WorldWideScience

Sample records for biosynthesis pathway gene

  1. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    Science.gov (United States)

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  2. Design and synthesis of pathway genes for polyketide biosynthesis.

    Science.gov (United States)

    Peirú, Salvador; Gramajo, Hugo; Menzella, Hugo G

    2009-01-01

    In this chapter we describe novel methods for the design and assembly of synthetic pathways for the synthesis of polyketides and tailoring sugars. First, a generic design for type I polyketide synthase genes is presented that allows their facile assembly for the expression of chimeric enzymes in an engineered Escherichia coli host. The sequences of the synthetic genes are based on naturally occurring polyketide synthase genes but they are redesigned by custom-made software to optimize codon usage to maximize expression in E. coli and to provide a standard set of restriction sites to allow combinatorial assembly into unnatural enzymes. The methodology has been validated by building a large number of bimodular mini-PKSs that make easily assayed triketide products. Learning from the successful bimodules, a conceptual advance was made by assembling genes encoding functional trimodular enzymes, capable of making tetraketide products. Second, methods for the rapid assembly and exchange of sugar pathway genes into functional operons are described. The approach was validated by the assembly of the 15 genes for the synthesis of mycarose and desosamine in two operons, which yielded erythromycin C when coexpressed with the corresponding PKS genes. These methods are important enabling steps toward the goals of making designer drugs by polyketide synthase and sugar pathway engineering and, in the shorter term, producing by fermentation advanced intermediates for the synthesis of compounds that otherwise require large numbers of chemical steps.

  3. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available BACKGROUND: Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. METHODOLOGY/PRINCIPAL FINDINGS: RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. CONCLUSIONS: SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  4. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  5. Identification and Characterization of Multiple Intermediate Alleles of the Key Genes Regulating Brassinosteroid Biosynthesis Pathways

    Science.gov (United States)

    Du, Junbo; Zhao, Baolin; Sun, Xin; Sun, Mengyuan; Zhang, Dongzhi; Zhang, Shasha; Yang, Wenyu

    2017-01-01

    Most of the early identified brassinosteroid signaling and biosynthetic mutants are null mutants, exhibiting extremely dwarfed phenotypes and male sterility. These null mutants are usually unable to be directly transformed via a routinely used Agrobacterium-mediated gene transformation system and therefore are less useful for genetic characterization of the brassinosteroid (BR)-related pathways. Identification of intermediate signaling mutants such as bri1–5 and bri1–9 has contributed drastically to the elucidation of BR signaling pathway using both genetic and biochemical approaches. However, intermediate mutants of key genes regulating BR biosynthesis have seldom been reported. Here we report identification of several intermediate BR biosynthesis mutants mainly resulted from leaky transcriptions due to the insertions of T-DNAs in the introns. These mutants are semi-dwarfed and fertile and capable to be transformed. These intermediate mutants could be useful tools for future discovery and analyses of novel components regulating BR biosynthesis and catabolism via genetic modifier screen. PMID:28138331

  6. Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Qiong Yao

    Full Text Available BACKGROUND: 20-hydroxyecdysone (20E and its receptor complex ecdysone receptor (EcR and ultraspiracle (USP play a crucial role in controlling development, metamorphosis, reproduction and diapause. The ligand-receptor complex 20E-EcR/USP directly activates a small set of early-response genes and a much larger set of late-response genes. However, ecdysone-responsive genes have not been previously characterized in the context of insect chitin biosynthesis. PRINCIPAL FINDINGS: Here, we show that injection-based RNA interference (RNAi directed towards a common region of the two isoforms of SeEcR in a lepidopteron insect Spodoptera exigua was effective, with phenotypes including a high mortality prior to pupation and developmental defects. After gene specific RNAi, chitin contents in the cuticle of an abnormal larva significantly decreased. The expression levels of five genes in the chitin biosynthesis pathway, SeTre-1, SeG6PI, SeUAP, SeCHSA and SeCHSB, were significantly reduced, while there was no difference in the expression of SeTre-2 prior to 72 hr after injection of EcR dsRNA. Meanwhile, injection of 20E in vivo induced the expression of the five genes mentioned above. Moreover, the SeTre-1, SeG6PI, SeUAP and SeCHSB genes showed late responses to the hormone and the induction of SeTre-1, SeG6PI, SeUAP and SeCHSB genes by 20E were able to be inhibited by the protein synthesis inhibitor cycloheximide in vitro indicating these genes are 20E late-response genes. CONCLUSIONS: We conclude that SeTre-1, SeG6PI, SeUAP and SeCHSB in the chitin biosynthesis pathway are 20E late-response genes and 20E and its specific receptors plays a key role in the regulation of chitin biosynthesis via inducing their expression.

  7. A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni).

    Science.gov (United States)

    Kumar, Hitesh; Kaul, Kiran; Bajpai-Gupta, Suphla; Kaul, Vijay Kumar; Kumar, Sanjay

    2012-01-15

    Stevia [Stevia rebuaidana (Bertoni); family: Asteraceae] is known to yield diterpenoid steviol glycosides (SGs), which are about 300 times sweeter than sugar. The present work analyzed the expression of various genes of the SGs biosynthesis pathway in different organs of the plant in relation to the SGs content. Of the various genes of the pathway, SrDXS, SrDXR, SrCPPS, SrKS, SrKO and three glucosyltransferases namely SrUGT85C2, SrUGT74G1 and SrUGT76G1 were reported from stevia. Here, we report cloning of seven additional full-length cDNA sequences namely, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI and SrGGDPS followed by expression analysis of all the fifteen genes vis-à-vis SGs content analysis. SGs content was highest in the leaf at 3rd node position (node position with reference to the apical leaf as the first leaf) as compared to the leaves at other node positions. Except for SrDXR and SrKO, gene expression was maximum in leaf at 1st node and minimum in leaf at 5th node. The expression of SrKO was highest in leaf at 3rd node while in case of SrDXR expression showed an increase up to 3rd leaf and decrease thereafter. SGs accumulated maximum in leaf tissue followed by stem and root, and similar was the pattern of expression of all the fifteen genes. The genes responded to the modulators of the terpenopids biosynthesis. Gibberellin (GA(3)) treatment up-regulated the expression of SrMCT, SrCMK, SrMDS and SrUGT74G1, whereas methyl jasmonate and kinetin treatment down-regulated the expression of all the fifteen genes of the pathway.

  8. Identification of Candidate Genes and Biosynthesis Pathways Related to Fertility Conversion by Wheat KTM3315A Transcriptome Profiling

    Directory of Open Access Journals (Sweden)

    Lingli Zhang

    2017-04-01

    Full Text Available The Aegilops kotschyi thermo-sensitive cytoplasmic male sterility (K-TCMS system may facilitate hybrid wheat (Triticum aestivum L. seed multiplication and production. The K-TCMS line is completely male sterile during the normal wheat-growing season, whereas its fertility can be restored in a high-temperature environment. To elucidate the molecular mechanisms responsible for male sterility/fertility conversion and candidate genes involved with pollen development in K-TCMS, we employed RNA-seq to sequence the transcriptomes of anthers from K-TCMS line KTM3315A during development under sterile and fertile conditions. We identified 16840 differentially expressed genes (DEGs in different stages including15157 known genes (15135 nuclear genes and 22 plasmagenes and 1683 novel genes. Bioinformatics analysis identified possible metabolic pathways involved with fertility based on KEGG pathway enrichment of the DEGs expressed in fertile and sterile plants. We found that most of the genes encoding key enzyme in the phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were significant upregulated in uninucleate, binuclate or trinucleate stage, which both interact with MYB transcription factors, and that link between all play essential roles in fertility conversion. The relevant DEGs were verified by quantitative RT-PCR. Thus, we suggested that phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were involved in fertility conversion of K-TCMS wheat. This will provide a new perspective and an effective foundation for the research of molecular mechanisms of fertility conversion of CMS wheat. Fertility conversion mechanism in thermo-sensitive cytoplasmic male sterile/fertile wheat involves the phenylpropanoid biosynthesis pathway, jasmonate biosynthesis pathway, and MYB transcription factors.

  9. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway.

    Science.gov (United States)

    Nougué, Odrade; Corbi, Jonathan; Ball, Steven G; Manicacci, Domenica; Tenaillon, Maud I

    2014-05-15

    Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called "Escape from Adaptive Conflict" (EAC) model. Because none of the

  10. Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway.

    Science.gov (United States)

    Cagliari, Alexandro; Margis-Pinheiro, Márcia; Loss, Guilherme; Mastroberti, Alexandra Antunes; de Araujo Mariath, Jorge Ernesto; Margis, Rogério

    2010-11-01

    Castor bean (Ricinus communis) oil contains ricinoleic acid-rich triacylglycerols (TAGs). As a result of its physical and chemical properties, castor oil and its derivatives are used for numerous bio-based products. In this study, we survey the Castor Bean Genome Database to report the identification of TAG biosynthesis genes. A set of 26 genes encoding six distinct classes of enzymes involved in TAGs biosynthesis were identified. In silico characterization and sequence analysis allowed the identification of plastidic isoforms of glycerol-3-phosphate acyltransferase and lysophosphatidate acyltransferase enzyme families, involved in the prokaryotic lipid biosynthesis pathway, that form a cluster apart from the cytoplasmic isoforms, involved in the eukaryotic pathway. In addition, two distinct membrane bound diacylglycerol acyltransferase enzymes were identified. Quantitative expression pattern analyses demonstrated variations in gene expressions during castor seed development. A tendency of maximum expression level at the middle of seed development was observed. Our results represent snapshots of global transcriptional activities of genes encompassing six enzyme families involved in castor bean TAG biosynthesis that are present during seed development. These genes represent potential targets for biotechnological approaches to produce nutritionally and industrially desirable oils.

  11. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available BACKGROUND: Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  12. Melanin biosynthesis pathway in Agaricus bisporus mushrooms

    NARCIS (Netherlands)

    Weijn, A.; Bastiaan-Net, S.; Wichers, H.J.; Mes, J.J.

    2013-01-01

    With the full genome sequence of Agaricus bisporus available, it was possible to investigate the genes involved in the melanin biosynthesis pathway of button mushrooms. Based on different BLAST and alignments, genes were identified in the genome which are postulated to be involved in this pathway.

  13. Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Niklitschek, Mauricio; Alcaíno, Jennifer; Barahona, Salvador; Sepúlveda, Dionisia; Lozano, Carla; Carmona, Marisela; Marcoleta, Andrés; Martínez, Claudio; Lodato, Patricia; Baeza, Marcelo; Cifuentes, Víctor

    2008-01-01

    The cloning and nucleotide sequence of the genes (idi, crtE, crtYB, crtl and crtS) controlling the astaxanthin biosynthesis pathway of the wild-type ATCC 24230 strain of Xanthophyllomyces dendrorhous in their genomic and cDNA version were obtained. The idi, crtE, crtYB, crtl and crtS genes were cloned, as fragments of 10.9, 11.5, 15.8, 5.9 and 4 kb respectively. The nucleotide sequence data analysis indicates that the idi, crtE, crtYB, crtl and crtS genes have 4, 8,4, 11, and 17 introns and 5, 9, 5, 12 and 18 exons respectively. In addition, a highly efficient site-directed mutagenesis system was developed by transformation by integration, followed by mitotic recombination (the double recombinant method). Heterozygote idi (idi+/idi-::hph), crtE (crtE+/crtE-::hph), crtYB (crtYB+/crtYB-::hph), crtI (crtI+/crtI-::hph) and crtS (crtS+/crtS-::hph) and homozygote mutants crtYB (crtYB-::hph/crtYB-::hph), crtI (crtI-::hph/crtI-::hph) and crtS (crtS-::hph/crtS-::hph) were constructed. All the heterozygote mutants have a pale phenotype and produce less carotenoids than the wild-type strain. The genetic analysis of the crtYB, crtl and crtS loci in the wild-type, heterozygote, and homozygote give evidence of the diploid constitution of ATCC 24230 strains. In addition, the cloning of a truncated form of the crtYB that lacks 153 amino acids of the N-terminal region derived from alternatively spliced mRNA was obtained. Their heterologous expression in Escherichia coli carrying the carotenogenic cluster of Erwinia uredovora result in trans-complementation and give evidence of its functionality in this bacterium, maintaining its phytoene synthase activity but not the lycopene cyclase activity.

  14. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway.

    Science.gov (United States)

    Valegård, Karin; Iqbal, Aman; Kershaw, Nadia J; Ivison, David; Généreux, Catherine; Dubus, Alain; Blikstad, Cecilia; Demetriades, Marina; Hopkinson, Richard J; Lloyd, Adrian J; Roper, David I; Schofield, Christopher J; Andersson, Inger; McDonough, Michael A

    2013-08-01

    Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.

  15. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize

    Science.gov (United States)

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3'H encoding gene (Zmf3'h1), and showed by segrega...

  16. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    Science.gov (United States)

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  17. Amino Acid Biosynthesis Pathways in Diatoms

    Directory of Open Access Journals (Sweden)

    Mariusz A. Bromke

    2013-04-01

    Full Text Available Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity.

  18. Identification of a trichothecene gene cluster and description of the harzianum A biosynthesis pathway in the fungus Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenes that act like mycotoxins. Their biosynthesis has been mainly studied in the fungal genera Fusarium, where most of the biosynthetic genes (tri) are grouped in a cluster regulated by ambient conditions and regulatory genes. Unexpectedly, few studies are available abou...

  19. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    OpenAIRE

    Yahyaraeyat, R.; Khosravi, A R; Shahbazzadeh, D.; V Khalaj

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial...

  20. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise;

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new...

  1. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  2. In Silico Analysis of the Genes Encoding Proteins that Are Involved in the Biosynthesis of the RMS/MAX/D Pathway Revealed New Roles of Strigolactones in Plants

    Directory of Open Access Journals (Sweden)

    Marek Marzec

    2015-03-01

    Full Text Available Strigolactones were described as a new group of phytohormones in 2008 and since then notable large number of their functions has been uncovered, including the regulation of plant growth and development, interactions with other organisms and a plant’s response to different abiotic stresses. In the last year, investigations of the strigolactone biosynthesis pathway in two model species, Arabidopsis thaliana and Oryza sativa, resulted in great progress in understanding the functions of four enzymes that are involved in this process. We performed in silico analyses, including the identification of the cis-regulatory elements in the promoters of genes encoding proteins of the strigolactone biosynthesis pathway and the identification of the miRNAs that are able to regulate their posttranscriptional level. We also searched the databases that contain the microarray data for the genes that were analyzed from both species in order to check their expression level under different growth conditions. The results that were obtained indicate that there are universal regulations of expression of all of the genes that are involved in the strigolactone biosynthesis in Arabidopsis and rice, but on the other hand each stage of strigolactone production may be additionally regulated independently. This work indicates the presence of crosstalk between strigolactones and almost all of the other phytohormones and suggests the role of strigolactones in the response to abiotic stresses, such as wounding, cold or flooding, as well as in the response to biotic stresses.

  3. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus.

    Science.gov (United States)

    Yahyaraeyat, R; Khosravi, A R; Shahbazzadeh, D; Khalaj, V

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  4. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    R. Yahyaraeyat

    2013-01-01

    Full Text Available This study aims at evaluating the effects of Zataria multiflora (Z. multiflora essential oil (EO on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus ATCC56775 grown in yeast extract sucrose (YES broth medium treated with Z. multiflora EO were subjected to reverse transcription-polymerase chain reaction (RT-PCR. Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC for aflatoxinB1 (AFB1, aflatoxinB2 (AFB2, aflatoxinG1 (AFG1, aflatoxinG2 (AFG2 and aflatoxin total (AFTotal production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  5. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  7. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission.

    Science.gov (United States)

    Parra-Lobato, Maria C; Gomez-Jimenez, Maria C

    2011-08-01

    After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ-AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ-AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling. © 2011 The Author(s).

  8. Effects of Exogenous Salicylic Acid on Ganoderic Acid Biosynthesis and the Expression of Key Genes in the Ganoderic Acid Biosynthesis Pathway in the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    Science.gov (United States)

    Cao, Peng-Fei; Wu, Chen-Gao; Dang, Zhi-Hao; Shi, Liang; Jiang, Ai-Liang; Ren, Ang; Zhao, Ming-Wen

    2017-01-01

    We demonstrate herein that salicylic acid (SA) can enhance ganoderic acid (GA) accumulation in the lingzhi or reishi medicinal mushroom Ganoderma lucidum. Following treatment with different concentrations of SA, the GA content was increased 22.72% to 43.04% compared with the control group. When the fungi were treated with 200 μmol/L SA at different times, the GA content was improved 10.21% to 35.24% compared with the control group. By choosing the optimum point based on response surface methodology, the GA content could be increased up to 229.03 μg/100 mg, which was improved 66.38% compared with the control group. When the fungi were treated with 200 μmol/L SA, the transcription levels of key genes in the GA biosynthesis pathway-squalene (SQ) synthase (sqs), lanosterol (Lano; osc), and hydroxy-3-methylglutaryl-coenzyme A reductase (hmgr)-were improved 119.6-, 3.2-, and 4.2-fold, respectively. In addition, following treatment with 100 μmol/L SA, the levels of Lano and SQ, which are intermediate metabolites of GA biosynthesis, were increased 2.8- and 1.4-fold, respectively. These results indicate that SA can regulate the expression of genes related to GA biosynthesis and increases the metabolic levels of Lano and SQ, thereby resulting in the accumulation of GA.

  9. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria.

    Science.gov (United States)

    Liu, Xiao-Jian; Sun, Ya-Wen; Li, Da-Qi; Li, Sheng; Ma, En-Bo; Zhang, Jian-Zhen

    2016-10-03

    In Locusta migratoria, we found that two chitin biosynthesis genes, UDP N-acetylglucosamine pyrophosphorylase gene LmUAP1 and chitin synthase gene LmCHS1, are expressed mainly in the integument and are responsible for cuticle formation. However, whether these genes are regulated by 20-hydroxyecdysone (20E) is still largely unclear. Here, we showed the developmental expression pattern of LmUAP1, LmCHS1 and the corresponding 20E titer during the last instar nymph stage of locust. RNA interference (RNAi) directed toward a common region of the two isoforms of LmEcR (LmEcRcom) reduced the expression level of LmUAP1, while there was no difference in the expression of LmCHS1. Meantime, injection of 20E in vivo induced the expression of LmUAP1 but not LmCHS1. Further, we found injection-based RNAi of LmEcRcom resulted in 100% mortality. The locusts failed to molt with no apolysis, and maintained in the nymph stage until death. In conclusion, our preliminary results indicated that LmUAP1 in the chitin biosynthesis pathway is a 20E late-response gene and LmEcR plays an essential role in locust growth and development, which could be a good potential target for RNAi-based pest control.

  10. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco.

    Science.gov (United States)

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-09-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Characterization of an echinocandin B-producing strain blocked for sterigmatocystin biosynthesis reveals a translocation in the stcW gene of the aflatoxin biosynthetic pathway.

    Science.gov (United States)

    Hodges, R L; Kelkar, H S; Xuei, X; Skatrud, P L; Keller, N P; Adams, T H; Kaiser, R E; Vinci, V A; McGilvray, D

    2000-12-01

    Echinocandin B (ECB), a lipopolypeptide used as a starting material for chemical manufacture of the anti-Candida agent LY303366, is produced by fermentation using a strain of Aspergillus nidulans. In addition to ECB, the wild-type strain also produces a significant level of sterigmatocystin (ST), a potent carcinogen structurally related to the aflatoxins. Characterization of a mutant designated A42355-OC-1 (OC-1), which is blocked in ST biosynthesis, was the result of a chromosomal translocation. The chromosomal regions containing the breakpoints of the translocation were isolated and DNA sequencing and PCR analysis of the chromosomal breakpoints demonstrated the translocation occurred within the stcW gene of the ST biosynthetic pathway, resulting in disruption of the open reading frame for this gene. Biochemical feeding studies indicate the involvement of this gene product in the conversion of averufin to 1-hydroxy versicolorone. This work demonstrates an effective synergy between classical strain improvement methods and molecular genetics.

  12. Genes of the de novo and salvage biosynthesis pathways of vitamin B6 are regulated under oxidative stress in the plant pathogen Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Jamil eSamsatly

    2016-01-01

    Full Text Available B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degree of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to ROS stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST. The genes were differentially regulated with substantial transcript levels as high as 33 fold depending on the gene and type of stress reflecting that differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT. On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregualtion with PLP. Our results suggest that accumulation of ROS in R. solani mycelia was linked to transcriptional regulation of the three genes and R. solani vitamin B6 biosynthesis machinery could be implicated similar to catalases and GST as an antioxidant stress protector against oxidative stress.

  13. Genes of the de novo and Salvage Biosynthesis Pathways of Vitamin B6 are Regulated under Oxidative Stress in the Plant Pathogen Rhizoctonia solani

    Science.gov (United States)

    Samsatly, Jamil; Chamoun, Rony; Gluck-Thaler, Emile; Jabaji, Suha

    2016-01-01

    Vitamin B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degrees of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to reactive oxygen species (ROS) stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST). The genes were differentially regulated with transcript levels as high as 33 fold depending on the gene and type of stress reflecting differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT). On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregulation with PLP. Our results suggest that accumulation of ROS in R. solani mycelia is linked to transcriptional regulation of the three genes and implicate the vitamin B6 biosynthesis machinery in R. solani, similar to catalases and GST, as an antioxidant stress protector against oxidative stress. PMID:26779127

  14. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    Science.gov (United States)

    Hu, Valerie W; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E; Sarachana, Tewarit; Scully, Michele A; Soldin, Steven J; Luu, Truong; Lee, Norman H

    2009-06-03

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  15. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Valerie W Hu

    Full Text Available Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  16. Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.

    Science.gov (United States)

    Johansen, Eric B; Szoka, Francis C; Zaleski, Anthony; Apicella, Michael A; Gibson, Bradford W

    2010-06-01

    In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.

  17. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2016-08-01

    Full Text Available Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each other’s production directly. Thus multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  18. Regulatory Cross-Talks and Cascades in Rice Hormone Biosynthesis Pathways Contribute to Stress Signaling.

    Science.gov (United States)

    Deb, Arindam; Grewal, Rumdeep K; Kundu, Sudip

    2016-01-01

    Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  19. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Jordi Perez-Gil

    Full Text Available A functional 2-C-methyl-D-erythritol 4-phosphate (MEP pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP by the activity of the enzymes DXP synthase (DXS and DXP reductoisomerase (DXR. Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  20. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    Science.gov (United States)

    Perez-Gil, Jordi; Uros, Eva Maria; Sauret-Güeto, Susanna; Lois, L Maria; Kirby, James; Nishimoto, Minobu; Baidoo, Edward E K; Keasling, Jay D; Boronat, Albert; Rodriguez-Concepcion, Manuel

    2012-01-01

    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  1. Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis.

    Science.gov (United States)

    Lorenz, Nicole; Wilson, Ella V; Machado, Caroline; Schardl, Christopher L; Tudzynski, Paul

    2007-11-01

    The grass parasites Claviceps purpurea and Claviceps fusiformis produce ergot alkaloids (EA) in planta and in submerged culture. Whereas EA synthesis (EAS) in C. purpurea proceeds via clavine intermediates to lysergic acid and the complex ergopeptines, C. fusiformis produces only agroclavine and elymoclavine. In C. purpurea the EAS gene (EAS) cluster includes dmaW (encoding the first pathway step), cloA (elymoclavine oxidation to lysergic acid), and the lpsA/lpsB genes (ergopeptine formation). We analyzed the corresponding C. fusiformis EAS cluster to investigate the evolutionary basis for chemotypic differences between the Claviceps species. Other than three peptide synthetase genes (lpsC and the tandem paralogues lpsA1 and lpsA2), homologues of all C. purpurea EAS genes were identified in C. fusiformis, including homologues of lpsB and cloA, which in C. purpurea encode enzymes for steps after clavine synthesis. Rearrangement of the cluster was evident around lpsB, which is truncated in C. fusiformis. This and several frameshift mutations render CflpsB a pseudogene (CflpsB(Psi)). No obvious inactivating mutation was identified in CfcloA. All C. fusiformis EAS genes, including CflpsB(Psi) and CfcloA, were expressed in culture. Cross-complementation analyses demonstrated that CfcloA and CflpsB(Psi) were expressed in C. purpurea but did not encode functional enzymes. In contrast, CpcloA catalyzed lysergic acid biosynthesis in C. fusiformis, indicating that C. fusiformis terminates its EAS pathway at elymoclavine because the cloA gene product is inactive. We propose that the C. fusiformis EAS cluster evolved from a more complete cluster by loss of some lps genes and by rearrangements and mutations inactivating lpsB and cloA.

  2. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L.

    Science.gov (United States)

    Bose, Subir K; Yadav, Ritesh Kumar; Mishra, Smrati; Sangwan, Rajender S; Singh, A K; Mishra, B; Srivastava, A K; Sangwan, Neelam S

    2013-05-01

    Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner.

  3. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Directory of Open Access Journals (Sweden)

    Bingying Han

    2016-07-01

    Full Text Available Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD. Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis. All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW, and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS, 10 trehalose-6-phosphate phosphatases (TPP, and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4 that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1 in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose

  4. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava.

    Science.gov (United States)

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-07-13

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal

  5. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Science.gov (United States)

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under

  6. Enzymology of the carnitine biosynthesis pathway.

    Science.gov (United States)

    Strijbis, Karin; Vaz, Frédéric M; Distel, Ben

    2010-05-01

    The water-soluble zwitterion carnitine is an essential metabolite in eukaryotes required for fatty acid oxidation as it functions as a carrier during transfer of activated acyl and acetyl groups across intracellular membranes. Most eukaryotes are able to synthesize carnitine endogenously, besides their capacity to take up carnitine from the diet or extracellular medium through plasma membrane transporters. This review discusses the current knowledge on carnitine homeostasis with special emphasis on the enzymology of the four steps of the carnitine biosynthesis pathway.

  7. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    Science.gov (United States)

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  8. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.

    Science.gov (United States)

    Paolocci, Francesco; Robbins, Mark P; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.

  9. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

    Directory of Open Access Journals (Sweden)

    Shinji Kishimoto

    2016-08-01

    Full Text Available Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid, saframycin (tetrahydroisoquinoline alkaloid, strictosidine (monoterpene indole alkaloid, ergotamine (ergot alkaloid and opiates (benzylisoquinoline and morphinan alkaloid. This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  10. Two Chitin Biosynthesis Pathway Genes in Bactrocera dorsalis (Diptera: Tephritidae): Molecular Characteristics, Expression Patterns, and Roles in Larval-Pupal Transition.

    Science.gov (United States)

    Yang, Wen-Jia; Wu, Yi-Bei; Chen, Li; Xu, Kang-Kang; Xie, Yi-Fei; Wang, Jin-Jun

    2015-10-01

    Glucose-6-phosphate isomerase (G6PI) and UDP-N-acetylglucosamine pyrophosphorylase (UAP), two key components in the chitin biosynthesis pathway, are critical for insect growth and metamorphosis. In this study, we identified the genes BdG6PI and BdUAP from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frames (ORFs) of BdG6PI (1,491 bp) and BdUAP (1,677 bp) encoded 496 and 558 amino acid residues, respectively. Multiple sequence alignments showed that BdG6PI and BdUAP had high amino acid sequence identity with other insect homologues. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated that BdG6PI was mainly expressed in the early stages of third-instar larvae and adults, while significantly higher expression of BdUAP was observed in adults. Both transcripts were expressed highly in the Malpighian tubules, but only slightly in the tracheae. The expression of both BdG6PI and BdUAP was significantly up-regulated by 20-hydroxyecdysone exposure and down-regulated by starvation. Moreover, injection of double-stranded RNAs of BdG6PI and BdUAP into third-instar larvae significantly reduced the corresponding gene expressions. Additionally, silencing of BdUAP resulted in 65% death and abnormal phenotypes of larvae, while silencing of BdG6PI had a slight effect on insect molting. These findings provide some data on the roles of BdG6PI and BdUAP in B. dorsalis and demonstrate the potential role for BdUAP in larval-pupal transition. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    LENUS (Irish Health Repository)

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates.

  12. A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei.

    Science.gov (United States)

    Kim, Wonyong; Park, Jeong-Jin; Gang, David R; Peever, Tobin L; Chen, Weidong

    2015-11-01

    Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology.

  13. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    Science.gov (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  14. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Hong WANG; He-Chun YE; Guo-Feng LI

    2005-01-01

    Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.

  15. A-Factor and Phosphate Depletion Signals Are Transmitted to the Grixazone Biosynthesis Genes via the Pathway-Specific Transcriptional Activator GriR▿ †

    OpenAIRE

    Higashi, Tatsuichiro; Iwasaki, Yuko; Ohnishi, Yasuo; Horinouchi, Sueharu

    2007-01-01

    Grixazone (GX), which is a diffusible yellow pigment containing a phenoxazinone chromophore, is one of the secondary metabolites under the control of A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) in Streptomyces griseus. GX production is also induced by phosphate starvation. The whole biosynthesis gene cluster for GX was cloned and characterized. The gene cluster consisting of 13 genes contained six transcriptional units, griT, griSR, griR, griAB, griCDEFG, and griJIH. During cul...

  16. A Biotin Biosynthesis Gene Restricted to Helicobacter.

    Science.gov (United States)

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E

    2016-02-12

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections.

  17. [Salidroside biosynthesis pathway: the initial reaction and glycosylation of tyrosol].

    Science.gov (United States)

    Ma, Lanqing; Liu, Chunmei; Yu, Hansong; Zhang, Jixing; Gao, Dongyao; Li, Yanfang; Wang, Younian

    2012-03-01

    Salidroside, the 8-O-beta-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing the production of salidroside by biotechnological process. Glucosylation of tyrosol is thought to be the final step in salidroside biosynthesis. In our related works, three UGT clones were isolated from the roots and the cultured cells. Our intention was to combine the catalytic specificity of these UGTs in vitro in order to change the level of salidroside in vivo by over-expression of the above UGTs. However, as the aglycone substrate of salidroside, the biosynthetic pathway of tyrosol and its regulation are less well understood. The results of related studies revealed that there are two different possibilities for the tyrosol biosynthetic pathway. One possibility is that tyrosol is produced from a p-coumaric acid precursor, which is derived mainly from phenylalanine. The second possibility is that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. Our previous work demonstrated that over-expression of the endogenous phenylalanine ammonia-lyase gene (PALrs1) and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis. In contrast, the data presented in our recent work provide in vitro and in vivo evidence that the tyrosine decarboxylase (RsTyrDC) is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. Sachalinensis.

  18. Pathways associated with lignin biosynthesis in lignomaniac jute fibres.

    Science.gov (United States)

    Chakraborty, Avrajit; Sarkar, Debabrata; Satya, Pratik; Karmakar, Pran Gobinda; Singh, Nagendra Kumar

    2015-08-01

    We generated the bast transcriptomes of a deficient lignified phloem fibre mutant and its wild-type jute (Corchorus capsularis) using Illumina paired-end sequencing. A total of 34,163 wild-type and 29,463 mutant unigenes, with average lengths of 1442 and 1136 bp, respectively, were assembled de novo, ~77-79 % of which were functionally annotated. These annotated unigenes were assigned to COG (~37-40 %) and GO (~22-28 %) classifications and mapped to 189 KEGG pathways (~19-21 %). We discovered 38 and 43 isoforms of 16 and 10 genes of the upstream shikimate-aromatic amino acid and downstream monolignol biosynthetic pathways, respectively, rendered their sequence similarities, confirmed the identities of 22 of these candidate gene families by phylogenetic analyses and reconstructed the pathway leading to lignin biosynthesis in jute fibres. We also identified major genes and bast-related transcription factors involved in secondary cell wall (SCW) formation. The quantitative RT-PCRs revealed that phenylalanine ammonia-lyase 1 (CcPAL1) was co-down-regulated with several genes of the upstream shikimate pathway in mutant bast tissues at an early growth stage, although its expression relapsed to the normal level at the later growth stage. However, cinnamyl alcohol dehydrogenase 7 (CcCAD7) was strongly down-regulated in mutant bast tissues irrespective of growth stages. CcCAD7 disruption at an early growth stage was accompanied by co-up-regulation of SCW-specific genes cellulose synthase A7 (CcCesA7) and fasciclin-like arabinogalactan 6 (CcFLA6), which was predicted to be involved in coordinating the S-layers' deposition in the xylan-type jute fibres. Our results identified CAD as a promising target for developing low-lignin jute fibres using genomics-assisted molecular approaches.

  19. 木质素生物合成途径中关键酶基因的分子特征%Molecular Characterization of Key Enzyme Genes Related to the Pathway of Lignin Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    石海燕; 张玉星

    2011-01-01

    主要对苯丙氨酸裂解酶(phcnylalanine ammonia-lyase,PAL)基因、4-香豆酸辅酶A连接酶(4-coumarate-CoA ligase,4CL)基因、肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase,CAD)基因、过氧化物酶(peroxidase,POX)基因、漆酶(laccase,LAC)基因、dirigent(DIR)蛋白基因等木质素生物合成途径中关键酶基因的克隆、表达、调控等研究进展进行综述,旨在揭示上述木质素生物合成途径中关键酶基因的分子特征.为通过转基因技术来调控植物体中木质素的含量及其化学组成从而得到改良的新植物资源提供思路.%This review focused on the cloning, expression and regulation of key enzyme genes, such as phenylalanine ammonia-lysate genes (PALs), 4-coumarate-CoA ligase genes (4CLs), cinnamyl alcohol dehydrogenase genes (CADs), peroxidase genes (POXs), laccase genes (LACs), and dirigent genes (DIRs),which were related to the pathway of lignin biosynthesis.It would provide some ideas for regulating content and chemical composition of plant lignin and obtaining improved new plant resource by genetic manipulation at the key metabolic steps through disclosing the molecular characterization of the above key enzyme genes related to the pathway of lignin biosynthesis.

  20. Characterization of Flavan-3-ols and Expression of MYB and Late Pathway Genes Involved in Proanthocyanidin Biosynthesis in Foliage of Vitis bellula

    Directory of Open Access Journals (Sweden)

    Ke-Gang Li

    2013-03-01

    Full Text Available Proanthocyanidins (PAs are fundamental nutritional metabolites in different types of grape products consumed by human beings. Although the biosynthesis of PAs in berry of Vitis vinifera has gained intensive investigations, the understanding of PAs in other Vitis species is limited. In this study, we report PA formation and characterization of gene expression involved in PA biosynthesis in leaves of V. bellula, a wild edible grape species native to south and south-west China. Leaves are collected at five developmental stages defined by sizes ranging from 0.5 to 5 cm in length. Analyses of thin layer chromatography (TLC and high performance liquid chromatography-photodiode array detector (HPLC-PAD show the formation of (+-catechin, (−-epicatechin, (+-gallocatechin and (−-epigallocatechin during the entire development of leaves. Analyses of butanol-HCl boiling cleavage coupled with spectrometry measurement at 550 nm show a temporal trend of extractable PA levels, which is characterized by an increase from 0.5 cm to 1.5 cm long leaves followed by a decrease in late stages. TLC and HPLC-PAD analyses identify cyanidin, delphinidin and pelargonidin produced from the cleavage of PAs in the butanol-HCl boiling, showing that the foliage PAs of V. bellula include three different types of extension units. Four cDNAs, which encode VbANR, VbDFR, VbLAR1 and VbLAR2, respectively, are cloned from young leaves. The expression patterns of VbANR and VbLAR2 but not VbLAR1 and VbDFR follow a similar trend as the accumulation patterns of PAs. Two cDNAs encoding VbMYBPA1 and VbMYB5a, the homologs of which have been demonstrated to regulate the expression of both ANR and LAR in V. vinifera, are also cloned and their expression profiles are similar to those of VbANR and VbLAR2. In contrast, the expression profiles of MYBA1 and 2 homologs involved in anthocyanin biosynthesis are different from those of VbANR and VbLAR2. Our data show that both ANR and LAR branches are

  1. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A

    Directory of Open Access Journals (Sweden)

    Gunsalus Robert P

    2010-02-01

    Full Text Available Abstract Background The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. Results The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr, hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd as well as tungsten-type (fwd formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. Conclusions The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens.

  2. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.

    Science.gov (United States)

    Oborník, Miroslav; Green, Beverley R

    2005-12-01

    Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.

  3. Role of the lpxM lipid A biosynthesis pathway gene in pathogenicity of avian pathogenic Escherichia coli strain E058 in a chicken infection model.

    Science.gov (United States)

    Xu, Huiqing; Ling, Jielu; Gao, Qingqing; He, Hongbo; Mu, Xiaohui; Yan, Zhen; Gao, Song; Liu, Xiufan

    2013-10-25

    Lipopolysaccharide (LPS) is a major surface component of avian pathogenic Escherichia coli (APEC), and is a possible virulence factor in avian infections caused by this organism. The contribution of the lpxM gene, which encodes a myristoyl transferase that catalyzes the final step in lipid A biosynthesis, to the pathogenicity of APEC has not previously been assessed. In this study, an isogenic lpxM mutant, E058ΔlpxM, was constructed in APEC O2 strain E058 and then characterized. Structural analysis of lipid A from the parental strain and derived mutant showed that E058ΔlpxM lacked one myristoyl (C14:0) on its lipid A molecules. No differences were observed between the mutant and wild-type in a series of tests including growth rate in different broths and ability to survive in specific-pathogen-free chicken serum. However, the mutant showed significantly reduced invasion and intracellular survival in the avian macrophage HD11 cell line (Porgans of birds challenged with the wild-type strain were more severe than in birds infected with the mutant. However, the E058ΔlpxM mutant showed a similar sensitivity pattern to the parental strain following exposure to several hydrophobic reagents. These results indicate that the lpxM gene is important for the pathogenicity and biological activity of APEC strain E058.

  4. Blakeslea trispora Genes for Carotene Biosynthesis

    OpenAIRE

    Rodríguez-Sáiz, M.; de Paz, B.; De la Fuente, J L; López-Nieto, M J; Cabri, W.; Barredo, J. L.

    2004-01-01

    We cloned the carB and carRA genes involved in β-carotene biosynthesis from overproducing and wild-type strains of Blakeslea trispora. The carB gene has a length of 1,955 bp, including two introns of 141 and 68 bp, and encodes a protein of 66.4 kDa with phytoene dehydrogenase activity. The carRA gene contains 1,894 bp, with a single intron of 70 bp, and encodes a protein of 69.6 kDa with separate domains for lycopene cyclase and phytoene synthase. The estimated transcript sizes for carB and c...

  5. The Sorghum Gene for Leaf Color Changes upon Wounding (P Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawahigashi

    2016-05-01

    Full Text Available Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L. Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP and tan Greenleaf (pp cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol to flavan-4-ols (apiforol or luteoforol in vitro. Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway.

  6. Functional analysis of fungal polyketide biosynthesis genes.

    Science.gov (United States)

    Fujii, Isao

    2010-05-01

    Fungal polyketides have huge structural diversity from simple aromatics to highly modified complex reduced-type compounds. Despite such diversty, single modular iterative type I polyketide synthases (iPKSs) are responsible for their carbon skeleton construction. Using heterologous expression systems, we have studied on ATX, a 6-methylsalicylic acid synthase from Aspergillus terreus as a model iPKS. In addition, iPKS functions involved in fungal spore pigment biosynthesis were analyzed together with polyketide-shortening enzymes that convert products of PKSs to shorter ketides by hydrolytic C-C bond cleavage. In our studies on reducing-type iPKSs, we cloned and expressed PKS genes, pksN, pksF, pksK and sol1 from Alternaria solani. The sol gene cluster was found to be involved in solanapyrone biosynthesis and sol5 was identified to encode solanapyrone synthase, a Diels-Alder enzyme. Our fungal PKS studies were further extended to identify the function of PKS-nonribosomal peptide synthase involved in cyclopiazonic acid biosynthesis.

  7. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad Talebi

    2014-08-01

    Full Text Available Advanced generations of biofuels basically revolve around non-agricultural energy crops. Among those, microalgae owing to its unique characteristics i.e. natural tolerance to waste and saline water, sustainable biomass production and high lipid content (LC, is regarded by many as the ultimate choice for the production of various biofuels such as biodiesel. In the present study, manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina was achieved using pGH plasmid harboring AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. The stability of transformation was confirmed by PCR after several passages. Southern hybridization of AccD probe with genomic DNA revealed stable integration of the cassette in the specific positions in the chloroplast genome with no read through transcription by indigenous promoters. Comparison of the LC and fatty acid profile of the transformed algal cell line and the control revealed the over-expression of the ME/AccD genes in the transformants leading to 12% increase in total LC and significant improvements in biodiesel properties especially by increasing algal oil oxidation stability. The whole process successfully implemented herein for transforming algal cells by genes involved in lipid production pathway could be helpful for large scale biodiesel production from microalgae.

  8. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.

    Science.gov (United States)

    Wu, Xue-Long; Liu, Zhi-Hong; Hu, Zhang-Hua; Huang, Rui-Zhi

    2014-06-01

    Photosynthesis in "green" seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mechanism underpinning the coordinated expression of fatty acid (FA) biosynthesis- and photosynthesis-related genes in such developing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyll content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Overexpression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.

  9. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed

    Institute of Scientific and Technical Information of China (English)

    Xue-Long Wu; Zhi-Hong Liu; Zhang-Hua Hu; Rui-Zhi Huang

    2014-01-01

    Photosynthesis in“green”seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mecha-nism underpinning the coordinated expression of fatty acid (FA) biosynthesis-and photosynthesis-related genes in such develop-ing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyl content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Over-expression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.

  10. Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211.

    Science.gov (United States)

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing; Bai, Linquan

    2012-02-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.

  11. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.

    Science.gov (United States)

    Yoshino, Tomoko; Liang, Yue; Arai, Daichi; Maeda, Yoshiaki; Honda, Toru; Muto, Masaki; Kakunaka, Natsumi; Tanaka, Tsuyoshi

    2015-02-01

    The production of alkanes in a marine cyanobacterium possessing the α-olefin biosynthesis pathway was achieved by introducing an exogenous alkane biosynthesis pathway. Cyanobacterial hydrocarbons are synthesized via two separate pathways: the acyl-acyl carrier protein (ACP) reductase/aldehyde-deformylating oxygenase (AAR/ADO) pathway for the alkane biosynthesis and the α-olefin synthase (OLS) pathway for the α-olefin biosynthesis. Coexistence of these pathways has not yet been reported. In this study, the marine cyanobacterium Synechococcus sp. NKBG15041c was shown to produce α-olefins similar to those of Synechococcus sp. PCC7002 via the α-olefin biosynthesis pathway. The production of heptadecane in Synechococcus sp. NKBG15041c was achieved by expressing the AAR/ADO pathway genes from Synechococcus elongatus PCC 7942. The production yields of heptadecane in Synechococcus sp. NKBG15041c varied with the expression level of the aar and ado genes. The maximal yield of heptadecane was 4.2 ± 1.2 μg/g of dried cell weight in the transformant carrying a homologous promoter. Our results also suggested that the effective activation of ADO may be more important for the enhancement of alkane production by cyanobacteria.

  12. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers.

    Science.gov (United States)

    Kellmann, Ralf; Mihali, Troco Kaan; Michali, Troco Kaan; Neilan, Brett Anthony; Neilan, Brett Adam

    2008-11-01

    The paralytic shellfish poisoning (PSP) toxins, saxitoxin, and its derivatives, are produced by a complex and unique biosynthetic pathway. It involves reactions that are rare in other metabolic pathways, however, distantly related organisms, such as dinoflagellates and cyanobacteria, produce these toxins by an identical pathway. Speculative explanations for the unusual phylogenetic distribution of this metabolic pathway have been proposed, including a polyphyletic origin, the involvement of symbiotic bacteria, and horizontal gene transfer. This study describes for the first time the identity of one gene, sxt1, that is involved in the biosynthesis of saxitoxin in cyanobacteria. It encoded an O-carbamoyltransferase (OCTASE) that was proposed to carbamoylate the hydroxymethyl side chain of saxitoxin precursor. Orthologues of sxt1 were exclusively present in PSP-toxic strains of cyanobacteria and had a high sequence similarity to each other. L. wollei had a naturally mutated sxt1 gene that encoded an inactive enzyme, and was incapable of producing carbamoylated PSP-toxin analogues, supporting the proposed function of Sxt1. Phylogenetic analysis revealed that OCATSE genes were present exclusively in prokaryotic organisms and were characterized by a high rate of horizontal gene transfer. OCTASE has most likely evolved from an ancestral O-sialoglycoprotein endopeptidase from proteobacteria, whereas the most likely phylogenetic origin of sxt1 was an ancestral alpha-proteobacterium. The phylogeny of sxt1 suggested that the entire set of genes required for saxitoxin biosynthesis may spread by horizontal gene transfer.

  13. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii.

    Science.gov (United States)

    Sivanandhan, Ganeshan; Arunachalam, Chinnathambi; Selvaraj, Natesan; Sulaiman, Ali Alharbi; Lim, Yong Pyo; Ganapathi, Andy

    2015-06-01

    The investigation of seaweeds, Gracilaria edulis and Sargassum wightii extracts was carried out for the estimation of growth characteristics and major withanolides production in hairy root culture of Withania somnifera. The extract of G. edulis (50%) in MS liquid basal medium enabled maximum production of dry biomass (5.46 g DW) and withanolides contents (withanolide A 5.23 mg/g DW; withaferin A 2.24 mg/g DW and withanone 4.83 mg/g DW) in hairy roots after 40 days of culture with 48 h contact time. The obtained withanolides contents were significantly higher (2.32-fold-2.66-fold) in hairy root culture when compared to the control. RT PCR analysis of important pathway genes such as SE, SS, HMGR and FPPS exhibited substantial higher expression upon the seaweed extracts treatment in hairy root culture. This experiment would paw a platform for withanolides production in hairy root culture with the influence of sea weed extracts for pharmaceutical companies in the future.

  14. Expression and mapping of anthocyanin biosynthesis genes in carrot.

    Science.gov (United States)

    Yildiz, Mehtap; Willis, David K; Cavagnaro, Pablo F; Iorizzo, Massimo; Abak, Kazim; Simon, Philipp W

    2013-07-01

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots of carrots or other species. We quantified expression of six anthocyanin biosynthetic genes [phenylalanine ammonia-lyase (PAL3), chalcone synthase (CHS1), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR1), leucoanthocyanidin dioxygenase (LDOX2), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT)] in three carrot inbreds with contrasting root color: solid purple (phloem and xylem); purple outer phloem/orange xylem; and orange phloem and xylem. Transcripts for five of these genes (CHS1, DFR1, F3H, LDOX2, PAL3) accumulated at high levels in solid purple carrots, less in purple-orange carrot, and low or no transcript in orange carrots. Gene expression coincided with anthocyanin accumulation. In contrast, UFGT expression was comparable in purple and orange carrots and relatively unchanged during root development. In addition, five anthocyanin biosynthesis genes [FLS1 (flavonol synthase), F3H, LDOX2, PAL3, and UFGT] and three anthocyanin transcription factors (DcEFR1, DcMYB3 and DcMYB5) were mapped in a population segregating for the P 1 locus that conditions purple root color. P 1 mapped to chromosome 3 and of the eight anthocyanin biosynthesis genes, only F3H and FLS1 were linked to P 1. The gene expression and mapping data suggest a coordinated regulatory control of anthocyanin expression in carrot root and establish a framework for studying the anthocyanin pathway in carrots, and they also suggest that none of the genes evaluated is a candidate for P 1.

  15. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity.

    Directory of Open Access Journals (Sweden)

    Marianne Lucas-Hourani

    Full Text Available Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response.

  16. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.

    2017-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683

  17. A mitochondrial pathway for biosynthesis of lipid mediators

    Science.gov (United States)

    Tyurina, Yulia Y.; Poloyac, Samuel M.; Tyurin, Vladimir A.; Kapralov, Alexander A.; Jiang, Jianfei; Anthonymuthu, Tamil Selvan; Kapralova, Valentina I.; Vikulina, Anna S.; Jung, Mi-Yeon; Epperly, Michael W.; Mohammadyani, Dariush; Klein-Seetharaman, Judith; Jackson, Travis C.; Kochanek, Patrick M.; Pitt, Bruce R.; Greenberger, Joel S.; Vladimirov, Yury A.; Bayır, Hülya; Kagan, Valerian E.

    2014-06-01

    The central role of mitochondria in metabolic pathways and in cell-death mechanisms requires sophisticated signalling systems. Essential in this signalling process is an array of lipid mediators derived from polyunsaturated fatty acids. However, the molecular machinery for the production of oxygenated polyunsaturated fatty acids is localized in the cytosol and their biosynthesis has not been identified in mitochondria. Here we report that a range of diversified polyunsaturated molecular species derived from a mitochondria-specific phospholipid, cardiolipin (CL), is oxidized by the intermembrane-space haemoprotein, cytochrome c. We show that a number of oxygenated CL species undergo phospholipase A2-catalysed hydrolysis and thus generate multiple oxygenated fatty acids, including well-known lipid mediators. This represents a new biosynthetic pathway for lipid mediators. We demonstrate that this pathway, which includes the oxidation of polyunsaturated CLs and accumulation of their hydrolysis products (oxygenated linoleic, arachidonic acids and monolysocardiolipins), is activated in vivo after acute tissue injury.

  18. Engineering of glucosinolate biosynthesis: candidate gene identification and validation.

    Science.gov (United States)

    Møldrup, Morten E; Salomonsen, Bo; Halkier, Barbara A

    2012-01-01

    The diverse biological roles of glucosinolates as plant defense metabolites and anticancer compounds have spurred a strong interest in their biosynthetic pathways. Since the completion of the Arabidopsis genome, functional genomics approaches have enabled significant progress on the elucidation of glucosinolate biosynthesis, although in planta validation of candidate gene function often is hampered by time-consuming generation of knockout and overexpression lines in Arabidopsis. To better exploit the increasing amount of data available from genomic sequencing, microarray database and RNAseq, time-efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana benthamiana. Moreover, the lessons learned in the rapid, transient tobacco system are readily translated to our robust, versatile yeast expression platform, where additional genes critical for large-scale microbial production of glucosinolates can be identified. We anticipate that the methodology presented here will be beneficial to elucidate and engineer other plant biosynthetic pathways.

  19. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103

    Science.gov (United States)

    Jia, Nan; Ding, Ming-Zhu; Luo, Hao; Gao, Feng; Yuan, Ying-Jin

    2017-01-01

    More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them, Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering. PMID:28317865

  20. Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs.

    Science.gov (United States)

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Trotsenko, Yuri A

    2011-01-01

    Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) is a widely distributed compatible solute accumulated by halophilic and halotolerant microorganisms to prevent osmotic stress in highly saline environments. Ectoine as a highly water keeping compound stabilizing biomolecules and whole cells can be used in scientific work, cosmetics, and medicine. Detailed understanding of the organization/regulation of the ectoine biosynthetic pathway in various producers is an active area of research. Here we review current knowledge on some genetic and enzymatic aspects of ectoine biosynthesis in halophilic and halotolerant methanotrophs. By using PCR methodology, the genes coding for the specific enzymes of ectoine biosynthesis, diaminobutyric acid (DABA) aminotransferase (EctB), DABA acetyltransferase (EctA), and ectoine synthase (EctC), were identified in several methanotrophic species. Organization of these genes in either ectABC or ectABC-ask operons, the latter additionally encoding aspartate kinase isozyme (Ask), correlated well with methanotroph halotolerance and intracellular ectoine level. A new gene, ectR1 encoding the MarR-like transcriptional regulatory protein EctR1, negatively controlling transcription of ectoine biosynthetic genes was found upstream of ectABC-ask operon in Methylomicrobium alcaliphilum 20Z. The ectR-like genes were also found in halotolerant methanol utilizers Methylophaga alcalica and Methylophaga thalassica as well as in several genomes of nonmethylotrophic species. The His(6)-tagged DABA acetyltransferases from Mm. alcaliphilum, M. alcalica, and M. thalassica were purified and the enzyme properties were found to correlate with the ecophysiologies of these bacteria. All these discoveries should be very helpful for better understanding the biosynthetic mechanism of this important natural compound, and for the targeted metabolic engineering of its producers.

  1. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis.

    Science.gov (United States)

    Lv, Meinan; Ji, Xinjian; Zhao, Junfeng; Li, Yongzhen; Zhang, Chen; Su, Li; Ding, Wei; Deng, Zixin; Yu, Yi; Zhang, Qi

    2016-05-25

    Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.

  2. Coordinated expression of two key enzyme genes pheA and aroF in phenylalanine biosynthesis pathway%苯丙氨酸生物合成关键酶基因pheA与aroF协同表达

    Institute of Scientific and Technical Information of China (English)

    芦佳; 黄坤央; 赵越; 徐琪寿; 郭军; 黄英武

    2012-01-01

    Objective:To develop a metabolically engineered E..coli strain for the overproduction of L-phenylalanine through optimization of protein expressions of two key genes pheA and aroF involved in L-phenylalanine biosynthesis pathway.Methods:We constructed two recombinant plasmids pZEI2-RBS-AF and pZE12-AF based on designing the DNA sequences of intergenic regulatory region between pheA and aroF.PheA and aroF protein expressions were observed by SDS-PAGE.Engineered E.coli strains were obtained by transforming the above two plasmids into an auxotrophic strain MGA and fermented for L- phenylalanine production.ResuLts: L- phenylalanine yield of the engineered strain MG△pZE12-AF was almost twice as high as that of the engineered strain MG△pZE12 -RBS-AR It was achieved by coordinated tandem expression of pheA and aroR Conclusion: Coordinated expression of L- phenylalanine biosynthesis enzymes can be obtained by adjusting intergenic regulatory sequences between tandem enzyme genes. It provides a new approach to improve the yield of engineered L-phenylalanine producing strain.%目的:优化L-苯丙氨酸生物合成通路上的关键酶基因pheA、aroF的蛋白表达,构建高产L-苯丙氨酸的工程菌株。方法:通过设计酶基因的间隔调控序列,分别构建重组质粒pZE12-RBS—AF和pZE12-AF,SDS—PAGE观察蛋白表达量,转入营养缺陷菌MGA中构建工程菌,并发酵培养。结果:工程菌MG△pZE12-AF苯丙氨酸的产量比工程菌MG△pZE12-RBs—AF高1倍,实现了L-苯丙氨酸生物合成关键酶基因pheA和aroF协同,匹配表达。结论:调整串联酶基因之间的间隔调控序列可实现苯丙氨酸合成酶基因的协同表达,提供了-种新的提高苯丙氨酸工程菌产量的方法。

  3. Recent Advances in the Regulation of Brassinosteroid Signaling and Biosynthesis Pathways

    Institute of Scientific and Technical Information of China (English)

    Huaxun Ye; Lei Li; Yanhai Yin

    2011-01-01

    Brassinosteroids (BRs) play important roles in plant growth, development and responses to environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) regulators to control the activities of BES1 and BZR1 family transcription factors,which regulate the expression of hundreds to thousands of genes for various BR responses. Recent studies identified novel signaling components in the BR pathways and started to establish the detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism and transcriptional network through which BES1 and BZR1 control gene expression and various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. Identification of BES1 and BZR1 target genes established a transcriptional network for BR response and crosstalk with other signaling pathways. Recent studies also revealed regulatory mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here we provide an overview and discuss some of the most recent progress in the regulation of BR signaling and biosynthesis pathways.

  4. Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Yao Rong

    Full Text Available Glycosylphosphatidylinositol (GPI is synthesized and transferred to proteins in the endoplasmic reticulum (ER. GPI-anchored proteins are then transported from the ER to the plasma membrane through the Golgi apparatus. To date, at least 17 steps have been identified to be required for the GPI biosynthetic pathway. Here, we aimed to establish a comprehensive screening method to identify genes involved in GPI biosynthesis using mammalian haploid screens. Human haploid cells were mutagenized by the integration of gene trap vectors into the genome. Mutagenized cells were then treated with a bacterial pore-forming toxin, aerolysin, which binds to GPI-anchored proteins for targeting to the cell membrane. Cells that showed low surface expression of CD59, a GPI-anchored protein, were further enriched for. Gene trap insertion sites in the non-selected population and in the enriched population were determined by deep sequencing. This screening enriched 23 gene regions among the 26 known GPI biosynthetic genes, which when mutated are expected to decrease the surface expression of GPI-anchored proteins. Our results indicate that the forward genetic approach using haploid cells is a useful and powerful technique to identify factors involved in phenotypes of interest.

  5. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Xiao

    Full Text Available Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs. To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin, and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3', 5'-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively. Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3', 5'-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber.

  6. Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Xianen Li

    2012-10-01

    Full Text Available Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis.

  7. Comparative transcriptomic analyses of differentially expressed genes in transgenic melatonin biosynthesis ovine HIOMT gene in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-11-01

    Full Text Available Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405 and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. The significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3 genes were consistent with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Early flowering in overexpression of oHIOMT switchgrass involved in the regulation of flowering-time genes (APETALA2. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc. were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc. were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants.

  8. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice.

    Science.gov (United States)

    Okada, Atsushi; Shimizu, Takafumi; Okada, Kazunori; Kuzuyama, Tomohisa; Koga, Jinichiro; Shibuya, Naoto; Nojiri, Hideaki; Yamane, Hisakazu

    2007-09-01

    Diterpenoid phytoalexins such as momilactones and phytocassanes are produced via geranylgeranyl diphosphate in suspension-cultured rice cells after treatment with a chitin elicitor. We have previously shown that the production of diterpene hydrocarbons leading to phytoalexins and the expression of related biosynthetic genes are activated in suspension-cultured rice cells upon elicitor treatment. To better understand the elicitor-induced activation of phytoalexin biosynthesis, we conducted microarray analysis using suspension-cultured rice cells collected at various times after treatment with chitin elicitor. Hierarchical cluster analysis revealed two types of early-induced expression (EIE-1, EIE-2) nodes and a late-induced expression (LIE) node that includes genes involved in phytoalexins biosynthesis. The LIE node contains genes that may be responsible for the methylerythritol phosphate (MEP) pathway, a plastidic biosynthetic pathway for isopentenyl diphosphate, an early precursor of phytoalexins. The elicitor-induced expression of these putative MEP pathway genes was confirmed by quantitative reverse-transcription PCR. 1-Deoxy-D: -xylulose 5-phosphate synthase (DXS), 1-deoxy-D: -xylulose 5-phosphate reductoisomerase (DXR), and 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol synthase (CMS), which catalyze the first three committed steps in the MEP pathway, were further shown to have enzymatic activities that complement the growth of E. coli mutants disrupted in the corresponding genes. Application of ketoclomazone and fosmidomycin, inhibitors of DXS and DXR, respectively, repressed the accumulation of diterpene-type phytoalexins in suspension cells treated with chitin elicitor. These results suggest that activation of the MEP pathway is required to supply sufficient terpenoid precursors for the production of phytoalexins in infected rice plants.

  9. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  10. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts.

    Science.gov (United States)

    Back, Kyoungwhan; Tan, Dun-Xian; Reiter, Russel J

    2016-11-01

    Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Gene expression analysis of enzymes of the carotenoid biosynthesis pathway involved in β-cryptoxanthin accumulation in wild raspberry, Rubus palmatus.

    Science.gov (United States)

    Mizuno, Kouichi; Tokiwano, Tetsuo; Yoshizawa, Yuko

    2017-03-18

    β-cryptoxanthin (β-Cry), a xanthophyll, is unlike other abundant carotenoids, such as α-carotene, β-carotene, lycopene, lutein, and zeaxanthin. It is not found in most fruits or vegetables but is found only in specific fruits, such as hot chili pepper, persimmon, and citrus fruits. Because recent reports suggest that β-Cry intake is beneficial to human health, the xanthophyll requires further investigation. Although β-Cry accumulates in the fruit of wild raspberry, Rubus palmatus, it is not present in cultivated raspberry. In the present study, two wild raspberry species were studied-R. palmatus, which accumulates β-Cry in the fruit, and R. crataegifolius, which does not accumulate β-Cry. Four carotenoid biosynthetic enzymes derived from these two species were analyzed-phytoene synthase (PSY), lycopene β-cyclase (LCYb), β-carotene hydroxylase (HYb), and zeaxanthin epoxidase (ZEP). Expression levels of their genes were also assessed to elucidate mechanism underlying β-Cry accumulation. Partial gene sequences of RubPSY, RubLCYb, RubHYb, and RubZEP, isolated from immature raspberry fruits of R. palmatus, were used as probes for Northern blot analysis. RubZEP expression ceased as the fruits matured, possibly because of reduced production of zeaxanthin. β-Cry is considered to be an intermediate compound that accumulates in the mature fruits of R. palmatus. High expression of RubPSY was detectable in the mature fruits of R. crataegifolius, and the expression of RubLCYb, RubHYb, and RubZEP was detectable during all stages of fruit maturation. In contrast, β-Cry was absent in the mature fruits of R. crataegifolius.

  12. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba.

    Directory of Open Access Journals (Sweden)

    Xiao-Jiao Han

    Full Text Available BACKGROUND: Aromatic essential oils extracted from fresh fruits of Litsea cubeba (Lour. Pers., have diverse medical and economic values. The dominant components in these essential oils are monoterpenes and sesquiterpenes. Understanding the molecular mechanisms of terpenoid biosynthesis is essential for improving the yield and quality of terpenes. However, the 40 available L. cubeba nucleotide sequences in the public databases are insufficient for studying the molecular mechanisms. Thus, high-throughput transcriptome sequencing of L. cubeba is necessary to generate large quantities of transcript sequences for the purpose of gene discovery, especially terpenoid biosynthesis related genes. RESULTS: Using Illumina paired-end sequencing, approximately 23.5 million high-quality reads were generated. De novo assembly yielded 68,648 unigenes with an average length of 834 bp. A total of 38,439 (56% unigenes were annotated for their functions, and 35,732 and 25,806 unigenes could be aligned to the GO and COG database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG, 16,130 unigenes were assigned to 297 KEGG pathways, and 61 unigenes, which contained the mevalonate and 2-C-methyl-D-erythritol 4-phosphate pathways, could be related to terpenoid backbone biosynthesis. Of the 12,963 unigenes, 285 were annotated to the terpenoid pathways using the PlantCyc database. Additionally, 14 terpene synthase genes were identified from the transcriptome. The expression patterns of the 16 genes related to terpenoid biosynthesis were analyzed by RT-qPCR to explore their putative functions. CONCLUSION: RNA sequencing was effective in identifying a large quantity of sequence information. To our knowledge, this study is the first exploration of the L. cubeba transcriptome, and the substantial amount of transcripts obtained will accelerate the understanding of the molecular mechanisms of essential oils biosynthesis. The

  13. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Clark Shawn M

    2013-01-01

    Full Text Available Abstract Background Bitter acids (e.g. humulone are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP pathway. We used RNA sequencing (RNA-seq to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic and reverse (catabolic reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial and

  14. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  15. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis

    Science.gov (United States)

    Ahmed, Mustafa Y.; Al-Khayat, Aisha; Al-Murshedi, Fathiya; Al-Futaisi, Amna; Chioza, Barry A.; Pedro Fernandez-Murray, J.; Self, Jay E.; Salter, Claire G.; Harlalka, Gaurav V.; Rawlins, Lettie E.; Al-Zuhaibi, Sana; Al-Azri, Faisal; Al-Rashdi, Fatma; Cazenave-Gassiot, Amaury; Wenk, Markus R.; Al-Salmi, Fatema; Patton, Michael A.; Silver, David L.; McMaster, Christopher R.; Crosby, Andrew H.

    2017-01-01

    Abstract Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function. PMID:28052917

  16. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli.

    Science.gov (United States)

    Romero, Ibeth; Téllez, Jair; Yamanaka, Lais Eiko; Steindel, Mario; Romanha, Alvaro José; Grisard, Edmundo Carlos

    2014-04-24

    Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH]2) that plays a central role in maintaining intracellular redox homeostasis and providing defence against oxidative stress. We cloned and characterised genes coding for a cystathionine β-synthase (CβS) and cysteine synthase (CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan parasite Trypanosoma rangeli. Our results show that T. rangeli CβS (TrCβS), similar to its homologs in T. cruzi, contains the catalytic domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS lacks two of the four lysine residues (Lys26 and Lys184) required for activity. Enzymatic studies using T. rangeli extracts confirmed the absence of CS activity but confirmed the expression of an active CβS. Moreover, CβS biochemical assays revealed that the T. rangeli CβS enzyme also has serine sulfhydrylase activity. These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an important functional role during the insect stage of the life cycle of this protozoan parasite.

  17. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    Science.gov (United States)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  18. Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates.

    Science.gov (United States)

    Rosic, Nedeljka N

    2012-04-01

    Mycosporine-like amino acids (MAAs) are multifunctional secondary metabolites involved in photoprotection in many marine organisms. As well as having broad ultraviolet (UV) absorption spectra (310-362 nm), these biological sunscreens are also involved in the prevention of oxidative stress. More than 20 different MAAs have been discovered so far, characterized by distinctive chemical structures and a broad ecological distribution. Additionally, UV-screening MAA metabolites have been investigated and used in biotechnology and cosmetics. The biosynthesis of MAAs has been suggested to occur via either the shikimate or pentose phosphate pathways. Despite their wide distribution in marine and freshwater species and also the commercial application in cosmetic products, there are still a number of uncertainties regarding the genetic, biochemical, and evolutionary origin of MAAs. Here, using a transcriptome-mining approach, we identify the gene counterparts from the shikimate or pentose phosphate pathway involved in MAA biosynthesis within the sequences of the reef-building coral symbiotic dinoflagellates (genus Symbiodinium). We also report the highly similar sequences of genes from the proposed MAA biosynthetic pathway involved in the metabolism of 4-deoxygadusol (direct MAA precursor) in various Symbiodinium strains confirming their algal origin and conserved nature. Finally, we reveal the separate identity of two O-methyltransferase genes, possibly involved in MAA biosynthesis, as well as nonribosomal peptide synthetase and adenosine triphosphate grasp homologs in symbiotic dinoflagellates. This study provides a biochemical and phylogenetic overview of the genes from the proposed MAA biosynthetic pathway with a focus on coral endosymbionts.

  19. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  20. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  1. FUNCTIONAL SPECIALIZATION OF DUPLICATED FLAVONOID BIOSYNTHESIS GENES IN WHEAT

    Directory of Open Access Journals (Sweden)

    Khlestkina E.

    2012-08-01

    Full Text Available Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes or segmental chromosome duplications (paralogous genes. In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD, both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707. We also thank Ms. Galina Generalova for technical assistance.

  2. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of Hylocereus polyrhizus

    Directory of Open Access Journals (Sweden)

    Hua eQingzhu

    2016-01-01

    Full Text Available Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages of Guanhuahong (H. polyrhizus were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1,183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8,871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. Polyrhizus (7-1 and H. Undatus (132-4. Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses and gene expression profiles.

  3. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus.

    Science.gov (United States)

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2015-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. polyrhizus (7-1) and H. undatus (132-4). Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses, gene expression profiles and published documents.

  4. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Directory of Open Access Journals (Sweden)

    Neilan Brett A

    2009-03-01

    Full Text Available Abstract Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved

  5. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history.

    Science.gov (United States)

    Kandiba, Lina; Eichler, Jerry

    2013-08-01

    Sialic acids and the other nonulosonic acid sugars, legionaminic acid and pseudaminic acid, are nine carbon-containing sugars that can be detected as components of the glycans decorating proteins and other molecules in Eukarya and Bacteria. Yet, despite the prevalence of N-glycosylation in Archaea and the variety of sugars recruited for the archaeal version of this post-translational modification, only a single report of a nonulosonic acid sugar in an archaeal N-linked glycan has appeared. Hence, to obtain a clearer picture of nonulosonic acid sugar biosynthesis capability in Archaea, 122 sequenced genomes were scanned for the presence of genes involved in the biogenesis of these sugars. The results reveal that while Archaea and Bacteria share a common route of sialic acid biosynthesis, numerous archaeal nonulosonic acid sugar biosynthesis pathway components were acquired from elsewhere via various routes. Still, the limited number of Archaea encoding components involved in the synthesis of nonulosonic acid sugars implies that such saccharides are not major components of glycans in this domain.

  6. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Troco K Mihali

    Full Text Available Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds.

  7. Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine.

    Science.gov (United States)

    Yadav, Sudesh Kumar; Guleria, Praveen

    2012-01-01

    Stevia rebaudiana, a perennial herb from the Asteraceae family, is known to the scientific world for its sweetness and steviol glycosides (SGs). SGs are the secondary metabolites responsible for the sweetness of Stevia. They are synthesized by SG biosynthesis pathway operating in the leaves. Most of the genes encoding the enzymes of this pathway have been cloned and characterized from Stevia. Out of various SGs, stevioside and rebaudioside A are the major metabolites. SGs including stevioside have also been synthesized by enzymes and microbial agents. These are non-mutagenic, non-toxic, antimicrobial, and do not show any remarkable side-effects upon consumption. Stevioside has many medical applications and its role against diabetes is most important. SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry. This article presents an overview on Stevia and the importance of SGs.

  8. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing.

    Science.gov (United States)

    Nagamatsu, Atsushi; Masuta, Chikara; Senda, Mineo; Matsuura, Hideyuki; Kasai, Atsushi; Hong, Jin-Sung; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2007-11-01

    Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase (CHS) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase (F3'H) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.

  9. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera)

    Science.gov (United States)

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3′-hydroxylase (NMCH), and 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This

  10. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  11. Iron-dependent remodeling of fungal metabolic pathways associated with ferrichrome biosynthesis.

    Science.gov (United States)

    Mercier, Alexandre; Labbé, Simon

    2010-06-01

    The fission yeast Schizosaccharomyces pombe excretes and accumulates the hydroxamate-type siderophore ferrichrome. The sib1(+) and sib2(+) genes encode, respectively, a siderophore synthetase and an l-ornithine N(5)-oxygenase that participate in ferrichrome biosynthesis. In the present report, we demonstrate that sib1(+) and sib2(+) are repressed by the GATA-type transcriptional repressor Fep1 in response to high levels of iron. We further found that the loss of Fep1 results in increased ferrichrome production. We showed that a sib1Delta sib2Delta mutant strain exhibits a severe growth defect on iron-poor media. We determined that two metabolic pathways are involved in biosynthesis of ornithine, an obligatory precursor of ferrichrome. Ornithine is produced by hydrolysis of arginine by the Car1 and Car3 proteins. Although car3(+) was constitutively expressed, car1(+) transcription levels were repressed upon exposure to iron, with a concomitant decrease of Car1 arginase activity. Ornithine is also generated by transformation of glutamate, which itself is produced by two separate biosynthetic pathways which are transcriptionally regulated by iron in an opposite fashion. In one pathway, the glutamate dehydrogenase Gdh1, which produces glutamate from 2-ketoglutarate, was repressed under iron-replete conditions in a Fep1-dependent manner. The other pathway involves two coupled enzymes, glutamine synthetase Gln1 and Fe-S cluster-containing glutamate synthase Glt1, which were both repressed under iron-limiting conditions but were expressed under iron-replete conditions. Collectively, these results indicate that under conditions of iron deprivation, yeast remodels metabolic pathways linked to ferrichrome synthesis in order to limit iron utilization without compromising siderophore production and its ability to sequester iron from the environment.

  12. Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia).

    Science.gov (United States)

    Cuong, Do Manh; Jeon, Jin; Morgan, Abubaker M A; Kim, Changsoo; Kim, Jae Kwang; Lee, Sook Young; Park, Sang Un

    2017-08-23

    Charantin, a natural cucurbitane type triterpenoid, has been reported to have beneficial pharmacological functions such as anticancer, antidiabetic, and antibacterial activities. However, accumulation of charantin in bitter melon has been little studied. Here, we performed a transcriptome analysis to identify genes involved in the triterpenoid biosynthesis pathway in bitter melon seedlings. A total of 88,703 transcripts with an average length of 898 bp were identified in bitter melon seedlings. On the basis of a functional annotation, we identified 15 candidate genes encoding enzymes related to triterpenoid biosynthesis and analyzed their expression in different organs of mature plants. Most genes were highly expressed in flowers and/or fruit from the ripening stages. An HPLC analysis confirmed that the accumulation of charantin was highest in fruits from the ripening stage, followed by male flowers. The accumulation patterns of charantin coincide with the expression pattern of McSE and McCAS1, indicating that these genes play important roles in charantin biosynthesis in bitter melon. We also investigated optimum light conditions for enhancing charantin biosynthesis in bitter melon and found that red light was the most effective wavelength.

  13. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  14. LOCALIZATION OF THE PATHWAY OF THE PENICILLIN BIOSYNTHESIS IN PENICILLIUM-CHRYSOGENUM

    NARCIS (Netherlands)

    MULLER, WH; VANDERKRIFT, TP; KROUWER, AJJ; WOSTEN, HAB; VANDERVOORT, LHM; SMAAL, EB; VERKLEIJ, AJ

    1991-01-01

    The localization of the enzymes involved in penicillin biosynthesis in Penicillium chrysogenum hyphae has been studied by immunological detection methods in combination with electron microscopy and cell fractionation. The results suggest a complicated pathway involving different intracellular locati

  15. Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Lodato, P; Alcaíno, J; Barahona, S; Niklitschek, M; Carmona, M; Wozniak, A; Baeza, M; Jiménez, A; Cifuentes, V

    2007-01-01

    In the yeast Xanthophyllomyces dendrorhous the genes idi, crtE, crtYB, crtl and ast are involved in the biosynthesis of astaxanthin from isopentenyl pyrophosphate. The carotenoid production and the kinetics of mRNA expression of structural genes controlling the carotenogenesis in a wild-type ATCC 24230 and in carotenoid overproducer deregulated atxS2 strains were studied. The biosynthesis of carotenoid was induced at the late exponential growth phase in both strains. However, the cellular carotenoid concentration was four times higher in atxS2 than in the wild-type strain in the exponential growth phase, suggesting that carotenogenesis was deregulated in atxS2 at the beginning of growth. In addition, the maximum expression of the carotenogenesis genes at the mRNA level was observed during the induction period of carotenoid biosynthesis in the wild-type strain. The mRNA level of the crtYB, crtl, ast genes and to a lesser extent the idi gene, decayed at the end of the exponential growth phase. The mRNA levels of the crtE gene remained high along the whole growth curve of the yeast. In the atxS2 strain the mRNA levels of crtE gene were about two times higher than the wild-type strain in the early phase of the growth cycle.

  16. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library.

    Science.gov (United States)

    Ertesvåg, Helga; Sletta, Håvard; Senneset, Mona; Sun, Yi-Qian; Klinkenberg, Geir; Konradsen, Therese Aursand; Ellingsen, Trond E; Valla, Svein

    2017-01-03

    Polysaccharides often are necessary components of bacterial biofilms and capsules. Production of these biopolymers constitutes a drain on key components in the central carbon metabolism, but so far little is known concerning if and how the cells divide their resources between cell growth and production of exopolysaccharides. Alginate is an industrially important linear polysaccharide synthesized from fructose 6-phosphate by several bacterial species. The aim of this study was to identify genes that are necessary for obtaining a normal level of alginate production in alginate-producing Pseudomonas fluorescens. Polysaccharide biosynthesis is costly, since it utilizes nucleotide sugars and sequesters carbon. Consequently, transcription of the genes necessary for polysaccharide biosynthesis is usually tightly regulated. In this study we used an engineered P. fluorescens SBW25 derivative where all genes encoding the proteins needed for biosynthesis of alginate from fructose 6-phosphate and export of the polymer are expressed from inducible Pm promoters. In this way we would avoid identification of genes merely involved in regulating the expression of the alginate biosynthetic genes. The engineered strain was subjected to random transposon mutagenesis and a library of about 11500 mutants was screened for strains with altered alginate production. Identified inactivated genes were mainly found to encode proteins involved in metabolic pathways related to uptake and utilization of carbon, nitrogen and phosphor sources, biosynthesis of purine and tryptophan and peptidoglycan recycling. The majority of the identified mutants resulted in diminished alginate biosynthesis while cell yield in most cases were less affected. In some cases, however, a higher final cell yield were measured. The data indicate that when the supplies of fructose 6-phosphate or GTP are diminished, less alginate is produced. This should be taken into account when bacterial strains are designed for

  17. Leishmania spp: Delta-aminolevulinate-inducible neogenesis of porphyria by genetic complementation of incomplete heme biosynthesis pathway

    Science.gov (United States)

    Dutta, Sujoy; Furuyama, Kazumichi; Sassa, Shigeru; Chang, Kwang-Poo Chang

    2008-01-01

    To further develop the Leishmania model for porphyria based on their deficiencies in heme biosynthesis, three Old World species were doubly transfected as before for Leishmania amazonensis with cDNAs, encoding the 2nd and 3rd enzymes in the pathway. Expression of the transgenes was verified immunologically at the protein level and functionally by uroporphyrin neogenesis that occurs only after exposure of the double-transfectants to delta-aminolevulinate. All species examined were equally deficient in heme biosynthesis, as indicated by the accumulation of uroporphyrin as the sole porphyrin and the production of coproporphyrin upon further transfection of one representative species with the downstream gene. The results obtained thus demonstrate that at least the first five enzymes for heme biosynthesis are absent in all species examined, rendering their transfectants inducible with aminolevulinate to accumulate porphyrins and thus useful as cellular models for human porphyrias. PMID:18164705

  18. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis.

    Directory of Open Access Journals (Sweden)

    Lei Yang

    Full Text Available Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons. NCBI non-redundant protein databases (NR and Swiss-Prot database searches anchored 32,096 unigenes (50% with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases. Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS, kaurene synthase-like (SmKSL and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.

  19. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  20. De Novo Transcriptome Sequencing in Trigonella foenum-graecum L. to Identify Genes Involved in the Biosynthesis of Diosgenin

    Directory of Open Access Journals (Sweden)

    Kanak Vaidya

    2013-07-01

    Full Text Available T L. (fenugreek is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and quality. We studied de novo transcriptome analysis along with the diosgenin pathway in and identified the genes responsible for diosgenin biosynthesis. The GMV-1 variety of has been used in the present study for transcriptome analysis by sequencing messenger ribonucleic acid (RNA with a SOLiD 4 Genome Analyzer. Deep sequencing data of the transcriptome was assembled using various assembly tools along with functional annotation of genes, and pathway analysis for diosgenin biosynthesis was deciphered. A total of 42 million high quality reads were obtained. De novo assembly was performed using Velvet at different -mer, Oases, and CLC Genomics Workbench, which generated 20,561 transcript contigs. CAP3 was used to reduce the redundancy of contigs obtained through these assemblers. A total of 18,333 transcript contigs were functionally annotated. Kyoto Encyclopedia of Genes and Genomes pathway mapping showed that 6775 transcripts were related to plant biochemical pathways including the diosgenin biosynthesis pathway. The large number of transcripts reported in the current study will serve as a valuable genetic resource for Sequence information of the genes that were involved in diosgenin biosynthesis could be used for metabolic engineering of to increase diosgenin content.

  1. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  2. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants

    Indian Academy of Sciences (India)

    Vinod Shanker Dubey; Ritu Bhalla; Rajesh Luthra

    2003-09-01

    Terpenoids are known to have many important biological and physiological functions. Some of them are also known for their pharmaceutical significance. In the late nineties after the discovery of a novel non-mevalonate (non-MVA) pathway, the whole concept of terpenoid biosynthesis has changed. In higher plants, the conventional acetate-mevalonate (Ac-MVA) pathway operates mainly in the cytoplasm and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones predominantly. The plastidic non-MVA pathway however synthesizes hemi-, mono-, sesqui- and di-terpenes, along with carotenoids and phytol chain of chlorophyll. In this paper, recent developments on terpenoids biosynthesis are reviewed with respect to the non-MVA pathway.

  3. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.

    Science.gov (United States)

    Kowalska, Ewa; Kozik, Andrzej

    2008-01-01

    Thiamin (vitamin B1) is an essential molecule for all living organisms. Its major biologically active derivative is thiamin diphosphate, which serves as a cofactor for several enzymes involved in carbohydrate and amino acid metabolism. Important new functions for thiamin and its phosphate esters have recently been suggested, e.g. in gene expression regulation by influencing mRNA structure, in DNA repair after UV illumination, and in the protection of some organelles against reactive oxygen species. Unlike higher animals, which rely on nutritional thiamin intake, yeasts can synthesize thiamin de novo. The biosynthesis pathways include the separate synthesis of two precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate and 5-(2-hydroxyethyl)-4-methylthiazole phosphate, which are then condensed into thiamin monophosphate. Additionally, yeasts evolved salvage mechanisms to utilize thiamin and its dephosphorylated late precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine and 5-(2-hydroxyethyl)-4-methylthiazole, from the environment. The current state of knowledge on the discrete steps of thiamin biosynthesis in yeasts is far from satisfactory; many intermediates are postulated only by analogy to the much better understood biosynthesis process in bacteria. On the other hand, the genetic mechanisms regulating thiamin biosynthesis in yeasts are currently under extensive exploration. Only recently, the structures of some of the yeast enzymes involved in thiamin biosynthesis, such as thiamin diphosphokinase and thiazole synthase, were determined at the atomic resolution, and mechanistic proposals for the catalysis of particular biosynthetic steps started to emerge.

  4. Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. A new gene organization in purple bacteria.

    Science.gov (United States)

    Ouchane, S; Picaud, M; Vernotte, C; Reiss-Husson, F; Astier, C

    1997-01-17

    Rubrivivax gelatinosus mutants affected in the carotenoid biosynthesis pathways were created by interposon mutagenesis within the puf operon. Genetic and biochemical analysis of several constructed mutants suggest that at least crtC is localized downstream of the puf operon and that it is cotranscribed with this operon. Sequence analysis confirmed the genetic data and showed the presence of crtD and crtC genes downstream of the puf operon, a localization different from that known for other purple bacteria. Inactivation of the crtD gene indicated that the two crt genes are cotranscribed and that they are involved not only in the hydroxyspheroidene biosynthesis pathway as in Rhodobacter sphaeroides and R. capsulatus, but also in the spirilloxanthin biosynthesis pathway. Carotenoid genes implicated in the spirilloxanthin biosynthesis pathway were thus identified for the first time. Furthermore, analysis of carotenoid synthesis in the mutants gave genetic evidence that crtD and crtC genes are cotranscribed with the puf operon using the oxygen-regulated puf promoter.

  5. Differential expression of jasmonate biosynthesis genes in cacao genotypes contrasting for resistance against Moniliophthora perniciosa.

    Science.gov (United States)

    Litholdo, Celso G; Leal, Gildemberg A; Albuquerque, Paulo S B; Figueira, Antonio

    2015-10-01

    The resistance mechanism of cacao against M. perniciosa is likely to be mediated by JA/ET-signaling pathways due to the preferential TcAOS and TcSAM induction in a resistant genotype. The basidiomycete Moniliophthora perniciosa causes a serious disease in cacao (Theobroma cacao L.), and the use of resistant varieties is the only sustainable long-term solution. Cacao resistance against M. perniciosa is characterized by pathogen growth inhibition with reduced colonization and an attenuation of disease symptoms, suggesting a regulation by jasmonate (JA)/ethylene (ET) signaling pathways. The hypothesis that genes involved in JA biosynthesis would be active in the interaction of T. cacao and M. perniciosa was tested here. The cacao JA-related genes were evaluated for their relative quantitative expression in susceptible and resistant genotypes upon the exogenous application of ET, methyl-jasmonate (MJ), and salicylic acid (SA), or after M. perniciosa inoculation. MJ treatment triggered changes in the expression of genes involved in JA biosynthesis, indicating that the mechanism of positive regulation by exogenous MJ application occurs in cacao. However, a higher induction of these genes was observed in the susceptible genotype. Further, a contrast in JA-related transcriptional expression was detected between susceptible and resistant plants under M. perniciosa infection, with the induction of the allene oxide synthase gene (TcAOS), which encodes a key enzyme in the JA biosynthesis pathway in the resistant genotype. Altogether, this work provides additional evidences that the JA-dependent signaling pathway is modulating the defense response against M. perniciosa in a cacao-resistant genotype.

  6. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  7. Digital Gene Expression Profiling to Explore Differentially Expressed Genes Associated with Terpenoid Biosynthesis during Fruit Development in Litsea cubeba.

    Science.gov (United States)

    Gao, Ming; Lin, Liyuan; Chen, Yicun; Wang, Yangdong

    2016-09-20

    Mountain pepper (Litseacubeba (Lour.) Pers.) (Lauraceae) is an important industrial crop as an ingredient in cosmetics, pesticides, food additives and potential biofuels. These properties are attributed to monoterpenes and sesquiterpenes. However, there is still no integrated model describing differentially expressed genes (DEGs) involved in terpenoid biosynthesis during the fruit development of L. cubeba. Here, we performed digital gene expression (DGE) using the Illumina NGS platform to evaluated changes in gene expression during fruit development in L. cubeba. DGE generated expression data for approximately 19354 genes. Fruit at 60 days after flowering (DAF) served as the control, and a total of 415, 1255, 449 and 811 up-regulated genes and 505, 1351, 1823 and 1850 down-regulated genes were identified at 75, 90, 105 and 135 DAF, respectively. Pathway analysis revealed 26 genes involved in terpenoid biosynthesis pathways. Three DEGs had continued increasing or declining trends during the fruit development. The quantitative real-time PCR (qRT-PCR) results of five differentially expressed genes were consistent with those obtained from Illumina sequencing. These results provide a comprehensive molecular biology background for research on fruit development, and information that should aid in metabolic engineering to increase the yields of L. cubeba essential oil.

  8. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Muneaki, E-mail: muneaki@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Inoue, Masayuki [Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kita, Kiyoshi [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harada, Shigeharu [Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Tanaka, Akiko [Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045 (Japan); Aoki, Takashi [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Nara, Takeshi, E-mail: tnara@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. Black-Right-Pointing-Pointer Disruption of the cpsII gene significantly reduced the growth of epimastigotes. Black-Right-Pointing-Pointer In particular, the CPSII-null mutant severely retarded intracellular growth. Black-Right-Pointing-Pointer The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes-an insect form-possess both activities, amastigotes-an intracellular replicating form of T. cruzi-are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  9. Functional Diversity of Genes for the Biosynthesis of Paeoniflorin and Its Derivatives in Paeonia

    Directory of Open Access Journals (Sweden)

    Luqi Huang

    2013-09-01

    Full Text Available The Paeonia root, with or without bark, are considered vital traditional Chinese medicine materials; the examples are those of Bai Shao, Chi Shao, and Dan Pi. In this study, we examine 24 genes and their expressions involved in the biosynthesis of paeoniflorin and its derivatives, which are active compounds of the Paeonia root, in Paeonia lactiflora and P. suffruticosa, as well as other related plants, Punica granatum, Rhus radicans, and Coriaria nepalensis. Our phylogenetic analyses suggest that these genes have functional diversity, and analysis of the transcriptional level shows paeoniflorin and gallic acid biosynthesis-related genes exhibit different transcription profiles in flowers, carpels, bark-free roots, and bark of P. lactiflora. The correlation analysis of gene expression and active compound contents support the idea that hydroxymethylglutaryl-CoA synthase and phosphomevalonate kinase in the mevalonate pathway and 3-dehydroquinate dehydratase/shikimate dehydrogenase in shikimate biosynthesis are potentially closely related to the accumulation of paeoniflorin and benzoylpaeoniflorin. Coupling gene diversity with chemical analysis, we show that paeoniflorin and its derived aromatic amino acids are predominant in bark.

  10. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhibo Xu; Zhenquan Lin; Zhiwen Wang; Tao Chen

    2015-01-01

    3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and engineering purine pathway in a riboflavin-producing Escherichia coli strain. Initially, ribB gene was overexpressed to increase the flux from ribulose 5-phosphate (Ru-5-P) to DHBP. Then ndk and gmk genes were overexpressed to enhance GTP supply. Subsequently, a R419L mutation was introduced into purA to reduce the flux from IMP to AMP. Finally, co-overexpression of mutant purF and prs genes further increased riboflavin production. The final strain RF18S produced 387.6 mg riboflavin · L−1 with a yield of 44.8 mg riboflavin per gram glucose in shake-flask fermentations. The final titer and yield were 72.2%and 55.6%higher than those of RF01S, respectively. It was concluded that simultaneously engineering the DHBP synthase and GTP biosynthetic pathway by rational metabolic engineering can efficiently boost riboflavin production in E. coli.

  11. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility.

    NARCIS (Netherlands)

    Aarts, M.G.M.; Keijzer, C.J.; Stiekema, W.J.; Pereira, A.

    1995-01-01

    The aerial parts of plants are coated with an epicuticular wax layer, which is important as a first line of defense against external influences. In Arabidopsis, the ECERIFERUM (CER) genes effect different steps of the wax biosynthesis pathway. In this article, we describe the isolation of the CER1 g

  12. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  13. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  14. Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Rezaei

    2016-12-01

    Full Text Available Plant carotenoids have a key role in preventing various diseases in human because of their antioxidant and provitamin A properties. Chickpea is a good source of carotenoid among legumes and its diverse germplasm and genome accessibility makes it a good model for carotenogenesis studies. The structure, location and copy numbers of genes involved in carotenoid biosynthesis were retrieved from the chickpea genome. The majority of the single nucleotide polymorphism (SNPs within these genes across five diverse chickpea cultivars was synonymous mutation. We examined the expression of the carotenogenesis genes and their association with carotenoid concentration at different seed development stages of five chickpea cultivars. Total carotenoid concentration ranged from 22 μg g-1 in yellow cotyledon kabuli to 44 μg g-1 in green cotyledon desi at 32 days post anthesis (DPA. The majority of carotenoids in chickpea seeds consists of lutein and zeaxanthin. The expression of the selected 19 genes involved in carotenoid biosynthesis pathway showed common pattern across five cultivars with higher expression at 8 and/or 16 DPA then dropped considerably at 24 and 32 DPA. Almost all genes were up-regulated in CDC Jade cultivar. Correlation analysis between gene expression and carotenoid concentration showed that the genes involved in the primary step of carotenoid biosynthesis pathway including carotenoid desaturase and isomerase positively correlated with various carotenoid components in chickpea seeds. A negative correlation was found between hydroxylation activity and provitamin A concentration in the seeds. The highest provitamin A concentration including β-carotene and β-cryptoxanthin were found in green cotyledon chickpea cultivars.

  15. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites.

    Science.gov (United States)

    Urbina, J A

    1997-01-01

    Inhibitors of sterol and phospholipid biosynthesis in kinetoplastid parasites such as Trypanosoma cruzi, the causative agent of Chagas' disease, and different species of Leishmania have potent and selective activity as chemotherapeutic agents in vitro and in vivo. Recent work with the sterol C14 alpha-demethylase inhibitor D0870, a bis triazole derivative, showed that this compound is capable of inducing radical parasitological cure in murine models of both acute and chronic Chagas' disease. Other inhibitors of this type, such as SCH 56592, have also shown curative, rather than suppressive, activity against T. cruzi in these models. Leishmania species have different susceptibilities to sterol biosynthesis inhibitors, both in vitro and in vivo. Leishmania braziliensis promastigotes, naturally resistant to C14 alpha-demethylase inhibitors such as ketoconazole and D0870, were susceptible to these drugs when used in combination with the squalene epoxidase inhibitor terbinafine. Inhibitors of delta 24(25) sterol methyl transferase have been shown to act as potent antiproliferative agents against Trypanosoma cruzi, both in vitro and in vivo. New inhibitors of this type which show enhanced activity and novel mechanisms of action have been synthesized. Recent work has also demonstrated that this type of enzyme inhibitors can block sterol biosynthesis and cell proliferation in Pneumocystis carinii, a fungal pathogen which had previously been found resistant to other sterol biosynthesis inhibitors. Ajoene, an antiplatelet compound derived from garlic, was shown to have potent antiproliferative activity against epimastigotes and amastigotes of Trypanosoma cruzi in vitro; this activity was associated with a significant alteration of the phospholipid composition of the cells with no significant effects on the sterol content. In addition, alkyllsophospholipids such as ilmofosine, miltefosine and edelfosine have been shown to block the proliferation of T. cruzi and Leishmania and

  16. Arabidopsis Acetyl-Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indole-3-Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes

    Institute of Scientific and Technical Information of China (English)

    Mu-Yang Wang; Xue-Ting Liu; Ying Chen; Xiao-Jing Xu; Biao Yu; Shu-Qun Zhang; Qun Li; Zu-Hua He

    2012-01-01

    Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana.Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments.Camalexin is formed when indole-3-acetonitrile (IAN)is catalyzed by the cytochrome P450 monooxygenase CYP71A13.Here,we demonstrate that the Arabidopsis GH3.5 protein,a multifunctional acetyl-amido synthetase,is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes.Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection.The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro.In support of the in vitro reaction,feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D.Dihydrocamalexic acid (DHCA),the precursor of camalexin and the substrate for PAD3,was accumulated in gh3.5-1Dlpad3-1,suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis.Furthermore,expression of the major camalexin biosynthesis genes CYP79B2,CYP71A12,CYP71A13 and PAD3 was strongly induced in gh3.5-1D.Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys),and upregulation of the major biosynthetic pathway genes.

  17. Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest.

    Science.gov (United States)

    Kong, Wentao; Lu, Ting

    2014-07-18

    Nisin is an important antimicrobial peptide that has enormous applications in biotechnology. Despite many encouraging efforts, its overproduction has been a long-standing challenge due to the complexity of the underlying pathway and the difficulty in genetic modification of lactic acid bacteria. Here, we cloned an entire nisin biosynthesis pathway from a nisin-producing strain (Lactococcus lactis K29) into a plasmid and transplanted the plasmid into a nisin deficient strain Lactococcus lactis MG1363, resulting in successful heterologous expression of bioactive recombinant nisin. To increase nisin harvest, we also overexpressed nisA, a gene responsible for nisin precursor production, with a set of constitutive promoters. To further optimize nisin yield, we minimized the metabolic cost of the engineered strains by integrating nisA overexpression cassettes and the recombinant pathway into a single circuit. With our rational construction and optimization, our engineered optimized strain is able to produce bioactive nisin with a yield of 1098 IU/mL, which is more than six times higher than that of the original strain.

  18. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Adriano R. Lucheta

    2007-01-01

    Full Text Available Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST in Citrus sinensis (L. Osbeck corresponding to genes involved in general phenylpropanoid biosynthesis and the key genes involved in the main flavonoids pathways (flavanones, flavones, flavonols, leucoanthocyanidins, anthocyanins and isoflavonoids. A thorough analysis of all related putative genes from the Citrus EST (CitEST database revealed several interesting aspects associated to these pathways and brought novel information with promising usefulness for both basic and biotechnological applications.

  19. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    Science.gov (United States)

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).

  20. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Leech Mark

    2004-07-01

    Full Text Available Terpenoid indole alkaloids (TIA are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limiting molecule in the biosynthesis of TIAs. Levels of loganic acid, loganin and secologanin were measured by HPLC using tissue derived from different parts of Catharanthus roseus plants. Higher levels of secologanin were found in second pair of leaves. Transcript levels of genes encoding enzymes involved in the early steps of the iridoid pathway were also monitored by northern blots of RNA f rom C. roseus plants. The effect of the elicitor molecule methyl jasmonate in the transcription of genes was also studied. The results obtained in the present work suggest that in young aerial tissues of the plant, the MEP pathway could be more active than the acetate/mevalonic acid pathway. Moreover, there is a clear effect of MeJA in the transcription of the genes studied. Key words: Secondary metabolism, terpenoid indol alcaloids, methyl jasmonate, mevalonate pathway, secologanin.Los alcaloides indol terpenoicos (TIA son metabolitos secundarios de importancia medicinal por sus propiedades como agentes anticancerígenos, entre otras. Sin embargo, su explotación en la industria farmacéutica se ha visto limitada, ya que la acumulación de estos compuestos en las plantas que los producen es mínima. Dichos alcaloides son biosintetizados por la vía del shikimato y de los terpenoides, los cuales proveen los precursores: secologanina y triptamina, respectivamente. La secologanina es sintetizada vía terpenoides, y estudios preliminares sugieren que es sintetizada vía del

  1. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium.

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M; Kültz, Dietmar

    2013-12-15

    The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.

  2. Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway.

    Science.gov (United States)

    Knöss, W; Reuter, B; Zapp, J

    1997-09-01

    The biosynthesis of the furanic labdane diterpene marrubiin has been studied in plantlets and shoot cultures of Marrubium vulgare (Lamiaceae). The use of [2-14C]acetate, [2-14C]pyruvate, [2-14C]mevalonic acid and [U-14C]glucose incorporation experiments showed that the labelling of sterols in etiolated shoot cultures of M. vulgare was in accordance with their biosynthesis via the acetate-mevalonate pathway. In contrast, the incorporation rates of these precursors into the diterpene marrubiin could not be explained by biosynthesis of this compound via the acetate-mevalonate pathway. Cultivation of etiolated shoot cultures of M. vulgare on medium containing [1-13C]glucose and subsequent 13C-NMR spectroscopy of marrubiin led to the conclusion that the biosynthesis of marrubiin follows a non-mevalonate pathway. All isoprenic units of 13C-labelled marrubiin were enriched in those carbons that correspond to positions 1 and 5 of a putative precursor isopentenyl diphosphate. This labelling pattern from [1-13C]glucose is consistent with an alternative pathway via trioses, which has already been shown to occur in Eubacteria and Gymnospermae. The labdane skeleton is a precursor of many other skeletal types of diterpenes. Therefore it becomes obvious that in connection with the few known examples of a non-mevalonate pathway to isoprenoids the formation of some isoprenoids in plants via a non-mevalonate pathway might be quite common.

  3. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  4. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.

    Science.gov (United States)

    Hyun, Tae Kyung; Rim, Yeonggil; Jang, Hui-Jeong; Kim, Cheol Hong; Park, Jongsun; Kumar, Ritesh; Lee, Sunghoon; Kim, Byung Chul; Bhak, Jong; Nguyen-Quoc, Binh; Kim, Seon-Won; Lee, Sang Yeol; Kim, Jae-Yean

    2012-07-01

    The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5% similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities.

  5. Molecular evolution and functional characterisation of haplotypes of an important rubber biosynthesis gene in Hevea brasiliensis.

    Science.gov (United States)

    Uthup, T K; Rajamani, A; Ravindran, M; Saha, T

    2016-07-01

    Hydroxy-methylglutaryl coenzyme-A synthase (HMGS) is a rate-limiting enzyme in the cytoplasmic isoprenoid biosynthesis pathway leading to natural rubber production in Hevea brasiliensis (rubber). Analysis of the structural variants of this gene is imperative to understand their functional significance in rubber biosynthesis so that they can be properly utilised for ongoing crop improvement programmes in Hevea. We report here allele richness and diversity of the HMGS gene in selected popular rubber clones. Haplotypes consisting of single nucleotide polymorphisms (SNPs) from the coding and non-coding regions with a high degree of heterozygosity were identified. Segregation and linkage disequilibrium analysis confirmed that recombination is the major contributor to the generation of allelic diversity, rather than point mutations. The evolutionarily conserved nature of some SNPs was identified by comparative DNA sequence analysis of HMGS orthologues from diverse taxa, demonstrating the molecular evolution of rubber biosynthesis genes in general. In silico three-dimensional structural studies highlighting the structural positioning of non-synonymous SNPs from different HMGS haplotypes revealed that the ligand-binding site on the enzyme remains impervious to the reported sequence variations. In contrast, gene expression results indicated the possibility of association between specific haplotypes and HMGS expression in Hevea clones, which may have a downstream impact up to the level of rubber production. Moreover, haplotype diversity of the HMGS gene and its putative association with gene expression can be the basis for further genetic association studies in rubber. Furthermore, the data also show the role of SNPs in the evolution of candidate genes coding for functional traits in plants.

  6. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis.

    Directory of Open Access Journals (Sweden)

    Sumya Pathak

    Full Text Available The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S-coclaurine or (S-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1 and normal cultivar (BR086 of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S-norcoclaurine-6-O-methyltransferase (6OMT, (S-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT, norreticuline 7-O-methyltransferase (N7OMT and down-regulation of reticuline 7-O-methyltransferase (7OMT in pap1 in comparison to BR086 suggest (S-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches.

  7. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish.

    Science.gov (United States)

    Xu, Yao; Zhu, Xianwen; Chen, Yinglong; Gong, Yiqin; Liu, Liwang

    2013-09-01

    Ascorbate is a primary antioxidant and an essential enzyme cofactor in plants, which has an important effect on the development of plant root system. To investigate the molecular mechanisms of ascorbate accumulation during root development and reveal the key genes of the ascorbate biosynthesis and recycling pathways, the expression of 16 related genes together with ascorbate abundance were analyzed in the flesh and skin of radish (Raphanus sativus L.) fleshy root. The content of ascorbate decreased with root growth in both the flesh and skin. Expression of GDP-d-mannose pyrophosphorylase, GDP-d-mannose-3',5'-epimerase and d-galacturonate reductase were also decreased and correlated with ascorbate levels in the flesh. In the skin, the expression of GDP-d-mannose pyrophosphorylase and l-galactose dehydrogenase was correlated with ascorbate levels. These results suggested that ascorbate accumulation is affected mainly by biosynthesis rather than recycling in radish root, and the l-galactose pathway may be the major biosynthetic route of ascorbate, and moreover, the salvage pathway may also contribute to ascorbate accumulation. The data suggested that GDP-d-mannose pyrophosphorylase could play an important role in the regulation of ascorbate accumulation during radish fleshy taproot development.

  8. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria.

    Science.gov (United States)

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Kalyuzhnaya, Marina; Lidstrom, Mary; Trotsenko, Yuri A

    2011-11-01

    The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.

  9. Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus.

    Science.gov (United States)

    Cabeen, Matthew T; Murolo, Michelle A; Briegel, Ariane; Bui, N Khai; Vollmer, Waldemar; Ausmees, Nora; Jensen, Grant J; Jacobs-Wagner, Christine

    2010-07-01

    Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to generate cell curvature. We undertook a genetic screen to find other cellular components important for cell curvature. Here we report that deletion of a gene (wbqL) involved in the lipopolysaccharide (LPS) biosynthesis pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant O-polysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL mutant, we also show that the normal assembly and growth properties of the crescentin structure are independent of its association with the cell envelope. However, this envelope association is important for facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis.

  10. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    Science.gov (United States)

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis.

  11. Flavonoid Biosynthesis Genes Putatively Identified in the Aromatic Plant Polygonum minus via Expressed Sequences Tag (EST Analysis

    Directory of Open Access Journals (Sweden)

    Zamri Zainal

    2012-02-01

    Full Text Available P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large‑scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs which were deposited in dbEST in the National Center of Biotechnology Information (NCBI. From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304, flavonol synthase, FLS (JG705819 and leucoanthocyanidin dioxygenase, LDOX (JG745247 were selected for further examination by quantitative RT-PCR (qRT-PCR in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.

  12. Swainsonine Biosynthesis Genes in Diverse Symbiotic and Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Daniel Cook

    2017-06-01

    Full Text Available Swainsonine—a cytotoxic fungal alkaloid and a potential cancer therapy drug—is produced by the insect pathogen and plant symbiont Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glory symbiont belonging to order Chaetothyriales. Genome sequence analyses revealed that these fungi share orthologous gene clusters, designated “SWN,” which included a multifunctional swnK gene comprising predicted adenylylation and acyltransferase domains with their associated thiolation domains, a β-ketoacyl synthase domain, and two reductase domains. The role of swnK was demonstrated by inactivating it in M. robertsii through homologous gene replacement to give a ∆swnK mutant that produced no detectable swainsonine, then complementing the mutant with the wild-type gene to restore swainsonine biosynthesis. Other SWN cluster genes were predicted to encode two putative hydroxylases and two reductases, as expected to complete biosynthesis of swainsonine from the predicted SwnK product. SWN gene clusters were identified in six out of seven sequenced genomes of Metarhzium species, and in all 15 sequenced genomes of Arthrodermataceae, a family of fungi that cause athlete’s foot and ringworm diseases in humans and other mammals. Representative isolates of all of these species were cultured, and all Metarhizium spp. with SWN clusters, as well as all but one of the Arthrodermataceae, produced swainsonine. These results suggest a new biosynthetic hypothesis for this alkaloid, extending the known taxonomic breadth of swainsonine producers to at least four orders of Ascomycota, and suggest that swainsonine has roles in mutualistic symbioses and diseases of plants and animals.

  13. Vitamin and co-factor biosynthesis pathways in Plasmodium and other apicomplexan parasites

    Science.gov (United States)

    Müller, Sylke; Kappes, Barbara

    2007-01-01

    Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesise certain vitamins, de novo, either completely or in parts. The occurrence of the various biosynthesis pathways is specific to different apicomplexan parasites, emphasising their distinct requirements for nutrients and growth factors. The absence of vitamin biosynthesis from the human host implies that inhibition of the parasite pathways may be a way to interfere specifically with parasite development. However, the precise role of biosynthesis and potential uptake of vitamins for the overall regulation of vitamin homeostasis in the parasites needs to be established first. In this review Sylke Müller and Barbara Kappes focus mainly on the procurement of vitamin B1, B5 and B6 by Plasmodium and other apicomplexan parasites. PMID:17276140

  14. Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites.

    Science.gov (United States)

    Müller, Sylke; Kappes, Barbara

    2007-03-01

    Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesize certain vitamins de novo, either completely or in parts. The various biosynthesis pathways are specific to different apicomplexan parasites and emphasize the distinct requirements of these parasites for nutrients and growth factors. The absence of vitamin biosynthesis in humans implies that inhibition of the parasite pathways might be a way to interfere specifically with parasite development. However, the roles of biosynthesis and uptake of vitamins in the regulation of vitamin homeostasis in parasites needs to be established first. In this article, the procurement of vitamins B(1), B(5) and B(6) by Plasmodium and other apicomplexan parasites is discussed.

  15. The Tat protein export pathway and its role in cyanobacterial metalloprotein biosynthesis.

    Science.gov (United States)

    Barnett, James P; Robinson, Colin; Scanlan, David J; Blindauer, Claudia A

    2011-12-01

    The Tat pathway is a common protein translocation system that is found in the bacterial cytoplasmic membrane, as well as in the cyanobacterial and plant thylakoid membranes. It is unusual in that the Tat pathway transports fully folded, often metal cofactor-containing proteins across these membranes. In bacteria, the Tat pathway plays an important role in the biosynthesis of noncytoplasmic metalloproteins. By compartmentalizing protein folding to the cytoplasm, the potentially aberrant binding of non-native metal ions to periplasmic proteins is avoided. To date, most of our understanding of Tat function has been obtained from studies using Escherichia coli as a model organism but cyanobacteria have an extra layer of complexity with proteins targeted to both the cytoplasmic and thylakoid membranes. We examine our current understanding of the Tat pathway in cyanobacteria and its role in metalloprotein biosynthesis.

  16. The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Jin Ho; Lee, Bun Yeol

    2014-01-01

    libraries using degenerate probes that harbor highly conserved sequences from the Sphigomonas elodea-derived crtI and Nostoc sp. PCC 7120-dervied crtW genes. Selected positive gene clusters were fully sequenced and annotated, revealing genes encoding six putative carotenogenic enzymes: phytoene synthase...

  17. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport

    Directory of Open Access Journals (Sweden)

    Sun Yongzhen

    2011-10-01

    Full Text Available Abstract Background Camptotheca acuminata is a Nyssaceae plant, often called the "happy tree", which is indigenous in Southern China. C. acuminata produces the terpenoid indole alkaloid, camptothecin (CPT, which exhibits clinical effects in various cancer treatments. Despite its importance, little is known about the transcriptome of C. acuminata and the mechanism of CPT biosynthesis, as only few nucleotide sequences are included in the GenBank database. Results From a constructed cDNA library of young C. acuminata leaves, a total of 30,358 unigenes, with an average length of 403 bp, were obtained after assembly of 74,858 high quality reads using GS De Novo assembler software. Through functional annotation, a total of 21,213 unigenes were annotated at least once against the NCBI nucleotide (Nt, non-redundant protein (Nr, Uniprot/SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG, and Arabidopsis thaliana proteome (TAIR databases. Further analysis identified 521 ESTs representing 20 enzyme genes that are involved in the backbone of the CPT biosynthetic pathway in the library. Three putative genes in the upstream pathway, including genes for geraniol-10-hydroxylase (CaPG10H, secologanin synthase (CaPSCS, and strictosidine synthase (CaPSTR were cloned and analyzed. The expression level of the three genes was also detected using qRT-PCR in C. acuminata. With respect to the branch pathway of CPT synthesis, six cytochrome P450s transcripts were selected as candidate transcripts by detection of transcript expression in different tissues using qRT-PCR. In addition, one glucosidase gene was identified that might participate in CPT biosynthesis. For CPT transport, three of 21 transcripts for multidrug resistance protein (MDR transporters were also screened from the dataset by their annotation result and gene expression analysis. Conclusion This study produced a large amount of transcriptome data from C. acuminata by 454 pyrosequencing. According to

  18. Engineering and Optimization of the Chain Elongation Pathway of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Mirza, Nadia Muhammad Akram

    of an antibody against glucoraphanin. The research conducted contributes mainly towards investigation and optimization of heterologous expression of the chain elongation pathway for glucoraphanin biosynthesis. Production of the glucoraphanin precursor in E. coli provides a proof-of-concept for transfer of chain...

  19. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    Science.gov (United States)

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  1. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway.

    Science.gov (United States)

    Wang, Ying; Hua, Wenping; Wang, Jian; Hannoufa, Abdelali; Xu, Ziqin; Wang, Zhezhi

    2013-04-01

    Lotus corniculatus L. is used worldwide as a forage crop due to its abundance of secondary metabolites and its ability to grow in severe environments. Although the entire genome of L. corniculatus var. japonicus R. is being sequenced, the differences in morphology and production of secondary metabolites between these two related species have led us to investigate this variability at the genetic level, in particular the differences in flavonoid biosynthesis. Our goal is to use the resulting information to develop more valuable forage crops and medicinal materials. Here, we conducted Illumina/Solexa sequencing to profile the transcriptome of L. corniculatus. We produced 26,492,952 short reads that corresponded to 2.38 gigabytes of total nucleotides. These reads were then assembled into 45,698 unigenes, of which a large number associated with secondary metabolism were annotated. In addition, we identified 2,998 unigenes based on homology with L. japonicus transcription factors (TFs) and grouped them into 55 families. Meanwhile, a comparison of four tag-based digital gene expression libraries, built from the flowers, pods, leaves, and roots, revealed distinct patterns of spatial expression of candidate unigenes in flavonoid biosynthesis. Based on these results, we identified many key enzymes from L. corniculatus which were different from reference genes of L. japonicus, and five TFs that are potential enhancers in flavonoid biosynthesis. Our results provide initial genetics resources that will be valuable in efforts to manipulate the flavonoid metabolic pathway in plants.

  2. Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.).

    Science.gov (United States)

    Li, Qing; Ding, Gang; Li, Biao; Guo, Shun-Xing

    2017-03-22

    Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.

  3. Ubiquinone (Coenzyme Q) Biosynthesis in Chlamydophila pneumoniae AR39: Identification of the ubiD Gene

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Jian-Hua LIU

    2006-01-01

    Ubiquinone is an essential electron carrier in prokaryotes. Ubiquinone biosynthesis involves at least nine reactions in Escherichia coli. 3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD) is an important enzyme on the pathway and deletion of the ubiD gene in E. coli gives rise to ubiquinone deficiency in vivo.A protein from Chlamydophila pneumoniae AR39 had significant similarity compared with protein UbiD from E. coli. Based on this information, the protein-encoding gene was used to swap its counterpart in E. coli, and gene expression in resultant strain DYC was confirmed by RT-PCR. Strain DYC grew using succinate as carbon source and rescued ubiquinone content in vivo, while ubiD deletion strain DYD did not.Results suggest that the chlamydial protein exerts the function of UbiD.

  4. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  5. Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z".

    Science.gov (United States)

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Trotsenko, Yuri A

    2006-01-01

    The genes involved in biosynthesis of the major compatible solute ectoine (1,4,5,6-tetrahydro-2-methylpyrimidine carboxylic acid) in halotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z" were studied. The complete nucleotide sequences of the structural genes encoding L: -aspartokinase (Ask), L-2,4-diaminobutyric acid transaminase (EctB), L-2,4-diaminobutyric acid acetyltransferase (EctA), and L-ectoine synthase (EctC) were defined and shown to be transcribed as a single operon ectABCask. Phylogenetic analysis revealed high sequence identities (34-63%) of the Ect proteins to those from halophilic heterotrophs with the highest amino acid identities being to Vibrio cholerae enzymes. The chromosomal DNA fragment from "M. alcaliphilum 20Z" containing ectABC genes and putative promoter region was expressed in Escherichia coli. Recombinant cells could grow in the presence of 4% NaCl and synthesize ectoine. The data obtained suggested that despite the ectoine biosynthesis pathway being evolutionary well conserved with respect to the genes and enzymes involved, some differences in their organization and regulation could occur in various halophilic bacteria.

  6. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.

    Science.gov (United States)

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-jun; Yan, Juan; Yu, Ming-liang

    2014-09-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches.

  7. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7.

    Science.gov (United States)

    Liu, Qingpei; Xie, Nana; He, Yi; Wang, Li; Shao, Yanchun; Zhao, Hongzhou; Chen, Fusheng

    2014-01-01

    Monascus pigments (MPs) have been used as food colorants for several centuries in Asian countries. However, MP biosynthesis pathway is still a controversy, and only few related genes have been reported. In this study, the function of MpigE, a gene involved in MP biosynthesis in Monascus ruber M7, was analyzed. The results revealed that the disruption, complementation, and overexpression of MpigE in M. ruber M7 had very little effects on the growth and phenotypes except MPs. The MpigE deletion strain (∆MpigE) just yielded four kinds of yellow MPs and very little red pigments, while the wild-type strain M. ruber M7 produced a MP complex mixture including three (orange, red, and yellow) categories of MP compounds. Two of the four yellow MPs produced by ∆MpigE were the same as those yielded by M. ruber M7. The MpigE complementation strain (∆MpigE::MpigE) recovered the ability to generate orange and red MPs as M. ruber M7. The MP types produced by the MpigE overexpression strain (M7::PtrpC-MpigE) were consistent with those of M. ruber M7, while the color value was about 1.3-fold as that of M. ruber M7 (3,129 U/g red kojic). For the production of citrinin, the disruption of MpigE almost had no influence on the strain, whereas the overexpression of MpigE made citrinin decrease drastically in YES fermentation. This work will make a contribution to the study on the biosynthesis pathway of MPs in M. ruber.

  8. Biosynthesis Pathway of ADP-l-glycero-β-d-manno-Heptose in Escherichia coli

    Science.gov (United States)

    Kneidinger, Bernd; Marolda, Cristina; Graninger, Michael; Zamyatina, Alla; McArthur, Fiona; Kosma, Paul; Valvano, Miguel A.; Messner, Paul

    2002-01-01

    The steps involved in the biosynthesis of the ADP-l-glycero-β-d-manno-heptose (ADP-l-β-d-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-d-β-d-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-d-β-d-heptose. Our results demonstrate that the synthesis of ADP-d-β-d-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional d-β-d-heptose 7-phosphate kinase/d-β-d-heptose 1-phosphate adenylyltransferase), and GmhB (d,d-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-l-β-d-heptose precursor utilized in the assembly of inner core LPS. PMID:11751812

  9. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.

    Science.gov (United States)

    Yokoyama, Chiaki; Takei, Mami; Kouzuma, Yoshiaki; Nagata, Shinji; Suzuki, Yoshihito

    2017-08-01

    In the course of our study of the biosynthetic pathway of auxin, a class of phytohormones, in insects, we proposed the biosynthetic pathway tryptophan (Trp)→indole-3-acetaldoxime (IAOx)→indole-3-acetadehyde (IAAld)→indole-3-acetic acid (IAA). In this study, we identified two branches in the metabolic pathways in the silkworm, possibly affecting the efficiency of IAA production: Trp→indole-3-pyruvic acid→indole-3-lactic acid and IAAld→indole-3-ethanol. We also determined the apparent conversion activities (2.05×10(-7)UmL(-1) for Trp→IAA, 1.30×10(-5)UmL(-1) for IAOx→IAA, and 3.91×10(-1)UmL(-1) for IAAld→IAA), which explain why IAOx and IAAld are barely detectable as either endogenous compounds or metabolites of their precursors. The failure to detect IAAld, even in the presence of an inhibitor of the conversion IAAld→IAA, is explained by a switch in the conversion from IAAld→IAA to IAAld→IEtOH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Polymorphism of starch pathway genes in cassava.

    Science.gov (United States)

    Vasconcelos, L M; Brito, A C; Carmo, C D; Oliveira, E J

    2016-12-02

    The distribution and frequency of single nucleotide polymorphisms (SNPs) can help to understand changes associated with characteristics of interest. We aimed to evaluate nucleotide diversity in six genes involved in starch biosynthesis in cassava using a panel of 96 unrelated accessions. The genes were sequenced, aligned, and used to obtain values for nucleotide diversity (π), segregating sites (θ), Tajima's D test, and neighbor-joining (NJ) clustering. On average, one SNP per 147 and 171 bp was identified in exon and intron regions, respectively. Thirteen heterozygous loci were found. Three of seven SNPs in the exon region resulted in non-synonymous replacement or four synonymous substitutions. However, no associations were noted between SNPs and root dry-matter content. The parameter π ranged from 0.0001 (granule bound starch synthase I) to 0.0033 (α-amylase), averaging 0.0011, while θ ranged from 0.00014 (starch branching enzyme) to 0.00584 (starch synthase I), averaging 0.002353. The θ diversity value was typically double that of the π. Results of the D test did not suggest any evidence of deviance of neutrality in these genes. Among the evaluated accession, 82/96 were clustered using the NJ method but without a clear separation of the root dry-matter content, root pulp coloration, and classification of the cyanogenic compound content. High variation in genes of the starch biosynthetic pathway can be used to identify associations with the functional properties of starch for the use of polymorphisms for selection purposes.

  11. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  12. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  13. Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway.

    Science.gov (United States)

    Kutrzeba, Lukasz; Dayan, Franck E; Howell, J'Lynn; Feng, Ju; Giner, José-Luis; Zjawiony, Jordan K

    2007-07-01

    Salvinorin A, a neoclerodane diterpenoid, isolated from the Mexican hallucinogenic plant Salvia divinorum, is a potent kappa-opioid receptor agonist. Its biosynthetic route was studied by NMR and HR-ESI-MS analysis of the products of the incorporation of [1-(13)C]-glucose, [Me-(13)C]-methionine, and [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose into its structure. While the use of cuttings and direct-stem injection were unsuccessful, incorporation of (13)C into salvinorin A was achieved using in vitro sterile culture of microshoots. NMR spectroscopic analysis of salvinorin A (2.7 mg) isolated from 200 microshoots grown in the presence of [1-(13)C]-glucose established that this pharmacologically important diterpene is biosynthesized via the 1-deoxy-D-xylulose-5-phosphate pathway, instead of the classic mevalonic acid pathway. This was confirmed further in plants grown in the presence of [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose. In addition, analysis of salvinorin A produced by plants grown in the presence of [Me-(13)C]-methionine indicates that methylation of the C-4 carboxyl group is catalyzed by a type III S-adenosyl-L-methionine-dependent O-methyltransferase.

  14. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    Science.gov (United States)

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.

  15. De novo transcriptome assembly in chili pepper (Capsicum frutescens to identify genes involved in the biosynthesis of capsaicinoids.

    Directory of Open Access Journals (Sweden)

    Shaoqun Liu

    Full Text Available The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.. We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT, which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes analysis. A significant number of SSR (Simple Sequence Repeat and SNP (Single Nucleotide Polymorphism markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.

  16. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Daniel J Hunter

    Full Text Available Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host's fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis.

  17. High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes.

    Directory of Open Access Journals (Sweden)

    Capucine Massot

    Full Text Available Understanding how the fruit microclimate affects ascorbate (AsA biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31 °C and irradiance regimes (darkness or 150 µmol m(-2 s(-1. Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH. The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27 °C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12 °C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX. In contrast, at 31 °C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12 °C, light total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling.

  18. Screening of secondary metabolite biosynthesis genes of marine actinomycetes isolated from Trabzon (Black Sea sea sediments

    Directory of Open Access Journals (Sweden)

    Kadriye Özcan

    2017-06-01

    Full Text Available In this study, active secondary metabolite production capacity of actinomycete isolates obtained from Trabzon (Black Sea sea sediments was investigated by molecular techniques. Totaly 24 actinomycetes were investigated by PCR based on the presence of secondary metabolite biosynthesis genes PKS / NRPS. According to the PCR results, 25 and 58% of actinomycetes obtained from Trabzon sea sediments were found to contain PKS-NRPS and only NRPS gene regions, respectively. When PCR data were evaluated, it was found that the production of the peptide form active secondary metabolite of the isolates by non-ribosomal way was higher than that of the secondary metabolite production by the PKS pathway. In addition, it has been determined that Black Sea marine sediments have high potential for active secondary metabolite production.

  19. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat

    Science.gov (United States)

    Amarasinghe, Chami C.; Fernando, W. G. Dilantha

    2016-01-01

    Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explored. Therefore, in this study, nine genes that involved in trichothecene biosynthesis were analyzed among 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol producing F. graminearum strains in a time course study. Quantitative reverse transcription polymerase chain reaction revealed that the expression of all examined TRI gene transcripts initiated at 2 days post-inoculation (dpi), peaked at three to four dpi and gradually decreased at seven dpi. The early induction of TRI genes indicates that presence of high levels of TRI gene transcripts at early stages is important to initiate the biosynthetic pathway of DON and NIV. Comparison of gene expression among the three chemotypes showed that relative expression of TRI genes was higher in 3-ADON producing strains compared with 15-ADON and NIV strains. Comparatively higher levels of gene expression may contribute to the higher levels of DON produced by 3-ADON strains in infected grains. PMID:27550207

  20. Enzymology of aminoglycoside biosynthesis-deduction from gene clusters.

    Science.gov (United States)

    Wehmeier, Udo F; Piepersberg, Wolfgang

    2009-01-01

    The classical aminoglycosides are, with very few exceptions, typically actinobacterial secondary metabolites with antimicrobial activities all mediated by inhibiting translation on the 30S subunit of the bacterial ribosome. Some chemically related natural products inhibit glucosidases by mimicking oligo-alpha-1,4-glucosides. The biochemistry of the aminoglycoside biosynthetic pathways is still a developing field since none of the pathways has been analyzed to completeness as yet. In this chapter we treat the enzymology of aminoglycoside biosyntheses as far as it becomes apparent from recent investigations based on the availability of DNA sequence data of biosynthetic gene clusters for all major structural classes of these bacterial metabolites. We give a more general overview of the field, including descriptions of some key enzymes in various aminoglycoside pathways, whereas in Chapter 20 provides a detailed account of the better-studied enzymology thus far known for the neomycin and butirosin pathways.

  1. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.

    Science.gov (United States)

    Li, Yan-Ping; Tang, Xiao; Wu, Wei; Xu, Yang; Huang, Zhi-Bing; He, Qing-Hua

    2015-01-01

    Citrinin, a fungal secondary metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. Citrinin is synthesised by condensation of acetyl-CoA and malonyl-CoA. Six genes involved in the citrinin biosynthesis, including pksCT, ctnA and ctnB, have been cloned in Monascus purpureus. The pksCT gene encodes a polyketide synthase; ctnA is a regulatory factor; and ctnB encodes an oxidoreductase. When the three genes were respectively disrupted, the disruption strains drastically decreased citrinin production or barely produced citrinin. Ten new genes have been discovered in Monascus aurantiacus besides the above six genes. One of these gene displayed the highest similarity to the β-carbonic anhydrase gene from Aspergillus oryzae (74% similarity) and was designated ctnG. To learn more about the citrinin biosynthetic pathway, a ctnG-replacement vector was constructed to disrupt ctnG with the hygromycin resistance gene as the selection marker, then transformed into M. aurantiacus Li AS3.4384 by a protoplast-PEG method. The citrinin content of three disruptants was reduced to about 50%, meanwhile pigment production decreased by 23%, respectively, over those of the wild-type strains. ctnG was deduced to be involved in the formation of malonyl-CoA as a common precursor of red pigments and citrinin. Therefore, the disruption of the ctnG gene decreased citrinin and pigment production. M. aurantiacus Li AS3.4384 can produce higher concentrations of citrinin than other strains such as M. purpureus and M. ruber. Establishing the function of citrinin biosynthetic genes in M. aurantiacus is helpful in understanding the citrinin synthetic pathway and adopting some strategies to control contamination.

  2. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    Directory of Open Access Journals (Sweden)

    Yang Chengmin

    2011-11-01

    Full Text Available Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388. A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons, 12, 649 (52.6% of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10. All unique sequences were compared with NCBI expressed sequence tags (ESTs (237 and encoding sequences (44 from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111. The 23, 173 (96.4% unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s and 102 glycosyltransferases (GTs unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of

  3. De novo purine biosynthesis by two pathways in Burkitt lymphoma cells and in human spleen.

    Science.gov (United States)

    Reem, G H

    1972-05-01

    This study was designed to answer the question whether human lymphocytes and spleen cells were capable of de novo purine biosynthesis. Experiments were carried out in cell-free extracts prepared from human spleen, and from a cell line established from Burkitt lymphoma. Burkitt lymphoma cells and human spleen cells could synthesize the first and second intermediates of the purine biosynthetic pathway. Cell-free extracts of all cell lines studied contained the enzyme systems which catalyze the synthesis of phosphoribosyl-1-amine, the first intermediate unique to the purine biosynthetic pathway and of phosphoribosyl glycinamide, the second intermediate of this pathway. Phosphoribosyl-1-amine could be synthesized in cell-free extracts from alpha-5-phosphoribosyl-1-pyrophosphate (PRPP) and glutamine, from PRPP and ammonia, and by an alternative pathway, directly from ribose-5-phosphate and ammonia. These findings suggest that extrahepatic tissues may be an important source for the de novo synthesis of purine ribonucleotide in man. They also indicate that ammonia may play an important role in purine biosynthesis. The alternative pathway for the synthesis of phosphoribosyl-1-amine from ribose-5-phosphate and ammonia was found to be subject to inhibition by the end products of the purine synthetic pathway, particularly by adenylic acid and to a lesser degree by guanylic acid. The alternative pathway for phosphoribosyl-1-amine synthesis from ribose-5-phosphate and ammonia may contribute significantly towards the regulation of the rate of de novo purine biosynthesis in the normal state, in metabolic disorders in which purines are excessively produced and in myeloproliferative diseases.

  4. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  5. Genome-wide comparison of genes involved in the biosynthesis, metabolism, and signaling of juvenile hormone between silkworm and other insects

    Directory of Open Access Journals (Sweden)

    Daojun Cheng

    2014-06-01

    Full Text Available Juvenile hormone (JH contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects.

  6. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum).

    Science.gov (United States)

    Li, Xiaohua; Park, Nam Il; Xu, Hui; Woo, Sun-Hee; Park, Cheol Ho; Park, Sang Un

    2010-12-01

    Common buckwheat (Fagopyrum esculentum) is a short-season grain crop that is a source of rutin and other phenolic compounds. In this study, we isolated the cDNAs of 11 F. esculentum enzymes in the flavonoid biosynthesis pathway, namely, phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL) 1 and 2, chalcone synthase (CHS), chalcone isomerase (CHI), flavone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonol synthase (FLS) 1 and 2, and anthocyanidin synthase (ANS). Quantitative real-time polymerase chain reaction analysis showed that these genes were most highly expressed in the stems and roots. However, high performance liquid chromatography analysis indicated that their flavonoid products, such as rutin and catechin, accumulated in the flowers and leaves. These results suggested that flavonoids may be transported within F. esculentum. In addition, light and dark growth conditions affected the expression levels of the biosynthesis genes and accumulation of phenolic compounds in F. esculentum sprouts.

  7. Cryptosporidium parvum has an active hypusine biosynthesis pathway.

    Science.gov (United States)

    Mittal, Nimisha; Morada, Marie; Tripathi, Pankaj; Gowri, V S; Mandal, Swati; Quirch, Alison; Park, Myung Hee; Yarlett, Nigel; Madhubala, Rentala

    2014-06-01

    The protozoan parasite Cryptosporidium parvum causes severe enteric infection and diarrheal disease with substantial morbidity and mortality in untreated AIDS patients and children in developing or resource-limited countries. No fully effective treatment is available. Hypusination of eIF5A is an important post-translational modification essential for cell proliferation. This modification occurs in a two step process catalyzed by deoxyhypusine synthase (DHS) followed by deoxyhypusine hydroxylase. An ORF of 1086bp was identified in the C. parvum (Cp) genome which encodes for a putative polypeptide of 362 amino acids. The recombinant CpDHS protein was purified to homogeneity and used to probe the enzyme's mechanism, structure, and inhibition profile in a series of kinetic experiments. Sequence analysis and structural modeling of CpDHS were performed to probe differences with respect to the DHS of other species. Unlike Leishmania, Trypanosomes and Entamoeba, Cryptosporidium contains only a single gene for DHS. Phylogenetic analysis shows that CpDHS is more closely related to apicomplexan DHS than kinetoplastid DHS. Important residues that are essential for the functioning of the enzyme including NAD(+) binding residues, spermidine binding residues and the active site lysine are conserved between CpDHS and human DHS. N(1)-guanyl-1,7-diaminoheptane (GC7), a potent inhibitor of DHS caused an effective inhibition of infection and growth of C. parvum in HCT-8 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase.

    Science.gov (United States)

    Vidal-Meireles, André; Neupert, Juliane; Zsigmond, Laura; Rosado-Souza, Laise; Kovács, László; Nagy, Valéria; Galambos, Anikó; Fernie, Alisdair R; Bock, Ralph; Tóth, Szilvia Z

    2017-04-01

    Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and (1) O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.

  9. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    Science.gov (United States)

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.

  10. Cloning and sequence analysis of terminase gene of glycoalkaloid biosynthesis metabolismic pathway in potato%马铃薯SGAs合成代谢途径末端SGT酶基因克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    牛继平; 张金文; 王旺田; 王蒂; 陆艳梅; 张俊莲

    2012-01-01

    The potato steroidal glycoalkaloids (SGAs) is an important secondary metabolites in solanaceae and liliaceae. It is closely related to the antireversion force of plan itselfe and product quality, simultaneously, it has a wide pharmacological activity in pharmacology. Solanidine: UDP-glucosyltransferase(SGT) was the key enzyme of the terminal of SGAs anabolic pathway in Solarium tuberosum. Studying the gene structure and its encoding enzyme protein characteristic plays an important role in the process of the regulation of SGAs synthesis and production of SGTs by microbial fermentation in plant. Analyzing the structure and properties of three enzyme protein encoded by glycosyltransferase cDNA structure and properties by bioinformatics method. Total RNA was extracted from stem of S. tuberosum and three glycoalkaloid synthase gene (SGT1, SGT2 and SGT3) fragment was obtained by reverse transcription polymerase chin reaction (RT-PCR). It was cloned into pMDR19-T vector and the positive clones identified by PCR were sequenced. Three SGT enzyme gene fragments were gained from stem of S. tuberosum, each of which contains 1 467 - 1 518 bp and encodes a peptide of 488-505 amino acids. Similarity comparisons show that they share over 99.12% similarity in nucleotide sequence and over 99% similarity in amino acid sequence with those of other plant SGTase gene (U82367. 2, DQ 218276. 1 and DQ 266437) in GenBank, UDPG glycosyltransferase conserved domain and many important functional sites, the PI = 5. 52 - 5. 62. The 3D structure of protein was predicted by homology comparative modeling in Swiss-Model, the results showed that the 3D structure of SGT was highly similar to that of the glycosyltransferase, so it was inferred that SGT3 should be a member of glycosyltransferase superfamily that has function of steroidal glycoalkaloid. sgt1, sgt2 and sgt2 similar gene obtained here was rhamnosyl transferase gene, and its sequence was submitted with GenBank: sgt1, No: JN695005) sgt2, No

  11. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.

  12. Coordinated Activation of Cellulose and Repression of Lignin Biosynthesis Pathways in Rice1[C][W][OA

    Science.gov (United States)

    Ambavaram, Madana M.R.; Krishnan, Arjun; Trijatmiko, Kurniawan R.; Pereira, Andy

    2011-01-01

    Cellulose from plant biomass is the largest renewable energy resource of carbon fixed from the atmosphere, which can be converted into fermentable sugars for production into ethanol. However, the cellulose present as lignocellulosic biomass is embedded in a hemicellulose and lignin matrix from which it needs to be extracted for efficient processing. Here, we show that expression of an Arabidopsis (Arabidopsis thaliana) transcription factor, SHINE (SHN), in rice (Oryza sativa), a model for the grasses, causes a 34% increase in cellulose and a 45% reduction in lignin content. The rice AtSHN lines also exhibit an altered lignin composition correlated with improved digestibility, with no compromise in plant strength and performance. Using a detailed systems-level analysis of global gene expression in rice, we reveal the SHN regulatory network coordinating down-regulation of lignin biosynthesis and up-regulation of cellulose and other cell wall biosynthesis pathway genes. The results thus support the development of nonfood crops and crop wastes with increased cellulose and low lignin with good agronomic performance that could improve the economic viability of lignocellulosic crop utilization for biofuels. PMID:21205614

  13. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism.

    Directory of Open Access Journals (Sweden)

    Jian Zheng

    Full Text Available Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp, 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.

  14. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of the oat genome

    Science.gov (United States)

    Vitamin E is essential for humans and thus must be a component of a healthy diet. Among the cereal grains, hexaploid oats (Avena sativa L.) have high vitamin E content. To date, no gene sequences in the vitamin E biosynthesis pathway have been reported for oats. Using deep sequencing and orthology-g...

  15. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis

    Directory of Open Access Journals (Sweden)

    Apweiler Eva

    2012-06-01

    Full Text Available Abstract Background Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. Results In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. Conclusions The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.

  16. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  17. Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis.

    Science.gov (United States)

    Kitani, Shigeru; Ikeda, Haruo; Sakamoto, Takako; Noguchi, Satoru; Nihira, Takuya

    2009-04-01

    Avermectin is an important macrocyclic polyketide produced by Streptomyces avermitilis and widely used as an anthelmintic agent in the medical, veterinary, and agricultural fields. The avermectin biosynthetic gene cluster contains aveR, which belongs to the LAL-family of regulatory genes. In this study, aveR was inactivated by gene replacement in the chromosome of S. avermitilis, resulting in the complete loss of avermectin production. The aveR mutant was unable to convert an avermectin intermediate to any avermectin derivatives, and complementation by intact aveR and its proper upstream region restored avermectin production in the mutant, suggesting that AveR is a positive regulator controlling the expression of both polyketide biosynthetic genes and postpolyketide modification genes in avermectin biosynthesis. Despite the general concept that an increased amount of a positive pathway-specific regulator leads to higher production, a higher amount of aveR resulted in complete loss of avermectin, indicating that there is a maximum threshold concentration of aveR for the production of avermectin.

  18. Cloning and heterologous expression of ectoine biosynthesis genes from Bacillus halodurans in Escherichia coli.

    Science.gov (United States)

    Anbu Rajan, Lawrance; Joseph, Toms C; Thampuran, Nirmala; James, Roswin; Ashok Kumar, Kesavan; Viswanathan, Chinnusamy; Bansal, Kailash C

    2008-08-01

    The genes involved in the biosynthetic pathway of ectoine (2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid) from Bacillus halodurans were cloned as an operon and expressed in E. coli. Analysis of the deduced ectoine biosynthesis cluster amino acid sequence revealed that the ectoine operon contain 2,389 bp, encoded by three genes; ectA, ectB and ectC that encode proteins of 189, 427 and 129 amino acids with deduced molecular masses of 21,048, 47,120 and 14,797 Da respectively. Extracts of induced cells showed two bands at 41 kDa and 17 kDa, possibly corresponding to the products of the later two genes. However the expression of ectA gene could not be ascertained by SDS-PAGE. The activity of the ectA protein was confirmed by an acylation assay. The transgenic E. coli accumulated upto 4.6 mg ectoine/l culture. This is the first report of an engineered E. coli strain carrying the ectoine genes of the alkaliphilic bacterium, B. halodurans.

  19. Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis.

    Science.gov (United States)

    Maruta, Takanori; Noshi, Masahiro; Nakamura, Maki; Matsuda, Shun; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2014-04-01

    Anthocyanins are important for preventing photoinhibition and photodamage. By comprehensive reverse genetic analysis of chloroplast-produced H2O2-responsive genes, we isolated here an anthocyanin-deficient mutant under photooxidative stress, which lacked ferulate 5-hydroxylase 1 (FAH1) involved in the phenylpropanoid pathway. Interestingly, the expression of anthocyanin biosynthesis-associated genes was also inhibited in this mutant. These findings suggest that FAH1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Furthermore, we found that estrogen-inducible silencing of thylakoid membrane-bound ascorbate peroxidase, which is a major H2O2-scavenging enzyme in chloroplasts, enhances the expression of FAH1 and anthocyanin biosynthesis-associated genes and accumulation of anthocyanin without any application of stress. Thus, it is likely that chloroplastic H2O2 activates FAH1 expression to induce anthocyanin accumulation for protecting cells from photooxidative stress.

  20. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis.

    Science.gov (United States)

    Guo, Jia; Zhao, Jinlei; Li, Lili; Chen, Zhi; Wen, Ying; Li, Jilun

    2010-02-01

    The function of the regulatory protein AveR in Streptomyces avermitilis was examined. An aveR deletion mutant abolished avermectin production and produced more oligomycin, and its phenotype was complemented by a single copy of the aveR gene. Removal of the C-terminal HTH domain of AveR abolished avermectin biosynthesis, indicating the importance of HTH domain for AveR function. Promoter titration and promoter probe assays suggested that the transcription of aveA1, encoding polypeptide AVES1 of avermectin PKS, was activated by AveR. Chromatin immunoprecipitation (ChIP) assay showed that the predicted promoter regions of both the ave cluster and the olm cluster were target sites of AveR, and the DNA-binding activity of AveR was dependent on its HTH domain. RT-PCR analysis revealed that the transcriptions of ave structural genes were dependent on AveR, but that of olm structural genes and putative pathway-specific regulatory genes increased in the aveR mutants. Consistent with these observations, overexpression of aveR successfully increased avermectin production. These results indicated that aveR encodes a pathway-specific activator essential for avermectin biosynthesis and it also negatively affects oligomycin biosynthesis.

  1. Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae

    Science.gov (United States)

    Gaffoor, Iffa; Trail, Frances

    2006-01-01

    Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain. PMID:16517624

  2. Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae.

    Science.gov (United States)

    Kawachi, R; Wangchaisoonthorn, U; Nihira, T; Yamada, Y

    2000-11-01

    Virginiae butanolide (VB)-BarA of Streptomyces virginiae is one of the newly discovered pairs of a butyrolactone autoregulator and a corresponding receptor protein of Streptomyces species and regulates the production of the antibiotic virginiamycin (VM) in S. virginiae. The gene vmsR was found to be situated 4.7 kbp upstream of the barA gene, which encodes the VB-specific receptor. The vmsR product was predicted to be a regulator of VM biosynthesis based on its high homology to some Streptomyces pathway-specific transcriptional regulators for the biosynthetic gene clusters of polyketide antibiotics, such as Streptomyces peucetius DnrI (47.5% identity, 84. 3% similarity), which controls daunorubicin biosynthesis. A vmsR deletion mutant was created by homologous recombination. Neither virginiamycin M(1) nor virginiamycin S was produced in the vmsR mutant, while amounts of VB and BarA similar to those produced in the wild-type strain were detected. Reverse transcription-PCR analyses confirmed that the vmsR deletion had no deleterious effects on the transcription of the vmsR-surrounding genes, indicating that VmsR is a positive regulator of VM biosynthesis in S. virginiae.

  3. "Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous"

    Directory of Open Access Journals (Sweden)

    Cifuentes Víctor

    2011-08-01

    Full Text Available Abstract Background The yeast Xanthophyllomyces dendrorhous is one of the most promising and economically attractive natural sources of astaxanthin. The biosynthesis of this valuable carotenoid is a complex process for which the regulatory mechanisms remain mostly unknown. Several studies have shown a strong correlation between the carbon source present in the medium and the amount of pigments synthesized. Carotenoid production is especially low when high glucose concentrations are used in the medium, while a significant increase is observed with non-fermentable carbon sources. However, the molecular basis of this phenomenon has not been established. Results In this work, we showed that glucose caused transcriptional repression of the three genes involved in the synthesis of astaxanthin from geranylgeranyl pyrophosphate in X. dendrorhous, which correlates with a complete inhibition of pigment synthesis. Strikingly, this regulatory response was completely altered in mutant strains that are incapable of synthesizing astaxanthin. However, we found that addition of ethanol caused the induction of crtYB and crtS gene expression and promoted de novo synthesis of carotenoids. The induction of carotenogenesis was noticeable as early as 24 h after ethanol addition. Conclusion For the first time, we demonstrated that carbon source-dependent regulation of astaxanthin biosynthesis in X. dendrorhous involves changes at the transcriptional level. Such regulatory mechanism provides an explanation for the strong and early inhibitory effect of glucose on the biosynthesis of this carotenoid.

  4. Evolutionary acquisition and loss of saxitoxin biosynthesis in dinoflagellates: the second "core" gene, sxtG.

    Science.gov (United States)

    Orr, Russell J S; Stüken, Anke; Murray, Shauna A; Jakobsen, Kjetill S

    2013-04-01

    Saxitoxin and its derivatives are potent neurotoxins produced by several cyanobacteria and dinoflagellate species. SxtA is the initial enzyme in the biosynthesis of saxitoxin. The dinoflagellate full mRNA and partial genomic sequences have previously been characterized, and it appears that sxtA originated in dinoflagellates through a horizontal gene transfer from a bacterium. So far, little is known about the remaining genes involved in this pathway in dinoflagellates. Here we characterize sxtG, an amidinotransferase enzyme gene that putatively encodes the second step in saxitoxin biosynthesis. In this study, the entire sxtG transcripts from Alexandrium fundyense CCMP1719 and Alexandrium minutum CCMP113 were amplified and sequenced. The transcripts contained typical dinoflagellate spliced leader sequences and eukaryotic poly(A) tails. In addition, partial sxtG transcript fragments were amplified from four additional Alexandrium species and Gymnodinium catenatum. The phylogenetic inference of dinoflagellate sxtG, congruent with sxtA, revealed a bacterial origin. However, it is not known if sxtG was acquired independently of sxtA. Amplification and sequencing of the corresponding genomic sxtG region revealed noncanonical introns. These introns show a high interspecies and low intraspecies variance, suggesting multiple independent acquisitions and losses. Unlike sxtA, sxtG was also amplified from Alexandrium species not known to synthesize saxitoxin. However, amplification was not observed for 22 non-saxitoxin-producing dinoflagellate species other than those of the genus Alexandrium or G. catenatum. This result strengthens our hypothesis that saxitoxin synthesis has been secondarily lost in conjunction with sxtA for some descendant species.

  5. PapR6, a putative atypical response regulator, functions as a pathway-specific activator of pristinamycin II biosynthesis in Streptomyces pristinaespiralis.

    Science.gov (United States)

    Dun, Junling; Zhao, Yawei; Zheng, Guosong; Zhu, Hong; Ruan, Lijun; Wang, Wenfang; Ge, Mei; Jiang, Weihong; Lu, Yinhua

    2015-02-01

    There are up to seven regulatory genes in the pristinamycin biosynthetic gene cluster of Streptomyces pristinaespiralis, which infers a complicated regulation mechanism for pristinamycin production. In this study, we revealed that PapR6, a putative atypical response regulator, acts as a pathway-specific activator of pristinamycin II (PII) biosynthesis. Deletion of the papR6 gene resulted in significantly reduced PII production, and its overexpression led to increased PII formation, compared to that of the parental strain HCCB 10218. However, either papR6 deletion or overexpression had very little effect on pristinamycin I (PI) biosynthesis. Electrophoretic mobility shift assays (EMSAs) demonstrated that PapR6 bound specifically to the upstream region of snaF, the first gene of the snaFE1E2GHIJK operon, which is likely responsible for providing the precursor isobutyryl-coenzyme A (isobutyryl-CoA) and the intermediate C11 αβ-unsaturated thioester for PII biosynthesis. A signature PapR6-binding motif comprising two 4-nucleotide (nt) inverted repeat sequences (5'-GAGG-4 nt-CCTC-3') was identified. Transcriptional analysis showed that inactivation of the papR6 gene led to markedly decreased expression of snaFE1E2GHIJK. Furthermore, we found that a mutant (snaFmu) with base substitutions in the identified PapR6-binding sequence in the genome exhibited the same phenotype as that of the ΔpapR6 strain. Therefore, it may be concluded that pathway-specific regulation of PapR6 in PII biosynthesis is possibly exerted via controlling the provision of isobutyryl-CoA as well as the intermediate C11 αβ-unsaturated thioester.

  6. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription.

    Science.gov (United States)

    Fan, Jianhua; Cui, Yanbin; Zhou, Yang; Wan, Minxi; Wang, Weiliang; Xie, Jingli; Li, Yuanguang

    2014-07-01

    Heterotrophy to photoautotrophy transition leads to the accumulation of lipids in Chlorella, which has potential to produce both healthy food and biofuels. Therefore, it is of key interest to study the metabolism shift and gene expression changes that influenced by the transition. Both total and neutral lipids contents were increased rapidly within 48 h after the switch to light environment, from 24.5% and 18.0% to 35.3% and 27.4%, respectively, along with the sharp decline of starch from 42.3% to 10.4% during 24h photoinduction phase. By analyzing the correlation between lipid content and gene expression, results revealed several genes viz. me g3137, me g6562, pepc g6833, dgat g3280 and dgat g7566, which encode corresponding enzymes in the de novo lipid biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. These results represented the feasibility of lipid production through trophic converting cultivation.

  7. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers.

    Science.gov (United States)

    Zhang, Guang-Hui; Ma, Chun-Hua; Zhang, Jia-Jin; Chen, Jun-Wen; Tang, Qing-Yan; He, Mu-Han; Xu, Xiang-Zeng; Jiang, Ni-Hao; Yang, Sheng-Chao

    2015-03-08

    P. vietnamensis var. fuscidiscus, called "Yesanqi" in Chinese, is a new variety of P. vietnamensis, which was first found in Jinping County, the southern part of Yunnan Province, China. Compared with other Panax plants, this species contains higher content of ocotillol-type saponin, majonoside R2. Despite the pharmacological importance of ocotillol-type saponins, little is known about their biosynthesis in plants. Hence, P. vietnamensis var. fuscidiscus is a suitable medicinal herbal plant species to study biosynthesis of ocotillol-type saponins. In addition, the available genomic information of this important herbal plant is lacking. To investigate the P. vietnamensis var. fuscidiscus transcriptome, Illumina HiSeq™ 2000 sequencing platform was employed. We produced 114,703,210 clean reads, assembled into 126,758 unigenes, with an average length of 1,304 bp and N50 of 2,108 bp. Among these 126,758 unigenes, 85,214 unigenes (67.23%) were annotated based on the information available from the public databases. The transcripts encoding the known enzymes involved in triterpenoid saponins biosynthesis were identified in our Illumina dataset. A full-length cDNA of three Squalene epoxidase (SE) genes were obtained using reverse transcription PCR (RT-PCR) and the expression patterns of ten unigenes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Furthermore, 15 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely to involve in triterpenoid saponins biosynthesis pathway were discovered from transcriptome sequencing of P. vietnamensis var. fuscidiscus. We further analyzed the data and found 21,320 simple sequence repeats (SSRs), 30 primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism in 13 P. vietnamensis var. fuscidiscus accessions. Meanwhile, five major triterpene saponins in roots of P. vietnamensis var. fuscidicus were determined using high performance

  8. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance.

    Science.gov (United States)

    Ding, Pingtao; Rekhter, Dmitrij; Ding, Yuli; Feussner, Kirstin; Busta, Lucas; Haroth, Sven; Xu, Shaohua; Li, Xin; Jetter, Reinhard; Feussner, Ivo; Zhang, Yuelin

    2016-10-01

    Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ(1)-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.

  9. Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis.

    Science.gov (United States)

    Narasaki, Craig T; Mertens, Katja; Samuel, James E

    2011-01-01

    Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is

  10. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  11. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  12. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.

    Science.gov (United States)

    Schwartz, Cory; Shabbir-Hussain, Murtaza; Frogue, Keith; Blenner, Mark; Wheeldon, Ian

    2016-12-22

    The yeast Yarrowia lipolytica is a promising microbial host due to its native capacity to produce lipid-based chemicals. Engineering stable production strains requires genomic integration of modified genes, avoiding episomal expression that requires specialized media to maintain selective pressures. Here, we develop a CRISPR-Cas9-based tool for targeted, markerless gene integration into the Y. lipolytica genome. A set of genomic loci was screened to identify sites that were accepting of gene integrations without impacting cell growth. Five sites were found to meet these criteria. Expression levels from a GFP expression cassette were consistent when inserted into AXP, XPR2, A08, and D17, with reduced expression from MFE1. The standardized tool is comprised of five pairs of plasmids (one homologous donor plasmid and a CRISPR-Cas9 expression plasmid), with each pair targeting gene integration into one of the characterized sites. To demonstrate the utility of the tool we rapidly engineered a semisynthetic lycopene biosynthesis pathway by integrating four different genes at different loci. The capability to integrate multiple genes without the need for marker recovery and into sites with known expression levels will enable more rapid and reliable pathway engineering in Y. lipolytica.

  13. Isolation and purification of a new kalimantacin/batumin-related polyketide antibiotic and elucidation of its biosynthesis gene cluster.

    Science.gov (United States)

    Mattheus, Wesley; Gao, Ling-Jie; Herdewijn, Piet; Landuyt, Bart; Verhaegen, Jan; Masschelein, Joleen; Volckaert, Guido; Lavigne, Rob

    2010-02-26

    Kal/bat, a polyketide, isolated to high purity (>95%) is characterized by strong and selective antibacterial activity against Staphylococcus species (minimum inhibitory concentration, 0.05 microg/mL), and no resistance was observed in strains already resistant to commonly used antibiotics. The kal/bat biosynthesis gene cluster was determined to a 62 kb genomic region of Pseudomonas fluorescens BCCM_ID9359. The kal/bat gene cluster consists of 16 open reading frames (ORF), encoding a hybrid PKS-NRPS system, extended with trans-acting tailoring functions. A full model for kal/bat biosynthesis is postulated and experimentally tested by gene inactivation, structural confirmation (using NMR spectroscopy), and complementation. The structural and microbiological study of biosynthetic kal/bat analogs revealed the importance of the carbamoyl group and 17-keto group for antibacterial activity. The mechanism of self-resistance lies within the production of an inactive intermediate, which is activated in a one-step enzymatic oxidation upon export. The genetic basis and biochemical elucidation of the biosynthesis pathway of this antibiotic will facilitate rational engineering for the design of novel structures with improved activities. This makes it a promising new therapeutic option to cope with multidrug-resistant clinical infections. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Comparative glandular trichome transcriptome-based gene characterization reveals reasons for differential (-)-menthol biosynthesis in Mentha species.

    Science.gov (United States)

    Akhtar, Md Qussen; Qamar, Nida; Yadav, Pallavi; Kulkarni, Pallavi; Kumar, Ajay; Shasany, Ajit Kumar

    2017-06-01

    The genes involved in menthol biosynthesis are reported earlier in Mentha × piperita. But the information on these genes is not available in Mentha arvensis. To bridge the gap in knowledge on differential biosynthesis of monoterpenes leading to compositional variation in the essential oil of these species, a comparative transcriptome analysis of the glandular trichome (GT) was carried out. In addition to the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathway genes, about 210 and 196 different terpene synthases (TPSs) transcripts were identified from annotation in M. arvensis and M. × piperita, respectively, and correlated to several monoterpenes present in the essential oil. Six isoforms of (-)-menthol dehydrogenases (MD), the last enzyme of the menthol biosynthetic pathway, were identified, cloned and characterized from the transcriptome data (three from each species). Varied expression levels and differential enzyme kinetics of these isoforms indicated the nature and composition of the product, as these isoforms generate both (-)-menthol and (+)-neomenthol from (-)-menthone and converts (-)-menthol to (-)-menthone in the reverse reaction, and hence together determine the quantity of (-)-menthol in the essential oil in these two species. Several genes for high value minor monoterpenes could also be identified from the transcriptome data. © 2017 Scandinavian Plant Physiology Society.

  15. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind.

    Science.gov (United States)

    Kuwahara, Hiroyuki; Alazmi, Meshari; Cui, Xuefeng; Gao, Xin

    2016-07-08

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  16. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind

    KAUST Repository

    Kuwahara, Hiroyuki

    2016-04-29

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  17. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis.

    Science.gov (United States)

    Zhang, Ji-Xing; Ma, Lan-Qing; Yu, Han-Song; Zhang, Hong; Wang, Hao-Tian; Qin, Yun-Fei; Shi, Guang-Lu; Wang, You-Nian

    2011-08-01

    Salidroside, the 8-O-β-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.

  18. Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks.

    Science.gov (United States)

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Lanoue, Arnaud; Gontier, Eric; Dauwe, Rebecca

    2015-08-01

    The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected.

  19. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.

    Science.gov (United States)

    Carletti, Giorgia; Lucini, Luigi; Busconi, Matteo; Marocco, Adriano; Bernardi, Jamila

    2013-09-01

    Flavonoids are the most common antioxidant compounds produced in plants. In this study, two wild types and two independent mutants of Medicago truncatula with altered anthocyanin content in leaves were characterized at the phenotype, metabolite profile, gene structure and transcript levels. Flavonoid profiles showed conserved levels of dihydroflavonols, leucoanthocyanidins and flavonols, while anthocyanidin, anthocyanin and isoflavone levels were lower in the mutants (up to 90% less) compared with the wild types. Genes encoding key enzymes of the anthocyanin pathway and transcriptional factors were analyzed by RT-PCR. Genes involved in the later steps of the anthocyanin pathway (dihydrokaempferol reductase 2, UDP-glucose:anthocyanin 3-O-glucosyltransferase and glutathione S-transferase) were found under-expressed in both mutants. Dihydrokaempferol reductase 1 was downregulated two-fold in the anthocyanin-less mutant while the UDP-glucose:anthocyanin 5-O-glucosyltransferase was strongly repressed only in the mutant with low pigmentation, suggesting a different regulation in the two genotypes. The common feature was that the first enzymes of the flavonoid biosynthesis pathway were not altered in rate of expression. A very high reduction in transcript accumulation was also found for two homologous R2R3 MYB genes, namely MtMYBA and AN2, suggesting that these genes have a role in anthocyanin accumulation in leaves. More evidence was found on analyzing their nucleotide sequence: several SNPs, insertions and deletions in the coding and non-coding regions of both MYB genes were found between mutants and wild types that could influence anthocyanin biosynthesis. Moreover, a subfamily of eight MYB genes with a high homology to MtMYBA was discovered in tandem on chromosome 5 of M. truncatula.

  20. Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade

    Institute of Scientific and Technical Information of China (English)

    Kevin Schwahn; Leonardo Perez de Souza; Alisdair RFernie; Takayuki Tohge

    2014-01-01

    Steroidal glycoalkaloids (SGAs) are nitrogen-con-taining secondary metabolites of the Solanum species, which are known to have large chemical and bioactive diversity in nature. While recent effort and development on LC/MS techniques for SGA profiling have elucidated the main pathways of SGA metabolism in tomato, the problem of peak annotation stil remains due to the vast diversity of chemical structure and similar on overlapping of chemical formula. Here we provide a case study of peak classification and annotation approach by integration of species and tissue specificities of SGA accumulation for provision of comprehen-sive pathways of SGA biosynthesis. In order to elucidate natural diversity of SGA biosynthesis, a total of 169 putative SGAs found in eight tomato accessions (Solanum lycopersicum, S. pimpinellifolium, S. cheesmaniae, S. chmielewski , S. neoricki , S. peruvianum, S. habrochaites, S. pennelli ) and four tissue types were used for correlation analysis. The results obtained in this study contribute annotation and classification of SGAs as well as detecting putative novel biosynthetic branch points. As such this represents a novel strategy for peak annotation for plant secondary metabolites.

  1. Artemether Exhibits Amoebicidal Activity against Acanthamoeba castellanii through Inhibition of the Serine Biosynthesis Pathway.

    Science.gov (United States)

    Deng, Yihong; Ran, Wei; Man, Suqin; Li, Xueping; Gao, Hongjian; Tang, Wei; Tachibana, Hiroshi; Cheng, Xunjia

    2015-08-01

    Acanthamoeba sp. parasites are the causative agents of Acanthamoeba keratitis, fatal granulomatous amoebic encephalitis, and cutaneous infections. However, there are currently no effective drugs for these organisms. Here, we evaluated the activity of the antimalarial agent artemether against Acanthamoeba castellanii trophozoites and identified potential targets of this agent through a proteomic approach. Artemether exhibited in vitro amoebicidal activity in a time- and dose-dependent manner and induced ultrastructural modification and cell apoptosis. The iTRAQ quantitative proteomic analysis identified 707 proteins that were differentially expressed after artemether treatment. We focused on phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthesis pathway because of their importance to the growth and proliferation of protozoan and cancer cells. The expression of these proteins in Acanthamoeba was validated using quantitative real-time PCR and Western blotting after artemether treatment. The changes in the expression levels of phosphoserine aminotransferase were consistent with those of phosphoglycerate dehydrogenase. Therefore, the downregulation of phosphoserine aminotransferase may be due to the downregulation of phosphoglycerate dehydrogenase. Furthermore, exogenous serine might antagonize the activity of artemether against Acanthamoeba trophozoites. These results indicate that the serine biosynthesis pathway is important to amoeba survival and that targeting these enzymes would improve the treatment of Acanthamoeba infections. Artemether may be used as a phosphoglycerate dehydrogenase inhibitor to control or block Acanthamoeba infections.

  2. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  3. Autism: Many Genes, Common Pathways?

    OpenAIRE

    Geschwind, Daniel H.

    2008-01-01

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  4. Autism: many genes, common pathways?

    Science.gov (United States)

    Geschwind, Daniel H

    2008-10-31

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  5. The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis.

    Science.gov (United States)

    Oves-Costales, Daniel; Kadi, Nadia; Challis, Gregory L

    2009-11-21

    Siderophores are high-affinity ferric iron chelators biosynthesised and excreted by most microorganisms that play an important role in iron acquisition. Siderophore-mediated scavenging of ferric iron from hosts contributes significantly to the virulence of pathogenic microbes. As a consequence siderophore biosynthesis is an attractive target for chemotherapeutic intervention. Two main pathways for siderophore biosynthesis exist in microbes. One pathway involves nonribosomal peptide synthetase (NRPS) multienzymes while the other is NRPS-independent. The enzymology of NRPS-mediated siderophore biosynthesis has been extensively studied for more than a decade. In contrast, the enzymology of NRPS-independent siderophore (NIS) biosynthesis was overlooked for almost thirty years since the first genetic characterisation of the NIS biosynthetic pathway to aerobactin. However, the past three years have witnessed an explosion of interest in the enzymology of NIS synthetases, the key enzymes in the assembly of siderophores via the NIS pathway. The biochemical characterisation of ten purified recombinant synthetases has been reported since 2007, along with the first structural characterisation of a synthetase by X-ray crystallography in 2009. In this feature article we summarise the recent progress that has been made in understanding the long-overlooked enzymology of NRPS-independent siderophore biosynthesis, highlight important remaining questions, and suggest likely directions for future research.

  6. SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus.

    Science.gov (United States)

    Zhu, Zhenhong; Li, Han; Yu, Pin; Guo, Yuanyang; Luo, Shuai; Chen, Zhongbin; Mao, Xuming; Guan, Wenjun; Li, Yongquan

    2017-02-01

    Salinomycin, a polyether antibiotic produced by Streptomyces albus, is widely used in animal husbandry as an anticoccidial drug and growth promoter. Situated within the salinomycin biosynthetic gene cluster, slnR encodes a LAL-family transcriptional regulator. The role of slnR in salinomycin production in S. albus was investigated by gene deletion, complementation, and overexpression. Gene replacement of slnR from S. albus chromosome results in almost loss of salinomycin production. Complementation of slnR restored salinomycin production, suggesting that SlnR is a positive regulator of salinomycin biosynthesis. Overexpression of slnR in S. albus led to about 25 % increase in salinomycin production compared to wild type. Quantitative RT-PCR analysis revealed that the expression of most sal structural genes was downregulated in the ΔslnR mutant but upregulated in the slnR overexpression strain. Electrophoretic mobility gel shift assays (EMSAs) also revealed that SlnR(DBD) binds directly to the three intergenic regions of slnQ-slnA1, slnF-slnT1, and slnC-slnB3. The SlnR binding sites within the three intergenic regions were determined by footprinting analysis and identified a consensus-directed repeat sequence 5'-ACCCCT-3'. These results indicated that SlnR modulated salinomycin biosynthesis as an enhancer via interaction with the promoters of slnA1, slnQ, slnF, slnT1, slnC, and slnB3 and activates the transcription of most of the genes belonging to the salinomycin gene cluster but not its own transcription.

  7. Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE

    Institute of Scientific and Technical Information of China (English)

    HUANG Xin; LI Hao-ming

    2009-01-01

    Background Lovastatin is an effective drug for treatment of hyperlipidemia.This study aimed to clone Iovastatin biosynthesis regulatory gene lovE and analyze the structure and function of its encoding protein.Methods According to the Iovastatin synthase gene sequence from genebank,primers were designed to amplify and clone the Iovastatin biosynthesis regulatory gene lovE from Aspergillus terms genomic DNA.Bioinformatic analysis of lovE and its encoding animo acid sequence was performed through intemet resources and software like DNAMAN.Results Target fragment lovE,almost 1500 bp in length,was amplified from Aspergillus terms genomic DNA and the secondary and three-dimensional structures of LovE protein were predicted.Conclusion In the Iovastatin biosynthesis process lovE is a regulatory gene and LovE protein is a GAL4-1ike transcriptional factor.

  8. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  9. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    Full Text Available Black rice (Oryza sativa L., whose pericarp is rich in anthocyanins (ACNs, is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear.The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP. Isobaric tags for relative and absolute quantification (iTRAQ MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF. The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR analysis, these genes had differed in transcriptional and translational expression during grain development.Expression analyses

  10. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants

    Institute of Scientific and Technical Information of China (English)

    Yunde Zhao

    2012-01-01

    Indole-3-acetic acid (IAA),the main naturally occurring auxin,is essential for almost every aspect of plant growth and development.However,only recently have studies finally established the first complete auxin biosynthesis pathway that converts tryptophan (Trp) to IAA in plants.Trp is first converted to indole-3-pyruvate (IPA) by the TAA family of amino transferases and subsequently IAA is produced from IPA by the YUC family of flavin monooxygenases.The two-step conversion of Trp to IAA is the main auxin biosynthesis pathway that plays an essential role in many developmental processes.

  11. De Novo Transcriptome Analysis of Plant Pathogenic Fungus Myrothecium roridum and Identification of Genes Associated with Trichothecene Mycotoxin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Wei Ye

    2017-02-01

    Full Text Available Myrothecium roridum is a plant pathogenic fungus that infects different crops and decreases the yield of economical crops, including soybean, cotton, corn, pepper, and tomato. Until now, the pathogenic mechanism of M. roridum has remained unclear. Different types of trichothecene mycotoxins were isolated from M. roridum, and trichothecene was considered as a plant pathogenic factor of M. roridum. In this study, the transcriptome of M. roridum in different incubation durations was sequenced using an Illumina Hiseq 2000. A total of 35,485 transcripts and 25,996 unigenes for M. roridum were obtained from 8.0 Gb clean reads. The protein–protein network of the M. roridum transcriptome indicated that the mitogen-activated protein kinases signal pathway also played an important role in the pathogenicity of M. roridum. The genes related to trichothecene biosynthesis were annotated. The expression levels of these genes were also predicted and validated through quantitative real-time polymerase chain reaction. Tri5 gene encoding trichodiene synthase was cloned and expressed, and the purified trichodiene synthase was able to catalyze farnesyl pyrophosphate into different kinds of sesquiterpenoids.Tri4 and Tri11 genes were expressed in Escherichia coli, and their corresponding enzymatic properties were characterized. The phylogenetic tree of trichodiene synthase showed a great discrepancy between the trichodiene synthase from M. roridum and other species. Our study on the genes related to trichothecene biosynthesis establishes a foundation for the M. roridum hazard prevention, thus improving the yields of economical crops.

  12. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.

    Science.gov (United States)

    Chen, Xianrui; Wang, Zhaoyue; Guo, Xuena; Liu, Sha; He, Xiuping

    2017-01-20

    In Saccharomyces cerevisiae, when l-phenylalanine (l-Phe) is used as the sole nitrogen source, 2-phenylethanol (PE) is mainly synthesized via the Ehrlich pathway. General amino acid permease Gap1p is response of aromatic amino acids transportation, and GATA transcription factors Gln3p and Gat1p regulate the transcription of permease gene and catabolic enzyme genes for nitrogen sources and aromatic amino acids utilization. In this study, it was demonstrated that over-expressing GLN3 gene from industrial yeast strain MT2 or S. cerevisiae haploid strain YS58, 2-PE synthesis levels of recombinant strains increased 54% or 40% than that of the control strain, which suggested that higher Gln3p activity in yeast has positive regulation effect on 2-PE biosynthesis via Ehrlich pathway. The recombinant strains with over-expression of GAT1 gene from MT2 or YS58 also up-regulated Ehrlich pathway for 2-PE biosynthesis and increased 2-PE production. Similarly, when GAP1 gene respectively from MT2 or YS58 was over-expressed, 2-PE yield was improved obviously, suggesting that GAP1 over-expressing in yeast also promoted Ehrlich pathway to produce 2-PE. The synergistic regulation of GLN3/GAT1 or GLN3/GAP1 over-expression was similar to that of single factor over-expression. Among these regulatory factors, Gln3p of industrial yeast strain MT2 caused stronger regulation on target genes than that of haploid strain YS58, which might be due to the differences in translational efficiency or nuclear localization of each Gln3p, or due to their different spatial structures and binding domains. Further results showed that efficient Gln3p expression in MT2 brought about higher 2-PE, 3.59gL(-1), which was of potential significant for commercial exploitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transcription factors FabR and FadR regulate both aerobic and anaerobic pathways for unsaturated fatty acid biosynthesis in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Qixia eLuo

    2014-12-01

    Full Text Available As genes for type II fatty acid synthesis are essential to the growth of Escherichia coli, its sole (anaerobic pathway has significant potential as a target for novel antibacterial drug, and has been extensively studied. Despite this, we still know surprisingly little about fatty acid synthesis in bacteria because this anaerobic pathway in fact is not widely distributed. In this study, we show a novel model of unsaturated fatty acid (UFA synthesis in Shewanella, emerging human pathogens in addition to well-known metal reducers. We identify both anaerobic and aerobic UFA biosynthesis pathways in the representative species, S. oneidensis. Uniquely, the bacterium also contains two regulators FabR and FadR, whose counterparts in other bacteria control the anaerobic pathway. However, we show that in S. oneidensis these two regulators are involved in regulation of both pathways, in either direct or indirect manner. Overall, our results indicate that the UFA biosynthesis and its regulation are far more complex than previously expected, and S. oneidensis serves as a good research model for further work.

  14. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  15. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species.

    Science.gov (United States)

    Gupta, Nidhi; Sharma, Sunil K; Rana, Jai C; Chauhan, Rajinder S

    2011-11-15

    Buckwheat is one of the field crops with the highest concentration of rutin, an important flavonoid of medicinal value. Two species of buckwheat, Fagopyrum esculentum and Fagopyrum tataricum, are the major sources of rutin. Seeds of latter contain 40-50× higher rutin compared to the former. The physiological and molecular bases of rutin content variation between Fagopyrum species are not known. The current study investigated the differences in rutin content in seeds and in other tissues and growth stages of two Fagopyrum species, and also correlated those differences with the expression of flavonoid pathway genes. The analysis of rutin content dynamics at different growth stages, S1-S9 (from seed germination to mature seed formation) of Fagopyrum species revealed that rutin content was higher during seedling stages of F. tataricum (3.5 to 4.6-fold) compared to F. esculentum and then increased exponentially from stages S3 to S6 (different leaf maturing stages and inflorescence) of F. esculentum, whereas it fluctuated in F. tataricum. The rutin content was highest in the inflorescence stage (S6) of both species, with a relatively higher biosynthesis and accumulation during post-flowering stages of F. tataricum compared to F. esculentum. The expression of flavonoid pathway genes, through qRT-PCR, in different growth stages vis-à-vis rutin content variation showed differential expression for four genes, PAL, CHS, CHI and FLS with the amounts of transcripts relatively higher in F. tataricum compared to F. esculentum, thereby, correlating these genes with the biosynthesis and accumulation of rutin. The expression of PAL was highest, 7.69 and 8.96-fold in Stages 2 (seedling stage) and 9 (fully developed seeds) of F. tataricum compared to F. esculentum, respectively. The expression of the CHS gene correlated with the rutin content because it was highest in the flowers (S6) and fully developed seeds (S9) of both Fagopyrum species, with relatively higher transcript amounts

  16. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis.

    Science.gov (United States)

    Benstein, Ruben Maximilian; Ludewig, Katja; Wulfert, Sabine; Wittek, Sebastian; Gigolashvili, Tamara; Frerigmann, Henning; Gierth, Markus; Flügge, Ulf-Ingo; Krueger, Stephan

    2013-12-01

    In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.

  17. Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum.

    Science.gov (United States)

    Fanelli, Francesca; Schmidt-Heydt, Markus; Haidukowski, Miriam; Geisen, Rolf; Logrieco, Antonio; Mulè, Giuseppina

    2012-02-01

    Fumonisins are a group of mycotoxins, mainly found in maize and maize-based food and feed, associated with several diseases in animals. The impact of these toxins on the economy and health worldwide has driven several efforts to clarify the role of environmental factors that can influence fumonisin biosynthesis by the toxigenic species. We analyzed the influence of light of varying wavelength on growth and fumonisin biosynthesis by the fungus Fusarium proliferatum ITEM 1719. Light in general had a positive influence on growth, with a mean increase of the grow rate of about 40% under light exposure in comparison to the dark incubation. Wavelengths from both sides of the spectrum, from long (627 nm) to short wavelength (470-455 nm) had a stimulating effect on fumonisin biosynthesis compared to the dark incubation: fumonisins B(1) (FB(1)) and B(2) (FB(2)) production increased of about 40 fold under red, 35 fold under blue, 20 fold under royal blue, 10 fold under green, 5 fold under yellow and 3 fold under white light in comparison to the dark incubation. The transcriptional regulation of the FUM1 fumonisin biosynthesis gene was analyzed by Real time reverse transcriptase PCR quantification, revealing a correlation between fumonisin biosynthesis and gene expression. These findings show a role of light on the growth and the modulation of fumonisin biosynthesis and provide new information on the physiology of an important toxigenic maize pathogen. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids.

    Directory of Open Access Journals (Sweden)

    Xianjun Liu

    Full Text Available Brassica juncea, a worldwide cultivated crop plant, produces seeds of different colors. Seed pigmentation is due to the deposition in endothelial cells of proanthocyanidins (PAs, end products from a branch of flavonoid biosynthetic pathway. To elucidate the gene regulatory network of seed pigmentation in B. juncea, transcriptomes in seed coat of a yellow-seeded inbred line and its brown-seeded near- isogenic line were sequenced using the next-generation sequencing platform Illumina/Solexa and de novo assembled. Over 116 million high-quality reads were assembled into 69,605 unigenes, of which about 71.5% (49,758 unigenes were aligned to Nr protein database with a cut-off E-value of 10(-5. RPKM analysis showed that the brown-seeded testa up-regulated 802 unigenes and down-regulated 502 unigenes as compared to the yellow-seeded one. Biological pathway analysis revealed the involvement of forty six unigenes in flavonoid biosynthesis. The unigenes encoding dihydroflavonol reductase (DFR, leucoantho-cyanidin dioxygenase (LDOX and anthocyanidin reductase (ANR for late flavonoid biosynthesis were not expressed at all or at a very low level in the yellow-seeded testa, which implied that these genes for PAs biosynthesis be associated with seed color of B. juncea, as confirmed by qRT-PCR analysis of these genes. To our knowledge, it is the first time to sequence the transcriptome of seed coat in Brassica juncea. The unigene sequences obtained in this study will not only lay the foundations for insight into the molecular mechanisms underlying seed pigmentation in B.juncea, but also provide the basis for further genomics research on this species or its allies.

  19. NF-Y activates genes of metabolic pathways altered in cancer cells.

    Science.gov (United States)

    Benatti, Paolo; Chiaramonte, Maria Luisa; Lorenzo, Mariangela; Hartley, John A; Hochhauser, Daniel; Gnesutta, Nerina; Mantovani, Roberto; Imbriano, Carol; Dolfini, Diletta

    2016-01-12

    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.

  20. The chitin biosynthesis pathway in Entamoeba and the role of glucosamine-6-P isomerase by RNA interference.

    Science.gov (United States)

    Samanta, Sintu Kumar; Ghosh, Sudip K

    2012-11-01

    Entamoeba histolytica, the causative agent of amoebiasis, infects through its cyst form. A thick chitin wall protects the cyst from the harsh environment outside of the body. It is known that chitin is synthesized only during encystation, but the chitin synthesis pathway (CSP) of Entamoeba is not well characterized. In this report, we have identified the genes involved in chitin biosynthesis from the Entamoeba genome database and verified their expression profile at the transcriptional level in encysting Entamoeba invadens. Semi-quantitative RT-PCR (sqRT-PCR) analysis showed that all the chitin pathway genes are entirely absent or transcribed at low levels in trophozoites. The mRNA expression of most of the CSP genes reached their maximum level between 9 and 12h after the in vitro initiation of encystation. Double-stranded RNA-mediated silencing of glucosamine-6-P isomerase (Gln6Pi) reduced chitin synthesis to 62-64%, which indicates that Gln6Pi might be a key enzyme for regulating chitin synthesis in Entamoeba. The study of different enzymes involved in glycogen metabolism revealed that stored glycogen is converted to glucose during encystation. It is clear from the sqRT-PCR analysis that the rate of glycolysis decreases as encystation proceeds. Encystation up-regulates the expression of glycogen phosphorylase, which is responsible for glycogen degradation. The significant decrease in chitin synthesis in encysting cells treated with a specific inhibitor of glycogen phosphorylase indicates that the glucose obtained from the degradation of stored glycogen in trophozoites might be one of the major sources of glucose for chitin synthesis.

  1. Engineering and Optimization of the Chain Elongation Pathway of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Mirza, Nadia Muhammad Akram

    Glucoraphanin is a health promoting secondary metabolite found in broccoli, it exhibits anti-cancer and antimicrobial properties.The thesis deals with metabolic engineering of glucoraphanin in heterologous systems. In addition, a minor part of the thesis describes the characterization of an antib......Glucoraphanin is a health promoting secondary metabolite found in broccoli, it exhibits anti-cancer and antimicrobial properties.The thesis deals with metabolic engineering of glucoraphanin in heterologous systems. In addition, a minor part of the thesis describes the characterization...... of an antibody against glucoraphanin. The research conducted contributes mainly towards investigation and optimization of heterologous expression of the chain elongation pathway for glucoraphanin biosynthesis. Production of the glucoraphanin precursor in E. coli provides a proof-of-concept for transfer of chain...... elongation enzymes to E. coli cytosol and is an important step forward towards microbial production of glucoraphanin....

  2. Biosynthesis of aphidicolin proceeds via the mevalonate pathway in the endophytic fungus Nigrospora sphaerica

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Adriana A.; Pupo, Monica T., E-mail: mtpupo@fcfrp.usp.b [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Ciencias Farmaceuticas

    2011-07-01

    We have previously identified the endophytic fungus Nigrospora sphaerica as a prolific producer of the bioactive diterpene aphidicolin. Herein we report a study to establish the best conditions for the production of aphidicolin by N. sphaerica in Czapek medium. The sugar source (glucose and sucrose) and the incubation time (4-15 days) were optimized for further application on biosynthetic studies of the diterpene. The highest levels of production of aphidicolin were found on the 8{sup th} day with 1%-glucose and on the 12{sup th} day with 3%-sucrose based media. The biosynthesis of aphidicolin was investigated using [1-{sup 13}C]-D-glucose as a precursor, and showed that the isoprene units of aphidicolin are derived from the mevalonate pathway. (author)

  3. Genome mining of the hitachimycin biosynthetic gene cluster: involvement of a phenylalanine-2,3-aminomutase in biosynthesis.

    Science.gov (United States)

    Kudo, Fumitaka; Kawamura, Koichi; Uchino, Asuka; Miyanaga, Akimasa; Numakura, Mario; Takayanagi, Ryuichi; Eguchi, Tadashi

    2015-04-13

    Hitachimycin is a macrolactam antibiotic with (S)-β-phenylalanine (β-Phe) at the starter position of its polyketide skeleton. To understand the incorporation mechanism of β-Phe and the modification mechanism of the unique polyketide skeleton, the biosynthetic gene cluster for hitachimycin in Streptomyces scabrisporus was identified by genome mining. The identified gene cluster contains a putative phenylalanine-2,3-aminomutase (PAM), five polyketide synthases, four β-amino-acid-carrying enzymes, and a characteristic amidohydrolase. A hitA knockout mutant showed no hitachimycin production, but antibiotic production was restored by feeding with (S)-β-Phe. We also confirmed the enzymatic activity of the HitA PAM. The results suggest that the identified gene cluster is responsible for the biosynthesis of hitachimycin. A plausible biosynthetic pathway for hitachimycin, including a unique polyketide skeletal transformation mechanism, is proposed.

  4. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm.

    Science.gov (United States)

    Guerin, Chloé; Joët, Thierry; Serret, Julien; Lashermes, Philippe; Vaissayre, Virginie; Agbessi, Mawussé D T; Beulé, Thierry; Severac, Dany; Amblard, Philippe; Tregear, James; Durand-Gasselin, Tristan; Morcillo, Fabienne; Dussert, Stéphane

    2016-09-01

    Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.

  5. Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development.

    Science.gov (United States)

    Wang, Guang-Long; Xiong, Fei; Que, Feng; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2015-01-01

    Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception.

  6. Identification of genes involved in indole-3-acetic acid biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using transposon mutagenesis

    Directory of Open Access Journals (Sweden)

    ELISETE PAINS RODRIGUES

    2016-10-01

    Full Text Available Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA; however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01, which exhibited 95% less indolic compounds that the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA and indole-3-lactate (ILA. In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO. GDI2456 (lao gene forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao, cccA and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with

  7. Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis

    Science.gov (United States)

    Rodrigues, Elisete P.; Soares, Cleiton de Paula; Galvão, Patrícia G.; Imada, Eddie L.; Simões-Araújo, Jean L.; Rouws, Luc F. M.; de Oliveira, André L. M.; Vidal, Márcia S.; Baldani, José I.

    2016-01-01

    Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and

  8. Expansion of the Clavulanic Acid Gene Cluster: Identification and In Vivo Functional Analysis of Three New Genes Required for Biosynthesis of Clavulanic Acid by Streptomyces clavuligerus

    Science.gov (United States)

    Li, Rongfeng; Khaleeli, Nusrat; Townsend, Craig A.

    2000-01-01

    Clavulanic acid is a potent inhibitor of β-lactamase enzymes and is of demonstrated value in the treatment of infections by β-lactam-resistant bacteria. Previously, it was thought that eight contiguous genes within the genome of the producing strain Streptomyces clavuligerus were sufficient for clavulanic acid biosynthesis, because they allowed production of the antibiotic in a heterologous host (K. A. Aidoo, A. S. Paradkar, D. C. Alexander, and S. E. Jensen, p. 219–236, In V. P. Gullo et al., ed., Development in industrial microbiology series, 1993). In contrast, we report the identification of three new genes, orf10 (cyp), orf11 (fd), and orf12, that are required for clavulanic acid biosynthesis as indicated by gene replacement and trans-complementation analysis in S. clavuligerus. These genes are contained within a 3.4-kb DNA fragment located directly downstream of orf9 (cad) in the clavulanic acid cluster. While the orf10 (cyp) and orf11 (fd) proteins show homologies to other known CYP-150 cytochrome P-450 and [3Fe-4S] ferredoxin enzymes and may be responsible for an oxidative reaction late in the pathway, the protein encoded by orf12 shows no significant similarity to any known protein. The results of this study extend the biosynthetic gene cluster for clavulanic acid and attest to the importance of analyzing biosynthetic genes in the context of their natural host. Potential functional roles for these proteins are proposed. PMID:10869089

  9. The regulation of ascorbate biosynthesis.

    Science.gov (United States)

    Bulley, Sean; Laing, William

    2016-10-01

    We review the regulation of ascorbate (vitamin C) biosynthesis, focusing on the l-galactose pathway. We discuss the regulation of ascorbate biosynthesis at the level of gene transcription (both repression and enhancement) and translation (feedback inhibition of translation by ascorbate concentration) and discuss the eight proteins that have been demonstrated to date to affect ascorbate concentration in plant tissues. GDP-galactose phosphorylase (GGP) and GDP-mannose epimerase are critical steps that regulate ascorbate biosynthesis. These and other biosynthetic genes are controlled at the transcriptional level, while GGP is also controlled at the translational level. Ascorbate feedback on enzyme activity has not been observed unequivocally.

  10. Comparative mRNA Expression Profiles of Riboflavin Biosynthesis Genes in Lactobacilli Isolated from Human Feces and Fermented Bamboo Shoots

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir K.; Wei, Zhao-Jun

    2017-01-01

    With the aim to bioprospect potent riboflavin producing lactobacilli, the present study was carried out to evaluate the relative mRNA expression of riboflavin biosynthesis genes namely Rib 1, Rib 2, Rib 3, and Rib 4 from potent riboflavin producers obtained from our previous studies. All the four genes were successfully cloned and sequenced for further analysis by in silico procedures. As studied by non-denaturing Polyacrylamide gel electrophoresis, no difference in size of all the four genes among those of various lactobacilli was observed. The relative fold increase in mRNA expression in Rib 1, Rib 2, Rib 3, and Rib 4 genes has been observed to be 10-, 1-, 0.7-, and 8.5-fold, respectively. Due to increase in relative mRNA expression for all the Rib genes as well as phenotypic production attribute, KTLF1 strain was used further for expression studies in milk and whey. The fold increase in mRNA expression for all the four Rib genes was higher at 12 and 18 h in milk and whey respectively. After exposure to roseoflavin, resistant variant of KTLF1 showed considerable increase in expression of all the targets genes. This is the first ever study to compare the mRNA expression of riboflavin biosynthesis pathway genes in lactobacilli and it also under lines the effect of media and harvesting time which significantly affect the expression of rib genes. The use of roseoflavin-resistant strains capable of synthesizing riboflavin in milk and whey paves a way for an exciting and economically viable biotechnological approach to develop novel riboflavin bio-enriched functional foods. PMID:28367143

  11. Transcriptional Control of Steroid Biosynthesis Genes in the Drosophila Prothoracic Gland by Ventral Veins Lacking and Knirps

    Science.gov (United States)

    Dorry, Elad; Komura-Kawa, Tatsuya; Fujimoto, Yoshinori; Troelsen, Jesper T.; Herder, Rachel; O'Connor, Michael B.; Niwa, Ryusuke; Rewitz, Kim F.

    2014-01-01

    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development. PMID:24945799

  12. Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by ventral veins lacking and knirps.

    Directory of Open Access Journals (Sweden)

    E Thomas Danielsen

    2014-06-01

    Full Text Available Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl and the nuclear receptor Knirps (Kni, have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld, controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development.

  13. Genes and (Common) Pathways Underlying Drug Addiction

    OpenAIRE

    Chuan-Yun Li; Xizeng Mao; Liping Wei

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addict...

  14. Precursor Amino Acids Inhibit Polymyxin E Biosynthesis in Paenibacillus polymyxa, Probably by Affecting the Expression of Polymyxin E Biosynthesis-Associated Genes

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    2015-01-01

    Full Text Available Polymyxin E belongs to cationic polypeptide antibiotic bearing four types of direct precursor amino acids including L-2,4-diaminobutyric acid (L-Dab, L-Leu, D-Leu, and L-Thr. The objective of this study is to evaluate the effect of addition of precursor amino acids during fermentation on polymyxin E biosynthesis in Paenibacillus polymyxa. The results showed that, after 35 h fermentation, addition of direct precursor amino acids to certain concentration significantly inhibited polymyxin E production and affected the expression of genes involved in its biosynthesis. L-Dab repressed the expression of polymyxin synthetase genes pmxA and pmxE, as well as 2,4-diaminobutyrate aminotransferase gene ectB; both L-Leu and D-Leu repressed the pmxA expression. In addition, L-Thr affected the expression of not only pmxA, but also regulatory genes spo0A and abrB. As L-Dab precursor, L-Asp repressed the expression of ectB, pmxA, and pmxE. Moreover, it affected the expression of spo0A and abrB. In contrast, L-Phe, a nonprecursor amino acid, had no obvious effect on polymyxin E biosynthesis and those biosynthesis-related genes expression. Taken together, our data demonstrated that addition of precursor amino acids during fermentation will inhibit polymyxin E production probably by affecting the expression of its biosynthesis-related genes.

  15. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    Plants produce more than 10.000 diterpenoid compounds of which the large majority is involved in specialized metabolism, while a few are involved in general metabolism. Specialized metabolism diterpenoids have functions in interactions of plants with other organisms and selected ones are utilized...... and aracterization of diTPSs deriving from the plant kingdom, a plant expression host offers several advantages such as the presence of all relevant compartments (plastids and endoplasmic reticulum) and the universal C5 building blocks for isoprenoid biosynthesis. In addition, a plant based xpression host...... is compatible with native codon usage, and through the conserved mechanisms of protein targeting and posttranslational odifications, has the capacity to produce functional enzymes. To further explore plant based expression and characterization of diterpenoid pathway genes, two different plant expression hosts...

  16. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera

    Science.gov (United States)

    Pandey, Akansha; Swarnkar, Vishakha; Pandey, Tushar; Srivastava, Piush; Kanojiya, Sanjeev; Mishra, Dipak Kumar; Tripathi, Vineeta

    2016-01-01

    Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG’s were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes. PMID:27703261

  17. De Novo characterization of a Cephalotaxus hainanensis transcriptome and genes related to paclitaxel biosynthesis.

    Directory of Open Access Journals (Sweden)

    Fei Qiao

    Full Text Available Cephalotaxus hainanensis, an endangered plant, is known to contain several metabolites with anti-cancer activity. Despite its clinical impact, the alkaloid metabolism of this species has remained largely uncharacterized. The potential of Cephalotaxus for metabolic engineering of medically interesting compounds has, so far, not been exploited, due to the almost complete lack of molecular information. We have therefore performed a high throughput RNA-seq analysis and assembled the transcriptome de novo. Raw reads comprising 4.3 Gbp were assembled de novo into 39,416 unique sequences (unigenes with a mean length of 1,089.8 bp and a total assembly size of 45.8 Mbp, which equals to more than 50 times the number of Cephalotaxaceae sequences currently deposited in the GenBank (as of August 2013. As proof of principle for medically interesting pathways, gene fragments related to paclitaxel biosynthesis were searched and detected. To verify their functionality, the metabolic product paclitaxel, and its precursor baccatin III, were identified in the leaves of C. hainanensis by HPLC, and shown to be induced by MeJA. This finding demonstrates exemplarily the potential of the annotated transcriptome as information resource for the biotechnological exploitation of plant secondary metabolism.

  18. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources.

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-09-02

    Plant secondary metabolites have been attracting people's attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.

  19. Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine actinobacteria: generation of a novel improved derivative.

    Science.gov (United States)

    Salcedo, Raúl García; Olano, Carlos; Gómez, Cristina; Fernández, Rogelio; Braña, Alfredo F; Méndez, Carmen; de la Calle, Fernando; Salas, José A

    2016-02-22

    PM100117 and PM100118 are glycosylated polyketides with remarkable antitumor activity, which derive from the marine symbiotic actinobacteria Streptomyces caniferus GUA-06-05-006A. Structurally, PM100117 and PM100118 are composed of a macrocyclic lactone, three deoxysugar units and a naphthoquinone (NQ) chromophore that shows a clear structural similarity to menaquinone. Whole-genome sequencing of S. caniferus GUA-06-05-006A has enabled the identification of PM100117 and PM100118 biosynthesis gene cluster, which has been characterized on the basis of bioinformatics and genetic engineering data. The product of four genes shows high identity to proteins involved in the biosynthesis of menaquinone via futalosine. Deletion of one of these genes led to a decay in PM100117 and PM100118 production, and to the accumulation of several derivatives lacking NQ. Likewise, five additional genes have been genetically characterized to be involved in the biosynthesis of this moiety. Moreover, the generation of a mutant in a gene coding for a putative cytochrome P450 has led to the production of PM100117 and PM100118 structural analogues showing an enhanced in vitro cytotoxic activity relative to the parental products. Although a number of compounds structurally related to PM100117 and PM100118 has been discovered, this is, to our knowledge, the first insight reported into their biosynthesis. The structural resemblance of the NQ moiety to menaquinone, and the presence in the cluster of four putative menaquinone biosynthetic genes, suggests a connection between the biosynthesis pathways of both compounds. The availability of the PM100117 and PM100118 biosynthetic gene cluster will surely pave a way to the combinatorial engineering of more derivatives.

  20. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways.

    Science.gov (United States)

    Willis, Lisa M; Whitfield, Chris

    2013-08-30

    Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.

  1. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate...... environment for biosynthesis. Peroxisomes are cellular organelles where fatty acids are degraded, a process that is inhibited under typical fermentation conditions making them an interesting workhouse for production of fatty-acid-derived molecules. Here, we show that targeting synthetic pathways...

  2. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana.

    Science.gov (United States)

    Deng, Gui-Ming; Yang, Qiao-Song; He, Wei-Di; Li, Chun-Yu; Yang, Jing; Zuo, Cun-Wu; Gao, Jie; Sheng, Ou; Lu, Shao-Yun; Zhang, Sheng; Yi, Gan-Jun

    2015-09-01

    Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

  3. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis.

    Science.gov (United States)

    Wang, Xin; Zhou, Chen; Yang, Xianpeng; Miao, Di; Zhang, Yansheng

    2015-01-01

    The bark of Warburgia ugandensis (Canellaceae family) has been used as a medicinal source for a long history in many African countries. The presence of diverse terpenoids and abundant polyunsaturated fatty acids (PUFAs) in this organ contributes to its broad range of pharmacological properties. Despite its medicinal and economic importance, the knowledge on the biosynthesis of terpenoid and unsaturated fatty acid in W. ugandensis bark remains largely unknown. Therefore, it is necessary to construct a genomic and/or transcriptomic database for the functional genomics study on W. ugandensis. The chemical profiles of terpenoids and fatty acids between the bark and leaves of W. ugandensis were compared by gas chromatography-mass spectrometry (GC-MS) analysis. Meanwhile, the transcriptome database derived from both tissues was created using Illumina sequencing technology. In total, about 17.1 G clean nucleotides were obtained, and de novo assembled into 72,591 unigenes, of which about 38.06% can be aligned to the NCBI non-redundant protein database. Many candidate genes in the biosynthetic pathways of terpenoids and unsaturated fatty acids were identified, including 14 unigenes for terpene synthases. Furthermore, 2,324 unigenes were discovered to be differentially expressed between both tissues; the functions of those differentially expressed genes (DEGs) were predicted by gene ontology enrichment and metabolic pathway enrichment analyses. In addition, the expression of 12 DEGs with putative roles in terpenoid and unsaturated fatty acid metabolic pathways was confirmed by qRT-PCRs, which was consistent with the data of the RNA-sequencing. In conclusion, we constructed a comprehensive transcriptome dataset derived from the bark and leaf of W. ugandensis, which forms the basis for functional genomics studies on this plant species. Particularly, the comparative analysis of the transcriptome data between the bark and leaf will provide critical clues to reveal the regulatory

  4. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2

  5. The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae).

    Science.gov (United States)

    Graser, G; Schneider, B; Oldham, N J; Gershenzon, J

    2000-06-15

    Glucosinolates are nitrogen- and sulfur-containing plant natural products that have become increasingly important in human affairs as flavor precursors, cancer-prevention agents, and crop protectants. While many glucosinolates are biosynthesized from common amino acids, the major glucosinolates in economically important species of the Brassicaceae, such as Brassica napus (oilseed rape), are thought to be formed from chain-elongated derivatives of methionine or phenylalanine. We investigated the chain elongation pathway for methionine that is involved in glucosinolate biosynthesis in Eruca sativa. Isotopically labeled methionine and acetate were administered to cut leaves and the major product, 4-methylthiobutylglucosinolate (isolated as its desulfated derivative), was analyzed by MS and NMR. Administration of ¿U-(13)Cmethionine showed that the entire carbon skeleton of this amino acid, with the exception of the COOH carbon, is incorporated as a unit into 4MTB. Administration of ¿(13)C- and ¿(14)Căcetate gave a labeling pattern consistent with the operation of a three-step chain elongation cycle which begins with the condensation of acetyl-CoA with a 2-oxo acid derived from methionine and ends with an oxidative decarboxylation forming a new 2-oxo acid with one additional methylene group. Administration of ¿(15)Nmethionine provided evidence for the transfer of an amino group to the chain-elongated 2-oxo acid, forming an extended amino acid which serves as a substrate for the remaining steps of glucosinolate biosynthesis. The retention of a high level of (15)N in the products suggests that the amino transfer reactions and the chain elongation cycle are localized in the same subcellular compartment.

  6. Assembly and expression analysis of oat vitamin E biosynthesis gene homeologs during seed development

    Science.gov (United States)

    Among the cereal grains, hexaploid oats (Avena sativa L.) are particularly rich in vitamin E, an essential liposoluble vitamin that maintains membrane stability and possesses antioxidant and anti-inflammatory properties. To date, no gene sequences involved in vitamin E biosynthesis have been reporte...

  7. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle Johnston

    Directory of Open Access Journals (Sweden)

    Sharma Madhu

    2010-11-01

    Full Text Available Abstract Background Geranyl pyrophosphate (GPP and p-hydroxybenzoate (PHB are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA and/or 2-C-methyl-D-erythritol 4-phosphate (MEP pathway(s, depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB. Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes, PP pathway (three genes, and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR and AePGT suggested critical role played by these genes in shikonins

  8. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Bhati, Kaushal Kumar; Aggarwal, Sipla; Sharma, Shivani; Mantri, Shrikant; Singh, Sudhir P; Bhalla, Sherry; Kaur, Jagdeep; Tiwari, Siddharth; Roy, Joy K; Tuli, Rakesh; Pandey, Ajay K

    2014-07-01

    In cereals, phytic acid (PA) or inositol hexakisphosphate (IP6) is a well-known phosphate storage compound as well as major chelator of important micronutrients (iron, zinc, calcium, etc.). Genes involved in the late phases of PA biosynthesis pathway are known in crops like maize, soybeans and barley but none have been reported from wheat. Our in silico analysis identified six wheat genes that might be involved in the biosynthesis of inositol phosphates. Four of the genes were inositol tetraphosphate kinases (TaITPK1, TaITPK2, TaITPK3, and TaITPK4), and the other two genes encode for inositol triphosphate kinase (TaIPK2) and inositol pentakisphosphate kinase (TaIPK1). Additionally, we identified a homolog of Zmlpa-1, an ABCC subclass multidrug resistance-associated transporter protein (TaMRP3) that is putatively involved in PA transport. Analyses of the mRNA expression levels of these seven genes showed that they are differentially expressed during seed development, and that some are preferentially expressed in aleurone tissue. These results suggest selective roles during PA biosynthesis, and that both lipid-independent and -dependent pathways are active in developing wheat grains. TaIPK1 and TaMRP3 were able to complement the yeast ScΔipk1 and ScΔycf1 mutants, respectively, providing evidence that the wheat genes have the expected biochemical functions. This is the first comprehensive study of the wheat genes involved in the late phase of PA biosynthesis. Knowledge generated from these studies could be utilized to develop strategies for generating low phyate wheat.

  9. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum.

    Science.gov (United States)

    Fernández-Aguado, Marta; Teijeira, Fernando; Martín, Juan F; Ullán, Ricardo V

    2013-01-01

    The knowledge about enzymes' compartmentalization and transport processes involved in the penicillin biosynthesis in Penicillium chrysogenum is very limited. The genome of this fungus contains multiple genes encoding transporter proteins, but very little is known about them. A bioinformatic search was made to find major facilitator supefamily (MFS) membrane proteins related to CefP transporter protein involved in the entry of isopenicillin N to the peroxisome in Acremonium chrysogenum. No strict homologue of CefP was observed in P. chrysogenum, but the penV gene was found to encode a membrane protein that contained 10 clear transmembrane spanners and two other motifs COG5594 and DUF221, typical of membrane proteins. RNAi-mediated silencing of penV gene provoked a drastic reduction of the production of the δ-(L-α-aminoadipyl-L-cysteinyl-D-valine) (ACV) and isopenicillin N intermediates and the final product of the pathway. RT-PCR and northern blot analyses confirmed a reduction in the expression levels of the pcbC and penDE biosynthetic genes, whereas that of the pcbAB gene increased. Localization studies by fluorescent laser scanning microscopy using Dsred and GFP fluorescent fusion proteins and the FM 4-64 fluorescent dye showed clearly that the protein was located in the vacuolar membrane. These results indicate that PenV participates in the first stage of the beta-lactam biosynthesis (i.e., the formation of the ACV tripeptide), probably taking part in the supply of amino acids from the vacuolar lumen to the vacuole-anchored ACV synthetase. This is in agreement with several reports on the localization of the ACV synthetase and provides increased evidence for a compartmentalized storage of precursor amino acids for non-ribosomal peptides. PenV is the first MFS transporter of P. chrysogenum linked to the beta-lactam biosynthesis that has been located in the vacuolar membrane.

  10. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L. female castes.

    Directory of Open Access Journals (Sweden)

    Ana Durvalina Bomtorin

    Full Text Available Juvenile hormone (JH controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s of JH in social evolution.

  11. Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes

    Science.gov (United States)

    Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  12. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution.

  13. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content

    Directory of Open Access Journals (Sweden)

    Ning Yan

    2016-11-01

    Full Text Available Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.. In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS, two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD, four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE, two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF, four 1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate synthase (IspG, two 1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase (IspH, six isopentenyl diphosphate isomerase (IPI, and two solanesyl diphosphate synthase (SPS candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2, which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco.

  14. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68.

    Science.gov (United States)

    Samadlouie, Hamid-Reza; Hamidi-Esfahani, Zohreh; Alavi, Seyed-Mehdi; Varastegani, Boshra

    2014-01-01

    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.

  15. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    Directory of Open Access Journals (Sweden)

    Hamid-Reza Samadlouie

    2014-06-01

    Full Text Available The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.

  16. Role of EctR as transcriptional regulator of ectoine biosynthesis genes in Methylophaga thalassica.

    Science.gov (United States)

    Mustakhimov, I I; Reshetnikov, A S; Fedorov, D N; Khmelenina, V N; Trotsenko, Y A

    2012-08-01

    In the halophilic aerobic methylotrophic bacterium Methylophaga thalassica, the genes encoding the enzymes for biosynthesis of the osmoprotectant ectoine were shown to be located in operon ectABC-ask. Transcription of the ect-operon was started from the two promoters homologous to the σ(70)-dependent promoter of Escherichia coli and regulated by protein EctR, whose encoding gene, ectR, is transcribed from three promoters. Genes homologous to ectR of methylotrophs were found in clusters of ectoine biosynthesis genes in some non-methylotrophic halophilic bacteria. EctR proteins of methylotrophic and heterotrophic halophiles belong to the MarR-family of transcriptional regulators but form a separate branch on the phylogenetic tree of the MarR proteins.

  17. Pathways: Strategies for Susceptibility Genes in SLE

    Science.gov (United States)

    Kelley, James M.; Edberg, Jeffrey C.; Kimberly, Robert P.

    2010-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disorder marked by an inappropriate immune response to nuclear antigens. Recent whole genome association and more focused studies have revealed numerous genes implicated in this disease process, including ITGAM, Fc gamma receptors, complement components, C-reactive protein, and others. One common feature of these molecules is their involvement in the immune opsonins pathway and phagocytic clearing of nuclear antigens and apoptotic debris which provide excessive exposure of lupus-related antigens to immune cells. Analysis of gene-gene interactions in the opsonin pathway and its relationship to SLE may provide a systems-based approach to identify additional candidate genes associated with disease able to account for a larger part of lupus susceptibility. PMID:20144911

  18. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl.

    Directory of Open Access Journals (Sweden)

    Jinting Li

    2016-12-01

    Full Text Available Achyranthes bidentata is a popular perennial medicine herb used for thousands of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 973.64 base pairs. A total of 31,634 (31.33% unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette (ABC transporters, some of which might be involved in the translocation of secondary metabolites.

  19. De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis and SNP markers development for rubber biosynthesis pathways.

    Directory of Open Access Journals (Sweden)

    Camila Campos Mantello

    Full Text Available Hevea brasiliensis (Willd. Ex Adr. Juss. Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr protein database returned 32,018 (63% positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG, gene ontology (GO, Kyoto Encyclopedia of Genes and Genomes (KEGG, and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs and single nucleotide polymorphisms (SNPs. In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA and 2-C-methyl-D-erythritol 4-phosphate (MEP pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.

  20. De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways.

    Science.gov (United States)

    Mantello, Camila Campos; Cardoso-Silva, Claudio Benicio; da Silva, Carla Cristina; de Souza, Livia Moura; Scaloppi Junior, Erivaldo José; de Souza Gonçalves, Paulo; Vicentini, Renato; de Souza, Anete Pereira

    2014-01-01

    Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.

  1. Functional characterization of the Chlamydomonas reinhardtii ERG3 ortholog, a gene involved in the biosynthesis of ergosterol.

    Directory of Open Access Journals (Sweden)

    Kristy M Brumfield

    Full Text Available BACKGROUND: The predominant sterol in the membranes of the alga Chlamydomonas reinhardtii is ergosterol, which is commonly found in the membranes of fungi, but is rarely found in higher plants. Higher plants and fungi synthesize sterols by different pathways, with plants producing cycloartenol as a precursor to end-product sterols, while non-photosynthesizing organisms like yeast and humans produce lanosterol as a precursor. Analysis of the C. reinhardtii genome sequence reveals that this algae is also likely to synthesize sterols using a pathway resembling the higher plant pathway, indicating that its sterols are synthesized somewhat differently than in fungi. The work presented here seeks to establish experimental evidence to support the annotated molecular function of one of the sterol biosynthetic genes in the Chlamydomonas genome. METHODOLOGY/PRINCIPAL FINDINGS: A gene with homology to the yeast sterol C-5 desaturase, ERG3, is present in the Chlamydomonas genome. To test whether the ERG3 ortholog of C. reinhardtii encodes a sterol C-5 desaturase, Saccharomyces cerevisiae ERG3 knockout strains were created and complemented with a plasmid expressing the Chlamydomonas ERG3. Expression of C. reinhardtii ERG3 cDNA in erg3 null yeast was able to restore ergosterol biosynthesis and reverse phenotypes associated with lack of ERG3 function. CONCLUSIONS/SIGNIFICANCE: Complementation of the yeast erg3 null phenotypes strongly suggests that the gene annotated as ERG3 in C. reinhardtii functions as a sterol C-5 desaturase.

  2. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    OpenAIRE

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Jing LIU; Bai, Linquan

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211...

  3. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  4. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: isolation, characterization, and expression in response to light.

    Science.gov (United States)

    Wang, Zhongjie; Xu, Yao; Shao, Jihai; Wang, Jie; Li, Renhui

    2011-04-07

    The volatile microbial metabolite 2-methylisoborneol (2-MIB) is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater.

  5. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: isolation, characterization, and expression in response to light.

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    Full Text Available The volatile microbial metabolite 2-methylisoborneol (2-MIB is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater.

  6. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rachid Lahlali

    Full Text Available An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc, suppressed clubroot (Plasmodiophora brassicae -Pb on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r = 0.92, P<0.001 with the severity of clubroot at 5 weeks after treatment at a low (2×10(5 spores pot(-1 but not high (2×10(5 spores pot(-1 dose of pathogen inoculum. Transcript levels of nine B. napus (Bn genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL. These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2, ethylene (BnACO, auxin (BnAAO1, and PR-2 protein (BnPR-2 biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte.

  7. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development.

    Science.gov (United States)

    Jaakola, Laura; Määttä, Kaisu; Pirttilä, Anna Maria; Törrönen, Riitta; Kärenlampi, Sirpa; Hohtola, Anja

    2002-10-01

    The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.

  8. Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana.

    Science.gov (United States)

    Mishra, Sandhya; Singh, H B

    2015-03-01

    Melanin production in many fungal phytopathogens has been investigated to play direct or indirect role in pathogenesis. However, in Bipolaris sorokiniana, the spot blotch pathogen of wheat, much less is known about the role melanin play in pathogenesis. As an extension of our previous report, the present study aims to investigate the plausible association between melanin production and virulence factor in B. sorokiniana. In the previous study, we carried out analysis on the antifungal efficacy of biosynthesized silver nanoparticles (AgNPs) against B. sorokiniana. The present investigation revealed the gene expression analysis of melanin biosynthesis genes viz. polyketide synthase (PKS1) and scytalone dehydratase (SCD1) under the influence of AgNPs. The 0.05mg/ml concentration of AgNPs yielded noticeable inhibition of B. sorokiniana growth, while 0.1mg/ml concentration of AgNPs accounted for complete inhibition of pathogen growth. In addition, the semiquantitative RT-PCR analysis exhibited reduced expression of PKS1 and SCD1 under the influence of AgNPs treatment. Furthermore, the qRT-PCR demonstrated 6.47 and 1.808 fold significant decrease in the expression pattern of PKS1 and SCD1, respectively, in B. sorokiniana treated with AgNPs. The present study provides probable understanding of molecular events underlying the antifungal role of AgNPs against B. sorokiniana.

  9. Action of 2,2',4,4'-tetrahydroxybenzophenone in the biosynthesis pathway of melanin.

    Science.gov (United States)

    Garcia-Jimenez, Antonio; Teruel-Puche, Jose Antonio; Garcia-Ruiz, Pedro Antonio; Berna, Jose; Rodríguez-López, Jose Neptuno; Tudela, Jose; Garcia-Canovas, Francisco

    2017-05-01

    2,2',4,4'-tetrahydroxybenzophenone (Uvinul D50), a sunscreen used in cosmetics, has two effects in the melanin biosynthesis pathway. On the one hand, it acts a weak inhibitor of tyrosinase and on the other, it accelerates the conversion of dopachrome to melanin. Uvinul D50 was seen to behave as a weak competitive inhibitor: apparent constant inhibition=2.02±0.09mM and IC50=3.82±0.39mM established in this work. These values are higher than those in the bibliography, which tend to be undersetimated. This discrepancy could be explained by the reaction of Uvinul D50 with the dopachrome produced from l-tyrosine or l-dopa, which would interfere in the measurement. Based on studies of its docking to tyrosinase, it seems that Uvinul D50 interacts with the active site of the enzyme (oxytyrosinase) both in its protonated and deprotonated forms (pKa=7). However, it cannot be hydroxylated, meaning that it acts as a weak inhibitor, not as an alternative substrate, despite its resorcinol structure. Uvinul D50 can be used as sunscreen, in low concentrations without significant adverse effects on melanogenesis.

  10. Acute regulation of cardiac metabolism by the hexosamine biosynthesis pathway and protein O-GlcNAcylation.

    Directory of Open Access Journals (Sweden)

    Boglárka Laczy

    Full Text Available OBJECTIVE: The hexosamine biosynthesis pathway (HBP flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization. METHODS: Isolated rat hearts were perfused with glucosamine (0-10 mM to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by (13C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36. RESULTS: Glucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation. CONCLUSION/INTERPRETATION: These data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism.

  11. Transcriptome profiling of khat (Catha edulis and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Ryan A Groves

    Full Text Available Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis, and include the widely used decongestants and appetite suppressants (1S,2S-pseudoephedrine and (1R,2S-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications.

  12. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    Science.gov (United States)

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism.

  13. Upstream regulation of mycotoxin biosynthesis.

    Science.gov (United States)

    Alkhayyat, Fahad; Yu, Jae-Hyuk

    2014-01-01

    Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.

  14. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes

    Directory of Open Access Journals (Sweden)

    Weiwei Dai

    2015-06-01

    Full Text Available Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation. Results: Increased AA levels enhanced the phosphorylation of ribosomal protein S6 kinase (S6K1, S6, and insulin receptor substrate 1 (IRS-1 on Ser302 but suppressed Akt and p38 phosphorylation; up-regulated the expression of genes related to gluconeogenesis and fatty acid biosynthesis. mTORC1 inhibition not only inhibited the phosphorylation of mTORC1 downstream targets, but also blunted IRS-1 Ser302 phosphorylation and restored excessive AAs-suppressed Akt phosphorylation. Rapamycin also inhibited fatty acid biosynthetic and gluconeogenic gene expression. Conclusion: High levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt activation and thereby weakening insulin action. We propose that p38 MAPK probably also involves in these AAs-induced metabolic changes.

  15. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. © 2016 Elsevier Inc. All rights reserved.

  16. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.

    Science.gov (United States)

    Chen, Yi-Pei; Tseng, Ching-Ping; Chien, I-Ling; Wang, Wei-Yi; Liaw, Li-Ling; Yuan, Gwo-Fang

    2008-12-24

    Citrinin, a hepato-nephrotoxic compound to humans, can be produced by the food fermentation microorganisms Monascus spp. In this study, we investigated the distribution of mycotoxin citrinin biosynthesis genes in 18 Monascus strains. The results show that the acyl-transferase and keto-synthase domains of the pksCT gene encoding citrinin polyketide synthase were found in Monascus purpureus, Monascus kaoliang, and Monascus sanguineus. Furthermore, the ctnA gene, a major activator for citrinin biosynthesis, was found in M. purpureus and M. kaoliang, but was absent in M. sanguineus. The orf3 gene encoding oxygenase, located between pksCT and ctnA, was also present in M. purpureus and M. kaoliang. The pksCT gene was highly conserved in M. purpureus, M. kaoliang, and M. sanguineus, while the ctnA and orf3 genes were shown to be highly homologous in M. purpureus and M. kaoliang. In contrast, the PCR and Southern blot analyses suggest that pksCT, ctnA, and orf3 were absent or significantly different in Monascus pilosus, Monascus ruber, Monascus barkeri, Monascus floridanus, Monascus lunisporas, and Monascus pallens. A citrinin-producing phenotype was detected only in M. purpureus and M. kaoliang using high performance liquid chromatography (HPLC). These results clearly indicate that the highly conserved citrinin gene cluster in M. purpureus and M. kaoliang carry out citrinin biosynthesis. In addition, according to the phylogenetic subgroups established with the beta-tubulin gene, the citrinin gene cluster can group the species of Monascus.

  17. Functions of genes and enzymes involved in phenalinolactone biosynthesis.

    Science.gov (United States)

    Daum, Martina; Schnell, Hans-Jörg; Herrmann, Simone; Günther, Andreas; Murillo, Renato; Müller, Rolf; Bisel, Philippe; Müller, Michael; Bechthold, Andreas

    2010-07-05

    Phenalinolactones are novel terpene glycoside antibiotics produced by Streptomyces sp. Tü6071. Inactivation of three oxygenase genes (plaO2, plaO3 and plaO5), two dehydrogenase genes (plaU, plaZ) and one putative acetyltransferase gene (plaV) led to the production of novel phenalinolactone derivatives (PL HS6, PL HS7, PL HS2 and PL X1). Furthermore, the exact biosynthetic functions of two enzymes were determined, and their in vitro activities were demonstrated. PlaO1, an Fe(II)/alpha-ketoglutarate-dependent dioxygenase, is responsible for the key step in gamma-butyrolactone formation, whereas PlaO5, a cytochrome P450-dependent monooxygenase, catalyses the 1-C-hydroxylation of phenalinolactone D. In addition, stable isotope feeding experiments with biosynthetic precursors shed light on the origin of the carbons in the gamma-butyrolactone moiety.

  18. Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3.4384.

    Science.gov (United States)

    Ning, Zhen-Qiang; Cui, Hua; Xu, Yang; Huang, Zhi-Bing; Tu, Zhui; Li, Yan-Ping

    2017-01-16

    For thousands of years, fermentation products of the filamentous fungi Monascus spp. have been used extensively in the food and pharmaceutical industries. However, their development is limited because of the health threats from the mycotoxin citrinin, known to be produced by these fungi. Citrinin is recognized as a hepato-nephrotoxin which possesses potential genotoxicity, tumorigenicity, carcinogenicity, embryotoxicity, and teratogenicity. Studies have shown that citrinin biosynthesis is intimately related to pksCT, orf1, ctnA, orf3, ctnB and ctnG. The ctnE gene, which is located 3.3kb upstream of ctnA, encodes a protein that showed significant similarity to the dehydrogenase. In this study, the role of ctnE in citrinin biosynthesis was investigated by means of gene knockout technology. The ctnE disruptant significantly reduced citrinin production by 96%, which suggested that ctnE is important in citrinin biosynthesis. Moreover, the mutant produced 40% more pigments than the wild-type. This work contributes to the study of the citrinin biosynthesis pathway in Monascus, and the methodology described in this article can fundamentally lower the risk of citrinin contamination in Monascus aurantiacus Li AS3.4384 which has important significance for food safety.

  19. A Novel Pathway for Triacylglycerol Biosynthesis Is Responsible for the Accumulation of Massive Quantities of Glycerolipids in the Surface Wax of Bayberry (Myrica pensylvanica) Fruit.

    Science.gov (United States)

    Simpson, Jeffrey P; Ohlrogge, John B

    2016-01-01

    Bayberry (Myrica pensylvanica) fruits synthesize an extremely thick and unusual layer of crystalline surface wax that accumulates to 32% of fruit dry weight, the highest reported surface lipid accumulation in plants. The composition is also striking, consisting of completely saturated triacylglycerol, diacylglycerol, and monoacylglycerol with palmitate and myristate acyl chains. To gain insight into the unique properties of Bayberry wax synthesis, we examined the chemical and morphological development of the wax layer, monitored wax biosynthesis through [(14)C]-radiolabeling, and sequenced the transcriptome. Radiolabeling identified sn-2 monoacylglycerol as an initial glycerolipid intermediate. The kinetics of [(14)C]-DAG and [(14)C]-TAG accumulation and the regiospecificity of their [(14)C]-acyl chains indicated distinct pools of acyl donors and that final TAG assembly occurs outside of cells. The most highly expressed lipid-related genes were associated with production of cutin, whereas transcripts for conventional TAG synthesis were >50-fold less abundant. The biochemical and expression data together indicate that Bayberry surface glycerolipids are synthesized by a pathway for TAG synthesis that is related to cutin biosynthesis. The combination of a unique surface wax and massive accumulation may aid understanding of how plants produce and secrete non-membrane glycerolipids and also how to engineer alternative pathways for lipid production in non-seeds.

  20. Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.

    Directory of Open Access Journals (Sweden)

    Yanan eYang

    2015-09-01

    Full Text Available Anthocyanin concentration is the key determinant for red skin color in pear fruit. However, the molecular basis for development of red skin is complicated and has not been well understood thus far. ‘Starkrimson’ (Pyrus communis L., an introduced red pear cultivated in the north of China and its green mutant provides a desirable red/green pair for identification of candidate genes involved in color variation. Here, we sequenced and annotated the transcriptome for the red /green color mutant at three stages of development using Illumina RNA-seq technology. The total number of mapped reads ranged from 26 to 46 million in six libraries. About 70.11-71.95% of clean reads could be mapped to the reference genome. Compared with green colored fruit, a total of 2,230 differentially expressed genes (DEGs were identified in red fruit. Gene Ontology (GO terms were defined for 4,886 differential transcripts involved in 15 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Three DEGs were identified as candidate genes in the flavonoid pathway, LAR, ANR and C3H. Tellingly, higher expression was found for genes encoding ANR and LAR in the green color mutant, promoting the proanthocyanidin (PA pathway and leading to lower anthocyanin. MYB-binding cis-motifs were identified in the promoter region of LAR and ANR. Based on these findings, we speculate that the regulation of PA biosynthesis might be a key factor for this red/green color mutant. Besides the known MYB and MADS transcription families, two new families, AP2 and WRKY, were identified as having high correlation with anthocyanin biosynthesis in red skinned pear. In addition, qRT-PCR was used to confirm the transcriptome results for 17 DEGs, high correlation of gene expression, further proved that AP2 and WARK regulated the anthocyanin biosynthesis in red skinned ‘Starkrimson’, and ANR and LAR promote PA biosynthesis and contribute to the green skinned variant. This study can serve as a valuable

  1. Functional Characterization of 4?OMT and 7OMT Genes in BIA Biosynthesis

    OpenAIRE

    Gurkok, Tugba; Ozhuner, Esma; Parmaksiz, Iskender; ÖZCAN, Sebahattin; Turktas, Mine; İPEK, Arif; Demirtas, Ibrahim; Okay, Sezer; Unver, Turgay

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes...

  2. Functional Characterization of 4´OMT and 7OMT Genes in BIA Biosynthesis

    OpenAIRE

    Tugba eGurkok; Esma eOzhuner; Iskender eParmaksiz; Sebahattin eÖzcan; Mine eTurktas; Arif eIpek; Sezer eOkay; Turgay eUNVER

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes...

  3. Functional Characterization of 4′OMT and 7OMT Genes in BIA Biosynthesis

    OpenAIRE

    Gurkok, Tugba; Ozhuner, Esma; Parmaksiz, Iskender; Özcan, Sebahattin; Turktas, Mine; İPEK, Arif; Demirtas, Ibrahim; Okay, Sezer; Unver, Turgay

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes...

  4. Functional Characterization of 4´OMT and 7OMT Genes in BIA Biosynthesis

    OpenAIRE

    Tugba eGurkok; Esma eOzhuner; Iskender eParmaksiz; Sebahattin eÖzcan; Mine eTurktas; Arif eIpek; Sezer eOkay; Turgay eUNVER

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes...

  5. [Identification and cloning of a novel gene involved in EPS biosynthesis of Xanthomonas campestris pv. campestris].

    Science.gov (United States)

    Lu, Guang-Tao; Tang, Ji-Liang; He, Yong-Qiang; Chen, Bao-Shan; Tang, Dong-Jie

    2003-11-01

    Xanthomonas campestris pv. campestris ( Xcc), causative agent of the black rot disease of cruciferous crops worldwide, produces large amount of extracellular polysaccharide( EPS), which has found wide applications in industry. In order to clone genes involved in EPS biosynthesis, Xcc wild-type strain 8004 was mutagenized with transposon Tn5gus A5, and a number of EPS-defective mutants were isolated. The Tn5gusA5 insertion sites in the mutants were analyzed by using thermal asymmetric interlaced PCR(TAIL-PCR), and the corresponding genes were identified by homology blast to the completely sequenced genome of Xcc 8004 strain. A novel gene, waxE, identified from the EPS-defective mutant 151D09, was found to be disrupted by the insertion of Tn5gusA5 in the open reading frame(ORF) with genome coordinates 4478998bp to 4479819bp.This gene showed 52% similarity to the kdtX gene of Serratia marcescens and 50% to the waaE of Klebsiella pneumoniae at amino acid level, with characteristics of glycostransferase 2 family domain. In order to identify the function of waxE gene, waxE gene deletion mutant of Xcc 8004 was constructed by gene replacement strategy in which waxE gene of genome was replaced by kanamycin resistant gene kan. The waxE gene deletion mutant strain, named Xcc 8570, was confirmed by both PCR and southern analysis. The growth rate of the deletion mutant 8570 in rich medium was not affected, but the EPS yield reduced by 35% as compared with the wildtype strain 8004. The deletion mutant could be completmented in trans with plasmid pLATC8976 harboring an intact waxE gene, and the EPS yield of the mutant was restored. The combined data showed that waxE gene involved in EPS biosynthesis in Xcc.

  6. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.

    Science.gov (United States)

    Cobbs, Cassidy; Heath, Jeremy; Stireman, John O; Abbot, Patrick

    2013-08-01

    Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages.

  7. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.

    Science.gov (United States)

    Ishikawa, Takahiro; Nishikawa, Hitoshi; Gao, Youngshun; Sawa, Yoshihiro; Shibata, Hitoshi; Yabuta, Yukinori; Maruta, Takanori; Shigeoka, Shigeru

    2008-11-07

    We have previously proposed that Euglena gracilis possesses a pathway for the production of ascorbate (AsA) through d-galacturonate/L-galactonate as representative intermediates ( Shigeoka, S., Nakano, Y., and Kitaoka, S. (1979) J. Nutr. Sci. Vitaminol. 25, 299-307 ). However, genetic evidence proving that the pathway exists has not been obtained yet. We report here the identification of a gene encoding aldonolactonase, which catalyzes a penultimate step of the biosynthesis of AsA in Euglena. By a BLAST search, we identified one candidate for the enzyme having significant sequence identity with rat gluconolactonase, a key enzyme for the production of AsA via d-glucuronate in animals. The purified recombinant aldonolactonase expressed in Escherichia coli catalyzed the reversible reaction of L-galactonate and L-galactono-1,4-lactone with zinc ion as a cofactor. The apparent K(m) values for L-galactonate and L-galactono-1,4-lactone were 1.55 +/- 0.3 and 1.67 +/- 0.39 mm, respectively. The cell growth of Euglena was arrested by silencing the expression of aldonolactonase through RNA interference and then restored to the normal state by supplementation with L-galactono-1,4-lactone. Euglena cells accumulated more AsA on supplementation with d-galacturonate than d-glucuronate. The present results indicate that aldonolactonase is significant for the biosynthesis of AsA in Euglena cells, which predominantly utilize the pathwayviad-galacturonate/L-galactonate. The identification of aldonolactonase provides the first insight into the biosynthesis of AsA via uronic acids as the intermediate in photosynthetic algae including Euglena.

  8. Expression of structural genes related to anthocyanin biosynthesis of Vitis amurensis

    Institute of Scientific and Technical Information of China (English)

    Quan Zhao; Fei He; Malcolm J Reeves; Qiu-Hong Pan; Chang-Qing Duan; Jun Wang

    2016-01-01

    This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore mRNA transcriptions of 11 structural genes (PAL, CHS3, CHI1, F3H2, F30H, F3050H, DFR, LDOX, UFGT, OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to 4 weeks after flowering (WAF), down-regulated from 6 WAF to veraison, whereas DFR was up-regulated at 8 WAF, and then up-regulated from veraison to maturity. CHS3, F3050H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the 11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcrip-tional level and the content of methoxyl-anthocyanins, and between F3050H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30H expression was up-regulated at 2 WAF. F3H2 expression was down-regu-lated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30H expression was down-reg-ulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30H transcriptional level was correlated posi-tively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.

  9. Genome Mining for antibiotics biosynthesis pathways with antiSMASH 3

    DEFF Research Database (Denmark)

    Weber, Tilmann; Kim, Hyun Uk; Blin, Kai

    2014-01-01

    Microorganisms are the most important source of natural products with antimicrobial or antitumor activity. These natural products are the main source for anti-­‐infectives; 80% of antibiotics currently in medical use are derived from this class of compounds. In the past, functional screenings...... aiming directly to the substances or to putative targets were the only possibility to identify and isolate such compounds. With the recent progress of sequencing technologies, genome mining has become a very important method to complement the laborious and expensive experimental approach and to broaden...... metabolites, detailed analyses on domain organization, enzyme active sites, and substrate specificities are integrated in the pipeline and allow the prediction of the biosynthetic core-­‐products of the pathways. In addition to tools focusing on the enzymes of the pathways, the identified gene clusters...

  10. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Zavala, A.; Del Razo, L.M.; Garcia-Vargas, G.G.; Aguilar, C.; Borja, V.H.; Albores, A.; Cebrian, M.E. [CINVESTAV-IPN, Mexico (Mexico). Dept. de Farmacologia y Toxicologica

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 {mu}g As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized. (orig.) With 1 fig., 3 tabs., 20 refs.

  11. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico.

    Science.gov (United States)

    Hernández-Zavala, A; Del Razo, L M; García-Vargas, G G; Aguilar, C; Borja, V H; Albores, A; Cebrián, M E

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 microg As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized.

  12. Yeast HXK2 gene reverts glucose regulation mutation of penicillin biosynthesis in P. chrysogenum

    Directory of Open Access Journals (Sweden)

    Edmundo A. Pérez

    2014-09-01

    Full Text Available The mutant Penicillium chrysogenum strain dogR5, derived from strain AS-P-78, does not respond to glucose regulation of penicillin biosynthesis and β-galactosidase, and is partially deficient in D-glucose phosphorilating activity. We have transformed strain dogR5 with the (hexokinase hxk2 gene from Saccharomyces cerevisiae. Transformants recovered glucose control of penicillin biosynthesis in different degrees, and acquired a hexokinase (fructose phosphorylating activity absent in strains AS- P-78 and dogR5. Interestingly, they also recovered glucose regulation of β-galactosidase. On the other hand, glucokinase activity was affected in different ways in the transformants; one of which showed a lower activity than the parental dogR5, but normal glucose regulation of penicillin biosynthesis. Our results show that Penicillium chrysogenum AS-P-78 and dogR5 strains lack hexokinase, and suggest that an enzyme with glucokinase activity is involved in glucose regulation of penicillin biosynthesis and β-galactosidase, thus signaling glucose in both primary and secondary metabolism; however, catalytic and signaling activities seem to be independent.

  13. Yeast HXK2 gene reverts glucose regulation mutation of penicillin biosynthesis in P. chrysogenum.

    Science.gov (United States)

    Pérez, Edmundo A; Fernández, Francisco J; Fierro, Francisco; Mejía, Armando; Marcos, Ana T; Martín, Juan F; Barrios-González, Javier

    2014-01-01

    The mutant Penicillium chrysogenum strain dogR5, derived from strain AS-P-78, does not respond to glucose regulation of penicillin biosynthesis and β-galactosidase, and is partially deficient in D-glucose phosphorilating activity. We have transformed strain dogR5 with the (hexokinase) hxk2 gene from Saccharomyces cerevisiae. Transformants recovered glucose control of penicillin biosynthesis in different degrees, and acquired a hexokinase (fructose phosphorylating) activity absent in strains AS- P-78 and dogR5. Interestingly, they also recovered glucose regulation of β-galactosidase. On the other hand, glucokinase activity was affected in different ways in the transformants; one of which showed a lower activity than the parental dogR5, but normal glucose regulation of penicillin biosynthesis. Our results show that Penicillium chrysogenum AS-P-78 and dogR5 strains lack hexokinase, and suggest that an enzyme with glucokinase activity is involved in glucose regulation of penicillin biosynthesis and β-galactosidase, thus signaling glucose in both primary and secondary metabolism; however, catalytic and signaling activities seem to be independent.

  14. A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation.

    Science.gov (United States)

    Soler, Marçal; Serra, Olga; Fluch, Silvia; Molinas, Marisa; Figueras, Mercè

    2011-05-01

    Potato (Solanum tuberosum) tubers are underground storage organs covered by the skin or periderm, a suberized layer that protects inner flesh from dehydration and pathogens. Understanding the molecular processes associated with periderm formation is of great importance for a better knowledge of this protective tissue and for improving the storage life of tubers. Here, to isolate new candidate genes for potato periderm, a suppression subtractive hybridization library from potato skin was performed. This library yielded a comprehensive list of 108 candidate genes that were manually sorted in functional categories according to the main cellular and metabolic processes in periderm. As expected, the list contains Suberin and wax genes, including some genes with a demonstrated role in the biosynthesis of these cell wall aliphatic compounds. Moreover, Regulation and Stress and defence genes are highly abundant in the library in general agreement with previous potato skin proteomic studies. The putative function of the genes in periderm is discussed.

  15. De novo assembly and analysis of Cassia obtusifolia seed transcriptome to identify genes involved in the biosynthesis of active metabolites.

    Science.gov (United States)

    Liu, Zubi; Song, Tao; Zhu, Qiankun; Wang, Wanjun; Zhou, Jiayu; Liao, Hai

    2014-01-01

    A cDNA library generated from seeds of Cassia obtusifolia was sequenced using Illumina/Solexa platform. More than 12,968,231 high quality reads were generated, and have been deposited in NCBI SRA (SRR 1012912). A total of 40,102 unigenes (>200 bp) were obtained with an average sequence length of 681 bp by de novo assembly. About 34,089 (85%) unique sequences were annotated and 8694 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Among them, 131 unigenes, which are involved in the biosynthesis and (or) regulation of anthraquinone, carotenoid, flavonoid, and lipid, the 4 best known active metabolites, were identified from cDNA library. In addition, three lipid transfer proteins were obtained, which may contribute to the lipid molecules transporting between biological membranes. Meanwhile, 30 cytochrome P450, 12 SAM-dependent methyltransferases, and 12 UDP-glucosyltransferase unigenes were identified, which could also be responsible for the biosynthesis of active metabolites.

  16. A NADP-glutamate dehydrogenase mutant of the petit-negative yeast Kluyveromyces lactis uses the glutamine synthetase-glutamate synthase pathway for glutamate biosynthesis.

    Science.gov (United States)

    Valenzuela, L; Guzmán-León, S; Coria, R; Ramírez, J; Aranda, C; González, A

    1995-10-01

    The activities of the enzymes involved in ammonium assimilation and glutamate biosynthesis were determined in wild-type and NADP-glutamate dehydrogenase (GDH) null mutant strains of Kluyveromyces lactis. The specific NADP-GDH activity from K. lactis was fivefold lower than that found in Saccharomyces cerevisiae. The glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were similar to those reported in S. cerevisiae. The NADP-GDH null mutant was obtained by transforming the uraA strain MD2/1 with a linearized integrative yeast vector harbouring a 390 bp fragment of the NADP-GDH structural gene. This mutant grew as well as the parent strain on ammonium, but showed GS and GOGAT activities higher that those found in the wild-type strain, implying that the GS-GOGAT pathway could play a leading role in glutamate biosynthesis in K. lactis. Southern blotting analysis of K. lactis chromosomes separated by contour-clamped homogeneous electric field electrophoresis, indicated that the NADP-GDH structural gene is localized on chromosome VI.

  17. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase.

    Science.gov (United States)

    Sieg, Alex G; Trotter, Pamela J

    2014-01-01

    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.

  18. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  19. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways

    NARCIS (Netherlands)

    Franken, A.C.; Christien Lokman, B.; Ram, A.F.; Hondel, C.A. van den; Weert, S. de; Punt, P.J.

    2012-01-01

    To increase knowledge on haem biosynthesis in filamentous fungi like Aspergillus niger, pathway-specific gene expression in response to haem and haem intermediates was analysed. This analysis showed that iron, 5′-aminolevulinic acid (ALA) and possibly haem control haem biosynthesis mostly via modula

  20. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis.

    Science.gov (United States)

    Gupta, Parul; Goel, Ridhi; Pathak, Sumya; Srivastava, Apeksha; Singh, Surya Pratap; Sangwan, Rajender Singh; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.

  1. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis.

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    Full Text Available Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L and root (101R which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L and 54,123 (101R could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.

  2. Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis.

    Science.gov (United States)

    Nakano, H; Takehara, E; Nihira, T; Yamada, Y

    1998-07-01

    Virginiae butanolides (VBs), which are among the butyrolactone autoregulators of Streptomyces species, act as a primary signal in Streptomyces virginiae to trigger virginiamycin biosynthesis and possess a specific binding protein, BarA. To clarify the in vivo function of BarA in the VB-mediated signal pathway that leads to virginiamycin biosynthesis, two barA mutant strains (strains NH1 and NH2) were created by homologous recombination. In strain NH1, an internal 99-bp EcoT14I fragment of barA was deleted, resulting in an in-frame deletion of 33 amino acid residues, including the second helix of the probable helix-turn-helix DNA-binding motif. With the same growth rate as wild-type S. virginiae on both solid and liquid media, strain NH1 showed no apparent changes in its morphological behavior, indicating that the VB-BarA pathway does not participate in morphological control in S. virginiae. In contrast, virginiamycin production started 6 h earlier in strain NH1 than in the wild-type strain, demonstrating for the first time that BarA is actively engaged in the control of virginiamycin production and implying that BarA acts as a repressor in virginiamycin biosynthesis. In strain NH2, an internal EcoNI-SmaI fragment of barA was replaced with a divergently oriented neomycin resistance gene cassette, resulting in the C-terminally truncated BarA retaining the intact helix-turn-helix motif. In strain NH2 and in a plasmid-integrated strain containing both intact and mutated barA genes, virginiamycin production was abolished irrespective of the presence of VB, suggesting that the mutated BarA retaining the intact DNA-binding motif was dominant over the wild-type BarA. These results further support the hypothesis that BarA works as a repressor in virginiamycin production and suggests that the helix-turn-helix motif is essential to its function. In strain NH1, VB production was also abolished, thus indicating that BarA is a pleiotropic regulatory protein controlling not only

  3. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms.

    Directory of Open Access Journals (Sweden)

    Neeraj K Sharma

    Full Text Available Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI. Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06 with waist-to-hip ratio (WHR adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele "C" of this SNP was associated with higher WHR (p = 2.47E-05 and with higher expression (p = 4.10E-04. Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression.

  4. Phospholipid Biosynthesis Genes and Susceptibility to Obesity: Analysis of Expression and Polymorphisms

    Science.gov (United States)

    Sharma, Neeraj K.; Langberg, Kurt A.; Mondal, Ashis K.; Das, Swapan K.

    2013-01-01

    Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele “C” of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression. PMID:23724137

  5. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.).

    Science.gov (United States)

    Zhang, Liwu; Ming, Ray; Zhang, Jisen; Tao, Aifen; Fang, Pingping; Qi, Jianmin

    2015-12-15

    Jute fiber, extracted from stem bast, is called golden fiber. It is essential for fiber improvement to discover the genes associated with jute development at the vegetative growth stage. However, only 858 EST sequences of jute were deposited in the GenBank database. Obviously, the public available data is far from sufficient to understand the molecular mechanism of the fiber biosynthesis. It is imperative to conduct transcriptomic sequence for jute, which can be used for the discovery of a number of new genes, especially genes involved in cellulose biosynthesis. A total of 79,754,600 clean reads (7.98 Gb) were generated using Illumina paired-end sequencing. De novo assembly yielded 48,914 unigenes with an average length of 903 bp. By sequence similarity searching for known proteins, 27,962 (57.16 %) unigenes were annotated for their function. Out of these annotated unigenes, 21,856 and 11,190 unigenes were assigned to gene ontology (GO) and euKaryotic Ortholog Groups (KOG), respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 14,216 unigenes were mapped to 268 KEGG pathways. Moreover, 5 Susy, 3 UGPase, 9 CesA, 18 CSL, 2 Kor (Korrigan), and 12 Cobra unigenes involving in cellulose biosynthesis were identified. Among these unigenes, the unigenes of comp11264_c0 (SuSy), comp24568_c0 (UGPase), comp11363_c0 (CesA), comp11363_c1 (CesA), comp24217_c0 (CesA), and comp23531_c0 (CesA), displayed relatively high expression level in stem bast using FPKM and RT-qPCR, indicating that they may have potential value of dissecting mechanism on cellulose biosynthesis in jute. In addition, a total of 12,518 putative gene-associate SNPs were called from these assembled uingenes. We characterized the transcriptome of jute, discovered a broad survey of unigenes associated with vegetative growth and development, developed large-scale SNPs, and analyzed the expression patterns of genes involved in cellulose biosynthesis for bast

  6. Hypericin biosynthesis in Hypericum hookerianum Wight and Arn: investigation on biochemical pathways using metabolite inhibitors and suppression subtractive hybridization.

    Science.gov (United States)

    Pillai, Padmesh P; Nair, Aswati R

    2014-10-01

    The biochemical pathway to hypericin biosynthesis is presumed to be polyketide synthase (PKS) mediated, but it has not been experimentally validated, and no alternate route (chorismate/o-succinylbenzoate pathway) has been analyzed. We report here our earlier developed auxin inducible culture systems of Hypericum hookerianum as a model, to study the metabolic pathway to hypericin synthesis. Inhibitors of the alternate pathway at varying concentrations showed steady synthesis of total hypericins with means of 2.80±0.22, 18.75±0.01; 16.39±3.75, 29.60±1.90 (mevinolin) 2.53±0.10, 18.12±0.56; 0.14±0.01, 14.28±1.11 (fosmidomycin) and 2.7±0.35, 18.75±0.61; 0.14±0.01, 12.80±1.09 mg g(-1) DW (glyphosate) in the control and auxin-induced shoot and shoot-forming callus cultures, respectively. SSH analysis classified the differentially expressed sequences into protein synthesis (38%), modification (20%), electron transport (9%) and remaining as unclassified (11%) and unknown proteins (22%). Functional annotation of sequences indicates the presence of additional protein components besides PKS activity. Our results demonstrate direct biochemical and molecular evidence of PKS hypothesis of hypericin biosynthesis for the first time.

  7. New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes: Aromatic biosynthesis as a case-in-point

    Science.gov (United States)

    Ahmad, Suhail; Jensen, Roy A.

    1988-03-01

    Metabolic pathways of prokaryotes are more biochemically diverse than is generally recognized. Distinctive biochemical features are shared by phylogenetic clusters. The hierarchical levels of characterstate clustering depends upon evolutionary events which fortuitously became fixed in the genome of a common ancestor. Prokaryotes can now be ordered on a phylogenetic tree. This allows the evolutionary steps that underlie the construction and regulation of appropriately complex biochemical pathways to be traced in an evolutionary progression of prokaryote types that house these pathways. Essentially the approach is to deduce ancestral character states at ever deeper phylogenetic levels, utilizing logical principles of maximum parsimony. The current perspective on the evolution of the biochemical pathway for biosynthesis of aromatic amino acids is developed as a case-in-point model for analyses that should be feasible with many major metabolic systems. Phenylalanine biosynthesis probably arose prior to the addition of branches leading to tyrosine and tryptophan. An evolutionary scenario is developed that begins with non-enzymatic reactions which may have operated in primitive systems, followed by the evolution of an enzymatic system that pre-dated the divergence of major lineages of modern eubacteria (Gram-positive bacteria, Gram-negative purple bacteria, and cyanobacteria).

  8. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalli...ng pathways mediating type I interferon gene expression. Authors Edwards MR, Slat

  9. UPLC/Q-TOF MS-based metabolomics and qRT-PCR in enzyme gene screening with key role in triterpenoid saponin biosynthesis of Polygala tenuifolia.

    Directory of Open Access Journals (Sweden)

    Fusheng Zhang

    Full Text Available The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear.In this study, ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1 were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS, squalene monooxygenase (SQE, and beta-amyrin synthase (β-AS were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis.This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia.

  10. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing

    KAUST Repository

    Antony, Binu

    2015-07-18

    Background Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. Results We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45 % of the sequences were shared

  11. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Zheng, Shao-Hui; Fujita, Koki; Sakai, Kokki

    2004-05-01

    Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production.

  12. Screening for the genes involved in bombykol biosynthesis: Identification and functional characterization of Bombyx mori acyl carrier protein (BmACP

    Directory of Open Access Journals (Sweden)

    Atsushi eOhnishi

    2011-12-01

    Full Text Available Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG via fatty acid synthesis (FAS. Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN, a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs, which store the sex pheromone (bombykol precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed sequence tag (EST clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another 8 EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP. Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis.

  13. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L. Dunal: Prospects and perspectives for pathway engineering

    Directory of Open Access Journals (Sweden)

    Niha eDhar

    2015-11-01

    Full Text Available Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomic and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude towards development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool towards enhanced withanolide production has also been attained by deciphering decisive branch point(s as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. Somnifera for understanding various molecular network interactions in entirety.

  14. Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi

    2005-11-01

    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae.

  15. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica

    Directory of Open Access Journals (Sweden)

    Yasuyuki Yamada

    2016-09-01

    Full Text Available The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs, a plant-specific WRKY-type transcription factor, CjWRKY1, and a basic helix-loop-helix (bHLH transcription factor, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4’OMT and CYP719A1 were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay (EMSA and by a chromatin immunoprecipitation (ChIP assay. In addition, CjbHLH1 also activated transcription from truncated 4’OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  16. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.

    Science.gov (United States)

    Alper, Hal; Jin, Yong-Su; Moxley, J F; Stephanopoulos, G

    2005-05-01

    The identification of genetic targets that are effective in bringing about a desired phenotype change is still an open problem. While random gene knockouts have yielded improved strains in certain cases, it is also important to seek the guidance of cell-wide stoichiometric constraints in identifying promising gene knockout targets. To investigate these issues, we undertook a genome-wide stoichiometric flux balance analysis as an aid in discovering putative genes impacting network properties and cellular phenotype. Specifically, we calculated metabolic fluxes such as to optimize growth and then scanned the genome for single and multiple gene knockouts that yield improved product yield while maintaining acceptable overall growth rate. For the particular case of lycopene biosynthesis in Escherichia coli, we identified such targets that we subsequently tested experimentally by constructing the corresponding single, double and triple gene knockouts. While such strains are suggested (by the stoichiometric calculations) to increase precursor availability, this beneficial effect may be further impacted by kinetic and regulatory effects not captured by the stoichiometric model. For the case of lycopene biosynthesis, the so identified knockout targets yielded a triple knockout construct that exhibited a nearly 40% increase over an engineered, high producing parental strain.

  17. Amelogenesis Imperfecta; Genes, Proteins, and Pathways

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/ containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and

  18. Amelogenesis Imperfecta; Genes, Proteins, and Pathways

    Science.gov (United States)

    Smith, Claire E. L.; Poulter, James A.; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J.; Inglehearn, Chris F.; Mighell, Alan J.

    2017-01-01

    Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the

  19. Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria.

    Science.gov (United States)

    Leikoski, Niina; Fewer, David P; Sivonen, Kaarina

    2009-02-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  20. Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria ▿ †

    OpenAIRE

    Leikoski, Niina; Fewer, David P.; Sivonen, Kaarina

    2008-01-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  1. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-09-01

    Full Text Available The 2-C-methyl-d-erythritol 4-phosphate (MEP pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans. Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants.

  2. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Young Philip R

    2012-06-01

    Full Text Available Abstract Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in

  3. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Science.gov (United States)

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  4. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum.

    Science.gov (United States)

    Domínguez-Santos, Rebeca; Martín, Juan-Francisco; Kosalková, Katarina; Prieto, Carlos; Ullán, Ricardo V; García-Estrada, Carlos

    2012-11-01

    Penicillin biosynthesis is subjected to a complex regulatory network of signalling molecules that may serve as model for other secondary metabolites. The information provided by the new "omics" era about Penicillium chrysogenum and the advances in the knowledge of molecular mechanisms responsible for improved productivity, make this fungus an excellent model to decipher the mechanisms controlling the penicillin biosynthetic pathway. In this work, we have characterized a novel transcription factor PcRFX1, which is an ortholog of the Acremonium chrysogenum CPCR1 and Penicillium marneffei RfxA regulatory proteins. PcRFX1 DNA binding sequences were found in the promoter region of the pcbAB, pcbC and penDE genes. We show in this article that these motifs control the expression of the β-galactosidase lacZ reporter gene, indicating that they may direct the PcRFX1-mediated regulation of the penicillin biosynthetic genes. By means of Pcrfx1 gene knock-down and overexpression techniques we confirmed that PcRFX1 controls penicillin biosynthesis through the regulation of the pcbAB, pcbC and penDE transcription. Morphology and development seemed not to be controlled by this transcription factor under the conditions studied and only sporulation was slightly reduced after the silencing of the Pcrfx1 gene. A genome-wide analysis of processes putatively regulated by this transcription factor was carried out in P. chrysogenum. Results suggested that PcRFX1, in addition to regulate penicillin biosynthesis, is also involved in the control of several pathways of primary metabolism.

  5. Dynamics of withanolide biosynthesis in relation to temporal expression pattern of metabolic genes in Withania somnifera (L.) Dunal: a comparative study in two morpho-chemovariants.

    Science.gov (United States)

    Dhar, Niha; Rana, Satiander; Bhat, Wajid Waheed; Razdan, Sumeer; Pandith, Shahzad A; Khan, Shabnam; Dutt, Prabhu; Dhar, Rekha S; Vaishnavi, Samantha; Vishwakarma, Ram; Lattoo, Surrinder K

    2013-12-01

    Withania somnifera (L.) Dunal synthesizes large array of pharmacologically active secondary metabolites known as withanolides. It has been extensively investigated in terms of chemistry and bioactivity profiling. However, there exists fragmentary information about the dynamics of withanolide biosynthesis at different phenophases in concert with the expression analysis of key pathway genes. In the present study, two morpho-chemovariants of W. somnifera were harvested at five developmental stages, dissected into leaf and root tissues and assayed for three major withanolides viz. withanolide-A (WS-1), withanone (WS-2) and withaferin A (WS-3) content using high performance liquid chromatography. The present investigation also analyzed the expression pattern of five withanolide biosynthetic pathway genes namely squalene synthase, squalene epoxidase, cycloartenol synthase, cytochrome P450 reductase 1, cytochrome P450 reductase 2 to corroborate with the metabolite flux at different developmental stages. The relative transcript profiles of identified genes at various ontogenetic stages illustrated significant variation in leaf and root tissues and were largely concurrent with the alteration in withanolide pool. Comparatively, the concentrations of withanolide A, withanone and withaferin A along with expression levels of all the five genes were appreciably higher in the leaves than in roots. Relative dynamics in terms of quantitative and qualitative profiles of withanolides in leaf and root tissues revealed least correspondence between the pattern of accumulation, possibly indicting towards de novo tissue-specific biosynthesis.

  6. The SMUL_1544 Gene Product Governs Norcobamide Biosynthesis in the Tetrachloroethene-Respiring Bacterium Sulfurospirillum multivorans.

    Science.gov (United States)

    Keller, Sebastian; Treder, Aaron; von Reuss, Stephan H; Escalante-Semerena, Jorge C; Schubert, Torsten

    2016-08-15

    The tetrachloroethene (PCE)-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B12, which, in comparison to other cobamides, e.g., cobalamin and pseudo-B12, lacks the methyl group in the linker moiety of the nucleotide loop. In this study, the protein SMUL_1544 was shown to be responsible for the formation of the unusual linker moiety, which is most probably derived from ethanolamine-phosphate (EA-P) as the precursor. The product of the SMUL_1544 gene successfully complemented a Salmonella enterica ΔcobD mutant. The cobD gene encodes an l-threonine-O-3-phosphate (l-Thr-P) decarboxylase responsible for the synthesis of (R)-1-aminopropan-2-ol O-2-phosphate (AP-P), required specifically for cobamide biosynthesis. When SMUL_1544 was produced in the heterologous host lacking CobD, norpseudo-B12 was formed, which pointed toward the formation of EA-P rather than AP-P. Guided cobamide biosynthesis experiments with minimal medium supplemented with l-Thr-P supported cobamide biosynthesis in S. enterica producing SMUL_1544 or S. multivorans Under these conditions, both microorganisms synthesized pseudo-B12 This observation indicated a flexibility in the SMUL_1544 substrate spectrum. From the formation of catalytically active PCE reductive dehalogenase (PceA) in S. multivorans cells producing pseudo-B12, a compatibility of the respiratory enzyme with the cofactor was deduced. This result might indicate a structural flexibility of PceA in cobamide binding. Feeding of l-[3-(13)C]serine to cultures of S. multivorans resulted in isotope labeling of the norpseudo-B12 linker moiety, which strongly supports the hypothesis of EA-P formation from l-serine-O-phosphate (l-Ser-P) in this organism. The identification of the gene product SMUL_1544 as a putative l-Ser-P decarboxylase involved in norcobamide biosynthesis in S. multivorans adds a novel module to the assembly line of cobamides (complete corrinoids) in prokaryotes. Selected cobamide

  7. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    Science.gov (United States)

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  8. Bagging Treatment Influences Production of C6 Aldehydes and Biosynthesis-Related Gene Expression in Peach Fruit Skin

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Shen

    2014-08-01

    Full Text Available Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsch, cv. Yulu over two succeeding seasons. Higher concentrations of n-hexanal and (E-2-hexenal, which are characteristic aroma volatiles of peach fruit, were induced by bagging treatment. After bagging treatment, peach fruit had significantly higher LOX and HPL enzyme activities, accompanying increased contents of C6 aldehydes. The gene expression data obtained through real-time PCR showed that no consistent significant differences in transcript levels of LOX genes were observed over the two seasons, but significantly up-regulated expression was found for PpHPL1 after bagging treatment In addition, bagging-treated fruit produced more (E-2-hexenal and had higher expression levels of PpHPL1 during postharvest ripening at room temperature. The regulatory role of the LOX-HPL pathway on the biosynthesis of n-hexanal and (E-2-hexenal in response to bagging treatment during peach fruit development is discussed in the text.

  9. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    Science.gov (United States)

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; van Dijk, Jeroen P; Kok, Esther J; Frazzon, Jeverson

    2016-02-03

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate the relationship between total glycoalkaloid (TGA) content and the expression of GAME, SGT1, and SGT3 genes in potato tubers. TGA content was measured by HPLC-MS, and reverse transcription quantitative polymerase chain reactions were performed to determine the relative expression of GAME, SGT1, and SGT3 genes. We searched for cis-elements of the transcription start site using the PlantPAN database. There was a relationship between TGA content and the relative expression of GAME, SGT1, and SGT3 genes in potato tubers. Putative promoter regions showed the presence of several cis-elements related to biotic and abiotic stresses and light. These findings provide an important step toward understanding TGA regulation and variation in potato tubers.

  10. Genomic and biochemical analysis of the diaminopimelate and lysine biosynthesis pathway in Verrucomicrobium spinosum: Identification and partial characterization of L,L-diaminopimelate aminotransferase and UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-meso-diaminopimelate ligase

    Directory of Open Access Journals (Sweden)

    Victoria R. Nachar

    2012-05-01

    Full Text Available The Gram-negative bacterium Verrucomicrobium spinosum has attracted interest in recent years following the sequencing and annotation of its genome. Comparative genomic analysis of V. spinosum using diaminopimelate/lysine metabolic genes from Chlamydia trachomatis suggests that V. spinosum employs the L,L-diaminopimelate aminotransferase (DapL pathway for diaminopimelate/lysine biosynthesis. The open reading frame corresponding to the putative dapL ortholog was cloned and the recombinant enzyme was shown to possess L,L-diaminopimelate aminotransferase activity in vitro. In vivo analysis using functional complementation confirmed that the dapL ortholog was able to functionally complement an E. coli mutant that confers auxotrophy for diaminopimelate and lysine. In addition to its role in lysine biosynthesis, the intermediate diaminopimelate has an integral role in peptidoglycan biosynthesis. To this end, the UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-meso-diaminopimelate ligase ortholog was also identified, cloned and was shown to possess meso-diaminopimelate ligase activity in vivo. The L,L-diaminopimelate aminotransferase pathway has been experimentally confirmed in several bacteria, some of which are deemed pathogenic to animals. Since animals, and particularly humans, lack the genetic machinery for the synthesis of diaminopimelate/lysine de novo, the enzymes involved in this pathway are attractive targets for development of antibiotics. Whether dapL is an essential gene in any bacteria is currently not known. V. spinosum is an excellent candidate to investigate the essentiality of dapL, since the bacterium employs the DapL pathway for lysine and cell wall biosynthesis, is non-pathogenic to humans, facile to grow and can be genetically manipulated.

  11. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes.

    Science.gov (United States)

    Ordóñez-Robles, María; Rodríguez-García, Antonio; Martín, Juan F

    2016-09-01

    Tacrolimus (FK506) is a 23-membered macrolide immunosuppressant used in current clinics. Understanding how the tacrolimus biosynthetic gene cluster is regulated is important to increase its industrial production. Here, we analysed the effect of the disruption of fkbN (encoding a LAL-type positive transcriptional regulator) on the whole transcriptome of the tacrolimus producer Streptomyces tsukubaensis using microarray technology. Transcription of fkbN in the wild type strain increases from 70 h of cultivation reaching a maximum at 89 h, prior to the onset of tacrolimus biosynthesis. Disruption of fkbN in S. tsukubaensis does not affect growth but prevents tacrolimus biosynthesis. Inactivation of fkbN reduces the transcription of most of the fkb cluster genes, including some all (for allylmalonyl-CoA biosynthesis) genes but does not affect expression of allMNPOS or fkbR (encoding a LysR-type regulator). Disruption of fkbN does not suppress transcription of the cistron tcs6-fkbQ-fkbN; thus, FkbN self-regulates only weakly its own expression. Interestingly, inactivation of FkbN downregulates the transcription of a 4'-phosphopantetheinyl transferase coding gene, which product is involved in tacrolimus biosynthesis, and upregulates the transcription of a gene cluster containing a cpkA orthologous gene, which encodes a PKS involved in coelimycin P1 biosynthesis in Streptomyces coelicolor. We propose an information theory-based model for FkbN binding sequences. The consensus FkbN binding sequence consists of 14 nucleotides with dyad symmetry containing two conserved inverted repeats of 7 nt each. This FkbN target sequence is present in the promoters of FkbN-regulated genes.

  12. The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control.

    Science.gov (United States)

    Millerioux, Yoann; Ebikeme, Charles; Biran, Marc; Morand, Pauline; Bouyssou, Guillaume; Vincent, Isabel M; Mazet, Muriel; Riviere, Loïc; Franconi, Jean-Michel; Burchmore, Richard J S; Moreau, Patrick; Barrett, Michael P; Bringaud, Frédéric

    2013-10-01

    The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.

  13. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation.

    Science.gov (United States)

    Pessi, Gabriella; Kociubinski, Guillermo; Mamoun, Choukri Ben

    2004-04-20

    Plasmodium falciparum is the causative agent of the most severe form of human malaria. The rapid multiplication of the parasite within human erythrocytes requires an active production of new membranes. Phosphatidylcholine is the most abundant phospholipid in Plasmodium membranes, and the pathways leading to its synthesis are attractive targets for chemotherapy. In addition to its synthesis from choline, phosphatidylcholine is synthesized from serine via an unknown pathway. Serine, which is actively transported by Plasmodium from human serum and readily available in the parasite, is subsequently converted into phosphoethanolamine. Here, we describe in P. falciparum a plant-like S-adenosyl-l-methionine-dependent three-step methylation reaction that converts phosphoethanolamine into phosphocholine, a precursor for the synthesis of phosphatidylcholine. We have identified the gene, PfPMT, encoding this activity and shown that its product is an unusual phosphoethanolamine methyltransferase with no human homologs. P. falciparum phosphoethanolamine methyltransferase (Pfpmt) is a monopartite enzyme with a single catalytic domain that is responsible for the three-step methylation reaction. Interestingly, Pfpmt activity is inhibited by its product phosphocholine and by the phosphocholine analog, miltefosine. We show that miltefosine can also inhibit parasite proliferation within human erythrocytes. The importance of this enzyme in P. falciparum membrane biogenesis makes it a potential target for malaria chemotherapy.

  14. Using biologically interrelated experiments to identify pathway genes in Arabidopsis

    OpenAIRE

    Kim, Kyungpil; Jiang, Keni; Teng, Siew Leng; Feldman, Lewis J.; Huang, Haiyan

    2012-01-01

    Motivation: Pathway genes are considered as a group of genes that work cooperatively in the same pathway constituting a fundamental functional grouping in a biological process. Identifying pathway genes has been one of the major tasks in understanding biological processes. However, due to the difficulty in characterizing/inferring different types of biological gene relationships, as well as several computational issues arising from dealing with high-dimensional biological data, deducing ge...

  15. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation.

    Science.gov (United States)

    Xu, Wenping; Peng, Hui; Yang, Tianbao; Whitaker, Bruce; Huang, Luhong; Sun, Jianghao; Chen, Pei

    2014-09-01

    Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLC-DAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit.

  16. Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum.

    Science.gov (United States)

    Cepeda-García, Cristina; Domínguez-Santos, Rebeca; García-Rico, Ramón O; García-Estrada, Carlos; Cajiao, Angela; Fierro, Francisco; Martín, Juan Francisco

    2014-08-01

    The transcription factor CreA is the main regulator responsible for carbon repression in filamentous fungi. CreA is a wide domain regulator that binds to regulatory elements in the promoters of target genes to repress their transcription. Penicillin biosynthesis and the expression of penicillin biosynthetic genes are subject to carbon repression. However, evidence of the participation of CreA in this regulation is still lacking, and previous studies on the promoter of the pcbC gene of Aspergillus nidulans indicated the lack of involvement of CreA in its regulation. Here we present clear evidence of the participation of CreA in carbon repression of penicillin biosynthesis and expression of the pcbAB gene, encoding the first enzyme of the pathway, in Penicillium chrysogenum. Mutations in cis of some of the putative CreA binding sites present in the pcbAB gene promoter fused to a reporter gene caused an important increase in the measured enzyme activity in glucose-containing medium, whereas activity in the medium with lactose was not affected. An RNAi strategy was used to attenuate the expression of the creA gene. Transformants expressing a small interfering RNA for creA showed higher penicillin production, and this increase was more evident when glucose was used as carbon source. These results confirm that CreA plays an important role in the regulation of penicillin biosynthesis in P. chrysogenum and opens the possibility of its utilization to improve the industrial production of this antibiotic.

  17. Exploring levels of hexosamine biosynthesis pathway intermediates and protein kinase C isoforms in muscle and fat tissue of Zucker Diabetic Fatty rats.

    NARCIS (Netherlands)

    Bosch, R.R.; Janssen, S.W.J.; Span, P.N.; Olthaar, A.J.; Emst-de Vries, S.E. van; Willems, P.H.G.M.; Martens, G.J.M.; Hermus, A.R.M.M.; Sweep, C.G.J.

    2003-01-01

    Many studies suggest that insulin resistance develops and/or is maintained by an increased flux of glucose through the hexosamine biosynthesis pathway. This pathway may attenuate insulin-stimulated glucose uptake by activating protein kinase C (PKC). Therefore, we investigated whether the concentrat

  18. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Science.gov (United States)

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  19. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  20. Multiple signalling pathways mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Sakai, Kokki

    2003-02-01

    The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.

  1. An Acidic pH is a determinant factor for TRI genes expression and trichothecenes B biosynthesis in Fusarium graminearum

    OpenAIRE

    2010-01-01

    Abstract Reducing production of trichothecene B by Fusarium graminearum on cereals is necessary to avoid contamination leading to yields reduction and having harmful impacts on human and animal health. Understanding how trichothecenes biosynthesis is induced is essential. Effect of ambient pH on fungal growth, toxin biosynthesis and TRI genes expression was studied during in vitro liquid culture of F. graminearum on minimal medium. Fungal development stopped at day 3 after a sharp ...

  2. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  3. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Zhixin Xu

    Full Text Available Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu. Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1, steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2, ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3, protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis-keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.

  4. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus.

    Science.gov (United States)

    Xu, Zhixin; Gan, Lei; Li, Tongyu; Xu, Chang; Chen, Ke; Wang, Xiaodan; Qin, Jian G; Chen, Liqiao; Li, Erchao

    2015-01-01

    Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu). Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1), steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2), ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3), protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis-keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.

  5. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis.

    Science.gov (United States)

    Garin, Intza; Edghill, Emma L; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M; Godbole, Koumudi; Hussain, Khalid; O'Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; Perez de Nanclares, Guiomar; Hattersley, Andrew T

    2010-02-16

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.

  6. Lipopolysaccharide biosynthesis genes discriminate between Rubus- and Spiraeoideae-infective genotypes of Erwinia amylovora.

    Science.gov (United States)

    Rezzonico, Fabio; Braun-Kiewnick, Andrea; Mann, Rachel A; Rodoni, Brendan; Goesmann, Alexander; Duffy, Brion; Smits, Theo H M

    2012-10-01

    Comparative genomic analysis revealed differences in the lipopolysaccharide (LPS) biosynthesis gene cluster between the Rubus-infecting strain ATCC BAA-2158 and the Spiraeoideae-infecting strain CFBP 1430 of Erwinia amylovora. These differences corroborate rpoB-based phylogenetic clustering of E. amylovora into four different groups and enable the discrimination of Spiraeoideae- and Rubus-infecting strains. The structure of the differences between the two groups supports the hypothesis that adaptation to Rubus spp. took place after species separation of E. amylovora and E. pyrifoliae that contrasts with a recently proposed scenario, based on CRISPR data, in which the shift to domesticated apple would have caused an evolutionary bottleneck in the Spiraeoideae-infecting strains of E. amylovora which would be a much earlier event. In the core region of the LPS biosynthetic gene cluster, Spiraeoideae-infecting strains encode three glycosyltransferases and an LPS ligase (Spiraeoideae-type waaL), whereas Rubus-infecting strains encode two glycosyltransferases and a different LPS ligase (Rubus-type waaL). These coding domains share little to no homology at the amino acid level between Rubus- and Spiraeoideae-infecting strains, and this genotypic difference was confirmed by polymerase chain reaction analysis of the associated DNA region in 31 Rubus- and Spiraeoideae-infecting strains. The LPS biosynthesis gene cluster may thus be used as a molecular marker to distinguish between Rubus- and Spiraeoideae-infecting strains of E. amylovora using primers designed in this study.

  7. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011.

    Science.gov (United States)

    Viguier, Caroline; O Cuív, Páraic; Clarke, Paul; O'Connell, Michael

    2005-05-15

    The genes encoding the biosynthesis and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti, are negatively regulated by iron. Mutagenesis of rirA, the rhizobial iron regulator, resulted in abolition of the iron responsive regulation of the biosynthesis and transport genes. Bioassay analysis revealed that the siderophore is produced in the presence of iron in a rirA mutant. RNA analysis and GFP fusions supported the conclusion that RirA is the mediator of iron-responsive transcriptional repression of the two transcripts encoding the biosynthesis and transport genes. RirA in S. meliloti appears to fulfil the role often observed for Fur in other bacterial species. The regulator was found to mediate the iron-responsive expression of two additional genes, smc02726 and dppA1, repressing the former while activating the latter. The rirA mutant nodulated the host plant Medicago sativa (alfalfa) and fixed nitrogen as effectively as the wild type.

  8. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals

    DEFF Research Database (Denmark)

    Chen, Xiulai; Gao, Cong; Guo, Liang

    2017-01-01

    , and pathway optimization at the systems level, offers a conceptual and technological framework to exploit potential pathways, modify existing pathways and create new pathways for the optimal production of desired chemicals. Here, we summarize recent progress of DCEO biotechnology and examples of its......, but how to make cells into efficient factories is challenging. As a key enabling technology to develop efficient cell factories, design-construction-evaluation-optimization (DCEO) biotechnology, which incorporates the concepts and techniques of pathway design, pathway construction, pathway evaluation...... application, and provide insights as to when, what and how different strategies should be taken. In addition, we highlight future perspectives of DCEO biotechnology for the successful establishment of biorefineries....

  9. Functional Characterization of 4´OMT and 7OMT Genes in BIA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Tugba eGurkok

    2016-02-01

    Full Text Available Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L., the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4´-O-methyltransferase (4´OMT and reticuline 7-O-methyltransferase (7OMT genes were subjected tomanipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem and capsule tissues accordingly. Suppression of 4´OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4´OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4´OMT and 7OMT were observed upon manipulation of 4´OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4´OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues.

  10. Functional Characterization of 4′OMT and 7OMT Genes in BIA Biosynthesis

    Science.gov (United States)

    Gurkok, Tugba; Ozhuner, Esma; Parmaksiz, Iskender; Özcan, Sebahattin; Turktas, Mine; İpek, Arif; Demirtas, Ibrahim; Okay, Sezer; Unver, Turgay

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4′–methyltransferase (4′OMT) and reticuline 7-O-methyltransferase (7OMT) genes were subjected to manipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem, and capsule tissues accordingly. Suppression of 4′OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4′OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4′OMT, and 7OMT) were observed upon manipulation of 4′OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4′OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues. PMID:26909086

  11. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster

    Directory of Open Access Journals (Sweden)

    Dutartre Leslie

    2012-05-01

    Full Text Available Abstract Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA, are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(MBOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8 form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5 belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2 at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  12. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.

    Science.gov (United States)

    Dutartre, Leslie; Hilliou, Frédérique; Feyereisen, René

    2012-05-11

    The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  13. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate.

    Science.gov (United States)

    Lacourciere, G M; Mihara, H; Kurihara, T; Esaki, N; Stadtman, T C

    2000-08-04

    Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. Kinetic characterization revealed the K(m) value for selenide approached levels that are toxic to the cell. Our previous demonstration that a Se(0)-generating system consisting of l-selenocysteine and the Azotobacter vinelandii NifS protein can replace selenide for selenophosphate biosynthesis in vitro suggested a mechanism whereby cells can overcome selenide toxicity. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, have been overexpressed and characterized. All three enzymes act on selenocysteine and cysteine to produce Se(0) and S(0), respectively. In the present study, we demonstrate the ability of each E. coli NifS-like protein to function as a selenium delivery protein for the in vitro biosynthesis of selenophosphate by E. coli wild-type SPS. Significantly, the SPS (C17S) mutant, which is inactive in the standard in vitro assay with selenide as substrate, was found to exhibit detectable activity in the presence of CsdB, CSD, or IscS and l-selenocysteine. Taken together the ability of the NifS-like proteins to generate a selenium substrate for SPS and the activation of the SPS (C17S) mutant suggest a selenium delivery function for the proteins in vivo.

  14. A functional gene cluster for toxoflavin biosynthesis in the genome of the soil bacterium Pseudomonas protegens Pf-5

    Science.gov (United States)

    Toxoflavin is a broad-spectrum toxin best known for its role in virulence of Burkholderia glumae, which causes panicle blight of rice. A gene cluster containing homologs of toxoflavin biosynthesis genes (toxA-E) of B. glumae is present in the genome of Pseudomonas protegens Pf-5, a biological contr...

  15. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    Science.gov (United States)

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.

  16. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations.

    Science.gov (United States)

    Martínez-Rincón, Raúl O; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.

  17. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations

    Science.gov (United States)

    Martínez-Rincón, Raúl O.; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G.

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis. PMID:28158248

  18. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates.

    Science.gov (United States)

    Murray, Shauna A; Diwan, Rutuja; Orr, Russell J S; Kohli, Gurjeet S; John, Uwe

    2015-11-01

    A group of marine dinoflagellates (Alveolata, Eukaryota), consisting of ∼10 species of the genus Alexandrium, Gymnodinium catenatum and Pyrodinium bahamense, produce the toxin saxitoxin and its analogues (STX), which can accumulate in shellfish, leading to ecosystem and human health impacts. The genes, sxt, putatively involved in STX biosynthesis, have recently been identified, however, the evolution of these genes within dinoflagellates is not clear. There are two reasons for this: uncertainty over the phylogeny of dinoflagellates; and that the sxt genes of many species of Alexandrium and other dinoflagellate genera are not known. Here, we determined the phylogeny of STX-producing and other dinoflagellates based on a concatenated eight-gene alignment. We determined the presence, diversity and phylogeny of sxtA, domains A1 and A4 and sxtG in 52 strains of Alexandrium, and a further 43 species of dinoflagellates and thirteen other alveolates. We confirmed the presence and high sequence conservation of sxtA, domain A4, in 40 strains (35 Alexandrium, 1 Pyrodinium, 4 Gymnodinium) of 8 species of STX-producing dinoflagellates, and absence from non-producing species. We found three paralogs of sxtA, domain A1, and a widespread distribution of sxtA1 in non-STX producing dinoflagellates, indicating duplication events in the evolution of this gene. One paralog, clade 2, of sxtA1 may be particularly related to STX biosynthesis. Similarly, sxtG appears to be generally restricted to STX-producing species, while three amidinotransferase gene paralogs were found in dinoflagellates. We investigated the role of positive (diversifying) selection following duplication in sxtA1 and sxtG, and found negative selection in clades of sxtG and sxtA1, clade 2, suggesting they were functionally constrained. Significant episodic diversifying selection was found in some strains in clade 3 of sxtA1, a clade that may not be involved in STX biosynthesis, indicating pressure for diversification

  19. A ketoreductase gene from Streptomyces mycarofaciens 1748 DNA involved in biosynthesis of a spore pigment

    Institute of Scientific and Technical Information of China (English)

    夏焕章; 王以光

    1997-01-01

    An efficient plasmid transformation system for S. mycarofaciens 1748 has been established. In order to determine the function of MKR gene in S. mycarofaciens 1748, the gene disruption experiment was carried out. For this purpose the plasmid pKC1139 was used. A recombinant strain with white spore appeared, in contrast to the grey-colour spore of S. mycarofaciens 1748. This suggested that homologous recombination between plasmid-borne MKR gene sequence and the chromosome of S. mycarofaciens 1748 had occurred. A Southern hybridization experiment using α- P-labelled MKR gene as probe indicated that the desired integration event had occurred in the re-combinant. The result of gene disruption showed that the alteration of this gene in the chromosome of S. mycarofa-ciens 1748 made sporulating colonies remain white instead of taking on the typical grey colour of sporulating wild type colonies, suggesting that MKR gene is involved in the biosynthesis of a spore pigment. The recombinant strain was in-cubated wit

  20. Activation of Nrf2-Regulated Glutathione Pathway Genes by Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Karen F. S. Bell

    2011-01-01

    Full Text Available Prophylactic pharmacological activation of astrocytic gene expression driven by the transcription factor Nrf2 boosts antioxidant defences and protects against neuronal loss in ischemia and other disease models. However, the role of Nrf2 in mediating endogenous neuroprotective responses is less clear. We recently showed that Nrf2 is activated by mild oxidative stress in both rodent and human astrocytes. Moreover, brief exposure to ischemic conditions was found to activate Nrf2 both in vivo and in vitro, and this was found to contribute to neuroprotective ischemic preconditioning. Here we show that transient ischemic conditions in vitro and in vivo cause an increase in the expression of Nrf2 target genes associated with the glutathione pathway, including those involved in glutathione biosynthesis and cystine uptake. Taken together, these studies indicate that astrocytic Nrf2 may represent an important mediator of endogenous neuroprotective preconditioning pathways.

  1. "Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous"

    OpenAIRE

    Cifuentes Víctor; Baeza Marcelo; Alcaíno Jennifer; Lozano Carla; Wozniak Aniela; Niklitschek Mauricio; Marcoleta Andrés

    2011-01-01

    Abstract Background The yeast Xanthophyllomyces dendrorhous is one of the most promising and economically attractive natural sources of astaxanthin. The biosynthesis of this valuable carotenoid is a complex process for which the regulatory mechanisms remain mostly unknown. Several studies have shown a strong correlation between the carbon source present in the medium and the amount of pigments synthesized. Carotenoid production is especially low when high glucose concentrations are used in th...

  2. NF-Y activates genes of metabolic pathways altered in cancer cells

    Science.gov (United States)

    Benatti, Paolo; Chiaramonte, Maria Luisa; Lorenzo, Mariangela; Hartley, John A.; Hochhauser, Daniel; Gnesutta, Nerina; Mantovani, Roberto; Imbriano, Carol; Dolfini, Diletta

    2016-01-01

    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells. PMID:26646448

  3. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  4. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    NARCIS (Netherlands)

    Mariot, Roberta Fogliatto; Oliveira, De Luisa Abruzzi; Voorhuijzen, M.M.; Staats, Martijn; Hutten, R.C.B.; Dijk, Van J.P.; Kok, E.J.; Frazzon, Jeverson

    2016-01-01

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate t

  5. Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis.

    Science.gov (United States)

    Xu, Zhong; Wang, Yemin; Chater, Keith F; Ou, Hong-Yu; Xu, H Howard; Deng, Zixin; Tao, Meifeng

    2017-03-15

    Gram-positive Streptomyces bacteria produce thousands of bioactive secondary metabolites, including antibiotics. To systematically investigate genes affecting secondary metabolism, we developed a hyperactive transposase-based Tn5 transposition system and employed it to mutagenize the model species Streptomyces coelicolor, leading to the identification of 51,443 transposition insertions. These insertions were distributed randomly along the chromosome except for some preferred regions associated with relatively low GC content in the chromosomal core. The base composition of the insertion site and its flanking sequences compiled from the 51,443 insertions implied a 19-bp expanded target site surrounding the insertion site, with a slight nucleic acid base preference in some positions, suggesting a relative randomness of Tn5 transposition targeting in the high-GC Streptomyces genome. From the mutagenesis library, 724 mutants involving 365 genes had altered levels of production of the tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in the RED biosynthetic gene cluster. Genetic complementation revealed that most of the insertions (more than two-thirds) were responsible for the changed antibiotic production. Genes associated with branched-chain amino acid biosynthesis, DNA metabolism, and protein modification affected RED production, and genes involved in signaling, stress, and transcriptional regulation were overrepresented. Some insertions caused dramatic changes in RED production, identifying future targets for strain improvement.IMPORTANCE High-GC Gram-positive streptomycetes and related actinomycetes have provided more than 100 clinical drugs used as antibiotics, immunosuppressants, and antitumor drugs. Their genomes harbor biosynthetic genes for many more unknown compounds with potential as future drugs. Here we developed a useful genome-wide mutagenesis tool based on the transposon Tn5 for the study of secondary metabolism and its regulation

  6. Haloferax volcanii N-glycosylation: delineating the pathway of dTDP-rhamnose biosynthesis.

    Directory of Open Access Journals (Sweden)

    Lina Kaminski

    Full Text Available In the halophilic archaea Haloferax volcanii, the surface (S-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.

  7. Haloferax volcanii N-glycosylation: delineating the pathway of dTDP-rhamnose biosynthesis.

    Science.gov (United States)

    Kaminski, Lina; Eichler, Jerry

    2014-01-01

    In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.

  8. Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.

    Science.gov (United States)

    Vorobieva, Anastassia A; Khan, Mohammad Shahneawz; Soumillion, Patrice

    2014-10-17

    The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.

  9. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  10. Identification by heterologous expression and gene disruption of VisA as L-lysine 2-aminotransferase essential for virginiamycin S biosynthesis in Streptomyces virginiae.

    Science.gov (United States)

    Namwat, Wises; Kinoshita, Hiroshi; Nihira, Takuya

    2002-09-01

    The visA gene of Streptomyces virginiae has been thought to be a part of the virginiamycin S (VS) biosynthetic gene cluster based on its location in the middle of genes that encode enzymes highly similar to those participating in the biosynthesis of streptogramin-type antibiotics. Heterologous expression of the visA gene was achieved in Escherichia coli by an N-terminal fusion with thioredoxin (TrxA), and the intact recombinant VisA protein (rVisA) was purified after cleavage with enterokinase to remove the TrxA moiety. The purified rVisA showed clear L-lysine 2-aminotransferase activity with an optimum pH of around 8.0 and an optimum temperature at 35 degrees C, with 2-oxohexanoate as the best amino acceptor, indicating that VisA converts L-lysine into Delta(1)-piperidine 2-carboxylic acid. A visA deletion mutant of S. virginiae was created by homologous recombination, and the in vivo function of the visA gene was studied by phenotypic comparison between the wild type and the visA deletion mutant. No differences in growth in liquid media or in morphological behavior on solid media were observed, indicating that visA is not involved in primary metabolism or morphological differentiation. However, the visA mutant failed to produce VS while maintaining the production of virginiamycin M(1) at a level comparable to that of the parental wild-type strain, demonstrating that visA is essential to VS biosynthesis. These results, together with the observed recovery of the defect in VS production by the external addition of 3-hydroxypicolinic acid (3-HPA), a starter molecule in VS biosynthesis, suggest that VisA is the first enzyme of the VS biosynthetic pathway and that it supplies 3-HPA from L-lysine.

  11. Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis.

    Science.gov (United States)

    Cai, Xiaofeng; Teta, Roberta; Kohlhaas, Christoph; Crüsemann, Max; Ueoka, Reiko; Mangoni, Alfonso; Freeman, Michael F; Piel, Jörn

    2013-06-20

    Hormaomycin (HRM) is a structurally remarkable peptide produced by Streptomyces griseoflavus W-384 that acts as a Streptomyces signaling metabolite and exhibits potent antibiotic activity against coryneform actinomycetes. HRM biosynthetic studies have been hampered by inconsistent and low production. To enhance fermentation titers, the role of its cluster-encoded regulatory genes was investigated. Extra copies of the putative regulators hrmA and hrmB were introduced into the wild-type strain, resulting in an increase of HRM production and its analogs up to 135-fold. For the HrmB overproducer, six bioactive analogs were isolated and characterized. This study demonstrates that HrmA and HrmB are positive regulators in HRM biosynthesis. A third gene, hrmH, was identified as encoding a protein capable of shifting the metabolic profile of HRM and its derivatives. Its manipulation resulted in the generation of an additional HRM analog.

  12. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  13. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus.

    Directory of Open Access Journals (Sweden)

    Susana Manzano

    Full Text Available Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.

  14. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus).

    Science.gov (United States)

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.

  15. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L..

    Directory of Open Access Journals (Sweden)

    Hairong Wei

    Full Text Available Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.. The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry.In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL, 4-coumarate-CoA ligase (4CL, chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, flavanone 3'-hydroxylase (F3'H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40 that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR.The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights

  16. De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine

    Directory of Open Access Journals (Sweden)

    Zhang Guang Hui

    2016-08-01

    Full Text Available Background: The medicinal herb, Pinellia ternate, is purported to be an anti-emetic with analgesic and sedative effects. Alkaloids are the main biologically active compounds in P. ternata, especially ephedrine that is a phenylpropylamino alkaloid specifically produced by Ephedra and Catha edulis. However, how ephedrine is synthesized in plants is uncertain. Only the phenylalanine ammonia lyase (PAL and relevant genes in this pathway have been characterized. Genomic information of P. ternata is also unavailable. Results: We analyzed the transcriptome of the tuber of P. ternata with the Illumina HiSeqTM 2000 sequencing platform. 66,813,052 high-quality reads were generated, and these reads were assembled de novo into 89,068 unigenes. Most known genes involved in benzoic acid biosynthesis were identified in the unigene dataset of P. ternate, and the expression patterns of some ephedrine biosynthesis-related genes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR. Also, 14,468 simple sequence repeats (SSRs were identified from 12,000 unigenes. Twenty primer pairs for SSRs were randomly selected for the validation of their amplification effect. Conclusion: RNA-seq data was firstly used to provide a comprehensive gene information on P. ternata at the transcriptional level. These data will advance molecular genetics in this valuable medicinal plant.

  17. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis.

    Science.gov (United States)

    Lv, Li; Ren, Yi-Lin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-05-01

    Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is used to edit eukaryotic genomes. Here, we show that CRISPRi can also be used for fine-tuning prokaryotic gene expression while simultaneously regulating multiple essential gene expression with less labor and time consumption. As a case study, CRISPRi was used to control polyhydroxyalkanoate (PHA) biosynthesis pathway flux and to adjust PHA composition. A pathway was constructed in Escherichia coli for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from glucose. The native gene sad encoding E. coli succinate semi-aldehyde dehydrogenase was expressed under the control of CRISPRi using five specially designed single guide RNAs (sgRNAs) for regulating carbon flux to 4-hydroxybutyrate (4HB) biosynthesis. The system allowed formation of P(3HB-co-4HB) consisting of 1-9mol% 4HB. Additionally, succinate, generated by succinyl-coA synthetase and succinate dehydrogenase (respectively encoded by genes sucC, sucD and sdhA, sdhB) was channeled preferentially to the 4HB precursor by using selected sgRNAs such as sucC2, sucD2, sdhB2 and sdhA1 via CRISPRi. The resulting 4HB content in P(3HB-co-4HB) was found to range from 1.4 to 18.4mol% depending on the expression levels of down-regulated genes. The results show that CRISPRi is a feasible method to simultaneously manipulate multiple genes in E. coli.

  18. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Directory of Open Access Journals (Sweden)

    Smrati Mishra

    Full Text Available Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  19. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Science.gov (United States)

    Mishra, Smrati; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  20. Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.).

    Science.gov (United States)

    Alós, Enriqueta; Rodrigo, María J; Zacarías, Lorenzo

    2013-06-01

    Sweet pepper (Capsicum annuum L.) is widely recognized among the vegetables with high content of ascorbic acid (AsA). However, the metabolic pathways involved in the biosynthesis, recycling and degradation of AsA and their relative contribution to the concentration of AsA have not been established yet. In the present work, the expression levels of selected genes involved in the AsA biosynthesis, degradation and recycling pathways were analyzed during development and ripening of pepper fruit cv. Palermo and in mature fruit of four cultivars (Lipari, C-116, Surrentino and Italverde) with different AsA concentrations. An inverse correlation was found between the expression of the biosynthetic genes and AsA concentrations, which could indicate that a feedback mechanism regulates AsA homeostasis in pepper fruits. Interestingly, analysis of mRNA levels of ascorbate oxidase, involved in the degradation of AsA, suggests that this enzyme plays a critical role in the regulation of the AsA pool during fruit development and ripening.

  1. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction

    Science.gov (United States)

    Hirasawa, Takashi; Ida, Yoshihiro; Furuasawa, Chikara; Shimizu, Hiroshi

    2014-01-01

    Saccharomyces cerevisiae shows high growth activity under low pH conditions and can be used for producing acidic chemicals such as organic acids as well as fuel ethanol. However, ethanol can also be a problematic by-product in the production of chemicals except for ethanol. We have reported that a stable low-ethanol production phenotype was achieved by disrupting 6 NADH-dependent alcohol dehydrogenase genes of S. cerevisiae. Moreover, the genes encoding the NADH-dependent glycerol biosynthesis enzymes were further disrupted because the ADH-disrupted recombinant strain showed high glycerol production to maintain intracellular redox balance. The recombinant strain incapable producing ethanol and glycerol could have the potential to be a host for producing metabolite(s) whose biosynthesis is coupled with NADH oxidation. Indeed, we successfully achieved almost 100% yield for L-lactate production using this recombinant strain as a host. In addition, the potential of our constructed recombinant strain for efficient bioproduction, particularly under anaerobic conditions, is also discussed. PMID:24247205

  2. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  3. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry.

    Science.gov (United States)

    Liu, Hong; Xie, Wei-Fa; Zhang, Ling; Valpuesta, Victoriano; Ye, Zheng-Wen; Gao, Qing-Hua; Duan, Ke

    2014-04-01

    Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry overexpressing FvYUC6, which showed typical high-auxin phenotypes. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesca. Additionally, specific repression of FvYUC6 expression by RNA interference significantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry.

  4. Transcriptional analysis of sex pheromone biosynthesis signal genes in Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Shi-Heng An; Meng-Fang Du; Li-Juan Su; Xin-Ming Yin

    2012-01-01

    Six sex pheromone synthesis signal genes,including acyl coenzyme A (acylCoA) desaturase (desatl),fatty acyl reductase (FAR),pheromone biosynthesis activating neuropeptide receptor (PBANR),fatty acid transport protein (FATP),acyl-CoA binding protein (ACBP) and store-operated channel protein (OrailA),were studied for their transcriptional regulations.The expression profiles of these transcripts at different developmental stages (from-96 to 48 h) revealed that the genes are expressed in an age-dependent manner.The transcripts of these genes continued to increase despite decapitation,and compared with normally developmental females,decapitation significantly inhibited their expression.Further experiments with a methoprene,a juvenile hormone (JH) analogue,challenge showed that JH was not a key inhibiting factor in the expression of these genes,and mating was found to significantly inhibit the expression of these marker genes.Altogether,the results provide a reference for understanding the mechanism of sex pheromone synthesis.

  5. Arabidopsis Phosphoglycerate Dehydrogenase1 of the Phosphoserine Pathway Is Essential for Development and Required for Ammonium Assimilation and Tryptophan Biosynthesis[C][W][OPEN

    Science.gov (United States)

    Benstein, Ruben Maximilian; Ludewig, Katja; Wulfert, Sabine; Wittek, Sebastian; Gigolashvili, Tamara; Frerigmann, Henning; Gierth, Markus; Flügge, Ulf-Ingo; Krueger, Stephan

    2013-01-01

    In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and PHOSPHOSERINE AMINOTRANSFERASE1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism. PMID:24368794

  6. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  7. Vitamins B1, B2, B3 and B9 - Occurrence, Biosynthesis Pathways and Functions in Human Nutrition.

    Science.gov (United States)

    Wolak, Natalia; Zawrotniak, Marcin; Gogol, Mariusz; Kozik, Andrzej; Rapala-Kozik, Maria

    2017-01-01

    Vitamins are chemical compounds whose derivatives are involved in vital metabolic pathways of all living organisms. The complete endogenous biosynthesis of vitamins can be performed by many bacteria, yeast and plants, but humans need to acquire most of these essential nutrients with food. In recent years, new types of action of the well-recognized vitamins or their more sophisticated relationships have been reported. In this review we present the current knowledge of factors that can influence the yield and regulation of vitamin B1, B2, B3 and B9 biosynthesis in plants which can be important for human nutrition. A summary of modern methods applied for vitamin analysis in biological materials is also provided. Contributions of selected vitamins to the homeostasis of the human organism, as well as their relations to the progress or prevention of some important diseases such as cancer, cardiovascular diseases, diabetes and Alzheimer's disease are discussed in the light of recent investigations. Better understanding of the mechanisms of vitamin uptake by human tissues and possible metabolic or genetic backgrounds of vitamin deficiencies can open new perspectives on the medical strategies and biotechnological processes of food fortification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Broad substrate specificity of phosphotransbutyrylase from Listeria monocytogenes: A potential participant in an alternative pathway for provision of acyl CoA precursors for fatty acid biosynthesis.

    Science.gov (United States)

    Sirobhushanam, Sirisha; Galva, Charitha; Sen, Suranjana; Wilkinson, Brian J; Gatto, Craig

    2016-09-01

    Listeria monocytogenes, the causative organism of the serious food-borne disease listeriosis, has a membrane abundant in branched-chain fatty acids (BCFAs). BCFAs are normally biosynthesized from branched-chain amino acids via the activity of branched chain α-keto acid dehydrogenase (Bkd), and disruption of this pathway results in reduced BCFA content in the membrane. Short branched-chain carboxylic acids (BCCAs) added as media supplements result in incorporation of BCFAs arising from the supplemented BCCAs in the membrane of L. monocytogenes bkd mutant MOR401. High concentrations of the supplements also effect similar changes in the membrane of the wild type organism with intact bkd. Such carboxylic acids clearly act as fatty acid precursors, and there must be an alternative pathway resulting in the formation of their CoA thioester derivatives. Candidates for this are the enzymes phosphotransbutyrylase (Ptb) and butyrate kinase (Buk), the products of the first two genes of the bkd operon. Ptb from L. monocytogenes exhibited broad substrate specificity, a strong preference for branched-chain substrates, a lack of activity with acetyl CoA and hexanoyl CoA, and strict chain length preference (C3-C5). Ptb catalysis involved ternary complex formation. Additionally, Ptb could utilize unnatural branched-chain substrates such as 2-ethylbutyryl CoA, albeit with lower efficiency, consistent with a potential involvement of this enzyme in the conversion of the carboxylic acid additives into CoA primers for BCFA biosynthesis. Published by Elsevier B.V.

  9. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    Full Text Available Abstract Background Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata and Phlegmariurus carinatus (P. carinatus as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. Results For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3% unique putative transcripts from H. serrata and 14,070 (44.2% from P. carinatus were assigned to at least one protein. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways. In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H

  10. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    Science.gov (United States)

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.

  11. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans

    DEFF Research Database (Denmark)

    Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan

    2016-01-01

    enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth...... rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole......BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few...

  12. Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule

    Indian Academy of Sciences (India)

    BL Manjunatha; HR Singh; G Ravikanth; Karaba N Nataraja; Ravi Shankar; Sanjay Kumar; R Uma Shaanker

    2016-03-01

    Camptothecin (CPT), a monoterpene indole alkaloid, is a potent inhibitor of DNA topoisomerase I and has applications in treating ovarian, small lung and refractory ovarian cancers. Stem wood tissue of Nothapodytes nimmoniana (Graham) Mabb. (family Icacinaceae) is one of the richest sources of CPT. Since there is no genomic or transcriptome data available for the species, the present work sequenced and analysed transcriptome of stem wood tissue on an Illumina platform. From a total of 77,55,978 reads, 9,187 transcripts were assembled with an average length of 255 bp. Functional annotation and categorization of these assembled transcripts unraveled the transcriptome architecture and also a total of 13 genes associated with CPT biosynthetic pathway were identified in the stem wood tissue. Four genes of the pathway were cloned to full length by RACE to validate the transcriptome data. Expression analysis of 13 genes associated with CPT biosynthetic pathway in 11 different tissues vis-a-vis CPT content analysis suggested an important role of NnPG10H, NnPSLS and NnPSTR genes in the biosynthesis of CPT. These results indicated that CPT might be synthesized in the leaves and then perhaps exported to stem wood tissue for storage.

  13. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth

    DEFF Research Database (Denmark)

    Jakočiūnė, Dzuiga; Herrero-Fresno, Ana; Jelsbak, Lotte;

    2016-01-01

    RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis...

  14. Towards Elucidating Carnosic Acid Biosynthesis in Lamiaceae: Functional Characterization of the Three First Steps of the Pathway in Salvia fruticosa and Rosmarinus officinalis.

    Science.gov (United States)

    Božić, Dragana; Papaefthimiou, Dimitra; Brückner, Kathleen; de Vos, Ric C H; Tsoleridis, Constantinos A; Katsarou, Dimitra; Papanikolaou, Antigoni; Pateraki, Irini; Chatzopoulou, Fani M; Dimitriadou, Eleni; Kostas, Stefanos; Manzano, David; Scheler, Ulschan; Ferrer, Albert; Tissier, Alain; Makris, Antonios M; Kampranis, Sotirios C; Kanellis, Angelos K

    2015-01-01

    Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPS and SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC). Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP) encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera.

  15. Towards Elucidating Carnosic Acid Biosynthesis in Lamiaceae: Functional Characterization of the Three First Steps of the Pathway in Salvia fruticosa and Rosmarinus officinalis.

    Directory of Open Access Journals (Sweden)

    Dragana Božić

    Full Text Available Carnosic acid (CA is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage and Rosmarinus officinalis (Rosemary. To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPS and SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC. Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera.

  16. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation.

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-06-17

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule.

  17. Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene.

    Science.gov (United States)

    Rastogi, Smita; Dwivedi, Upendra Nath

    2006-01-01

    In the present study, a 0.47 kb OMT gene construct from aspen, encoding for an enzyme O-methyltransferase (OMT, EC 2.1.1.6), in antisense orientation was used to down-regulate lignin biosynthesis in Leucaena leucocephala. The plants were transformed with Agrobacterium tumefaciens strain harboring the antisense gene, and the transformation was confirmed by PCR amplification of the npt II gene. The integration of a heterologous antisense OMT gene construct in transformed plants led to a maximum of 60% reduction in OMT activity relative to control. The evaluation of total lignin content by the Klason method revealed a maximum of 28% reduction. Histochemical analyses of stem sections depicted a reduction in lignin content and normal xylem development. The results also suggested a probable increase in aldehyde levels and a decrease in syringyl units. Lignin down-regulation was accompanied by an increase in methanol soluble phenolics to an extent that had no impact on wood discoloration, and the plants displayed a normal phenotype. Concomitantly, an increase of up to 9% in cellulose content was also observed. Upon alkali extraction, modified lignin was more extractable as evident from reduced Klason lignin in saponified residue and increased alkali soluble phenolics. The results together suggested that the extent of down-regulation of OMT activity achieved may lead to quality amelioration of Leucaena with respect to its applicability in pulp and paper manufacture as well as nutritive and easily digestible forage production.

  18. Osmotic regulation and tissue localization of the myo-inositol biosynthesis pathway in tilapia (Oreochromis mossambicus) larvae.

    Science.gov (United States)

    Sacchi, Romina; Gardell, Alison M; Chang, Nicole; Kültz, Dietmar

    2014-10-01

    The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol, which protects cells from salinity stress. We exposed tilapia larvae just after yolk sac resorption to various hypersaline environments and recorded robust induction of the enzymes that constitute the MIB pathway, myo-inositol-phosphate synthase (MIPS), and inositol monophosphatase 1 (IMPA1). Strong up-regulation of these enzymes is evident at both mRNA (quantitative real-time PCR) and protein (densitometric analysis of Western blots) levels. The highest level of induction of these enzymes occurs at the highest salinity that larvae were exposed to (90 ppt). Less severe salinity stress causes a proportionately reduced induction of the MIB pathway. Two distinct MIPS mRNA variants are present in tilapia larvae and both are induced at comparable levels for all the salinity challenges tested (34, 70, and 90 ppt). Immunohistochemical localization of IMPA1 protein in sagittal sections of salinity stressed and control larvae identified tissues that are particularly potent in inducing the MIB pathway. These tissues include the skin (epidermis), gills, eye (ciliary epithelium) and heart. In particular, the epidermis directly facing the external milieu showed a very strong induction of IMPA1 immunoreactivity. IMPA1 induction in response to salinity stress was not observed in other tissues suggesting that tilapia larvae may also utilize compatible organic osmolytes other than solely myo-inositol for osmoprotection. We conclude that the MIB pathway plays an important role in protecting multiple (but not all) tissues of tilapia larvae from hyperosmotic salinity stress.

  19. Structural and functional analysis of PUR2,5 gene encoding bifunctional enzyme of de novo purine biosynthesis in Ogataea (Hansenula) polymorpha CBS 4732T.

    Science.gov (United States)

    Stoyanov, Anton; Petrova, Penka; Lyutskanova, Dimitrinka; Lahtchev, Kantcho

    2014-01-01

    We describe the cloning, sequencing and functional characterization of gene PUR2,5, involved in de novo purine biosynthesis of the yeast Ogataea (Hansenula) polymorpha. This gene (2369 bp) was cloned by genetic complementation of adenine requiring mutation. It encodes a bifunctional enzyme of 789 amino acids (85 kDa) that catalyzes the second and the fifth steps of de novo purine biosynthesis pathway and shows dual enzymatic activity - of glycinamide ribotide synthetase (GARS, EC 6.3.4.13) and of aminoimidazole ribotide synthetase (AIRS, EC 6.3.3.1). Nucleotide sequence analysis revealed the presence of putative regulatory elements located in the adjacent 5' region. Canonical motives that function as binding sites for BAS1 transcription activator were found at positions (-593) and (-389). The putative TAATTA-box was located at (-20) to (-14) and AT-rich heteroduplex was found in the 3'-non-translated region. We compared the amino acid sequence of OpPUR2,5p with those of the corresponding enzymes of other yeast species as well as with distant organisms like bacteria Escherichia coli and human Homo sapiens. A successful disruption of OpPUR2,5 gene was done. It was found that OpPUR2,5::LEU2 replacement affects both mating and sporulation processes. OpPUR2,5 sequence is deposited in the GenBank of NCBI with accession no. JF967633. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Inhibitors of eicosanoid biosynthesis influencing the transcripts level of sHSP21.4 gene induced by pathogen infections, in Antheraea pernyi.

    Science.gov (United States)

    Zhang, Congfen; Dai, Lishang; Wang, Lei; Qian, Cen; Wei, Guoqing; Li, Jun; Zhu, Baojian; Liu, Chaoliang

    2015-01-01

    Small heat shock proteins (sHSPs) can regulate protein folding and protect cells from stress. To investigate the role of sHSPs in the silk-producing insect Antheraea pernyi response to microorganisms, a sHsp gene termed as Ap-sHSP21.4, was identified. This gene encoded a 21.4 kDa protein which shares the conserved structure of insect sHsps and belongs to sHSP21.4 family. Ap-sHSP21.4 was highly expressed in fat body and up-regulated in midgut and fat body of A. pernyi challenged with Escherichia coli, Beauveria bassiana and nuclear polyhedrosis virus (NPV), which was determined by quantitative real-time PCR. Meanwhile, knock down of Ap-sHSP21.4 with dsRNA result in the decrease at the expression levels of several immune response-related genes (defensin, Dopa decarboxylase, Toll1, lysozyme and Kazal-type serine protease inhibitor). Additionally, the impact of eicosanoid biosynthesis on the expression of Ap-sHSP21.4 response to NPV was determined using qPCR, inhibitors of eicosanoid biosynthesis significantly suppress Ap-HSP21.4 expression upon NPV challenge. All together, Ap-sHSP21.4 was involved in the immunity of A. pernyi against microorganism and possibly mediated by eicosanoids pathway. These results will shed light in the understanding of the pathogen-host interaction in A. pernyi.

  1. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    Science.gov (United States)

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes.

  2. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Victor Bochuan Wang

    Full Text Available The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems.

  3. Down-regulation of the strawberry Bet v 1-homologous allergen in concert with the flavonoid biosynthesis pathway in colorless strawberry mutant

    DEFF Research Database (Denmark)

    Hjernø, Karin; Alm, Rikard; Canbäck, Björn

    2006-01-01

    strawberries, known to be tolerated by individuals affected by allergy, were found to be virtually free from the strawberry allergen. Also several enzymes in the pathway for biosynthesis of flavonoids, to which the red color pelargonidin belongs, were down-regulated. This approach to assess differential...

  4. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used