WorldWideScience

Sample records for biotechnology electronic resource

  1. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  2. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  3. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  4. Biotechnologies for the management of genetic resources for food and agriculture.

    Science.gov (United States)

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  5. The use of different type of electron beam radiation equipment for biotechnological materials

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Oproiu, C.; Ferdes, M.

    1998-01-01

    The potential of using electron beam radiation and bremsstrahlung for some biotechnological materials treatment is presented based on the results of the R and D programme established in 1993 at the Institute of Lasers, Plasma and Radiation Physics Bucharest, Electron Accelerator Laboratory. The main parameters of different electron accelerator types used to process biotechnological materials are presented as these machines were designed, developed and improved. In order to fulfil the radiation processing requirements for biotechnology and environmental protection, betatron, linear and microtron-type electron accelerators are considered and there is an interest to develop a dedicated one as well. The results of irradiation of different biotechnological items as cell cultures, microbial strains, enzymes and biopreparates and cellulose-based wastes are presented

  6. How to access and exploit natural resources sustainably: petroleum biotechnology.

    Science.gov (United States)

    Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M

    2017-09-01

    As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Generating opportunity : human resources needs in the bioenergy, biofuels and industrial biotechnology subsectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Canada has a plentiful resource base and a long history of innovation in bioenergy, biofuels and industrial biotechnology. Success of the industry depends on having the required human resources capacity such as the right number of skilled, job-ready professionals to support companies as they develop and commercialize new solutions. This document presented the results of a human resources survey conducted by BioTalent regarding the national and global bioenergy, biofuels and industrial biotechnology subsectors. It addressed a variety of issues, such as the increasing demand for bioenergy; the near-term perspective; growth factors; and the role of public policy. A subsector snapshot of human resources was also presented, with particular reference to the principal areas of need; types of roles required in the bio-economy; human resources capacity and company size; regional variances; skills gaps; reliance on outsourcing; knowledge, learning and connectedness; recruitment, retention and turnover; and the road ahead. Conclusions and recommendations were also offered. It was concluded that once the economy recovers, demand for bioenergy, biofuels and industrial products and services is expected to increase. 3 tabs., 6 figs.

  9. Biotechnology 2009

    International Nuclear Information System (INIS)

    2009-12-01

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  10. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    komla

    on how to best manage the strategic interplay between biotechnology and diversity in ... Therefore, it is imperative that, in formulating a biotechnology ..... Acknowledgement, indicating the source of any financial support or personal assistance.

  11. Education resources of the National Center for Biotechnology Information.

    Science.gov (United States)

    Cooper, Peter S; Lipshultz, Dawn; Matten, Wayne T; McGinnis, Scott D; Pechous, Steven; Romiti, Monica L; Tao, Tao; Valjavec-Gratian, Majda; Sayers, Eric W

    2010-11-01

    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page (www.ncbi.nlm.nih.gov/Education/). These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube.

  12. STRENGTHENING BIOTECHNOLOGY RESEARCH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. Sastrapradja

    2012-09-01

    Full Text Available The wave of biotechnology promises has struck not only the developed countries but the developing countries as well. The scientific community in Indonesia is aware of the opportunities and is eager to take an active part in this particular endeavour. Meanwhile resources are required to welcoming the biotech­nology era. The need of trained manpower, appropriate infrastructure and equipment, operational and maintenance costs requires serious consideration if a unit or a laboratory is expected to be functional in biotechnology. There is a good opportunity of applying biotechnology in the field of agriculture and industry considering the availability of biological resources in Indonesia. This paper outlines what have been done so far, the difficulties encountered and the efforts made to strengthening biotechnology research in Indonesia.

  13. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. First report on the state of the world's animal genetic resources. Views on biotechnology as expressed in country reports

    International Nuclear Information System (INIS)

    Cardellino, R.; Hoffmann, I.; Tempelman, K.A.

    2005-01-01

    As part of the country-driven strategy for the management of farm animal genetic resources, FAO invited 188 counties to participate in the First Report on the State of the World's Animal Genetic Resources, with 145 consenting. Their reports are an important source of information on the use of biotechnology, particularly biotechnical products and processes. This paper analyses information from country reports so far submitted, and is therefore preliminary. There is clearly a big gap in biotechnology applications between developed and developing countries, with artificial insemination the most common technology used in developing countries, although not everywhere. More complex techniques, such as embryo transfer (ET) and molecular tools, are even less frequent in developing countries. Most developing countries wish to expand ET and establish gene banks and cryoconservation techniques. There are very few examples in developing countries of livestock breeding programmes capable of incorporating molecular biotechnologies in livestock genetic improvement programmes. (author)

  15. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  16. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preservation of plant genetic resources in the biotechnology era.

    Science.gov (United States)

    Börner, Andreas

    2006-12-01

    Thousands of years ago humans began domesticating crops as a food source. Among the wild germplasm available, they selected those that were best adapted for cultivation and utilization. Although wild ancestors have continued to persist in regions where domestication took place, there is a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices. Recognizing this danger, plant ex situ genebank collections were created since the beginning of the last century. World-wide, more than 6 million accessions have been accumulated including the German ex situ genebank in Gatersleben, one of the four largest global collections, housing 150,000 accessions belonging to 890 genera and 3032 species. This review summarizes the ex situ plant genetic resources conservation behavior with a special emphasis on German activities. Strategies for maintenance and management of germplasm collections are reviewed, considering modern biotechnologies (in vitro and cryo preservation). General aspects on genetic diversity and integrity are discussed.

  18. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  19. Electronic Resource Management and Design

    Science.gov (United States)

    Abrams, Kimberly R.

    2015-01-01

    We have now reached a tipping point at which electronic resources comprise more than half of academic library budgets. Because of the increasing work associated with the ever-increasing number of e-resources, there is a trend to distribute work throughout the library even in the presence of an electronic resources department. In 2013, the author…

  20. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  1. Spider silk as a resource for future biotechnologies

    Czech Academy of Sciences Publication Activity Database

    Sponner, Alexander

    2007-01-01

    Roč. 37, č. 4 (2007), s. 238-250 ISSN 1738-2297 R&D Projects: GA AV ČR IAA5007402 Institutional research plan: CEZ:AV0Z50070508 Keywords : biomaterial * biotechnology * fiber Subject RIV: ED - Physiology

  2. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  3. Biotechnology awareness study, Part 1: Where scientists get their information.

    Science.gov (United States)

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  4. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  5. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  7. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  8. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Proteomics: a biotechnology tool for crop improvement

    OpenAIRE

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  10. Past, present, and future industrial biotechnology in China.

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  11. Biotechnology as a competitive edge for the Finnish forest cluster

    OpenAIRE

    Hakala, Terhi

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  12. Biotechnology as a Competitive Edge for the Finnish Forest Cluster

    OpenAIRE

    Hakala, Terhi; Haltia, Olli; Hermans, Raine; Kulvik, Martti; Nikinmaa, Hanna; Porcar-Castell, Albert; Pursula, Tiina

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  13. Biotechnology 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  14. Biotechnology for Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal

    Directory of Open Access Journals (Sweden)

    Bal Krishna Joshi

    2017-05-01

    Full Text Available Agricultural biodiversity is the basis of human life and food security. Nepal with 577 cultivated species possesses huge diversity at varietal as well as landrace levels. In most agricultural crops the rapid genetic erosion due to several reasons is a common phenomenon. Thus, considering the importance of agricultural biodiversity declared by Convention on Biological Diversity for sustainable food production, National Agriculture Genetic Resources Center (NAGRC has been established for conservation and sustainable utilization of agricultural biodiversity. This paper thus delineates the application of biotechnological tools adopted by NAGRC for effective and efficient conservation and use of agricultural plant genetic resources (APGRs. Among the adopted technologies, tissue bank using shoot tip culture of vegetatively propagating and recalcitrant crops eg potato, sugarcane, banana, sweet potato, etc are in function. Under the molecular marker technology, currently random amplified polymorphic DNA (RAPD and simple sequence repeat (SSR markers have been used for developing DNA profiles, identifying duplicates in the collections, assessing genetic diversity and screening accessions against economic traits. DNA bank has also been created for storing DNA of indigenous crops and these DNA can be accessed for research and study. Genotypic database has been developed for chayote, finger millet, wheat and maize for identification and selection of the accessions.

  15. Medical Biotechnology Trends and Achievements in Iran

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  16. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  17. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  18. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  19. Foundations for a Colombian Biotechnology policy

    Directory of Open Access Journals (Sweden)

    Óscar Castellanos

    2001-07-01

    Full Text Available Globalisation has created challenges for industry related to the constant need for improving national and international productivity and competitivity. Biological knowledge today has growing industrial application as it proposes innovative production methods. This type of biotechnology is becoming more relevant in Colombia's economic and social development all the time. The Colombian Ministry of Development, Colciencias and the National University of Colombia have therefore been jointly developing an integral set of guidelines. These are framed within Colombia's biotechnology policy to create concrete goals, objectives, strategies and direct action from the State, academic institutions and the business world. They encompass six fundamental approaches: markets and management; normativity and legislation; research and development (R&D; economic resources; human resources; and integration training. They al so explicitly raise the question of who shall be responsible for follow-up and the way that the policy's execution and achievements will be evaluated.

  20. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  2. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  3. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  4. Implementing CORAL: An Electronic Resource Management System

    Science.gov (United States)

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  5. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura; Cherif, Ameur; Daffonchio, Daniele; Neifar, Mohamed; Fava, Fabio

    2015-01-01

    produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology

  6. Managing electronic resources a LITA guide

    CERN Document Server

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  7. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  8. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    1994-01-01

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  9. A Proposal to Develop a Biotechnology Information Facility

    National Research Council Canada - National Science Library

    Spalding, John

    2002-01-01

    The objective of this grant was to develop facilities and information resources that support current research in biotechnology and to meet the goal of strengthening the biological science programs at HBCUs/Mls...

  10. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  11. [Importance of reproductive biotechnology in cattle in Europe].

    Science.gov (United States)

    Wrenzycki, C; Stinshoff, H

    2015-01-01

    Reproductive biotechnology has manifold applications and includes a great innovation potential in livestock. Due to the global changes the new findings and techniques can aid to meet the future challenges. The use of biotechnology in animal production can guarantee enough high quality food for the whole population. Genetic resources of animals can be preserved via sperm and embryo banking. Early diagnosis of hereditary defects, generation of offspring with predetermined sex and the avoidance of animal transports for breeding employing shipment of frozen embryos will improve animal welfare. A special application is the use of animal models for human assisted reproductive technologies. Therefore, not only in Germany research related to the methodologies in reproductive biotechnology and their improvement need to be supported.

  12. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    Science.gov (United States)

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  14. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  15. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    Science.gov (United States)

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  17. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  18. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  19. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  20. Biotechnology in Georgia for Various Applications

    International Nuclear Information System (INIS)

    Mosulishvili, L.; Tsibakhashvili, N.; Kirkesali, E.; Tsertsvadze, L.; Frontasyeva, M.; Pavlov, S.

    2008-01-01

    The results of collaborative work carried out in the field of biotechnology at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) (Dubna, Russia) jointly with scientists from Georgia are presented. Using instrumental neutron activation analysis (NAA), significant results were ontained in the following directions - medical biotechnology, environmental biotechnology and industrial biotechnology. In the biomedical experiments a blue-green alga Spirulina platensis biomass has been used as a matrix for the development of pharmaceutical substances containing such vitally important trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into Spirulina platensis biocomplexes retaining its protain composition and natural beneficial properties has been proved. The adsorption of such toxic metal as mercury by Spirulina platensis biomass in dynamics of growth has been studied also. NAA has been successfully applied to investigate the biotechnology of toxic Cr(VI) transformation into less toxic Cr(III) complexes by Cr(VI)-reducer bacteria isolated from polluted basalts in Georgia. This method was used to track accumulation of chromium in the bacterial cells. To monitor and identify Cr(III) complexes in these bacteria, electron spin resonance (ESR) spectrometry was employed. For the first time, the elemental composition of Cr(VI)-reducer bacteria has been studied using epithermal NAA. The natural organic mass of vegetal origin - peat - was applied as a source of microorganisms to study the bacterial leaching of some metals from lean ores, rocks and industrial wastes. (author)

  1. Biotechnology and industrial ecology: new challenges for a ...

    African Journals Online (AJOL)

    Admin

    Key words: Biotechnology, industrial ecology, energy, agriculture, biofuels, climate change, desertification, genetic engineering. INTRODUCTION. The human population is growing at an exponential rate and average per capita consumption of natural resources is also increasing. These growth patterns are leading to.

  2. Gender Analysis Of Electronic Information Resource Use: The Case ...

    African Journals Online (AJOL)

    Based on the findings the study concluded that access and use of electronic information resources creates a “social digital divide” along gender lines. The study ... Finally, the library needs to change its marketing strategies on the availability of electronic information resources to increase awareness of these resources.

  3. Users satisfaction with electronic information resources and services ...

    African Journals Online (AJOL)

    This study investigated users satisfaction on the use of electronic information resources and services in MTN Net libraries in ABU & UNIBEN. Two objectives and one null hypotheses were formulated and tested with respect to the users' satisfaction on electronic information resources and services in MTN Net libraries in ...

  4. Microbial ecology to manage processes in environmental biotechnology.

    Science.gov (United States)

    Rittmann, Bruce E

    2006-06-01

    Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.

  5. Roles of agricultural biotechnology in ensuring adequate food ...

    African Journals Online (AJOL)

    Agriculture is asked to satisfy two apparently contradictory needs; to become more productive and at the same time more sustainable, that is, to supply the food needed without depleting renewable resources. While agricultural biotechnology holds enormous promise for significantly increasing food production and relieving ...

  6. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  7. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  8. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment.

    Science.gov (United States)

    Kalogerakis, Nicolas; Arff, Johanne; Banat, Ibrahim M; Broch, Ole Jacob; Daffonchio, Daniele; Edvardsen, Torgeir; Eguiraun, Harkaitz; Giuliano, Laura; Handå, Aleksander; López-de-Ipiña, Karmele; Marigomez, Ionan; Martinez, Iciar; Øie, Gunvor; Rojo, Fernando; Skjermo, Jorunn; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  10. FY 1997 report on the research study on the effect of the active use of bio-technology on energy and social systems; 1997 nendo chosa hokokusho (bio-technology no katsuyo ni yoru energy shakai system ni oyobosu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For construction of a sustainable society by active use of bio-technology, a research study was made on the current state of active use of bio-technology for every industrial or social field, and the basic recognition and orientation for practice and diffusion of bio-technology. The previous typical examples of the effect of bio-technology on energy and social systems were evaluated from not only an affirmative viewpoint but also a compensatory viewpoint. Based on these examples, promising features of bio-technology and measures for active use of such features were showed for the future energy and social systems from a technological viewpoint. As a scenario for sustainable development of a society, some approaches and values about collection of rare resources, agriculture based on mass circulation, and recurrence to high-protein traditional foods such as fermented food were showed for balanced development of environment, population, and resources including energy and food. 8 refs., 14 figs., 8 tabs.

  11. CHALLENGES OF ELECTRONIC INFORMATION RESOURCES IN ...

    African Journals Online (AJOL)

    This paper discusses the role of policy for proper and efficient library services in the electronic era. It points out some of the possible dangers of embarking in electronic resources without a proper focus at hand. Thus, it calls for today's librarians and policy makers to brainstorm and come up with working policies suitable to ...

  12. The Current Developments of Agricultural Biotechnologies Market

    Directory of Open Access Journals (Sweden)

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  13. Use of Electronic Resources in a Private University in Nigeria ...

    African Journals Online (AJOL)

    The study examined awareness and constraints in the use of electronic resources by lecturers and students of Ajayi Crowther University, Oyo, Nigeria. It aimed at justifying the resources expended in the provision of electronic resources in terms of awareness, patronage and factors that may be affecting awareness and use ...

  14. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  15. Biotechnology software in the digital age: are you winning?

    Science.gov (United States)

    Scheitz, Cornelia Johanna Franziska; Peck, Lawrence J; Groban, Eli S

    2018-01-16

    There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.

  16. use of electronic resources by graduate students of the department

    African Journals Online (AJOL)

    respondent's access electronic resources from the internet via Cybercafé .There is a high ... KEY WORDS: Use, Electronic Resources, Graduate Students, Cybercafé. INTRODUCTION ... Faculty of Education, University of Uyo, Uyo. Olu Olat ...

  17. International Marine Biotechnology Culture Collection (IMBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Baker, K. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    The objective of this project is to establish a premier culture collection of tropical marine microorganisms able to generate hydrogen from water or organic substances. Both eukaryotic and prokaryotic microorganisms will serve as the biological reservoir or {open_quotes}library{close_quotes} for other DOE Hydrogen Program contractors, the biohydrogen research community and industry. This project consists of several tasks: (a) transfer of the Mitsui-Miami strains to Hawaii`s International Marine Biotechnology Culture Collection (IMBCC) housed at the Hawaii Natural Energy Institute (HNEI); (b) maintain and distribute Mitsui-Miami strains; (c) characterize key strains by traditional and advanced biotechnological techniques; (d) expand Hawaii`s IMBCC; and (e) establish and operate an information resource (database). The project was initiated only late in the summer of 1995 but progress has been made on all tasks. Of the 161 cyanobacterial strains imported, 147 survived storage and importation and 145 are viable. with most exhibiting growth. Of the 406 strains of other photosynthetic bacteria imported, 392 survived storage and importation and 353 are viable, with many exhibiting growth. This project is linked to cooperative efforts being supported by the Japanese Ministry of International Trade and Industry (MITI) through its Marine Biotechnology Institute (MBI) and Research Institute of Innovative Technology for the Earth (RITE).

  18. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine.

    Science.gov (United States)

    Cui, Jian Dong

    2015-01-01

    Cordyceps militaris is a potential harborer of biometabolites for herbal drugs. For a long time, C. militaris has gained considerable significance in several clinical and biotechnological applications. Much knowledge has been gathered with regard to the C. militaris's importance in the genetic resources, nutritional and environmental requirements, mating behavior and biochemical pharmacological properties. The complete genome of C. militaris has recently been sequenced. This fungus has been the subject of many reviews, but few have focused on its biotechnological production of bioactive constituents. This mini-review focuses on the recent advances in the biotechnological production of bioactive compositions of C. militaris and the latest advances on novel applications from this laboratory and many others.

  19. Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. The Potential of White Biotechnology. The BREW Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L. [Department of Science, Technology and Society NWS, Utrecht University, Utrecht (Netherlands); Huesing, B. [Fraunhofer Institute for Systems and Innovation Research FhG-ISl, Karlsruhe (Germany); Overbeek, L. [Plant Research International PRI, Wageningen (Netherlands); Terragni, F.; Recchia, E. [CERISS, Centro per I' Educazione, la Ricerca, I' lnformazione su Scienza e Society, Milan (Italy)

    2006-09-15

    This study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. The main purpose of Chapter 2 is to provide an overview of emerging key White Biotechnology products and to explain which chemicals could be produced on their basis. For a selection of these products, detailed environmental and economic assessments are conducted in Chapter 3 (in specific terms, i.e. per tonne of product). Chapter 3 discusses also the so-called Generic Approach which is the methodology we developed and applied to assess future processes and processes, for which very little information is available. In Chapter 4, three scenario projections are developed for Europe (EU-25), thereby assuming benign, moderate and disadvantageous conditions for bio-based chemicals. The purpose of this chapter is hence to understand to which extent restructuring of the chemical sector might occur under which conditions. In Chapter 5, the risks related to the use of White Biotechnology are addressed. The main purpose of this chapter is to give insight into the main risk components influencing the overall risk and of the knowledge gaps. Both conventional risks (e.g., human toxicity and accidents) and risks related to generic modification (e.g., horizontal gene transfer) are analyzed. Since the public perception may play an important role for the implementation of White Biotechnology on a large scale, these issues are discussed in

  20. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  1. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  2. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Agenda 21: biotechnology at the United Nations Conference on Environment and Development.

    Science.gov (United States)

    Taylhardat, A R; Zilinskas, R A

    1992-04-01

    Preparation has yet to be completed for the 1992 Earth Summit, UN Conference on Environment and Development (UNCED), in Rio de Janeiro, Brazil. Nonetheless, it has been planned as a forum in which recommendations will be made to governments and international organizations on how to alleviate environmental damage caused by human activities and how to prevent future damage without retarding development in the Third World. It will declare basic principles for national and individual conduct regarding environmental preservation and sustainable development; adopt international conventions to protect biodiversity and manage climatic change; lay out Agenda 21 activities as specified by UNCED; provide an agenda to help Third World governments manage environmental matters; and provide an agenda for improving the transfer of technology to developing countries. Where biotechnology is concerned, scientists and policy makers in developing countries have shown their interest. Limited resources and capabilities, however, constrain their abilities to engage in serious research and development. International organizations such as the UN Industrial Development Organization (UNIDO) may help UNCED and developing countries with biotechnology. Since 1986, UNIDO has held the International Centre for Genetic Engineering and Biotechnology (ICGEB) as a special project. The ICGEB conducts research and development (R&D) on high priority topics in developing countries; trains scientific and technical personnel from member countries in advanced biotechnology techniques; helps member countries implement and operate ICGEB-affiliated R&D and training centers; and manages an information exchange for internationally affiliated centers. To maximize the potential of biotechnology to help Third World nations clear their environments of pollutants while safely exploiting natural resources, organizations should promote full use of available training resources; promote biosafety and the dissemination of

  4. Utilization of electronic information resources by academic staff at ...

    African Journals Online (AJOL)

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  5. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-01-01

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration

  6. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  8. Practical guide to electronic resources in the humanities

    CERN Document Server

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  9. Healthcare biotechnology in India.

    Science.gov (United States)

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  10. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  11. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified

  12. Utilisation of Electronic Information Resources By Lecturers in ...

    African Journals Online (AJOL)

    This study assesses the use of information resources, specifically, electronic databases by lecturers/teachers in Universities and Colleges of Education in South Western Nigeria. Information resources are central to teachers' education. It provides lecturers/teachers access to information that enhances research and ...

  13. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    Science.gov (United States)

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  14. Biotechnology for energy

    International Nuclear Information System (INIS)

    Malik, K.A.; Naqvi, S.H.M.

    1991-01-01

    The present volume comprises paper presented and discussed in the symposium. The main purpose of this symposium was to collect researchers in the area of bioconversion of biomass into biofuels, petroleum biotechnology and biohydrometallurgy. This book has been divided into four main sections which includes molecular biology of biomass conversion, microbial conversion of biomass, petroleum biotechnology and biohydrometallurgy. It is becoming clear that biotechnology play a role in production and conservation of energy and can contribute to the overall energy situation. (A.B.)

  15. Discipline, availability of electronic resources and the use of Finnish National Electronic Library - FinELib

    Directory of Open Access Journals (Sweden)

    Sanna Torma

    2004-01-01

    Full Text Available This study elaborated relations between digital library use by university faculty, users' discipline and the availability of key resources in the Finnish National Electronic Library (FinELib, Finnish national digital library, by using nationwide representative survey data. The results show that the perceived availability of key electronic resources by researchers in FinELib was a stronger predictor of the frequency and purpose of use of its services than users' discipline. Regardless of discipline a good perceived provision of central resources led to a more frequent use of FinELib. The satisfaction with the services did not vary with the discipline, but with the perceived availability of resources.

  16. The Role of the Acquisitions Librarian in Electronic Resources Management

    Science.gov (United States)

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  17. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  18. Biotechnological valorization of pectinolytics and their industrial applications: a review.

    Science.gov (United States)

    Irshad, Muhammad; Asgher, Muhammad; Anwar, Zahid; Ahmad, Aftab

    2014-11-01

    In the last several years, in serious consideration of the worldwide economic and environmental issues there has been an increasing research interest in the value of naturally occurring bio-sourced materials. Agro-industrial based biomass comprised of pectin is an inexpensive, renewable, abundant natural resource that could be utilized for large-scale and cost-effective production of natural products i.e., pectinolytics. Pectinolytics are one of the most widely distributed enzymes in bacteria, fungi and plants. From ancient times to date, many methods have been introduced to improve the optimization of pectinolytics to obtain high yields of maximal purity. To expand the range of natural bio-resources the rapidly evolving tools of biotechnology can lower the conversion costs and also enhance target yield of the product of interest. This green biotechnology presents a promising approach to convert most of the agricultural materials into a value-added product with multiple applications. Major advances have already been achieved in recent years in order to obtain high levels of purity with optimal yields. The present review begins with an overview of pectinolytics and their physico-chemical features, and their specific role with classification based on pectic materials. Information is also given on the culture influences and potential sources of pectinolytics, followed by a brief summary of various industrial and biotechnological applications and future considerations.

  19. Analysis of Pedagogic Potential of Electronic Educational Resources with Elements of Autodidactics

    Directory of Open Access Journals (Sweden)

    Igor A.

    2018-03-01

    Full Text Available Introduction: in recent years didactic properties of electronic educational resources undergo considerable changes, nevertheless, the question of studying of such complete phenomenon as “an electronic educational resource with autodidactics elements” remains open, despite sufficient scientific base of researches of the terms making this concept. Article purpose – determination of essence of electronic educational resources with autodidactics elements. Materials and Methods: the main method of research was the theoretical analysis of the pedagogical and psychological literature on the problem under study. We used the theoretical (analysis, synthesis, comparison and generalization methods, the method of interpretation, pedagogical modeling, and empirical methods (observation, testing, conversation, interview, analysis of students’ performance, pedagogical experiment, peer review. Results: we detected the advantages of electronic educational resources in comparison with traditional ones. The concept of autodidactics as applied to the subject of research is considered. Properties of electronic educational resources with a linear and nonlinear principle of construction are studied.The influence of the principle of construction on the development of the learners’ qualities is shown. We formulated an integral definition of electronic educational resources with elements of autodidactics, namely, the variability, adaptivity and cyclicity of training. A model of the teaching-learning process with electronic educational resources is developed. Discussion and Conclusions: further development of a problem will allow to define whether electronic educational resources with autodidactics elements pedagogical potential for realization of educational and self-educational activity of teachers have, to modify technological procedures taking into account age features of students, their specialties and features of the organization of process of training of

  20. Preservation and conservation of electronic information resources of ...

    African Journals Online (AJOL)

    The major holdings of the broadcast libraries of the Nigerian Television Authority (NTA) are electronic information resources; therefore, providing safe places for general management of these resources have aroused interest in the industry in Nigeria for sometimes. The need to study the preservation and conservation of ...

  1. Building an electronic resource collection a practical guide

    CERN Document Server

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  2. Analysis of Human Resources Management Strategy in China Electronic Commerce Enterprises

    Science.gov (United States)

    Shao, Fang

    The paper discussed electronic-commerce's influence on enterprise human resources management, proposed and proved the human resources management strategy which electronic commerce enterprise should adopt from recruitment strategy to training strategy, keeping talent strategy and other ways.

  3. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  4. Biotechnology in Turkey: an overview.

    Science.gov (United States)

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  5. Using XML Technologies to Organize Electronic Reference Resources

    OpenAIRE

    Huser, Vojtech; Del Fiol, Guilherme; Rocha, Roberto A.

    2005-01-01

    Provision of access to reference electronic resources to clinicians is becoming increasingly important. We have created a framework for librarians to manage access to these resources at an enterprise level, rather than at the individual hospital libraries. We describe initial project requirements, implementation details, and some preliminary results.

  6. Ion beam biotechnology and its application to maize breeding

    International Nuclear Information System (INIS)

    Yu Lixia; Li Wenjian; Dong Xicun; Zhou Libin; Ma Shuang

    2008-01-01

    Since the mid of 1980's, ion beam had been widely used in mutagenic breeding of various crops. Ion beam biotechnology had provided a new way for improving corn variety and creating new germplasm resources, and had promoted the development of maize breeding. The ion beam characteristics, the mutagenic mechanism and its application in maize breeding were described. (authors)

  7. Electronic Resources and Mission Creep: Reorganizing the Library for the Twenty-First Century

    Science.gov (United States)

    Stachokas, George

    2009-01-01

    The position of electronic resources librarian was created to serve as a specialist in the negotiation of license agreements for electronic resources, but mission creep has added more functions to the routine work of electronic resources such as cataloging, gathering information for collection development, and technical support. As electronic…

  8. Microbial biotechnology and circular economy in wastewater treatment

    OpenAIRE

    Nielsen, Per Halkjær

    2017-01-01

    Summary Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process‐critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs an...

  9. Biotechnology Industry, 2006

    Science.gov (United States)

    2006-01-01

    for commercial or other purposes. Because it is a process resting on the understanding of genetics, proteomics , and life science, biotechnology has...Luhnow & Samor, 2006). Novel biotechnologies could bring down the costs of making ethanol. Iogen Corporation has genetically modified a fungus to

  10. The first GCC Marine Biotechnology Symposium: Emerging Opportunities and Future Perspectives.

    Science.gov (United States)

    Goddard, Stephen; Delghandi, Madjid; Dobretsov, Sergey; Al-Oufi, Hamed; Al-Habsi, Saoud; Burgess, J Grant

    2015-06-01

    With its diverse, living marine resources and rapidly growing educational and research infrastructure, the Sultanate of Oman is well-positioned to take advantage of the commercial opportunities presented by marine biotechnology. In recognition of potential development, an international symposium, Marine Biotechnology-Emerging Opportunities and Future Perspectives, was held in Muscat, November 12-13, 2013. Three keynote addresses were given, 23 oral presentations made, and a poster exhibition held. The final session reviewed national and regional issues, and the delegates agreed informally on a number of future actions. The potential for future development of marine biotechnology was recognized by all delegates, and following the symposium, they were surveyed for their views on how best to sustain and develop new activities. One hundred percent of respondents found the meeting useful and would support future symposia in the region. Fifty-one percent of Omani respondents recognized major organizational challenges and obstacles to the development of marine biotechnology compared with 23 % of overseas respondents. The need for greater collaboration between research institutions within the GCC region was recognized by 98 % of all respondents. The presentations and survey outcomes are reviewed in this paper.

  11. Japanese technology assessment: Computer science, opto- and microelectronics mechatronics, biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Brandin, D.; Wieder, H.; Spicer, W.; Nevins, J.; Oxender, D.

    1986-01-01

    The series studies Japanese research and development in four high-technology areas - computer science, opto and microelectronics, mechatronics (a term created by the Japanese to describe the union of mechanical and electronic engineering to produce the next generation of machines, robots, and the like), and biotechnology. The evaluations were conducted by panels of U.S. scientists - chosen from academia, government, and industry - actively involved in research in areas of expertise. The studies were prepared for the purpose of aiding the U.S. response to Japan's technological challenge. The main focus of the assessments is on the current status and long-term direction and emphasis of Japanese research and development. Other aspects covered include evolution of the state of the art; identification of Japanese researchers, R and D organizations, and resources; and comparative U.S. efforts. The general time frame of the studies corresponds to future industrial applications and potential commercial impacts spanning approximately the next two decades.

  12. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system

  13. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  14. Biotechnology and Agriculture.

    Science.gov (United States)

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  15. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Students' Perception of Interdisciplinary, Problem-Based Learning in a Food Biotechnology Course

    Science.gov (United States)

    Ng, Betsy L. L.; Yap, Kueh C.; Hoh, Yin K.

    2011-01-01

    Abstract: Students' perception of 8 criteria (rationale of the problem; interdisciplinary learning; facilitator asked essential questions; learner's skills; assessments; facilitation procedures; team's use of resources [team collaboration], and facilitator within a problem-based learning context) were assessed for a food biotechnology course that…

  17. Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources

    Directory of Open Access Journals (Sweden)

    Katrin Pollmann

    2016-06-01

    Full Text Available Microorganisms have developed various mechanisms to deal with metals, thus providing numerous tools that can be used in biohydrometallurgical processes. “Biomining” processes—including bioleaching and biooxidation processes—facilitate the degradation of minerals, accompanied by a release of metals. These processes are especially attractive for low-grade ores and are used on an industrial scale mainly for sulfidic ores. In biosorption processes, biomass or certain biomolecules are used to bind and concentrate selected ions or other molecules from aqueous solutions. Biosorptive materials can be an environmentally friendly and efficient alternative to conventional materials, such as ion exchange resins. Other interesting mechanisms are bioaccumulation, bioflotation, bioprecipitation, and biomineralisation. Although these processes are well-known and have been studied in detail during the last decades, the recent strong progress of biotechnologies (e.g., genetic engineering and molecule design, as well as their combination with novel developments in material sciences (e.g., nanotechnologies facilitate new strategies for the application of biotechnologies in mineral processing. The article gives a summary of current activities in this field that are being performed in our group.

  18. The Internet School of Medicine: use of electronic resources by medical trainees and the reliability of those resources.

    Science.gov (United States)

    Egle, Jonathan P; Smeenge, David M; Kassem, Kamal M; Mittal, Vijay K

    2015-01-01

    Electronic sources of medical information are plentiful, and numerous studies have demonstrated the use of the Internet by patients and the variable reliability of these sources. Studies have investigated neither the use of web-based resources by residents, nor the reliability of the information available on these websites. A web-based survey was distributed to surgical residents in Michigan and third- and fourth-year medical students at an American allopathic and osteopathic medical school and a Caribbean allopathic school regarding their preferred sources of medical information in various situations. A set of 254 queries simulating those faced by medical trainees on rounds, on a written examination, or during patient care was developed. The top 5 electronic resources cited by the trainees were evaluated for their ability to answer these questions accurately, using standard textbooks as the point of reference. The respondents reported a wide variety of overall preferred resources. Most of the 73 responding medical trainees favored textbooks or board review books for prolonged studying, but electronic resources are frequently used for quick studying, clinical decision-making questions, and medication queries. The most commonly used electronic resources were UpToDate, Google, Medscape, Wikipedia, and Epocrates. UpToDate and Epocrates had the highest percentage of correct answers (47%) and Wikipedia had the lowest (26%). Epocrates also had the highest percentage of wrong answers (30%), whereas Google had the lowest percentage (18%). All resources had a significant number of questions that they were unable to answer. Though hardcopy books have not been completely replaced by electronic resources, more than half of medical students and nearly half of residents prefer web-based sources of information. For quick questions and studying, both groups prefer Internet sources. However, the most commonly used electronic resources fail to answer clinical queries more than half

  19. [Biotechnology's macroeconomic impact].

    Science.gov (United States)

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  20. Cooperation Agreements in Biotechnology Companies: An Advantage for the Acquisition of New Capabilities and Growth?

    Directory of Open Access Journals (Sweden)

    Tomás Gabriel Bas

    2006-08-01

    Full Text Available Cooperation agreements in biotechnology allow us to observe the complexity surrounding alliances. The market globalization, the exorbitant costs of R&D and the rapid changes in technology, are arguably amongst the principal reasons that push companies to establish cooperation agreements. Biotechnology companies use this instrument to develop external features in the search for resources and missing expertise. This paper sets out to identify if such cooperation agreements in biotechnology companies are an advantage in themselves, sufficient for the acquisition of new capabilities and if they help the growth of these companies. For this approach, a private database of companies in the two most advanced countries in this sector: United States and United Kingdom, will be used.

  1. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  2. In vitro propagation: A biotechnological tool capable of solving the ...

    African Journals Online (AJOL)

    South Africa has a very rich plant biodiversity, many of which are medicinally useful. The rich resource is decreasing at an alarming rate as a result of over- exploitation. Plant in vitro regeneration is a biotechnological tool that offers a potential solution to this problem as it provides a means of putting the plants onto the ...

  3. Fungal chitinases: diversity, mechanistic properties and biotechnological potential.

    Science.gov (United States)

    Hartl, Lukas; Zach, Simone; Seidl-Seiboth, Verena

    2012-01-01

    Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.

  4. ANALYTICAL REVIEW OF ELECTRONIC RESOURCES FOR THE STUDY OF LATIN

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2014-04-01

    Full Text Available The article investigates the current state of development of e-learning content in the Latin language. It is noted that the introduction of ICT in the educational space has expanded the possibility of studying Latin, opened access to digital libraries resources, made it possible to use scientific and educational potential and teaching Latin best practices of world's leading universities. A review of foreign and Ukrainian information resources and electronic editions for the study of Latin is given. Much attention was paid to the didactic potential of local and online multimedia courses of Latin, electronic textbooks, workbooks of interactive tests and exercises, various dictionaries and software translators, databases and digital libraries. Based on analysis of the world market of educational services and products the main trends in the development of information resources and electronic books are examined. It was found that multimedia courses with interactive exercises or workbooks with interactive tests, online dictionaries and translators are the most widely represented and demanded. The noticeable lagging of Ukrainian education and computer linguistics in quantitative and qualitative measures in this industry is established. The obvious drawback of existing Ukrainian resources and electronic editions for the study of Latin is their noninteractive nature. The prospects of e-learning content in Latin in Ukraine are outlined.

  5. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  6. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  7. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Access to electronic resources by visually impaired people

    Directory of Open Access Journals (Sweden)

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  9. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  10. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  11. Library training to promote electronic resource usage

    DEFF Research Database (Denmark)

    Frandsen, Tove Faber; Tibyampansha, Dativa; Ibrahim, Glory

    2017-01-01

    Purpose: Increasing the usage of electronic resources is an issue of concern for many libraries all over the world. Several studies stress the importance of information literacy and instruction in order to increase the usage. Design/methodology/approach: The present article presents the results...

  12. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  13. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  14. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  15. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    Natarajan, K.A.

    2012-01-01

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  16. Characterization Study of Accelerator for Application in Biotechnology

    International Nuclear Information System (INIS)

    Yazid-M; Muryono, H.

    2000-01-01

    The characterization of accelerator for application in biotechnology was studied. Accelerator is a machine to produce ion beam particles. Accelerator can be used for biotechnology experiments. Ion beam particles irradiation on the biological material will produced variabilities of genetics and induced mutations. In general, new varieties were found by hybridization method or mutation breeding method by gamma rays irradiation. Ion beam particles can be used for biological material irradiation to find variabilities of genetics and induced mutations. The high percentage of mutation rate and LET value by ion beam particles irradiation was found higher than by gamma rays irradiation. Ion beam particle irradiation can also be controlled and foewed to target in biological material. The characterization of accelerator needed for biotechnology experiments are types of accelerator (Tandem Van de Graff, AVF Cyclotron, Synchrotron, Rilac), types of ion particles (C, He, electron, Ar, Ne, Ni, Al, Xe and Au), range of energy (5 - 2.090 MeV), range of dose irradiation (10 - 250 Gy), range of ion current (0.02 - 20 nA), range of ion beam particles diameter (10 - 100 μm), range of LET value (300 - 1.800 keV/μm ) and irradiation time (5 - 30 seconds/samples). (author)

  17. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  18. 1994 - 1995 annual report of the NRC Biotechnology Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    One of the roles of the Biotechnology Research Institute is to promote leading edge research and development in biotechnology and molecular biology as they relate to industries in the natural resource sectors. To this end, researchers work with industry to develop less polluting, more efficient and economic processes and to solve environmental problems. Scientific studies undertaken in 1994 and 1995 included new analytical techniques and biosensors, bioprocesses for waste and ground water treatment, biopesticides, biodegradation of toxic compounds, biodesulfurization of bitumen, solvent- less sample preparation techniques to analyze environmental pollutants in soils and waste water, protocol for the analysis of petroleum hydrocarbons, gene probes and their applications, biodegradation of energetic compounds, and biofiltration of air emissions. These, and other noteworthy projects undertaken by the Institute, were reviewed and presented ,combined with institutional data. 2 tabs.

  19. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  20. World Biotechnology Leaders to Gather for Conference

    Science.gov (United States)

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  1. Effects of Electronic Information Resources Skills Training for Lecturers on Pedagogical Practices and Research Productivity

    Science.gov (United States)

    Bhukuvhani, Crispen; Chiparausha, Blessing; Zuvalinyenga, Dorcas

    2012-01-01

    Lecturers use various electronic resources at different frequencies. The university library's information literacy skills workshops and seminars are the main sources of knowledge of accessing electronic resources. The use of electronic resources can be said to have positively affected lecturers' pedagogical practices and their work in general. The…

  2. Biotechnology : A Dutch perspective

    NARCIS (Netherlands)

    Van Apeldoorn, J.H.F.

    1981-01-01

    Biotechnology: a Dutch Perspective assesses the future potential of biotechnology in the Netherlands. It has been published in English because it is felt that the Dutch case could be of relevance to other industrialised nations. Although the report is aimed primarily at policy planners and decision

  3. The Future of Bio-technology

    Science.gov (United States)

    Trent, Jonathan

    2005-01-01

    Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum

  4. Italian R and D in field of environmental biotechnologies

    International Nuclear Information System (INIS)

    Robertiello, A.; Levi, G.

    1995-01-01

    The analysis carried out on the Italian R and D allows to draw the following conclusions: 1) There are about 1,000 'inside workers' totalling an outlay of 2,700 billion Italian Liras per year. 2) In the five years from 1987 to 1992, state financing to R and D on environmental biotechnologies was around 80 billion Italian Liras, averaging 16 billion Italian Liras a year. 3) Although these are rough estimates, it can be seen that, given the gap between resources made available and actual expense, there must be other incentive mechanism justifying the commitment of Italian R and D and the quality of the work so far carried out in this specific field. 4) These mechanisms could possibly be of two kinds; the realization that a large part of the market is dissatisfied; the pervasiveness of biotechnologies, especially in the field of environmental conservation

  5. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  6. Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1988-01-01

    This book contains 34 papers on various aspects of hazardous waste management through biotechnology. The articles stress the three basic strategies of waste management; minimize the amount of waste generated; reduce the toxicity of the wastes; and find more satisfactory ways of disposing of wastes. Part I of this collection describes the use of microbial ecology, molecular biology, and other scientific disciplines to combat these problems. Part II describes the application of present technology to current problems. Part III describes the effect of policy and regulations on biotechnology. Individual papers are processed separately for the data base

  7. Research gap analysis for application of biotechnology to sustaining US forests

    Science.gov (United States)

    R.W. Whetten; R. Kellison

    2010-01-01

    The expanding human population of the world is placing greater demand on forest resources, both natural forests and plantations. Both types of forests are being adversely affected in North America as well as in other parts of the world, due to the globalization of trade and to climate change and associated changes in pest and disease incidence. Biotechnology may help...

  8. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  9. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  10. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  11. Biotechnology and human rights.

    Science.gov (United States)

    Feuillet-Le Mintier, B

    2001-12-01

    Biotechnology permits our world to progress. It's a tool to better apprehend the human being, but as well to let him go ahead. Applied to the living, biotechnologies present the same finality. But since their matter concerns effectively the living, they are the sources of specific dangers and particularly of that one to use the improvements obtained on the human to modify the human species. The right of the persons has to find its place to avoid that the fundamental rights of the human personality shall undergo harm. This mission assigned to the right of the persons is as so much invaluable that the economical stakes are particularly important in the domain of the biotechnologies.

  12. Current status of biotechnology in Slovakia.

    Science.gov (United States)

    Stuchlík, Stanislav; Turna, Ján

    2013-07-01

    The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Marine Bacteria from Eastern Indonesia Waters and Their Potential Use in Biotechnology

    Directory of Open Access Journals (Sweden)

    Yosmina H Tapilatu

    2016-05-01

    Full Text Available Indonesian vast marine waters, which constitute 81% of the country’s total area, have a great potential in terms of marine bacteria biodiversity. However, marine bacteria are still under-explored in Indonesia, especially in its eastern area. Known as one of the biodiversity hotspots worldwide, this area surely harbors various marine bacteria of particular interest. Despite the growing number of oceanic expeditions carried out in this area, only little attention has been attributed to marine bacteria. Limited literatures exist on the isolation of marine bacteria producing compounds with potential biotechnological applications from the aforementioned waters. There are two main causes of this problem, namely lack of infrastructures and limited competent human resources. In this paper, I will highlight the preliminary results of isolation and bioprospecting attempts on this group of bacteria during the last fifteen years. These results indicate that research activities on marine bacteria in this area need to be intensified, to uncover their potential applications in various biotechnological fields. Keywords: marine bacteria, eastern Indonesian waters, biotechnological application

  14. Brief Note on the Development of Biotechnology

    OpenAIRE

    Karl Bayer

    2014-01-01

    Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, co...

  15. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  16. The biotechnology of ethanol. Classical and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Roehr, M. [ed.] [Technische Univ., Vienna (Austria). Inst. fuer Biochemische Technologie und Mikrobiologie; Kosaric, N. [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Vardar-Sukan, F [Ege Univ., Izmir (Turkey). Dept. of Chemical Engineering; Pieper, H.J.; Senn, T. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmitteltechnologie

    2001-07-01

    Focusing on the biotechnology of ethanol, this book highlights its industrial relevance as one of the most important products of primary metabolism. The text covers the most advanced developments among classical methods as well as more unconventional techniques, before going on to outline various aspects of new applications and the increasing importance of ethanol as a renewable resource. Topics covered in this unique volume include alternative raw materials, such as municipal waste and waste paper or particular crops, innovative methods of production using genetically engineered microorganisms, and the role of ethanol as both a source of energy and a valuable commodity. The book is an indispensable reference in that it combines biotechnological and economic aspects, while also providing an overview of the state of the art in the production and use of ethanol. Throughout, special emphasis has been placed on a balanced presentation between developments in Europe as well as in North and South America. With contributions of T. Senn and H.J. Pieper and of N. Kosaric and F. Vardar-Sukan. (orig.)

  17. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    Science.gov (United States)

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  19. Awakening the Biodiversity Potential Trough ST&I Investments in the Sector of Amazonian Biotechnology

    Directory of Open Access Journals (Sweden)

    Fabiana dos Santos e Souza Frickmann

    2013-04-01

    Full Text Available The biotechnological development conciliated to Amazonian biodiversity represents a big potential for richness to Brazil. This study analyses the Brazilian investments in ST&I Amazonia’s, utilizing as indicator for that, the resources applied in R&D and the patent appli;cations coming from Amazon, which were filed with the National Institute of Industrial Property during the period from 2003 to 2008. The objective is to analyze how where such investments applied by the Ministry of Science, Technology, and Innovation (MCTI, and which was their impact over the biotechnological inventions of Amazonian origin. In the results, we observed that R$ 1,308.09 million was invested in ST&I in Amazonia. The Amazonian state that attracted the larger part of such resources was Amazonas and 153 patent applications were identified coming from the state of Amazonas; out of which, 56% derived from companies of the Manaus Industrial Pole, and 9% originated from biomedical and alimentary sectors.

  20. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  1. Healthcare biotechnology in India

    OpenAIRE

    Srivastava, L. M.

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the r...

  2. Biotechnology in diagnostics

    International Nuclear Information System (INIS)

    Koprowski, H.; Ferrone, S.; Albertini, A.

    1985-01-01

    In recent years much progress has been made in the area of biotechnology. The cellular and molecular cloning methodology to develop monoclonal antibodies and DNA probes have been extensively utilized in basic and clinical research. These investigations have provided the necessary information to apply these reagents to diagnostic problems. The RIA 85 meeting focused on the application of monoclonal antibodies and DNA probes in laboratory medicine. The papers presented at this meeting clearly indicate that biotechnology has already had a significant impact on clinical medicine. (Auth.)

  3. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  4. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  5. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  6. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  7. Biotechnology: An Era of Hopes and Fears

    Science.gov (United States)

    2016-01-01

    Strategic Studies Quarterly ♦ Fall 2016 23 Biotechnology An Era of Hopes and Fears LTC Douglas R. Lewis, PhD, US Army Abstract Biotechnology ......ignored. The idea of advances in biotechnology increasing the biological weapons threat is not new. In 2003 an analysis of gene sequencing and

  8. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  9. Biotechnology Process Engineering Center at MIT Home

    Science.gov (United States)

    has provided a focal point for biotechnology research and education at MIT. Prominent examples include the NIH Training Program in Biotechnology and the NIH Training Program in Genomics; both of these are -genomic biology. Another example is the new DuPont-MIT Alliance (DMA), focused on materials biotechnology

  10. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  11. Ethical perception of modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... 1Social Impact of Biotechnology Development in Malaysia Research ... purpose of this paper is to examine the ethical perception of modern ... and social benefits of modern biotechnology, consumer .... Company or organisation directly involved in the production of ...... Food safety battle: organic vs. biotech.

  12. SUSTAINABLE MANAGEMENT OF NATURAL RESOURCES FOR ...

    African Journals Online (AJOL)

    economic effects which the location of natural resources has on host ... water bodies in an oil exploration and exploitation communities in Oguta local .... law, energy, atmosphere, sustainable tourism, biodiversity, biotechnology, finance,.

  13. Biotechnological research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H J

    1982-01-01

    The current research possibilities in the expanding field of biotechnology in Europe are very briefly described. Remarks on research and development are limited to six topics: fermented food products; biomass production; product formation; bioreactors; waste-water treatment, environmental processes and methane formation; central research institutions. It is summarised that increased efforts at co-operation on all levels are vital for an improved development in the field of biotechnology throughout Europe.

  14. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  15. USE OF ELECTRONIC EDUCATIONAL RESOURCES WHEN TRAINING IN WORK WITH SPREADSHEETS

    Directory of Open Access Journals (Sweden)

    Х А Гербеков

    2017-12-01

    Full Text Available Today the tools for maintaining training courses based on opportunities of information and communication technologies are developed. Practically in all directions of preparation and on all subject matters electronic textbook and self-instruction manuals are created. Nevertheless the industry of computer educational and methodical materials actively develops and gets more and more areas of development and introduction. In this regard more and more urgent is a problem of development of the electronic educational resources adequate to modern educational requirements. Creation and the organization of training courses with use of electronic educational resources in particular on the basis of Internet technologies remains a difficult methodical task.In article the questions connected with development of electronic educational resources for use when studying the substantial line “Information technologies” of a school course of informatics in particular for studying of spreadsheets are considered. Also the analysis of maintenance of a school course and the unified state examination from the point of view of representation of task in him corresponding to the substantial line of studying “Information technologies” on mastering technology of information processing in spreadsheets and the methods of visualization given by means of charts and schedules is carried out.

  16. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  17. Biotechnology information service of the GDR

    Energy Technology Data Exchange (ETDEWEB)

    Poetzsch, E [Academy of Sciences, Berlin (Germany). Scientific Information Center

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs.

  18. Biotechnology in China II. Chemicals, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T. [Purdue Univ., West Lafayette, IN (United States). Lab. Renewable Resources Engineering; Ouyang, Pingkai [Nanjing Univ. of Technology (China). College of Life Science and Pharmaceutical Engineering; Chen, Jian (eds.) [Jiangnan Univ., Wuxi (China). School of Biotechnology

    2010-07-01

    The biochemical engineering and biotechnology is now becoming the most important industry all over the world. China, as a country that has more than 1.3 billion people, has become one of the fastest growing countries in the world during the last several decades. Both the Chinese government and companies pay more and more attention on the research and the application of biotechnology. In the 11th five-year plan (2006-2010), Chinese government unprecedented enhanced the support on the biotechnology in both policy and finance. Currently, the biotechnology gains the most R and D funding in China. With the great support and the increasingly frequent exchanges from abroad, the biotechnology in China becomes more and more important in the world. In recognition of the enormous advances in biotechnology in China, we are pleased to present the second volume of Advances in Biochemical Engineering/ Biotechnology: Biotechnology in China II, edited by P. K. Ouyang, J. Chen and G. T. Tsao, relatively soon after the introduction of the first volume of this multivolume comprehensive books. Since the previous volume was extremely well accepted by the scientific community, we have maintained the overall goal of creating a number of chapters, each devoted to a certain topic by several Chinese research groups working in the field, which provide scientists in academia and public institutions with a well-balanced and comprehensive overview of this growing field in China. We have fully revised the volume and expanded it from bioreaction, bioseparation and bioremediation to more extensive issues in order to cover all recent developments in China into account as much as possible. The new volume of Advances in Biochemical Engineering/Biotechnology: Biotechnology in China II is a comprehensive description of the state-of-the-art in China, and a guide to the understanding the work of Chinese biochemical engineering and biotechnology researchers. It is specifically directed to microbiologists

  19. Role of biotechnology in future agriculture. Korekarano nogyo to biotechnology eno kitai

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T. (Kyoto Univ., Kyoto (Japan). Faculty of Agriculture)

    1992-09-01

    In comparison with ancient times when everything is handled empirically, biological matter suitable for purposes can be produced and utilized faster and more reliably these days when life science has made a great advance. The advancement is related to new breeding technology and production means, and those means offer the point of contact between biotechnology and agriculture. The application fields of biotechnology are microbiology, cell technology, enzyme technology (bioreactor), and gene engineering. High yield, high content of high value ingredients as foods, adaptability to environment, resistance to disease and insect damage, etc. may be the subjects expected for future agricultural organisms. There may be many areas where biotechnology is related to those organisms, but a discussion is made in this report centering around the problem in breeding. Outlines are given on the applied cases of cell technological method, gene engineering method, and recombinant DNA technology, as well as on gene engineering for plants and animals. 10 refs., 7 figs.

  20. Agricultural biotechnology and its contribution to the global knowledge economy.

    Science.gov (United States)

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  1. Brief Note on the Development of Biotechnology

    Directory of Open Access Journals (Sweden)

    Karl Bayer

    2014-01-01

    Full Text Available Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, compliance with the recently published initiatives of the regulatory authorities to accelerate the approval process for the manufacturing of biopharmaceuticals can be gained.

  2. [The past 30 years of Chinese Journal of Biotechnology].

    Science.gov (United States)

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  3. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  4. Analytical Study of Usage of Electronic Information Resources at Pharmacopoeial Libraries in India

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2014-02-01

    Full Text Available The objective of this study is to know the rate and purpose of the use of e-resource by the scientists at pharmacopoeial libraries in India. Among other things, this study examined the preferences of the scientists toward printed books and journals, electronic information resources, and pattern of using e-resources. Non-probability sampling specially accidental and purposive technique was applied in the collection of primary data through administration of user questionnaire. The sample respondents chosen for the study consists of principle scientific officer, senior scientific officer, scientific officer, and scientific assistant of different division of the laboratories, namely, research and development, pharmaceutical chemistry, pharmacovigilance, pharmacology, pharmacogonosy, and microbiology. The findings of the study reveal the personal experiences and perceptions they have had on practice and research activity using e-resource. The major findings indicate that of the total anticipated participants, 78% indicated that they perceived the ability to use computer for electronic information resources. The data analysis shows that all the scientists belonging to the pharmacopoeial libraries used electronic information resources to address issues relating to drug indexes and compendia, monographs, drugs obtained through online databases, e-journals, and the Internet sources—especially polices by regulatory agencies, contacts, drug promotional literature, and standards.

  5. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  6. Page 170 Use of Electronic Resources by Undergraduates in Two ...

    African Journals Online (AJOL)

    undergraduate students use electronic resources such as NUC virtual library, HINARI, ... web pages articles from magazines, encyclopedias, pamphlets and other .... of Nigerian university libraries have Internet connectivity, some of the system.

  7. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  8. Microalgal symbiosis in biotechnology.

    Science.gov (United States)

    Santos, Carla A; Reis, Alberto

    2014-07-01

    This review provides an analysis of recent published work on interactions between microorganisms, especially the ones involving mainly nutrient exchanges and at least with one microalga species. Examples of microbial partners are given, with a remark to the potential application of cultures of an autotroph and a heterotroph, which grow simultaneously, taking advantage of the complementary metabolisms. These are particularly interesting, either due to economic or sustainable aspects, and some applications have already reached the commercial stage of development. The added advantages of these symbiotic cultures are biomass, lipid, and other products productivity enhancement a better utilization of resources and the reduction or even elimination of process residues (including carbon dioxide and other greenhouse gases) to conduct an increasingly greener biotechnology. Among the several symbiotic partners referred, the microalgae and yeast cultures are the most used. The interaction between these two microorganisms shows how to enhance the lipid production for biodiesel purposes compared with separated (stand-alone) cultures.

  9. Environmental Biotechnology Research and Development Program 1989-1992

    NARCIS (Netherlands)

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management

  10. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  11. Advancement of Marketing Developing Biotechnology-Based Business

    OpenAIRE

    Vilmantas, Vaidas; Melnikas, Borisas

    2014-01-01

    The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology-based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with reg...

  12. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  13. Biotechnological innovation impacts, social and ethical aspects and public acceptability; Sicurezza, implicazioni etico-sociali e percezione pubblica delle biotecnologie

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1997-11-01

    Biotechnology is a highly distinctive area of scientific activity and its applications can strongly influence human life. Biotechnological innovations impact on sanitary, environmental, social, ethical and economic aspects and it is particularly important a greater public understanding of biotechnology issues in the view of increasing its acceptability. Knowledge and acceptance do not go always in the same direction, as the last is influenced by various complex factors, but without a knowledgeable public there can be no effective democratic agreement. So it appears important that scientific community and industry can promote and diffuse more knowledge among citizens and consumers, taking into account also of social and ethical issues raised by public and public interest groups. In this report bio safety of biotechnology applications and social and ethical issues are analyzed. They receive much attention in the discussion in the biotechnology arena (scientists, industry, institutions and the public). In particular health and environmental risks, gene therapy, transgenic animals, patent issues and genetic resources access, consumers rights are considered. Since the media are central to the dissemination of information and views about science, is has been evidenced their role, in addition to a short analysis of public perception and communication strategies.

  14. A survey of the use of electronic scientific information resources among medical and dental students

    Directory of Open Access Journals (Sweden)

    Aarnio Matti

    2006-05-01

    Full Text Available Abstract Background To evaluate medical and dental students' utilization of electronic information resources. Methods A web survey sent to 837 students (49.9% responded. Results Twenty-four per cent of medical students and ninteen per cent of dental students searched MEDLINE 2+ times/month for study purposes, and thiry-two per cent and twenty-four per cent respectively for research. Full-text articles were used 2+ times/month by thirty-three per cent of medical and ten per cent of dental students. Twelve per cent of respondents never utilized either MEDLINE or full-text articles. In multivariate models, the information-searching skills among students were significantly associated with use of MEDLINE and full-text articles. Conclusion Use of electronic resources differs among students. Forty percent were non-users of full-text articles. Information-searching skills are correlated with the use of electronic resources, but the level of basic PC skills plays not a major role in using these resources. The student data shows that adequate training in information-searching skills will increase the use of electronic information resources.

  15. Access to electronic information resources by students of federal ...

    African Journals Online (AJOL)

    The paper discusses access to electronic information resources by students of Federal Colleges of Education in Eha-Amufu and Umunze. Descriptive survey design was used to investigate sample of 526 students. Sampling technique used was a Multi sampling technique. Data for the study were generated using ...

  16. Adoption and use of electronic information resources by medical ...

    African Journals Online (AJOL)

    This study investigated the adoption and use of electronic information resources by medical science students of the University of Benin. The descriptive survey research design was adopted for the study and 390 students provided the data. Data collected were analysed with descriptive Statistics(Simple percentage and ...

  17. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  18. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  19. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  20. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov (United States)

    | Facsimile (617) 253-2400 | e-mail: bpec-www@mit.edu THERAPEUTIC GENE BIOTECHNOLOGY INDUSTRIAL CONSORTIUM Board (ICAB) in Therapeutic Gene Biotechnology. ICAB Member Representatives review our research progress

  1. Application of biotechnology to fossil fuels explored

    Energy Technology Data Exchange (ETDEWEB)

    Haggin, J

    1989-02-13

    A review is presented of the December 1988 symposium on coal, oil and gas biotechnology held in New Orleans, organised by the Institute of Gas Technology. Papers discussed include: opportunities for R D in desulfurization, coal gasification and environmental cleanup; an assessment of the economic constraints that new energy biotechnology must overcome; biotechnology research at EPRI; microbial conversion of coal; bioconversion of low rank coal; and bioremediation of ground containing PAHs. 2 figs.

  2. Biotechnology: challenges and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, A.

    1985-04-01

    Rapidly occurring technological breakthroughs in the wake of numerous discoveries in different fields, such as biochemistry, genetic engineering as well as cellular and molecular biology as described in this paper have a variety of industrial applications, and forcasts covering these and various other fields have been made. The emerging bio-industry, covering diverse industries, such as chemical, food, pharmaceutical, etc., as well as the domains of health, environmental protection and abatement of pollution present challenging prospects. Several biotechnology processes relating to bioenergy, fermentation, waste transformation, vaccines, etc. are of particular interest to the developing countries. The 'functioning systems' resulting from the breakthrouth in genetic engineering, entailing extraordinary refinement of analytical techniques and technological progress, pose the challenging task of harnessing them to the advantage of mankind. Providing effective legal protection, conducive to the development of biotechnologies-their innovative process and technological change-is a matter of serious concern, involving practical and economical considerations. Several other issues and questions, such as risk prevention and management of potential dangers and hazards in genetic recombination operation by way of safety regulations and necessary guidelines, questions relating to the clinical trials of the interferons-the wonder drug-as well as questions of professional ethics are raised by biotechnologies. Industry-funded research in biotechnology, where scientific and commercial imperatives are interlocked, has for instance, its repercussions on the traditional thrust of university system, specially the sanctity of autonomy for basic research.

  3. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  4. Biotechnology and species development in aquaculture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... The use of biotechnology in various aspects of human endeavour have obviously created a great ... the already adopted biotechnologies are being improved upon with lesser demerits. ... potential to improve the quality and quantity of fish reared .... become easier with the development of artificial breeding.

  5. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  6. Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE culture collection.

    Science.gov (United States)

    Ramos, Vitor; Morais, João; Castelo-Branco, Raquel; Pinheiro, Ângela; Martins, Joana; Regueiras, Ana; Pereira, Ana L; Lopes, Viviana R; Frazão, Bárbara; Gomes, Dina; Moreira, Cristiana; Costa, Maria Sofia; Brûle, Sébastien; Faustino, Silvia; Martins, Rosário; Saker, Martin; Osswald, Joana; Leão, Pedro N; Vasconcelos, Vitor M

    2018-01-01

    Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.

  7. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  8. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  9. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Approaches to education of pharmaceutical biotechnology in faculties of pharmacy.

    Science.gov (United States)

    Calis, S; Oner, F; Kas, S; Hincal, A A

    2001-06-01

    Pharmaceutical biotechnology is developing rapidly both in academic institutions and in the biopharmaceutical industry. For this reason, FIP Special Interest Group of Pharmaceutical Biotechnology decided to develop a questionnaire concerning pharmaceutical biotechnology education. After preliminary studies were completed, questionnaires were sent to the leading scientists in academia and research directors or senior managers of various Pharmaceutical Biotechnology Companies in order to gather their views about how to create a satisfactory program. The objectives of this study were as follows: -To review all of the graduate and undergraduate courses which are presently available worldwide on pharmaceutical biotechnology in Faculties of Pharmacy. -To review all of the text books, references and scientific sources available worldwide in the area of pharmaceutical biotechnology. When replying to the questionnaires, the respondents were asked to consider the present status of pharmaceutical biotechnology education in academia and future learning needs in collaboration with the biotechnology industry. The data from various pharmacy faculties and biotechnology industry representatives from Asia, Europe and America were evaluated and the outcome of the survey showed that educational efforts in training qualified staff in the rapidly growing field of pharmaceutical biotechnology is promising. Part of the results of this questionnaire study have already been presented at the 57th International Congress of FIP Vancouver, Canada in 1997.

  12. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  13. Strategic Planning for Electronic Resources Management: A Case Study at Gustavus Adolphus College

    Science.gov (United States)

    Hulseberg, Anna; Monson, Sarah

    2009-01-01

    Electronic resources, the tools we use to manage them, and the needs and expectations of our users are constantly evolving; at the same time, the roles, responsibilities, and workflow of the library staff who manage e-resources are also in flux. Recognizing a need to be more intentional and proactive about how we manage e-resources, the…

  14. BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA ...

    African Journals Online (AJOL)

    BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA. ... and capacity to innovate and patent new materials as well as enforce biosafety requirements. In order for countries to access biotechnology products or technologies, it will ...

  15. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  16. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  17. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  18. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  19. Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules

  20. Modern ICT Tools: Online Electronic Resources Sharing Using Web ...

    African Journals Online (AJOL)

    Modern ICT Tools: Online Electronic Resources Sharing Using Web 2.0 and Its Implications For Library And Information Practice In Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  1. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  2. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  3. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  4. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  5. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    Science.gov (United States)

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  6. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  7. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting Biotechnology Regulatory Policy Processes in Southeast Asia. Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and ...

  8. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2017-10-01

    Full Text Available The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system should be assessed. Developed a model for the development of the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system, which is based on the main scientific approaches, used in adult education, and consists of five blocks: target, informative, technological, diagnostic and effective.

  9. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  10. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  11. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    Science.gov (United States)

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    production and the economy of this depressed areas. However, the problems bound to environmental protection must not be forgotten; priority should be given to monitor the risks of introduction of foreign species. Red biotechnologies potentially bring a vast domain of powerful tools and processes to achieve better human health, most notably improved diagnostics by molecular techniques, better targeting of pathogens and a better knowledge of their sensitivities to drugs to permit better treatment. Biosafety regulatory frameworks had been initiated in several countries, starting with primary biosafety law. However, disparate attitudes to the purpose of biosafety regulation (e.g., fostering informed decision-making versus 'giving the green-light for a flood of GMOs') currently prevent a needed consensus for sub-regional harmonisation. To date, most R&D funding has come from North America with some commercial interests from Asia, but African biotechnology workers expressed strong desire for (re-)engagement with interested parties from the European Union. Although in some of the visited countries there are very well qualified personnel in molecular biology and biosafety/regulation, the main message received is that human resources and capacity building in-house are still needed. This could be achieved through home-based courses and capacity-building including funds for post-degree research to motivate and retain trained staff. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Acceptance of biotechnology and social-cultural implications in Ghana

    African Journals Online (AJOL)

    take pride in what they eat. A proposal is made to set biotechnology research agenda in the context of social choices; social scientific coalition of biotechnology with endogenous development pathways' as opposed to 'exogenous biotechnology research'. Also there is the need for adequate capacity building of the existing ...

  13. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  14. Environmental Biotechnology Research and Development Program 1989-1992

    OpenAIRE

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management of the environment are evaluated. In this program two kinds of research are distinguished. Applied research directly focusses on specific environmental problems. Fundamental research aims at developing...

  15. Biotechnology 2000: a new German R&D programme

    OpenAIRE

    Ekkehard Warmuth

    1991-01-01

    Biotechnology 2000 is a German programme to continue the development of biotechnology started in 1982. It includes two new scientific fields for industrial innovation — genome research and neurobiology. Together with industry and the science community, the biotechnology programme will create a basis for future generations of biologically derived products and processes, including the development of safety precautions for the contained use of genetically modified organisms (GMOs) and of univers...

  16. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  17. Development of health biotechnology in developing countries: can private-sector players be the prime movers?

    Science.gov (United States)

    Abuduxike, Gulifeiya; Aljunid, Syed Mohamed

    2012-01-01

    Health biotechnology has rapidly become vital in helping healthcare systems meet the needs of the poor in developing countries. This key industry also generates revenue and creates employment opportunities in these countries. To successfully develop biotechnology industries in developing nations, it is critical to understand and improve the system of health innovation, as well as the role of each innovative sector and the linkages between the sectors. Countries' science and technology capacities can be strengthened only if there are non-linear linkages and strong interrelations among players throughout the innovation process; these relationships generate and transfer knowledge related to commercialization of the innovative health products. The private sector is one of the main actors in healthcare innovation, contributing significantly to the development of health biotechnology via knowledge, expertise, resources and relationships to translate basic research and development into new commercial products and innovative processes. The role of the private sector has been increasingly recognized and emphasized by governments, agencies and international organizations. Many partnerships between the public and private sector have been established to leverage the potential of the private sector to produce more affordable healthcare products. Several developing countries that have been actively involved in health biotechnology are becoming the main players in this industry. The aim of this paper is to discuss the role of the private sector in health biotechnology development and to study its impact on health and economic growth through case studies in South Korea, India and Brazil. The paper also discussed the approaches by which the private sector can improve the health and economic status of the poor. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Cryopreservation and conservation of microalgae: the development of a pan-european scientific and biotechnological resource (The COBRA project)

    Czech Academy of Sciences Publication Activity Database

    Day, J. G.; Benson, E. E.; Harding, K.; Knowles, B.; Idowu, M.; Bremner, D.; Santos, L.; Santos, F.; Friedl, T.; Lorenz, M.; Lukešová, Alena; Elster, Josef; Lukavský, Jaromír; Herdman, M.; Rippka, R.; Hall, T.

    2005-01-01

    Roč. 26, č. 4 (2005), s. 231-238 ISSN 0143-2044 Grant - others:Evropská unie(XE) QLRI-CT-2001-01645 Institutional research plan: CEZ:AV0Z60660521 Keywords : algae * algal biotechnology * BRC Subject RIV: EH - Ecology, Behaviour Impact factor: 0.897, year: 2005

  19. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  20. Applications of Carbon Nanotubes in Biotechnology and Biomedicine

    Science.gov (United States)

    Bekyarova, Elena; Ni, Yingchun; Malarkey, Erik B.; Montana, Vedrana; McWilliams, Jared L.; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    Due to their electrical, chemical, mechanical and thermal properties, carbon nanotubes are one of the most promising materials for the electronics, computer and aerospace industries. Here, we discuss their properties in the context of future applications in biotechnology and biomedicine. The purification and chemical modification of carbon nanotubes with organic, polymeric and biological molecules are discussed. Additionally we review their uses in biosensors, assembly of structures and devices, scanning probe microscopy and as substrates for neuronal growth. We note that additional toxicity studies of carbon nanotubes are necessary so that exposure guidelines and safety regulations can be established in a timely manner. PMID:19763242

  1. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  2. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  3. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  4. Industrial use of Biotechnology in Agriculture

    International Nuclear Information System (INIS)

    But, S.J.

    2006-01-01

    In the past the biological research was restricted within the boundary of laboratories and the subsequent results were often employed merely to strengthen the research knowledge and information. In life sciences, the traditional methods took years in proving the biological facts. At the leg of last century, the practical application of biotechnology provided a powerful tool to mankind that has led to a revolutionary change in modern agriculture. In the present era, the economy of agro-based countries all over the world is dependent on the adaptation of the pattern of crop-production and their improvement through modern biotechnological means. Biotechnology is in fact the name of a combination of techniques involved to make the full use of living organisms, either in total or in part, for the benefit of plants, animals or human beings. Progressive and dynamic investors, associated with researches/scientists, should be encouraged to step forward for the mobilization of emerging trend of biotechnological industry in agriculture. Researcher/Scientists of biological programmes in Pakistan should be encouraged at Government level to come forward in contributing their tremendous role to boost Agr- industry in the country. (author)

  5. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  6. Electronic Resource Management System. Vernetzung von Lizenzinformationen

    Directory of Open Access Journals (Sweden)

    Michaela Selbach

    2014-12-01

    Full Text Available In den letzten zehn Jahren spielen elektronische Ressourcen im Bereich der Erwerbung eine zunehmend wichtige Rolle: Eindeutig lässt sich hier ein Wandel in den Bibliotheken (fort vom reinen Printbestand zu immer größeren E-Only-Beständen feststellen. Die stetig wachsende Menge an E-Ressourcen und deren Heterogenität stellt Bibliotheken vor die Herausforderung, die E-Ressourcen effizient zu verwalten. Nicht nur Bibliotheken, sondern auch verhandlungsführende Institutionen von Konsortial- und Allianzlizenzen benötigen ein geeignetes Instrument zur Verwaltung von Lizenzinformationen, welches den komplexen Anforderungen moderner E-Ressourcen gerecht wird. Die Deutsche Forschungsgemeinschaft (DFG unterstützt ein Projekt des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen (hbz, der Universitätsbibliothek Freiburg, der Verbundzentrale des Gemeinsamen Bibliotheksverbundes (GBV und der Universitätsbibliothek Frankfurt, in dem ein bundesweit verfügbares Electronic Ressource Managementsystem (ERMS aufgebaut werden soll. Ein solches ERMS soll auf Basis einer zentralen Knowledge Base eine einheitliche Nutzung von Daten zur Lizenzverwaltung elektronischer Ressourcen auf lokaler, regionaler und nationaler Ebene ermöglichen. Statistische Auswertungen, Rechteverwaltung für alle angeschlossenen Bibliotheken, kooperative Datenpflege sowie ein über standardisierte Schnittstellen geführter Datenaustausch stehen bei der Erarbeitung der Anforderungen ebenso im Fokus wie die Entwicklung eines Daten- und Funktionsmodells. In the last few years the importance of electronic resources in library acquisitions has increased significantly. There has been a shift from mere print holdings to both e- and print combinations and even e-only subscriptions. This shift poses a double challenge for libraries: On the one hand they have to provide their e-resource collections to library users in an appealing way, on the other hand they have to manage these

  7. Biotechnology and the birth of a third culture.

    Science.gov (United States)

    Binetti, P

    2004-01-01

    Biotechnology represents such an important challenge for present day culture that one can speak of a biotechnological revolution in many other scientific fields as well, such as biology, clinical medicine, pharmacology, and genetic engineering. It also significantly affects political and economic choices to such a degree that they call for a new kind of attention from jurisprudence which has to regulate an ever changing world. Many important queries arise particularly at a bioethical level, issues that will also affect future generations. Scientific progress has unexpectedly widened the biological knowledge of human kind. Thanks to the contribution of continuously more refined and advanced technology, it has nurtured the hope of solving all problems and of overcoming all limits. The scientist's intellectual curiosity, encompassing these new resources, is spurred on by the desire for knowledge and understanding. However sometimes he loses sight of the repercussions and of the possible uses his achievements may have. Only a profound personal education, integrated with the scientist's technical and scientific expertise, will allow science to knock down some barriers, advancing constantly but without losing respect for man's dignity. However the separation between scientific and ethical expertise can only raise new barriers and create limits to the freedom of science which will appear just restrictive, while a kind of medieval obscurantism will be opposed to ethical rigour.

  8. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  9. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    Science.gov (United States)

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  10. Measuring the Contribution of Modern Biotechnology to the Canadian Economy

    OpenAIRE

    Ricardo de Avillez

    2011-01-01

    The role of modern biotechnology in agriculture, medicine, and industry has increased dramatically since the 1970s. Despite its growing importance, few efforts have been made so far to estimate the economic contribution of modern biotechnology to the Canadian economy. This report provides an overview of biotechnology activities in Canada, and, using an income-based approach, estimates that biotechnology activities accounted for approximately $15 billion in 2005, equivalent to 1.19 per cent of...

  11. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova

    2014-01-01

    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  12. Biotechnology: Health care, agriculture, industry, environment

    Energy Technology Data Exchange (ETDEWEB)

    Sikyta, B; Pavlasova, E; Stejskalova, E

    1986-01-01

    New developments in different branches of biotechnology are discussed. The production of peptide hormones, new interferons and other lymphokines by the microbial and cell cultures, and new enzyme inhibitors of microbial origin are the most important for health care and pharmacy. The main direction in research in the agriculture represents the development of the new, very effective methods of nitrogen fixation and the production of animal growth hormones by gene manipulated microorganisms. One of the most important field of application of biotechnology is the chemical industry, c.f. microbial production of polymers and biotransformation of compounds previously produced by chemical methods (acrylamide, adipic acid, naphthalene conversion, etc.). Several novel methods of degradation of the cellulosic materials are mentioned and exploitation of biotechnology in environmental protection is also discussed.

  13. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  14. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  15. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  16. Oil and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yoshiaki

    1988-06-01

    The secondary oil recovery due to microorganisms and the production of useful substances from oil distillates using microorganisms are described as examples to solidify the relationship between oil and biotechnology. The secondary crude-oil recovery has been carried out due to the microorganism drive process, which includes the on-the-ground and underground processes. Although the microorganism drive process has been investigated for many years, the selection of the microorganisms is not completely established. Many uncertainties still remain regarding the technical and economic aspects. The single cell protein (SCP) is an example of industrial success in the production of useful substances from the oil. Rumania has produced SCP from normal paraffin and the U. K. from the methanol and the products are used as the protein source for animals. Remarkable progress in the functional efficiency of microorganisms is expected due to the biotechnology for both applications. (4 tabs)

  17. The role of biotechnology in combating climate change

    DEFF Research Database (Denmark)

    Aerni, Philipp; Gagalac, Florabelle; Scholderer, Joachim

    2016-01-01

    on biotechnology and climate change was conducted with 55 representatives of 44 institutions. The results of a perception pattern analysis show that the majority of stakeholder representatives had a neutral or positive attitude towards the use of biotechnology and regarded its potential to address climate change...... problems as significant. The survey results further reveal a significant relationship between a representative’s institutional and disciplinary background and his or her attitude. The respective background appears to determine to a considerable extent whether biotechnology is framed as a risk...

  18. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis.

  19. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  20. [Health risks in the biotechnological industry].

    Science.gov (United States)

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  2. How can developing countries harness biotechnology to improve health?

    Directory of Open Access Journals (Sweden)

    Persad Deepa L

    2007-12-01

    Full Text Available Abstract Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology

  3. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  4. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  5. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  6. Advancement of Marketing Developing Biotechnology-Based Business

    Directory of Open Access Journals (Sweden)

    Vaidas Vilmantas

    2014-09-01

    Full Text Available The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology­based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with regard to modelling user’s behaviour, improvement in marketing strategy for the company, the correction of the elements of the marketing complex, changes in the marketing conception inside the company, product and service differentiation and renewal, the encouragement of expansion into other markets, variations in or the expansion of the target market, alternatives to the positioning strategy for the company, an increase in competitive ability and an internal impact of marketing on the varying elements. The article has referred to the analysis of scientific literature and research on the opinions of consumers and experts in the field in the context of biotechnology­based businesses.

  7. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    Science.gov (United States)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  8. Yeast biotechnology: teaching the old dog new tricks.

    Science.gov (United States)

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  9. White House Announcement on the Regulation of Biotechnology

    Science.gov (United States)

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  10. Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application.

    Science.gov (United States)

    Zhao, Jian

    2007-01-01

    Plants are one of the most important resources of human foods and medicines. Rapidly increasing knowledge on nutrition, medicine, and plant biotechnology has dramatically changed the concepts about food, health and agriculture, and brought in a revolution on them. Nutritional therapy and phytotherapy have emerged as new concepts and healing systems have quickly and widely spread in recent years. Strong recommendations for consumption of nutraceuticals, natural plant foods, and the use of nutritional therapy and phytotherapy have become progressively popular to improve health, and to prevent and treat diseases. With these trends, improving the dietary nutritional values of fruits, vegetables and other crops or even bioactive components in folk herbals has become targets of the blooming plant biotechnology industry. This review attempts to display and remark on these aspects. It summarizes the progress made on nutraceuticals, nutritional therapy, phytonutrients, phytotherapy, and their related epidemiological investigations and clinical studies. It also covers markets of these health-promoting products and disease-preventing or healing systems, as well as regulations behind them that direct the development of biotechnology study and application. Finally, related patents are listed and briefly analyzed, regarding of plant biotechnological research and progress on transgenic crops to improve nutritional value, phytotherapy efficiency, or to produce pharmaceutically important secondary metabolites or high-valued protein medicines such as vaccines and antibodies.

  11. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  12. Environmental Biotechnology in China

    Science.gov (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  13. International Trade in Biotechnology Products and Strategic Mandatory Labelling

    OpenAIRE

    Jinji, Naoto

    2003-01-01

    This paper examines strategic motives to impose mandatory labelling of biotechnology products when consumers perceive these products as being of lower quality. When a foreign dominant firm produces a biotechnology product, it is shown that without mandatory labelling fringe firms, which produce a conventional product, provide voluntary labelling as long as voluntary labelling is fully credible. Information on which product is biotechnologically engineered is hence completely disclosed without...

  14. Applications of Novel Techniques to Health Foods, Medical and Agricultural Biotechnology

    OpenAIRE

    Baianu, I. C.; Lozano, P. R.; Prisecaru, V. I.; Lin, H. C.

    2004-01-01

    Selected applications of novel techniques in Agricultural Biotechnology, Health Food formulations and Medical Biotechnology are being reviewed with the aim of unraveling future developments and policy changes that are likely to open new niches for Biotechnology and prevent the shrinking or closing the existing ones. Amongst the selected novel techniques with applications to both Agricultural and Medical Biotechnology are: immobilized bacterial cells and enzymes, microencapsulation and liposom...

  15. Feeding the world with induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Mohan Jain, S.

    2002-01-01

    The paper discussed the following subjects: biotechnology - somaclonal variation, somatic embryogenesis, somatic cell hybridization; induced mutations - in banana, ornamental plants; in vitro mutagenesis; T-DNA insertional mutagenesis. Suggestions for improving biotechnology in the developing countries also presented in the paper

  16. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary ... Assessment of microalgae-influenced biodeterioration of concrete structures · EMAIL FREE ... A study on 3-mercaptopyruvate sulphurtransferase (3-MST) produced under ...

  17. Innovation, resources and economic growth

    International Nuclear Information System (INIS)

    Curzio, A.Q.; Fortis, M.; Zoboli, R.

    1994-01-01

    The book is concerned with the following items: 1. Technological Creativity and Institutions, 2. Innovation at Work in an Historical-Economic Perspective: Energy and Industrial Materials, 3. Scientific Revolutions and Strategies of Economic Supremacy: Advanced Materials and Biotechnologies, 4. Economic Growth and Agro-Food Policies in Key Problem Regions: Former USSR and LDCs, 5. Economic Growth and Natural Resources at Risk: Climate Change, Forests and Water and in Conclusion: Innovation and Resources in a Global Policy Perspective. Only one chapter have regard to energy problems: Energie efficient technologies: past and future perspectives. (UA)

  18. Opportunities in biotechnology.

    Science.gov (United States)

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  19. Biotechnology

    International Nuclear Information System (INIS)

    2011-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  20. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  1. Ethical limitations in patenting biotechnological inventions.

    Science.gov (United States)

    Lugagnani, V

    1999-01-01

    In order to connect ethical considerations with practical limits to patentability, the moral judgement should possibly move from the exploitation of the invention to the nature and/or objectives of Research and Development (R&D) projects which have produced it: in other words, it appears quite reasonable and logical that Society is not rewarding unethical R&D activities by granting intellectual property rights. As far as biotechnology R&D is concerned, ethical guidance can be derived from the 1996 Council of EuropeOs OConvention for the protection of human rights and dignity of the human being with regard to the application of biology and medicineO, whose Chapter V - Scientific research - provides guidelines on: i. protection of persons undergoing research (e.g. informed consent); ii. protection of persons not able to consent to research; iii. research on embryos in vitro. As far as the specific point of patenting biotechnology inventions is concerned, the four exclusions prescribed by Directive 98/44/EC (i.e. human cloning, human germ-line gene therapy, use of human embryos for commercial purposes, unjustified animal suffering for medical purposes) are all we have in Europe in terms of ethical guidance to patentability. In Italy, in particular, we certainly need far more comprehensive legislation, expressing SocietyOs demand to provide ethical control of modern biotechnology. However it is quite difficult to claim that ethical concerns are being raised by currently awarded biotechnology patents related to living organisms and material thereof; they largely deal with the results of genomic R&D, purposely and usefully oriented toward improving health-care and agri-food processes, products and services. ONo patents on lifeOO can be an appealing slogan of militants against modern biotechnology, but it is far too much of an over-simplified abstraction to become the Eleventh Commandment our Society.

  2. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  3. BIOFAC-An investment in space infrastructure for biotechnology

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.

    2000-01-01

    During the last half century, biotechnology has contributed to the development of many important new and useful products that have improved our quality of life. To a large extent, these contributions are attributable to advances in cellular and molecular biology that can be traced to the discovery of DNA. What began as a science involved with manipulations of whole organisms has transcended into an ability to influence organisms at the cellular and molecular levels with greater speed, flexibility and precision than ever before. This has produced significantly improved pharmaceutical, textile, diagnostic, and environmental products, to name just a few. Early in this new century, biotechnology research is expected to literally explode with exciting new and promising opportunities. More importantly, biotechnology research in the low gravity environment of space is expected to play a significant part in this biotechnology revolution by expediting the discovery of important new medical, agricultural and environmental products. .

  4. The role of plant biotechnology methods in sustainable agriculture

    OpenAIRE

    Koleva Gudeva, Liljana; Trajkova, Fidanka

    2016-01-01

    Plant biotechnology is set of different scientific approaches and methods that are utilized to improve and modify plants for human and environmental benefit. Plant biotechnology can be used to meet the increasing need for food by improving yields, improving the nutritional quality of crops and recuing the impact on the environment. Plant biotechnology can assist to creation of varieties resistant to frost, droughts and floods, pests and disease, and other abiotic and biotic stresses. Similarl...

  5. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  6. Perceptions and attitudes of geography teachers to biotechnology: A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... perceptions of geography teachers towards biotechnology and GM foods but also provided an ... Key words: Biotechnology, GM foods, perceptions, attitudes, geography education, Turkey. ..... Brazilian high school students.

  7. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  8. The impact of plant biotechnology on food allergy.

    Science.gov (United States)

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Awakening the Biodiversity Potential trough ST&I Investments in the Sector of Amazonian Biotechnology

    OpenAIRE

    e Souza Frickmann, Fabiana dos Santos; Guimarães Vasconcellos, Alexandre

    2013-01-01

    The biotechnological development conciliated to Amazonian biodiversity represents a big potential for richness to Brazil. This study analyses the Brazilian investments in ST&I Amazonia's, utilizing as indicator for that, the resources applied in R&D and the patent appli;cations coming from Amazon, which were filed with the National Institute of Industrial Property during the period from 2003 to 2008. The objective is to analyze how where such investments applied by the Ministry of Science, Te...

  10. Biotechnology--Biotechnical Systems.

    Science.gov (United States)

    Ruggles, Stanford

    1990-01-01

    The perspective of biotechnology and its development in the K-12 technology education curriculum are described. The content curriculum development and implications for activities are discussed. The difference between a curriculum focused on the activities of industry compared to one that addresses technology as it pervades all human endeavors is…

  11. [Biotechnological aspects in "loco" larvae].

    Science.gov (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  12. Dendritic platforms for biomimicry and biotechnological applications.

    Science.gov (United States)

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  13. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  14. Risk evaluation in biotechnology of environment

    International Nuclear Information System (INIS)

    Mazaheri Asadi, M.

    2003-01-01

    It is the Era of technology and many countries are adjusting their economy with it. The research on biotechnology is done with a logarithmic rate at different technologies such as pharmacy, agriculture, environment, food, oil, and etc. The relevant research would result in the production of new materials which are released into the environment. In many developed countries biotechnology is regarded as a firm base for economic development and without doubt plays a determined role in humane wealth and well-being, but this technology should be sustainable and controllable. The producer and consumer of biotechnology must think deeply about this matter and take into account the health and sustain ability of earth and the environment. Evaluation of ecological impacts of micro- organisms and manipulated genetically organism should be considered in all countries of the world and such an activities should be regulated and controlled as it was don in Canada under the supervision of Dept

  15. Organisation of biotechnological information into knowledge.

    Science.gov (United States)

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  16. Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology.

    Science.gov (United States)

    Ju, Feng; Zhang, Tong

    2015-11-03

    Recent advances in DNA sequencing technologies have prompted the widespread application of metagenomics for the investigation of novel bioresources (e.g., industrial enzymes and bioactive molecules) and unknown biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. This review discusses the rigorous experimental design and sample preparation in the context of applying metagenomics in environmental sciences and biotechnology. Moreover, this review summarizes the principles, methodologies, and state-of-the-art bioinformatics procedures, tools and database resources for metagenomics applications and discusses two popular strategies (analysis of unassembled reads versus assembled contigs/draft genomes) for quantitative or qualitative insights of microbial community structure and functions. Overall, this review aims to facilitate more extensive application of metagenomics in the investigation of uncultured microorganisms, novel enzymes, microbe-environment interactions, and biohazards in biotechnological applications where microbial communities are engineered for bioenergy production, wastewater treatment, and bioremediation.

  17. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  18. Management in biophotonics and biotechnologies

    Science.gov (United States)

    Meglinski, I. V.; Tuchin, V. V.

    2005-10-01

    Biophotonics, one of the most exciting and rapidly growing areas, offers vast potential for changing traditional approaches to meeting many critical needs in medicine, biology, pharmacy, food, health care and cosmetic industries. Follow the market trends we developed new MSc course Management in Biophotonics and Biotechnologies (MBB) that provide students of technical disciplines with the necessary training, education and problem-solving skills to produce professionals and managers who are better equipped to handle the challenges of modern science and business in biophotonics and biotechnology. A major advantage of the course is that it provides skills not currently available to graduates in other Master programs.

  19. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  20. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane; Sutton, Taurean C.

    2015-01-01

    , influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development

  1. Aquaculture, Biotechnological and Seafood Resource Potential of Sea Cucumbers from the Peniche coast (Portugal

    Directory of Open Access Journals (Sweden)

    Rita Alves Santos

    2014-06-01

    Full Text Available Sea cucumbers are highly marketable as food and medicinal product. This has resulted in an increasing overfishing and in a new interest in European species. In this work, the reproductive biology of Holothuria forskali and Holothuria mammata was performed by evaluating the gonadosomatic index and histological analyzes of the gonadal tubules. The biotechnological potential was assessed through the evaluation of the antioxidant, antimicrobial and antitumor potential. The antioxidant activity was evaluated through the quantification of the total phenolic content, DPPH radical scavenging activity and ORAC method. The antimicrobial activity was evaluated against Staphylococcus aureus, Candida albicans, Saccharomyces cerevisiae, Bacillus subtilis, Salmonella enteritidis, Pseudomonas aeruginosa and Escherichia coli through growth inhibition tests. The antitumor potential was performed on HepG-2 and MCF-7 human cells lines using the MTT and Calcein - AM methods. Finally, the fatty acid profile was evaluated through gas-chromatography analysis. The gonadosomatic index and histology revealed that the range from February to April corresponds to the peak of gonad maturation for both species. No significant antioxidant activity was detected. The methanolic fraction of H. forskali revealed the highest antimicrobial potential against Candida albicans with an IC50 of 233.2 µg ml-1 and also presented the highest cytotoxic and anti-proliferative activities through the MTT method in both cells lines, with an IC50 of 238.2 and 396.0 µg ml-1 for MCF-7 cells, respectively and 260.3 and 218.7 µg ml-1 for HepG-2 cells, respectively. Regarding the fatty acid profile, the total fat content was 1%, 3.36% and 4.83% for H. forskali, H. mammata and S. regalis, respectively and the highest values were obtained for C16:0 (9.96% and ARA (20.36% for H. forskali and C18:0 (12.43%, C18:1 n-7 (5.13%, EPA (12.49% and DHA (7.35% for S. regalis. These findings showed the potential

  2. Evaluation of Brazilian biotechnology patent activity from 1975 to 2010.

    Science.gov (United States)

    Dias, F; Delfim, F; Drummond, I; Carmo, A O; Barroca, T M; Horta, C C; Kalapothakis, E

    2012-08-01

    The analysis of patent activity is one methodology used for technological monitoring. In this paper, the activity of biotechnology-related patents in Brazil were analyzed through 30 International Patent Classification (IPC) codes published by the Organization for Economic Cooperation and Development (OECD). We developed a program to analyse the dynamics of the major patent applicants, countries and IPC codes extracted from the Brazilian Patent Office (INPI) database. We also identified Brazilian patent applicants who tried to expand protection abroad via the Patent Cooperation Treaty (PCT). We had access to all patents published online at the INPI from 1975 to July 2010, including 9,791 biotechnology patent applications in Brazil, and 163 PCTs published online at World Intellectual Property Organization (WIPO) from 1997 to December 2010. To our knowledge, there are no other online reports of biotechnology patents previous to the years analyzed here. Most of the biotechnology patents filed in the INPI (10.9%) concerned measuring or testing processes involving nucleic acids. The second and third places belonged to patents involving agro-technologies (recombinant DNA technology for plant cells and new flowering plants, i.e. angiosperms, or processes for obtaining them, and reproduction of flowering plants by tissue culture techniques). The majority of patents (87.2%) were filed by nonresidents, with USA being responsible for 51.7% of all biotechnology patents deposited in Brazil. Analyzing the resident applicants per region, we found a hub in the southeast region of Brazil. Among the resident applicants for biotechnology patents filed in the INPI, 43.5% were from São Paulo, 18.3% were from Rio de Janeiro, and 9.7% were from Minas Gerais. Pfizer, Novartis, and Sanofi were the largest applicants in Brazil, with 339, 288, and 245 biotechnology patents filed, respectively. For residents, the largest applicant was the governmental institution FIOCRUZ (Oswaldo Cruz

  3. Advanced health biotechnologies in Thailand: redefining policy directions.

    Science.gov (United States)

    Velasco, Román Pérez; Chaikledkaew, Usa; Myint, Chaw Yin; Khampang, Roongnapa; Tantivess, Sripen; Teerawattananon, Yot

    2013-01-02

    Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these-such as diabetes, cancer, and inherited inborn metabolic diseases-have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D), and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E). The establishment of a specialised institution to fill the gaps in this area is warranted. The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.

  4. GUIDELINES FOR EVALUATION OF PSYCHOLOGICAL AND PEDAGOGICAL QUALITY CHARACTERISTICS OF ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Galina P. Lavrentieva

    2014-05-01

    Full Text Available The article highlights the causes of insufficient effective use of electronic learning resources and sets out the guidelines on ways to solve the aforementioned problems. The set of didactic, methodical, psychological, pedagogical, design and ergonomic quality requirements is considered for evaluation, selection and application of information and communication technologies in the educational process. The most appropriate mechanisms for the ICT introduction into the learning process are disclosed as it should meet the specific learning needs of the student and the objectives of the educational process. The guidance for psycho-educational assessment of quality of electronic educational resources is provided. It is argued that the effectiveness of the ICT use is to be improved by means of quality evaluation mechanisms involved into the educational process.

  5. Availability, Use and Constraints to Use of Electronic Information Resources by Postgraduates Students at the University of Ibadan

    Directory of Open Access Journals (Sweden)

    Dare Samuel Adeleke

    2017-12-01

    Full Text Available Availability, awareness and use of electronic resources provide access to authoritative, reliable, accurate and timely access to information. The use of electronic information resources (EIRs can enable innovation in teaching and increase timeliness in research of postgraduate students which will eventual result into encouragement of the expected research-led enquiry in this digital age. The study adopted a descriptive survey design. Samples of 300 of postgraduate students within seven out 13 Faculties were randomly selected. Data were collected using questionnaire designed to elicit response from respondents and data were analyzed using descriptive statistics methods percentages, mean, and standard deviation. Results indicated that internet was ranked most available and used in the university. Low level of usage of electronic resources, in particular, full texts data bases is linked to a number of constraints: Interrupted power supply was ranked highest among other factors as speed and capacity of computers, retrieval of records with high recall and low precision, retrieving records relevant to information need, lack of knowledge of search techniques to retrieve information effectively, non possession of requisite IT skills and problems accessing the internet. The study recommended that usage of electronic resources be made compulsory, intensifying awareness campaigns concerning the availability, training on use of electronic resources and the problem of power outage be addressed.

  6. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  7. Biotechnology awareness study, Part 2: Meeting the information needs of biotechnologists.

    Science.gov (United States)

    Cunningham, D; Grefsheim, S; Simon, M; Lansing, P S

    1991-01-01

    The second part of the biotechnology awareness study focused on health sciences libraries and how well they are meeting the needs of biotechnologists working in the study's nine medical centers. A survey was conducted over a three-month period to assess the demand for biotechnology-related reference services at nine libraries and the sources the librarians used to answer the questions. Data on monographic and current serial holdings were also collected. At the end of the survey period, librarians were asked for their perceptions about biotechnology research at their institutions and in their geographic areas. Their responses were compared to the responses the scientists at the nine schools gave to the same or similar questions. Results showed few biotechnology-related reference questions were asked of the librarians. The recorded questions dealt with a range of biotechnology subjects. MEDLINE was used to answer 77% of the questions received during the survey period. More detailed notes in MeSH and a guide to online searching for biotechnology topics were suggested by the librarians as ways to improve reference service to this group of researchers. Journal collections were generally strong, with libraries owning from 50% to 87% of the titles on a core list of biotechnology journals compiled for this study. All libraries subscribed to the five titles most often cited by the scientists surveyed. Generally, librarians were unaware of the biotechnology-related research being done on their campuses or in their geographic areas. PMID:1998819

  8. Religious voices in biotechnology: the case of gene patenting.

    Science.gov (United States)

    Hanson, M J

    1999-01-01

    On 18 May 1995, nearly 200 religious leaders joined with leading biotechnology critic Jeremy Rifkin in a press conference named the "Joint Appeal against Human and Animal Patenting," a move that many within the biotechnology industry could only interpret as seeking to inhibit biotechnological advance. What moral and religious concerns motivated this challenge to patenting? How could the biotechnology industry understand and respectfully attend to these concerns? What values were at play in the debates that followed the joint appeal? What lessons for future dialogue can be learned from attempts at conversation between the opposing positions? This essay is a report from a Hastings Center research project that accepted the task of addressing these questions. Specifically, the project focused on the patenting of human genetic material, a subset of the issues raised by the joint appeal.

  9. A Study on Developing Evaluation Criteria for Electronic Resources in Evaluation Indicators of Libraries

    Science.gov (United States)

    Noh, Younghee

    2010-01-01

    This study aimed to improve the current state of electronic resource evaluation in libraries. While the use of Web DB, e-book, e-journal, and other e-resources such as CD-ROM, DVD, and micro materials is increasing in libraries, their use is not comprehensively factored into the general evaluation of libraries and may diminish the reliability of…

  10. PLANT BIOTECHNOLOGY IN THE 21ST CENTURY: THE CHALLENGES AHEAD

    OpenAIRE

    Altman, Arie

    1999-01-01

    In a world where population growth is outstripping food supply agricultural -and especially plant-biotechnology, needs to be swiftly implemented in all walks of life. Achievements today in plant biotechnology have already surpassed all previous expectations, and the future is even more promising. The full realisation of the agricultural biotechnology revolution depends on both continued successful and innovative research and development activities and on a favourable regulatory climate and pu...

  11. Biotechnological Applications of Microbial (Per)chlorate Reduction.

    Science.gov (United States)

    Wang, Ouwei; Coates, John D

    2017-11-24

    While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.

  12. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.

    2002-01-01

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  13. Strategic Partnerships and Open Innovation in the Biotechnology Industry in Belgium

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Segers

    2013-04-01

    Full Text Available Strategic partnerships in the biotechnology industry allow new technology-based firms to gain a foothold in this high-cost, high-risk industry. In this article, we examine the impact of strategic partnerships and open innovation on the success of new biotechnology firms in Belgium by developing multiple case studies of firms in regional biotechnology clusters. We find that, despite their small size and relative immaturity, new biotechnology firms are able to adopt innovative business models by providing R&D and services to larger firms and openly cooperating with them through open innovation.

  14. [The role of biotechnology in pharmaceutical drug design].

    Science.gov (United States)

    Gaisser, Sibylle; Nusser, Michael

    2010-01-01

    Biotechnological methods have become an important tool in pharmaceutical drug research and development. Today approximately 15 % of drug revenues are derived from biopharmaceuticals. The most relevant indications are oncology, metabolic disorders and disorders of the musculoskeletal system. For the future it can be expected that the relevance of biopharmaceuticals will further increase. Currently, the share of substances in preclinical testing that rely on biotechnology is more than 25 % of all substances in preclinical testing. Products for the treatment of cancer, metabolic disorders and infectious diseases are most important. New therapeutic approaches such as RNA interference only play a minor role in current commercial drug research and development with 1.5 % of all biological preclinical substances. Investments in sustainable high technology such as biotechnology are of vital importance for a highly developed country like Germany because of its lack of raw materials. Biotechnology helps the pharmaceutical industry to develop new products, new processes, methods and services and to improve existing ones. Thus, international competitiveness can be strengthened, new jobs can be created and existing jobs preserved.

  15. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  16. Biotechnology Commercialization Strategies: Risk and Return in interfirm cooperation.

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, e; Claassen, E.

    2014-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  17. Biotechnology Commercialization Strategies: Risk and Return in Interfirm Cooperation

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, H.P.G.; Claassen, E.

    2015-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  18. Comprehensive biotechnology education and rural economic development

    OpenAIRE

    Holmes, L.; Brooks, J.

    2006-01-01

    North Carolina is home to the third largest biotechnology industry in the United States. With over 200 companies involved in manufacturing, research, testing or services and growing at a rate of 12 % per year, this North Carolina industry is aggressively expanding its biotechnology efforts in all domains: pharmaceuticals, agriculture, environment, foods and energy. The North Carolina Department of Commerce along with other state and regional entities are developing strategies to attract new c...

  19. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

    Science.gov (United States)

    Sun, Zhihong; Harris, Hugh M. B.; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C.; Kagawa, Todd F.; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C.; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P.; Paul Ross, R.; Yang, Ruifu; Briner, Alexandra E.; Felis, Giovanna E.; de Vos, Willem M.; Barrangou, Rodolphe; Klaenhammer, Todd R.; Caufield, Page W.; Cui, Yujun; Zhang, Heping; O'Toole, Paul W.

    2015-01-01

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. PMID:26415554

  20. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera.

    Science.gov (United States)

    Sun, Zhihong; Harris, Hugh M B; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C; Kagawa, Todd F; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P; Paul Ross, R; Yang, Ruifu; Briner, Alexandra E; Felis, Giovanna E; de Vos, Willem M; Barrangou, Rodolphe; Klaenhammer, Todd R; Caufield, Page W; Cui, Yujun; Zhang, Heping; O'Toole, Paul W

    2015-09-29

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.

  1. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-03

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  2. Of Apples and Animals: An Introduction to Biotechnology.

    Science.gov (United States)

    Mourad, Teresa M.; And Others

    This guide is designed to foster an understanding of the basic concepts underlying biotechnology through simple activities that are fun and creative for students in grades 3-5. It contains four units that will lead young students to an appreciation of how biotechnology is possible and some of its applications. The process of learning is intended…

  3. TSCA Biotechnology Notifications Status

    Science.gov (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  4. Advanced health biotechnologies in Thailand: redefining policy directions

    Directory of Open Access Journals (Sweden)

    Velasco Román Pérez

    2013-01-01

    Full Text Available Abstract Background Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these—such as diabetes, cancer, and inherited inborn metabolic diseases—have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Methods Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Results Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D, and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E. The establishment of a specialised institution to fill the gaps in this area is warranted. Conclusion The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.

  5. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    OpenAIRE

    Anton M. Avramchuk

    2017-01-01

    The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing ...

  6. Report on a survey in fiscal 1999. Supplementary survey on research and development of carbon dioxide fixation and effective utilization technologies utilizing bacteria and algae (the survey on feasibility of bio-technologies to create economic effects, such as the biological CO2 fixation technology); 1999 nendo saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kenkyu kaihatsu futai chosa. Keizaiteki koka wo soshutsusuru seibutsuteki CO{sub 2} koteigijutsu nado no biotechnology no kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Bio-technologies including the biological CO2 fixation technology, or the green bio-technologies (GBT) are the technologies indispensable in realizing the change to a resource circulating and environment harmonizing society that accompanies economical growth, or in other words, the 'sustainable development'. In quantifying the feasibility of these technologies, the GBTs that contribute to creating Japan's international competitive power and employment were specified, and an approach to establish the realization target in 2010 was adopted, upon identifying the general condition of the related markets inside and outside the country. The GBT is the technology that makes the best use of Japan's independent strength created by combining the enzyme engineering and fermentation engineering with the 'genome science' (HEART). The targets are to substitute four million kiloliters of petroleum with a resource circulation type energy generated by the bio-technology; apply the bio-technology to about 30% of products and processes produced or used in Japan's chemical industries; and aim at creating markets by using environmental measurement and analysis, treatment of hard-to-decompose substances, and supports on tree planting as the three pillars. A simulation on return on investment in GBT business suggests the effect of promoting PFI. (NEDO)

  7. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    OpenAIRE

    Bal-Prilipko L. V.; Leonova B. I.

    2014-01-01

    The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of spe...

  8. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    OpenAIRE

    Garda S. A.; S. G. Danilenko; G. S. Litvinov

    2014-01-01

    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  9. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike

    2018-01-01

    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  10. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    Science.gov (United States)

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  11. Application of biotechnology for the domestication of Dacryodes edulis

    African Journals Online (AJOL)

    Biotechnology applications give a scope for rapid improvement and also facilitate the breeding program. Advantages of biotechnology application using molecular markers in breeding programs includes: study of genetic diversity, DNA fingerprinting of individuals, easy identification of specific traits or genes of interest, rapid ...

  12.   Biotechnology in Danish forestry - Christmas trees and Biofuels

    DEFF Research Database (Denmark)

    Find, Jens

    for development of additional biotechnological breeding technologies as e.g. genetic transformation, and because SE allows for storage of elite germ plasm over extended periods in liquid nitrogen. The combination of SE and other biotechnological breeding tools permit for relative fast and market oriented breeding...

  13. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  14. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  15. MHSS 2020 Focused Study on Biotechnology & Nanotechnology, 29 July 1997

    National Research Council Canada - National Science Library

    1998-01-01

    .... This focused study on biotechnology and nanotechnology has two primary goals: (1) examine the future strategic impact of biotechnology and nanotechnology as it relates to the military health system, and (2...

  16. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  17. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  18. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case...... of emerging electronic product, in order to understand the recovery fate of different materials and its linkage to product design. Ten different brands of RVC were dismantled and their material composition and design profiles were studied. Another 125 RVCs (349 kg) were used for an experimental trial...... at a conventional ‘shred-and-separate’ type preprocessing plant in Denmark. A detailed material flow analysis was performed throughout the recycling chain. The results show a mismatch between product design and EoL processing, and the lack of practical implementation of ‘Design for EoL’ thinking. In the best...

  19. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in

  20. Use of electronic sales data to tailor nutrition education resources for an ethnically diverse population.

    Science.gov (United States)

    Eyles, H; Rodgers, A; Ni Mhurchu, C

    2010-02-01

    Nutrition education may be most effective when personally tailored. Individualised electronic supermarket sales data offer opportunities to tailor nutrition education using shopper's usual food purchases. The present study aimed to use individualised electronic supermarket sales data to tailor nutrition resources for an ethnically diverse population in a large supermarket intervention trial in New Zealand. Culturally appropriate nutrition education resources (i.e. messages and shopping lists) were developed with the target population (through two sets of focus groups) and ethnic researchers. A nutrient database of supermarket products was developed using retrospective sales data and linked to participant sales to allow tailoring by usual food purchases. Modified Heart Foundation Tick criteria were used to identify 'healthier' products in the database suitable for promotion in the resources. Rules were developed to create a monthly report listing the tailored and culturally targeted messages to be sent to each participant, and to produce automated, tailored shopping lists. Culturally targeted nutrition messages (n = 864) and shopping lists (n = 3 formats) were developed. The food and nutrient database (n = 3000 top-selling products) was created using 12 months of retrospective sales data, and comprised 60%'healthier' products. Three months of baseline sales data were used to determine usual food purchases. Tailored resources were successfully mailed to 123 Māori, 52 Pacific and 346 non-Māori non-Pacific participants over the 6-month trial intervention period. Electronic supermarket sales data can be used to tailor nutrition education resources for a large number of ethnically diverse supermarket shoppers.

  1. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  2. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    Science.gov (United States)

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  3. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    Science.gov (United States)

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  5. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  6. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  7. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  8. Western Australian High School Students' Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    This study reports on the attitudes towards biotechnology of 905, 15-16 year-old students from 11 Western Australian schools. Students were asked to read 15 statements about biotechnology processes and to draw a line to separate what they considered "acceptable" statements from those they considered "unacceptable". Overall, the…

  9. Towards sustainable biotechnology innovation in Africa: The roles of stakeholders in local contexts

    OpenAIRE

    Roelofs, Caspar

    2015-01-01

    Aim To contribute to sustainable crop-biotechnology innovation in African contexts by operationalizing guiding concepts from Science, Technology and Society (STS) studies. Objectives To explore the roles of different stakeholders in crop-biotechnology innovation processes in Africa; To explore how local contexts shape crop-biotechnology differently; To explore how crop-biotechnology shapes different contexts differently; To make policy recommendations on stakeholder involvement in decision-ma...

  10. Practicing environmental biotechnology

    OpenAIRE

    Bruce E.Rittmann

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  11. Availability, Level of Use and Constraints to Use of Electronic Resources by Law Lecturers in Public Universities in Nigeria

    Science.gov (United States)

    Amusa, Oyintola Isiaka; Atinmo, Morayo

    2016-01-01

    (Purpose) This study surveyed the level of availability, use and constraints to use of electronic resources among law lecturers in Nigeria. (Methodology) Five hundred and fifty-two law lecturers were surveyed and four hundred and forty-two responded. (Results) Data analysis revealed that the level of availability of electronic resources for the…

  12. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  13. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  14. Review of biotechnology applications to nuclear waste treatment

    International Nuclear Information System (INIS)

    Ashley, N.V.; Roach, D.J.W.

    1990-01-01

    This paper gives an overview of the feasibility of the application of biotechnology to nuclear waste treatment. Many living and dead organisms accumulate heavy metals and radionuclides. The controlled use of this phenomenon forms the basis for the application of biotechnology to the removal of radionuclides from nuclear waste streams. An overview of biotechnology areas, namely the use of biopolymers and biosorption using biomass applicable to the removal of radionuclides from industrial nuclear effluents is given. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology is also to be examined. The most appropriate technologies to develop for radionuclide removal in the short term appear to be those based on biosorption of radionuclides by biomass and the use of modified and unmodified biopolymers in the medium term. (author)

  15. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  16. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. African Journal of Biotechnology: Submissions

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The African Journal of Biotechnology (AJB) (ISSN 1684-5315) provides rapid publication of .... Authors may still request (in advance) that the editorial board waive some of the handling fee ...

  18. 75 FR 1749 - Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for...

    Science.gov (United States)

    2010-01-13

    ...] Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for Determination of... Health Inspection Service has received a petition from Syngenta Biotechnology, Inc., seeking a....gov ). FOR FURTHER INFORMATION CONTACT: Dr. Subray Hegde, Biotechnology Regulatory Services, APHIS...

  19. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    Science.gov (United States)

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  20. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  1. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    Science.gov (United States)

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Personalised Medicine and the Economy of Biotechnological Promise.

    Science.gov (United States)

    Sturdy, Steve

    2017-04-01

    Rather than seek to distinguish hype from legitimate promise, it may be more helpful to think about personalised medicine as embodying a promissory economy which serves both to mobilize resources for research and - partly at least - to determine the ends to which that research is directed. Personalised medicine is a development of the larger promissory economy of medical biotechnology. As such, it systematically conflates public benefit with the pursuit of commercial and especially pharmaceutical interests. Consequently, research and development in personalised medicine tends to favour the production of expensive new treatments over unprofitable forms of prevention or more effective use of older therapies. A rebalancing of research priorities is needed to favour the pursuit of public benefit, even when it does not deliver private profits. This will in turn require sustained reflection, self-criticism and often self-denial on the part of public research funders and the scientists they support.

  3. Knowledge and Attitudes Towards Biotechnology of Elementary Education Preservice Teachers: The first Spanish experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-11-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.

  4. Review: Biotechnological strategies for conservation of rare and endangered medicinal plants

    Directory of Open Access Journals (Sweden)

    MAHENDRA KUMAR RAI

    2010-07-01

    Full Text Available Rai MK (2010 Review: Biotechnological strategies for conservation of rare and endangered medicinal plants. Biodiversitas 11: 157-166. The use of medicinal plants is as old as human civilization. The biotechnological tools play a crucial role in conservation of rare and endangered medicinal plants. The rapid depletion of plant genetic diversity has made essential to develop new in situ and ex situ conservation methods. Advances in biotechnology offer new methods for conservation of rare and endangered medicinal plants. The present review is focused on biotechnological tools like in vitro culture, micropropagation, mycorrhization, genetic transformation and development of DNA banks. These are imperative and important alternatives for the conservation of rare and endangered medicinal plants.

  5. Comparing the Governance of Novel Products and Processes of Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Janus

    The emergence of novel products and processes of biotechnology in medicine, industry and agriculture has been accompanied by promises of healthier, safer and more productive lives and societies. However, biotechnology has also served as cause and catalyst of social controversy about the physical...... to start to fill this gap and develop a conceptual framework for comparing and analysing new and emerging modes of governance affiliated with biotechnology in the light of more general approaches to governance. We aim for a framework that can facilitate comparative inquiries and learning across different...

  6. SAGES: a suite of freely-available software tools for electronic disease surveillance in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Sheri L Lewis

    Full Text Available Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  7. Use and Cost of Electronic Resources in Central Library of Ferdowsi University Based on E-metrics

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Davarpanah

    2012-07-01

    Full Text Available The purpose of this study was to investigate the usage of electronic journals in Ferdowsi University, Iran based on e-metrics. The paper also aimed to emphasize the analysis of cost-benefit and the correlation between the journal impact factors and the usage data. In this study experiences of Ferdowsi University library on licensing and usage of electronic resources was evaluated by providing a cost-benefit analysis based on the cost and usage statistics of electronic resources. Vendor-provided data were also compared with local usage data. The usage data were collected by tracking web-based access locally, and by collecting vender-provided usage data. The data sources were one-year of vendor-supplied e-resource usage data such as Ebsco, Elsevier, Proquest, Emerald, Oxford and Springer and local usage data collected from the Ferdowsi university web server. The study found that actual usage values differ for vendor-provided data and local usage data. Elsevier has got the highest usage degree in searches, sessions and downloads. Statistics also showed that a small number of journals satisfy significant amount of use while the majority of journals were used less frequent and some were never used at all. The users preferred the PDF rather than HTML format. The data in subject profile suggested that the provided e-resources were best suited to certain subjects. There was no correlation between IF and electronic journal use. Monitoring the usage of e-resources gained increasing importance for acquisition policy and budget decisions. The article provided information about local metrics for the six surveyed vendors/publishers, e.g. usage trends, requests per package, cost per use as related to the scientific specialty of the university.

  8. A systems engineering perspective on process integration in industrial biotechnology

    NARCIS (Netherlands)

    Kiss, Anton A.; Grievink, Johan; Rito-Palomares, Marco

    2015-01-01

    Biotechnology has many applications in health care, agriculture, industry and the environment. By using renewable raw materials, biotechnology contributes to lowering greenhouse gas emissions and moving away from a petro-based towards a circular sustainable economy. However, major developments are

  9. Biotechnological processes in the Canadian mining industry

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    Since the initiation of the Federal Government's National Strategy on Biotechnology in 1983, CANMET has coordinated the development of numerous biotechnological processes both for economical metal recovery and for the protection of the environment. This presentation will give a brief overview of the development of in-place, underground bacterial leaching of uranium, the development of in-situ bacterial leaching of copper and zinc, bio recovery of metallic selenium from smelter effluents, the degradation of an organic pollutant from a metal smelter and biological treatment of acidic mine drainage. (author)

  10. UK biotechnology companies lead the way for Europe

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    A number of new well-structured biotechnology companies have been launched in Britain over the last few years, e.g. Imperial Biotechnology, IQ(Bio) and Celltech, while Wellcome and Searle (U.K.) are established firms, keeping up with the new technology. Imperial Biotechnology, with its accent on development rather than research and making products not in anyone else's catalogue, has produced a whole range of enzymes, biopolymers, antibiotics, and human proteins under contract. Its long term objective is to develop its own bioproducts. IQ(Bio) is poised to enter the diagnostic big league with its enzyme-linked immunoassay (Aelia) technology and intends to pursue opportunities where there is a strict regulatory climate prohibiting the growth of radioimmunoassays, e.g. France and Japan. It plans to produce kits that a doctor can use simply and give results in less than 30 minutes. Celltech has a culture products division which supplies large quantities of monoclonal antibodies, it has a diagnostics and health care research section, a speciality chemicals area and an industrial microbiology sector. Wellcome Biotechnology has an interferon programme which includes a broad range of chemical trials in the anticancer and antiviral areas. The company could supply the entire world market for interferon using cell culture and produces a very large range of conventional vaccines. Searle uses biotechnology as just another means of producing new drugs as they have a large drug development machine in place. A considerable amount of process development work has focused on Searle's artificial sweetener, aspartame, and they are looking at all the technical approaches to aspartame production.

  11. Biotechnological Production Process and Life Cycle Assessment of Graphene

    Directory of Open Access Journals (Sweden)

    P. Noorunnisa Khanam

    2017-01-01

    Full Text Available The aim of this study is to compare the graphene produced using a biotechnological method (Escherichia coli with the graphene produced by Hummers’ method (a chemical method and to study the effect on the energy consumption and environment. The results indicated that the chemical reduction process has higher energy consumption, approximately 1642 Wh, than the energy consumption of the biotechnological reduction process, which is 5 Wh. The potential of global warming (GWP 100 improved by 71% using the biotechnological route for the production of graphene. Abiotic depletion, the photochemical ozone creation potential, and marine aquatic ecotoxicity potential were improved when the biological route was employed, compared with the chemical route. The eutrophication potential, terrestrial ecotoxicity, and ozone depletion layer changed very little since the main variables involved in the production of graphene oxide and waste management are the same. The biotechnological method can be considered a green technique for the production of graphene, especially given the reduction in the negative effects on global warming, abiotic depletion, the photochemical ozone creation potential, and the marine aquatic ecotoxicity potential.

  12. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Science.gov (United States)

    2010-07-19

    ...] Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System Program AGENCY... participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management..., audit-based compliance assistance program known as the Biotechnology Quality Management System Program...

  13. Biotechnology in Argentina: New products, new multilateral challenges

    Directory of Open Access Journals (Sweden)

    Luciano M. Donadio Linares

    2016-06-01

    Full Text Available Since 20 years ago, a public-private alliance has transformed Argentina into a remarkable global actor in developing biotechnological products for food and renewable energies. This strategic alliance resulted in the boosting of scientific knowledge, the extension of the production boundary, the expansion of international trade and the creation of the conditions for an integral development. Furthermore, given the characteristics of biotechnology as a new phenomenon, wto has become the field within where a number of disputes take place, disputes which not only controvert trade issues, but also the State’s limits to design and apply public policies on the matter at issue. As a consequence, the present article seeks to, on the one hand, describe how Argentina built its public policy on Biotechnology and, on the other hand, analyze the challenges that Argentina faces within the multilateral trade system

  14. 75 FR 20560 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Science.gov (United States)

    2010-04-20

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by Syngenta Biotechnology, Inc... Biotechnology, Inc., in its petition for a determination of nonregulated status, our analysis of other...

  15. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  16. Building and Managing Electronic Resources in Digital Era in India with Special Reference to IUCAA and NIV, Pune: A Comparative Case Study

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2015-04-01

    This paper discusses and presents a comparative case study of two libraries in Pune, India, Inter-University Centre for Astronomy and Astrophysics and Information Centre and Library of National Institute of Virology (Indian Council of Medical Research). It compares how both libraries have managed their e-resource collections, including acquisitions, subscriptions, and consortia arrangements, while also developing a collection of their own resources, including pre-prints and publications, video lectures, and other materials in an institutional repository. This study illustrates how difficult it is to manage electronic resources in a developing country like India, even though electronic resources are used more than print resources. Electronic resource management can be daunting, but with a systematic approach, various problems can be solved, and use of the materials will be enhanced.

  17. Report on a survey in fiscal 1999. Supplementary survey on research and development of carbon dioxide fixation and effective utilization technologies utilizing bacteria and algae (the survey on feasibility of bio-technologies to create economic effects, such as the biological CO2 fixation technology); 1999 nendo saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kenkyu kaihatsu futai chosa. Keizaiteki koka wo soshutsusuru seibutsuteki CO{sub 2} koteigijutsu nado no biotechnology no kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Bio-technologies including the biological CO2 fixation technology, or the green bio-technologies (GBT) are the technologies indispensable in realizing the change to a resource circulating and environment harmonizing society that accompanies economical growth, or in other words, the 'sustainable development'. In quantifying the feasibility of these technologies, the GBTs that contribute to creating Japan's international competitive power and employment were specified, and an approach to establish the realization target in 2010 was adopted, upon identifying the general condition of the related markets inside and outside the country. The GBT is the technology that makes the best use of Japan's independent strength created by combining the enzyme engineering and fermentation engineering with the 'genome science' (HEART). The targets are to substitute four million kiloliters of petroleum with a resource circulation type energy generated by the bio-technology; apply the bio-technology to about 30% of products and processes produced or used in Japan's chemical industries; and aim at creating markets by using environmental measurement and analysis, treatment of hard-to-decompose substances, and supports on tree planting as the three pillars. A simulation on return on investment in GBT business suggests the effect of promoting PFI. (NEDO)

  18. Opening remarks SIVB congress 2001: opportunities and challenges in plant biotechnology.

    Science.gov (United States)

    Bond, Christopher

    2003-01-01

    U.S. Senator Christopher Bond joined Dr. Roger Beachy at the podium during the Society for In Vitro Biology's 2001 Congress Plenary Session on Opportunities and Challenges in Plant Biotechnology to Benefit Health and Sustainability, on June 17, 2001, in St. Louis, Missouri. Senator Bond presented an advocate's view regarding the benefits of plant biotechnology development. The strengths of the biotechnology regulatory system were extolled. The opportunities of this new technology to produce more and nutritionally superior food, additional plant-based medicines and vaccines, plant-based renewable sources of energy, and renewable industrial products were outlined. The benefits to the environment by adopting plant biotechnological innovations were discussed. Developing public policy regarding this new technology should be based on facts, science, and reason.

  19. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  20. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Marijan Jošt

    2003-12-01

    Full Text Available The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs, the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generation of GMOs provide small benefits except corporate profit and marginally improved grower returns. The TRIPS agreement has allowed worldwide patenting of genes and microorganisms, as well as genetically engineered organisms. Granting patents on life encourages biopiracy and the theft of genetic resources belonging to the local community. At the same time, the patented products are sold at relatively high prices to developing countries – the same countries from which the product originated.

  1. A cross-sectional study of biotechnology awareness and teaching in European high schools.

    Science.gov (United States)

    Vanderschuren, Hervé; Heinzmann, Dominik; Faso, Carmen; Stupak, Martin; Arga, Kazim Yalçin; Hoerzer, Helen; Laizet, Yech'an; Leduchowska, Paulina; Silva, Nádia; Simková, Klára

    2010-12-31

    Undoubtedly, biotechnology has a tremendous impact on our daily lives. As a result of this and in parallel to the advancement of knowledge in this field of applied research, consumer awareness of the potential benefits and risks of this technology has steadily increased, leading to a thorough investigation of the public perception of biotechnology in the past years. Indeed, it has become clear that it is in the general interest of science and especially of applied research to inform the public of its advances. A promising next step is to strengthen biotechnology communication in scholastic institutions. In this paper, we investigate the perception of biotechnology in a specific target group, namely high-school students in the 16-20-year-old age range. We conducted a questionnaire-based survey on a total of 1410 students in six European countries to investigate students' perception, concern, scientific knowledge, and awareness. Our data revealed some unexpected patterns of acceptance and concern about biotechnology. Knowledge analysis indicated that pupils lack specific knowledge about biotechnological applications and their interest in biotechnology appeared to be linked to knowledge. Analysis of specific questions about teaching practices at schools suggests that a better targeted choice in media as vehicles for information together with selected speakers could be instrumental in increasing students' interest in science and more specifically in biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  3. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  4. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  5. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  6. Biotechnology Patenting in the BRICS Countries: Strategies and Dynamics.

    Science.gov (United States)

    Streltsova, Ekaterina; Linton, Jonathan D

    2018-01-05

    The BRICS countries (Brazil, Russia, India, China, South Africa) account for 25% of global biotechnology patents. To understand the current and future landscape of the domain, it is important to better understand the capacity of these contributors. Here, we consider the thematic priorities, strategies, and key players of the BRICS countries in biotechnology patenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Utilization of protein-rich residues in biotechnological processes.

    Science.gov (United States)

    Pleissner, Daniel; Venus, Joachim

    2016-03-01

    A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.

  8. The plant biotechnology flight: Is Africa on board? | Obembe | African ...

    African Journals Online (AJOL)

    The development of plant biotechnologies has been very rapid in recent times, especially in the developed countries. The technologies have created a new branch of biotechnology known as molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in large quantities. An evaluation ...

  9. Understanding public perceptions of biotechnology through the "Integrative Worldview Framework".

    Science.gov (United States)

    De Witt, Annick; Osseweijer, Patricia; Pierce, Robin

    2015-07-03

    Biotechnological innovations prompt a range of societal responses that demand understanding. Research has shown such responses are shaped by individuals' cultural worldviews. We aim to demonstrate how the Integrative Worldview Framework (IWF) can be used for analyzing perceptions of biotechnology, by reviewing (1) research on public perceptions of biotechnology and (2) analyses of the stakeholder-debate on the bio-based economy, using the Integrative Worldview Framework (IWF) as analytical lens. This framework operationalizes the concept of worldview and distinguishes between traditional, modern, and postmodern worldviews, among others. Applied to these literatures, this framework illuminates how these worldviews underlie major societal responses, thereby providing a unifying understanding of the literature on perceptions of biotechnology. We conclude the IWF has relevance for informing research on perceptions of socio-technical changes, generating insight into the paradigmatic gaps in social science, and facilitating reflexive and inclusive policy-making and debates on these timely issues. © The Author(s) 2015.

  10. Current challenges and future perspectives of plant and agricultural biotechnology.

    Science.gov (United States)

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Special Issue: Plant Genetics and Biotechnology in Biodiversity

    Directory of Open Access Journals (Sweden)

    Giandomenico Corrado

    2018-03-01

    Full Text Available The rapid progress and increasing affordability of novel investigation tools in plant genetics and biotechnology offer previously inaccessible opportunities for the exploitation of plant genetic diversity in agriculture. The Special Issue was lunched to highlight how new technologies are improving both genotyping and phenotyping methods, thus allowing us to uncover crop diversity and use genetic variability for plant breeding with remarkable precision and speed. Three thematic reviews report on scientific, technological, and legal advances in plant diversity and agriculture. Three contributions provide specific examples of the exploitation of different kinds of genetic resources, ranging from landraces to mutant populations. Six research articles are illustrative examples of the study of molecular and/or phenotypic diversity to address basic or applied questions in different plant species. Finally, this SI was also launched to honor the memory of Prof. Gian Tommaso Scarascia Mugnozza and a dedicated Editorial acknowledges his work in plant breeding and biodiversity protection.

  12. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  13. High School and University Students' Knowledge and Attitudes regarding Biotechnology: A Turkish Experience

    Science.gov (United States)

    Usak, Muhammet; Erdogan, Mehmet; Prokop, Pavol; Ozel, Murat

    2009-01-01

    Biotechnology has a considerable importance in Turkish biology curriculum. This study was designed to explore or indicate Turkish high school and university students' knowledge and attitudes toward biotechnology. A total number of 352 high school and 276 university students were invited to the study. The Biotechnology Knowledge Questionnaire (BKQ)…

  14. Review of computational fluid dynamics applications in biotechnology processes.

    Science.gov (United States)

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  15. [Use of internet and electronic resources among Spanish intensivist physicians. First national survey].

    Science.gov (United States)

    Gómez-Tello, V; Latour-Pérez, J; Añón Elizalde, J M; Palencia-Herrejón, E; Díaz-Alersi, R; De Lucas-García, N

    2006-01-01

    Estimate knowledge and use habits of different electronic resources in a sample of Spanish intensivists: Internet, E-mail, distribution lists, and use of portable electronic devices. Self-applied questionnaire. A 50-question questionnaire was distributed among Spanish intensivists through the hospital marketing delegates of a pharmaceutical company and of electronic forums. A total of 682 questionnaires were analyzed (participation: 74%). Ninety six percent of those surveyed used Internet individually: 67% admitted training gap. Internet was the second source of clinical consultations most used (61%), slightly behind consultation to colleagues (65%). The pages consulted most were bibliographic databases (65%) and electronic professional journals (63%), with limited use of Evidence Based Medicine pages (19%). Ninety percent of those surveyed used e-mail regularly in the practice of their profession, although 25% admitted that were not aware of its possibilities. The use of E-mail decreased significantly with increase in age. A total of 62% of the intensivists used distribution lists. Of the rest, 42% were not aware of its existence and 32% admitted they had insufficient training to handle them. Twenty percent of those surveyed had portable electronic devices and 64% considered it useful, basically due to its rapid consultation at bedside. Female gender was a negative predictive factor of its use (OR 0.35; 95% CI 0.2-0.63; p=0.0002). A large majority of the Spanish intensivists use Internet and E-mail. E-mail lists and use of portable devices are still underused resources. There are important gaps in training and infrequent use of essential pages. There are specific groups that require directed educational policies.

  16. Model of e-learning with electronic educational resources of new generation

    OpenAIRE

    A. V. Loban; D. A. Lovtsov

    2017-01-01

    Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with elec...

  17. Connecting Learners: The Role of Biotechnology Programme in Preparing Students for the Industry

    Science.gov (United States)

    Mohd Saruan, Nadiah; Sagran, Avinash; Fadzil, Kamal Solhaimi; Razali, Zuliana; Ow Phui San, Rebecca; Somasundram, Chandran

    2015-01-01

    The recent growth of biotechnology requires a wide range of expertise within the industry. Education is the primary platform for students to gain information and knowledge on biotechnology. In Malaysia where biotechnology is relatively new, education programs and courses must be tailored to meet the demands of the industry. A combination of…

  18. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  19. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    Science.gov (United States)

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  20. Impact of Knowledge Resources Linked to an Electronic Health Record on Frequency of Unnecessary Tests and Treatments

    Science.gov (United States)

    Goodman, Kenneth; Grad, Roland; Pluye, Pierre; Nowacki, Amy; Hickner, John

    2012-01-01

    Introduction: Electronic knowledge resources have the potential to rapidly provide answers to clinicians' questions. We sought to determine clinicians' reasons for searching these resources, the rate of finding relevant information, and the perceived clinical impact of the information they retrieved. Methods: We asked general internists, family…

  1. Electronic Document Management: A Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Thomas Groenewald

    2004-11-01

    Full Text Available This case study serve as exemplar regarding what can go wrong with the implementation of an electronic document management system. Knowledge agility and knowledge as capital, is outlined against the backdrop of the information society and knowledge economy. The importance of electronic document management and control is sketched thereafter. The literature review is concluded with the impact of human resource management on knowledge agility, which includes references to the learning organisation and complexity theory. The intervention methodology, comprising three phases, follows next. The results of the three phases are presented thereafter. Partial success has been achieved with improving the human efficacy of electronic document management, however the client opted to discontinue the system in use. Opsomming Die gevalle studie dien as voorbeeld van wat kan verkeerd loop met die implementering van ’n elektroniese dokumentbestuur sisteem. Teen die agtergrond van die inligtingsgemeenskap en kennishuishouding word kennissoepelheid en kennis as kapitaal bespreek. Die literatuurstudie word afgesluit met die inpak van menslikehulpbronbestuur op kennissoepelheid, wat ook die verwysings na die leerorganisasie en kompleksietydsteorie insluit. Die metodologie van die intervensie, wat uit drie fases bestaan, volg daarna. Die resultate van die drie fases word vervolgens aangebied. Slegs gedeelte welslae is behaal met die verbetering van die menslike doeltreffendheid ten opsigte van elektroniese dokumentbestuur. Die klient besluit egter om nie voort te gaan om die huidige sisteem te gebruik nie.

  2. 76 FR 27301 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Science.gov (United States)

    2011-05-11

    ...] Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and Environmental... Plant Health Inspection Service has received a petition from Syngenta Biotechnology, Inc., seeking a.../brs/aphisdocs/07_10801p _dpra.pdf. FOR FURTHER INFORMATION CONTACT: Mr. Rick Coker, Biotechnology...

  3. 76 FR 60448 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Lepidopteran-Resistant Cotton

    Science.gov (United States)

    2011-09-29

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Lepidopteran-Resistant Cotton AGENCY... our determination that a cotton line developed by Syngenta Biotechnology, Inc., designated as event... submitted by Syngenta Biotechnology, Inc., in its petition for a determination of nonregulated status, our...

  4. Biotechnological and molecular approaches for vanillin production: a review.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-02-01

    Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.

  5. The application of biotechnology in medicinal plants breeding research in China.

    Science.gov (United States)

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  6. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Science.gov (United States)

    2013-02-27

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by the Syngenta Biotechnology... evaluation of data submitted by Syngenta Biotechnology, Inc., in its petition for a determination of...

  7. Challenges in the implementation of an electronic surveillance system in a resource-limited setting: Alerta, in Peru

    Directory of Open Access Journals (Sweden)

    Soto Giselle

    2008-11-01

    Full Text Available Abstract Background Infectious disease surveillance is a primary public health function in resource-limited settings. In 2003, an electronic disease surveillance system (Alerta was established in the Peruvian Navy with support from the U.S. Naval Medical Research Center Detachment (NMRCD. Many challenges arose during the implementation process, and a variety of solutions were applied. The purpose of this paper is to identify and discuss these issues. Methods This is a retrospective description of the Alerta implementation. After a thoughtful evaluation according to the Centers for Disease Control and Prevention (CDC guidelines, the main challenges to implementation were identified and solutions were devised in the context of a resource-limited setting, Peru. Results After four years of operation, we have identified a number of challenges in implementing and operating this electronic disease surveillance system. These can be divided into the following categories: (1 issues with personnel and stakeholders; (2 issues with resources in a developing setting; (3 issues with processes involved in the collection of data and operation of the system; and (4 issues with organization at the central hub. Some of the challenges are unique to resource-limited settings, but many are applicable for any surveillance system. For each of these challenges, we developed feasible solutions that are discussed. Conclusion There are many challenges to overcome when implementing an electronic disease surveillance system, not only related to technology issues. A comprehensive approach is required for success, including: technical support, personnel management, effective training, and cultural sensitivity in order to assure the effective deployment of an electronic disease surveillance system.

  8. SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    O. M. Klyuchko

    2018-02-01

    Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.

  9. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  10. Applications of biotechnology in olive | Cançado | African Journal of ...

    African Journals Online (AJOL)

    Many scientific and technological fields make use of biotechnology. Among the most important applications of biotechnology in agriculture are large-scale commercial micropropagation, genetic transformation and the development of transgenic varieties, embryo rescue in plant breeding programs, genotyping based on ...

  11. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)

    Fred

    countries cheaper and potentially easier to administer. Efficient sewage treatment ... developing countries, start-up funding for biotechnology companies is still very ... Business incubators are unique in stimulating spin-offs from universities and ...

  12. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  13. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    Science.gov (United States)

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  14. Awareness and knowledge on modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... food; MABIC, Malaysian Biotechnology Information Centre. on public ... in Malaysia and provide linkage to several international website on modern ... scholars and university students) possess at least tertiary level of education ...

  15. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    Science.gov (United States)

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  16. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    OpenAIRE

    C. R. C. Cruz et al.

    2017-01-01

    "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource manag...

  17. 77 FR 41366 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Science.gov (United States)

    2012-07-13

    ...] Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and Environmental... Biotechnology, Inc., seeking a determination of nonregulated status of corn designated as SYN-05307-1, which has... likely to pose a plant pest risk. We are making available for public comment the Syngenta Biotechnology...

  18. 77 FR 13258 - Biotechnology Regulatory Services; Changes Regarding the Solicitation of Public Comment for...

    Science.gov (United States)

    2012-03-06

    ...] Biotechnology Regulatory Services; Changes Regarding the Solicitation of Public Comment for Petitions for..., Chief of Staff, Biotechnology Regulatory Services, APHIS, 4700 River Road Unit 147, Riverdale, MD 20737... process changes APHIS is making to our petition process, go to http://www.aphis.usda.gov/biotechnology/pet...

  19. Promotion of Biotechnology amongst Students by University Departments in South Africa

    Science.gov (United States)

    Boshoff, N.; Treptow, R. F.

    2011-01-01

    University departments (including schools and centres) with a direct or indirect link to biotechnology were identified. Representatives at these entities were surveyed to establish what measures South African universities are undertaking to promote biotechnology amongst students. Of the 168 departments identified, 55 submitted usable…

  20. Seventeenth symposium on biotechnology for fuels and chemicals. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  1. Nutrition by design: a review of biotechnology in functional food

    Directory of Open Access Journals (Sweden)

    Thomas Reynolds

    2016-02-01

    Full Text Available Medical institutions in industrial and developing countries are increasingly turning to functional foods as intervention in chronic disease. Advances in genetic engineering have provided methods of purposefully designing functional foods and bioactive compound-producing organisms. This literature review examines the recent history of biotechnological applications in functional food, the state of bioagricultural engineering for high-value compound production, and the challenges that developers face in promulgatingfunctional foods from biotechnological sources. Based on the literature reviewed, it is predicted that adding biotechnologically-produced compounds will be more successful in producing novel functional foods. Conclusion: Current functional food application is frequently hampered by a dearth of foods suitable to the purpose. The concurrent advent of biotechnology means that producers and clinicians are not constrained by limited and precarious natural development. Biotechnology has already produced altered dietary staples that can safely induce real health benefits, but the social approval of genetically modified foodstuffs is inconsistent at best. Modifying microalgae to produce micro and macronutrients, for harvest and incorporation into functional food products, provides the ideal specificity and reliability for bioactive compound use. However, its application in biomedical science is impeded by technical difficulty. It remains to be seen if microorganism engineering willbe able to meet the needs of its many stakeholders, including the functional food community. Nonetheless,the prospect of a flourishing functional food market, and the healthier population it will bring about, certainly makes it worth a try.

  2. Considering Point-of-Care Electronic Medical Resources in Lieu of Traditional Textbooks for Medical Education.

    Science.gov (United States)

    Hale, LaDonna S; Wallace, Michelle M; Adams, Courtney R; Kaufman, Michelle L; Snyder, Courtney L

    2015-09-01

    Selecting resources to support didactic courses is a critical decision, and the advantages and disadvantages must be carefully considered. During clinical rotations, students not only need to possess strong background knowledge but also are expected to be proficient with the same evidence-based POC resources used by clinicians. Students place high value on “real world” learning and therefore may place more value on POC resources that they know practicing clinicians use as compared with medical textbooks. The condensed nature of PA education requires students to develop background knowledge and information literacy skills over a short period. One way to build that knowledge and those skills simultaneously is to use POC resources in lieu of traditional medical textbooks during didactic training. Electronic POC resources offer several advantages over traditional textbooks and should be considered as viable options in PA education.

  3. Biosafety Assessment of Microbial Strains Used in Biotechnology According to Their Taxonomy

    Directory of Open Access Journals (Sweden)

    Natalia I. Sheina

    2017-03-01

    Full Text Available A great variety of biotechnological products are now widely used in different ways in agriculture, medicine, food manufacturing and other areas of our life. Industrialized societies now more than ever depend on the use of genetically engineered products, with many of them synthesized using recombinant strains of microorganisms. There is an opinion that microbial strains used in biotechnology are potentially harmful for human health and the environment. Similar to many other countries, we have enacted environmental legislation in an effort to balance the risks and benefits of using biotechnological strains. Although environmental monitoring rules focus mainly on safety assessments of chemicals, the biosafety assessment of microbial strains used in biotechnology is a very important issue as well. This article summarizes 15 years of research on the biotechnological strains of microbes widely used as producers of various biological substances for industrial purposes, and their environmental and biotechnological applications. In our survey, we tried to evaluate possible adverse effects (general toxicity and damage to the immune system, potential sensitizing effects, and damage to normal microbiota caused by these microbes. It was shown that microscopical fungi of genera Aspergillus, Penicillium and Candida, and some gram-negative bacteria can affect the immune system and disrupt the normal balance of microbial flora of the intestinal tract in rats. The actinomycetes are less dangerous in that they cause fewer side effects. The investigation data obtained can be used to develop safety and hygienic standards for industrial microbes that will help decrease or minimize the occupational risk of infection or damage to the immune system when working with biotechnological strains of microbes.

  4. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  5. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    Science.gov (United States)

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The

  6. Knowledge and Attitudes towards Biotechnology of Elementary Education Preservice Teachers: The First Spanish Experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-01-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is…

  7. The translations and the organizing of scientific practices in R&D biotechnology

    Directory of Open Access Journals (Sweden)

    Lorena Bezerra de Souza Matos

    Full Text Available Abstract Considering the scientific practices related to Research & Development in biotechnology and, based on the assumptions of Actor Network Theory (ANT, this study aimed to describe the main translations that influenced the composition of an actor-networks, reflecting on the organizing practices in a scientific laboratory Research & Development of Northeast Biotechnology Network (Brazil. The methodological procedures were based on the historical approach of biotechnology under study from an ethnographic posture. The composition of the corpus was organized in the form of reports, observing the historical passages. The history of biotechnology has been reported between the plots of design, patenting and commercialization practices, highlighting the creation of heterogeneous actors’ networks. Finally, he emphasized the influence of laboratory scientist's leadership in the way of organizing of scientific practices.

  8. Reengineering the retail/ambulatory pharmacy for provision of biotechnology pharmaceutical services.

    Science.gov (United States)

    Schneider, P J

    1998-07-01

    Biotechnology products offer both problems and opportunities for pharmacists. On one hand, they are expensive to purchase and keep on inventory. Typical compensation for outpatient prescriptions does not offset the cost of maintaining the inventory, or providing the education and training that patients often need to use biotechnology products properly. On the other hand, there are issues related to proper storage, preparation, and administration for which pharmacists are well prepared to address. Pharmacists are also convenient, trusted, and provide service at relatively low cost. Examples of special services that pharmacists can provide to improve the use of biotechnology products include patient education, injection clinics, provision of medical supplies, and predrawing syringes for patients. Patients are often sent to many providers for these services, resulting in inconvenience and fragmentation of care. If new compensation methods can be established to support more comprehensive pharmacy services, the use of biotechnology products by patients will improve.

  9. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  10. Overview on the biotechnological production of L-DOPA.

    Science.gov (United States)

    Min, Kyoungseon; Park, Kyungmoon; Park, Don-Hee; Yoo, Young Je

    2015-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) has been widely used as a drug for Parkinson's disease caused by deficiency of the neurotransmitter dopamine. Since Monsanto developed the commercial process for L-DOPA synthesis for the first time, most of currently supplied L-DOPA has been produced by the asymmetric method, especially asymmetric hydrogenation. However, the asymmetric synthesis shows critical limitations such as a poor conversion rate and a low enantioselectivity. Accordingly, alternative biotechnological approaches have been researched for overcoming the shortcomings: microbial fermentation using microorganisms with tyrosinase, tyrosine phenol-lyase, or p-hydroxyphenylacetate 3-hydroxylase activity and enzymatic conversion by immobilized tyrosinase. Actually, Ajinomoto Co. Ltd commercialized Erwinia herbicola fermentation to produce L-DOPA from catechol. In addition, the electroenzymatic conversion system was recently introduced as a newly emerging scheme. In this review, we aim to not only overview the biotechnological L-DOPA production methods, but also to briefly compare and analyze their advantages and drawbacks. Furthermore, we suggest the future potential of biotechnological L-DOPA production as an industrial process.

  11. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.

    Science.gov (United States)

    Zlamparet, Gabriel I; Tan, Quanyin; Stevels, A B; Li, Jinhui

    2018-03-01

    This comparative research represents an example for a better conservation of resources by reducing the amount of waste (kg) and providing it more value under the umbrella of remanufacturing. The three discussed cases will expose three issues already addressed separately in the literature. The generation of waste electrical and electronic equipment (WEEE) interacts with the environmental depletion. In this article, we gave the examples of addressed issues under the concept of remanufacturing. Online collection opportunity eliminating classical collection, a business to business (B2B) implementation for remanufactured servers and medical devices. The material reuse (recycling), component sustainability, reuse (part harvesting), product reuse (after repair/remanufacturing) indicates the recovery potential using remanufacturing tool for a better conservation of resources adding more value to the products. Our findings can provide an overview of new system organization for the general collection, market potential and the technological advantages using remanufacturing instead of recycling of WEEE or used electrical and electronic equipment. Copyright © 2017. Published by Elsevier Ltd.

  12. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  13. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology... of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda...

  14. Effects of the Use of Electronic Human Resource Management (EHRM Within Human Resource Management (HRM Functions at Universities

    Directory of Open Access Journals (Sweden)

    Chux Gervase Iwu

    2016-09-01

    Full Text Available This study set out to examine the effect of e-hrm systems in assisting human resource practitioners to execute their duties and responsibilities. In comparison to developed economies of the world, information technology adoption in sub-Saharan Africa has not been without certain glitches. Some of the factors that are responsible for these include poor need identification, sustainable funding, and insufficient skills. Besides these factors, there is also the issue of change management and users sticking to what they already know. Although, the above factors seem negative, there is strong evidence that information systems such as electronic human resource management present benefits to an organization. To achieve this, a dual research approach was utilized. Literature assisted immensely in both the development of the conceptual framework upon which the study hinged as well as in the development of the questionnaire items. The study also made use of an interview checklist to guide the participants. The findings reveal a mix of responses that indicate that while there are gains in adopting e-hrm systems, it is wiser to consider supporting resources as well as articulate the needs of the university better before any investment is made.

  15. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Electronic human resource management: Enhancing or entrancing?

    Directory of Open Access Journals (Sweden)

    Paul Poisat

    2017-07-01

    Full Text Available Orientation: This article provides an investigation into the current level of development of the body of knowledge related to electronic human resource management (e-HRM by means of a qualitative content analysis. Several aspects of e-HRM, namely definitions of e-HRM, the theoretical perspectives around e-HRM, the role of e-HRM, the various types of e-HRM and the requirements for successful e-HRM, are examined. Research purpose: The purpose of the article was to determine the status of e-HRM and examine the studies that report on the link between e-HRM and organisational productivity. Motivation for the study: e-HRM has the capacity to improve organisational efficiency and leverage the role of human resources (HR as a strategic business partner. Main findings: The notion that the implementation of e-HRM will lead to improved organisational productivity is commonly assumed; however, empirical evidence in this regard was found to be limited. Practical/managerial implications: From the results of this investigation it is evident that more research is required to gain a greater understanding of the influence of e-HRM on organisational productivity, as well as to develop measures for assessing this influence. Contribution: This article proposes additional areas to research and measure when investigating the effectiveness of e-HRM. It provides a different lens from which to view e-HRM assessment whilst keeping it within recognised HR measurement parameters (the HR value chain. In addition, it not only provides areas for measuring e-HRM’s influence but also provides important clues as to how the measurements may be approached.

  17. The evolution of biotechnology and its impact on health care.

    Science.gov (United States)

    Evens, Ronald; Kaitin, Kenneth

    2015-02-01

    For more than three decades the field of biotechnology has had an extraordinary impact on science, health care, law, the regulatory environment, and business. During this time more than 260 novel biotechnology products were approved for over 230 indications. Global sales of these products exceeded $175 billion in 2013 and have helped sustain a vibrant life sciences sector that includes more than 4,600 biotech companies worldwide. In this article we examine the evolution of biotechnology during the past three decades and the profound impact that it has had on health care through four interrelated and interdependent tracks: innovations in science, government activity, business development, and patient care. The future impact of biotechnology is promising, as long as the public and private sectors continue to foster policies and provide funds that lead to scientific breakthroughs; governments continue to offer incentives for private-sector biotech innovation; industry develops business models for cost-effective research and development; and all stakeholders establish policies to ensure that the therapeutic advances that mitigate or cure medical conditions that currently have inadequate or no available therapies are accessible to the public at a reasonable cost. Project HOPE—The People-to-People Health Foundation, Inc.

  18. Progress on research of materials science and biotechnology by ion beam application

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Research of materials science and biotechnology by ion beam application in Takasaki Establishment was reviewed. Especially, the recent progresses of research on semiconductors in space, creation of new functional materials and topics in biotechnology were reported. (author)

  19. Pharmacogenomic knowledge gaps and educational resource needs among physicians in selected specialties

    Directory of Open Access Journals (Sweden)

    Johansen Taber KA

    2014-07-01

    Full Text Available Katherine A Johansen Taber, Barry D Dickinson Department of Science and Biotechnology, American Medical Association, Chicago, IL, USA Background: The use of pharmacogenomic testing in the clinical setting has the potential to improve the safety and effectiveness of drug therapy, yet studies have revealed that physicians lack knowledge about the topic of pharmacogenomics, and are not prepared to implement it in the clinical setting. This study further explores the pharmacogenomic knowledge deficit and educational resource needs among physicians. Materials and methods: Surveys of primary care physicians, cardiologists, and psychiatrists were conducted. Results: Few physicians reported familiarity with the topic of pharmacogenomics, but more reported confidence in their knowledge about the influence of genetics on drug therapy. Only a small minority had undergone formal training in pharmacogenomics, and a majority reported being unsure what type of pharmacogenomic tests were appropriate to order for the clinical situation. Respondents indicated that an ideal pharmacogenomic educational resource should be electronic and include such components as how to interpret pharmacogenomic test results, recommendations for prescribing, population subgroups most likely to be affected, and contact information for laboratories offering pharmacogenomic testing. Conclusion: Physicians continue to demonstrate pharmacogenomic knowledge gaps, and are unsure about how to use pharmacogenomic testing in clinical practice. Educational resources that are clinically oriented and easily accessible are preferred by physicians, and may best support appropriate clinical implementation of pharmacogenomics. Keywords: pharmacogenomics, knowledge gap, drug response, educational resource

  20. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    NARCIS (Netherlands)

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the

  1. Essential Features of Responsible Governance of Agricultural Biotechnology.

    Science.gov (United States)

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  2. Alienation from the Objectives of the Patent System: How to Remedy the Situation of Biotechnology Patent.

    Science.gov (United States)

    Jiang, Li

    2018-03-12

    Some fundamental biotechnologies hold unprecedented potential to eradicate many incurable diseases. However, in absence of regulations, the power of patent makes the future use of some important biotechnology in few institution's hands. The excessive patents restrict researcher access to the fundamental technologies. It generates concerns and complaints of deteriorating the public health and social welfare. Furthermore, intellectual curiosities, funding, respect among colleagues etc., rather than patents, are the real motivations driving a major ground-breaking discoveries in biotechnology. These phenomena reveal that some biotechnology patents are alienated from the purpose of patent system. Therefore, it is necessary to take some approaches to stop over-patenting these fundamental biotechnology inventions. This article proposes a model regulatory framework for controlling biotechnology patent alienating from the purpose of patent system.

  3. Mathematical Modelling of Continuous Biotechnological Processes

    Science.gov (United States)

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  4. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  5. Application of biotechnology in genetics and breeding of tall fescue

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Tall fescue (Festuca arundinacea Schred.) is an important lawn and pasture grass in agriculture, animal husbandy and lawn industry. The historical and present situations of tall fescue breeding were briefly introduced, and advances in the researches of molecular biology and germplasm enhancement by biotechnology in tall fescue were reviewed in the paper, which would provide the references for tall fescue breeding by biotechnology. (authors)

  6. Pharma Success in Product Development—Does Biotechnology Change the Paradigm in Product Development and Attrition.

    Science.gov (United States)

    Evens, Ronald P

    2016-01-01

    The biotechnology segment of the overall biopharma industry has existed for only about 40–45 years, as a driver of new product development. This driving force was initiated with the FDA approval of recombinant human insulin in 1982, originating from the Genentech company. The pharma industry in the early years of 1970s and 1980s engaged with biotechnology companies only to a small extent with their in-licensing of a few recombinant molecules, led by Roche, Eli Lilly, and Johnson and Johnson. However, subsequently and dramatically over the last 25 years, biotechnology has become a primary driver of product and technology innovation and has become a cornerstone in new product development by all biopharma companies. This review demonstrates these evolutionary changes regarding approved products, product pipelines, novelty of the products, FDA approval rates, product sales, financial R&D investments in biotechnology, partnerships, mergers and acquisitions, and patent issues. We now have about 300 biotechnology products approved in USA covering 16 medical disciplines and about 250 indications, with the engagement of 25 pharma companies, along with their biotechnology company innovators and partners. The biotechnology pipeline involves over 1000 molecules in clinical trials, including over 300 molecules associated with the top 10 pharma companies. Product approval rates by the FDA for biotechnology products are over double the rate for drugs. Yes, the R&D paradigm has changed with biotechnology now as one of the major focuses for new product development with novel molecules by the whole biopharma industry.

  7. Cell biology and biotechnology research for exploration of the Moon and Mars

    Science.gov (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  8. 75 FR 21008 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-04-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Biotechnology Activities (OBA) published a proposal to revise the NIH Guidelines for Research with Recombinant... by fax to 301-496-9839 or mail to the Office of Biotechnology Activities, National Institutes of...

  9. Identifying and evaluating electronic learning resources for use in adult-gerontology nurse practitioner education.

    Science.gov (United States)

    Thompson, Hilaire J; Belza, Basia; Baker, Margaret; Christianson, Phyllis; Doorenbos, Ardith; Nguyen, Huong

    2014-01-01

    Enhancing existing curricula to meet newly published adult-gerontology advanced practice registered nurse (APRN) competencies in an efficient manner presents a challenge to nurse educators. Incorporating shared, published electronic learning resources (ELRs) in existing or new courses may be appropriate in order to assist students in achieving competencies. The purposes of this project were to (a) identify relevant available ELR for use in enhancing geriatric APRN education and (b) to evaluate the educational utility of identified ELRs based on established criteria. A multilevel search strategy was used. Two independent team members reviewed identified ELR against established criteria to ensure utility. Only resources meeting all criteria were retained. Resources were found for each of the competency areas and included formats such as podcasts, Web casts, case studies, and teaching videos. In many cases, resources were identified using supplemental strategies and not through traditional search or search of existing geriatric repositories. Resources identified have been useful to advanced practice educators in improving lecture and seminar content in a particular topic area and providing students and preceptors with additional self-learning resources. Addressing sustainability within geriatric APRN education is critical for sharing of best practices among educators and for sustainability of teaching and related resources. © 2014.

  10. Systematic review of electronic surveillance of infectious diseases with emphasis on antimicrobial resistance surveillance in resource-limited settings.

    Science.gov (United States)

    Rattanaumpawan, Pinyo; Boonyasiri, Adhiratha; Vong, Sirenda; Thamlikitkul, Visanu

    2018-02-01

    Electronic surveillance of infectious diseases involves rapidly collecting, collating, and analyzing vast amounts of data from interrelated multiple databases. Although many developed countries have invested in electronic surveillance for infectious diseases, the system still presents a challenge for resource-limited health care settings. We conducted a systematic review by performing a comprehensive literature search on MEDLINE (January 2000-December 2015) to identify studies relevant to electronic surveillance of infectious diseases. Study characteristics and results were extracted and systematically reviewed by 3 infectious disease physicians. A total of 110 studies were included. Most surveillance systems were developed and implemented in high-income countries; less than one-quarter were conducted in low-or middle-income countries. Information technologies can be used to facilitate the process of obtaining laboratory, clinical, and pharmacologic data for the surveillance of infectious diseases, including antimicrobial resistance (AMR) infections. These novel systems require greater resources; however, we found that using electronic surveillance systems could result in shorter times to detect targeted infectious diseases and improvement of data collection. This study highlights a lack of resources in areas where an effective, rapid surveillance system is most needed. The availability of information technology for the electronic surveillance of infectious diseases, including AMR infections, will facilitate the prevention and containment of such emerging infectious diseases. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. 2012 International Conference on Electrical and Electronics Engineering

    CERN Document Server

    Chen, Suting; Wei, Zhanming; Xia, Jingming

    2014-01-01

    Unifying Electrical Engineering and Electronics Engineering is based on the Proceedings of the 2012 International Conference on Electrical and Electronics Engineering (ICEE 2012). This book collects the peer reviewed papers presented at the conference. The aim of the conference is to unify the two areas of Electrical and Electronics Engineering. The book examines trends and techniques in the field as well as theories and applications. The editors have chosen to include the following topics; biotechnology, power engineering, superconductivity circuits, antennas technology, system architectures and telecommunication.

  12. Potential applications of biotechnology in the energy and the environment sectors

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, A.M.

    1988-06-01

    Biotechnological approaches to solving some of the problems of environmental pollution or developing better or alternate sources of energy are considered realistic and technically feasible within the near future. Some of the potential applications of biotechnology of interest to chemists in the energy and the environment sectors are considered briefly in this article.

  13. Identification of External Critical Success Factors in Microbial Biotechnology Firms

    Directory of Open Access Journals (Sweden)

    Alireza AZIMI

    2013-03-01

    Full Text Available Microbial biotechnology is expected to change production methods, the products themselves and the structure of the industries in the new economies. Hopefully, countries in the Middle-East, Latin America, Asia and Africa have already recognized the importance of microbial biotechnology's promise. In this sense, the importance of externalities which might affect the success or failure of these companies becomes an issue of paramount importance. In the present study, we will try to identify the main external factors which could lead in the success of microbial biotechnology firms in Iran. To do so, the research follows a qualitative research design to answer this main question. Based on our findings, critical success factors are categorized in the following categories: General Environment (GE, Political Position (PP, Economic Position (EP, and Market Position (MP.

  14. Bioanalysis-related highlights from the 2011 AAPS National Biotechnology Conference.

    Science.gov (United States)

    Crisino, Rebecca M; Dulanto, Beatriz

    2011-08-01

    The American Association of Pharmaceutical Scientists is a dynamic international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, conducted and organized by the American Association of Pharmaceutical Scientists, is a forum dedicated to advancements in science and technology related to discovery, development and manufacture of medical biotechnology products. The 2011 National Biotechnology Conference meeting convened in San Francisco, CA, USA on 16-18 May. Over 300 abstracts were submitted and approximately 50 sessions examined topics pertaining to advances in drug development, emerging analytical technologies, bioanalysis-related issues, biosimilar therapies, updates on global regulatory documents and expectations, and other topics. The focus of this article is to highlight key developments relevant to immunogenicity and pharmacokinetic drug concentration bioanalysis.

  15. Agricultural biotechnology research and development in Ethiopia

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-29

    Dec 29, 2009 ... Review. Agricultural biotechnology research and development in Ethiopia ... seed micropropagation, virus-cleaning ongoing, good progress. Garlic meristem ... large quantities of disease-free planting materials in short time.

  16. Are Students Prepared to Communicate? A Case Study of an Australian Degree Course in Biotechnology

    Science.gov (United States)

    Edmondston, Joanne; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Public concerns about biotechnology have resulted in greater attention being paid to the mechanisms by which biotechnology is communicated with non-scientists, including the provision of science communication training. As undergraduate and postgraduate courses form the foundation of the biotechnology sector by providing a pipeline of university…

  17. 78 FR 12074 - Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines...

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... recommendations of the RAC, the NIH Office of Biotechnology Activities (OBA) concluded that more specific guidance... address or by fax at 301-496-9839 or by mail to the Office of Biotechnology Activities, National...

  18. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Yersinia pestis has been submitted to the NIH Office of Biotechnology Activities (OBA) by the Institutional... Biotechnology Activities, National Institutes of Health. [FR Doc. 2010-12453 Filed 5-21-10; 8:45 am] BILLING...

  19. Biotechnological production of limonene in microorganisms

    NARCIS (Netherlands)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently

  20. Biotechnologizing Jatropha for local sustainable development

    NARCIS (Netherlands)

    Puente, D.

    2010-01-01

    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale

  1. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  2. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  3. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables

  4. Biotechnological recovery of heavy metals from secondary sources-An overview

    International Nuclear Information System (INIS)

    Hoque, Md E.; Philip, Obbard J.

    2011-01-01

    The demand for heavy metals is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high-grade ores are diminishing. However, there exist large stockpiles of low and lean grade ores that are yet to be exploited. In addition, heavy metals that are present in a spectrum of waste streams including mine drainage, industrial effluents, river sediments, electronic scraps and ashes are also available for recovery and utilization. Heavy metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. chemical metallurgy encompass several inherent constraints like, high energy and capital inputs, and high risk of secondary environmental pollution. As environmental regulations become ever more stringent, particularly regarding the disposal of toxic wastes, the costs for ensuring environmental protection will continue to rise. Therefore, there is a need to utilize more efficient technologies to recover heavy metals from secondary sources in order to minimize capital outlay, environmental impact and to respond to increased demand. Biohydrometallurgy, which exploits microbiological processes to recover heavy metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are deposited in aqueous solution thereby rendering them to be more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in recovery of heavy metals from lean grade ores, and wastes, has made it an eco-friendly biotechnology for enhanced heavy metal production.

  5. Biotechnological recovery of heavy metals from secondary sources-An overview

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md E., E-mail: enamul.hoque@nottingham.edu.my [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia); Philip, Obbard J., E-mail: esejpo@nus.edu.sg [Division of Environmental Science and Engineering, National University of Singapore, 119260 (Singapore)

    2011-03-12

    The demand for heavy metals is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high-grade ores are diminishing. However, there exist large stockpiles of low and lean grade ores that are yet to be exploited. In addition, heavy metals that are present in a spectrum of waste streams including mine drainage, industrial effluents, river sediments, electronic scraps and ashes are also available for recovery and utilization. Heavy metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. chemical metallurgy encompass several inherent constraints like, high energy and capital inputs, and high risk of secondary environmental pollution. As environmental regulations become ever more stringent, particularly regarding the disposal of toxic wastes, the costs for ensuring environmental protection will continue to rise. Therefore, there is a need to utilize more efficient technologies to recover heavy metals from secondary sources in order to minimize capital outlay, environmental impact and to respond to increased demand. Biohydrometallurgy, which exploits microbiological processes to recover heavy metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are deposited in aqueous solution thereby rendering them to be more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in recovery of heavy metals from lean grade ores, and wastes, has made it an eco-friendly biotechnology for enhanced heavy metal production.

  6. Symposium on chemistry and biotechnology for national development. Proceedings

    International Nuclear Information System (INIS)

    Garba, A.; Ogunmola, G.B.

    1998-01-01

    This document is the full proceedings of the symposium on chemistry and biotechnology for national development held at SHESTCO in 1995. It contains the full texts of a forward, opening and special remarks, welcome and keynote addresses and abstracts and texts of 21 technical papers. The subjects covered included information technology,chemistry and biotechnology in agriculture, health care and industrial development. Additionally, the abstracts in respect of 19 other papers are included. We wish to thank the Coordinator of SHESTCO for making available this proceedings

  7. Symposium on chemistry and biotechnology for national development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Garba, A; Ogunmola, G B [eds.

    1998-12-01

    This document is the full proceedings of the symposium on chemistry and biotechnology for national development held at SHESTCO in 1995. It contains the full texts of a forward, opening and special remarks, welcome and keynote addresses and abstracts and texts of 21 technical papers. The subjects covered included information technology,chemistry and biotechnology in agriculture, health care and industrial development. Additionally, the abstracts in respect of 19 other papers are included. We wish to thank the Coordinator of SHESTCO for making available this proceedings.

  8. Possible application of brewer’s spent grain in biotechnology

    OpenAIRE

    Pejin Jelena D.; Radosavljević Miloš S.; Grujić Olgica S.; Mojović Ljiljana V.; Kocić-Tanackov Sunčica D.; Nikolić Svetlana B.; Đukić-Vuković Aleksandra J.

    2013-01-01

    Brewer’s spent grain is the major by-product in beer production. It is produced in large quantities (20 kg per 100 liters of produced beer) throughout the year at a low cost or no cost, and due to its high protein and carbohydrates content it can be used as a raw material in biotechnology. Biotechnological processes based on renewable agro-industrial by-products have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials and reduction of storage cos...

  9. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  10. Bioenergy and the potential contribution of agricultural biotechnologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ruane, John [FAO Working Group on Biotechnology, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy); Sonnino, Andrea [FAO Office of Knowledge Exchange, Research and Extension, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy); Agostini, Astrid [FAO Investment Centre, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy)

    2010-10-15

    We provide an overview of the current status of bioenergy development, focusing on first- and second-generation liquid biofuels, considering drivers of growth and risks that have raised concerns over recent years. We also describe the main areas where biotechnologies are being, or can be, applied for production of first- and second-generation biofuels as well as microalgal biodiesel and biogas. Greatest attention is paid to second-generation biofuels in the review because of the large expectations they have created and because of the significant role that biotechnology applications are likely to play in their development. We close with some specific considerations regarding applying biotechnologies for bioenergy development in developing countries. (author)

  11. Enterprise Factors Contributing to The Success of Malaysian Biotechnology SMEs: A Grounded Theory Approach

    Directory of Open Access Journals (Sweden)

    Saridan Abu Bakar

    2013-07-01

    Full Text Available While numerous empirical studies have been conducted in Western countries on biotechnology enterprises, little empirical research has been done in Malaysia especially in respect to the factors that contribute to the success of biotechnology small and medium enterprises (SMEs. In view of this, a study was undertaken recently in Malaysia to address this gap in the existing body of biotechnology knowledge. Using a grounded theory approach, this qualitative study managed to develop a conceptual framework that sheds useful information on the enterprise factors that significantly impact the success of Malaysian biotechnology SMEs. Specifically, this study found that organizational structure, innovation activities, linkages with academic research institutions, linkages with other private enterprises, personal linkages with academic researchers, access to financial capital, the procuring of government assistances, vertical integration, enterprise image, GMP compliance and halal certification, strongly influence enterprise success.Keywords: biotechnology, SMEs, Malaysia, success, qualitative study, grounded theory

  12. Plant biotechnology patents: applications in agriculture and medicine.

    Science.gov (United States)

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  13. Importance of lactobacilli in food and feed biotechnology.

    Science.gov (United States)

    Giraffa, Giorgio; Chanishvili, Nina; Widyastuti, Yantyati

    2010-01-01

    The genus Lactobacillus is a heterogeneous group of lactic acid bacteria (LAB) with important implications in food fermentation. The ability to colonize a variety of habitats is a direct consequence of the wide metabolic versatility of this group of LAB. Consequently, lactobacilli have been used for decades in food preservation, as starters for dairy products, fermented vegetables, fish and sausages as well as silage inoculants. Lactobacilli have also been proposed as probiotics and microbial cell factories for the production of nutraceuticals. However, a wide range of applications of lactobacilli in food biotechnology remains potential, whereas a number of important strains still need to be discovered and characterized. This article provides an overview of the taxonomy of lactobacilli and describes four of the most significant case studies on the application of this group of LAB in food and feed biotechnology, including their use as probiotics, dairy starters, silage inoculants, and microbial cell factories. The importance of access to and exchange of biological material within and between different strain collections as a crucial step in expanding the range of different biotechnological applications of lactobacilli is also emphasized. (c) 2010 Elsevier Masson SAS. All rights reserved.

  14. Nigerian Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology publishes original research papers, shot ... State Univ., Mubi, Nigeria. yada525@adsu.edu.ng, Molecular biology and bioremediation ... Dr. Kelechi C. Njoku, Dept. of Cell Biology & Genetics, University of Lagos, Lagos, kecynjoku@gmail.com, Environmental Biology ... HOW TO USE AJOL.

  15. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    Science.gov (United States)

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  17. Siderophilic Cyanobacteria for the Development of Extraterrestrial Photoautotrophic Biotechnologies

    Science.gov (United States)

    Brown, I. I.; McKay, D. S.

    2010-01-01

    In-situ production of consumables (mainly oxygen) using local resources (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human exploration and settlement of the solar system, starting with the Moon. With few exceptions, nearly all technologies developed to date have employed an approach based on inorganic chemistry. None of these technologies include concepts for integrating the ISRU system with a bioregenerative life support system and a food production system. Therefore, a new concept based on the cultivation of cyanobacteria (CB) in semi-closed biogeoreactor, linking ISRU, a biological life support system, and food production, has been proposed. The key feature of the biogeoreactor is to use lithotrophic CB to extract many needed elements such as Fe directly from the dissolved regolith and direct them to any technological loop at an extraterrestrial outpost. Our studies showed that siderophilic (Fe-loving) CB are capable to corrode lunar regolith stimulants because they secrete chelating agents and can tolerate [Fe] up to 1 mM. However, lunar and Martian environments are very hostile (very high UV and gamma-radiation, extreme temperatures, deficit of water). Thus, the selection of CB species with high potential for extraterrestrial biotechnologies that may be utilized in 15 years must be sponsored by NASA as soon as possible. The study of the genomes of candidate CB species and the metagenomes of the terrestrial environments which they inhabit is critical to make this decision. Here we provide preliminary results about peculiarities of the genomes of siderophilic CB revealed by analyzing the genome of siderophilic cyanobacterium JSC-1 and the metagenome of iron depositing hot spring (IDHS) Chocolate Pots (Yellowstone National Park, Wyoming, USA). It has been found that IDHS are richer with ferrous iron than the majority of hot springs around the world. Fe2+ is known to increase the magnitude of oxidative stress in prokaryotes

  18. Dynamic Externalities, Universities and Social Capital Formation in the EU Biotechnology Industry

    Directory of Open Access Journals (Sweden)

    Malgorzata RUNIEWICZ-WARDYN

    2017-03-01

    Full Text Available The paper investigates the role of dynamic externalities, university-industry linkages and role of social networking in the biotechnology industry in the European Union (EU. Universities act as platforms for local knowledge spillovers and university-industry cluster development in the biotechnology field. The R&D activities at universities contribute to successful business innovations. However, the relationship between the universities and the local innovation capabilities is much more complex and therefore requires more in-depth analysis. The following study derives from the knowledge of the new economic geography, endogenous growth theory, biotechnology, as well as theories of social capital and social networks. The quantitative research elaborates contemporary literature and databases to find channels of interdependence between local university-based knowledge flows, social capital, and biotechnology cluster performance. The results of the study show that the biotechnology industry relies very much on university-business R&D partnerships and research mobility (e.g. pharmaceutical firms that performed basic research in close cooperation with academia produced more patents. In addition, social networking and informal contacts seem to be a more important for the diffusion of knowledge, especially at the beginning of R&D process, as they allow for building credibility between potential partners.

  19. THE IMPORTANCE OF THE RELATIONSHIP BETWEEN COMPANY AND INCUBATOR FOR BIOTECHNOLOGY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira Alves

    2014-01-01

    Full Text Available The biotechnology activities development demands an intense academic and scientific basis, a productive sector capable of transforming academic research in scientific products and services, and the creation of an institutional environment to promote the sector’s development. Moreover, many biotechnology companies establish formal partnerships with Universities (by technological incubator to expand innovative capacity coming into the market. The importance of biotechnology for developing countries is perceived by its ability to promote national development based on knowledge and innovation. In Brazil, the government establishes technological incubators to accelerate the company consolidation. In this way, it is important to study the relationship between the actors involved. In this context, this article aims to analyze the relationship between a technological incubator and a biotech company. To do so, the qualitative approach was adopted to reach the objective. Interviews with incubator’s employees of a Brazilian University and biotechnology company’s managers were conducted. The results show that the company-incubator interaction promoted projects approval which were able to support new researches development and to purchase production equipment. Incubated companies have higher chances of survival in the market from the interaction with University, through the technological incubator. The relationship between the incubator and the biotech company is considered a fundamental condition for biotechnology activities development.

  20. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    2007-01-01

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  1. BIOTECHNOLOGY AND MOLECULAR-BASED METHODS FOR GENETIC IMPROVEMENT OF TULIPS

    Directory of Open Access Journals (Sweden)

    Aurel Popescu

    2012-04-01

    Full Text Available Although the conventional methods of improvement have changed significantly throughout the last fifty years, additional tools and novel approaches are needed in order to fasten the process of creation new and highly valuable tulip varieties. The genetic base of tulip production can be preserved and widen by an integration of biotechnology tools in conventional breeding. Micropropagation in vitro may produce very fast large numbers of vigorous plants with high quality and free of endogenous pathogens. The in vitro rescue of embryos resulted from interspecific crosses between more or less distant species, chromosome doubling, somaclonal variation, transformation, and marker-aided selection and breeding are just a few of the examples of the applications of biotechnology in tulip improvement. This review provides an overview of the opportunities presented by the integration of plant biotechnology into the tulip improvement efforts.

  2. Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review.

    Science.gov (United States)

    Syzdykova, Assel; Malta, André; Zolfo, Maria; Diro, Ermias; Oliveira, José Luis

    2017-11-13

    Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code

  3. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... to the NIH Office of Biotechnology Activities (OBA). The data to be considered for certifying a new... same e-mail address or by fax at 301-496-9839 or sent by U.S. mail to the Office of Biotechnology...

  4. Success Factors of Biotechnology Industry Based on Triangular Fuzzy Number

    OpenAIRE

    Lei, Lei

    2013-01-01

    Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: “open innovation capaci...

  5. Biopolicies and biotechnologies: reflections on surrogate maternity in India

    Directory of Open Access Journals (Sweden)

    Mónica Amador

    2010-07-01

    Full Text Available This article explores the impact of biotechnology, particularly on assisted reproductive technologies such as surrogate motherhood. The study is based on interviews and field work conducted in the city of Hyderabad in India within the frame of the seminar on “Research Methodology” given by Dr. Rohan D´Souza at the Centre for Studies in Science Policy at the Jawaharlal Nehru University in India. The theoretical framework of this analysis focuses on exploring concepts such as cyborg (Haraway,1991 and subaltern subject (Spivak, 1998 in the context of biotechnological production in India

  6. [Education on biosafety and bioethics: necessary articulation in biotechnology].

    Science.gov (United States)

    Bonis, Marcos De; Costa, Marco Antonio Ferreira da

    2009-01-01

    Science education has been discussed in some segments of the society and, international organizations have encouraged nations to invest in this strategic area. In this context, education in bioethics and biosafety explores a rich content on prevention, standards and ethical principles which serve to guide the paths track by biotechnology. The recovery of bioethics and biosafety, as part of an educational policy scientific, effective and consistent, can stimulate the formation of individuals with a scientific and citizen awareness, in a position to participate on ethical and technological issues produced by biotechnology.

  7. Development and Validation of an Instrument to Measure University Students' Biotechnology Attitude

    Science.gov (United States)

    Erdogan, Mehmet; Ozel, Murat; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The impact of biotechnologies on peoples' everyday lives continuously increases. Measuring young peoples' attitudes toward biotechnologies is therefore very important and its results are useful not only for science curriculum developers and policy makers, but also for producers and distributors of genetically modified products. Despite of…

  8. Making a Case for Epistemological Access in Biotechnology Education in Southern Africa

    Science.gov (United States)

    Mollett, Jean; Cameron, Ann

    2016-01-01

    In southern Africa, biotechnology is increasingly important with regard to food security and the development of the pharmaceutical industry. Universities are tasked with providing the relevant capacity development through tertiary-level courses to meet these development needs. However, the knowledge and practices of biotechnology may be…

  9. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  10. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  11. The rise of health biotechnology research in Latin America: A scientometric analysis of health biotechnology production and impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico

    Science.gov (United States)

    2018-01-01

    This paper analyzes the patterns of health biotechnology publications in six Latin American countries from 2001 to 2015. The countries studied were Argentina, Brazil, Chile, Colombia, Cuba and Mexico. Before our study, there were no data available on HBT development in half of the Latin-American countries we studied, i.e., Argentina, Colombia and Chile. To include these countries in a scientometric analysis of HBT provides fuller coverage of HBT development in Latin America. The scientometric study used the Web of Science database to identify health biotechnology publications. The total amount of health biotechnology production in the world during the period studied was about 400,000 papers. A total of 1.2% of these papers, were authored by the six Latin American countries in this study. The results show a significant growth in health biotechnology publications in Latin America despite some of the countries having social and political instability, fluctuations in their gross domestic expenditure in research and development or a trade embargo that limits opportunities for scientific development. The growth in the field of some of the Latin American countries studied was larger than the growth of most industrialized nations. Still, the visibility of the Latin American research (measured in the number of citations) did not reach the world average, with the exception of Colombia. The main producers of health biotechnology papers in Latin America were universities, except in Cuba were governmental institutions were the most frequent producers. The countries studied were active in international research collaboration with Colombia being the most active (64% of papers co-authored internationally), whereas Brazil was the least active (35% of papers). Still, the domestic collaboration was even more prevalent, with Chile being the most active in such collaboration (85% of papers co-authored domestically) and Argentina the least active (49% of papers). We conclude that the

  12. The rise of health biotechnology research in Latin America: A scientometric analysis of health biotechnology production and impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico.

    Science.gov (United States)

    León-de la O, Dante Israel; Thorsteinsdóttir, Halla; Calderón-Salinas, José Víctor

    2018-01-01

    This paper analyzes the patterns of health biotechnology publications in six Latin American countries from 2001 to 2015. The countries studied were Argentina, Brazil, Chile, Colombia, Cuba and Mexico. Before our study, there were no data available on HBT development in half of the Latin-American countries we studied, i.e., Argentina, Colombia and Chile. To include these countries in a scientometric analysis of HBT provides fuller coverage of HBT development in Latin America. The scientometric study used the Web of Science database to identify health biotechnology publications. The total amount of health biotechnology production in the world during the period studied was about 400,000 papers. A total of 1.2% of these papers, were authored by the six Latin American countries in this study. The results show a significant growth in health biotechnology publications in Latin America despite some of the countries having social and political instability, fluctuations in their gross domestic expenditure in research and development or a trade embargo that limits opportunities for scientific development. The growth in the field of some of the Latin American countries studied was larger than the growth of most industrialized nations. Still, the visibility of the Latin American research (measured in the number of citations) did not reach the world average, with the exception of Colombia. The main producers of health biotechnology papers in Latin America were universities, except in Cuba were governmental institutions were the most frequent producers. The countries studied were active in international research collaboration with Colombia being the most active (64% of papers co-authored internationally), whereas Brazil was the least active (35% of papers). Still, the domestic collaboration was even more prevalent, with Chile being the most active in such collaboration (85% of papers co-authored domestically) and Argentina the least active (49% of papers). We conclude that the

  13. 76 FR 44339 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-07-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Services. ACTION: Proposed Minor Action under the NIH Guidelines. SUMMARY: The Office of Biotechnology....nih.gov , telephone (301-496-9838), or mail to the Office of Biotechnology Activities, National...

  14. 76 FR 3150 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-01-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... rodent). On July 20, 2010 the NIH Office of Biotechnology Activities (OBA) published a proposed action... Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, MSC 7985, Bethesda...

  15. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... biotechnology innovation system of South-Eastern. Nigeria. E. N. Ajani ... technology is the application of indigenous and / or scientific knowledge to ... developing societies, with the exception of China and. Argentina, (James ...

  16. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  17. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    Science.gov (United States)

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  18. La structure sociale de l’industrie des Biotechnologies en France: une étude des relations inter-organisationnelles au niveau inter-individuel.

    Directory of Open Access Journals (Sweden)

    Piña-Stranger, Alvaro

    2010-06-01

    Full Text Available Various authors have shown the importance of collaborative relationships for inter-organizational performance, the mode of governance or the trajectory of biotechnology companies. Most of these works analyze the exclusive contractual agreements between companies and their main relationships among individuals. We show that this purely economic approach presents a major limitation: the nature of contractual relationships does not explore in detail how players cooperate. We propose to extend the study of these inter-organizational social relations, seen through the resource exchange in inter-individual. An empirical study on the leaders of the biotechnology industry in the area of human health in France has allowed us to map their relationships and resources they exchange them. Our results confirm the existence of a system of exchange dense and multiple. It presents a hierarchical distribution of various types of resources, where the centre is different from the periphery relations denser, more numerous and more reciprocal. However, comparative analysis of different networks reveals that the relationships of the board are highly centralized, while those of friendship following a more even distribution. We suggest that this phenomenon is part of a compensation mechanism to less central actors to maintain inter-organizational relationships. Finally, two standards of the cooperation process, revealed by the relational behaviour of actors, have been discovered. We suggest that they reflect in part the difficult process of adjustment that must cross a science project out of the realm of academic research and develop in a private structure: the biotech company.

  19. Regulation of Biotechnology in Cameroon W

    African Journals Online (AJOL)

    ... security and public health are high on government's policy agenda. ... tion by the Cameroon Development Corporation. (CDC) of a ... can model law on Safety in Biotechnology (and the Convention ..... its biosafety regulation on liability and redress in due course. ... in Kuala Lumpur, Malaysia in February this year. (2004).

  20. Towards a Typology of Business Models in the Biotechnology Industry

    OpenAIRE

    Segers, Jean Pierre

    2018-01-01

    The purpose of this paper is to identify a selection of key business models - “typology” - applied in the biotechnology industry. The focus is on the differences between traditional/closed or stand-alone business models opposed to open or networked business models. A number of illustrative case studies and good practices are presented to show that new biotechnology firms are gradually adopting a “best of both worlds” strategy, with both closed business models and open, networked models as ...