useful not only for science curriculum developers and policy makers, but also for producers and distributors of genetically modified products. Despite of…

  13. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Emerging Genetic Counselor Roles within the Biotechnology and Pharmaceutical Industries: as Industry Interest Grows in Rare Genetic Disorders, How are Genetic Counselors Joining the Discussion?

    Science.gov (United States)

    Field, Tessa; Brewster, Stephanie Jo; Towne, Meghan; Campion, MaryAnn W

    2016-08-01

    Traditionally, the biotechnology and pharmaceutical industry (BPI) has focused drug development at the mass-market level targeting common medical issues. However, a recent trend is the development of therapies for orphan or rare disorders, including many genetic disorders. Developing treatments for genetic disorders requires an understanding of the needs of the community and translating genomic information to clinical and non-clinical audiences. The core skills of genetic counselors (GCs) include a deep knowledge of genetics and ability to communicate complex information to a broad audience, making GCs a choice fit for this shift in drug development. To date there is limited data defining the roles GCs hold within this industry. This exploratory study aimed to define the roles and motivation of GCs working in BPI, assess job satisfaction, and identify translatable skills and current gaps in GC training programs. The authors surveyed 26 GCs working in BPI in the United States; 79 % work for companies focused on rare disorders. GC positions in BPI are growing, with 57 % of respondents being the first GC in their role. GCs in BPI continue to utilize core genetic counseling competencies, though 72 % felt their training did not fully prepare them for BPI. These data suggest opportunities for exposure to BPI in GC training to better prepare future generations of GCs for these career opportunities. GC satisfaction was high in BPI, notably in areas traditionally reported as less satisfying on the National Society for Genetic Counselors Professional Status Survey: salary and advancement opportunities. BPI's growing interest in rare disorders represents a career opportunity for GCs, addressing both historic areas of dissatisfaction for GCs and BPI's genomic communication needs.

  15. Genetic engineering applied to agriculture has a long row to hoe.

    Science.gov (United States)

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  16. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  17. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  18. Effects of genetic engineering on the pharmacokinetics of antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K.

    1999-01-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment

  19. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  20. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology.

    Science.gov (United States)

    Neumann, Heinz; Neumann-Staubitz, Petra

    2010-06-01

    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology.

  1. Genetic Optimization Algorithm for Metabolic Engineering Revisited

    Directory of Open Access Journals (Sweden)

    Tobias B. Alter

    2018-05-01

    Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.

  2. Biotechnology 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  3. Rabbit defensin (NP-1) genetic engineering of plant | Ting | African ...

    African Journals Online (AJOL)

    Rabbit defensin (NP-1) genetic engineering of plant. ... Log in or Register to get access to full text downloads. ... defensin genetic engineering of plant in recent years, and also focuses on the existing problems and new strategies in this area.

  4. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?

    Science.gov (United States)

    Clarke, Jihong Liu; Waheed, Mohammad Tahir; Lössl, Andreas G; Martinussen, Inger; Daniell, Henry

    2013-09-01

    Aquaculture, the fastest growing food-producing sector, now accounts for nearly 50 % of the world's food fish (FAO in The state of world fisheries and aquaculture. FAO, Rome, 2010). The global aquaculture production of food fish reached 62.7 million tonnes in 2011 and is continuously increasing with an estimated production of food fish of 66.5 million tonnes in 2012 (a 9.4 % increase in 1 year, FAO, www.fao.org/fishery/topic/16140 ). Aquaculture is not only important for sustainable protein-based food fish production but also for the aquaculture industry and economy worldwide. Disease prevention is the key issue to maintain a sustainable development of aquaculture. Widespread use of antibiotics in aquaculture has led to the development of antibiotic-resistant bacteria and the accumulation of antibiotics in the environment, resulting in water and soil pollution. Thus, vaccination is the most effective and environmentally-friendly approach to combat diseases in aquaculture to manage fish health. Furthermore, when compared to >760 vaccines against human diseases, there are only about 30 fish vaccines commercially available, suggesting the urgent need for development and cost-effective production of fish vaccines for managing fish health, especially in the fast growing fish farming in Asia where profit is minimal and therefore given high priority. Plant genetic engineering has made significant contributions to production of biotech crops for food, feed, valuable recombinant proteins etc. in the past three decades. The use of plants for vaccine production offers several advantages such as low cost, safety and easy scaling up. To date a large number of plant-derived vaccines, antibodies and therapeutic proteins have been produced for human health, of which a few have been made commercially available. However, the development of animal vaccines in plants, especially fish vaccines by genetic engineering, has not yet been addressed. Therefore, there is a need to exploit

  5. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  6. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. [Importance of reproductive biotechnology in cattle in Europe].

    Science.gov (United States)

    Wrenzycki, C; Stinshoff, H

    2015-01-01

    Reproductive biotechnology has manifold applications and includes a great innovation potential in livestock. Due to the global changes the new findings and techniques can aid to meet the future challenges. The use of biotechnology in animal production can guarantee enough high quality food for the whole population. Genetic resources of animals can be preserved via sperm and embryo banking. Early diagnosis of hereditary defects, generation of offspring with predetermined sex and the avoidance of animal transports for breeding employing shipment of frozen embryos will improve animal welfare. A special application is the use of animal models for human assisted reproductive technologies. Therefore, not only in Germany research related to the methodologies in reproductive biotechnology and their improvement need to be supported.

  8. Genetic engineering of cyanobacteria as biodiesel feedstock.

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne.; Trahan, Christine Alexandra; Jones, Howland D. T.

    2013-01-01

    Algal biofuels are a renewable energy source with the potential to replace conventional petroleum-based fuels, while simultaneously reducing greenhouse gas emissions. The economic feasibility of commercial algal fuel production, however, is limited by low productivity of the natural algal strains. The project described in this SAND report addresses this low algal productivity by genetically engineering cyanobacteria (i.e. blue-green algae) to produce free fatty acids as fuel precursors. The engineered strains were characterized using Sandias unique imaging capabilities along with cutting-edge RNA-seq technology. These tools are applied to identify additional genetic targets for improving fuel production in cyanobacteria. This proof-of-concept study demonstrates successful fuel production from engineered cyanobacteria, identifies potential limitations, and investigates several strategies to overcome these limitations. This project was funded from FY10-FY13 through the President Harry S. Truman Fellowship in National Security Science and Engineering, a program sponsored by the LDRD office at Sandia National Laboratories.

  9. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    Science.gov (United States)

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  10. Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods.

    Science.gov (United States)

    Rugini, E; Cristofori, V; Silvestri, C

    2016-01-01

    In olive (Olea europaea L.) traditional methods of genetic improvement have up to now produced limited results. Intensification of olive growing requires appropriate new cultivars for fully mechanized groves, but among the large number of the traditional varieties very few are suitable. High-density and super high-density hedge row orchards require genotypes with reduced size, reduced apical dominance, a semi-erect growth habit, easy to propagate, resistant to abiotic and biotic stresses, with reliably high productivity and quality of both fruits and oil. Innovative strategies supported by molecular and biotechnological techniques are required to speed up novel hybridisation methods. Among traditional approaches the Gene Pool Method seems a reasonable option, but it requires availability of widely diverse germplasm from both cultivated and wild genotypes, supported by a detailed knowledge of their genetic relationships. The practice of "gene therapy" for the most important existing cultivars, combined with conventional methods, could accelerate achievement of the main goals, but efforts to overcome some technical and ideological obstacles are needed. The present review describes the benefits that olive and its products may obtain from genetic improvement using state of the art of conventional and unconventional methods, and includes progress made in the field of in vitro techniques. The uses of both traditional and modern technologies are discussed with recommendations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Religious voices in biotechnology: the case of gene patenting.

    Science.gov (United States)

    Hanson, M J

    1999-01-01

    On 18 May 1995, nearly 200 religious leaders joined with leading biotechnology critic Jeremy Rifkin in a press conference named the "Joint Appeal against Human and Animal Patenting," a move that many within the biotechnology industry could only interpret as seeking to inhibit biotechnological advance. What moral and religious concerns motivated this challenge to patenting? How could the biotechnology industry understand and respectfully attend to these concerns? What values were at play in the debates that followed the joint appeal? What lessons for future dialogue can be learned from attempts at conversation between the opposing positions? This essay is a report from a Hastings Center research project that accepted the task of addressing these questions. Specifically, the project focused on the patenting of human genetic material, a subset of the issues raised by the joint appeal.

  12. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  13. Biotechnology and the birth of a third culture.

    Science.gov (United States)

    Binetti, P

    2004-01-01

    Biotechnology represents such an important challenge for present day culture that one can speak of a biotechnological revolution in many other scientific fields as well, such as biology, clinical medicine, pharmacology, and genetic engineering. It also significantly affects political and economic choices to such a degree that they call for a new kind of attention from jurisprudence which has to regulate an ever changing world. Many important queries arise particularly at a bioethical level, issues that will also affect future generations. Scientific progress has unexpectedly widened the biological knowledge of human kind. Thanks to the contribution of continuously more refined and advanced technology, it has nurtured the hope of solving all problems and of overcoming all limits. The scientist's intellectual curiosity, encompassing these new resources, is spurred on by the desire for knowledge and understanding. However sometimes he loses sight of the repercussions and of the possible uses his achievements may have. Only a profound personal education, integrated with the scientist's technical and scientific expertise, will allow science to knock down some barriers, advancing constantly but without losing respect for man's dignity. However the separation between scientific and ethical expertise can only raise new barriers and create limits to the freedom of science which will appear just restrictive, while a kind of medieval obscurantism will be opposed to ethical rigour.

  14. Biotechnology and health Biotecnología y salud

    Directory of Open Access Journals (Sweden)

    Cardozo C.

    1998-12-01

    Full Text Available Biotechnology plays an important role in the Health Sciences. The production of immunoreagents and biological drugs, gene therapy, the food industry and the environmental protection have been using the molecular biology and genetic engineering knowledge to improve the quality of life. This review summarizes the contribution and impact of the Biotechnology to the advance of the Biomedical Sciences. The work is framed within the idea that the healthdisease process changes according to specific social and environmental conditions.La biotecnología ha adquirido una especial relevancia en el campo de la salud con el advenimiento de procesos como la inmunización, marcadores de riesgo de ciertas patologías, la terapia génica, la obtención de biofármacos, la protección y recuperación del medio ambiente o la producción de alimentos en los cuales se utilizan las metodologías propias de la biología molecular y la ingeniería genética, propiciando el mejoramiento de la calidad de vida. Se reseña la contribución y el impacto que ha tenido la biotecnología en el desarrollo y modernización de las ciencias de la salud dentro del concepto moderno e integral de proceso salud enfermedad como un estado continuamente cambiante inmerso en condiciones socioambientales particulares.

  15. Risk evaluation in biotechnology of environment

    International Nuclear Information System (INIS)

    Mazaheri Asadi, M.

    2003-01-01

    It is the Era of technology and many countries are adjusting their economy with it. The research on biotechnology is done with a logarithmic rate at different technologies such as pharmacy, agriculture, environment, food, oil, and etc. The relevant research would result in the production of new materials which are released into the environment. In many developed countries biotechnology is regarded as a firm base for economic development and without doubt plays a determined role in humane wealth and well-being, but this technology should be sustainable and controllable. The producer and consumer of biotechnology must think deeply about this matter and take into account the health and sustain ability of earth and the environment. Evaluation of ecological impacts of micro- organisms and manipulated genetically organism should be considered in all countries of the world and such an activities should be regulated and controlled as it was don in Canada under the supervision of Dept

  16. African Journal of Biotechnology - Vol 12, No 39 (2013)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Transgenic Bacillus thuringiensis (Bt) chickpea: India's most wanted genetically modified (GM) pulse crop ... from unpollinated ovary cultures of Ethiopian wheat (Triticum turgidum and Triticum aestivum) ...

  17. Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources

    Directory of Open Access Journals (Sweden)

    Katrin Pollmann

    2016-06-01

    Full Text Available Microorganisms have developed various mechanisms to deal with metals, thus providing numerous tools that can be used in biohydrometallurgical processes. “Biomining” processes—including bioleaching and biooxidation processes—facilitate the degradation of minerals, accompanied by a release of metals. These processes are especially attractive for low-grade ores and are used on an industrial scale mainly for sulfidic ores. In biosorption processes, biomass or certain biomolecules are used to bind and concentrate selected ions or other molecules from aqueous solutions. Biosorptive materials can be an environmentally friendly and efficient alternative to conventional materials, such as ion exchange resins. Other interesting mechanisms are bioaccumulation, bioflotation, bioprecipitation, and biomineralisation. Although these processes are well-known and have been studied in detail during the last decades, the recent strong progress of biotechnologies (e.g., genetic engineering and molecule design, as well as their combination with novel developments in material sciences (e.g., nanotechnologies facilitate new strategies for the application of biotechnologies in mineral processing. The article gives a summary of current activities in this field that are being performed in our group.

  18. Basic-education mexican teachers' knowledge of biotechnology and attitudes about the consumption of genetically modified foods.

    Science.gov (United States)

    Jiménez-Salas, Zacarías; Campos-Góngora, Eduardo; González-Martínez, Blanca E; Tijerina-Sáenz, Alexandra; Escamilla-Méndez, Angélica D; Ramírez-López, Erik

    2017-09-01

    Over the past few years, a new research field has emerged, focusing on the social-scientific criteria for the study of opinions toward genetically modified foods (GMFs), since these may be limiting factors for the success or failure of these products. Basic education is the first step in the Mexican education system, and teachers may wield an outsized influence on the attitudes and preferences of children, prospective future consumers of these products. To better understand the current state of knowledge of biotechnology issues and opinions toward the consumption of GMF of Mexican teachers, a questionnaire was distributed, and 362 Mexican teachers of basic education responded. The survey included questions about the benefits and risks of consuming GMF. The mean percentage of teachers expressing knowledge of a given topic in biotechnology was 50%. More than 60% of teachers believed that GMFs would be useful in preventing world hunger, while 39.2% considered GMF to be hazards for future generations. Although 47.0% reported not having enough knowledge about these topics, almost all (90.3%) respondents expressed an interest and willingness to learn about biotechnology. In light of the fact that teachers of basic education represent the first and potentially most lasting stage in the education of young children, this survey establishes the urgent need to develop strategies to improve the scientific knowledge of teachers and to facilitate decision making and the promotion of scientific and technological advances for their students. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):396-402, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Survey of chemical manure on morphological traits in Iranian Aloe ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... Full Length Research Paper ... 2National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. ... This experiment was conducted at the Institute of National Genetic Engineering and Biotechnology in.

  20. TMTI Task 1.6 Genetic Engineering Methods and Detection

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Lenhoff, R; Allen, J; Borucki, M; Vitalis, E; Gardner, S

    2009-12-04

    A large number of GE techniques can be adapted from other microorganisms to biothreat bacteria and viruses. Detection of GE in a microorganism increases in difficulty as the size of the genetic change decreases. In addition to the size of the engineered change, the consensus genomic sequence of the microorganism can impact the difficulty of detecting an engineered change in genomes that are highly variable from strain to strain. This problem will require comprehensive databases of whole genome sequences for more genetically variable biothreat bacteria and viruses. Preliminary work with microarrays for detecting synthetic elements or virulence genes and analytic bioinformatic approaches for whole genome sequence comparison to detect genetic engineering show promise for attacking this difficult problem but a large amount of future work remains.

  1. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  2. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  3. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Journal of Tropical Microbiology and Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    ... Microbial Physiology, Biochemistry of micro-organisms, Microbial Genetics, Molecular Biology, Bacteriology, Virology, Mycology, and Microbial Systematics. Both full length and short papers reporting original research making a significant contribution to microbiology and Biotechnology will be considered for publication.

  5. The use of GMOs (genetically modified organisms): agricultural biotechnology or agricultural biopolitics?

    Science.gov (United States)

    Nuti, Marco; Felici, Cristiana; Agnolucci, Monica

    2007-01-01

    Agricultural biotechnologies embrace a large array of conventional and modern technologies, spanning from composting organic by-products of agriculture to innovative improvement of quality traits of about twenty out of the mostly cultivated plants. In EU a rather restrictive legislative framework has been installed for GMOs, requiring a risk assessment disproportionate with respect to conventional agriculture and organic farming products. The latter are far from being proved safe for human and animal health, and for the environment. Biotechnology of GMOs has been overtaken by biopolitics. On one side there are biotechnological challenges to be tackled, on another side there is plenty of ground for biopolitical decisions about GMOs. Perhaps the era of harsh confrontation could be fruitfully replaced by sensible cooperation, in order to get a sustainable agricultural development.

  6. African Journal of Biotechnology - Vol 11, No 72 (2012)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Microsatellite based investigation of genetic diversity in 24 synthetic wheat cultivars ... The influence of protective properties of packaging materials and application of modified atmosphere on packed dried ...

  7. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.

    Science.gov (United States)

    Krujatz, Felix; Lode, Anja; Seidel, Julia; Bley, Thomas; Gelinsky, Michael; Steingroewer, Juliane

    2017-10-25

    The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Radiation application on development of marker genes for genetic manipulation

    International Nuclear Information System (INIS)

    Lee, Young Il

    1997-04-01

    This state of art report was dealt with the recent progress of genetic engineering techniques and prospect of gene manipulation. Especially the selection of new genetic marker genes such as variants to environmental stress, pest or insect resistance, herbicide resistance and nutritional requirement was reviewed by using plant cell and tissue culture combined with radiation mutation induction. Biotechnology has taken us from the era hybrid plants to the era of transgenic plants. Although there are still many problems to solve in transformation method and the regeneration of transformed cell and tissue. Genetic marker genes are very important material to improve the technique of genetic manipulation. Most of the genes have been developed by radiation. (author). 180 refs., 6 tabs

  9. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  10. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    Science.gov (United States)

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. African Journal of Biotechnology - Vol 9, No 21 (2010)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Genotype x Environment interaction for quality traits in durum wheat cultivars adapted to different ... Effects of genetically modified herbicide-tolerant (GMHT) rice on biodiversity of weed in paddy fields ...

  13. Industrial College of the Armed Forces Industry Studies 2003: Biotechnology

    National Research Council Canada - National Science Library

    Aichouche, Abdelaziz

    2003-01-01

    Biotechnology is a discipline that integrates biology, chemistry, physiology, information technology, engineering, and nanotechnology with the potential to revolutionize every aspect of modern life...

  14. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    Science.gov (United States)

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  15. Refresher Course in Plant Genetic Engineering

    Indian Academy of Sciences (India)

    A Refresher Course in Plant Genetic Engineering for postgraduate College ... that the teachers can perform the same set of experiments in their respective College/ ... research. The teachers are encouraged to add a note on their 'expectations' ...

  16. Developing legal regulatory frameworks for modern biotechnology ...

    African Journals Online (AJOL)

    This paper looks at attempts that have been made to develop legal regulatory frameworks for modern biotechnology. The discussion is limited to the regulation of Genetically Modified Organisms (GMO) technology by the two leading producers and exporters of GMOs in Africa: South Africa and Kenya. The international and ...

  17. Engineering microbial electrocatalysis for chemical and fuel production.

    Science.gov (United States)

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops.

    Science.gov (United States)

    Vasil, Indra K

    2008-09-01

    Plant biotechnology is founded on the principles of cellular totipotency and genetic transformation, which can be traced back to the Cell Theory of Matthias Jakob Schleiden and Theodor Schwann, and the discovery of genetic transformation in bacteria by Frederick Griffith, respectively. On the 25th anniversary of the genetic transformation of plants, this review provides a historical account of the evolution of the theoretical concepts and experimental strategies that led to the production and commercialization of biotech (transformed or transgenic) plants expressing many useful genes, and emphasizes the beneficial effects of plant biotechnology on food security, human health, the environment, and conservation of biodiversity. In so doing, it celebrates and pays tribute to the contributions of scores of scientists who laid the foundation of modern plant biotechnology by their bold and unconventional thinking and experimentation. It highlights also the many important lessons to be learnt from the fascinating history of plant biotechnology, the significance of history in science teaching and research, and warns against the danger of the growing trends of ignoring history and historical illiteracy.

  19. Characterization Study of Accelerator for Application in Biotechnology

    International Nuclear Information System (INIS)

    Yazid-M; Muryono, H.

    2000-01-01

    The characterization of accelerator for application in biotechnology was studied. Accelerator is a machine to produce ion beam particles. Accelerator can be used for biotechnology experiments. Ion beam particles irradiation on the biological material will produced variabilities of genetics and induced mutations. In general, new varieties were found by hybridization method or mutation breeding method by gamma rays irradiation. Ion beam particles can be used for biological material irradiation to find variabilities of genetics and induced mutations. The high percentage of mutation rate and LET value by ion beam particles irradiation was found higher than by gamma rays irradiation. Ion beam particle irradiation can also be controlled and foewed to target in biological material. The characterization of accelerator needed for biotechnology experiments are types of accelerator (Tandem Van de Graff, AVF Cyclotron, Synchrotron, Rilac), types of ion particles (C, He, electron, Ar, Ne, Ni, Al, Xe and Au), range of energy (5 - 2.090 MeV), range of dose irradiation (10 - 250 Gy), range of ion current (0.02 - 20 nA), range of ion beam particles diameter (10 - 100 μm), range of LET value (300 - 1.800 keV/μm ) and irradiation time (5 - 30 seconds/samples). (author)

  20. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  1. Plant synthetic biology: a new platform for industrial biotechnology.

    Science.gov (United States)

    Fesenko, Elena; Edwards, Robert

    2014-05-01

    Thirty years after the production of the first generation of genetically modified plants we are now set to move into a new era of recombinant crop technology through the application of synthetic biology to engineer new and complex input and output traits. The use of synthetic biology technologies will represent more than incremental additions of transgenes, but rather the directed design of completely new metabolic pathways, physiological traits, and developmental control strategies. The need to enhance our ability to improve crops through new engineering capability is now increasingly pressing as we turn to plants not just for food, but as a source of renewable feedstocks for industry. These accelerating and diversifying demands for new output traits coincide with a need to reduce inputs and improve agricultural sustainability. Faced with such challenges, existing technologies will need to be supplemented with new and far-more-directed approaches to turn valuable resources more efficiently into usable agricultural products. While these objectives are challenging enough, the use of synthetic biology in crop improvement will face public acceptance issues as a legacy of genetically modified technologies in many countries. Here we review some of the potential benefits of adopting synthetic biology approaches in improving plant input and output traits for their use as industrial chemical feedstocks, as linked to the rapidly developing biorefining industry. Several promising technologies and biotechnological targets are identified along with some of the key regulatory and societal challenges in the safe and acceptable introduction of such technology.

  2. African Journal of Biotechnology - Vol 7, No 23 (2008)

    African Journals Online (AJOL)

    Oryza sativa) and Tog5681 (Oryza glaberrima) · EMAIL FREE FULL TEXT EMAIL ... Perceptions and attitudes of geography teachers to biotechnology: A study focusing on genetically modified (GM) foods · EMAIL FREE FULL TEXT EMAIL FREE ...

  3. Educational Awareness of Biotechnology Issues among Undergraduate Students at the United Arab Emirates University

    Science.gov (United States)

    AbuQamar, Synan; Alshannag, Qasim; Sartawi, Abdelaziz; Iratni, Rabah

    2015-01-01

    Due to its valuable benefits and potential risks, there is a progressing debate among opponents and proponents of biotechnology in recent decades. Previous studies have shown that lack of knowledge about biotechnology remains the concern about genetically modified organisms/food (GMO/GMF). This study assessed levels of educational awareness…

  4. Biotechnology 2009

    International Nuclear Information System (INIS)

    2009-12-01

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  5. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  6. Essential Features of Responsible Governance of Agricultural Biotechnology.

    Science.gov (United States)

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  7. Biosafety considerations for selectable and scorable markers used in cassava (Manihot esculenta Crantz) biotechnology.

    Science.gov (United States)

    Petersen, William; Umbeck, Paul; Hokanson, Karen; Halsey, Mark

    2005-01-01

    Cassava is an important subsistence crop grown only in the tropics, and represents a major source of calories for many people in developing countries. Improvements in the areas of resistance to insects and viral diseases, enhanced nutritional qualities, reduced cyanogenic content and modified starch characteristics are urgently needed. Traditional breeding is hampered by the nature of the crop, which has a high degree of heterozygosity, irregular flowering, and poor seed set. Biotechnology has the potential to enhance crop improvement efforts, and genetic engineering techniques for cassava have thus been developed over the past decade. Selectable and scorable markers are critical to efficient transformation technology, and must be evaluated for biosafety, as well as efficiency and cost-effectiveness. In order to facilitate research planning and regulatory submission, the literature on biosafety aspects of the selectable and scorable markers currently used in cassava biotechnology is surveyed. The source, mode of action and current use of each marker gene is described. The potential for toxicity, allergenicity, pleiotropic effects, horizontal gene transfer, and the impact of these on food or feed safety and environmental safety is evaluated. Based on extensive information, the selectable marker genes nptII, hpt, bar/pat, and manA, and the scorable marker gene uidA, all have little risk in terms of biosafety. These appear to represent the safest options for use in cassava biotechnology available at this time.

  8. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  9. Genetic engineering and sustainable production of ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Clarke, Jihong Liu; Müller, Renate

    2012-01-01

    Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduct......Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources....... This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed......, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors...

  10. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  11. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Next generation industrial biotechnology based on extremophilic bacteria.

    Science.gov (United States)

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2018-04-01

    Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure. NGIB also requires less capital investment and reduces demand on highly trained engineers. The foundation for the simplified NGIB is microorganisms that resist contaminations by other microbes, one of the examples is rapid growing halophilic bacteria inoculated under high salt concentration and alkali pH. They have been engineered to produce multiple products in various scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Agenda 21: biotechnology at the United Nations Conference on Environment and Development.

    Science.gov (United States)

    Taylhardat, A R; Zilinskas, R A

    1992-04-01

    Preparation has yet to be completed for the 1992 Earth Summit, UN Conference on Environment and Development (UNCED), in Rio de Janeiro, Brazil. Nonetheless, it has been planned as a forum in which recommendations will be made to governments and international organizations on how to alleviate environmental damage caused by human activities and how to prevent future damage without retarding development in the Third World. It will declare basic principles for national and individual conduct regarding environmental preservation and sustainable development; adopt international conventions to protect biodiversity and manage climatic change; lay out Agenda 21 activities as specified by UNCED; provide an agenda to help Third World governments manage environmental matters; and provide an agenda for improving the transfer of technology to developing countries. Where biotechnology is concerned, scientists and policy makers in developing countries have shown their interest. Limited resources and capabilities, however, constrain their abilities to engage in serious research and development. International organizations such as the UN Industrial Development Organization (UNIDO) may help UNCED and developing countries with biotechnology. Since 1986, UNIDO has held the International Centre for Genetic Engineering and Biotechnology (ICGEB) as a special project. The ICGEB conducts research and development (R&D) on high priority topics in developing countries; trains scientific and technical personnel from member countries in advanced biotechnology techniques; helps member countries implement and operate ICGEB-affiliated R&D and training centers; and manages an information exchange for internationally affiliated centers. To maximize the potential of biotechnology to help Third World nations clear their environments of pollutants while safely exploiting natural resources, organizations should promote full use of available training resources; promote biosafety and the dissemination of

  14. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  15. Women in sustainable agriculture and food biotechnology key advances and perspectives on emerging topics

    CERN Document Server

    2017-01-01

    This volume describes the contributions made by women scientists to the field of agricultural biotechnology, the most quickly adopted agricultural practice ever adopted. It features the perspectives of women educators, researchers and key stakeholders towards the development, implementation and acceptance of this modern technology. It describes the multiplying contemporary challenges in the field, how women are overcoming technological barriers, and their thoughts on what the future may hold. As sustainable agricultural practices increasingly represent a key option in the drive towards building a greener global community, the scientific, technological and implementation issues covered in this book are vital information for anyone working in environmental engineering. Provides a broad analysis of the science of agriculture, focusing on the contributions of women to the field, from basic research to applied technology Offers insights into hot topics in the field across the life cycle, from genetic engineering t...

  16. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  17. News in engineering education in Spain effective from 2010 in presence of external changes and mixed crisis, looking mostly to agro and civil engineers

    Science.gov (United States)

    Anton, J. M.; Sanchez, M. E.; Grau, J. B.; Andina, D.

    2012-04-01

    in laboratories in Campus Monte-Gancedo for Biotechnology of Plants and Computational Biotechnology. Curricula include Basics, Engineering, Practices, Visits, English, "project of end of career", Stays. Some masters will conduce to specific professional diploma, list includes now Agro-Engineering, Agro-Forestal Biotechnology, Agro and Natural Resources Economy, Complex Physical Systems, Gardening and Landscaping, Rural Genie, Phytogenetic Resources, Plant Genetic Resources, Environmental Technology for Sustainable Agriculture, Technology for Human Development and Cooperation.

  18. Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Christopher [Massachusetts Institute of Technology

    2014-07-01

    SEED2014 focused on advances in the science and technology emerging from the field of synthetic biology. We broadly define this as technologies that accelerate the process of genetic engineering. It highlighted new tool development, as well as the application of these tools to diverse problems in biotechnology, including therapeutics, industrial chemicals and fuels, natural products, and agriculture. Systems spanned from in vitro experiments and viruses, through diverse bacteria, to eukaryotes (yeast, mammalian cells, plants).

  19. Industry and genetic engineering of plants

    International Nuclear Information System (INIS)

    Posada, Mario

    1995-01-01

    The paper is about the importance of the genetic engineering and their development in the plants like is the resistance to the insects, to the mushrooms, retard in the maturation of the fruits and improvement of the quality of vegetables oils, among other aspects

  20. 76 FR 39812 - Scotts Miracle-Gro Co.; Regulatory Status of Kentucky Bluegrass Genetically Engineered for...

    Science.gov (United States)

    2011-07-07

    ... engineered for herbicide tolerance without the use of plant pest components, does not meet the definition of... Environmental Analysis Branch, Biotechnology Regulatory Services, APHIS, 4700 River Road, Unit 147, Riverdale... introduction of a plant pest or noxious weed into the United States or dissemination of a plant pest or noxious...

  1. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified

  2. African Journal of Biotechnology - Vol 12, No 21 (2013)

    African Journals Online (AJOL)

    African Journal of Biotechnology - Vol 12, No 21 (2013) ... Studies of the genetics of inheritance of stem rust resistance in bread wheat · EMAIL FREE .... Evaluation of the effect of ginger modified cassava starch as thickener in the formulation of ...

  3. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    genetic engineering to reconstruct the life of the human person. Negatively .... height, beauty or intelligence. Apart from ... cloning and stem-cell researches, artificial insemination. ..... form of manufacturing children involving their quality control.

  4. A Social Audit Model for Agro-biotechnology Initiatives in Developing Countries: Accounting for Ethical, Social, Cultural, and Commercialization Issues

    Directory of Open Access Journals (Sweden)

    Obidimma Ezezika

    2009-10-01

    Full Text Available There is skepticism and resistance to innovations associated with agro-biotechnology projects, leading to the possibility of failure. The source of the skepticism is complex, but partly traceable to how local communities view genetically engineered crops, public perception on the technology’s implications, and views on the role of the private sector in public health and agriculture, especially in the developing world. We posit that a governance and management model in which ethical, social, cultural, and commercialization issues are accounted for and addressed is important in mitigating risk of project failure and improving the appropriate adoption of agro-biotechnology in sub-Saharan Africa. We introduce a social audit model, which we term Ethical, Social, Cultural and Commercialization (ESC2 auditing and which we developed based on feedback from a number of stakeholders. We lay the foundation for its importance in agro-biotechnology development projects and show how the model can be applied to projects run by Public Private Partnerships. We argue that the implementation of the audit model can help to build public trust through facilitating project accountability and transparency. The model also provides evidence on how ESC2 issues are perceived by various stakeholders, which enables project managers to effectively monitor and improve project performance. Although this model was specifically designed for agro-biotechnology initiatives, we show how it can also be applied to other development projects.

  5. Biocommodity Engineering.

    Science.gov (United States)

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  6. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    Science.gov (United States)

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  7. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  8. Role of biotechnology in medicinal plants | Tripathi | Tropical Journal ...

    African Journals Online (AJOL)

    Bioreactors are the key step towards commercial production of secondary metabolites by plant biotechnology. Genetic transformation may be a powerful tool for enhancing the productivity of novel secondary metabolites; especially by Agrobacterium rhizogenes induced hairy roots. This article discusses the applications of ...

  9. Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae.

    Science.gov (United States)

    Shetty, K

    1997-09-01

    Phytochemicals from herbs and fermented legumes are excellent dietary sources of phenolic metabolites. These phenolics have importance not only as food preservatives but increasingly have therapeutic and pharmaceutical applications. The long-term research objecitves of the food biotechnology program at the University of Massachusetts are to elucidate the molecular and physiological mechanisms associated with synthesis of important health-related, therapeutic phenolic metabolites in food-related plants and fermented plant foods. Current efforts focus on elucidation of the role of the proline-linked pentose phosphate pathway in regulating the synthesis of anti-inflammatory compound, rosmarinic acid (RA). Specific aims of the current research efforts are: (i) To develop novel tissue culture-based selection techniques to isolate high RA-producing, shoot-based clonal lines from genetically heterogeneous, cross-pollinating species in the family Lamiaceae; (ii) To target genetically uniform, regenerated shoot-based clonal lines for: (a) preliminary characterization of key enzymes associated with the pentose phosphate pathway and linked to RA synthesis; (b) development of genetic transformation techniques for subsequent engineering of metabolic pathways associated with RA synthesis. These research objectives have substantial implications for harnessing the genetic and biochemical potential of genetically heterogeneous, food-related medicinal plant species. The success of this research also provides novel methods and strategies to gain access to metabolic pathways of pharmaceutically important metabolites from ginger, curcuma, chili peppers, melon or other food-related species with novel phenolics.

  10. Workshop on biotechnology in forest science. University of British Columbia, February 20-22, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Place, I.C.M. (ed.)

    1985-01-01

    After an opening address, there are 9 papers presented in 4 sections: Section I: biotechnology research at the molecular level; three papers covering advances in gene cloning, gene expression in higher organisms and Ti-plasmids as possible cloning vectors; Section II: tissue culture and micropropagation; three papers and a discussion section; Section III: biotechnology at the tree level; three papers covering recent advances, genetic transformations and microbial delignification of lignocellulosic materials. Section IV: panel discussion in perspectives in biotechnology research in relation to forest trees.

  11. 76 FR 5780 - Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the...

    Science.gov (United States)

    2011-02-02

    ...] Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate... decision and determination on the petition regarding the regulated status of alfalfa genetically engineered... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on an...

  12. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    Science.gov (United States)

    Becker, Judith; Wittmann, Christoph

    2015-03-09

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Genetically engineered rice. The source of β-carotene

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    Full Text Available β-carotene is a precursor of vitamin A. It is converted to vitamin A in the humans intestine by the β-carotene-15,15’-monooxygenase. Vitamin A is essential to support vision, as an antioxidant it protects the body from free radicals, it helps to integrate the immune system, as well as takes part in cellular differentiation and proliferation. Vitamin A deficiency is a major public health problem especially among developing countries. Nyctalopia, commonly known as „Night Blindness” is one of the major symptoms of Vitamin A deficiency (VAD. Plants such as apricots, broccoli, carrots, and sweet potatoes are rich in β-carotene. Some of the plants are characterized by a higher content of provitamin-A. Among vegetables rich sources of β-carotene are: carrots, pumpkin, spinach, lettuce, green peas, tomatoes, watercress, broccoli and parsley leaves. Amongst fruits the highest content of β-carotene is in apricot, cherry, sweet cherry, plum, orange and mango. The aim of the present study was to analyze available literature data of increasing the content of β-carotene in genetically engineered rice. The genetically modified cultivar contains additional genes: PSY and CRTI thanks to which rice seed endosperm contains β-carotene. Genetically engineered rice with β-carotene is an effective source of vitamin A, it contains approximately 30 μg β-carotene per 1 g. Fortunately some of the advantages of Genetically Modified Food give an opportunity to reduce VAD worldwide, by introducing the rice which has been genetically engineered to be rich in β-carotene. The popularity of this plant as an element of nutrition is simultaneously a source of vitamin A.

  14. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    The role of biotechnology on the treatment of wastes. ... treatment, gas treatment and disposal of solid wastes in environmental engineering. Also ... units and biogas reactors are used extensively among the waste treatment technologies.

  15. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  16. Third-generation biofuels: current and future research on microalgal lipid biotechnology

    Directory of Open Access Journals (Sweden)

    Li-Beisson Yonghua

    2013-11-01

    Full Text Available One pressing issue faced by modern societies is to develop renewable energy for transportation. Microalgal biomass offers an attractive solution due to its high (annual surface biomass productivity, efficient conversion of solar energy into chemical energy and the ability to grow on non-agricultural land. Despite these considerable advantages, microalgal biofuels are not yet commercially sustainable. Major challenges lie in improving both cultivation technologies and microalgal strains. A microalgal crop species is yet to emerge. In this review, we focus on researches aiming at understanding and harnessing lipid metabolism in microalgae in view of producing lipid-based biofuels such as biodiesel. Current biotechnological challenges and key progresses made in the development of algal models, genetic tools and lipid metabolic engineering strategies are reviewed. Possible future research directions to increase oil yields in microalgae are also highlighted.

  17. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  18. Genetically Modified Crops: Risks and Promise

    Directory of Open Access Journals (Sweden)

    Gordon Conway

    2000-07-01

    Full Text Available GM foods have the potential to provide significant benefits for developing countries. Over 800 million people are chronically undernourished, and 180 million children are severely underweight for their age. By 2020, there will be an extra two billion mouths to feed. Ecological approaches that underpin sustainable agriculture (e.g., integrated pest management and participatory approaches that strengthen farmers' own experimentation and decision making are key. Biotechnology will be an essential partner, if yield ceilings are to be raised, if crops are to be grown without excessive reliance on pesticides, and if farmers on less favored lands are to be provided with crops that are resistant to drought and salinity, and that can use nitrogen and other nutrients more efficiently. Over the past 10 years, in addition supporting ecological approaches, the Rockefeller Foundation has funded the training of some 400 developing-country scientists in the techniques of biotechnology. Most of the new crop varieties are the result of tissue culture and marker-aided selection. The Foundation also supports the production of genetically engineered rices, including a new rice engineered for beta carotene (the precursor of Vitamin A in the grain. Some specific steps can be taken by Monsanto that would improve acceptance of plant biotechnology in both the developing and the industrialized worlds: label; disavow gene protection (terminator systems; phase out the use of antibiotic resistance markers; agree (with big seed companies to use the plant variety protection system, rather than patents, in developing countries; establish an independently administered fellowship program to train developing-country scientists in crop biotechnology, biosafety, and intellectual property; donate useful technologies to developing countries; agree to share financial rewards from intellectual property rights on varieties such as basmati or jasmine rice with the countries of origin; and

  19. Genetic engineering for improvement of Musa production in Africa ...

    African Journals Online (AJOL)

    The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, bacterial and viral diseases. This article discusses the applications of genetic engineering for the enhancement of Musa production.

  20. [Health risks in the biotechnological industry].

    Science.gov (United States)

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Induction of atherosclerosis in mice and hamsters without germline genetic engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions...

  2. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  3. The relevance of biotechnology in the development of functional ...

    African Journals Online (AJOL)

    Biotechnology and genetic modification techniques have been proposed and applied for the improvement of the quality of various food crops. These have typically been geared towards increasing yields and pest resistance of cash crops. There is considerably less emphasis however, toward improving quality with regard to ...

  4. The role of biotechnology in the socio-economic advancement and ...

    African Journals Online (AJOL)

    user

    2006-12-04

    Dec 4, 2006 ... genetic basis of all living organisms, the scientific understanding of biological ... and microbial agents to create heretofore unattainable products and services. ... Key words: Biotechnology, fermentation, food, gene technology, manipulation, microbes. ..... applications such as bakery and cheese making to.

  5. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Cardoso, Joao; Andersen, Mikael Rørdam; Herrgard, Markus

    2015-01-01

    scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function......Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology......, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic...

  6. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    Science.gov (United States)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  7. A review on sustainable yeast biotechnological processes and applications

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Srivastava, R. K.

    2018-01-01

    Yeast is very well known eukaryotic organism for its remarkable biodiversity and extensive industrial applications. Saccharomyces cerevisiae is one of the most widely used microorganisms in biotechnology with successful applications in the biochemical production. Biological conversion with the fo......Yeast is very well known eukaryotic organism for its remarkable biodiversity and extensive industrial applications. Saccharomyces cerevisiae is one of the most widely used microorganisms in biotechnology with successful applications in the biochemical production. Biological conversion...... with the focus on the different utilization of renewable feedstocks into fuels and chemicals has been intensively investigated due to increasing concerns on sustainability issues worldwide. Compared with its counterparts, Saccharomyces cerevisiae, the baker's yeast, is more industrially relevant due to known...... genetic and physiological background, the availability of a large collection of genetic tools, the compatibility of high-density and large-scale fermentation, and optimize the pathway for variety of products. Therefore, S. cerevisiae is one of the most popular cell factories and has been successfully used...

  8. Knowledge of, and Attitudes towards Health-Related Biotechnology Applications amongst Australian Year 10 High School Students

    Science.gov (United States)

    van Lieshout, Emile; Dawson, Vaille

    2016-01-01

    Modern biotechnology has a large and rapidly increasing impact on society. New advances in genetics, stem cells and other areas hold great potential for human health but also presenting socioscientific issues that commonly divide public opinion. While knowledge is necessary to develop informed opinions about biotechnology, they may also be…

  9. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  10. human genetic engineering and social justice in south africa

    African Journals Online (AJOL)

    resources, are also acutely visible in the health-care sector. Genetic ... engineering (GE)2 from a South African perspective might not, initially, seem like an obvious ... prevalence of so-called genetic tourism, where couples from developed countries travel to countries in the developing world to undergo in vitro fertilisation ...

  11. Perceptions and attitudes of geography teachers to biotechnology: A ...

    African Journals Online (AJOL)

    This study reports the perceptions and attitudes of geography teachers towards biotechnology and genetically-modified (GM) foods in Turkey. A survey was conducted with secondary school geography teachers attending teacher workshops in various parts of the country in 2008 and was responded to by 78 teachers from ...

  12. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process

    Science.gov (United States)

    McHughen, Alan

    2016-01-01

    ABSTRACT Regulatory policies governing the safety of genetic engineering (rDNA) and the resulting products (GMOs) have been contentious and divisive, especially in agricultural applications of the technologies. These tensions led to vastly different approaches to safety regulation in different jurisdictions, even though the intent of regulations—to assure public and environmental safety—are common worldwide, and even though the international scientific communities agree on the basic principles of risk assessment and risk management. So great are the political divisions that jurisdictions cannot even agree on the appropriate triggers for regulatory capture, whether product or process. This paper reviews the historical policy and scientific implications of agricultural biotechnology regulatory approaches taken by the European Union, USA and Canada, using their respective statutes and regulations, and then critically assesses the scientific underpinnings of each. PMID:27813691

  13. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    Science.gov (United States)

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  14. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine.

    Science.gov (United States)

    Cui, Jian Dong

    2015-01-01

    Cordyceps militaris is a potential harborer of biometabolites for herbal drugs. For a long time, C. militaris has gained considerable significance in several clinical and biotechnological applications. Much knowledge has been gathered with regard to the C. militaris's importance in the genetic resources, nutritional and environmental requirements, mating behavior and biochemical pharmacological properties. The complete genome of C. militaris has recently been sequenced. This fungus has been the subject of many reviews, but few have focused on its biotechnological production of bioactive constituents. This mini-review focuses on the recent advances in the biotechnological production of bioactive compositions of C. militaris and the latest advances on novel applications from this laboratory and many others.

  15. "Genetic Engineering" Gains Momentum (Science/Society Case Study).

    Science.gov (United States)

    Moore, John W.; Moore, Elizabeth A., Eds.

    1980-01-01

    Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)

  16. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Chronological development avenues in biotechnology across the world

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali

    2011-01-01

    Full Text Available Biotechnology is expected to be a great technological revolution followed by information technology. It is an application of scientific and engineering principles to the processing of material by biological agents to provide better goods and services to mankind. Commercially its techniques are applied long back in 6 th century in the art of brewing, wine making and baking. It has progressed there after crossing different land marks. Modern biotechnology has developed significantly in the late 19 th century with groundbreaking discoveries applicable in medicine, food, agriculture, chemistry, environmental protection and many more industries. It is widely used in the development of high-yielding, disease-resistant, better quality varieties by applying tissue culture and recombinant DNA techniques. It has wide application in animal breeding using techniques such as artificial insemination, in vitro fertilization and embryo transfer. Specific enzymes used in laundry, fuel and leather industries for better quality, economically feasible and environmental friendly production. Biotechnology in healthcare system uses body′s own tools and weapons to fight against diseases, manufacturing of targeted therapeutic proteins, gene therapy and so on. Novel approaches such as proteomics and structural biology are contributing to understanding the chemistry of life and diseases. Malfunctioning gene replaced with correctly functioning gene by using gene therapy. Tissue engineering has opened up the use of in vitro developed tissue or organ in repairing wounded tissue and system biology which is a computer-based approach to understand cell functions. Although every new discovery related to biology and its implications is significant and has taken the technology ahead. This includes applications, commercialization, controversies, media exposure and so on. Hence, we have enlisted some of the chronological development avenues in biotechnology across the world.

  18. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wannathong, Thanyanan; Waterhouse, Janet C; Young, Rosanna E B; Economou, Chloe K; Purton, Saul

    2016-06-01

    In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.

  19. Traditional genetic improvement and use of biotechnological techniques in searching of resistance to main fungi pathogens of Musa spp.

    Directory of Open Access Journals (Sweden)

    Michel Leiva-Mora

    2006-07-01

    Full Text Available Bananas and plantain are important food staple in human diet, even cooked or consumed fresh. Fungal diseases caused by Fusarium oxysporum f. sp. cubense (Foc and Mycosphaerella fijiensis have threated to distroy Musa spp. Those crops are difficult to breed genetically because they are steriles, do not produce fertil seeds and they are partenocarpic. Genetic crossing by hibridization have been used successfully in FHIA and IITA Musa breeding programs, they have released numerous improved hybrids to those diseases. Plant Biotechnology has developed a set of techniques for Musa micropropagation to increase multiplication rates, healthy and safety plant material for plantation. Mutagenic techniques, somaclonal variation, somatic embryogenesis and more recient genetic transformation have enabled advances and complementation with clasical Musa breeding for searching resistance to principal fungal pathogen of Musa spp. Field evaluation systems to find Musa resistant genotypes to Foc and M. fijiensis have demostrated to be usefull but laborious. Nevertheless to enhance eficacy in selection of promissory genotypes the development of reproducible early evaluation methodologies by using fungal pathogens or their derivates is needed. Key words: evaluation and selection, Fusarium oxysporum, improvement

  20. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  1. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  2. Engineer Ethics

    International Nuclear Information System (INIS)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-01

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  3. ASPECTS ON CONSUMERS ATTITUDE TOWARD GENETICALLY MODIFIED FOODS AMONG YOUTH

    Directory of Open Access Journals (Sweden)

    Alexandrina, SÎRBU

    2014-11-01

    Full Text Available Advances in food biotechnology and food science in the early 1990s have opened the gates of new markets for genetically modified foods. A broad dispute over the use of foods derived from genetically modified organisms and other uses of genetic engineering in food production in terms of key scientific researches, their impact on health and eco-systems, food safety and food security, labelling and regulations, traceability is still lasting. Beside the scientifically, technical, ethical and regulators arguments, the economical aspects of the genetically modified food market is influenced by the social acceptance of it. Consumers' perception and their attitudes are different and depending on many factors. A survey of youth as undergraduate students of Constantin Brancoveanu University from Romania revealed certain differences in attitudes regarding the genetically modified foods that may be partially explained by the consumers' information. Referring the consumer behaviour, this study showed rather a tacit attitude of acceptance of the genetically modified food goods than a vehement rejection.

  4. Studies on nonsense mediated decay reveal novel therapeutic options for genetic diseases.

    Science.gov (United States)

    Bashyam, Murali D

    2009-01-01

    Scientific breakthroughs have often led to commercially viable patents mainly in the field of engineering. Commercialization in the field of medicine has been restricted mostly to machinery and engineering on the one hand and therapeutic drugs for common chronic ailments such as cough, cold, headache, etc, on the other. Sequencing of the human genome has attracted the attention of pharmaceutical companies and now biotechnology has become a goldmine for commercialization of products and processes. Recent advances in our understanding of basic biological processes have resulted in the opening of new avenues for treatment of human genetic diseases, especially single gene disorders. A significant proportion of human genetic disorders have been shown to be caused due to degradation of transcripts for specific genes through a process called nonsense mediated decay (NMD). The modulation of NMD provides a viable therapeutic option for treatment of several genetic disorders and therefore has been a good prospect for patenting and commercialization. In this review the molecular basis for NMD and attempts to treat genetic diseases which result from NMD are discussed.

  5. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  6. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  8. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  9. A Brave New World: Students Debate Ethics of Biotechnology.

    Science.gov (United States)

    Barksdale, Francia

    1996-01-01

    This article describes an interdisciplinary classroom project in which ninth graders simulate a "World Council on Genetic Technology." Students in small groups take on the persona and interests of individuals from specific countries in the group effort to develop a covenant for regulating the use of biotechnology. The benefits of having gifted…

  10. Review of computational fluid dynamics applications in biotechnology processes.

    Science.gov (United States)

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  11. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  12. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  13. Exploring Knowledge, Attitudes and Perceptions of Newspaper Journalists in Metropolitan Markets in the United States Regarding Food Biotechnology.

    Science.gov (United States)

    Vestal, Tom A.; Briers, Gary E.

    2000-01-01

    A survey of 88 journalists from metropolitan newspapers found a low level of knowledge about food biotechnology. Most considered genetic modification of plants acceptable, of animals somewhat acceptable. They trusted university scientists as sources and believed farmers would accept food biotechnology sooner than consumers would. (Contains 31…

  14. The Perfect Storm--Genetic Engineering, Science, and Ethics

    Science.gov (United States)

    Rollin, Bernard E.

    2014-01-01

    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific…

  15. Genetically modified foods in the opinion of the second-year students of biology, biotechnology and tourism and recreation of the Jan Kochanowski University in Kielce – a preliminary study

    Directory of Open Access Journals (Sweden)

    Chmielewski Jarosław

    2017-12-01

    Full Text Available The aim of this work was to assess knowledge of and to identify awareness in second-year students of biology, biotechnology and tourism and recreation, regarding the use of genetically modified organisms (GMO in food. The analysis of obtained results shows that about 98% of respondents know the concept of GMO and highly appreciate their knowledge of this topic. The main source of knowledge about GMO for the students is the Internet and the University. It is worth noting that 59% of respondents are aware of the use of GMO in food, while more than half do not know how the GMO in food should be labeled. In particular, students of biotechnology showed a distinctive knowledge about GMO. Over half of students of the Jan Kochanowski University in the fields of biology, biotechnology, and tourism and recreation (55% recognized that the use of GMO poses a threat to human health.

  16. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Protecting genetic privacy.

    Science.gov (United States)

    Roche, P A; Annas, G J

    2001-05-01

    This article outlines the arguments for and against new rules to protect genetic privacy. We explain why genetic information is different to other sensitive medical information, why researchers and biotechnology companies have opposed new rules to protect genetic privacy (and favour anti-discrimination laws instead), and discuss what can be done to protect privacy in relation to genetic-sequence information and to DNA samples themselves.

  18. The relevance of genetic analysis to dairy bacteria: building upon our heritage

    Directory of Open Access Journals (Sweden)

    Moineau Sylvain

    2004-12-01

    Full Text Available Abstract Lactic acid bacteria (LAB are essential for the manufacture of fermented dairy products. Studies on the physiology, biochemistry and genetics of these microorganisms over the last century have contributed considerably to the improvement of fermentation processes and have resulted in better and safer products. Nevertheless, the potential of LAB is far from being maximized. The sophistication of biotechnologies and the availability of complete genome sequences have opened the door to the metabolic engineering of LAB. In this regard, the recent publication of the complete genome sequences of two Streptococcus thermophilus strains will provide a key tool to facilitate the genetic manipulation of this important dairy species.

  19. Genetically engineered tissue to screen for glycan function in tissue formation

    DEFF Research Database (Denmark)

    M., Adamopoulou; E.M., Pallesen; A., Levann

    2017-01-01

    engineered GlycoSkin tissue models can be used to study biological interactions involving glycan structure on lipids, or glycosaminoglycans. This engineering approach will allow us to investigate the functions of glycans in homeostasis and elucidate the role of glycans in normal epithelial formation....... We use genetic engineering with CRISPR/Cas9 combined with 3D organotypic skin models to examine how distinct glycans influence epithelial formation. We have performed knockout and knockin of more than 100 select genes in the genome of human immortalized human keratinocytes, enabling a systematic...... analysis of the impact of specific glycans in the formation and transformation of the human skin. The genetic engineered human skin models (GlycoSkin) was designed with and without all major biosynthetic pathways in mammalian glycan biosynthesis, including GalNAc-O-glycans, O-fucosylation, O...

  20. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  1. Genetic engineering: a matter that requires further refinement in Spanish secondary school textbooks

    Science.gov (United States)

    Martínez-Gracia, M. V.; Gil-Quýlez, M. J.

    2003-09-01

    Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with fundamental genetic principles, and how it aims to improve the genetic literacy of students. The results show that genetic engineering was normally introduced without a clear reference to the universal genetic code, protein expression or the genetic material shared by all species. In most cases it was poorly defined, without a clear explanation of all the relevant processes involved. Some procedures (such as vectors) were explained in detail without considering previous student knowledge or skills. Some books emphasized applications such as the human genome project without describing DNA sequencing. All books included possible repercussions, but in most cases only fashionable topics such as human cloning. There was an excess of information that was not always well founded and hence was unsuitable to provide a meaningful understanding of DNA technology required for citizens in the twenty-first century.

  2. Possible Health Hazards from Genetically Engineered Crops ...

    African Journals Online (AJOL)

    The paradox of Genetic Engineering of crops is evident from the unending revolution in the seeding and growth of new multibillion naira industries while it also poses the greatest hazards to life on the planet Earth. Recombination DNA technology is used to insert, delete, transpose and substitute new genes in plants that ...

  3. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    Science.gov (United States)

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  4. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Genetics, genomes and cloning the biotechnology revolution

    CERN Document Server

    CERN. Geneva

    1999-01-01

    As this century draws to a close, spectacular advances in the fields of genomics and genetics are opening up dramatic new horizons for medicine. For much of the 20th century, genetic research has focused on rare diseases caused by mutations in a particular gene. However, more recently it has been realised that common genetic variations (polymorphisms), interacting with the environment, can influence an individual's susceptibility to diseases widely represented in our populations (e.g. mental illness and asthma), redefining the term "genetic disease". Officially starting in 1990, the Human Genome Project was a $3-billion, 15-year program to find the estimated 80,000 human genes and determine the sequence of the 3 billion DNA building blocks that underlie all of human biology and its diversity. The resulting boom in genetic information and technologies, not only from humans, but from many other organisms, means that we now have new tools to understand and treat normal and disease states. This information is bei...

  6. Genetic engineering: frost damage trial halted.

    Science.gov (United States)

    Budiansky, S

    The University of California at Berkeley has announced the postponement of a planned experiment involving the field testing of bacteria genetically engineered to reduce frost damage to crops. The action came after Jeremy Rifkin, who had earlier filed suit against the National Institutes of Health after its Recombinant DNA Advisory Committee had approved the experiment, threatened to seek a temporary restraining order against the university to halt the experiment.

  7. Biotechnology and where it is going

    Energy Technology Data Exchange (ETDEWEB)

    Malik, V.S.

    From some of the selected highlights in this paper, it is apparent that biotechnology is becoming increasingly popular in meeting the world's expanding needs. There are endless tasks which can be accomplished by the judicious application of recombinant DNA technology for engineering of microorganisms. Use of microbes will accelerate in the next decade and fermentation processes may be used to produce many products that are presently derived from petrochemicals or chemical synthesis. (Refs. 17).

  8. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    Science.gov (United States)

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. © 2012 The Authors; Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.

    Science.gov (United States)

    Zhang, Yingtong; Navarro, Eusebio; Cánovas-Márquez, José T; Almagro, Lorena; Chen, Haiqin; Chen, Yong Q; Zhang, Hao; Torres-Martínez, Santiago; Chen, Wei; Garre, Victoriano

    2016-06-07

    Carotenoids are natural pigments with antioxidant properties that have important functions in human physiology and must be supplied through the diet. They also have important industrial applications as food colourants, animal feed additives and nutraceuticals. Some of them, such as β-carotene, are produced on an industrial scale with the use of microorganisms, including fungi. The mucoral Blakeslea trispora is used by the industry to produce β-carotene, although optimisation of production by molecular genetic engineering is unfeasible. However, the phylogenetically closely related Mucor circinelloides, which is also able to accumulate β-carotene, possesses a vast collection of genetic tools with which to manipulate its genome. This work combines classical forward and modern reverse genetic techniques to deepen the regulation of carotenoid synthesis and generate candidate strains for biotechnological production of β-carotene. Mutagenesis followed by screening for mutants with altered colour in the dark and/or in light led to the isolation of 26 mutants that, together with eight previously isolated mutants, have been analysed in this work. Although most of the mutants harboured mutations in known structural and regulatory carotenogenic genes, eight of them lacked mutations in those genes. Whole-genome sequencing of six of these strains revealed the presence of many mutations throughout their genomes, which makes identification of the mutation that produced the phenotype difficult. However, deletion of the crgA gene, a well-known repressor of carotenoid biosynthesis in M. circinelloides, in two mutants (MU206 and MU218) with high levels of β-carotene resulted in a further increase in β-carotene content to differing extents with respect to the crgA single-null strain; in particular, one strain derived from MU218 was able to accumulate up to 4 mg/g of β-carotene. The additive effect of crgA deletion and the mutations present in MU218 suggests the existence of a

  10. Genetic Engineering: A Matter that Requires Further Refinement in Spanish Secondary School Textbooks

    Science.gov (United States)

    Martinez-Gracia, M. V.; Gil-Quylez, M. J.; Osada, J.

    2003-01-01

    Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with…

  11. Agrobacterium: nature's genetic engineer.

    Science.gov (United States)

    Nester, Eugene W

    2014-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun's old observations and also explain why Agrobacterium is nature's genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering.

  12. 76 FR 8707 - Syngenta Seeds, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered To...

    Science.gov (United States)

    2011-02-15

    ... Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There... genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  13. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  14. The Perfect Storm—Genetic Engineering, Science, and Ethics

    Science.gov (United States)

    Rollin, Bernard E.

    2014-02-01

    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific Ideology; vested interests dominating ethical discussion. How this can be remedied is discussed.

  15. Teaching about Designer Babies and Genetically Modified Foods: Encouraging the Teaching of Biotechnology in Secondary Schools

    Science.gov (United States)

    Leslie, Glenda; Schibecci, Renato

    2006-01-01

    Biotechnology is a cutting edge science/technology which impacts the community in many ways. For this and other reasons, it is important we encourage teachers to include biotechnology in the science curriculum. First, however, we need to know what hinders and encourages teachers. We surveyed the views of 88 high school science teachers. The …

  16. PUBLIC APPROVAL OF PLANT AND ANIMAL BIOTECHNOLOGY IN KOREA: AN ORDERED PROBIT ANALYSIS

    OpenAIRE

    Hallman, William K.; Onyango, Benjamin M.; Govindasamy, Ramu; Jang, Ho-Min; Puduri, Venkata S.

    2004-01-01

    This study analyzes predictors of Korean public acceptance of the use of biotechnology to create genetically modified food products. Results indicate that the consumers with above average knowledge of specific outcomes of genetic modification were more likely than those with inaccurate or no knowledge to approve use of plant or animal genetic modification for the creation of new food products. Young South Koreans consumers (ages 20 to 29 years old) were more likely than old consumers (ages 50...

  17. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    Science.gov (United States)

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  18. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  19. Biotechnological challenges of bioartificial kidney engineering.

    Science.gov (United States)

    Jansen, J; Fedecostante, M; Wilmer, M J; van den Heuvel, L P; Hoenderop, J G; Masereeuw, R

    2014-11-15

    With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. From Precaution to Peril: Public Relations Across Forty Years of Genetic Engineering.

    Science.gov (United States)

    Hogan, Andrew J

    2016-12-01

    The Asilomar conference on genetic engineering in 1975 has long been pointed to by scientists as a model for internal regulation and public engagement. In 2015, the organizers of the International Summit on Human Gene Editing in Washington, DC looked to Asilomar as they sought to address the implications of the new CRISPR gene editing technique. Like at Asilomar, the conveners chose to limit the discussion to a narrow set of potential CRISPR applications, involving inheritable human genome editing. The adoption by scientists in 2015 of an Asilomar-like script for discussing genetic engineering offers historians the opportunity to analyze the adjustments that have been made since 1975, and to identify the blind spots that remain in public engagement. Scientists did take important lessons from the fallout of their limited engagement with public concerns at Asilomar. Nonetheless, the scientific community has continued to overlook some of the longstanding public concerns about genetic engineering, in particular the broad and often covert genetic modification of food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Science.gov (United States)

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  2. Ethical principles for the use of human cellular biotechnologies

    DEFF Research Database (Denmark)

    Wolpe, Paul Root; Rommelfanger, Karen S.; Borenstein, Jason

    2017-01-01

    Recent developments in bioengineering promise the possibility of new diagnostic and treatment strategies, novel industrial processes, and innovative approaches to thorny problems in fields such as nutrition, agriculture, and biomanufacturing. As modern genetics has matured and developed technolog......-producing countries of the world, offers a set of ethical principles to contribute to the ethical conversation about human cellular biotechnological research moving forward....

  3. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    International Nuclear Information System (INIS)

    Scheitlin, F.M.

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories

  4. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Scheitlin, F.M. (ed.)

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories.

  5. U.S. Adults with Agricultural Experience Report More Genetic Engineering Familiarity than Those Without

    Science.gov (United States)

    Stofer, Kathryn A.; Schiebel, Tracee M.

    2017-01-01

    Researchers and pollsters still debate the acceptance of genetic engineering technology among U.S. adults, and continue to assess their knowledge as part of this research. While decision-making may not rely entirely on knowledge, querying opinions and perceptions rely on public understanding of genetic engineering terms. Experience with…

  6. Explaining end-users' intentions to use innovative medical and food biotechnology products

    NARCIS (Netherlands)

    Mulder, Bob C.; Poortvliet, P. Marijn; Lugtig, Peter; de Bruin, Marijn

    2014-01-01

    Low public acceptance hinders the successful introduction of biotechnological innovations, such as genetically modified foods or vaccinations against infectious diseases. Earlier studies indicated that a lack of knowledge is not a key barrier to acceptance. This was confirmed in the current study,

  7. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...... established in the pharmaceutical industry but is moving down the value chain toward bulk chemicals. Chemical engineers will have an essential role in the development of new processes where the need is for new design methods for effective implementation, just as much as new technology. Most interesting...

  8. Biotechnology and the Third World: Panacea or Recipe for Social Disaster? Academy for Educational Development 25th Anniversary Series.

    Science.gov (United States)

    Morehouse, Ward

    Asserting that developmental growth is easier to attain in developing countries than social change, this paper assesses the prospective impact of biotechnology on the developing nations. Biotechnology is defined as the integrated use of biochemistry, microbiology, and chemical engineering to achieve the industrial processes of fermentation, enzyme…

  9. Intrinsic Value and the Genetic Engineering of Animals.

    NARCIS (Netherlands)

    Vries, R.B.M. de

    2008-01-01

    The concept of intrinsic value is often invoked to articulate objections to the genetic engineering of animals, particularly those objections that are not directed at the negative effects the technique might have on the health and welfare of the modified animals. However, this concept was not

  10. Bioprocess engineering of microalgae to produce a variety of consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Razif [Bio Engineering Laboratory (BEL), Department of Chemical Engineering, Monash University, Victoria 3800 (Australia); Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 Serdang (Malaysia); Singh, Manjinder; Forde, Gareth M.; Danquah, Michael K. [Bio Engineering Laboratory (BEL), Department of Chemical Engineering, Monash University, Victoria 3800 (Australia)

    2010-04-15

    Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass. (author)

  11. Bioprocess engineering of microalgae to produce a variety of consumer products

    International Nuclear Information System (INIS)

    Harun, Razif; Singh, Manjinder; Forde, Gareth M.; Danquah, Michael K.

    2010-01-01

    Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass. (author)

  12. The Landscape of Mass Mediated Articulations of Biotechnology

    DEFF Research Database (Denmark)

    Horst, Maja

    The objective of this paper is to explore the associations made in mass mediatedarticulations of biotechnology. It serves as the basis for further analyses of massmediated controversies and the purpose is to establish a map of the landscape ofmass mediated articulation of biotechnology. Which kinds...... of genetic researchand technology are articulated in what way? What can be associated to what inthe mass mediation and when is it portrayed as controversial? In short this is astudy of associations in the news production that serves as a way of establishingan empirical archive for further work. It is based...... on a relational ontologyinspired by French philosopher Bruno Latour, supplemented with the method ofcontent analysis developed within sociology of mass media. The aim is to studythe production of networks of articulation in mass media by looking at theoutcome (the articles), which they produce....

  13. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Analyses of Methods and Algorithms for Modelling and Optimization of Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Stoyanov

    2009-08-01

    Full Text Available A review of the problems in modeling, optimization and control of biotechnological processes and systems is given in this paper. An analysis of existing and some new practical optimization methods for searching global optimum based on various advanced strategies - heuristic, stochastic, genetic and combined are presented in the paper. Methods based on the sensitivity theory, stochastic and mix strategies for optimization with partial knowledge about kinetic, technical and economic parameters in optimization problems are discussed. Several approaches for the multi-criteria optimization tasks are analyzed. The problems concerning optimal controls of biotechnological systems are also discussed.

  15. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  16. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  17. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations

    OpenAIRE

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called ?the mental ecology? (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capabl...

  19. Healthcare biotechnology in India.

    Science.gov (United States)

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  20. The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering

    Science.gov (United States)

    Güccük, Ahmet; Köksal, Mustafa Serdar

    2017-01-01

    The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…

  1. Essentials of Conservation Biotechnology: A mini review

    Science.gov (United States)

    Merlyn Keziah, S.; Subathra Devi, C.

    2017-11-01

    Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.

  2. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  3. White biotechnology: State of the art strategies for the development of biocatalysts for biorefining.

    Science.gov (United States)

    Heux, S; Meynial-Salles, I; O'Donohue, M J; Dumon, C

    2015-12-01

    White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the 'omic' technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.

    2002-01-01

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  5. Biotechnology for energy

    International Nuclear Information System (INIS)

    Malik, K.A.; Naqvi, S.H.M.

    1991-01-01

    The present volume comprises paper presented and discussed in the symposium. The main purpose of this symposium was to collect researchers in the area of bioconversion of biomass into biofuels, petroleum biotechnology and biohydrometallurgy. This book has been divided into four main sections which includes molecular biology of biomass conversion, microbial conversion of biomass, petroleum biotechnology and biohydrometallurgy. It is becoming clear that biotechnology play a role in production and conservation of energy and can contribute to the overall energy situation. (A.B.)

  6. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects.

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae.

  7. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  8. The impacts and acceptance of agricultural biotechnology: an introduction to the special issue

    NARCIS (Netherlands)

    Zilberman, D.; Wesseler, J.H.H.

    2014-01-01

    Attitudes towards and acceptance of agricultural biotechnology, which involves inserting genes that carry new traits into existing varieties, has been subject to much debate. This special issue aims to address several gaps in the literature on genetically modified (GM) technology in agriculture.

  9. Financial Risk in the Biotechnology Industry

    OpenAIRE

    Joseph H. Golec; John A. Vernon

    2007-01-01

    The biotechnology industry has been an engine of innovation for the U.S. healthcare system and, more generally, the U.S. economy. It is by far the most research intensive industry in the U.S. In our analyses in the current paper, for example, we find that, over the past 25 years, average R&D intensity (R&D spending to total firm assets) for this industry was 38 percent. Consider that over this same period average R&D intensity for all industries was only about 3 percent. In the current paper ...

  10. 75 FR 30832 - National Biodefense Science Board; Call for Nominees

    Science.gov (United States)

    2010-06-02

    ...) four individuals from the pharmaceutical, biotechnology and device industries, (c) four academicians... opportunities presented by advances in biological and life sciences, biotechnology, and genetic engineering with...

  11. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code.

    Science.gov (United States)

    Hauf, Matthias; Richter, Florian; Schneider, Tobias; Faidt, Thomas; Martins, Berta M; Baumann, Tobias; Durkin, Patrick; Dobbek, Holger; Jacobs, Karin; Möglich, Andreas; Budisa, Nediljko

    2017-09-19

    Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cofactor engineering for advancing chemical biotechnology.

    Science.gov (United States)

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-12-01

    Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 76 FR 80869 - Monsanto Co.; Determination of Nonregulated Status of Corn Genetically Engineered for Drought...

    Science.gov (United States)

    2011-12-27

    ... and products altered or produced through genetic engineering that are plant pests or that there is... in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  14. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  15. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  16. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  17. Sociodemographic and subjective belief reasons for inter-EU differences of attitudes towards genetically modified food

    OpenAIRE

    Springer, Antje; Papastefanou, Georgios; Tsioumanis, Asterios; Mattas, Konstadinos

    2005-01-01

    'Modern biotechnology is a central issue in the public debate as there are still concerns about possible adverse effects deriving from the use of genetically modified organisms. The public, by influencing decisions on new biotechnology, politically through democratic channels or interest groups, but also as consumers via the market, will constitute the ultimate judge of agricultural biotechnology. The present research paper deals with attitudes towards genetically modified food (GM foods) in ...

  18. 76 FR 63278 - Bayer CropScience LP; Determination of Nonregulated Status for Cotton Genetically Engineered for...

    Science.gov (United States)

    2011-10-12

    ... part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering... regulations governing the introduction of certain genetically engineered organisms. Our determination is based... things, the introduction (importation, interstate movement, or release into the environment) of organisms...

  19. Biosafety Management of Genetically Modified Crops (China) | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Since 1990, China's agricultural biotechnology sector has experienced tremendous growth. A recent survey shows that the country is developing the largest plant biotechnology capacity outside North America. Public investment in the sector, as well as the number of genetically modified (GM) crops commercialized, ...

  20. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    Science.gov (United States)

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  1. 76 FR 63279 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered for Insect...

    Science.gov (United States)

    2011-10-12

    ... and products altered or produced through genetic engineering that are plant pests or that there is... regulations in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  2. [Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].

    Science.gov (United States)

    Cermeño Zambrano, Fernando G De J

    2002-01-01

    The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise.

  3. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  4. Design and development of modular DNA assembly tools for Multigene Engineering and Synthetic Biology in Plants

    OpenAIRE

    Sarrión Perdigones, Manuel Alejandro

    2014-01-01

    The post-genomics era has put at the disposal of modern plant breeders an endless list of genetic building blocks for the design of new biotechnological crops. After a first wave of single-gene transgenic with controversial public acceptance, genomic information and technology is paving the way for increasingly complex designs based in multiple gene engineering. Those designs aiming at the production of inexpensive health-promoting compounds are most likely to be welcomed by consumers. In thi...

  5. Photo-biotechnology as a tool to improve agronomic traits in crops.

    Science.gov (United States)

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  7. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.

    Science.gov (United States)

    Gomaa, M A; Al-Haj, L; Abed, R M M

    2016-10-01

    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.

  8. Gender and Health Impacts of Genetically Engineered Crops in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Gender and Health Impacts of Genetically Engineered Crops in Developing Countries ... exists, the gender and health impacts have so far received only cursory attention. ... New funding opportunity for gender equality and climate change ... social inequality, promote greater gender parity, and empower women and girls.

  9. Biologically Fit: Using Biotechnology to Create a Better Soldier

    Science.gov (United States)

    2013-12-01

    ideas difficult. Therefore, more education is necessary to reduce public fear of biotechnological enhancements. The board agreed that the...fictional depictions may sound familiar. That is because they are describing the popular comic book character Captain America, and Bourne Legacy film...engineering of the human genome from science fiction to reality. Concepts once portrayed in movies and comic books may become the realized future of the

  10. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  11. 78 FR 35035 - National Biodefense Science Board; Call for Nominees

    Science.gov (United States)

    2013-06-11

    ... from the pharmaceutical, biotechnology and device industries, (c) four academicians, and (d) five other..., biotechnology, and genetic engineering with respect to threats posed by naturally occurring infectious diseases...

  12. 78 FR 40480 - National Biodefense Science Board; Call for Nominees

    Science.gov (United States)

    2013-07-05

    ... from the pharmaceutical, biotechnology and device industries, (c) four academicians, and (d) five other..., biotechnology, and genetic engineering with respect to threats posed by naturally occurring infectious diseases...

  13. Fungal chitinases: diversity, mechanistic properties and biotechnological potential.

    Science.gov (United States)

    Hartl, Lukas; Zach, Simone; Seidl-Seiboth, Verena

    2012-01-01

    Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.

  14. Agrobacterium: nature’s genetic engineer

    Science.gov (United States)

    Nester, Eugene W.

    2015-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun’s old observations and also explain why Agrobacterium is nature’s genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  15. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    Science.gov (United States)

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  16. Aquaculture-oriented genetic researches in abalone: Current status ...

    African Journals Online (AJOL)

    Hybridization, triploidization and genetic mapping were also briefly reviewed as aquaculture-oriented genetic techniques to improve growth and other commercially important traits. Cryopreservation and other biotechnologies potentially applicable on genetic improvement were also briefly mentioned as supporting tools for ...

  17. An effective lipid-producing fungal sp. strain DGB1 and its use for ...

    African Journals Online (AJOL)

    2013-08-21

    Aug 21, 2013 ... Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute ... producing biodiesel since they present many advantages ... microalgae, the growth of fungi can be carried out in.

  18. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  19. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  20. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    Science.gov (United States)

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements.

  1. Introduction to the application of genetic algorithms in engineering

    Directory of Open Access Journals (Sweden)

    I. S. Shaw

    1998-07-01

    Full Text Available Genetic algorithms constitute a new research area in the field of artificial intelligence. This work is aimed at their application in specific areas of engineering where good results have already been achieved. The purpose of this work is to provide a basic introduction for students as well as experienced engineers who wish to upgrade their knowledge. A distinctive feature of artificial intelligence is that instead of mathematical models, either direct human experience or certain functions of the human brain for the modelling of physical phenomena are used.

  2. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  3. Genetic Engineering--A Lesson on Bioethics for the Classroom.

    Science.gov (United States)

    Armstrong, Kerri; Weber, Kurt

    1991-01-01

    A unit designed to cover the topic of genetic engineering and its ethical considerations is presented. Students are expected to learn the material while using a debate format. A list of objectives for the unit, the debate format, and the results from an opinion questionnaire are described. (KR)

  4. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  5. Recent patents in plant biotechnology: impact on global health.

    Science.gov (United States)

    Hefferon, Kathleen L

    2012-08-01

    Agricultural biotechnology offers a robust series of tools by which to address global concerns such as food security, crop protection, and fuel/energy requirements. A number of advances made recently in plant molecular biology also have resulted in applications which largely focus on improving global human health. This review describes some of the recent innovations in plant biotechnology that have come to the forefront over the past year. Included are novel techniques by which plants can be improved as platforms for biopharmaceutical protein production, a growing field also referred to as 'molecular pharming'. The metabolic engineering of plants to produce compounds which have additional nutritional benefits is also outlined. The review concludes with a discussion of the future impact that these innovations may have both on global health and on the development of our future intellectual property landscape.

  6. Biotechnology and Agriculture.

    Science.gov (United States)

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  7. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    Science.gov (United States)

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare ('Red'). An important consideration was the decline in partnerships between the EU and developing countries because of the original public antipathy to some green biotechnologies, particularly genetically modified organisms (GMOs) and food from GM crops in Europe. The study focus reported here was West Africa (Ghana, Senegal, Mali and Burkina Faso). The overall conclusion was that whereas high-quality research was proceeding in the countries visited, funding is not sustained and there is little evidence of practical application of biotechnology and benefit to farmers and the wider community. Research and development that was being carried out on genetically modified crop varieties was concentrating on improving food security and therefore unlikely to have significant impact on EU markets and consumers. However, there is much non-controversial green biotechnology such as molecular diagnostics for plant and animal disease and marker-assisted selection for breeding that has great potential application. Regarding white biotechnology, it is currently occupying only a very small industrial niche in West Africa, basically in the sole sector of the production of liquid biofuels (i.e., bio-ethanol) from indigenous and locally planted biomass (very often non-food crops). The presence of diffused small-scale fish production is the basis to develop and apply new (Blue) aquaculture technologies and, where the research conditions and the production sector can permit, to increase this type of

  9. Biology and biotechnology of Trichoderma.

    Science.gov (United States)

    Schuster, André; Schmoll, Monika

    2010-07-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

  10. EU member states' voting for authorizing genetically engineered crops

    NARCIS (Netherlands)

    Smart, Richard D.; Blum, Matthias; Wesseler, Justus

    2015-01-01

    Several authors suggest a gridlock of the European Union's (EU's) approval process for genetically engineered (GE) crops. We analyse the voting behaviour of EU Member States (MSs) for voting results from 2003 to 2015 on the approval of GE crops to test for a gridlock; no reliable data are

  11. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    Science.gov (United States)

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  12. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    Science.gov (United States)

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  13. Environmental biotechnologies for the fossil fuel industry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D W; Donald, G M [Hycal Energy Research Labs. Ltd., Calgary, AB (Canada)

    1997-09-01

    Five recent technologies that have been proven to be viable means to mitigate the environmental impact of the fossil fuel industry were described as evidence of the industry`s concern about environmental pollution. The technologies were: bioventing, bioslurping, biofiltration, phytoremediation and the use of genetically engineered organisms. Special attention was paid to genetic modification strategies with reference to improved degradation rates and the regulations in Canada affecting genetically engineered organisms and their use. Case histories were cited to illustrate application of the various processes. 34 refs.

  14. Environmental biotechnologies for the fossil fuel industry

    International Nuclear Information System (INIS)

    Lee, D. W.; Donald, G. M.

    1997-01-01

    Five recent technologies that have been proven to be viable means to mitigate the environmental impact of the fossil fuel industry were described as evidence of the industry's concern about environmental pollution. The technologies were: bioventing, bioslurping, biofiltration, phytoremediation and the use of genetically engineered organisms. Special attention was paid to genetic modification strategies with reference to improved degradation rates and the regulations in Canada affecting genetically engineered organisms and their use. Case histories were cited to illustrate application of the various processes. 34 refs

  15. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Science.gov (United States)

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  16. [Biotechnology's macroeconomic impact].

    Science.gov (United States)

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  17. American chestnut: A test case for genetic engineering?

    Science.gov (United States)

    Leila Pinchot

    2014-01-01

    The thought of genetically engineered (GE) trees might conjure images of mutant trees with unnatural and invasive tendencies, but there is much more to the story. GE trees are a new reality that, like it or not, will probably be part of the future of forestry. The basic inclination of most Forest Guild stewards is to reject GE trees as violating our principle to...

  18. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  19. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Science.gov (United States)

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  20. The effect of genetically engineered glucagon on glucose recovery after hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Jørgensen, S; Hilsted, J

    1992-01-01

    To compare the effect on glucose recovery after insulin-induced hypoglycaemia of intramuscular genetically engineered glucagon, intramuscular glucagon from pancreatic extraction and intravenous glucose, we examined 10 healthy subjects during blockage of glucose counterregulation with somatostatin...... appearance rate were far more protracted after i.m. glucagon than after i.v. glucose. These results suggest that genetically engineered glucagon and glucagon from pancreatic extraction have a similar effect on hepatic glucose production rate. Due to the protracted effect of intramuscular glucagon, a combined......, propranolol and phentolamine. Each subject was studied on three separate occasions. Thirty min after a bolus injection of 0.075 iu soluble insulin per kilogram body weight the subjects received one of the following treatments: 1 mg glucagon from pancreatic extraction intramuscularly; 1 mg genetically...

  1. Plant biotechnology patents: applications in agriculture and medicine.

    Science.gov (United States)

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  2. The ethics of using genetic engineering for sex selection.

    Science.gov (United States)

    Liao, S Matthew

    2005-02-01

    It is quite likely that parents will soon be able to use genetic engineering to select the sex of their child by directly manipulating the sex of an embryo. Some might think that this method would be a more ethical method of sex selection than present technologies such as preimplantation genetic diagnosis (PGD) because, unlike PGD, it does not need to create and destroy "wrong gendered" embryos. This paper argues that those who object to present technologies on the grounds that the embryo is a person are unlikely to be persuaded by this proposal, though for different reasons.

  3. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  4. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  5. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    Science.gov (United States)

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  7. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    OpenAIRE

    Zhu, Yong-Guan; Rosen, Barry P

    2009-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loa...

  8. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  9. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology

    DEFF Research Database (Denmark)

    Dvořák, Pavel; Nikel, Pablo Ivan; Damborskýc, Jiří

    2017-01-01

    pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack...... of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow....... In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering...

  10. Novel perspectives for the engineering of abiotic stress tolerance in plants.

    Science.gov (United States)

    Cabello, Julieta V; Lodeyro, Anabella F; Zurbriggen, Matias D

    2014-04-01

    Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Discussions around Precision Genetic Engineering: Role of and Impact on Disabled People

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2016-09-01

    Full Text Available Genetic researchers are advancing in their abilities to extract precise genetic information from biological and human entities bringing genetic research steps closer to accurately modifying genes of biological entities, including that of humans. In this analytical essay, we focus on the discussions about precision genetic intervention that have taken place since March 2015 as they pertain to disabled people. We focus on two areas; one being the role of disabled people in the recent gene editing discussions and the second being the utility of existing legal instruments. Within our first focus we address the following questions: (a What is the visibility of disabled people in the gene-editing discussions that have taken place since March 2015? (b What has been the impact of those discussions on disabled people? (c Were social problems which disabled people face taken into account in those discussions; (d How does the reality of engagement with disabled people in these discussions fit with science, technology and innovation governance discourses that ask for more stakeholder, bottom up and anticipatory involvement? Within our second focus we address the following questions: (a What is the utility of the United Nations Convention on the Right of Persons with Disabilities (UNCRPD; and (b What is the utility of existing legal instruments covering genetic interventions: for preventing negative social consequences of genetic engineering developments for disabled people. We argue that (a the genetic engineering debates since March 2015 have portrayed disabled people dominantly through a medical lens; (b that the governance of science, technology and innovation of genetic engineering including anticipatory governance and responsible innovation discourses has not yet engaged with the social impact of gene editing on disabled people; (c that few scholars that focus on the social situation of disabled people are visible in the governance discussions of gene

  12. Phage Genetic Engineering Using CRISPR–Cas Systems

    Directory of Open Access Journals (Sweden)

    Asma Hatoum-Aslan

    2018-06-01

    Full Text Available Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR–Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR–Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR–Cas systems, specifically the three major types (I, II, and III, can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR–Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.

  13. WHEAT CHARACTERISTIC DEMAND AND IMPLICATIONS FOR DEVELOPMENT OF GENETICALLY MODIFIED GRAINS

    OpenAIRE

    Janzen, Edward L.; Mattson, Jeremy W.; Wilson, William W.

    2001-01-01

    Agricultural biotechnology is advancing rapidly and is embracing all major crops. The adoption of genetically modified corn, soybeans, and cotton have reached high levels in the United States. Wheat is the next major crop confronting the biotechnology issue, but no commercial varieties of genetically modified (GM) wheat have been released yet. Primary opportunities for GM developments in wheat center around improvements that meet consumer and end-user needs/issues in addition to meeting produ...

  14. Innovative technology to meet the demands of the white biotechnology revolution of chemical production

    DEFF Research Database (Denmark)

    Villadsen, John

    2007-01-01

    by which a technological revolution termed "white biotechnology" for production of commodity chemicals has proved its credibility. Obviously, the rapid advances in biology has been crucial for the development of industrial biotechnology towards a position where even its cheap products such as bio-fuels can...... of sophisticated models, supported by accurate data obtained in experimental equipment that did not exist a few years ago. The need to update the chemical engineering education to meet the needs of the bio-industry is also evident. Much of the progress of the bio-industry has up to now been based on fundamental...

  15. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol.

    Science.gov (United States)

    Granström, Tom Birger; Izumori, Ken; Leisola, Matti

    2007-02-01

    Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of D-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.

  16. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  17. Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology.

    Science.gov (United States)

    Colombo, Monica; Mizzotti, Chiara; Masiero, Simona; Kater, Martin M; Pesaresi, Paolo

    2015-11-01

    In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization. © 2015 Institute of Botany, Chinese Academy of Sciences.

  18. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  19. Research@ARL: Materials Modeling at Multiple Scales. Volume 3, Issue 2

    Science.gov (United States)

    2014-07-01

    Communications Magazine 35 (1997) 46–55. [25] A. Sussman, Building complex coupled physical simulations on the grid with intercomm, Engineering with...microbiologist in the Biotechnology Branch of the Sensors and Electronic Devices Directorate. Her research area focuses on the genetic engineering of...engineering, with a Ph.D. in computational chemistry from the University of Maryland Baltimore County (UMBC), an M.S in biotechnology from Johns

  20. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    Science.gov (United States)

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  1. Transboundary Movements of Genetically Modified Organisms and the Cartagena Protocol: Key Issues and Concerns

    Directory of Open Access Journals (Sweden)

    Odile J Lim Tung

    2014-12-01

    Full Text Available Biotechnology or the engineering of the genetic material of species can give way to avenues of possibilities for the benefit of people, fauna and flora but also has the potential of posing untold and undiscovered threats to human beings and other living organisms. One of the first attempts to legislate on international rules on biotechnology can be traced back to article 19 of the Convention on Biological Diversity (CBD in 1992. The CBD is indeed the first international legal instrument apart from the then European Community’s relevant directives to suggest that biotechnology is a matter of concern for the international community while providing a basis upon which more detailed procedures would be elaborated in the field of biosafety. While the CBD includes international rules on access to genetic resources, access to and the transfer of technology, the handling of biotechnology and the distribution of its benefits, it does not include a detailed regulation on genetically modified organisms (GMOs and their possible adverse effects on the environment, human and animal health. It was only with the coming into existence of the Cartagena Protocol on Biosafety (Cartagena Protocol to the CBD in 2000 that the safe transfer, handling and use of living modified organisms (LMOs such as genetically engineered plants, animals, and microbes were at last being catered for, albeit leaving aside the broader categories of GMOs. Due to the need for the negotiators of this protocol to make compromises, there were still key issues on the international biosafety framework pertaining mainly to the scope of the GMOs to be covered by this protocol and by the Advanced Informed Agreement procedure; identification and traceability issues; and liability and redress issues. Nine years after the entry into force of the Cartagena Protocol the transboundary movements of GMOs have clearly increased with new categories of GMOs and genetically modified products to regulate. The

  2. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  3. Attitudes in China about Crops and Foods Developed by Biotechnology

    OpenAIRE

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M.

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their ...

  4. Molecular characterization of genetic diversity in some durum wheat ...

    African Journals Online (AJOL)

    Molecular characterization of genetic diversity in some durum wheat ... African Journal of Biotechnology ... Thus, RAPD offer a potentially simple, rapid and reliable method to evaluate genetic variation and relatedness among ten wheat ...

  5. Appraisal of genetic diversity of different peach cultivars and genotypes through rapd markers

    International Nuclear Information System (INIS)

    Bakht, J.; Jamal, N.; Shafi, M

    2012-01-01

    The present study was amid to investigate the genetic diversity of twenty peach cultivars and genotypes by RAPD primers at the Institute of Biotechnology and Genetic Engineering, KPK Agricultural University Peshawar. The result indicated that fifteen primers (GLCO9, GLC20, GLA20, GLA13, GLB10, GLB20, GLB06, GLB19, GLA19, GLB19, GLD16, GLB15, GLA15, GLB12, GLB11) gave genetic distance among the peach cultivars and genotypes under study by PCR amplification. Average genetic diversity (estimated as genetic distance) ranged between 12 and 58%. The molecular size of most of the bands were from 150 bp to 1000 bp. Based on dendrogram analysis, Khyber 1 and Khyber 2 was grouped in cluster A, and Tex-A6-69 and BY-8-135 in cluster B, Candan and 6A were most closely related cultivars and genotypes among the 20 peach cultivars and genotypes while Lering, Flam crest, Tex x-9, early grand and Floradaking were distinctly grouped when compared with the rest of population. (author)

  6. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  7. Transgenesis: An efficient tool in mulberry breeding | Wani | African ...

    African Journals Online (AJOL)

    Genetic engineering is the most potent biotechnological approach dealing with transfer of specially constructed gene assemblies through various transformation techniques. Tools of recombinant DNA technology facilitated development of transgenic plants. The plants obtained through genetic engineering contain a gene or ...

  8. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata.

    Science.gov (United States)

    Chung, Ill-Min; Rajakumar, Govindasamy; Lee, Ji-Hee; Kim, Seung-Hyun; Thiruvengadam, Muthu

    2017-07-01

    Eclipta prostrata belongs to a family of medicinal plants (Asteraceae) and plays a role in the treatment of several diseases, including infectious hepatitis, snake venom poisoning, gastritis, and respiratory diseases such as a cough and asthma. A number of compounds, including thiophene derivatives, steroids, triterpenes, flavonoids, polyacetylenes, polypeptides, and coumestans, have been isolated from E. prostrata. The plant functional compounds can act as reducing agent in the field of nanoparticle synthesis. The extracts of E. prostrata are widely used for green biosynthesis of various metal and metal oxide nanoparticles, nanoparticles, which showed a potential for pharmaceutical, biotechnological, and biomedical applications. Establishment of a efficient in vitro regeneration and genetic transformation method of E. prostrata is a vital prerequisite for application of biotechnology in order to improve secondary metabolite yields. The present mini-review discusses its pharmacological profile, chemical constituents, biotechnological, and ethnomedical uses, mainly focusing on antimyotoxic, antihemorrhagic, antiproliferative, antioxidant, antitumor, antihyperglycemic, antidementia, antimicrobial, antihyperlipidemic, antivenom, anti-HIV, and larvicidal activities, so that the pharmaceutical potential of the plant can be better evaluated. The mini review, providing up-to-date phytochemical and other information on E. prostrata, will serve a reference for further studies.

  9. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L.

    Science.gov (United States)

    Sujatha, M; Reddy, T P; Mahasi, M J

    2008-01-01

    Castor and Jatropha belong to the Euphorbiaceae family. This review highlights the role of biotechnological tools in the genetic improvement of castor and jatropha. Castor is monotypic and breeding programmes have mostly relied on the variability available in the primary gene pool. The major constraints limiting profitable cultivation are: vulnerability to insect pests and diseases, and the press cake is toxic which restrict its use as cattle feed. Conventional breeding techniques have limited scope in improvement of resistance to biotic stresses and in quality improvement owing to low genetic variability for these traits. Genetic diversity was assessed using protein based markers while use of molecular markers is at infancy. In vitro studies in castor have been successful in shoot proliferation from meristematic explants, but not callus-mediated regeneration. Genetic transformation experiments have been initiated for development of insect resistant and ricin-free transgenics with very low transformation frequency. In tropical and subtropical countries jatropha is viewed as a potential biofuel crop. The limitations in available germplasm include; lack of knowledge of the genetic base, poor yields, low genetic diversity and vulnerability to a wide array of insects and diseases. Great scope exists for genetic improvement through conventional methods, induced mutations, interspecific hybridization and genetic transformation. Reliable and highly efficient tissue culture protocols for direct and callus-mediated shoot regeneration and somatic embryogenesis are established for jatropha which indicates potential for widening the genetic base through biotechnological tools. Assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local Jatropha curcas germplasm. The current status and future prospects of in vitro regeneration, genetic transformation and the role of molecular tools in the genetic enhancement of the two

  10. Genetically modified soybeans and food allergies.

    Science.gov (United States)

    Herman, Eliot M

    2003-05-01

    Allergenic reactions to proteins expressed in GM crops has been one of the prominent concerns among biotechnology critics and a concern of regulatory agencies. Soybeans like many plants have intrinsic allergens that present problems for sensitive people. Current GM crops, including soybean, have not been shown to add any additional allergenic risk beyond the intrinsic risks already present. Biotechnology can be used to characterize and eliminate allergens naturally present in crops. Biotechnology has been used to remove a major allergen in soybean demonstrating that genetic modification can be used to reduce allergenicity of food and feed. This provides a model for further use of GM approaches to eliminate allergens.

  11. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  12. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao

    2013-01-01

    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  13. Covalent and non-covalent chemical engineering of actin for biotechnological applications.

    Science.gov (United States)

    Kumar, Saroj; Mansson, Alf

    2017-11-15

    The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    Science.gov (United States)

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  15. De-Problematizing 'GMOs': Suggestions for Communicating about Genetic Engineering.

    Science.gov (United States)

    Blancke, Stefaan; Grunewald, Wim; De Jaeger, Geert

    2017-03-01

    The public debates concerning genetic engineering (GE) involve many non-scientific issues. The ensuing complexity is one reason why biotechnologists are reluctant to become involved. By sharing our personal experiences in science communication and suggesting ways to de-problematize GE, we aim to inspire our colleagues to engage with the public. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    Science.gov (United States)

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  17. Field cage studies and progressive evaluation of genetically-engineered mosquitoes.

    Directory of Open Access Journals (Sweden)

    Luca Facchinelli

    Full Text Available A genetically-engineered strain of the dengue mosquito vector Aedes aegypti, designated OX3604C, was evaluated in large outdoor cage trials for its potential to improve dengue prevention efforts by inducing population suppression. OX3604C is engineered with a repressible genetic construct that causes a female-specific flightless phenotype. Wild-type females that mate with homozygous OX3604C males will not produce reproductive female offspring. Weekly introductions of OX3604C males eliminated all three targeted Ae. aegypti populations after 10-20 weeks in a previous laboratory cage experiment. As part of the phased, progressive evaluation of this technology, we carried out an assessment in large outdoor field enclosures in dengue endemic southern Mexico.OX3604C males were introduced weekly into field cages containing stable target populations, initially at 10:1 ratios. Statistically significant target population decreases were detected in 4 of 5 treatment cages after 17 weeks, but none of the treatment populations were eliminated. Mating competitiveness experiments, carried out to explore the discrepancy between lab and field cage results revealed a maximum mating disadvantage of up 59.1% for OX3604C males, which accounted for a significant part of the 97% fitness cost predicted by a mathematical model to be necessary to produce the field cage results.Our results indicate that OX3604C may not be effective in large-scale releases. A strain with the same transgene that is not encumbered by a large mating disadvantage, however, could have improved prospects for dengue prevention. Insights from large outdoor cage experiments may provide an important part of the progressive, stepwise evaluation of genetically-engineered mosquitoes.

  18. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  19. Single nucleotide substitution mutations and polymorphisms in ...

    African Journals Online (AJOL)

    Administrator

    2011-09-14

    Sep 14, 2011 ... 1The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan. 2Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan. 3Department of Dermatology, Jinnah Postgraduate Medical Center, Karachi, Pakistan. Accepted 7 July, 2011.

  20. World Biotechnology Leaders to Gather for Conference

    Science.gov (United States)

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  1. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    Science.gov (United States)

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  2. Engineering Values into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility

    OpenAIRE

    Sankar, Pamela L.; Cho, Mildred K.

    2015-01-01

    Recent experiments have been used to “edit” genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a “gene drive” that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working ...

  3. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia.

    Directory of Open Access Journals (Sweden)

    Renaud Lacroix

    Full Text Available BACKGROUND: Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. METHODOLOGY/PRINCIPAL FINDINGS: Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered 'genetically sterile' (OX513A and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m, but mean distance travelled of the OX513A strain was lower (52 vs. 100 m. Life expectancy was similar (2.0 vs. 2.2 days. Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. CONCLUSIONS/SIGNIFICANCE: After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.

  4. Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology.

    Science.gov (United States)

    Ju, Feng; Zhang, Tong

    2015-11-03

    Recent advances in DNA sequencing technologies have prompted the widespread application of metagenomics for the investigation of novel bioresources (e.g., industrial enzymes and bioactive molecules) and unknown biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. This review discusses the rigorous experimental design and sample preparation in the context of applying metagenomics in environmental sciences and biotechnology. Moreover, this review summarizes the principles, methodologies, and state-of-the-art bioinformatics procedures, tools and database resources for metagenomics applications and discusses two popular strategies (analysis of unassembled reads versus assembled contigs/draft genomes) for quantitative or qualitative insights of microbial community structure and functions. Overall, this review aims to facilitate more extensive application of metagenomics in the investigation of uncultured microorganisms, novel enzymes, microbe-environment interactions, and biohazards in biotechnological applications where microbial communities are engineered for bioenergy production, wastewater treatment, and bioremediation.

  5. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment.

    Science.gov (United States)

    Kalogerakis, Nicolas; Arff, Johanne; Banat, Ibrahim M; Broch, Ole Jacob; Daffonchio, Daniele; Edvardsen, Torgeir; Eguiraun, Harkaitz; Giuliano, Laura; Handå, Aleksander; López-de-Ipiña, Karmele; Marigomez, Ionan; Martinez, Iciar; Øie, Gunvor; Rojo, Fernando; Skjermo, Jorunn; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Biotechnology : A Dutch perspective

    NARCIS (Netherlands)

    Van Apeldoorn, J.H.F.

    1981-01-01

    Biotechnology: a Dutch Perspective assesses the future potential of biotechnology in the Netherlands. It has been published in English because it is felt that the Dutch case could be of relevance to other industrialised nations. Although the report is aimed primarily at policy planners and decision

  7. Natural genetic engineering: intelligence & design in evolution?

    DEFF Research Database (Denmark)

    Ussery, David

    2011-01-01

    There are many things that I like about James Shapiro's new book "Evolution: A View from the 21st Century" (FT Press Science, 2011). He begins the book by saying that it is the creation of novelty, and not selection, that is important in the history of life. In the presence of heritable traits...... function. Shapiro argues that what we see in genomes is 'Natural Genetic Engineering', or designed evolution: "Thinking about genomes from an informatics perspective, it is apparent that systems engineering is a better metaphor for the evolutionary process than the conventional view of evolution...... as a select-biased random walk through limitless space of possible DNA configurations" (page 6). In this review, I will have a look at four topics: 1.) why I think genomics is not the whole story; 2.) my own perspective of E. coli genomics, and how I think it relates to this book; 3.) a brief discussion...

  8. Study on biofortification of rice by targeted genetic engineering

    Directory of Open Access Journals (Sweden)

    Sumon M. Hossain

    2012-12-01

    Full Text Available Micronutrient malnutrition is a major health problem in Bangladesh and also in many other developing countries, where a diversified diet is not affordable for the majority. In the present world- one, out of seven people suffers from hunger. Yet, there is a stealthier form of hunger than lack of food: micronutrient malnutrition or hidden hunger. While often providing enough calories, monotonous diets (of rural poor frequently fail to deliver sufficient quantities of essential minerals and vitamins. Due to micronutrient deficiencies different characteristic features have been observed to the victims. Various estimates indicate that over two-thirds of the world population, for the most part women and children specially, pre-school children are deficient in at least one micronutrient. This can have devastating consequences for the life, health and well being of the individuals concerned (like premature death, blindness, weakened immune systems etc. Genetic engineering approach is the upcoming strategy to solve this problem. Genetically engineered biofortified staple crops specially, rice that are high in essential micronutrients (Fe, Zn, vitamin A and adapted to local growing environments have the potential to significantly reduce the prevalence of micronutrient deficiencies specially to the rural poor.

  9. Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. The Potential of White Biotechnology. The BREW Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L. [Department of Science, Technology and Society NWS, Utrecht University, Utrecht (Netherlands); Huesing, B. [Fraunhofer Institute for Systems and Innovation Research FhG-ISl, Karlsruhe (Germany); Overbeek, L. [Plant Research International PRI, Wageningen (Netherlands); Terragni, F.; Recchia, E. [CERISS, Centro per I' Educazione, la Ricerca, I' lnformazione su Scienza e Society, Milan (Italy)

    2006-09-15

    This study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. The main purpose of Chapter 2 is to provide an overview of emerging key White Biotechnology products and to explain which chemicals could be produced on their basis. For a selection of these products, detailed environmental and economic assessments are conducted in Chapter 3 (in specific terms, i.e. per tonne of product). Chapter 3 discusses also the so-called Generic Approach which is the methodology we developed and applied to assess future processes and processes, for which very little information is available. In Chapter 4, three scenario projections are developed for Europe (EU-25), thereby assuming benign, moderate and disadvantageous conditions for bio-based chemicals. The purpose of this chapter is hence to understand to which extent restructuring of the chemical sector might occur under which conditions. In Chapter 5, the risks related to the use of White Biotechnology are addressed. The main purpose of this chapter is to give insight into the main risk components influencing the overall risk and of the knowledge gaps. Both conventional risks (e.g., human toxicity and accidents) and risks related to generic modification (e.g., horizontal gene transfer) are analyzed. Since the public perception may play an important role for the implementation of White Biotechnology on a large scale, these issues are discussed in

  10. Challenges and opportunities for improving food quality and nutrition through plant biotechnology.

    Science.gov (United States)

    Francis, David; Finer, John J; Grotewold, Erich

    2017-04-01

    Plant biotechnology has been around since the advent of humankind, resulting in tremendous improvements in plant cultivation through crop domestication, breeding and selection. The emergence of transgenic approaches involving the introduction of defined DNA sequences into plants by humans has rapidly changed the surface of our planet by further expanding the gene pool used by plant breeders for plant improvement. Transgenic approaches in food plants have raised concerns on the merits, social implications, ecological risks and true benefits of plant biotechnology. The recently acquired ability to precisely edit plant genomes by modifying native genes without introducing new genetic material offers new opportunities to rapidly exploit natural variation, create new variation and incorporate changes with the goal to generate more productive and nutritious plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  12. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  13. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    Science.gov (United States)

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  15. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  16. Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1988-01-01

    This book contains 34 papers on various aspects of hazardous waste management through biotechnology. The articles stress the three basic strategies of waste management; minimize the amount of waste generated; reduce the toxicity of the wastes; and find more satisfactory ways of disposing of wastes. Part I of this collection describes the use of microbial ecology, molecular biology, and other scientific disciplines to combat these problems. Part II describes the application of present technology to current problems. Part III describes the effect of policy and regulations on biotechnology. Individual papers are processed separately for the data base

  17. Banana research in the FAO/IAEA agriculture and biotechnology laboratory

    International Nuclear Information System (INIS)

    Morpurgo, R.; Afza, R.; Brunner, H.; Roux, N.; Grasso, G.; Lee, K.S.; Duren, M. Van; Zapata-Arias, F.J.

    1997-01-01

    The primary activity of the Agriculture and Biotechnology Laboratory on banana has been to develop and transfer mutation techniques using nuclear and related biotechnology, provide training and mutagen treatment services and technical advice to the Member States. The complex genetic nature and lack of seed formation do not allow conventional breeding of Musa varieties. The FAO/IAEA laboratory has developed in vitro techniques to induce mutations, minimize chimerisms, and rapid propagation of banana. The most commonly used method of propagation is rapid proliferation of axillary and adventitious buds from meristem tip culture. Somatic embryogenesis has been induced in clones with different genomic constitution; however, the low germination rate of somatic embryos is still a major constraint. Investigations have been carried out on enzymes associated with resistance to Fusarium oxisporum f. sp. cubense. Molecular methods based on DNA oligonucleotide and DNA amplification fingerprinting are being developed for genomic characterization of species, cultivars and mutant clones. (author)

  18. Banana research in the FAO/IAEA agriculture and biotechnology laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Morpurgo, R; Afza, R; Brunner, H; Roux, N; Grasso, G; Lee, K S; Duren, M Van; Zapata-Arias, F J [Agriculture and Biotechnology Laboratory, International Atomic Energy Agency, Seibersdorf (Austria)

    1997-07-01

    The primary activity of the Agriculture and Biotechnology Laboratory on banana has been to develop and transfer mutation techniques using nuclear and related biotechnology, provide training and mutagen treatment services and technical advice to the Member States. The complex genetic nature and lack of seed formation do not allow conventional breeding of Musa varieties. The FAO/IAEA laboratory has developed in vitro techniques to induce mutations, minimize chimerisms, and rapid propagation of banana. The most commonly used method of propagation is rapid proliferation of axillary and adventitious buds from meristem tip culture. Somatic embryogenesis has been induced in clones with different genomic constitution; however, the low germination rate of somatic embryos is still a major constraint. Investigations have been carried out on enzymes associated with resistance to Fusarium oxisporum f. sp. cubense. Molecular methods based on DNA oligonucleotide and DNA amplification fingerprinting are being developed for genomic characterization of species, cultivars and mutant clones. (author).

  19. A part toolbox to tune genetic expression in Bacillus subtilis

    Science.gov (United States)

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  20. The contribution of biotechnology toward progress in diagnosis, management, and treatment of allergic diseases.

    Science.gov (United States)

    Palomares, O; Crameri, R; Rhyner, C

    2014-12-01

    'Biotechnology' has been intuitively used by humans since thousands of years for the production of foods, beverages, and drugs based on the experience without any scientific background. However, the golden era of this discipline emerged only during the second half of the last century. Incredible progresses have been achieved on all fields starting from the industrialization of the production of foods to the discovery of antibiotics, the decipherment of the genetic code, and rational approaches to understand and define the status we now call 'healthy'. The extremely complex interactions between genetic background, life style, and environmental factors influencing our continuously increasing life span have become more and more evident and steadily generate new questions which are only partly answered. Here, we try to summarize the contribution of biotechnology to our understanding, control, and cure of IgE-mediated allergic diseases. We are aware that a review of such a vast topic can never cover all aspects of the progress achieved in the different fields. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.