WorldWideScience

Sample records for biosynthesis gene clusters

  1. Genetic Characterization of the Klebsiella pneumoniae waa Gene Cluster, Involved in Core Lipopolysaccharide Biosynthesis

    OpenAIRE

    Regué, Miguel; Climent, Núria; Abitiu, Nihal; Coderch, Núria; Merino, Susana; Izquierdo, Luis; Altarriba, Maria; Juan M. Tomás

    2001-01-01

    A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that t...

  2. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Troco K Mihali

    Full Text Available Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds.

  3. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    OpenAIRE

    Santos, dos, T.C.; Vera, J.L.; Heijden, van der, C.A.M.; G. F. VALDEZ; De Vos; Sesma, F.; Hugenholtz, J

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 ORFs encoding the complete enzymic machinery necessary for de novo biosynthesis. Transcriptional analysis showed it to be expressed as two tandem transcripts of approximately 22 and 4 kb, carrying co...

  4. A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa.

    Science.gov (United States)

    Waldron, C; Madduri, K; Crawford, K; Merlo, D J; Treadway, P; Broughton, M C; Baltz, R H

    2000-12-01

    Spinosyns A and D are the active ingredients in a family of insect control agents produced by fermentation of Saccharopolyspora spinosa. Spinosyns are 21-carbon tetracyclic lactones to which are attached two deoxysugars. Most of the genes involved in spinosyn biosynthesis are clustered in an 74 kb region of the S. spinosa genome. This region has been characterized by DNA sequence analysis and by targeted gene disruptions. The spinosyn biosynthetic gene cluster contains five large genes encoding a type I polyketide synthase, and 14 genes involved in modification of the macrolactone, or in the synthesis, modification and attachment of the deoxysugars. Four genes required for rhamnose biosynthesis (two of which are also required for forosamine biosynthesis) are not present in the cluster. A pathway for the biosynthesis of spinosyns is proposed. PMID:11386361

  5. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis.

    Science.gov (United States)

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A; Kämper, Jörg; Bölker, Michael

    2006-08-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  6. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Directory of Open Access Journals (Sweden)

    Neilan Brett A

    2009-03-01

    Full Text Available Abstract Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved

  7. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov;

    2010-01-01

    produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended with...... the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...

  8. Impact of cluster thinning on transcriptional regulation of anthocyanin biosynthesis-related genes in 'Summer Black' grapes.

    Science.gov (United States)

    Xi, Xiaojun; Zha, Qian; Jiang, Aili; Tian, Yihua

    2016-07-01

    Cluster thinning is an agronomic practice that strongly affects anthocyanin biosynthesis in the skin of grape berries. However, the impact of cluster thinning on anthocyanin biosynthesis has not been fully elucidated at the molecular level. Here, we investigated its effects on the berry quality, the biosynthesis of anthocyanins, and the expression levels of related genes from the onset of véraison to harvest in 'Summer Black' grapes. It was observed that the total soluble solid and anthocyanin content in berry skin significantly increased under cluster thinning, whereas the berry weight and titratable acidity showed no differences from the beginning of véraison to harvest. The expression level of most anthocyanin biosynthesis-related genes was significantly up-regulated by cluster thinning from the beginning of véraison and was higher at its end compared to the control. Up-regulation of flavonoid 3',5'-hydroxylase (F3'5'H) and O-methyltransferase (OMT) expression, and down-regulation of flavonoid 3'-hydroxylase (F3'H) expression were observed, which might be the cause of shift in the anthocyanin profile. These findings provide insights into the molecular basis of the relationship between cluster thinning and anthocyanin biosynthesis in the grape berry skin. PMID:27035257

  9. Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii.

    Science.gov (United States)

    Castro, Jean Franco; Razmilic, Valeria; Gomez-Escribano, Juan Pablo; Andrews, Barbara; Asenjo, Juan A; Bibb, Mervyn J

    2015-09-01

    Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives. PMID:26092459

  10. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2009-12-01

    Full Text Available Abstract Background Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by Pseudomonas aeruginosa and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by Burkholderia species. Results Orthologs of rhlA, rhlB and rhlC, which are responsible for the biosynthesis of rhamnolipids in P. aeruginosa, have been found in the non-infectious Burkholderia thailandensis, as well as in the genetically similar important pathogen B. pseudomallei. In contrast to P. aeruginosa, both Burkholderia species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both Burkholderia spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for P. aeruginosa. Additionally, the rhamnolipids produced by B. thailandensis contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to P. aeruginosa. The rhamnolipids produced by B. thailandensis reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both rhlA alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxyalkanoic acid, prove that both copies of the rhl gene cluster are functional, but one contributes more to the total production than the other. Finally, a double ΔrhlA mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype. Conclusions Collectively, these

  11. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions.

    Science.gov (United States)

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi

    2015-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. PMID:25362061

  12. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358.

    OpenAIRE

    Marugg, J. D.; Nielander, H.B.; Horrevoets, A J; Van Megen, I; van Genderen, I; Weisbeek, P.J.

    1988-01-01

    In iron-limited environments, the plant-growth-stimulating Pseudomonas putida WCS358 produces a yellow-green fluorescent siderophore called pseudobactin 358. The transcriptional organization and the iron-regulated expression of a major gene cluster involved in the biosynthesis and transport of pseudobactin 358 were analyzed in detail. The cluster comprises a region with a minimum length of 33.5 kilobases and contains at least five transcriptional units, of which some are relatively large. The...

  13. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  14. A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus.

    Science.gov (United States)

    Horbal, Liliya; Ostash, Bohdan; Luzhetskyy, Andriy; Walker, Suzanne; Kalinowski, Jorn; Fedorenko, Victor

    2016-09-01

    Moenomycins are phosphoglycolipid antibiotics notable for their extreme potency, unique mode of action, and proven record of use in animal nutrition without selection for resistant microflora. There is a keen interest in manipulation of structures of moenomycins in order to better understand their structure-activity relationships and to generate improved analogs. Only two almost identical moenomycin biosynthetic gene clusters are known, limiting our knowledge of the evolution of moenomycin pathways and our ability to genetically diversify them. Here, we report a novel gene cluster (tchm) that directs production of the phosphoglycolipid teichomycin in Actinoplanes teichomyceticus. Its overall genetic architecture is significantly different from that of the moenomycin biosynthesis (moe) gene clusters of Streptomyces ghanaensis and Streptomyces clavuligerus, featuring multiple gene rearrangements and two novel structural genes. Involvement of the tchm cluster in teichomycin biosynthesis was confirmed via heterologous co-expression of amidotransferase tchmH5 and moe genes. Our work sets the background for further engineering of moenomycins and for deeper inquiries into the evolution of this fascinating biosynthetic pathway. PMID:27344593

  15. Sequencing and transcriptional analysis of the streptococcus thermophilus histamine biosynthesis gene cluster: Factors that affect differential hdca expression

    OpenAIRE

    Calles-Enríquez, Marina; Hjort Eriksen, Benjamin; Skov Andersen, Pia; Rattray, F.; Johansen, Annette H.; Fernández García, María; Ladero Losada, Víctor Manuel; Álvarez González, Miguel Ángel

    2010-01-01

    Histamine, a toxic compound that is formed by the decarboxylation of histidine through the action of microbial decarboxylases, can accumulate in fermented food products. From a total of 69 Streptococcus thermophilus strains screened, two strains, CHCC1524 and CHCC6483, showed the capacity to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were st...

  16. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.

    OpenAIRE

    Becker, A.; Rüberg, S; Küster, H.; Roxlau, A A; Keller, M; Ivashina, T; H.P. Cheng; Walker, G C; Pühler, A

    1997-01-01

    Proteins directing the biosynthesis of galactoglucan (exopolysaccharide II) in Rhizobium meliloti Rm2011 are encoded by the exp genes. Sequence analysis of a 32-kb DNA fragment of megaplasmid 2 containing the exp gene cluster identified previously (J. Glazebrook and G. C. Walker, Cell 56:661-672, 1989) revealed the presence of 25 open reading frames. Homologies of the deduced exp gene products to proteins of known function suggested that the exp genes encoded four proteins involved in the bio...

  17. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata.

    OpenAIRE

    N. Kimura; Tsuge,T.

    1993-01-01

    The filamentous fungus Alternaria alternata produces melanin, a black pigment, from acetate via 1,8-dihydroxynaphthalene. To isolate a fungal gene required for melanin biosynthesis, we transformed an A. alternata Brm1- (light brown) mutant with the DNA of a wild-type strain genomic library constructed by use of a cosmid carrying the hygromycin B phosphotransferase gene. When hygromycin B-resistant transformants were screened for melanin production, 1 of 1,363 transformants appeared to regain ...

  18. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    NARCIS (Netherlands)

    Santos, dos F.; Vera, J.L.; Heijden, van der R.; Valdez, G.F.; Vos, de W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 OR

  19. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098

    NARCIS (Netherlands)

    F. Santos; J.L. Vera; R. van der Heijden; G. Valdez; W.M. de Vos; F. Sesma; J. Hugenholtz

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 OR

  20. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis.

    OpenAIRE

    Wyckoff, E E; Stoebner, J A; Reed, K E; Payne, S M

    1997-01-01

    Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E....

  1. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Abscisic Acid-Producing Botrytis cinerea

    OpenAIRE

    Tao Gong; Dan Shu; Jie Yang; Zhong-Tao Ding; Hong Tan

    2014-01-01

    Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). In B. cinerea ATCC58025, targeted inactivation of the genes in the cluster suggested at least ...

  2. Characterization of the Tunicamycin Gene Cluster Unveiling Unique Steps Involved in its Biosynthesis

    Science.gov (United States)

    Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an aß-1,1-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamy...

  3. Biosynthesis of the Lantibiotic Mersacidin: Organization of a Type B Lantibiotic Gene Cluster

    OpenAIRE

    Altena, Karsten; Guder, André; Cramer, Claudia; Bierbaum, Gabriele

    2000-01-01

    The biosynthetic gene cluster (12.3 kb) of mersacidin, a lanthionine-containing antimicrobial peptide, is located on the chromosome of the producer, Bacillus sp. strain HIL Y-85,54728 in a region that corresponds to 348° on the chromosome of Bacillus subtilis 168. It consists of 10 open reading frames and contains, in addition to the previously described mersacidin structural gene mrsA (G. Bierbaum, H. Brötz, K.-P. Koller, and H.-G. Sahl, FEMS Microbiol. Lett. 127:121–126, 1995), two genes, m...

  4. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1.

    Science.gov (United States)

    Silakowski, B; Schairer, H U; Ehret, H; Kunze, B; Weinig, S; Nordsiek, G; Brandt, P; Blöcker, H; Höfle, G; Beyer, S; Müller, R

    1999-12-24

    The biosynthetic mta gene cluster responsible for myxothiazol formation from the fruiting body forming myxobacterium Stigmatella aurantiaca DW4/3-1 was sequenced and analyzed. Myxothiazol, an inhibitor of the electron transport via the bc(1)-complex of the respiratory chain, is biosynthesized by a unique combination of several polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS), which are activated by the 4'-phosphopantetheinyl transferase MtaA. Genomic replacement of a fragment of mtaB and insertion of a kanamycin resistance gene into mtaA both impaired myxothiazol synthesis. Genes mtaC and mtaD encode the enzymes for bis-thiazol(ine) formation and chain extension on one pure NRPS (MtaC) and on a unique combination of PKS and NRPS (MtaD). The genes mtaE and mtaF encode PKSs including peptide fragments with homology to methyltransferases. These methyltransferase modules are assumed to be necessary for the formation of the proposed methoxy- and beta-methoxy-acrylate intermediates of myxothiazol biosynthesis. The last gene of the cluster, mtaG, again resembles a NRPS and provides insight into the mechanism of the formation of the terminal amide of myxothiazol. The carbon backbone of an amino acid added to the myxothiazol-acid is assumed to be removed via an unprecedented module with homology to monooxygenases within MtaG. PMID:10601310

  5. Identification of a Gene Cluster for the Biosynthesis of a Long, Galactose-Rich Exopolysaccharide in Lactobacillus rhamnosus GG and Functional Analysis of the Priming Glycosyltransferase▿ †

    OpenAIRE

    Lebeer, Sarah; Verhoeven, Tine L. A.; Francius, Grégory; Schoofs, Geert; Lambrichts, Ivo; Dufrêne, Yves; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.

    2009-01-01

    Cell surface polysaccharides have an established role as virulence factors in human bacterial pathogens. Less documented are the biosynthesis and biological functions of surface polysaccharides in beneficial bacteria. We identified a gene cluster that encodes the enzymes and regulatory and transporter proteins for the different steps in the biosynthesis of extracellular polysaccharides (EPS) of the well-documented probiotic strain Lactobacillus rhamnosus GG. Subsequent mutation of the welE ge...

  6. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    Science.gov (United States)

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  7. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics.

    Science.gov (United States)

    Lohman, Jeremy R; Huang, Sheng-Xiong; Horsman, Geoffrey P; Dilfer, Paul E; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-03-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the l-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  8. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by paenibacillus elgii B69

    Directory of Open Access Journals (Sweden)

    Teng Yi

    2012-03-01

    Full Text Available Abstract Background The recent increase in bacterial resistance to antibiotics has promoted the exploration of novel antibacterial materials. As a result, many researchers are undertaking work to identify new lantibiotics because of their potent antimicrobial activities. The objective of this study was to provide details of a lantibiotic-like gene cluster in Paenibacillus elgii B69 and to produce the antibacterial substances coded by this gene cluster based on culture screening. Results Analysis of the P. elgii B69 genome sequence revealed the presence of a lantibiotic-like gene cluster composed of five open reading frames (elgT1, elgC, elgT2, elgB, and elgA. Screening of culture extracts for active substances possessing the predicted properties of the encoded product led to the isolation of four novel peptides (elgicins AI, AII, B, and C with a broad inhibitory spectrum. The molecular weights of these peptides were 4536, 4593, 4706, and 4820 Da, respectively. The N-terminal sequence of elgicin B was Leu-Gly-Asp-Tyr, which corresponded to the partial sequence of the peptide ElgA encoded by elgA. Edman degradation suggested that the product elgicin B is derived from ElgA. By correlating the results of electrospray ionization-mass spectrometry analyses of elgicins AI, AII, and C, these peptides are deduced to have originated from the same precursor, ElgA. Conclusions A novel lantibiotic-like gene cluster was shown to be present in P. elgii B69. Four new lantibiotics with a broad inhibitory spectrum were isolated, and these appear to be promising antibacterial agents.

  9. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449.

    Science.gov (United States)

    Jørgensen, Hanne; Degnes, Kristin F; Dikiy, Alexander; Fjaervik, Espen; Klinkenberg, Geir; Zotchev, Sergey B

    2010-01-01

    A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the beta-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis. PMID:19854930

  10. Insights into the Evolution of Macrolactam Biosynthesis through Cloning and Comparative Analysis of the Biosynthetic Gene Cluster for a Novel Macrocyclic Lactam, ML-449 ▿ †

    Science.gov (United States)

    Jørgensen, Hanne; Degnes, Kristin F.; Dikiy, Alexander; Fjærvik, Espen; Klinkenberg, Geir; Zotchev, Sergey B.

    2010-01-01

    A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the β-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis. PMID:19854930

  11. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects

    Science.gov (United States)

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.; Loper, Joyce E.; Paulsen, Ian T.

    2016-01-01

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates. PMID:27442435

  12. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  13. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  14. Cloning, Sequencing, and Functional Analysis of an Iterative Type I Polyketide Synthase Gene Cluster for Biosynthesis of the Antitumor Chlorinated Polyenone Neocarzilin in “Streptomyces carzinostaticus”

    OpenAIRE

    OTSUKA, Miyuki; Ichinose, Koji; Fujii, Isao; Ebizuka, Yutaka

    2004-01-01

    Neocarzilins (NCZs) are antitumor chlorinated polyenones produced by “Streptomyces carzinostaticus” var. F-41. The gene cluster responsible for the biosynthesis of NCZs was cloned and characterized. DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules. Unusual features of the modular organization is the lack of an obvious acyltransferase domain ...

  15. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445

    OpenAIRE

    Dubern, J.F.; Coppoolse, E.R.; Stiekema, W.J.; Bloemberg, G. V.

    2008-01-01

    Pseudomonas putida PCL1445 secretes two cyclic lipopeptides, putisolvin I and putisolvin II, which possess a surface-tension-reducing ability, and are able to inhibit biofilm formation and to break down biofilms of Pseudomonas species including Pseudomonas aeruginosa. The putisolvin synthetase gene cluster (pso) and its surrounding region were isolated, sequenced and characterized. Three genes, termed psoA, psoB and psoC, were identified and shown to be involved in putisolvin biosynthesis. Th...

  16. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation

    DEFF Research Database (Denmark)

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly;

    2004-01-01

    from Str. coelicolor A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the pig cluster within several Serratia sp. isolates is demonstrated...

  17. Molecular Genetic Characterization of an Anthrabenzoxocinones Gene Cluster in Streptomyces Sp. FJS31-2 for the Biosynthesis of BE-24566B and Zunyimycin Ale.

    Science.gov (United States)

    Lü, Yuhong; Yue, Changwu; Shao, Meiyun; Qian, Shengyan; Liu, Ning; Bao, Yuxin; Wang, Miao; Liu, Minghao; Li, Xiaoqian; Wang, Yinyin; Huang, Ying

    2016-01-01

    Genome mining is an effective tool used to discover novel natural products from actinomycetes. Genome sequence analysis of Streptomyces sp. FJS31-2 revealed the presence of one putative type II polyketide gene cluster (ABX), which may correspond to type II polyketide products including BE-24566B and its chloro-derivatives. The addition of natural humus acid successfully activated the biosynthsis of the abx gene cluster. BE-24566B and its chloro-derivatives, named zunyimycin A, were also detected. The targeted deletion of the polyketide skeleton synthesis genes such as abxp, abxk, and abxs was performed in the wild strain to identify the gene cluster for BE-24566B biosynthesis. PMID:27248985

  18. Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1.

    Science.gov (United States)

    Teichmann, Beate; Liu, Lidan; Schink, Kay Oliver; Bölker, Michael

    2010-04-01

    The phytopathogenic basidiomycetous fungus Ustilago maydis secretes, under conditions of nitrogen starvation, large amounts of the biosurfactant ustilagic acid (UA). This secreted cellobiose glycolipid is toxic for many microorganisms and confers biocontrol activity to U. maydis. Recently, a large gene cluster that is responsible for UA biosynthesis was identified. Here, we show that expression of all cluster genes depends on Rua1, a nuclear protein of the C(2)H(2) zinc finger family, whose gene is located within the gene cluster. While deletion of rua1 results in complete loss of UA production, overexpression of rua1 promotes increased UA synthesis even in the presence of a good nitrogen source. Bioinformatic analysis allowed us to identify a conserved sequence element that is present in the promoters of all structural genes involved in UA biosynthesis. Deletion analysis of several promoters within the cluster revealed that this DNA element serves as an upstream activating sequence (UAS) and mediates Rua1-dependent expression. We used the yeast one-hybrid system to demonstrate specific recognition of this DNA element by Rua1. Introduction of nucleotide exchanges into the consensus sequence interfered with Rua1-dependent activation, suggesting that this sequence element acts as a direct binding site for Rua1. PMID:20173069

  19. Characterization of protein encoded by spnR from the spinosyn gene cluster of Saccharopolyspora spinosa: mechanistic implications for forosamine biosynthesis.

    Science.gov (United States)

    Zhao, Zongbao; Hong, Lin; Liu, Hung-wen

    2005-06-01

    d-Forosamine is a 4-N,N-(dimethylamino)-2,3,4,6-tetradeoxy-alpha-d-threo-hexopyranose found in spinosyn produced by Saccharopolyspora spinosa. Studies of spinosyn biosynthesis in S. spinosa led to the isolation of the entire biosynthetic gene cluster. Heterologous expression of spnR, one putative gene in forosamine biosynthesis, in E. coli and purification of the SpnR protein identified it as an aminotransferase catalyzing the conversion of the 4-keto-2,3,6-trideoxy sugar intermediate to the corresponding 4-amino sugar product. Identification of SpnR function relied on the use of a stable TMP-phosphonate sugar in place of TDP-sugar substrate to determine the function of SpnR. This strategy may find general applicability for designing probes to study enzymes which catalyze the transformation of labile deoxysugar intermediates. PMID:15913355

  20. Regulation of Fumonisin Biosynthesis in Fusarium verticillioides by a Zinc Binuclear Cluster-Type Gene, ZFR1†

    OpenAIRE

    Flaherty, Joseph E.; Woloshuk, Charles P

    2004-01-01

    Fusarium verticillioides, a pathogen of maize, produces a class of mycotoxins called fumonisins in infected kernels. In this study, a candidate regulatory gene, ZFR1, was identified in an expressed sequence tag library enriched for transcripts expressed by F. verticillioides during fumonisin B1 (FB1) biosynthesis. ZFR1 deletion mutants exhibited normal growth and development on maize kernels, but fumonisin production was reduced to less than 10% of that of the wild-type strain. ZFR1 encodes a...

  1. FunGeneClusterS

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Brandl, Julian; Andersen, Mikael Rørdam

    2016-01-01

    Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology...

  2. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445.

    Science.gov (United States)

    Dubern, Jean-Frédéric; Coppoolse, Eric R; Stiekema, Willem J; Bloemberg, Guido V

    2008-07-01

    Pseudomonas putida PCL1445 secretes two cyclic lipopeptides, putisolvin I and putisolvin II, which possess a surface-tension-reducing ability, and are able to inhibit biofilm formation and to break down biofilms of Pseudomonas species including Pseudomonas aeruginosa. The putisolvin synthetase gene cluster (pso) and its surrounding region were isolated, sequenced and characterized. Three genes, termed psoA, psoB and psoC, were identified and shown to be involved in putisolvin biosynthesis. The gene products encode the 12 modules responsible for the binding of the 12 amino acids of the putisolvin peptide moiety. Sequence data indicate that the adenylation domain of the 11th module prioritizes the recognition of Val instead of Leu or Ile and consequently favours putisolvin I production over putisolvin II. Detailed analysis of the thiolation domains suggests that the first nine modules recognize the d form of the amino acid residues while the two following modules recognize the l form and the last module the l or d form, indifferently. The psoR gene, which is located upstream of psoA, shows high similarity to luxR-type regulatory genes and is required for the expression of the pso cluster. In addition, two genes, macA and macB, located downstream of psoC were identified and shown to be involved in putisolvin production or export. PMID:18599835

  3. Biosynthesis of Iron-Sulfur Clusters

    OpenAIRE

    Yuvaniyama, Pramvadee

    1999-01-01

    It is not known whether biosynthesis of [Fe-S] clusters occurs through a spontaneous self-assembly process or an enzymatic process. However, in the Azotobacter vinelandii nitrogenase system, it has been proposed that NifS and NifU are involved in the mobilization of sulfur and iron necessary for nitrogenase-specific [Fe-S] cluster assembly. The NifS protein has been shown to have cysteine desulfurase activity and can be used to supply sulfur for the in vitro catalytic formation of [Fe-S] cl...

  4. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan.

    Science.gov (United States)

    Alkhateeb, Rabeaa S; Vorhölter, Frank-Jörg; Rückert, Christian; Mentz, Almut; Wibberg, Daniel; Hublik, Gerd; Niehaus, Karsten; Pühler, Alfred

    2016-05-10

    Xanthomonas campestris pv. campestris (Xcc) is the major producer of the exopolysaccharide xanthan, the commercially most important natural polysaccharide of microbial origin. The current work provides deeper insights into the yet uncharacterized transcriptomic features of the xanthan producing strain Xcc-B100. Towards this goal, RNA sequencing of a library based on the selective enrichment of the 5' ends of native transcripts was performed. This approach resulted in the genome wide identification of 3067 transcription start sites (TSSs) that were further classified based on their genomic positions. Among them, 1545 mapped upstream of an actively transcribed CDS and 1363 were classified as novel TSSs representing antisense, internal, and TSSs belonging to previously unidentified genomic features. Analyzing the transcriptional strength of primary and antisense TSSs revealed that in some instances antisense transcription seemed to be initiated at a higher level than its sense counterpart. Mapping the exact positions of TSSs aided in the identification of promoter consensus motifs, ribosomal binding sites, and enhanced the genome annotation of 159 in silico predicted translational start (TLS) sites. The global view on length distribution of the 5' untranslated regions (5'-UTRs) deduced from the data pointed to the occurrence of leaderless transcripts and transcripts with unusually long 5'-UTRs, in addition to identifying seven putative riboswitch elements for Xcc-B100. Concerning the biosynthesis of xanthan, we focused on the transcriptional organization of the gum gene cluster. Under the conditions tested, we present evidence for a complex transcription pattern of the gum genes with multiple TSSs and an obvious considerable role of antisense transcription. The gene gumB, encoding an outer membrane xanthan exporter, is presented here as an example for genes that possessed a strong antisense TSS. PMID:26975844

  5. Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908

    OpenAIRE

    Pelzer, S.; Süßmuth, R.; Heckmann, D.; Recktenwald, J.; Huber, P; Jung, G; Wohlleben, W

    1999-01-01

    Seven complete genes and one incomplete gene for the biosynthesis of the glycopeptide antibiotic balhimycin were isolated from the producer, Amycolatopsis mediterranei DSM5908, by a reverse-cloning approach and characterized. Using oligonucleotides derived from glycosyltransferase sequences, a 900-bp glycosyltransferase gene fragment was amplified and used to identify a DNA fragment of 9,882 bp. Of the identified open reading frames, three (oxyA to -C) showed significant sequence similarities...

  6. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Science.gov (United States)

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  7. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes.

    Science.gov (United States)

    Chiu, Hsien-Tai; Weng, Chien-Pao; Lin, Yu-Chin; Chen, Kuan-Hung

    2016-02-14

    Brasilinolides exhibiting potent immunosuppressive and antifungal activities with remarkably low toxicity are structurally characterized by an unusual modified 2-deoxy-l-fucose (2dF) attached to a type I polyketide (PK-I) macrolactone. From the pathogenic producer Nocardia terpenica (Nocardia brasiliensis IFM-0406), a 210 kb genomic fragment was identified by target-specific degenerate primers and subsequently sequenced, revealing a giant nbr gene cluster harboring genes (nbrCDEF) required for TDP-2dF biosynthesis and those for PK-I biosynthesis, modification and regulation. The results showed that the genetic and domain arrangements of nbr PK-I synthases agreed colinearly with the PK-I structures of brasilinolides. Subsequent heterologous expression of nbrCDEF in Escherichia coli accomplished in vitro reconstitution of TDP-2dF biosynthesis. The catalytic functions and mechanisms of NbrCDEF enzymes were further characterized by systematic mix-and-match experiments. The enzymes were revealed to display remarkable substrate and partner promiscuity, leading to the establishment of in vitro hybrid deoxysugar biosynthetic pathways throughout an in situ one-pot (iSOP) method. This study represents the first demonstration of TDP-2dF biosynthesis at the enzyme and molecular levels, and provides new hope for expanding the structural diversity of brasilinolides by combinatorial biosynthesis. PMID:26754528

  8. Genetic and Physical Analyses of a Cluster of Genes Essential for Xanthan Gum Biosynthesis in Xanthomonas campestris

    OpenAIRE

    Harding, N E; Cleary, J M; Cabañas, D K; Rosen, I G; K.S. Kang

    1987-01-01

    Xanthomonas campestris produces copious amounts of a complex exopolysaccharide, xanthan gum. Nonmucoid mutants, defective in synthesis of xanthan polysaccharide, were isolated after nitrosoguanidine mutagenesis. To isolate genes essential for xanthan polysaccharide synthesis (xps), a genomic library of X. campestris DNA, partially digested with SalI and ligated into the broad-host-range cloning vector pRK293, was constructed in Escherichia coli. The pooled clone bank was conjugated en masse f...

  9. Study on genN from gentamicin biosynthesis gene cluster%庆大霉素生物合成基因genN的研究

    Institute of Scientific and Technical Information of China (English)

    张熠; 洪文荣; 潘成奇

    2015-01-01

    利用生物信息学方法分析庆大霉素生物合成特色基因genN的功能,构建genN缺失的基因工程菌。首先运用分子生物学技术构建同源重组质粒pFU604,其次重组质粒经接合转移导入绛红色小单孢菌M. purpurea GK1101。最后,基于同源重组机制,利用安普霉素抗性筛选及PCR鉴定,得到genN基因缺失的工程菌(M. purpurea GKN-27)。结果显示:较!发菌GK1101,基因工程菌GKN-27不再继续合成庆大霉素C1a和C2b,阻断庆大霉素生物合成代谢流,并积累分子量为497、524、523、503四种新的中间代谢物,新的中间代谢物将有望开发新型药物。同时,也表明genN不是C -6′N甲基化酶编码基因。%genN in gentamicin biosynthetic gene cluster can transfer the methylation of purpurosamine 6′C-N by bioinfor-matic analysis. The homologous recombination plasmid pFU604 was transformed into the M. purpurea GK1101 by using gene knockout principle and molecular biology technology. M. purpurea GKN-27 was successfully constructed on the basis of homologous recombination mechanism. The results showed M. purpurea GKN-27 accumulated four new intermediats (Mr:497,524,23,503). And M. purpurea GKN-27(Δ genN)blocked the biosynthesis of gentamicin compared with GK1101(Δ gntK). The four new components of GKN-27 remained to further study to develop new drugs. This study also indicated that genN was not associated with methyl transferase.

  10. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  11. Microcystin Biosynthesis in Planktothrix: Genes, Evolution, and Manipulation

    Science.gov (United States)

    Christiansen, Guntram; Fastner, Jutta; Erhard, Marcel; Börner, Thomas; Dittmann, Elke

    2003-01-01

    Microcystins represent an extraordinarily large family of cyclic heptapeptide toxins that are nonribosomally synthesized by various cyanobacteria. Microcystins specifically inhibit the eukaryotic protein phosphatases 1 and 2A. Their outstanding variability makes them particularly useful for studies on the evolution of structure-function relationships in peptide synthetases and their genes. Analyses of microcystin synthetase genes provide valuable clues for the potential and limits of combinatorial biosynthesis. We have sequenced and analyzed 55.6 kb of the potential microcystin synthetase gene (mcy) cluster from the filamentous cyanobacterium Planktothrix agardhii CYA 126. The cluster contains genes for peptide synthetases (mcyABC), polyketide synthases (PKSs; mcyD), chimeric enzymes composed of peptide synthetase and PKS modules (mcyEG), a putative thioesterase (mcyT), a putative ABC transporter (mcyH), and a putative peptide-modifying enzyme (mcyJ). The gene content and arrangement and the sequence of specific domains in the gene products differ from those of the mcy cluster in Microcystis, a unicellular cyanobacterium. The data suggest an evolution of mcy clusters from, rather than to, genes for nodularin (a related pentapeptide) biosynthesis. Our data do not support the idea of horizontal gene transfer of complete mcy gene clusters between the genera. We have established a protocol for stable genetic transformation of Planktothrix, a genus that is characterized by multicellular filaments exhibiting continuous motility. Targeted mutation of mcyJ revealed its function as a gene coding for a O-methyltransferase. The mutant cells produce a novel microcystin variant exhibiting reduced inhibitory activity toward protein phosphatases. PMID:12511503

  12. Blakeslea trispora Genes for Carotene Biosynthesis

    OpenAIRE

    Rodríguez-Sáiz, M.; Paz, B.; de la Fuente, J L; López-Nieto, M J; Cabri, W.; Barredo, J L

    2004-01-01

    We cloned the carB and carRA genes involved in β-carotene biosynthesis from overproducing and wild-type strains of Blakeslea trispora. The carB gene has a length of 1,955 bp, including two introns of 141 and 68 bp, and encodes a protein of 66.4 kDa with phytoene dehydrogenase activity. The carRA gene contains 1,894 bp, with a single intron of 70 bp, and encodes a protein of 69.6 kDa with separate domains for lycopene cyclase and phytoene synthase. The estimated transcript sizes for carB and c...

  13. Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa.

    Science.gov (United States)

    Madduri, K; Waldron, C; Matsushima, P; Broughton, M C; Crawford, K; Merlo, D J; Baltz, R H

    2001-12-01

    Spinosyns A and D are the active ingredients in an insect control agent produced by fermentation of Saccharopolyspora spinosa. Spinosyns are macrolides with a 21-carbon, tetracyclic lactone backbone to which the deoxysugars forosamine and tri-O-methylrhamnose are attached. The spinosyn biosynthesis genes, except for the rhamnose genes, are located in a cluster that spans 74 kb of the S. spinosa genome. DNA sequence analysis, targeted gene disruptions and bioconversion studies identified five large genes encoding type I polyketide synthase subunits, and 14 genes involved in sugar biosynthesis, sugar attachment to the polyketide or cross-bridging of the polyketide. Four rhamnose biosynthetic genes, two of which are also necessary for forosamine biosynthesis, are located outside the spinosyn gene cluster. Duplication of the spinosyn genes linked to the polyketide synthase genes stimulated the final step in the biosynthesis--the conversion of the forosamine-less pseudoaglycones to endproducts. Duplication of genes involved in the early steps of deoxysugar biosynthesis increased spinosyn yield significantly. PMID:11774006

  14. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa.

    Science.gov (United States)

    Clarke-Pearson, Michael F; Brady, Sean F

    2008-10-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  15. Paerucumarin, a New Metabolite Produced by the pvc Gene Cluster from Pseudomonas aeruginosa▿ †

    Science.gov (United States)

    Clarke-Pearson, Michael F.; Brady, Sean F.

    2008-01-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  16. Paerucumarin, a New Metabolite Produced by the pvc Gene Cluster from Pseudomonas aeruginosa▿ †

    OpenAIRE

    Clarke-Pearson, Michael F.; Brady, Sean F.

    2008-01-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin.

  17. Genetics of Germination-Arrest Factor (GAF) production by Pseudomonas fluorescens WH6: Identification of a gene cluster essential for GAF biosynthesis.

    Science.gov (United States)

    The genetic basis of the biosynthesis of the Germination-Arrest Factor (GAF) produced by Pseudomonas fluorescens WH6, and previously identified as 4-formylaminooxyvinylglycine, has been investigated in the present study. In addition to its ability to inhibit the germination of a wide range of grass...

  18. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    OpenAIRE

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to...

  19. Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites.

    Science.gov (United States)

    Ali, Vahab; Nozaki, Tomoyoshi

    2013-01-01

    Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections. PMID:23876871

  20. Identification, expression, and DNA sequence of the GDP-mannose biosynthesis genes encoded by the O7 rfb gene cluster of strain VW187 (Escherichia coli O7:K1).

    OpenAIRE

    Marolda, C L; Valvano, M A

    1993-01-01

    The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate ...

  1. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  2. Molecular Characterization of Penicillium Griseofulvum Genes Involved in Biosynthesis of the Mycotoxin Patulin

    Science.gov (United States)

    Fungal genes involved in biosynthesis of mycotoxins are frequently arranged in clusters. Fungi with the ability to synthesize the mycotoxin patulin are present throughout nature, predominantly in apples, pears, and products made from them. At least 15 fungal species have been described as capable ...

  3. Organization of genes for tetrapyrrole biosynthesis in gram--positive bacteria.

    Science.gov (United States)

    Johansson, P; Hederstedt, L

    1999-03-01

    Clusters of genes encoding enzymes for tetrapyrrole biosynthesis were cloned from Bacillus sphaericus, Bacillus stearothermophilus, Brevibacillus brevis and Paenibacillus macerans. The sequences of all hemX genes found, and of a 6.3 kbp hem gene cluster from P. macerans, were determined. The structure of the hem gene clusters was compared to that of other Gram-positive bacteria. The Bacillus and Brevibacillus species have a conserved organization of the genes hemAXCDBL, required for biosynthesis of uroporphyrinogen III (UroIII) from glutamyl-tRNA. In P. macerans, the hem genes for UroIII synthesis are also closely linked but their organization is different: there is no hemX gene and the gene cluster also contains genes, cysG8 and cysG(A)-hemD, encoding the enzymes required for synthesis of sirohaem from UroIII. Bacillus subtilis contains genes for three proteins, NasF, YInD and YInF, with sequence similarity to Escherichia coli CysG, which is a multi-functional protein catalysing sirohaem synthesis from UroIII. It is shown that YInF is required for sirohaem synthesis and probably catalyses the precorrin-2 to sirohaem conversion. YInD probably catalyses precorrin-2 synthesis from UroIII and NasF seems to be specific for nitrite reduction. PMID:10217486

  4. Radical AdoMet enzymes in complex metal cluster biosynthesis.

    Science.gov (United States)

    Duffus, Benjamin R; Hamilton, Trinity L; Shepard, Eric M; Boyd, Eric S; Peters, John W; Broderick, Joan B

    2012-11-01

    Radical S-adenosylmethionine (AdoMet) enzymes comprise a large superfamily of proteins that engage in a diverse series of biochemical transformations through generation of the highly reactive 5'-deoxyadenosyl radical intermediate. Recent advances into the biosynthesis of unique iron-sulfur (FeS)-containing cofactors such as the H-cluster in [FeFe]-hydrogenase, the FeMo-co in nitrogenase, as well as the iron-guanylylpyridinol (FeGP) cofactor in [Fe]-hydrogenase have implicated new roles for radical AdoMet enzymes in the biosynthesis of complex inorganic cofactors. Radical AdoMet enzymes in conjunction with scaffold proteins engage in modifying ubiquitous FeS precursors into unique clusters, through novel amino acid decomposition and sulfur insertion reactions. The ability of radical AdoMet enzymes to modify common metal centers to unusual metal cofactors may provide important clues into the stepwise evolution of these and other complex bioinorganic catalysts. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology. PMID:22269887

  5. Roles of lignin biosynthesis and regulatory genes in plant development.

    Science.gov (United States)

    Yoon, Jinmi; Choi, Heebak; An, Gynheung

    2015-11-01

    Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non-lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385

  6. Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae.

    Science.gov (United States)

    Kihara, Junichi; Moriwaki, Akihiro; Tanaka, Nozomi; Tanaka, Chihiro; Ueno, Makoto; Arase, Sakae

    2008-04-01

    We isolated and characterized Bipolaris melanin regulation 1 gene (BMR1) encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. Sequence analysis showed that the BMR1 gene encodes a putative protein of 1012 amino acids that has 99% sequence similarity to transcription factor Cmr1 of Cochliobolus heterostrophus. The predicted B. oryzae Bmr1 protein has two DNA-binding motifs, two Cys2His2 zinc finger domains, and a Zn(II)2Cys6 binuclear cluster domain at the N-terminal region of Bmr1. Targeted disruption of the BMR1 gene showed that BMR1 is essential for melanin biosynthesis in B. oryzae. The overexpression of the BMR1 gene led to more dark colonies than in the wild-type strain under dark conditions. Real-time PCR analysis showed that the BMR1 expression of the overexpression transformant was about 10-fold that of the wild type under dark conditions and of the expression of three melanin biosynthesis genes. These results indicated that BMR1 encodes the transcription factor of melanin biosynthesis genes in B. oryzae. PMID:18312572

  7. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis

    OpenAIRE

    Ikeda, Haruo; Nonomiya, Tomoko; Usami, Masayo; Ohta, Toshio; Ōmura, Satoshi

    1999-01-01

    Analysis of the gene cluster from Streptomyces avermitilis that governs the biosynthesis of the polyketide anthelmintic avermectin revealed that it contains four large ORFs encoding giant multifunctional polypeptides of the avermectin polyketide synthase (AVES 1, AVES 2, AVES 3, and AVES 4). These clustered polyketide synthase genes responsible for avermectin biosynthesis together encode 12 homologous sets of enzyme activities (modules), each catalyzing a specific round of polyketide chain el...

  8. Supervised clustering of genes

    OpenAIRE

    Dettling, Marcel; Bühlmann, Peter

    2002-01-01

    Background We focus on microarray data where experiments monitor gene expression in different tissues and where each experiment is equipped with an additional response variable such as a cancer type. Although the number of measured genes is in the thousands, it is assumed that only a few marker components of gene subsets determine the type of a tissue. Here we present a new method for finding such groups of genes by directly incorporating the response variables into the grouping process, yiel...

  9. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Bisaria, Anjali [ORNL; Tuskan, Gerald A [ORNL; Kalluri, Udaya C [ORNL

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  10. Putative Genes Involved in Saikosaponin Biosynthesis in Bupleurum Species

    Directory of Open Access Journals (Sweden)

    Shu-Jiau Chiou

    2013-06-01

    Full Text Available Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of gene extraction, functional characterization of isolated genes and assessment of expression patterns of genes encoding enzymes in the process of saikosaponin production in Bupleurum species, mainly B. kaoi. We focus on the effects of MeJA on saikosaponin production, transcription patterns of genes involved in biosynthesis and on functional depiction.

  11. Proteins Encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG Genes, Involved in Gellan Gum Biosynthesis, Exhibit both dTDP- and UDP-Glucose Pyrophosphorylase Activities

    OpenAIRE

    Silva, Elisabete; Marques, Ana Rita; Fialho, Arsénio Mendes; Granja, Ana Teresa; Sá-Correia, Isabel

    2005-01-01

    The commercial gelling agent gellan is a heteropolysaccharide produced by Sphingomonas elodea ATCC 31461. In this work, we carried out the biochemical characterization of the enzyme encoded by the first gene (rmlA) of the rml 4-gene cluster present in the 18-gene cluster required for gellan biosynthesis (gel cluster). Based on sequence homology, the putative rml operon is presumably involved in the biosynthesis of dTDP-rhamnose, the sugar necessary for the incorporation of rhamnose in the gel...

  12. RECOMBINANT CO-EXPRESSION OF THE ECTOINE BIOSYNTHESIS GENE CLUSTER ectABC IN HALOMONAS FROM QINGHAI LAKE%青海湖盐单胞菌Ectoine合成基因簇ectABC的重组共表达

    Institute of Scientific and Technical Information of China (English)

    朱德锐; 韩睿; 沈国平; 龙启福; 李丹丹; 刘建; 刘德立

    2015-01-01

    Halomonas is capable of synthesizing organic compatible solutes ectoine in response to high osmotic pressure. To reveal the possibility of heterologous co-expression of ectoine biosynthesis genes, intracellular ectoine in Halomonas sp. QHL1 strain was determined by HPLC under different salt gradients. The entire ectABC gene cluster for ectoine synthesis was cloned using genome walking and expressed in the heterologous recombinant E. coli BL21. The results showed that the concentration of ectoine accumulated in the cells had a positive correlation with the extracellular Na+concentration and reached a maximum value (167.1 mg/g cell dry weight) at 1.0 mol/L Na+, and high concentration of Na+ strongly inhibited the bacteria growth. The entire ectABC gene cluster in QHL1 strain was 3580 bp, containing structural gene ectA (579 bp), ectB (1269 bp) and ectC (390 bp). Based on bioinformatics prediction analysis, two puta-tive promoters (δ70 andδ38-controlled promoter) and several conserved motifs with unknown function were identified in the upstream of ect-operon. The recombinant plasmid pET-28a (+)-ectABC was successfully constructed, and the results of heterologous expression indicated that these three genes could be simultaneously translated to protein EctA (27.2 kD), EctB (52.5 kD) and EctC (20.8 kD). These results contribute further improvements in ectoine high yield and hypohaline biotechnological process optimization, and also provided a framework for future genetic manipulation of systems metabolic engineering.%盐单胞菌属(Halomonas)通过胞内积聚有机相容溶质(Compatible solutes)来抵抗胞外的高盐渗透压。为了探究相容溶质 Ectoine 合成代谢相关基因的结构特征和异源共表达的可能性,以青海湖盐单胞菌Halomonas sp. QHL1为材料,通过高效液相色谱(HPLC)分析不同盐梯度下QHL1胞内Ectoine的积聚量,并借助于染色体步移技术(Genome walking)捕获QHL1菌株的Ectoine生物合成基因簇ectABC

  13. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode polyketides important in pathogenicity. PMID:27388157

  14. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  15. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    Science.gov (United States)

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus. PMID:19366635

  16. Nucleolar Clustering of Dispersed tRNA Genes

    OpenAIRE

    Thompson, Martin; Haeusler, Rebecca A.; Good, Paul D.; Engelke, David R.

    2003-01-01

    Early transfer RNA (tRNA) processing events in Saccharomyces cerevisiae are coordinated in the nucleolus, the site normally associated with ribosome biosynthesis. To test whether spatial organization of the tRNA pathway begins with nucleolar clustering of the genes, we have probed the subnuclear location of five different tRNA gene families. The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus. N...

  17. Putative Genes Involved in Saikosaponin Biosynthesis in Bupleurum Species

    OpenAIRE

    Shu-Jiau Chiou; Tsai-Yun Lin; Chung-Yi Chiou

    2013-01-01

    Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of ...

  18. Identification of Loci and Functional Characterization of Trichothecene Biosynthesis Genes in Filamentous Fungi of the Genus Trichoderma▿†

    OpenAIRE

    Cardoza, R. E.; Malmierca, M. G.; Hermosa, M. R.; Alexander, N. J.; McCormick, S P; Proctor, R H; Tijerino, A. M.; Rumbero, A.; Monte, E.; S. Gutiérrez

    2011-01-01

    Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevi...

  19. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation.

    OpenAIRE

    Lichter, A; Barash, I; Valinsky, L.; Manulis, S

    1995-01-01

    A locus conferring cytokinin production was previously isolated from the gall-forming bacterium Erwinia herbicola pv. gypsophilae. This locus resided in a cluster with the genes specifying indole-3-acetic acid production on the pathogenicity-associated plasmid pPATH (A. Lichter, S. Manulis, O. Sagee, Y. Gafni, J. Gray, R. Meilen, R. O. Morris, and I. Barash, Mol. Plant Microbe Interact., 8:114-121, 1995). Sequence analysis of this locus indicated the presence of a cytokinin biosynthesis gene ...

  20. Characterization and biological role of the O-polysaccharide gene cluster of Yersinia enterocolitica serotype O : 9

    DEFF Research Database (Denmark)

    Skurnik, Mikael; Biedzka-Sarek, Marta; Lubeck, Peter S.;

    2007-01-01

    an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode...... glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential...

  1. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  2. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis.

    Directory of Open Access Journals (Sweden)

    Lei Yang

    Full Text Available Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons. NCBI non-redundant protein databases (NR and Swiss-Prot database searches anchored 32,096 unigenes (50% with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases. Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS, kaurene synthase-like (SmKSL and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.

  3. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Directory of Open Access Journals (Sweden)

    Kathryn E Bushley

    2013-06-01

    Full Text Available The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921, the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS that encodes for cyclosporin synthetase (simA and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc., and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further

  4. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    Directory of Open Access Journals (Sweden)

    Ralph A Cacho

    2015-01-01

    Full Text Available Genomics has revolutionized the research on fungal secondary metabolite biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific secondary metabolite compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of secondary metabolites of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.

  5. Organization of an echinoderm Hox gene cluster

    OpenAIRE

    Martinez, Pedro; Rast, Jonathan P.; Arenas-Mena, César; Davidson, Eric H.

    1999-01-01

    The Strongylocentrotus purpuratus genome contains a single ten-gene Hox complex >0.5 megabase in length. This complex was isolated on overlapping bacterial artificial chromosome and P1 artificial chromosome genomic recombinants by using probes for individual genes and by genomic walking. Echinoderm Hox genes of Paralog Groups (PG) 1 and 2 are reported. The cluster includes genes representing all paralog groups of vertebrate Hox clusters, except that there is a sing...

  6. Biosynthesis of flavonoids in bilberry and blueberry - possibilities of the gene level information for the future

    OpenAIRE

    Jaakola, Laura

    2007-01-01

    We have studied the biosynthesis of flavonoids in various tissues of naturally growing European blueberry (bilberry) and the blueberry cultivar 'Northblue'. Focus has also been on the biosynthesis of flavonoids in developing bilberry fruits as well as on the control genes regulating fruit development.

  7. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  8. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  9. IscA, an alternate scaffold for Fe-S cluster biosynthesis.

    Science.gov (United States)

    Krebs, C; Agar, J N; Smith, A D; Frazzon, J; Dean, D R; Huynh, B H; Johnson, M K

    2001-11-20

    An IscA homologue within the nif regulon of Azotobacter vinelandii, designated (Nif)IscA, was expressed in Escherichia coli and purified to homogeneity. Purified (Nif)IscA was found to be a homodimer of 11-kDa subunits that contained no metal centers or other prosthetic groups in its as-isolated form. Possible roles for (Nif)IscA in Fe-S cluster biosynthesis were assessed by investigating the ability to bind iron and to assemble Fe-S clusters in a NifS-directed process, as monitored by the combination of UV-vis absorption, Mössbauer, resonance Raman, variable-temperature magnetic circular dichroism, and EPR spectroscopies. Although (Nif)IscA was found to bind ferrous ion in a tetrahedral, predominantly cysteinyl-ligated coordination environment, the low-binding affinity argues against a specific role as a metallochaperone for the delivery of ferrous ion to other Fe-S cluster assembly proteins. Rather, a role for (Nif)IscA as an alternate scaffold protein for Fe-S cluster biosynthesis is proposed, based on the NifS-directed assembly of approximately one labile [4Fe-4S](2+) cluster per (Nif)IscA homodimer, via a transient [2Fe-2S](2+) cluster intermediate. The cluster assembly process was monitored temporally using UV-vis absorption and Mössbauer spectroscopy, and the intermediate [2Fe-2S](2+)-containing species was additionally characterized by resonance Raman spectroscopy. The Mössbauer and resonance Raman properties of the [2Fe-2S](2+) center are consistent with complete cysteinyl ligation. The presence of three conserved cysteine residues in all IscA proteins and the observed cluster stoichiometry of approximately one [2Fe-2S](2+) or one [4Fe-4S](2+) per homodimer suggest that both cluster types are subunit bridging. In addition, (Nif)IscA was shown to couple delivery of iron and sulfur by using ferrous ion to reduce sulfane sulfur. The ability of Fe-S scaffold proteins to couple the delivery of these two toxic and reactive Fe-S cluster precursors is likely to

  10. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  11. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  12. A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Laura Alcazar-Fuoli

    Full Text Available Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge.

  13. Disruption of Escherichia coli Nissle 1917 K5 Capsule Biosynthesis, through Loss of Distinct kfi genes, Modulates Interaction with Intestinal Epithelial Cells and Impact on Cell Health

    OpenAIRE

    Nzakizwanayo, Jonathan; Kumar, Sandeep; Ogilvie, Lesley A.; Patel, Bhavik A; Dedi, Cinzia; Wendy M. Macfarlane; Jones, Brian V.

    2015-01-01

    Escherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells. This demonstrated mutants disrupted in the kfiB gene, of the K5 capsule biosynthesis cluster, to be significantly enhanced in attachment t...

  14. Conservation of the genes for HC-toxin biosynthesis in Alternaria jesenskae

    OpenAIRE

    Wight, Wanessa D; Labuda, Roman; Walton, Jonathan D

    2013-01-01

    Background HC-toxin, a cyclic tetrapeptide, is a virulence determinant for the plant pathogenic fungus Cochliobolus carbonum. It was recently discovered that another fungus, Alternaria jesenskae, also produces HC-toxin. Results The major genes (collectively known as AjTOX2) involved in the biosynthesis of HC-toxin were identified from A. jesenskae by genomic sequencing. The encoded orthologous proteins share 75-85% amino acid identity, and the genes for HC-toxin biosynthesis are duplicated in...

  15. Organization, Evolution, and Expression Analysis of the Biosynthetic Gene Cluster for Scytonemin, a Cyanobacterial UV-Absorbing Pigment▿ †

    OpenAIRE

    Sorrels, Carla M.; Proteau, Philip J.; Gerwick, William H.

    2009-01-01

    Cyanobacteria are photosynthetic prokaryotes capable of protecting themselves from UV radiation through the biosynthesis of UV-absorbing secondary metabolites, such as the mycosporines and scytonemin. Scytonemin, a novel indolic-phenolic pigment, is found sequestered in the sheath, where it provides protection to the subtending cells during exposure to UV radiation. The biosynthesis of scytonemin is encoded by a previously identified gene cluster that is present in six cyanobacterial species ...

  16. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii.

    Science.gov (United States)

    Ogasawara, Yasushi; Katayama, Kinya; Minami, Atsushi; Otsuka, Miyuki; Eguchi, Tadashi; Kakinuma, Katsumi

    2004-01-01

    Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well. PMID:15112997

  17. Evolution of orthologous tandemly arrayed gene clusters

    Directory of Open Access Journals (Sweden)

    Bertrand Denis

    2011-10-01

    Full Text Available Abstract Background Tandemly Arrayed Gene (TAG clusters are groups of paralogous genes that are found adjacent on a chromosome. TAGs represent an important repertoire of genes in eukaryotes. In addition to tandem duplication events, TAG clusters are affected during their evolution by other mechanisms, such as inversion and deletion events, that affect the order and orientation of genes. The DILTAG algorithm developed in 1 makes it possible to infer a set of optimal evolutionary histories explaining the evolution of a single TAG cluster, from an ancestral single gene, through tandem duplications (simple or multiple, direct or inverted, deletions and inversion events. Results We present a general methodology, which is an extension of DILTAG, for the study of the evolutionary history of a set of orthologous TAG clusters in multiple species. In addition to the speciation events reflected by the phylogenetic tree of the considered species, the evolutionary events that are taken into account are simple or multiple tandem duplications, direct or inverted, simple or multiple deletions, and inversions. We analysed the performance of our algorithm on simulated data sets and we applied it to the protocadherin gene clusters of human, chimpanzee, mouse and rat. Conclusions Our results obtained on simulated data sets showed a good performance in inferring the total number and size distribution of duplication events. A limitation of the algorithm is however in dealing with multiple gene deletions, as the algorithm is highly exponential in this case, and becomes quickly intractable.

  18. Phylogeny of Bipolaris inferred from nucleotide sequences of Brn1, a reductase gene involved in melanin biosynthesis.

    Science.gov (United States)

    Shimizu, Kiminori; Tanaka, Chihiro; Peng, You-Liang; Tsuda, Mitsuya

    1998-08-01

    The Brn1 reductase melanin biosynthesis gene in the fungal genus Bipolaris was sequenced in 74 strains of 22 species. The Brn1 region was highly conserved among the species examined at the nucleotide and the amino acid levels. To elucidate the phylogenetic relationships among Bipolaris species, trees were inferred from nucleotide sequences of this region. Species in these trees formed exclusive clusters clearly separated from one another, except for B. panici-miliacei and B. setariae, and B. victoriae and B. zeicola. When unidentified strains were added to this tree, they fell within known species or formed independent clusters. These data indicated that the Brn1 gene region was suitable for species-level systematics within the genus. The results also suggest that Bipolaris consists of two or more clades that may reflect teleomorphic connections. PMID:12501419

  19. Clustering gene expression data using graph separators.

    Science.gov (United States)

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process. PMID:18391236

  20. Diversity of tri-functional histidine biosynthesis gene (his) in cereal Phaeosphaeria species

    Science.gov (United States)

    The full length genomic sequences of tri-functional histidine biosynthesis (his) gene were obtained and compared from cereal Phaeosphaeria species by PCR amplification. The his gene coding sequence in wheat-biotype P. nodorum (PN-w) was 2697 bp in size. The his genes in barley-biotype P. nodorum (PN...

  1. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  2. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    Science.gov (United States)

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides. PMID:16339937

  3. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  4. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  5. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis.

    OpenAIRE

    Chang, P K; Cary, J W; D. Bhatnagar; Cleveland, T E; Bennett, J W; Linz, J E; Woloshuk, C P; Payne, G A

    1993-01-01

    An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an O-methylsterigmatocystin-accumulating strain, A. parasiticus SRRC 2043, with a 5.5-kb HindIII-XbaI DNA fragment containing apa-2 resulted in overpr...

  6. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available BACKGROUND: Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. METHODOLOGY/PRINCIPAL FINDINGS: RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. CONCLUSIONS: SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  7. Clustering Genes of Common Evolutionary History.

    Science.gov (United States)

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-06-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent-due to events such as incomplete lineage sorting or horizontal gene transfer-it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such "process-agnostic" approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward's method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  8. Clustering Genes of Common Evolutionary History

    Science.gov (United States)

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-01-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  9. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  10. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  11. Finding gene clusters for a replicated time course study

    OpenAIRE

    Qin, Li-Xuan; Breeden, Linda; Self, Steven G.

    2014-01-01

    Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression model...

  12. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    OpenAIRE

    Sipla Aggarwal; Vishnu Shukla; Kaushal Kumar Bhati; Mandeep Kaur; Shivani Sharma; Anuradha Singh; Shrikant Mantri; Ajay Kumar Pandey

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements...

  13. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663

    Directory of Open Access Journals (Sweden)

    Orwah Saleh

    2012-04-01

    Full Text Available The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid and L-glutamine (L-Gln, with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces.

  14. Characterization of the largest effector gene cluster of Ustilago maydis.

    OpenAIRE

    Thomas Brefort; Shigeyuki Tanaka; Nina Neidig; Gunther Doehlemann; Volker Vincon; Regine Kahmann

    2014-01-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. ...

  15. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis.

    Science.gov (United States)

    Xia, Yi-Han; Zhang, Ya-Nan; Hou, Xiao-Qing; Li, Fei; Dong, Shuang-Lin

    2015-01-01

    The chemoreception role of moth ovipositor has long been suggested, but its molecular mechanism is mostly unknown. By transcriptomic analysis of the female ovipositor-pheromone glands (OV-PG) of Chilo suppressalis, we obtained 31 putative chemoreception genes (9 OBPs, 10 CSPs, 2 ORs, 1 SNMP, 8 CXEs and 1 AOX), in addition to 32 genes related to sex pheromone biosynthesis (1 FAS, 6 Dess, 10 FARs, 2 ACOs, 1 ACC, 4 FATPs, 3 ACBPs and 5 ELOs). Tissue expression profiles further revealed that CsupCSP2 and CsupCSP10 were OV-PG biased, while most chemoreception genes were highly and preferably expressed in antennae. This suggests that OV-PG employs mostly the same chemoreception proteins as in antennae, although the physiological roles of these proteins might be different in OV-PG. Of the 32 pheromone biosynthesis related genes, CsupDes4, CsupDes5 and CsupFAR2 are strongly OV-PG biased, and clustered with functionally validated genes from other moths, strongly indicating their involvement in specific step of the pheromone biosynthesis. Our study for the first time identified a large number of putative chemoreception genes, and provided an important basis for exploring the chemoreception mechanisms of OV-PG in C. suppressalis, as well as other moth species. PMID:25601555

  16. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  17. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    CERN Document Server

    H, Swathi

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. A validation technique, Figure of Merit is used to determine the quality of clustering results. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. To determine the quality of clustering results, a validation technique, Figure of Merit is used. Appropriate ...

  18. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium

    Directory of Open Access Journals (Sweden)

    Bijaya K. Sarangi

    2015-12-01

    Full Text Available Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively.

  19. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium.

    Science.gov (United States)

    Sarangi, Bijaya K; Minami, Yoshiko; Thul, Sanjog T

    2015-12-01

    Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively. PMID:26697377

  20. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium

    OpenAIRE

    Bijaya K. Sarangi; Yoshiko Minami; Thul, Sanjog T.

    2015-01-01

    Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tin...

  1. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: isolation, characterization, and expression in response to light.

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    Full Text Available The volatile microbial metabolite 2-methylisoborneol (2-MIB is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater.

  2. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus.

    Science.gov (United States)

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2015-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. polyrhizus (7-1) and H. undatus (132-4). Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses, gene expression profiles and published documents. PMID:26779215

  3. Identification and Characterization of EctR1, a New Transcriptional Regulator of the Ectoine Biosynthesis Genes in the Halotolerant Methanotroph Methylomicrobium alcaliphilum 20Z▿ †

    OpenAIRE

    Mustakhimov, Ildar I.; Alexander S. Reshetnikov; Glukhov, Anatoly S.; Khmelenina, Valentina N.; Kalyuzhnaya, Marina G.; Trotsenko, Yuri A.

    2009-01-01

    Genes encoding key enzymes of the ectoine biosynthesis pathway in the halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z have been shown to be organized into an ectABC-ask operon. Transcription of the ect operon is initiated from two promoters, ectAp1 and ectAp2 (ectAp1p2), similar to the σ70-dependent promoters of Escherichia coli. Upstream of the gene cluster, an open reading frame (ectR1) encoding a MarR-like transcriptional regulator was identified. Investigation of the ...

  4. Identification of a 12-gene Fusaric Acid Biosynthetic Gene Cluster in Fusarium Species Through Comparative and Functional Genomics.

    Science.gov (United States)

    Brown, Daren W; Lee, Seung-Ho; Kim, Lee-Han; Ryu, Jae-Gee; Lee, Soohyung; Seo, Yunhee; Kim, Young Ho; Busman, Mark; Yun, Sung-Hwan; Proctor, Robert H; Lee, Theresa

    2015-03-01

    In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a polyketide-derived SM produced by multiple species of the fungal genus Fusarium. This SM is of concern because it is toxic to animals and, therefore, is considered a mycotoxin and may contribute to plant pathogenesis. Preliminary descriptions of the fusaric acid (FA) biosynthetic gene (FUB) cluster have been reported in two Fusarium species, the maize pathogen F. verticillioides and the rice pathogen F. fujikuroi. The cluster consisted of five genes and did not include a transcription factor or transporter gene. Here, analysis of the FUB region in F. verticillioides, F. fujikuroi, and F. oxysporum, a plant pathogen with multiple hosts, indicates the FUB cluster consists of at least 12 genes (FUB1 to FUB12). Deletion analysis confirmed that nine FUB genes, including two Zn(II)2Cys6 transcription factor genes, are required for production of wild-type levels of FA. Comparisons of FUB cluster homologs across multiple Fusarium isolates and species revealed insertion of non-FUB genes at one or two locations in some homologs. Although the ability to produce FA contributed to the phytotoxicity of F. oxysporum culture extracts, lack of production did not affect virulence of F. oxysporum on cactus or F. verticillioides on maize seedlings. These findings provide new insights into the genetic and biochemical processes required for FA production. PMID:25372119

  5. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    Shubhra Sankar Ray; Sanghamitra Bandyopadhyay; Sankar K Pal

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  6. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Science.gov (United States)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  7. Functional Diversity of Genes for the Biosynthesis of Paeoniflorin and Its Derivatives in Paeonia

    Directory of Open Access Journals (Sweden)

    Luqi Huang

    2013-09-01

    Full Text Available The Paeonia root, with or without bark, are considered vital traditional Chinese medicine materials; the examples are those of Bai Shao, Chi Shao, and Dan Pi. In this study, we examine 24 genes and their expressions involved in the biosynthesis of paeoniflorin and its derivatives, which are active compounds of the Paeonia root, in Paeonia lactiflora and P. suffruticosa, as well as other related plants, Punica granatum, Rhus radicans, and Coriaria nepalensis. Our phylogenetic analyses suggest that these genes have functional diversity, and analysis of the transcriptional level shows paeoniflorin and gallic acid biosynthesis-related genes exhibit different transcription profiles in flowers, carpels, bark-free roots, and bark of P. lactiflora. The correlation analysis of gene expression and active compound contents support the idea that hydroxymethylglutaryl-CoA synthase and phosphomevalonate kinase in the mevalonate pathway and 3-dehydroquinate dehydratase/shikimate dehydrogenase in shikimate biosynthesis are potentially closely related to the accumulation of paeoniflorin and benzoylpaeoniflorin. Coupling gene diversity with chemical analysis, we show that paeoniflorin and its derived aromatic amino acids are predominant in bark.

  8. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis

    International Nuclear Information System (INIS)

    The lack of efficient transformation methods for aflatoxigenic Aspergillus parasiticus has been a major constraint for the study of aflatoxin biosynthesis at the genetic level. A transformation system with efficiencies of 30 to 50 stable transformants per μg of DNA was developed for A. parasiticus by using homologous pyrG gene. The pyrG gene from A. parasiticus was isolated by in situ plaque hybridization of a lambda genomic DNA library. Uridine auxotrophs of A. parasiticus ATCC 36537, a mutant blocked in aflatoxin biosynthesis, were isolated by selection on 5-fluoroorotic acid following nitrosoguanidine mutagenesis. Isolates with mutations in the pyrG gene resulting in elimination of orotidine monophosphate (OMP) decarboxylase activity were detected by assaying cell extracts for their ability to convert [14C]OMP to [14C]UMP. Transformation of A. parasiticus pyrG protoplasts with the homologous pyrG gene restored the fungal cells to prototrophy. Enzymatic analysis of cell extracts of transformant clones demonstrated that these extracts had the ability to convert [14C]OMP to [14C]UMP. Southern analysis of DNA purified from transformant clones indicated that both pUC19 vector sequences and pyrG sequences were integrated into the genome. The development of this pyrG transformation system should allow cloning of the aflatoxin-biosynthetic genes, which will be useful in studying the regulation of aflatoxin biosynthesis and may ultimately provide a means for controlling aflatoxin production in the field

  9. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells

    Science.gov (United States)

    Rischer, Heiko; Orešič, Matej; Seppänen-Laakso, Tuulikki; Katajamaa, Mikko; Lammertyn, Freya; Ardiles-Diaz, Wilson; Van Montagu, Marc C. E.; Inzé, Dirk; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2006-01-01

    Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant. PMID:16565214

  10. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis

    Science.gov (United States)

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D.; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-01-01

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis’s capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree. PMID:27339202

  11. The anguibactin biosynthesis and transport genes are encoded in the chromosome of Vibrio harveyi: a possible evolutionary origin for the pJM1 plasmid-encoded system of Vibrio anguillarum?

    Science.gov (United States)

    Naka, Hiroaki; Actis, Luis A; Crosa, Jorge H

    2013-02-01

    Many Vibrio anguillarum serotype O1 strains carry 65-kb pJM1-type plasmids harboring genes involved in siderophore anguibactin biosynthesis and transport. The anguibactin system is an essential factor for V. anguillarum to survive under iron-limiting conditions, and as a consequence, it is a very important virulence factor of this bacterium. Our comparative analysis of genomic data identified a cluster harboring homologs of anguibactin biosynthesis and transport genes in the chromosome of Vibrio harveyi. We have purified the putative anguibactin siderophore and demonstrated that it is indeed anguibactin by mass spectrometry and specific bioassays. Furthermore, we characterized two genes, angR and fatA, in this chromosome cluster that, respectively, participate in anguibactin biosynthesis and transport as determined by mutagenesis analysis. Furthermore, we found that the V. harveyi FatA protein is located in the outer membrane fractions as previously demonstrated in V. anguillarum. Based on our data, we propose that the anguibactin biosynthesis and transport cluster in the V. anguillarum pJM1 plasmid have likely evolved from the chromosome cluster of V. harveyi or vice versa. PMID:23335587

  12. The anguibactin biosynthesis and transport genes are encoded in the chromosome of Vibrio harveyi: a possible evolutionary origin for the pJM1 plasmid–encoded system of Vibrio anguillarum?

    Science.gov (United States)

    Naka, Hiroaki; Actis, Luis A; Crosa, Jorge H

    2013-01-01

    Many Vibrio anguillarum serotype O1 strains carry 65-kb pJM1-type plasmids harboring genes involved in siderophore anguibactin biosynthesis and transport. The anguibactin system is an essential factor for V. anguillarum to survive under iron-limiting conditions, and as a consequence, it is a very important virulence factor of this bacterium. Our comparative analysis of genomic data identified a cluster harboring homologs of anguibactin biosynthesis and transport genes in the chromosome of Vibrio harveyi. We have purified the putative anguibactin siderophore and demonstrated that it is indeed anguibactin by mass spectrometry and specific bioassays. Furthermore, we characterized two genes, angR and fatA, in this chromosome cluster that, respectively, participate in anguibactin biosynthesis and transport as determined by mutagenesis analysis. Furthermore, we found that the V. harveyi FatA protein is located in the outer membrane fractions as previously demonstrated in V. anguillarum. Based on our data, we propose that the anguibactin biosynthesis and transport cluster in the V. anguillarum pJM1 plasmid have likely evolved from the chromosome cluster of V. harveyi or vice versa. PMID:23335587

  13. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis

    Science.gov (United States)

    Ma, Chun-Hua; Gao, Zheng-Jie; Zhang, Jia-Jin; Zhang, Wei; Shao, Jian-Hui; Hai, Mei-Rong; Chen, Jun-Wen; Yang, Sheng-Chao; Zhang, Guang-Hui

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. Principal findings: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. Conclusion: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. PMID:27242873

  14. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  15. CORM: An R Package Implementing the Clustering of Regression Models Method for Gene Clustering

    OpenAIRE

    Jiejun Shi; Li-Xuan Qin

    2014-01-01

    We report a new R package implementing the clustering of regression models (CORM) method for clustering genes using gene expression data and provide data examples illustrating each clustering function in the package. The CORM package is freely available at CRAN from http://cran.r-project.org.

  16. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    OpenAIRE

    Stephan eKlähn; Desiree eBaumgartner; Ulrike ePfreundt; Karsten eVoigt; Verena eSchoen; Claudia eSteglich; Hess, Wolfgang R

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR) and aldehyde deformylating oxygenase (ADO). Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 avail...

  17. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus.

    Science.gov (United States)

    Lin, W S; Cunneen, T; Lee, C Y

    1994-11-01

    We previously cloned a 19.4-kb DNA region containing a cluster of genes affecting type 1 capsule production from Staphylococcus aureus M. Subcloning experiments showed that these capsule (cap) genes are localized in a 14.6-kb region. Sequencing analysis of the 14.6-kb fragment revealed 13 open reading frames (ORFs). Using complementation tests, we have mapped a collection of Cap- mutations in 10 of the 13 ORFs, indicating that these 10 genes are involved in capsule biosynthesis. The requirement for the remaining three ORFs in the synthesis of the capsule was demonstrated by constructing site-specific mutations corresponding to each of the three ORFs. Using an Escherichia coli S30 in vitro transcription-translation system, we clearly identified 7 of the 13 proteins predicted from the ORFs. Homology search between the predicted proteins and those in the data bank showed very high homology (52.3% identity) between capL and vipA, moderate homology (29% identity) between capI and vipB, and limited homology (21.8% identity) between capM and vipC. The vipA, vipB, and vipC genes have been shown to be involved in the biosynthesis of Salmonella typhi Vi antigen, a homopolymer polysaccharide consisting of N-acetylgalactosamino uronic acid, which is also one of the components of the staphylococcal type 1 capsule. The homology between these sets of genes therefore suggests that capL, capI, and capM may be involved in the biosynthesis of amino sugar, N-acetylgalactosamino uronic acid. In addition, the search showed that CapG aligned well with the consensus sequence of a family of acetyltransferases from various prokaryotic organisms, suggesting that CapG may be an acetyltransferase. Using the isogenic Cap- and Cap+ strains constructed in this study, we have confirmed that type 1 capsule is an important virulence factor in a mouse lethality test. PMID:7961465

  18. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti.

    Directory of Open Access Journals (Sweden)

    Abdiel Del-Cid

    Full Text Available The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA. Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.

  19. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti.

    Science.gov (United States)

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F; García-Rico, Ramón O; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes. PMID:26751579

  20. Cloning and organization of seven arginine biosynthesis genes from Neisseria gonorrhoeae.

    OpenAIRE

    Picard, F J; Dillon, J R

    1989-01-01

    A genomic library for Neisseria gonorrhoeae, constructed in the lambda cloning vector EMBL4, was screened for clones carrying arginine biosynthesis genes by complementation of Escherichia coli mutants. Clones complementing defects in argA, argB, argE, argG, argIF, carA, and carB were isolated. An E. coli defective in the acetylornithine deacetylase gene (argE) was complemented by the ornithine acetyltransferase gene (argJ) from N. gonorrhoeae. This heterologous complementation is reported for...

  1. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    OpenAIRE

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  2. CAGE: Combinatorial Analysis of Gene-Cluster Evolution

    OpenAIRE

    Song, Giltae; Zhang, Louxin; Vinar, Tomas; Miller, Webb

    2010-01-01

    Much important evolutionary activity occurs in gene clusters, where a copy of a gene may be free to acquire new functions. Current computational methods to extract evolutionary information from sequence data for such clusters are suboptimal, in part because accurate sequence data are often lacking in these genomic regions, making existing methods difficult to apply. We describe a new method for reconstructing the recent evolutionary history of gene clusters, and evaluate its performance on bo...

  3. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus

    OpenAIRE

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2016-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled ...

  4. Arabidopsis Acetyl-Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indole-3-Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes

    Institute of Scientific and Technical Information of China (English)

    Mu-Yang Wang; Xue-Ting Liu; Ying Chen; Xiao-Jing Xu; Biao Yu; Shu-Qun Zhang; Qun Li; Zu-Hua He

    2012-01-01

    Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana.Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments.Camalexin is formed when indole-3-acetonitrile (IAN)is catalyzed by the cytochrome P450 monooxygenase CYP71A13.Here,we demonstrate that the Arabidopsis GH3.5 protein,a multifunctional acetyl-amido synthetase,is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes.Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection.The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro.In support of the in vitro reaction,feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D.Dihydrocamalexic acid (DHCA),the precursor of camalexin and the substrate for PAD3,was accumulated in gh3.5-1Dlpad3-1,suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis.Furthermore,expression of the major camalexin biosynthesis genes CYP79B2,CYP71A12,CYP71A13 and PAD3 was strongly induced in gh3.5-1D.Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys),and upregulation of the major biosynthetic pathway genes.

  5. Dispersal of NK homeobox gene clusters in amphioxus and humans

    OpenAIRE

    Luke, Graham N.; L Filipe C Castro; McLay, Kirsten; Bird, Christine; Coulson, Alan; Holland, Peter W. H.

    2003-01-01

    The Drosophila melanogaster genome has six physically clustered NK-related homeobox genes in just 180 kb. Here we show that the NK homeobox gene cluster was an ancient feature of bilaterian animal genomes, but has been secondarily split in chordate ancestry. The NK homeobox gene clusters of amphioxus and vertebrates are each split and dispersed at two equivalent intergenic positions. From the ancestral NK gene cluster, only the Tlx–Lbx and NK3–NK4 linkages have been retained in chordates. Thi...

  6. Genes, enzymes and regulation of arginine biosynthesis in plants.

    Science.gov (United States)

    Slocum, Robert D

    2005-08-01

    Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate. PMID:16122935

  7. AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Danyu Kong; Yuxing Zhu; Huilan Wu; Xudong Cheng; Hui Liang; Hong-Qing Ling

    2008-01-01

    Thiamine (vitamin B1) is an essential compound for organisms.It contains a pyrimidine ring structure and a thiazole ring structure.These two moieties of thiamine are synthesized independently and then coupled together.Here we report the molecular characterization of AtTHIC,which is involved in thiamine biosynthesis in Arabidopsis.AtTHIC is similar to Escherichia coil ThiC,which is involved in pyrimidine biosynthesis in prokaryotes.Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E.coll.Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thicl showed albino (white leaves) and lethal phenotypes under the normal culture conditions.The thicl mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression ofAtTHIC cDNA.Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts.AtTHIC was strongly expressed in leaves,flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine.In conclusion,AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis,and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.

  8. Diversity and evolution of MicroRNA gene clusters

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNA(miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome.Although a large number of miRNA clusters have been uncovered in animal and plant genomes,the functional consequences of this arrangement are still poorly understood.Located in a polycistron,the coexpressed miRNA clusters are pivotal in coordinately regulating multiple processes,including embryonic development,cell cycles and cell differentiation.In this review,based on recent progress,we discuss the genomic diversity of miRNA gene clusters,the coordination of expression and function of the clustered miRNAs,and the evolutionarily adaptive processes with gain and loss of the clustering miRNA genes mediated by duplication and transposition events.

  9. Diversity and evolution of MicroRNA gene clusters

    Institute of Scientific and Technical Information of China (English)

    ZHANG YanFeng; ZHANG Rui; SU Bing

    2009-01-01

    microRNA (miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome. Although a large number of miRNA clusters have been uncovered in animal and plant genomes, the functional consequences of this arrangement are still poorly understood. Located in a polycistron, the coexpressed miRNA clusters are pivotal in coordinately regulating multiple processes, including embryonic development, cell cycles and cell differentiation. In this review, based on recent progress, we discuss the genomic diversity of miRNA gene clusters, the coordination of expression and function of the clustered miRNAs, and the evolutionarily adaptive processes with gain and loss of the clustering miRNA genes mediated by duplication and transposition events.

  10. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production.

    Science.gov (United States)

    Tang, Ying; Xia, Liqiu; Ding, Xuezhi; Luo, Yushuang; Huang, Fan; Jiang, Yuanwei

    2011-12-01

    Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. Most of the S. spinosa genes involved in spinosyn biosynthesis are found in a contiguous c. 74-kb cluster. To increase the spinosyn production through overexpression of their biosynthetic genes, part of its gene cluster (c. 18 kb) participating in the conversion of the cyclized polyketide to spinosyn was obtained by direct cloning via Red/ET recombination rather than by constructing and screening the genomic library. The resultant plasmid pUCAmT-spn was introduced into S. spinosa CCTCC M206084 from Escherichia coli S17-1 by conjugal transfer. The subsequent single-crossover homologous recombination caused a duplication of the partial gene cluster. Integration of this plasmid enhanced production of spinosyns with a total of 388 (± 25.0) mg L(-1) for spinosyns A and D in the exconjugant S. spinosa trans1 compared with 100 (± 7.7) mg L(-1) in the parental strain. Quantitative real time polymerase chain reaction analysis of three selected genes (spnH, spnI, and spnK) confirmed the positive effect of the overexpression of these genes on the spinosyn production. This study provides a simple avenue for enhancing spinosyn production. The strategies could also be used to improve the yield of other secondary metabolites. PMID:22092858

  11. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics. PMID:12617516

  12. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi.

    Science.gov (United States)

    Rösler, Sarah M; Sieber, Christian M K; Humpf, Hans-Ulrich; Tudzynski, Bettina

    2016-07-01

    The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1-10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes. PMID:26966024

  13. High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators

    OpenAIRE

    Li CHEN; Wang, Yemin; Guo, Hang; Xu, Min; Deng, Zixin; Tao, Meifeng

    2012-01-01

    A genomic cosmid library of Streptomyces clavuligerus was constructed and transferred efficiently by conjugation to Streptomyces lividans, and 12 distinct groups of overlapping cosmid clones that activated the silent actinorhodin biosynthesis gene cluster were identified. This generally applicable high-throughput screening procedure greatly facilitates the identification of antibiotic biosynthesis activators.

  14. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas;

    2016-01-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynth...... of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products....

  15. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2011-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...

  16. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in 'Houman' grape.

    Science.gov (United States)

    Zhang, Lei; Xu, Yan-Shuai; Jia, Yue; Wang, Ji-Yuan; Yuan, Yue; Yu, Yang; Tao, Jian-Min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of 'Houman' grape plants, leaving only 3-5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  17. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape

    Science.gov (United States)

    Zhang, Lei; Xu, Yan-shuai; Jia, Yue; Wang, Ji-yuan; Yuan, Yue; Yu, Yang; Tao, Jian-min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of ‘Houman’ grape plants, leaving only 3–5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  18. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    Science.gov (United States)

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  19. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  20. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii.

    Science.gov (United States)

    Zheng, L; Cash, V L; Flint, D H; Dean, D R

    1998-05-22

    An enzyme having the same L-cysteine desulfurization activity previously described for the NifS protein was purified from a strain of Azotobacter vinelandii deleted for the nifS gene. This protein was designated IscS to indicate its proposed role in iron-sulfur cluster assembly. Like NifS, IscS is a pyridoxal-phosphate containing homodimer. Information gained from microsequencing of oligopeptides obtained by tryptic digestion of purified IscS was used to design a strategy for isolation and DNA sequence analysis of a 7,886-base pair A. vinelandii genomic segment that includes the iscS gene. The iscS gene is contained within a gene cluster that includes homologs to nifU and another gene contained within the major nif cluster of A. vinelandii previously designated orf6. These genes have been designated iscU and iscA, respectively. Information available from complete genome sequences of Escherichia coli and Hemophilus influenzae reveals that they also encode iscSUA gene clusters. A wide conservation of iscSUA genes in nature and evidence that NifU and NifS participate in the mobilization of iron and sulfur for nitrogenase-specific iron-sulfur cluster formation suggest that the products of the iscSUA genes could play a general role in the formation or repair of iron-sulfur clusters. The proposal that IscS is involved in mobilization of sulfur for iron-sulfur cluster formation in A. vinelandii is supported by the presence of a cysE-like homolog in another gene cluster located immediately upstream from the one containing the iscSUA genes. O-Acetylserine synthase is the product of the cysE gene, and it catalyzes the rate-limiting step in cysteine biosynthesis. A similar cysE-like gene is also located within the nif gene cluster of A. vinelandii. The likely role of such cysE-like gene products is to increase the cysteine pool needed for iron-sulfur cluster formation. Another feature of the iscSUA gene cluster region from A. vinelandii is that E. coli genes previously

  1. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium.

    Science.gov (United States)

    Gallo, Antonia; Solfrizzo, Michele; Epifani, Filomena; Panzarini, Giuseppe; Perrone, Giancarlo

    2016-01-18

    Almonds are among the commodities at risk of aflatoxin contamination by Aspergillus flavus. Temperature and water activity are the two key determinants in pre and post-harvest environments influencing both the rate of fungal spoilage and aflatoxin production. Varying the combination of these parameters can completely inhibit or fully activate the biosynthesis of aflatoxin, so it is fundamental to know which combinations can control or be conducive to aflatoxin contamination. Little information is available about the influence of these parameters on aflatoxin production on almonds. The objective of this study was to determine the influence of different combinations of temperature (20 °C, 28 °C, and 37 °C) and water activity (0.90, 0.93, 0.96, 0.99 aw) on growth, aflatoxin B1 (AFB1) production and expression of the two regulatory genes, aflR and aflS, and two structural genes, aflD and aflO, of the aflatoxin biosynthetic cluster in A. flavus grown on an almond medium solidified with agar. Maximum accumulation of fungal biomass and AFB1 production was obtained at 28 °C and 0.96 aw; no fungal growth and AFB1 production were observed at 20 °C at the driest tested conditions (0.90 and 0.93 aw). At 20° and 37 °C AFB1 production was 70-90% lower or completely suppressed, depending on aw. Reverse transcriptase quantitative PCR showed that the two regulatory genes (aflR and aflS) were highly expressed at maximum (28 °C) and minimum (20 °C and 37 °C) AFB1 production. Conversely the two structural genes (aflD and aflO) were highly expressed only at maximum AFB1 production (28 °C and 0.96-0.99 aw). It seems that temperature acts as a key factor influencing aflatoxin production which is strictly correlated to the induction of expression of structural biosynthesis genes (aflD and aflO), but not to that of aflatoxin regulatory genes (aflR and aflS), whose functional products are most likely subordinated to other regulatory processes acting at post-translational level

  2. Evolutionary History Reconstruction for Mammalian Complex Gene Clusters

    OpenAIRE

    Zhang, Yu; Song, Giltae; Vinař, Tomáš; Green, Eric D; Siepel, Adam; Miller, Webb

    2009-01-01

    Clusters of genes that evolved from single progenitors via repeated segmental duplications present significant challenges to the generation of a truly complete human genome sequence. Such clusters can confound both accurate sequence assembly and downstream computational analysis, yet they represent a hotbed of functional innovation, making them of extreme interest. We have developed an algorithm for reconstructing the evolutionary history of gene clusters using only human genomic sequence dat...

  3. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  4. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    Science.gov (United States)

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  5. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Daniel J Hunter

    Full Text Available Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host's fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis.

  6. A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni).

    Science.gov (United States)

    Kumar, Hitesh; Kaul, Kiran; Bajpai-Gupta, Suphla; Kaul, Vijay Kumar; Kumar, Sanjay

    2012-01-15

    Stevia [Stevia rebuaidana (Bertoni); family: Asteraceae] is known to yield diterpenoid steviol glycosides (SGs), which are about 300 times sweeter than sugar. The present work analyzed the expression of various genes of the SGs biosynthesis pathway in different organs of the plant in relation to the SGs content. Of the various genes of the pathway, SrDXS, SrDXR, SrCPPS, SrKS, SrKO and three glucosyltransferases namely SrUGT85C2, SrUGT74G1 and SrUGT76G1 were reported from stevia. Here, we report cloning of seven additional full-length cDNA sequences namely, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI and SrGGDPS followed by expression analysis of all the fifteen genes vis-à-vis SGs content analysis. SGs content was highest in the leaf at 3rd node position (node position with reference to the apical leaf as the first leaf) as compared to the leaves at other node positions. Except for SrDXR and SrKO, gene expression was maximum in leaf at 1st node and minimum in leaf at 5th node. The expression of SrKO was highest in leaf at 3rd node while in case of SrDXR expression showed an increase up to 3rd leaf and decrease thereafter. SGs accumulated maximum in leaf tissue followed by stem and root, and similar was the pattern of expression of all the fifteen genes. The genes responded to the modulators of the terpenopids biosynthesis. Gibberellin (GA(3)) treatment up-regulated the expression of SrMCT, SrCMK, SrMDS and SrUGT74G1, whereas methyl jasmonate and kinetin treatment down-regulated the expression of all the fifteen genes of the pathway. PMID:22037480

  7. An Acidic pH is a determinant factor for TRI genes expression and trichothecenes B biosynthesis in Fusarium graminearum

    OpenAIRE

    Merhej, Jawad; BOUTIGNY, Anne-Laure; PINSON-GADAIS, Laetitia; RICHARD-FORGET, Florence; Barreau, Christian

    2010-01-01

    Abstract Reducing production of trichothecene B by Fusarium graminearum on cereals is necessary to avoid contamination leading to yields reduction and having harmful impacts on human and animal health. Understanding how trichothecenes biosynthesis is induced is essential. Effect of ambient pH on fungal growth, toxin biosynthesis and TRI genes expression was studied during in vitro liquid culture of F. graminearum on minimal medium. Fungal development stopped at day 3 after a sharp ...

  8. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans

    OpenAIRE

    Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan; Pattathil, Sivakumar; Birdseye, Devon; Lao, Jeemeng; Pauly, Markus; Hahn, Michael G.; Heazlewood, Joshua L; Scheller, Henrik Vibe

    2016-01-01

    Background Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Re...

  9. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport

    Directory of Open Access Journals (Sweden)

    Sun Yongzhen

    2011-10-01

    Full Text Available Abstract Background Camptotheca acuminata is a Nyssaceae plant, often called the "happy tree", which is indigenous in Southern China. C. acuminata produces the terpenoid indole alkaloid, camptothecin (CPT, which exhibits clinical effects in various cancer treatments. Despite its importance, little is known about the transcriptome of C. acuminata and the mechanism of CPT biosynthesis, as only few nucleotide sequences are included in the GenBank database. Results From a constructed cDNA library of young C. acuminata leaves, a total of 30,358 unigenes, with an average length of 403 bp, were obtained after assembly of 74,858 high quality reads using GS De Novo assembler software. Through functional annotation, a total of 21,213 unigenes were annotated at least once against the NCBI nucleotide (Nt, non-redundant protein (Nr, Uniprot/SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG, and Arabidopsis thaliana proteome (TAIR databases. Further analysis identified 521 ESTs representing 20 enzyme genes that are involved in the backbone of the CPT biosynthetic pathway in the library. Three putative genes in the upstream pathway, including genes for geraniol-10-hydroxylase (CaPG10H, secologanin synthase (CaPSCS, and strictosidine synthase (CaPSTR were cloned and analyzed. The expression level of the three genes was also detected using qRT-PCR in C. acuminata. With respect to the branch pathway of CPT synthesis, six cytochrome P450s transcripts were selected as candidate transcripts by detection of transcript expression in different tissues using qRT-PCR. In addition, one glucosidase gene was identified that might participate in CPT biosynthesis. For CPT transport, three of 21 transcripts for multidrug resistance protein (MDR transporters were also screened from the dataset by their annotation result and gene expression analysis. Conclusion This study produced a large amount of transcriptome data from C. acuminata by 454 pyrosequencing. According to

  10. Anaerobic biosynthesis of enterobactin Escherichia coli: regulation of entC gene expression and evidence against its involvement in menaquinone (vitamin K2) biosynthesis.

    OpenAIRE

    Kwon, O; Hudspeth, M E; Meganathan, R

    1996-01-01

    In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its as...

  11. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Adriano R. Lucheta

    2007-01-01

    Full Text Available Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST in Citrus sinensis (L. Osbeck corresponding to genes involved in general phenylpropanoid biosynthesis and the key genes involved in the main flavonoids pathways (flavanones, flavones, flavonols, leucoanthocyanidins, anthocyanins and isoflavonoids. A thorough analysis of all related putative genes from the Citrus EST (CitEST database revealed several interesting aspects associated to these pathways and brought novel information with promising usefulness for both basic and biotechnological applications.

  12. Ubiquinone (Coenzyme Q) Biosynthesis in Chlamydophila pneumoniae AR39: Identification of the ubiD Gene

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Jian-Hua LIU

    2006-01-01

    Ubiquinone is an essential electron carrier in prokaryotes. Ubiquinone biosynthesis involves at least nine reactions in Escherichia coli. 3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD) is an important enzyme on the pathway and deletion of the ubiD gene in E. coli gives rise to ubiquinone deficiency in vivo.A protein from Chlamydophila pneumoniae AR39 had significant similarity compared with protein UbiD from E. coli. Based on this information, the protein-encoding gene was used to swap its counterpart in E. coli, and gene expression in resultant strain DYC was confirmed by RT-PCR. Strain DYC grew using succinate as carbon source and rescued ubiquinone content in vivo, while ubiD deletion strain DYD did not.Results suggest that the chlamydial protein exerts the function of UbiD.

  13. Isolation and characterization of Carotenoid biosynthesis genes from Pantoea agglomerans pv. millettiae Wist 801

    International Nuclear Information System (INIS)

    Pantoea agglomerans pv. millettiae produces a yellow pigment and is the causal agent of wisteria stem galls. We cloned and sequenced a 6.8-kb DNA fragment containing the yellow pigment gene. Analysis of the nucleotide sequence revealed that this clone contains five open reading frames (ORFs) transcribed in the same direction, and one terminal ORF transcribed in the opposite orientation. Comparison of the nucleotide and predicted amino acid sequences of these ORFs showed that they correspond to the carotenoid biosynthesis (crt) genes crtE, -X, -Y, -I, -B and -Z, respectively, in P. ananatis pv. uredovora 20D3, and P. agglomerans strains Eho 10 and Eho 13. It was suggested that the carotenoid biosynthesis pathway of P. agglomerans pv. millettiae is basically identical to that of the three other Pantoea strains. When the crt genes from P. agglomerans pv. millettiae were expressed in E. coli WP2, this bacterium also displayed a yellow phenotype. The carotenoid pigments are known for their ability to protect various organisms against UV-induced damage, however, there were no significant differences in mutagenesis and survival after UV irradiation between yellow-pigmented and non-pigmented E. coli WP2 strains

  14. Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks.

    Science.gov (United States)

    Gupta, Kapil; Kayam, Galya; Faigenboim-Doron, Adi; Clevenger, Josh; Ozias-Akins, Peggy; Hovav, Ran

    2016-07-01

    Pod-filling is an important stage of peanut (Arachis hypogaea) seed development. It is partially controlled by genetic factors, as cultivars considerably vary in pod-filling potential. Here, a study was done to detect changes in mRNA levels that accompany pod-filling processes. Four seed developmental stages were sampled from two peanut genotypes differing in their oil content and pod-filling potential. Transcriptome data were generated by RNA-Seq and explored with respect to genic and subgenomic patterns of expression. Very dynamic transcriptomic changes occurred during seed development in both genotypes. Yet, general higher expression rates of transcripts and an enrichment in processes involved "energy generation" and "primary metabolites" were observed in the genotype with the better pod-filling ("Hanoch"). A dataset of 584 oil-related genes was assembled and analyzed, resulting in several lipid metabolic processes highly expressed in Hanoch, including oil storage and FA synthesis/elongation. Homoeolog-specific gene expression analysis revealed that both subgenomes contribute to the oil genes expression. Yet, biases were observed in particular parts of the pathway with possible biological meaning, presumably explaining the genotypic variation in oil biosynthesis and pod-filling. This study provides baseline information and a resource that may be used to understand development and oil biosynthesis in the peanut seeds. PMID:27181953

  15. A knowledge-based clustering algorithm driven by Gene Ontology.

    Science.gov (United States)

    Cheng, Jill; Cline, Melissa; Martin, John; Finkelstein, David; Awad, Tarif; Kulp, David; Siani-Rose, Michael A

    2004-08-01

    We have developed an algorithm for inferring the degree of similarity between genes by using the graph-based structure of Gene Ontology (GO). We applied this knowledge-based similarity metric to a clique-finding algorithm for detecting sets of related genes with biological classifications. We also combined it with an expression-based distance metric to produce a co-cluster analysis, which accentuates genes with both similar expression profiles and similar biological characteristics and identifies gene clusters that are more stable and biologically meaningful. These algorithms are demonstrated in the analysis of MPRO cell differentiation time series experiments. PMID:15468759

  16. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor.

    Science.gov (United States)

    Qu, Xudong; Jiang, Nan; Xu, Fei; Shao, Lei; Tang, Gongli; Wilkinson, Barrie; Liu, Wen

    2011-03-01

    Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA. PMID:21416665

  17. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    Directory of Open Access Journals (Sweden)

    T. Chandrasekhar

    2011-11-01

    Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.

  18. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots.

    Science.gov (United States)

    Franks, T K; Powell, K S; Choimes, S; Marsh, E; Iocco, P; Sinclair, B J; Ford, C M; van Heeswijck, R

    2006-04-01

    A multigenic trait (biosynthesis of the secondary metabolite, dhurrin cyanogenic glucoside) was engineered de novo in grapevine (Vitis vinifera L.). This follows a recent report of transfer of the same trait to Arabidopsis (Arabidopsis thaliana) using three genetic sequences from sorghum (Sorghum bicolor): two cytochrome P450-encoding cDNAs (CYP79A1 and CYP71E1) and a UDPG-glucosyltransferase-encoding cDNA (sbHMNGT). Here we describe the two-step process involving whole plant transformation followed by hairy root transformation, which was used to transfer the same three sorghum sequences to grapevine. Transgenic grapevine hairy root lines that accumulated transcript from none, one (sbHMNGT), two (CYP79A1 and CYP71E1) or all three transgenes were recovered and characterisation of these lines provided information about the requirements for dhurrin biosynthesis in grapevine. Only lines that accumulated transcripts from all three transgenes had significantly elevated cyanide potential (up to the equivalent of about 100 mg HCN kg(-1) fresh weight), and levels were highly variable. One dhurrin-positive line was tested and found to release cyanide upon maceration and can therefore be considered 'cyanogenic'. In in vitro dual co-culture of this cyanogenic hairy root line or an acyanogenic line with the specialist root-sucking, gall-forming, aphid-like insect, grapevine phylloxera (Daktulosphaira vitifoliae, Fitch), there was no evidence for protection of the cyanogenic plant tissue from infestation by the insect. Consistently high levels of dhurrin accumulation may be required for this to occur. The possibility that endogenous grapevine gene expression is modulated in response to engineered dhurrin biosynthesis was investigated using microarray analysis of 1225 grapevine ESTs, but differences in patterns of gene expression associated with dhurrin-positive and dhurrin-negative phenotypes were not identified. PMID:16604459

  19. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing

    KAUST Repository

    Antony, Binu

    2015-07-18

    Background Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. Results We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45 % of the sequences were shared

  20. Insertional mutagenesis and characterization of a polyketide synthase gene (PKS1) required for melanin biosynthesis in Bipolaris oryzae.

    Science.gov (United States)

    Moriwaki, Akihiro; Kihara, Junichi; Kobayashi, Tsutomu; Tokunaga, Toshiko; Arase, Sakae; Honda, Yuichi

    2004-09-01

    A polyketide synthase gene named PKS1, involved in the melanin biosynthesis pathway of the phytopathogenic fungus Bipolaris oryzae, was isolated using restriction enzyme-mediated integration. Sequence analysis showed that the PKS1 encodes a putative protein that has 2155 amino acids and significant similarity to other fungal polyketide synthases. Targeted disruption of the PKS1 gene showed that it is necessary for melanin biosynthesis in B. oryzae. Northern blot analysis showed that PKS1 transcripts were specifically enhanced by near-ultraviolet radiation (300-400 nm) and that its temporal transcriptional patterns were similar to those of THR1 and SCD1 genes involved in the melanin biosynthesis pathway of B. oryzae. PMID:15336395

  1. DNA sequence and analysis of the O-antigen gene clusters of Escherichia coli serogroups O62, O68, O131, O140, O142, and O163 and serogroup-specific PCR assays

    Science.gov (United States)

    The DNA sequence of the O-antigen gene clusters of Escherichia coli serogroups O62, O68, O131, O140, O142, and O163 was determined. There were 9 to 12 open reading frames (ORFs) identified, encoding genes required for O-antigen sugar biosynthesis, transfer, and processing. Primers based on the wzx...

  2. Biosynthetic Investigations of Lactonamycin and Lactonamycin Z: Cloning of the Biosynthetic Gene Clusters and Discovery of an Unusual Starter Unit▿ †

    OpenAIRE

    ZHANG, XIUJUN; Lawrence B. Alemany; Fiedler, Hans-Peter; Goodfellow, Michael; Parry, Ronald J.

    2007-01-01

    The antibiotics lactonamycin and lactonamycin Z provide attractive leads for antibacterial drug development. Both antibiotics contain a novel aglycone core called lactonamycinone. To gain insight into lactonamycinone biosynthesis, cloning and precursor incorporation experiments were undertaken. The lactonamycin gene cluster was initially cloned from Streptomyces rishiriensis. Sequencing of ca. 61 kb of S. rishiriensis DNA revealed the presence of 57 open reading frames. These included genes c...

  3. Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419

    OpenAIRE

    Wu, Xiumei; Flatt, Patricia M.; Xu, Hui; Mahmud, Taifo

    2009-01-01

    A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacteria isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-...

  4. Lantibiotics biosynthesis genes and bacteriocinogenic activity of Lactobacillus spp. isolated from raw milk and cheese.

    Science.gov (United States)

    Perin, Luana Martins; Moraes, Paula Mendonça; Silva, Abelardo; Nero, Luís Augusto

    2012-05-01

    Lactobacillus species are usually used as starters for the production of fermented products, and some strains are capable of producing antimicrobial substances, such as bacteriocins. Because these characteristics are highly desirable, research are continually being performed for novel Lactobacillus strains with bacteriocinogenic potential for use by food industries. The aim of this study was to characterise the bacteriocinogenic potential and activity of Lactobacillus isolates. From a lactic acid bacteria culture collection obtained from raw milk and cheese, 27 isolates were identified by 16S rDNA as Lactobacillus spp. and selected for the detection of lantibiotics biosynthesis genes, bacteriocin production, antimicrobial spectra, and ideal incubation conditions for bacteriocin production. Based on the obtained results, 21 isolates presented at least one of the three lantibiotics biosynthesis genes (lanB, lanC or lamM), and 23 isolates also produced antimicrobial substances with sensitivity to at least one proteinase, indicating their bacteriocinogenic activity. In general, the isolates had broad inhibitory activity, mainly against Listeria spp. and Staphylococcus spp. strains, and the best antimicrobial performance of the isolates occurred when they were cultivated at 25 °C for 24 or 48 h or at 35 °C for 12 h. The present study identified the bacteriocinogenic potential of Lactobacillus isolates obtained from raw milk and cheese, suggesting their potential use as biopreservatives in foods. PMID:22447149

  5. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  6. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout.

    Science.gov (United States)

    Sandhu, Navdeep; Vijayan, Mathilakath M

    2011-05-01

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000nM) for 4h either in the presence or absence of ACTH (0.5IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  7. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  8. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    International Nuclear Information System (INIS)

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  9. Biologically supervised hierarchical clustering algorithms for gene expression data.

    Science.gov (United States)

    Boratyn, Grzegorz M; Datta, Susmita; Datta, Somnath

    2006-01-01

    Cluster analysis has become a standard part of gene expression analysis. In this paper, we propose a novel semi-supervised approach that offers the same flexibility as that of a hierarchical clustering. Yet it utilizes, along with the experimental gene expression data, common biological information about different genes that is being complied at various public, Web accessible databases. We argue that such an approach is inherently superior than the standard unsupervised approach of grouping genes based on expression data alone. It is shown that our biologically supervised methods produce better clustering results than the corresponding unsupervised methods as judged by the distance from the model temporal profiles. R-codes of the clustering algorithm are available from the authors upon request. PMID:17947147

  10. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus)

    Science.gov (United States)

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy. PMID:27149159

  11. Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.)

    OpenAIRE

    Bakera, Beata; Makowska, Bogna; Groszyk, Jolanta; Niziołek, Michał; Orczyk, Wacław; Bolibok-Brągoszewska, Hanna; Hromada-Judycka, Aneta; Rakoczy-Trojanowska, Monika

    2015-01-01

    Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa–amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesi...

  12. Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG.

    Science.gov (United States)

    Suess, Daniel L M; Kuchenreuther, Jon M; De La Paz, Liliana; Swartz, James R; Britt, R David

    2016-01-19

    Hydrogenase enzymes catalyze the rapid and reversible interconversion of H2 with protons and electrons. The active site of the [FeFe] hydrogenase is the H cluster, which consists of a [4Fe-4S]H subcluster linked to an organometallic [2Fe]H subcluster. Understanding the biosynthesis and catalytic mechanism of this structurally unusual active site will aid in the development of synthetic and biological hydrogenase catalysts for applications in solar fuel generation. The [2Fe]H subcluster is synthesized and inserted by three maturase enzymes-HydE, HydF, and HydG-in a complex process that involves inorganic, organometallic, and organic radical chemistry. HydG is a member of the radical S-adenosyl-l-methionine (SAM) family of enzymes and is thought to play a prominent role in [2Fe]H subcluster biosynthesis by converting inorganic Fe(2+), l-cysteine (Cys), and l-tyrosine (Tyr) into an organometallic [(Cys)Fe(CO)2(CN)](-) intermediate that is eventually incorporated into the [2Fe]H subcluster. In this Forum Article, the mechanism of [2Fe]H subcluster biosynthesis is discussed with a focus on how this key [(Cys)Fe(CO)2(CN)](-) species is formed. Particular attention is given to the initial metallocluster composition of HydG, the modes of substrate binding (Fe(2+), Cys, Tyr, and SAM), the mechanism of SAM-mediated Tyr cleavage to CO and CN(-), and the identification of the final organometallic products of the reaction. PMID:26703931

  13. Transcriptome profiling and digital gene expression analysis of Fallopia multiflora to discover putative genes involved in the biosynthesis of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside.

    Science.gov (United States)

    Zhao, Wei; Xia, Wanxia; Li, Jiewen; Sheng, Shujing; Lei, Lei; Zhao, Shujing

    2014-08-15

    The compound 2,3,5,4'-tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) synthesized by Fallopia multiflora (F. multiflora) exhibits pharmacological potency. However, the mechanistic details of its biosynthesis pathway are still vague. To clear this ambiguity, we performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of F. multiflora using the Illumina RNA-seq system. RNA-seq generated approximately 70 million high-quality reads that were assembled into 65,653 unigenes (mean length=750 bp), including 26,670 clusters and 38,983 singletons. A total of 48,173 (73.4%) unigenes were annotated using public protein databases with a cut-off e-value above 10(-5). Furthermore, we investigated the transcriptome difference of four different F. multiflora tissues using DGE profiling. Variations in gene expression were identified based on comparisons of transcriptomes from various parts of a high-level THSG- and a low-level THSG-producing F. multiflora plant. Clusters with similar differential expression patterns and enriched metabolic pathways with regard to the differentially expressed genes putatively involved in THSG biosynthesis were revealed for the first time. Our data provides the most comprehensive sequence resource regarding F. multiflora so far. Taken together, the results of this study considerably extend the knowledge on THSG production. PMID:24967942

  14. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa

    OpenAIRE

    Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Pär K Ingvarsson; Zhang, Deqiang

    2015-01-01

    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positiv...

  15. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth

    DEFF Research Database (Denmark)

    Jakočiūnė, Dzuiga; Herrero-Fresno, Ana; Jelsbak, Lotte;

    2016-01-01

    RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis......, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino......-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis...

  16. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry.

    Science.gov (United States)

    Liu, Hong; Xie, Wei-Fa; Zhang, Ling; Valpuesta, Victoriano; Ye, Zheng-Wen; Gao, Qing-Hua; Duan, Ke

    2014-04-01

    Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry overexpressing FvYUC6, which showed typical high-auxin phenotypes. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesca. Additionally, specific repression of FvYUC6 expression by RNA interference significantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry. PMID:24373096

  17. TOP2 gene disruption reduces drug susceptibility by increasing intracellular ergosterol biosynthesis in Candida albicans.

    Science.gov (United States)

    Zheng, Hao; Jiang, Yuan-Ying; Wang, Yan; Jia, Xin-Ming; Yan, Tian-Hua; Gao, Ping-Hui; Yan, Lan; Jiang, Ling-Huo; Ji, Hui; Cao, Yong-Bing

    2010-07-01

    In this study the role of the TOP2 gene in fungal drug susceptibility was investigated by disrupting and overexpressing the gene in Candida albicans. MIC determination and a spot assay showed that a top2Delta/Delta null mutant (strain T2bc) was more resistant to the antifungals tested than the wild-type (strain CAI4). Real-time RT-PCR and rhodamine 6G efflux examination showed that TOP2 did not influence the activity of drug efflux pumps. Sterol analysis with GC/high-resolution MS indicated that the intracellular ergosterol composition of the top2Delta/Delta mutant was significantly increased. Subsequently, fluorescence polarization measurements also revealed that Top2-deprived cells displayed a decrease in membrane fluidity, resulting in enhanced passive diffusion of the drugs. Quantitative real-time RT-PCR analysis further confirmed that the ERG11 gene, an essential gene in ergosterol biosynthesis, was upregulated. These results demonstrate a close relationship between the TOP2 gene and drug susceptibility in C. albicans. PMID:20223895

  18. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    Science.gov (United States)

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease. PMID:23915008

  19. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    Science.gov (United States)

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Hausman, Jean-Francois; Strauss, Joseph; Ezcurra, Inés

    2016-01-01

    WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed. PMID:27367684

  20. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. PMID:25443850

  1. SMART: unique splitting-while-merging framework for gene clustering.

    Directory of Open Access Journals (Sweden)

    Rui Fa

    Full Text Available Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART, which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1 needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2 extendible to many different applications, (3 offering superior performance compared with counterpart algorithms.

  2. SMART: unique splitting-while-merging framework for gene clustering.

    Science.gov (United States)

    Fa, Rui; Roberts, David J; Nandi, Asoke K

    2014-01-01

    Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms. PMID:24714159

  3. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available BACKGROUND: Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  4. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.

    Science.gov (United States)

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien

    2016-06-01

    Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14

  5. A phytoene desaturase homolog gene from the methanogenic archaeon Methanosarcina acetivorans is responsible for hydroxyarchaeol biosynthesis.

    Science.gov (United States)

    Mori, Takeshi; Isobe, Keisuke; Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2015-10-16

    Hydroxyarchaeols are the typical core structures of archaeal membrane lipids uniquely produced by a limited number of methanogenic lineages, which are mainly classified in orders Methanosarcinales and Methanococcales. However, the biosynthetic machinery that is used for the biosynthesis of hydroxyarcheol core lipids has not been discovered. In this study, the ma0127 gene from Methanosarcina acetivorans, which encodes a phytoene desaturase-like protein, was found to be responsible for the hydration of a geranylgeranyl group in an archaeal-lipid precursor, sn-2,3-O-digeranylgeranylglyceryl phosphoglycerol, produced in Escherichia coli cells expressing several archaeal enzymes. LC-ESI-tandem-MS analyses proved that hydration occurs at the 2',3'-double bond of the geranylgeranyl group, yielding a 3'-hydroxylated lipid precursor. This result suggests that the encoded protein MA0127 is a hydratase involved in hydroxyarchaeol biosynthesis, because M. acetivorans is known to produce hydroxyarchaeol core lipids with a 3'-hydroxyphytanyl group. Furthermore, the distribution of the putative orthologs of ma0127 among methanogens is generally in good agreement with that of hydroxyarchaeol producers, including anaerobic methanotrophs (ANMEs). PMID:26361140

  6. Characterization of cDNA for PMT: a Partial Nicotine Biosynthesis-Related Gene Isolated from Indonesian Local Tobacco (Nicotiana tabacum cv. Sindoro1

    Directory of Open Access Journals (Sweden)

    Sesanti Basuki

    2013-12-01

    Full Text Available Nicotine is the major alkaloid compound in cultivated tobacco (Nicotiana tabacum that could potentially be converted into carcinogenic compound (nor-nicotine. The PMT gene encoding putrescine N-methyltransferase (PMT is one of the two key genes that play a prominent role in nicotine biosynthesis. The aimed of this study was to isolate and characterize the cDNA sequence originated from Indonesian local tobacco cv. Sindoro1 (Ntpmt_Sindoro1. The results showed that the Ntpmt_Sindoro1 was 1124 bp in length. This cDNA fragment encodes for 374 amino acid residues. The predicted polypeptide from the cDNA is a hidrophilic protein, and has a predicted molecular weight of 40.95 kD. The predicted amino acids sequence also showed high similarity to the PMT gene product Nicotiana sp. available in the GenBank data base. The amino acid sequences also exert conserved residues specifically exhibited only by PMT gene originated from N. tabacum. Clustering analysis revealed that Ntpmt_Sindoro1 belongs to the same clade as the PMT3 gene, a member of the N. tabacum PMT gene family. The Ntpmt_Sindoro1 cDNA sequence covering exon1-exon8 of the PMT gene fragment has been registered in the GenBank data base, under the accession number JX978277.

  7. Biosynthesis of Enediyne Antitumor Antibiotics

    OpenAIRE

    Van Lanen, Steven G.; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been...

  8. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  9. Characterization of the largest effector gene cluster of Ustilago maydis.

    Science.gov (United States)

    Brefort, Thomas; Tanaka, Shigeyuki; Neidig, Nina; Doehlemann, Gunther; Vincon, Volker; Kahmann, Regine

    2014-07-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function. PMID:24992561

  10. Clustering gene expression data using a diffraction‐inspired framework

    Directory of Open Access Journals (Sweden)

    Dinger Steven C

    2012-11-01

    Full Text Available Abstract Background The recent developments in microarray technology has allowed for the simultaneous measurement of gene expression levels. The large amount of captured data challenges conventional statistical tools for analysing and finding inherent correlations between genes and samples. The unsupervised clustering approach is often used, resulting in the development of a wide variety of algorithms. Typical clustering algorithms require selecting certain parameters to operate, for instance the number of expected clusters, as well as defining a similarity measure to quantify the distance between data points. The diffraction‐based clustering algorithm however is designed to overcome this necessity for user‐defined parameters, as it is able to automatically search the data for any underlying structure. Methods The diffraction‐based clustering algorithm presented in this paper is tested using five well‐known expression datasets pertaining to cancerous tissue samples. The clustering results are then compared to those results obtained from conventional algorithms such as the k‐means, fuzzy c‐means, self‐organising map, hierarchical clustering algorithm, Gaussian mixture model and density‐based spatial clustering of applications with noise (DBSCAN. The performance of each algorithm is measured using an average external criterion and an average validity index. Results The diffraction‐based clustering algorithm is shown to be independent of the number of clusters as the algorithm searches the feature space and requires no form of parameter selection. The results show that the diffraction‐based clustering algorithm performs significantly better on the real biological datasets compared to the other existing algorithms. Conclusion The results of the diffraction‐based clustering algorithm presented in this paper suggest that the method can provide researchers with a new tool for successfully analysing microarray data.

  11. Developing tools for investigating the multiple roles of ethylene: Identification and mapping genes for ethylene biosynthesis and reception in barley

    Science.gov (United States)

    The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number of genes, and of their function, that are involved in ethylene biosynthesis and reception is necessary to determ...

  12. Biosynthesis of isoprenoids in the male marking pheromone of bumblebees: Through regulation of gene expression to speciation?

    Czech Academy of Sciences Publication Activity Database

    Valterová, Irena; Prchalová, Darina; Brabcová, Jana; Kindl, Jiří; Žáček, Petr; Pichová, Iva

    Stockholm: International Society of Chemical Ecology, 2015. s. 89. [ISCE 2015. 29.06.2015-03.07.2015, Stockholm] R&D Projects: GA ČR GA15-06569S Institutional support: RVO:61388963 Keywords : Bombus * pheromone biosynthesis * gene expression Subject RIV: CE - Biochemistry

  13. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes

    Science.gov (United States)

    The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato (Solanum tuberosum L.) tubers. An increase in ABA and ABA metabolite content was observed 48 h after wounding and remained elevated through 96 h. ...

  14. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  15. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps

    OpenAIRE

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-01-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules ...

  16. Genome classification by gene distribution: An overlapping subspace clustering approach

    Directory of Open Access Journals (Sweden)

    Halgamuge Saman K

    2008-04-01

    Full Text Available Abstract Background Genomes of lower organisms have been observed with a large amount of horizontal gene transfers, which cause difficulties in their evolutionary study. Bacteriophage genomes are a typical example. One recent approach that addresses this problem is the unsupervised clustering of genomes based on gene order and genome position, which helps to reveal species relationships that may not be apparent from traditional phylogenetic methods. Results We propose the use of an overlapping subspace clustering algorithm for such genome classification problems. The advantage of subspace clustering over traditional clustering is that it can associate clusters with gene arrangement patterns, preserving genomic information in the clusters produced. Additionally, overlapping capability is desirable for the discovery of multiple conserved patterns within a single genome, such as those acquired from different species via horizontal gene transfers. The proposed method involves a novel strategy to vectorize genomes based on their gene distribution. A number of existing subspace clustering and biclustering algorithms were evaluated to identify the best framework upon which to develop our algorithm; we extended a generic subspace clustering algorithm called HARP to incorporate overlapping capability. The proposed algorithm was assessed and applied on bacteriophage genomes. The phage grouping results are consistent overall with the Phage Proteomic Tree and showed common genomic characteristics among the TP901-like, Sfi21-like and sk1-like phage groups. Among 441 phage genomes, we identified four significantly conserved distribution patterns structured by the terminase, portal, integrase, holin and lysin genes. We also observed a subgroup of Sfi21-like phages comprising a distinctive divergent genome organization and identified nine new phage members to the Sfi21-like genus: Staphylococcus 71, phiPVL108, Listeria A118, 2389, Lactobacillus phi AT3, A2

  17. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  18. Spatio-Temporal Expression Pattern of Six Novel Candidate Genes in Ginsenoside Biosynthesis from Panax ginseng C.A. Meyer

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yong LUO; Shui-Ping LIU; Xiang-Hui CHEN; Ying RUAN; Jian-Qing LUO; Bin WEN; Chun-Lin LIU; Wei-Xin HU

    2005-01-01

    To explore the mode of the spatio-temporal expression of six newly discovered ginsenoside biosynthesis candidate gene transcripts, both Northern blotting and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) were used to elucidate the mRNA expression levels of the transcripts in various tissues and organs of Panax ginseng C. A. Meyer during different growth development stages. The six gene transcripts were all differentially expressed in cultured callus, root, stem, leaf, and seed.The mRNA expression levels were significantly higher in four-year-old roots than in one-year-old roots, and results of semi-quantitative RT-PCR assays were in accordance with those of Northern blotting analyses.The results strongly suggest that all six genes were differentially expressed at root-specific developmental stages. In particular, when a quiescent early stage culture suspension of P. ginseng cells was exposed to the ginsenoside biosynthesis-promoting elicitor Aspergillus niger polysaccharide, the GBR6 gene transcript response showed time-dependent increments and was parallel with ginsenoside productivity (P < 0.01).Overexpression of the GBR6 gene is likely to play a critically important role in the biosynthesis of ginsenosides.The results of the present study provided a background for the further elucidation of the structure and physiological function of these six candidate genes.

  19. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.

    Science.gov (United States)

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-jun; Yan, Juan; Yu, Ming-liang

    2014-09-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches. PMID:25183035

  20. Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

    OpenAIRE

    Hasan, Tarik; Choi, Chul Hee; Oh, Man Hwan

    2015-01-01

    Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the ge...

  1. Unique nucleotide polymorphism of ankyrin gene cluster in Arabidopsis

    Indian Academy of Sciences (India)

    Jianchang Du; Xingna Wang; Mingsheng Zhang; Dacheng Tian; Yong-Hua Yang

    2007-01-01

    The ankyrin (ANK) gene cluster is a part of a multigene family encoding ANK transmembrane proteins in Arabidopsis thaliana, and plays an important role in protein–protein interactions and in signal pathways. In contrast to other regions of a genome, the ANK gene cluster exhibits an extremely high level of DNA polymorphism in an ∼5-kb region, without apparent decay. Phylogenetic analysis detects two clear, deeply differentiated haplotypes (dimorphism). The divergence between haplotypes of accession Col-0 and Ler-0 (Hap-C and Hap-L) is estimated to be 10.7%, approximately equal to the 10.5% average divergence between A. thaliana and A. lyrata. Sequence comparisons for the ANK gene cluster homologues in Col-0 indicate that the members evolve independently, and that the similarity among paralogues is lower than between alleles. Very little intralocus recombination or gene conversion is detected in ANK regions. All these characteristics of the ANK gene cluster are consistent with a tandem gene duplication and birth-and-death process. The possible mechanisms for and implications of this elevated nucleotide variation are also discussed, including the suggestion of balancing selection.

  2. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism.

    Directory of Open Access Journals (Sweden)

    Jian Zheng

    Full Text Available Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp, 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.

  3. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    Science.gov (United States)

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  4. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  5. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Directory of Open Access Journals (Sweden)

    Mie Bech Lukassen

    2015-07-01

    Full Text Available Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine. Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1, a polyketide synthase (PKS2, a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster.

  6. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis.

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G; Sørensen, Jens Laurids

    2015-07-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  7. Bi-clustering gene expression data under constraints

    OpenAIRE

    Le, Thanh; Fierro Gutiérrez, Ana Carolina Elisa; Guns, Tias; van Leeuwen, Matthijs; Nijssen, Siegfried; De Raedt, Luc; Marchal, Kathleen

    2013-01-01

    This paper presents a constraint-based approach to mining bi-clusters in gene expression data. Instead of designing an algorithm for each specific task, we propose to use constraint programming to turn the mining problem into a constraint satisfaction and/or optimisation problem. We demonstrate this promising approach on two cases. The first is to mine a single constant-row bi-cluster under noise constraints. The second is to mine a set of generic noisy constant-row bi-clusters under structu...

  8. Structure and gene cluster of the O-antigen of Escherichia coli O156 containing a pyruvic acid acetal.

    Science.gov (United States)

    Duan, Zhifeng; Senchenkova, Sof'ya N; Guo, Xi; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2016-07-22

    The lipopolysaccharide of Escherichia coli O156 was degraded under mild acidic and alkaline conditions and the resulting polysaccharides were studied by sugar analysis and (1)H and (13)C NMR spectroscopy. The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established: where Rpyr indicates R-configurated pyruvic acid acetal. Minor O-acetyl groups also were present and tentatively localized on the Gal residues. The gene cluster for biosynthesis of the O-antigen of E. coli O156 was analyzed and shown to be consistent with the O-polysaccharide structure. PMID:27177202

  9. Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application.

    Science.gov (United States)

    Yin, Ying; Cai, Menghao; Zhou, Xiangshan; Li, Zhiyong; Zhang, Yuanxing

    2016-09-01

    The knowledge of biosynthesis gene clusters, production improving methods, and bioactivity mechanisms is very important for the development of filamentous fungi metabolites. Metabolic engineering and heterologous expression methods can be applied to improve desired metabolite production, when their biosynthesis pathways have been revealed. And, stable supplement is a necessary basis of bioactivity mechanism discovery and following clinical trial. Aspergillus terreus is an outstanding producer of many bioactive agents, and a large part of them are polyketides. In this review, we took polyketides from A. terreus as examples, focusing on 13 polyketide synthase (PKS) genes in A. terreus NIH 2624 genome. The biosynthesis pathways of nine PKS genes have been reported, and their downstream metabolites are lovastatin, terreic acid, terrein, geodin, terretonin, citreoviridin, and asperfuranone, respectively. Among them, lovastatin is a well-known hypolipidemic agent. Terreic acid, terrein, citreoviridin, and asperfuranone show good bioactivities, especially anticancer activities. On the other hand, geodin and terretonin are mycotoxins. So, biosynthesis gene cluster information is important for the production or elimination of them. We also predicted three possible gene clusters that contain four PKS genes by homologous gene alignment with other Aspergillus strains. We think that this is an effective way to mine secondary metabolic gene clusters. PMID:27455860

  10. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat

    Science.gov (United States)

    Amarasinghe, Chami C.; Fernando, W. G. Dilantha

    2016-01-01

    Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explored. Therefore, in this study, nine genes that involved in trichothecene biosynthesis were analyzed among 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol producing F. graminearum strains in a time course study. Quantitative reverse transcription polymerase chain reaction revealed that the expression of all examined TRI gene transcripts initiated at 2 days post-inoculation (dpi), peaked at three to four dpi and gradually decreased at seven dpi. The early induction of TRI genes indicates that presence of high levels of TRI gene transcripts at early stages is important to initiate the biosynthetic pathway of DON and NIV. Comparison of gene expression among the three chemotypes showed that relative expression of TRI genes was higher in 3-ADON producing strains compared with 15-ADON and NIV strains. Comparatively higher levels of gene expression may contribute to the higher levels of DON produced by 3-ADON strains in infected grains. PMID:27550207

  11. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat.

    Science.gov (United States)

    Amarasinghe, Chami C; Fernando, W G Dilantha

    2016-01-01

    Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explored. Therefore, in this study, nine genes that involved in trichothecene biosynthesis were analyzed among 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol producing F. graminearum strains in a time course study. Quantitative reverse transcription polymerase chain reaction revealed that the expression of all examined TRI gene transcripts initiated at 2 days post-inoculation (dpi), peaked at three to four dpi and gradually decreased at seven dpi. The early induction of TRI genes indicates that presence of high levels of TRI gene transcripts at early stages is important to initiate the biosynthetic pathway of DON and NIV. Comparison of gene expression among the three chemotypes showed that relative expression of TRI genes was higher in 3-ADON producing strains compared with 15-ADON and NIV strains. Comparatively higher levels of gene expression may contribute to the higher levels of DON produced by 3-ADON strains in infected grains. PMID:27550207

  12. Disruption of Escherichia coli Nissle 1917 K5 capsule biosynthesis, through loss of distinct kfi genes, modulates interaction with intestinal epithelial cells and impact on cell health.

    Directory of Open Access Journals (Sweden)

    Jonathan Nzakizwanayo

    Full Text Available Escherichia coli Nissle 1917 (EcN is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells. This demonstrated mutants disrupted in the kfiB gene, of the K5 capsule biosynthesis cluster, to be significantly enhanced in attachment to Caco-2 cells. However, this phenotype was distinct from that previously reported for EcN K5 deficient mutants (kfiC null mutants, prompting us to explore further the role of kfiB in EcN:Caco-2 interaction. Isogenic mutants with deletions in kfiB (EcNΔkfiB, or the more extensively characterised K5 capsule biosynthesis gene kfiC (EcNΔkfiC, were both shown to be capsule deficient, but displayed divergent phenotypes with regard to impact on Caco-2 cells. Compared with EcNΔkfiC and the EcN wild-type, EcNΔkfiB exhibited significantly greater attachment to Caco-2 cells, as well as apoptotic and cytotoxic effects. In contrast, EcNΔkfiC was comparable to the wild-type in these assays, but was shown to induce significantly greater COX-2 expression in Caco-2 cells. Distinct differences were also apparent in the pervading cell morphology and cellular aggregation between mutants. Overall, these observations reinforce the importance of the EcN K5 capsule in host-EcN interactions, but demonstrate that loss of distinct genes in the K5 pathway can modulate the impact of EcN on epithelial cell health.

  13. Disruption of Escherichia coli Nissle 1917 K5 capsule biosynthesis, through loss of distinct kfi genes, modulates interaction with intestinal epithelial cells and impact on cell health.

    Science.gov (United States)

    Nzakizwanayo, Jonathan; Kumar, Sandeep; Ogilvie, Lesley A; Patel, Bhavik A; Dedi, Cinzia; Macfarlane, Wendy M; Jones, Brian V

    2015-01-01

    Escherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells. This demonstrated mutants disrupted in the kfiB gene, of the K5 capsule biosynthesis cluster, to be significantly enhanced in attachment to Caco-2 cells. However, this phenotype was distinct from that previously reported for EcN K5 deficient mutants (kfiC null mutants), prompting us to explore further the role of kfiB in EcN:Caco-2 interaction. Isogenic mutants with deletions in kfiB (EcNΔkfiB), or the more extensively characterised K5 capsule biosynthesis gene kfiC (EcNΔkfiC), were both shown to be capsule deficient, but displayed divergent phenotypes with regard to impact on Caco-2 cells. Compared with EcNΔkfiC and the EcN wild-type, EcNΔkfiB exhibited significantly greater attachment to Caco-2 cells, as well as apoptotic and cytotoxic effects. In contrast, EcNΔkfiC was comparable to the wild-type in these assays, but was shown to induce significantly greater COX-2 expression in Caco-2 cells. Distinct differences were also apparent in the pervading cell morphology and cellular aggregation between mutants. Overall, these observations reinforce the importance of the EcN K5 capsule in host-EcN interactions, but demonstrate that loss of distinct genes in the K5 pathway can modulate the impact of EcN on epithelial cell health. PMID:25790373

  14. Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds

    Directory of Open Access Journals (Sweden)

    Yusuke Tagashira

    2015-04-01

    Full Text Available The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP6 biosynthesis-related genes, as InsP6 is a major storage form of P in seeds. The rice (Oryza sativa L. low phytic acid mutant lpa1-1 has been identified as a homolog of archael 2-phosphoglycerate kinase. The homolog might act as an inositol monophosphate kinase, which catalyzes a key step in InsP6 biosynthesis. Overexpression of the homolog in transgenic rice resulted in a significant increase in total P content in seed, due to increases in InsP6 and inorganic phosphates. On the other hand, overexpression of genes that catalyze the first and last steps of InsP6 biosynthesis could not increase total P levels. From the experiments using developing seeds, it is suggested that the activation of InsP6 biosynthesis in both very early and very late periods of seed development increases the influx of P from vegetative organs into seeds. This is the first report from a study attempting to elevate the P levels of seed through a transgenic approach.

  15. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    Science.gov (United States)

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids. PMID:26945769

  16. A Resampling Based Clustering Algorithm for Replicated Gene Expression Data.

    Science.gov (United States)

    Li, Han; Li, Chun; Hu, Jie; Fan, Xiaodan

    2015-01-01

    In gene expression data analysis, clustering is a fruitful exploratory technique to reveal the underlying molecular mechanism by identifying groups of co-expressed genes. To reduce the noise, usually multiple experimental replicates are performed. An integrative analysis of the full replicate data, instead of reducing the data to the mean profile, carries the promise of yielding more precise and robust clusters. In this paper, we propose a novel resampling based clustering algorithm for genes with replicated expression measurements. Assuming those replicates are exchangeable, we formulate the problem in the bootstrap framework, and aim to infer the consensus clustering based on the bootstrap samples of replicates. In our approach, we adopt the mixed effect model to accommodate the heterogeneous variances and implement a quasi-MCMC algorithm to conduct statistical inference. Experiments demonstrate that by taking advantage of the full replicate data, our algorithm produces more reliable clusters and has robust performance in diverse scenarios, especially when the data is subject to multiple sources of variance. PMID:26671802

  17. Generating in vivo cloning vectors for parallel cloning of large gene clusters by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Jeongmin Lee

    Full Text Available A robust method for the in vivo cloning of large gene clusters was developed based on homologous recombination (HR, requiring only the transformation of PCR products into Escherichia coli cells harboring a receiver plasmid. Positive clones were selected by an acquired antibiotic resistance, which was activated by the recruitment of a short ribosome-binding site plus start codon sequence from the PCR products to the upstream position of a silent antibiotic resistance gene in receiver plasmids. This selection was highly stringent and thus the cloning efficiency of the GFPuv gene (size: 0.7 kb was comparable to that of the conventional restriction-ligation method, reaching up to 4.3 × 10(4 positive clones per μg of DNA. When we attempted parallel cloning of GFPuv fusion genes (size: 2.0 kb and carotenoid biosynthesis pathway clusters (sizes: 4 kb, 6 kb, and 10 kb, the cloning efficiency was similarly high regardless of the DNA size, demonstrating that this would be useful for the cloning of large DNA sequences carrying multiple open reading frames. However, restriction analyses of the obtained plasmids showed that the selected cells may contain significant amounts of receiver plasmids without the inserts. To minimize the amount of empty plasmid in the positive selections, the sacB gene encoding a levansucrase was introduced as a counter selection marker in receiver plasmid as it converts sucrose to a toxic levan in the E. coli cells. Consequently, this method yielded completely homogeneous plasmids containing the inserts via the direct transformation of PCR products into E. coli cells.

  18. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids.

    Directory of Open Access Journals (Sweden)

    Haiyan Li

    Full Text Available Safflower (Carthamus tinctorius L. is one of the most extensively used oil crops in the world. However, little is known about how its compounds are synthesized at the genetic level. In this study, Solexa-based deep sequencing on seed, leaf and petal of safflower produced a de novo transcriptome consisting of 153,769 unigenes. We annotated 82,916 of the unigenes with gene annotation and assigned functional terms and specific pathways to a subset of them. Metabolic pathway analysis revealed that 23 unigenes were predicted to be responsible for the biosynthesis of flavonoids and 8 were characterized as seed-specific oleosins. In addition, a large number of differentially expressed unigenes, for example, those annotated as participating in anthocyanin and chalcone synthesis, were predicted to be involved in flavonoid biosynthesis pathways. In conclusion, the de novo transcriptome investigation of the unique transcripts provided candidate gene resources for studying oleosin-coding genes and for investigating genes related to flavonoid biosynthesis and metabolism in safflower.

  19. Flavonoid Biosynthesis Genes Putatively Identified in the Aromatic Plant Polygonum minus via Expressed Sequences Tag (EST Analysis

    Directory of Open Access Journals (Sweden)

    Zamri Zainal

    2012-02-01

    Full Text Available P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large‑scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs which were deposited in dbEST in the National Center of Biotechnology Information (NCBI. From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304, flavonol synthase, FLS (JG705819 and leucoanthocyanidin dioxygenase, LDOX (JG745247 were selected for further examination by quantitative RT-PCR (qRT-PCR in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.

  20. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects

    Czech Academy of Sciences Publication Activity Database

    Lorenz, N.; Haarmann, T.; Pažoutová, Sylvie; Jung, M.; Tudzynski, P.

    2009-01-01

    Roč. 70, 15-16 (2009), s. 1822-1832. ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50200510 Keywords : Claviceps purpurea * Ergot fungus * Ergot alkaloid gene cluster Subject RIV: EE - Microbiology, Virology Impact factor: 3.104, year: 2009

  1. Evolution and differential expression of a vertebrate vitellogenin gene cluster

    Directory of Open Access Journals (Sweden)

    Kongshaug Heidi

    2009-01-01

    Full Text Available Abstract Background The multiplicity or loss of the vitellogenin (vtg gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental, cleavage pattern (meroblastic or holoblastic and character of the egg (pelagic or benthic. Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch and Actinopterygii (fish branch. We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration

  2. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  3. Genetic Organization of the Region Encoding Regulation, Biosynthesis, and Transport of Rhizobactin 1021, a Siderophore Produced by Sinorhizobium meliloti

    OpenAIRE

    Lynch, Damien; O'Brien, John; Welch, Timothy; Clarke, Paul; Ó Cuív, Páraic; Crosa, Jorge H.; O'Connell, Michael

    2001-01-01

    Eight genes have been identified that function in the regulation, biosynthesis, and transport of rhizobactin 1021, a hydroxamate siderophore produced under iron stress by Sinorhizobium meliloti. The genes were sequenced, and transposon insertion mutants were constructed for phenotypic analysis. Six of the genes, named rhbABCDEF, function in the biosynthesis of the siderophore and were shown to constitute an operon that is repressed under iron-replete conditions. Another gene in the cluster, n...

  4. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  5. Coupled Two-Way Clustering Analysis of Gene Microarray Data

    CERN Document Server

    Getz, G; Domany, E

    2000-01-01

    We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  6. The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

    DEFF Research Database (Denmark)

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca;

    2015-01-01

    conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during...... switching was the result of horizontal transfer and genetic recombination of lipopolysaccharide (LPS) biosynthesis genes originating from an MDR taxonomic outlier P. aeruginosa strain. Moreover, the recombination event also resulted in acquisition of antibiotic resistance genes. These results impact on our...... clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P...

  7. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development* #

    OpenAIRE

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-Jun; Yan, Juan; Yu, Ming-liang

    2014-01-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription pol...

  8. A Genomewide Screen in Schizosaccharomyces pombe for Genes Affecting the Sensitivity of Antifungal Drugs That Target Ergosterol Biosynthesis

    OpenAIRE

    Fang, Yue; Hu, Lingling; Zhou, Xin; Jaiseng, Wurentuya; Zhang, Ben; Takami, Tomonori; Kuno, Takayoshi

    2012-01-01

    We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absence rendered cells sensitive to these antifungals were classified into various functional categories,...

  9. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis

    OpenAIRE

    Leiva, Kritsye; Werner, Nicole; Sepúlveda, Dionisia; Barahona, Salvador; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. Results In this study, the CYP51 gene from X. dendrorhous was isolated and its ...

  10. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines.

    Directory of Open Access Journals (Sweden)

    David L Erickson

    Full Text Available Antimicrobial chemokines (AMCs are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.

  11. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    Science.gov (United States)

    Erickson, David L.; Lew, Cynthia S.; Kartchner, Brittany; Porter, Nathan T.; McDaniel, S. Wade; Jones, Nathan M.; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface. PMID:27275606

  12. Role of Plant Fatty acid Elongase (3 keto acyl-CoA Synthase gene in Cuticular Wax Biosynthesis

    Directory of Open Access Journals (Sweden)

    Uppala Lokesh

    2013-12-01

    Full Text Available Plant surfaces are ensheathed by cuticular wax, amorphous intra-cuticular embedded in cutin polymer and crystalloid epi-cuticular that imparts a whitish appearance, confers drought resistance by reducing stomatal transpiration and also protects from U.V Radiation, phytophagous insects etc. Very long chain fatty acids acts as precursors for cuticular wax bio-synthesis. Wax bio-synthesis begins with fatty acid synthesis in the plastid (de novo synthesis of C16 and C18 and elongation of fatty acids in endoplasmic reticulum (C20 – C34 by four distinct enzymes 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA reductase, 3-hydroxacyl-CoA dehydratase, trans-2,3-enoyl-CoA reductase (KCS, KCR, HCD, ECR. The KCS, a fatty acid elongase, determines the chain length and substrate specificity of the condensation reaction, a rate limiting step and the subsequent elongated products alkanes, aldehydes, primary alcohols, secondary alcohols, ketones and wax esters. 21 KCS genes were annotated in Arabidopsis thaliana Genome of which some KCSs were identified involved in cuticle formation (CER6 (CUT1, KCS1, KCS2, (DAISY, KCS20 and FDH.The current review will focus on the bio-chemical, genetic and molecular approaches on KCSs genes, predominantly KCS1 in plants particularly useful in identifying and characterizing gene products involved in wax bio-synthesis, secretion and function for developing transgenic crops that combat various stresses. INTRODUCTION

  13. Cloning and characterization of novel methylsalicylic acid synthase gene involved in the biosynthesis of isoasperlactone and asperlactone in Aspergillus westerdijkiae

    International Nuclear Information System (INIS)

    Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites including isoasperlactone and asperlactone. A 5298 bp polyketide synthase gene ''aomsas'' has been cloned in Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid sequence of aomsas shows an identity of 40-56% with different methylsalicylic acid synthase genes found in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found to be associated with the biosynthesis of isoasperlactone and asperlactone. Moreover an aomsas knockout mutant ''aomsas'' of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and asperlactone, but also 6-methylsalicylic acid. The genetically complemented mutant aomsas restored the biosynthesis of all the missing metabolites. Chemical complementation through the addition of 6-methylsalicylic acid, aspyrone and diepoxide to growing culture of aomsas mutant revealed that these compounds play intermediate roles in the biosynthesis of asperlactone and isoasperlactone. (author)

  14. De novo transcriptome assembly in chili pepper (Capsicum frutescens to identify genes involved in the biosynthesis of capsaicinoids.

    Directory of Open Access Journals (Sweden)

    Shaoqun Liu

    Full Text Available The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.. We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT, which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes analysis. A significant number of SSR (Simple Sequence Repeat and SNP (Single Nucleotide Polymorphism markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.

  15. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    Science.gov (United States)

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  16. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  17. Regulatory networks, genes and glycerophospholipid biosynthesis pathway in schistosomiasis: a systems biology view for pharmacological intervention.

    Science.gov (United States)

    Shinde, Sonali; Mol, Milsee; Singh, Shailza

    2014-10-25

    Understanding network topology through embracing the global dynamical regulation of genes in an active state space rather than traditional one-gene-one trait approach facilitates the rational drug development process. Schistosomiasis, a neglected tropical disease, has glycerophospholipids as abundant molecules present on its surface. Lack of effective clinical solutions to treat pathogens encourages us to carry out systems-level studies that could contribute to the development of an effective therapy. Development of a strategy for identifying drug targets by combined genome-scale metabolic network and essentiality analyses through in silico approaches provides tantalizing opportunity to investigate the role of protein/substrate metabolism. A genome-scale metabolic network model reconstruction represents choline-phosphate cytidyltransferase as the rate limiting enzyme and regulates the rate of phosphatidylcholine (PC) biosynthesis. The uptake of choline was regulated by choline concentration, promoting the regulation of phosphocholine synthesis. In Schistosoma, the change in developmental stage could result from the availability of choline, hampering its developmental cycle. There are no structural reports for this protein. In order to inhibit the activity of choline-phosphate cytidyltransferase (CCT), it was modeled by homology modeling using 1COZ as the template from Bacillus subtilis. The transition-state stabilization and catalytic residues were mapped as 'HXGH' and 'RTEGISTT' motif. CCT catalyzes the formation of CDP-choline from phosphocholine in which nucleotidyltransferase adds CTP to phosphocholine. The presence of phosphocholine permits the parasite to survive in an immunologically hostile environment. This feature endeavors development of an inhibitor specific for cytidyltransferase in Schistosoma. Flavonolignans were used to inhibit this activity in which hydnowightin showed the highest affinity as compared to miltefosine. PMID:25149020

  18. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Directory of Open Access Journals (Sweden)

    Kudrna David

    2011-03-01

    Full Text Available Abstract Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1 digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb to 157 Kb (Eg_Ba, very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×, contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae

  19. Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica.

    Science.gov (United States)

    Morita, Tomotake; Ito, Emi; Kitamoto, Hiroko K; Takegawa, Kaoru; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2010-11-01

    The yeast Pseudozyma antarctica produces a large amount of glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. To investigate the biosynthesis of MELs in the yeast, we recently reported expressed sequence tag (EST) analysis and estimated genes expressing under MEL production conditions. Among the genes, a contiguous sequence of 938 bp, PA_004, showed high sequence identity to the gene emt1, encoding an erythritol/mannose transferase of Ustilago maydis, which is essential for MEL biosynthesis. The predicted translation product of the extended PA_004 containing the two introns and a stop codon was aligned with Emt1 of U. maydis. The predicted amino acid sequence shared high identity (72%) with Emt1 of U. maydis, although the amino-terminal was incomplete. To identify the gene as PaEMT1 encoding an erythritol/mannose transferase of P. antarctica, the gene-disrupted strain was developed by the method for targeted gene disruption, using hygromycin B resistance as the selection marker. The obtained ΔPaEMT1 strain failed to produce MELs, while its growth was the same as that of the parental strain. The additional mannosylerythritol into culture allowed ΔPaEMT1 strain to form MELs regardless of the carbon source supplied, indicating a defect of the erythritol/mannose transferase activity. Furthermore, we found that MEL formation is associated with the morphology and low-temperature tolerance of the yeast. PMID:20564650

  20. [Sequence of Escherichia coli O11 O-antigen gene cluster and identification of molecular markers specific to O11].

    Science.gov (United States)

    Wang, Wei; Peng, Xia; Wang, Quan; Cheng, Jian-Song; Wang, Lei

    2006-06-01

    Escherichia coli O11 belongs to Shiga toxin-producing Escherichia coli (STEC), which can cause food-borne disease, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS) in humans. Because of its character of specificity, the O-antigen gene cluster provides the best material for the selection of molecular markers which can be used for rapid genotyping of bacterial strain. In this study, the E.coli O11 O-antigen gene cluster was amplified by Long-range PCR and was sequenced using Shotgun-sequencing approach. Twelve open reading frames were assigned functions on the basis of homology in the E. coli O11 O-antigen gene cluster, including UDP-N-acetyl glucosamine-4-epimerase gene (gne), genes responsible for the biosynthesis of GDP-L-fucose (gmd, fcl, gmm, manC, manB), glycosyl transferase genes, O-unit flippase gene (wzx) and O-antigen polymerase gene (wzy). By polymerase chain reaction against representative stains for all the 166 E. coli and 43 Shigella O serotypes, two genes and four pairs of primers were identified to be specific to E. coli O11. Further PCR was done to detect E. coli O11 from the environmental specimens, and the sensitivities for detecting E.coli O11 from the pork and dejecta specimens were 0.25 cfu/g and 2.5 x 10(3) cfu/g, respectively. Moreover, eight probes were designed and proved to be unique to E. coli O11, which provides the basis for a sensitive test of the rapid detection of E. coli O11 by DNA microarray method. PMID:16933598

  1. Horizontal Transfer and Death of a Fungal Secondary Metabolic Gene Cluster

    OpenAIRE

    Campbell, Matthew A; Rokas, Antonis; Slot, Jason C.

    2012-01-01

    A cluster composed of four structural and two regulatory genes found in several species of the fungal genus Fusarium (class Sordariomycetes) is responsible for the production of the red pigment bikaverin. We discovered that the unrelated fungus Botrytis cinerea (class Leotiomycetes) contains a cluster of five genes that is highly similar in sequence and gene order to the Fusarium bikaverin cluster. Synteny conservation, nucleotide composition, and phylogenetic analyses of the cluster genes in...

  2. De novo characterization of the Chinese fir (Cunninghamia lanceolata transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis

    Directory of Open Access Journals (Sweden)

    Huang Hua-Hong

    2012-11-01

    Full Text Available Abstract Background Chinese fir (Cunninghamia lanceolata is an important timber species that accounts for 20–30% of the total commercial timber production in China. However, the available genomic information of Chinese fir is limited, and this severely encumbers functional genomic analysis and molecular breeding in Chinese fir. Recently, major advances in transcriptome sequencing have provided fast and cost-effective approaches to generate large expression datasets that have proven to be powerful tools to profile the transcriptomes of non-model organisms with undetermined genomes. Results In this study, the transcriptomes of nine tissues from Chinese fir were analyzed using the Illumina HiSeq™ 2000 sequencing platform. Approximately 40 million paired-end reads were obtained, generating 3.62 gigabase pairs of sequencing data. These reads were assembled into 83,248 unique sequences (i.e. Unigenes with an average length of 449 bp, amounting to 37.40 Mb. A total of 73,779 Unigenes were supported by more than 5 reads, 42,663 (57.83% had homologs in the NCBI non-redundant and Swiss-Prot protein databases, corresponding to 27,224 unique protein entries. Of these Unigenes, 16,750 were assigned to Gene Ontology classes, and 14,877 were clustered into orthologous groups. A total of 21,689 (29.40% were mapped to 119 pathways by BLAST comparison against the Kyoto Encyclopedia of Genes and Genomes (KEGG database. The majority of the genes encoding the enzymes in the biosynthetic pathways of cellulose and lignin were identified in the Unigene dataset by targeted searches of their annotations. And a number of candidate Chinese fir genes in the two metabolic pathways were discovered firstly. Eighteen genes related to cellulose and lignin biosynthesis were cloned for experimental validating of transcriptome data. Overall 49 Unigenes, covering different regions of these selected genes, were found by alignment. Their expression patterns in different tissues

  3. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides

    Directory of Open Access Journals (Sweden)

    Jensen Niels

    2009-12-01

    Full Text Available Abstract Background An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Results Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being

  4. Phenylalanine biosynthesis in Brevibacterium lactofermentum using Escherichia coli genes pheA, aroG and tyrB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genetic engineering technology to increase the production of L-phenylalanine was used in the study.Three genes encoding the key enzymes involved in the biosynthesis of L-phenylalanine were utilized, in which the gene aroG encodes 3-deoxy-D-arabino-heptulosonate-7-phosphate synthetase (DS); the gene pheA encodes bifunctional enzyme of chorisate mutase (CM) and prephenate dehydratase (PD); and the gene tyrb encodes aminotransferase (AT).The three genes were amplified by polymerase chain reaction (PCR) from the genome of the E. coli mutant strains resistant to fluro-DL-phenylalanine and inserted into the cloning vectors. Then, they were expressed in E. coli and Brevibacterium lactofermentum in a tandem arrangement. The expressed enzymes had high activities in the host cells.

  5. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae.

    Science.gov (United States)

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-06-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, "Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae" [1]. PMID:27054181

  6. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae

    Science.gov (United States)

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-01-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, “Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae” [1]. PMID:27054181

  7. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii.

    Science.gov (United States)

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20-25 day-old adult males and 20-25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  8. Expression of structural genes related to anthocyanin biosynthesis of Vitis amurensis

    Institute of Scientific and Technical Information of China (English)

    Quan Zhao; Fei He; Malcolm J Reeves; Qiu-Hong Pan; Chang-Qing Duan; Jun Wang

    2016-01-01

    This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore mRNA transcriptions of 11 structural genes (PAL, CHS3, CHI1, F3H2, F30H, F3050H, DFR, LDOX, UFGT, OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to 4 weeks after flowering (WAF), down-regulated from 6 WAF to veraison, whereas DFR was up-regulated at 8 WAF, and then up-regulated from veraison to maturity. CHS3, F3050H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the 11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcrip-tional level and the content of methoxyl-anthocyanins, and between F3050H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30H expression was up-regulated at 2 WAF. F3H2 expression was down-regu-lated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30H expression was down-reg-ulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30H transcriptional level was correlated posi-tively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.

  9. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.

    Science.gov (United States)

    Kumar, Sunil; Kalra, Shikha; Singh, Baljinder; Kumar, Avneesh; Kaur, Jagdeep; Singh, Kashmir

    2016-01-01

    Chlorophytum borivilianum is an important species of liliaceae family, owing to its vital medicinal properties. Plant roots are used for aphrodisiac, adaptogen, anti-aging, health-restorative and health-promoting purposes. Saponins, are considered to be the principal bioactive components responsible for the wide variety of pharmacological properties of this plant. In the present study, we have performed de novo root transcriptome sequencing of C. borivilianum using Illumina Hiseq 2000 platform, to gain molecular insight into saponins biosynthesis. A total of 33,963,356 high-quality reads were obtained after quality filtration. Sequences were assembled using various programs which generated 97,344 transcripts with a size range of 100-5,216 bp and N50 value of 342. Data was analyzed against non-redundant proteins, gene ontology (GO), and enzyme commission (EC) databases. All the genes involved in saponins biosynthesis along with five full-length genes namely farnesyl pyrophosphate synthase, cycloartenol synthase, β-amyrin synthase, cytochrome p450, and sterol-3-glucosyltransferase were identified. Read per exon kilobase per million (RPKM)-based comparative expression profiling was done to study the differential regulation of the genes. In silico expression analysis of seven selected genes of saponin biosynthetic pathway was validated by qRT-PCR. PMID:26458557

  10. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress.

    Science.gov (United States)

    Ma, Dongyun; Sun, Dexiang; Wang, Chenyang; Li, Yaoguang; Guo, Tiancai

    2014-07-01

    Flavonoids are the low molecular weight polyphenolic secondary metabolic compounds, and have various functions in growth, development, reproduction, and stress defense. However, little is known about the roles of the key enzymes in the flavonoids biosynthesis pathway in response to drought stress in winter wheat. Here, we investigated the expression pattern of flavonoids biosynthesis genes and accumulation of flavonoids in wheat leaves under drought stress. Quantitative real-time PCR analysis showed that there were a rapid increase in expression levels of TaCHS, TaCHI, TaF3H, TaFNS, TaFLS, TaDFR, and TaANS under drought stress in two wheat cultivars Aikang 58 (AK) and Chinese Spring (CS). The cultivar CS exhibited higher genes expression levels of TaCHS, TaCHI, TaF3H, TaFLS, TaDFR, and TaANS, and the cultivar AK showed a higher expression level of TaFNS gene during drought treatment. The increase rates of genes expression were superior in AK compared to CS. Total phenolics content, total flavonoids content, anthocyanin content, and schaftoside content in wheat leaves were enhanced during drought treatment and cultivar CS had a relative higher accumulation. These results suggest that the flavonoids pathway genes expression and accumulation of flavonoids compounds may be closely related to drought tolerant in wheat. Further, flavonoids response mechanism may be different between wheat cultivars. PMID:24727789

  11. Bi-clustering of Gene Expression Data Using Conditional Entropy

    Science.gov (United States)

    Olomola, Afolabi; Dua, Sumeet

    The inherent sparseness of gene expression data and the rare exhibition of similar expression patterns across a wide range of conditions make traditional clustering techniques unsuitable for gene expression analysis. Biclustering methods currently used to identify correlated gene patterns based on a subset of conditions do not effectively mine constant, coherent, or overlapping biclusters, partially because they perform poorly in the presence of noise. In this paper, we present a new methodology (BiEntropy) that combines information entropy and graph theory techniques to identify co-expressed gene patterns that are relevant to a subset of the sample. Our goal is to discover different types of biclusters in the presence of noise and to demonstrate the superiority of our method over existing methods in terms of discovering functionally enriched biclusters. We demonstrate the effectiveness of our method using both synthetic and real data.

  12. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    OpenAIRE

    Mie Bech Lukassen; Wagma Saei; Teis Esben Sondergaard; Anu Tamminen; Abhishek Kumar; Frank Kempken; Wiebe, Marilyn G.; Jens Laurids Sørensen

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus n...

  13. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  14. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    Directory of Open Access Journals (Sweden)

    Wenli Li

    2013-02-01

    Full Text Available The indolocarbazole (ICZ alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as a probe to isolate the 34.6-kb DNA region containing the spc gene cluster. Sequence analysis revealed genes for ICZ ring formation (spcO, D, P, C, sugar unit formation (spcA, B, E, K, J, I, glycosylation (spcN, G, methylation (spcMA, MB, as well as regulation (spcR. Their involvement in ICZ biosynthesis was confirmed by gene inactivation and heterologous expression in Streptomyces coelicolor M1152. This work represents the first cloning and characterization of an ICZ gene cluster isolated from a marine-derived actinomycete strain and would be helpful for thoroughly understanding the biosynthetic mechanism of ICZ glycosides.

  15. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    OpenAIRE

    Cacho, Ralph A.; Yi eTang; Yit-Heng eChooi

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific secondary metabolite compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies...

  16. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    OpenAIRE

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further...

  17. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes.

    OpenAIRE

    G. A. Armstrong; Alberti, M; Hearst, J E

    1990-01-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C40 carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. We report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhod...

  18. De Novo Transcriptome Assembly in Shiraia bambusicola to Investigate Putative Genes Involved in the Biosynthesis of Hypocrellin A.

    Science.gov (United States)

    Zhao, Ning; Lin, Xi; Qi, Shan-Shan; Luo, Zhi-Mei; Chen, Shuang-Lin; Yan, Shu-Zhen

    2016-01-01

    Shiraia bambusicola is a species of the monotypic genus Shiraia in the phylum Ascomycota. In China, it is known for its pharmacological properties that are used to treat rheumatic arthritis, sciatica, pertussis, tracheitis and so forth. Its major medicinal active metabolite is hypocrellin A, which exhibits excellent antiviral and antitumor properties. However, the genes involved in the hypocrellin A anabolic pathways were still unknown due to the lack of genomic information for this species. To investigate putative genes that are involved in the biosynthesis of hypocrellin A and determine the pathway, we performed transcriptome sequencing for Shiraia bambusicola S4201-W and the mutant S4201-D1 for the first time. S4201-W has excellent hypocrellin A production, while the mutant S4201-D1 does not. Then, we obtained 38,056,034 and 39,086,896 clean reads from S4201-W and S4201-D1, respectively. In all, 17,923 unigenes were de novo assembled, and the N50 length was 1970 bp. Based on the negative binomial distribution test, 716 unigenes were found to be upregulated, and 188 genes were downregulated in S4201-D1, compared with S4201-W. We have found seven unigenes involved in the biosynthesis of hypocrellin A and proposed a putative hypocrellin A biosynthetic pathway. These data will provide a valuable resource and theoretical basis for future molecular studies of hypocrellin A, help identify the genes involved in the biosynthesis of hypocrellin A and help facilitate functional studies for enhancing hypocrellin A production. PMID:26927096

  19. Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.).

    Science.gov (United States)

    Bakera, Beata; Makowska, Bogna; Groszyk, Jolanta; Niziołek, Michał; Orczyk, Wacław; Bolibok-Brągoszewska, Hanna; Hromada-Judycka, Aneta; Rakoczy-Trojanowska, Monika

    2015-08-01

    Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa-amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesis remains largely uncharacterized apart from some data from maize and wheat. The aim of this study was to isolate, sequence and characterize five genes (ScBx1, ScBx2, ScBx3, ScBx4 and ScBx5) encoding enzymes involved in the synthesis of DIBOA, an important defense compound of rye. Using a modified 3D procedure of BAC library screening, seven BAC clones containing all of the ScBx genes were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of these genes, including their promoters, introns and 3'UTRs. Comparative analysis showed that the ScBx genes are similar to those of other Poaceae species, especially to the TaBx genes. The polymorphisms present both in the coding sequences and non-coding regions of ScBx in relation to other Bx genes are predicted to have an impact on the expression, structure and properties of the encoded proteins. PMID:25666974

  20. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2012-01-01

    Full Text Available Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  1. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado.

    Science.gov (United States)

    Chernys, J T; Zeevaart, J A

    2000-09-01

    Avocado (Persea americana Mill. cv Lula) is a climacteric fruit that exhibits a rise in ethylene as the fruit ripens. This rise in ethylene is followed by an increase in abscisic acid (ABA), with the highest level occurring just after the peak in ethylene production. ABA is synthesized from the cleavage of carotenoid precursors. The cleavage of carotenoid precursors produces xanthoxin, which can subsequently be converted into ABA via ABA-aldehyde. Indirect evidence indicates that the cleavage reaction, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED), is the regulatory step in ABA synthesis. Three genes encoding NCED cleavage-like enzymes were cloned from avocado fruit. Two genes, PaNCED1 and PaNCED3, were strongly induced as the fruit ripened. The other gene, PaNCED2, was constitutively expressed during fruit ripening, as well as in leaves. This gene lacks a predicted chloroplast transit peptide. It is therefore unlikely to be involved in ABA biosynthesis. PaNCED1 was induced by water stress, but expression of PaNCED3 was not detectable in dehydrated leaves. Recombinant PaNCED1 and PaNCED3 were capable of in vitro cleavage of 9-cis-xanthophylls into xanthoxin and C(25)-apocarotenoids, but PaNCED2 was not. Taken together, the results indicate that ABA biosynthesis in avocado is regulated at the level of carotenoid cleavage. PMID:10982448

  2. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jimmy E Rodríguez

    Full Text Available The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL and diacyltrehalose/polyacyltrehalose (DAT/PAT profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1 and anaerobiosis (NRP2 models of hypoxia (Wayne model, and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.

  3. pks63787, a Polyketide Synthase Gene Responsible for the Biosynthesis of Benzenoids in the Medicinal Mushroom Antrodia cinnamomea.

    Science.gov (United States)

    Yu, Po-Wei; Chang, Ya-Chih; Liou, Ruey-Fen; Lee, Tzong-Huei; Tzean, Shean-Shong

    2016-06-24

    Antrodia cinnamomea, a unique resupinate basidiomycete endemic to Taiwan, has potent medicinal activities. The reddish basidiocarps and mycelia generally exhibit abundant metabolites and higher biological activity. To investigate the pigments of A. cinnamomea, polyketide synthase (PKS) genes were characterized based on its partially deciphered genome and the construction of a fosmid library. Furthermore, a gene disruption platform was established via protoplast transformation and homologous recombination. Of four putative polyketide synthase genes, pks63787 was selected and disrupted in the monokaryotic wild-type (wt) strain f101. Transformant Δpks63787 was deficient in the synthesis of several aromatic metabolites, including five benzenoids and two benzoquinone derivatives. Based on these results, a biosynthetic pathway for benzenoid derivatives was proposed. The pks63787 deletion mutant not only displayed a reduced red phenotype compared to the wt strain but also displayed less 1,1-biphenyl-2-picrylhydrazyl free radical scavenging activity. This finding suggests that PKS63787 is responsible for the biosynthesis of pigments and metabolites related to the antioxidant activity of A. cinnamomea. The present study focuses on the functional characterization of the PKS gene, the fluctuations of its profile of secondary metabolites, and interpretation of the biosynthesis of benzenoids. PMID:27227778

  4. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  5. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    OpenAIRE

    Hwang, Jae Yoon; Kim, Hyo Sun; Kim, Soo Hee; Oh, Hye Ryeung; Nam, Doo Hyun

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showe...

  6. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    OpenAIRE

    М. P. Teplitskaya; I. E. Sokolova

    2005-01-01

    These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of ini...

  7. Biosynthesis of enediyne antitumor antibiotics.

    Science.gov (United States)

    Van Lanen, Steven G; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027. PMID:18397168

  8. Molecular ecology of aspergillus section flavi species : approaches to understand the role of aflatoxin genes in aflatoxin biosynthesis

    OpenAIRE

    Abdel-Hadi, Ahmed

    2011-01-01

    This is the first study to integrate and correlate the effect of ecophysiological factors on the life cycle of Aspergillus flavus by carrying out complementary work on gene expression of the aflatoxin gene cluster, with growth, sporulation and phenotypic toxin production. This information was used to understand the role of ecological factors on key biosynthetic genes and examine the use of such information for control of aflatoxin production using RNA interference. Ecologica...

  9. Molecular Evidences for the Biosynthesis of Pederin by Endosymbiont

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-ping; WU Xuan; WANG Jin-jun; HUANG Fang

    2009-01-01

    Pederin belongs to a group of antitumor compounds found in terrestrial beetles and marine sponges. It is apparently used by some members of the rove beetle Paederus as a chemical defense against predators. A recent cluster analysis of the putative pederin biosynthesis gene (ped) strongly suggests that pederin is produced by bacterial symbionts. This paper reviewed the criteria for proving symbiontic origin of bioactive metabolite, indirect and molecular evidences for pederin bacterial origin, as well as three sets ofped clusters and putative biosynthesis process of pederin.

  10. A Hybrid Distance Measure for Clustering Expressed Sequence Tags Originating from the Same Gene Family

    OpenAIRE

    Ng, Keng-Hoong; Ho, Chin-Kuan; Phon-Amnuaisuk, Somnuk

    2012-01-01

    Background Clustering is a key step in the processing of Expressed Sequence Tags (ESTs). The primary goal of clustering is to put ESTs from the same transcript of a single gene into a unique cluster. Recent EST clustering algorithms mostly adopt the alignment-free distance measures, where they tend to yield acceptable clustering accuracies with reasonable computational time. Despite the fact that these clustering methods work satisfactorily on a majority of the EST datasets, they have a commo...

  11. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network.

    Science.gov (United States)

    Luo, Tao; Luo, Sha; Araújo, Wagner L; Schlicke, Hagen; Rothbart, Maxi; Yu, Jing; Fan, Tingting; Fernie, Alisdair R; Grimm, Bernhard; Luo, Meizhong

    2013-04-01

    The first committed and highly regulated step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, which is catalyzed by Mg chelatase that consists of CHLH, CHLD and CHLI subunits. In this study, CHLI and CHLD genes were suppressed by virus-induced gene silencing (VIGS-CHLI and VIGS-CHLD) in pea (Pisum sativum), respectively. VIGS-CHLI and VIGS-CHLD plants both showed yellow leaf phenotypes with the reduced Mg chelatase activity and the inactivated synthesis of 5-aminolevulinic acid. The lower chlorophyll accumulation correlated with undeveloped thylakoid membranes, altered chloroplast nucleoid structure, malformed antenna complexes and compromised photosynthesis capacity in the yellow leaf tissues of the VIGS-CHLI and VIGS-CHLD plants. Non-enzymatic antioxidant contents and the activities of antioxidant enzymes were altered in response to enhanced accumulation of reactive oxygen species (ROS) in the chlorophyll deficient leaves of VIGS-CHLI and VIGS-CHLD plants. Furthermore, the results of metabolite profiling indicate a tight correlation between primary metabolic pathways and Mg chelatase activity. We also found that CHLD induces a feedback-regulated change of the transcription of photosynthesis-associated nuclear genes. CHLD and CHLI silencing resulted in a rapid reduction of photosynthetic proteins. Taken together, Mg chelatase is not only a key regulator of tetrapyrrole biosynthesis but its activity also correlates with ROS homeostasis, primary interorganellar metabolism and retrograde signaling in plant cells. PMID:23416492

  12. Data Preprocessing in Cluster Analysis of Gene Expression

    Institute of Scientific and Technical Information of China (English)

    杨春梅; 万柏坤; 高晓峰

    2003-01-01

    Considering that the DNA microarray technology has generated explosive gene expression data and that it is urgent to analyse and to visualize such massive datasets with efficient methods, we investigate the data preprocessing methods used in cluster analysis, normalization or logarithm of the matrix, by using hierarchical clustering, principal component analysis (PCA) and self-organizing maps (SOMs). The results illustrate that when using the Euclidean distance as measuring metrics, logarithm of relative expression level is the best preprocessing method, while data preprocessed by normalization cannot attain the expected results because the data structure is ruined. If there are only a few principal components, the PCA is an effective method to extract the frame structure, while SOMs are more suitable for a specific structure.

  13. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Slominska-Wojewodzka, Monika; Hansen, Flemming G.;

    2008-01-01

    Background: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. Methodology/Principal Findings: DNA microarrays were used to measure mRNA steady-state levels in initiation......-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dna...

  14. Menaquinone (vitamin K2) biosynthesis: nucleotide sequence and expression of the menB gene from Escherichia coli.

    OpenAIRE

    Sharma, V.; Suvarna, K.; Meganathan, R; Hudspeth, M E

    1992-01-01

    In Escherichia coli, the biosynthesis of the electron carrier menaquinone (vitamin K2) involves at least seven identified enzymes. One of these, naphthoate synthase, forms the bicyclic ring system by catalyzing the conversion of o-succinylbenzoyl-coenzyme A to 1,4-dihydroxy-2-naphthoic acid. The gene for this enzyme has been previously identified as menB. By genetic and biochemical tests, a 1.349-kb DNA fragment from the E. coli men locus complements menB mutants. This fragment contains a sin...

  15. Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds

    OpenAIRE

    Yusuke Tagashira; Tomoe Shimizu; Masanobu Miyamoto; Sho Nishida; Yoshida, Kaoru T.

    2015-01-01

    The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP6) biosynthesis-related genes, as InsP6 is a major storage form of P in seeds. The rice (Oryza sativa L.) low phytic acid mutant lpa1-1 has been identified as a homolog of archael 2-phosphoglycerate kinase. Th...

  16. Multi-stage filtering for improving confidence level and determining dominant clusters in clustering algorithms of gene expression data.

    Science.gov (United States)

    Kasim, Shahreen; Deris, Safaai; Othman, Razib M

    2013-09-01

    A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the "multi-stage filtering-Clustering Functional Annotation" (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted. PMID:23930805

  17. De novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A.

    Science.gov (United States)

    Zhang, Guowei; Wang, Wenjuan; Zhang, Xiangmei; Xia, Qianqian; Zhao, Xinmei; Ahn, Youngjoon; Ahmed, Nevin; Cosoveanu, Andreea; Wang, Mo; Wang, Jialu; Shu, Shaohua

    2015-01-01

    Huperzine A is important in the treatment of Alzheimer's disease. There are major challenges for the mass production of huperzine A from plants due to the limited number of huperzine-A-producing plants, as well as the low content of huperzine A in these plants. Various endophytic fungi produce huperzine A. Colletotrichum gloeosporioides ES026 was previously isolated from a huperzine-A-producing plant Huperzia serrata, and this fungus also produces huperzine A. In this study, de novo RNA sequencing of C. gloeosporioides ES026 was carried out with an Illumina HiSeq2000. A total of 4,324,299,051 bp from 50,442,617 high-quality sequence reads of ES026 were obtained. These raw data were assembled into 24,998 unigenes, 40,536,684 residues and 19,790 genes. The majority of the unique sequences were assigned to corresponding putative functions based on BLAST searches of public databases. The molecular functions, biological processes and biochemical pathways of these unique sequences were determined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments. A gene encoding copper amine oxidase (CAO) (unigene 9322) was annotated for the conversion of cadaverine to 5-aminopentanal in the biosynthesis of huperzine A. This gene was also detected in the root, stem and leaf of H. serrata. Furthermore, a close relationship was observed between expression of the CAO gene (unigene 9322) and quantity of crude huperzine A extracted from ES026. Therefore, CAO might be involved in the biosynthesis of huperzine A and it most likely plays a key role in regulating the content of huperzine A in ES026. PMID:25799531

  18. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rachid Lahlali

    Full Text Available An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc, suppressed clubroot (Plasmodiophora brassicae -Pb on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r = 0.92, P<0.001 with the severity of clubroot at 5 weeks after treatment at a low (2×10(5 spores pot(-1 but not high (2×10(5 spores pot(-1 dose of pathogen inoculum. Transcript levels of nine B. napus (Bn genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL. These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2, ethylene (BnACO, auxin (BnAAO1, and PR-2 protein (BnPR-2 biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte.

  19. Coupled Two-Way Clustering Analysis of Breast Cancer and Colon Cancer Gene Expression Data

    CERN Document Server

    Getz, G; Kela, I; Domany, E; Notterman, D A; Getz, Gad; Gal, Hilah; Kela, Itai; Domany, Eytan; Notterman, Dan A.

    2003-01-01

    We present and review Coupled Two Way Clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.

  20. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    Directory of Open Access Journals (Sweden)

    М. P. Teplitskaya

    2005-12-01

    Full Text Available These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of initiation and expression of antibiotics biosynthesis genes also were found. In this connection А-factor role in the mechanism of cascade-organized process of streptomycin biosynthesis control, some other antibiotics and spore determinations is discussed in detail.

  1. Functional clustering of time series gene expression data by Granger causality

    Directory of Open Access Journals (Sweden)

    Fujita André

    2012-10-01

    Full Text Available Abstract Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them.

  2. Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla.

    Science.gov (United States)

    Guo, Huiyan; Wang, Yucheng; Liu, Huizi; Hu, Ping; Jia, Yuanyuan; Zhang, Chunrui; Wang, Yanmin; Gu, Shan; Yang, Chuanping; Wang, Chao

    2015-01-01

    Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA₃ and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA₃ and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol-HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA₃, and reduced by PAC; the xylem development was wider in GA₃-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA₃ treatment, suggesting their role in GA₃-induced xylem development in the birch. Our results suggest that GA₃ induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants. PMID:26404260

  3. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    Directory of Open Access Journals (Sweden)

    Huiyan Guo

    2015-09-01

    Full Text Available Gibberellin (GA is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC, seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  4. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes.

    Science.gov (United States)

    Zong, Wei; Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang; Xiong, Lizhong

    2016-08-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  5. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  6. Adaptive evolution of the FADS gene cluster within Africa.

    Directory of Open Access Journals (Sweden)

    Rasika A Mathias

    Full Text Available Long chain polyunsaturated fatty acids (LC-PUFAs are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA from plant-based medium chain (MC PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60-80 kya.

  7. A quinazoline-based HDAC inhibitor affects gene expression pathways involved in cholesterol biosynthesis and mevalonate in prostate cancer cells.

    Science.gov (United States)

    Lin, Z; Bishop, K S; Sutherland, H; Marlow, G; Murray, P; Denny, W A; Ferguson, L R

    2016-03-01

    Chronic inflammation can lead to the development of cancers and resolution of inflammation is an ongoing challenge. Inflammation can result from dysregulation of the epigenome and a number of compounds that modify the epigenome are in clinical use. In this study the anti-inflammatory and anti-cancer effects of a quinazoline epigenetic-modulator compound were determined in prostate cancer cell lines using a non-hypothesis driven transcriptomics strategy utilising the Affymetrix PrimeView® Human Gene Expression microarray. GATHER and IPA software were used to analyse the data and to provide information on significantly modified biological processes, pathways and networks. A number of genes were differentially expressed in both PC3 and DU145 prostate cancer cell lines. The top canonical pathways that frequently arose across both cell lines at a number of time points included cholesterol biosynthesis and metabolism, and the mevalonate pathway. Targeting of sterol and mevalonate pathways may be a powerful anticancer approach. PMID:26759180

  8. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    OpenAIRE

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou; Fichant, Gwennaele; Cam, Kaymeuang

    2015-01-01

    Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on...

  9. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis

    OpenAIRE

    Ma, Chun-Hua; Gao, Zheng-jie; Zhang, Jia-Jin; Zhang, Wei; Shao, Jian-Hui; Hai, Mei-rong; Chen, Jun-Wen; Yang, Sheng-chao; Zhang, Guang-hui

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum i...

  10. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    OpenAIRE

    Chunhua eMa; Zheng-Jie eGao; Jia-Jin eZhang; Wei eZhang; Jian-Hui eShao; Mei-Rong eHai; Sheng-Chao eYang; Jun-Wen eChen; Guang-Hui eZhang

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is...

  11. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells

    OpenAIRE

    Rischer, Heiko; Orešič, Matej; Seppänen-Laakso, Tuulikki; Katajamaa, Mikko; Lammertyn, Freya; Ardiles-Diaz, Wilson; Van Montagu, Marc C. E.; Inzé, Dirk; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2006-01-01

    Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most,...

  12. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Schütt, Claes; Lund, Birgitte W.;

    2011-01-01

    Previous studies have reported the functional characterization of 9 out of 11 genes found in the gene cluster responsible for biosynthesis of the polyketide pigment aurofusarin in Fusarium graminearum. Here we reanalyze the function of a putative aurofusarin pump (AurT) and the two remaining orphan...

  13. Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice

    OpenAIRE

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods are currently being devised to prioritize these gene clusters in terms of their potential for yielding biochemical novelty. High-potential gene clusters from any biological source can then be acti...

  14. Two Sets of Paralogous Genes Encode the Enzymes Involved in the Early Stages of Clavulanic Acid and Clavam Metabolite Biosynthesis in Streptomyces clavuligerus

    OpenAIRE

    Tahlan, Kapil; Park, Hyeon Ung; Wong, Annie; Beatty, Perrin H.; Jensen, Susan E.

    2004-01-01

    Recently, a second copy of a gene encoding proclavaminate amidinohydrolase (pah1), an enzyme involved in the early stages of clavulanic acid and clavam metabolite biosynthesis in Streptomyces clavuligerus, was identified and isolated. Using Southern analysis, we have now isolated second copies of the genes encoding the carboxyethylarginine synthase (ceaS) and β-lactam synthetase (bls) enzymes. These new paralogues are given the gene designations ceaS1 and bls1 and are located immediately upst...

  15. Assignment of Biochemical Functions to Glycosyl Transferase Genes Which Are Essential for Biosynthesis of Exopolysaccharides in Sphingomonas Strain S88 and Rhizobium leguminosarum

    OpenAIRE

    Pollock, Thomas J.; van Workum, Wilbert A. T.; Thorne, Linda; Mikolajczak, Marcia J.; Yamazaki, Motohide; Kijne, Jan W.; Armentrout, Richard W.

    1998-01-01

    Glycosyl transferases which recognize identical substrates (nucleotide-sugars and lipid-linked carbohydrates) can substitute for one another in bacterial polysaccharide biosynthesis, even if the enzymes originate in different genera of bacteria. This substitution can be used to identify the substrate specificities of uncharacterized transferase genes. The spsK gene of Sphingomonas strain S88 and the pssDE genes of Rhizobium leguminosarum were identified as encoding glucuronosyl-(β1→4)-glucosy...

  16. Regulation of Gene Expression in a Mixed-Genus Community: Stabilized Arginine Biosynthesis in Streptococcus gordonii by Coaggregation with Actinomyces naeslundii▿

    OpenAIRE

    Jakubovics, Nicholas S.; Gill, Steven R.; Iobst, Stacey E.; Vickerman, M M; Kolenbrander, Paul E.

    2008-01-01

    Interactions involving genetically distinct bacteria, for example, between oral streptococci and actinomyces, are central to dental plaque development. A DNA microarray identified Streptococcus gordonii genes regulated in response to coaggregation with Actinomyces naeslundii. The expression of 23 genes changed >3-fold in coaggregates, including that of 9 genes involved in arginine biosynthesis and transport. The capacity of S. gordonii to synthesize arginine was assessed using a chemically de...

  17. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism

    Directory of Open Access Journals (Sweden)

    Rost Enrique

    2008-12-01

    Full Text Available Abstract Background Members of the genus Rhodococcus are frequently found in soil and other natural environments and are highly resistant to stresses common in those environments. The accumulation of storage compounds permits cells to survive and metabolically adapt during fluctuating environmental conditions. The purpose of this study was to perform a genome-wide bioinformatic analysis of key genes encoding metabolism of diverse storage compounds by Rhodococcus jostii RHA1 and to examine its ability to synthesize and accumulate triacylglycerols (TAG, wax esters, polyhydroxyalkanoates (PHA, glycogen and polyphosphate (PolyP. Results We identified in the RHA1 genome: 14 genes encoding putative wax ester synthase/acyl-CoA:diacylglycerol acyltransferase enzymes (WS/DGATs likely involved in TAG and wax esters biosynthesis; a total of 54 genes coding for putative lipase/esterase enzymes possibly involved in TAG and wax ester degradation; 3 sets of genes encoding PHA synthases and PHA depolymerases; 6 genes encoding key enzymes for glycogen metabolism, one gene coding for a putative polyphosphate kinase and 3 putative exopolyphosphatase genes. Where possible, key amino acid residues in the above proteins (generally in active sites, effectors binding sites or substrate binding sites were identified in order to support gene identification. RHA1 cells grown under N-limiting conditions, accumulated TAG as the main storage compounds plus wax esters, PHA (with 3-hydroxybutyrate and 3-hydroxyvalerate monomers, glycogen and PolyP. Rhodococcus members were previously known to accumulate TAG, wax esters, PHAs and polyP, but this is the first report of glycogen accumulation in this genus. Conclusion RHA1 possess key genes to accumulate diverse storage compounds. Under nitrogen-limiting conditions lipids are the principal storage compounds. An extensive capacity to synthesize and metabolize storage compounds appears to contribute versatility to RHA1 in its

  18. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  19. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L. female castes.

    Directory of Open Access Journals (Sweden)

    Ana Durvalina Bomtorin

    Full Text Available Juvenile hormone (JH controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s of JH in social evolution.

  20. Glucan Biosynthesis Protein G Is a Suitable Reference Gene in Escherichia coli K-12

    OpenAIRE

    Heng, Sean S. J.; Oliver Y. W. Chan; Keng, Bryan M. H.; Ling, Maurice H. T.

    2011-01-01

    The expressions of reference genes used in gene expression studies are assumed to be stable under most circumstances. However, a number of studies had demonstrated that such genes were found to vary under experimental conditions. In addition, genes that are stably expressed in an organ may not be stably expressed in other organs or other organisms, suggesting the need to identify reference genes for each organ and organism. This study aims at identifying stably expressed genes in Escherichia ...

  1. Comparisons of Graph-structure Clustering Methods for Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Zhuo FANG; Lei LIU; Jiong YANG; Qing-Ming LUO; Yi-Xue LI

    2006-01-01

    Although many numerical clustering algorithms have been applied to gene expression data analysis, the essential step is still biological interpretation by manual inspection. The correlation between genetic co-regulation and affiliation to a common biological process is what biologists expect. Here, we introduce some clustering algorithms that are based on graph structure constituted by biological knowledge. After applying a widely used dataset, we compared the result clusters of two of these algorithms in terms of the homogeneity of clusters and coherence of annotation and matching ratio. The results show that the clusters of knowledge-guided analysis are the kernel parts of the clusters of Gene Ontology (GO)-Cluster software, which contains the genes that are most expression correlative and most consistent with biological functions. Moreover, knowledge-guided analysis seems much more applicable than GO-Cluster in a larger dataset.

  2. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis

    Science.gov (United States)

    Bulley, Sean M.; Rassam, Maysoon; Hoser, Dana; Otto, Wolfgang; Schünemann, Nicole; Wright, Michele; MacRae, Elspeth; Gleave, Andrew; Laing, William

    2009-01-01

    Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3–16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3′,5′-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3′,5′-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants. PMID:19129165

  3. The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways.

    Science.gov (United States)

    Woods, Kelly; Höfken, Thomas

    2016-02-01

    The transition between a unicellular yeast form to multicellular filaments is crucial for budding yeast foraging and the pathogenesis of many fungal pathogens such as Candida albicans. Here, we examine the role of the related transcription factors Ecm22 and Upc2 in Saccharomyces cerevisiae filamentation. Overexpression of either ECM22 or UPC2 leads to increased filamentation, whereas cells lacking both ECM22 and UPC2 do not exhibit filamentous growth. Ecm22 and Upc2 positively control the expression of FHN1, NPR1, PRR2 and sterol biosynthesis genes. These genes all play a positive role in filamentous growth, and their expression is upregulated during filamentation in an Ecm22/Upc2-dependent manner. Furthermore, ergosterol content increases during filamentous growth. UPC2 expression also increases during filamentation and is inhibited by the transcription factors Sut1 and Sut2. The expression of SUT1 and SUT2 in turn is under negative control of the transcription factor Ste12. We suggest that during filamentation Ste12 becomes activated and reduces SUT1/SUT2 expression levels. This would result in increased UPC2 levels and as a consequence to transcriptional activation of FHN1, NPR1, PRR2 and sterol biosynthesis genes. Higher ergosterol levels in combination with the proteins Fhn1, Npr1 and Prr2 would then mediate the transition to filamentous growth. PMID:26448198

  4. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  5. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Piyatrakul Piyanuch

    2012-12-01

    Full Text Available Abstract Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult.

  6. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. PMID:27480682

  7. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  8. Selections of data preprocessing methods and similarity metrics for gene cluster analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Chunmei; WAN Baikun; GAO Xiaofeng

    2006-01-01

    Clustering is one of the major exploratory techniques for gene expression data analysis. Only with suitable similarity metrics and when datasets are properly preprocessed, can results of high quality be obtained in cluster analysis. In this study, gene expression datasets with external evaluation criteria were preprocessed as normalization by line, normalization by column or logarithm transformation by base-2, and were subsequently clustered by hierarchical clustering, k-means clustering and self-organizing maps (SOMs) with Pearson correlation coefficient or Euclidean distance as similarity metric. Finally, the quality of clusters was evaluated by adjusted Rand index. The results illustrate that k-means clustering and SOMs have distinct advantages over hierarchical clustering in gene clustering, and SOMs are a bit better than k-means when randomly initialized. It also shows that hierarchical clustering prefers Pearson correlation coefficient as similarity metric and dataset normalized by line. Meanwhile, k-means clustering and SOMs can produce better clusters with Euclidean distance and logarithm transformed datasets. These results will afford valuable reference to the implementation of gene expression cluster analysis.

  9. Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis.

    Science.gov (United States)

    Groves, Ryan A; Hagel, Jillian M; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W; Facchini, Peter J

    2015-01-01

    Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications. PMID:25806807

  10. Insight into the haem d1 biosynthesis pathway in heliobacteria through bioinformatics analysis

    OpenAIRE

    Xiong, Jin; Bauer, Carl E.; Pancholy, Anjly

    2007-01-01

    Haem d1 is a unique tetrapyrrole molecule that serves as a prosthetic group of cytochrome cd1, which reduces nitrite to nitric oxide during the process of denitrification. Very little information is available regarding the biosynthesis of haem d1. The extreme difficulty in studying the haem d1 biosynthetic pathway can be partly attributed to the lack of a theoretical basis for experimental investigation. We report here a gene cluster encoding enzymes involved in the biosynthesis of haem d1 in...

  11. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis.

    Science.gov (United States)

    Pandey, Shiv S; Singh, Sucheta; Babu, C S Vivek; Shanker, Karuna; Srivastava, N K; Shukla, Ashutosh K; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229-403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  12. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    Science.gov (United States)

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  13. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    OpenAIRE

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R. A.; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include ...

  14. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  15. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  16. Effects of abiotic stress on gene transcription in European beech: ozone affects ethylene biosynthesis in saplings of Fagus sylvatica L.

    Directory of Open Access Journals (Sweden)

    Betz GA

    2009-06-01

    Full Text Available The influence of ozone (150-190 nl L-1; 8h/d on transcription levels of genes involved in the biosynthesis of the stress hormone ethylene, and its precursor 1-aminocyclopropane-1-carboxylate (ACC, was analysed in leaves of European beech saplings. Ozone-induced leaf lesions appeared 7 weeks after onset of ozone exposure. Cell lesion formation was preceded by persistent increases in ethylene emission, in the level of its malonylated precursor ACC, and in the transcript levels of specific ACC synthase 1 (ACS1, ACS2, ACC oxidase 1 (ACO1, and ACO2. Our results demonstrate that mechanisms similar to those operating in herbaceous plants may determine beech saplings responses to ozone exposure.

  17.  Mutations of noncollagen genes in osteogenesis imperfecta – implications of the gene products in collagen biosynthesis and pathogenesis of disease

    Directory of Open Access Journals (Sweden)

    Anna Galicka

    2012-06-01

    Full Text Available  Recent investigations revealed that the “brittle bone” phenotype in osteogenesis imperfecta (OI is caused not only by dominant mutations in collagen type I genes, but also by recessively inherited mutations in genes responsible for the post-translational processing of type I procollagen as well as for bone formation. The phenotype of patients with mutations in noncollagen genes overlaps with very severe type III and lethal type II OI caused by mutations in collagen genes. Mutations in genes that encode proteins involved in collagen prolyl 3-hydroxylation (P3H1/CRTAP/CyPB eliminated Pro986 hydroxylation and caused an increase in modification of collagen helix by prolyl 4-hydroxylase and lysyl hydroxylase. However, the importance of these disturbances in the disease pathomechanism is not known. Loss of complex proteins’ function as collagen chaperones may dominate the disease mechanism. The latest findings added to the spectrum of OI-causing and collagen-influencing factors other chaperones (HSP47 and FKBP65 and protein BMP-1, which emphasizes the complexity of collagen folding and secretion as well as their importance in bone formation. Furthermore, mutations in genes encoding transcription factor SP7/Osterix and pigment epithelium-derived factor (PEDF constitute a novel mechanism for OI, which is independent of changes in biosynthesis and processing of collagen.

  18. Wide Distribution of O157-Antigen Biosynthesis Gene Clusters in Escherichia coli

    OpenAIRE

    Atsushi Iguchi; Hiroki Shirai; Kazuko Seto; Tadasuke Ooka; Yoshitoshi Ogura; Tetsuya Hayashi; Kayo Osawa; Ro Osawa

    2011-01-01

    Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this stud...

  19. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in Bacillus subtilis 916 and Their Phenotypic Functions

    OpenAIRE

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi

    2014-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called loc...

  20. Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin

    OpenAIRE

    Rausch, Saskia

    2012-01-01

    Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5-Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt Feglymycin ein...

  1. Dominant control region of the human β- like globin gene cluster

    OpenAIRE

    Blom van Assendelft, Margaretha van

    1989-01-01

    The structure and regulation of the human β -like globin gene cluster has been studied extensively. Genetic disorders connected with this gene cluster are responsible for human diseases associated with high levels of morbidity and mortality, such as β-thalassaemia and sickle cell anaemia. The work described in this thesis is concerned with a novel tissue-specific regulatory element. ... Zie: Summary

  2. Conservation of Hox gene clusters in the self-fertilizing fish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae).

    Science.gov (United States)

    Kim, B-M; Lee, B-Y; Lee, J-H; Rhee, J-S; Lee, J-S

    2016-03-01

    In this study, whole Hox gene clusters in the self-fertilizing mangrove killifish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae), a unique hermaphroditic vertebrate in which both sex organs are functional at the same time, were identified from whole genome and transcriptome sequences. The aim was to increase the understanding of the evolutionary status of conservation of this Hox gene cluster across fish species. PMID:26822496

  3. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  4. Gene Content and Diversity of the Loci Encoding Biosynthesis of Capsular Polysaccharides of the 15 Serovar Reference Strains of Haemophilus parasuis

    OpenAIRE

    Howell, Kate J; Weinert, Lucy A; Luan, Shi-Lu; Peters, Sarah E; Chaudhuri, Roy R.; Harris, David; Angen, Øystein; Aragon, Virginia; Parkhill, Julian; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Tucker, Alexander W; Maskell, Duncan J

    2013-01-01

    Haemophilus parasuis is the causative agent of Glässer's disease, a systemic disease of pigs, and is also associated with pneumonia. H. parasuis can be classified into 15 different serovars. Here we report, from the 15 serotyping reference strains, the DNA sequences of the loci containing genes for the biosynthesis of the group 1 capsular polysaccharides, which are potential virulence factors of this bacterium. We contend that these loci contain genes for polysaccharide capsule structures, an...

  5. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes.

    Directory of Open Access Journals (Sweden)

    Anders Løbner-Olesen

    Full Text Available BACKGROUND: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. CONCLUSION/SIGNIFICANCE: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart.

  6. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    Science.gov (United States)

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; van Dijk, Jeroen P; Kok, Esther J; Frazzon, Jeverson

    2016-02-01

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate the relationship between total glycoalkaloid (TGA) content and the expression of GAME, SGT1, and SGT3 genes in potato tubers. TGA content was measured by HPLC-MS, and reverse transcription quantitative polymerase chain reactions were performed to determine the relative expression of GAME, SGT1, and SGT3 genes. We searched for cis-elements of the transcription start site using the PlantPAN database. There was a relationship between TGA content and the relative expression of GAME, SGT1, and SGT3 genes in potato tubers. Putative promoter regions showed the presence of several cis-elements related to biotic and abiotic stresses and light. These findings provide an important step toward understanding TGA regulation and variation in potato tubers. PMID:26768994

  7. Analysis of Expression of a Phenazine Biosynthesis Locus of Pseudomonas aureofaciens PGS12 on Seeds with a Mutant Carrying a Phenazine Biosynthesis Locus-Ice Nucleation Reporter Gene Fusion.

    Science.gov (United States)

    Georgakopoulos, D G; Hendson, M; Panopoulos, N J; Schroth, M N

    1994-12-01

    A derivative of Pseudomonas aureofaciens PGS12 expressing a promoterless ice nucleation gene under the control of a phenazine biosynthesis locus was used to study the expression of a phenazine antibiotic locus (Phz) during bacterial seed colonization. Seeds of various plants were inoculated with wild-type PGS12 and a PGS12 ice nucleation-active phz:inaZ marker exchange derivative and planted in soil, and the expression of the reporter gene was monitored at different intervals for 48 h during seed germination. phz gene expression was first detected 12 h after planting, and the expression increased during the next 36-h period. Significant differences in expression of bacterial populations on different seeds were measured at 48 h. The highest expression level was recorded for wheat seeds (one ice nucleus per 4,000 cells), and the lowest expression level was recorded for cotton seeds (one ice nucleus per 12,000,000 cells). These values indicate that a small proportion of bacteria in a seed population expressed phenazine biosynthesis. Reporter gene expression levels and populations on individual seeds in a sample were lognormally distributed. There was greater variability in reporter gene expression than in population size among individual seeds in a sample. Expression on sugar beet and radish seeds was not affected by different inoculum levels or soil matric potentials of -10 and -40 J/kg; only small differences in expression on wheat and sugar beet seeds were detected when the seeds were planted in various soils. It is suggested that the nutrient level in seed exudates is the primary reason for the differences observed among seeds. The lognormal distribution of phenazine expression on seeds and the timing and difference in expression of phenazine biosynthesis on seeds have implications for the potential efficacy of biocontrol microorganisms against plant pathogens. PMID:16349467

  8. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    OpenAIRE

    Ao Li; David Tuck

    2009-01-01

    Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and g...

  9. An effective fuzzy kernel clustering analysis approach for gene expression data.

    Science.gov (United States)

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms. PMID:26405958

  10. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate.

    Science.gov (United States)

    Dunkel, Nico; Liu, Teresa T; Barker, Katherine S; Homayouni, Ramin; Morschhäuser, Joachim; Rogers, P David

    2008-07-01

    In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hypersusceptibility to azoles and reduced accumulation of exogenous sterols. Overexpression of ERG11 leads to the increased production of lanosterol demethylase, which contributes to azole resistance in clinical isolates of C. albicans, but the mechanism for this has yet to be determined. Using genome-wide gene expression profiling, we found UPC2 and other genes involved in ergosterol biosynthesis to be coordinately upregulated with ERG11 in a fluconazole-resistant clinical isolate compared with a matched susceptible isolate from the same patient. Sequence analysis of the UPC2 alleles of these isolates revealed that the resistant isolate contained a single-nucleotide substitution in one UPC2 allele that resulted in a G648D exchange in the encoded protein. Introduction of the mutated allele into a drug-susceptible strain resulted in constitutive upregulation of ERG11 and increased resistance to fluconazole. By comparing the gene expression profiles of the fluconazole-resistant isolate and of strains carrying wild-type and mutated UPC2 alleles, we identified target genes that are controlled by Upc2p. Here we show for the first time that a gain-of-function mutation in UPC2 leads to the increased expression of ERG11 and imparts resistance to fluconazole in clinical isolates of C. albicans. PMID:18487346

  11. Control of the Lysine Biosynthesis Sequence in Corynebacterium glutamicum as Analyzed by Overexpression of the Individual Corresponding Genes

    OpenAIRE

    Cremer, Josef; Eggeling, Lothar; Sahm, Hermann

    1991-01-01

    The gene cluster that codes for feedback-resistant aspartate kinase (lysCα and lysCβ) and aspartate semialdehyde dehydrogenase (asd) was cloned from a mutant strain of Corynebacterium glutamicum. Its functional analysis by subcloning, enzyme assays, and type of aspartate kinase regulation enabled the isolation of a fragment for separate expression of the feedback-resistant kinase without aspartate semialdehyde dehydrogenase expression. This was used together with other clones constructed (J. ...

  12. Transcriptional organization of the phycocyanin subunit gene clusters of the cyanobacterium Anacystis nidulans UTEX 625.

    OpenAIRE

    Kalla, S R; Lind, L K; Lidholm, J; Gustafsson, P

    1988-01-01

    The phycocyanin subunit gene cluster is duplicated on the chromosome of the cyanobacterium Anacystis nidulans UTEX 625. The two gene clusters cpcB1A1 (left) and cpcB2A2 (right) are separated by about 2,500 base pairs, and in each cluster the beta-subunit gene is located upstream from the alpha-subunit gene. Filter hybridizations with phycocyanin-specific probes to total RNA detected at least two major transcripts that were 1,300 to 1,400 nucleotides long. Besides these major mRNA species, two...

  13. Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization.

    Science.gov (United States)

    Nasopoulou, Constantina; Pohjanen, Johanna; Koskimäki, Janne J; Zabetakis, Ioannis; Pirttilä, Anna Maria

    2014-08-15

    Strawberry flavor is one of the most popular fruit flavors worldwide, with numerous applications in the food industry. In addition, the biosynthetic origin of the most important strawberry flavor components, such as 2,5-dimethyl-4-hydroxy-2H-furan-3-one (DMHF), is a challenging research area. DMHF's precursor, 2-hydroxy-propanal (or lactaldehyde), is biosynthesized by the endophytic bacterium Methylobacterium extorquens (M. extorquens). In particular, the alcohol dehydrogenase (ADH) enzymes of M. extorquens are involved in the biogenesis of DMHF precursors since they have the capacity to oxidize the strawberry-derived 1,2-propanediol to lactaldehyde. In this study, the expression of the endophytic ADH and the plant DMHF biosynthesis genes was examined in the tissues of raw and ripe strawberry receptacles by in situ hybridization. The presence of endophytic bacteria was studied in the same tissues by probes targeting bacterial 16S ribosomal ribonucleic acid. Hybridization signals of probes specific for endophytic ADH and plant DMHF biosynthesis genes, as well as bacteria-specific probes, were detected in the same locations. The probes were localized near the plasma membranes or intercellular spaces of cortical and vascular tissues of the receptacle, and intracellularly in the tissues of achenes. By localizing the expression of the endophytic methanol ADH and plant DMHF biosynthesis genes to the same tissues, we have reinforced our original hypothesis that an intimate symbiotic relationship between strawberry and endophytic cells exists and leads to the biosynthesis of DMHF. PMID:24973582

  14. A robust approach based on Weibull distribution for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Gong Binsheng

    2011-05-01

    Full Text Available Abstract Background Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest. Results In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method, a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM using functional annotation information given by the Gene Ontology (GO. The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets. Conclusions The results demonstrate that our WDCM produces clusters

  15. Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis.

    Science.gov (United States)

    Malmierca, Mónica G; Izquierdo-Bueno, Inmaculada; Mccormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Moraga, Javier; Gomes, Eriston V; Proctor, Robert H; Collado, Isidro G; Monte, Enrique; Gutiérrez, Santiago

    2016-09-01

    Trichoderma arundinaceum IBT 40837 (Ta37) and Botrytis cinerea produce the sesquiterpenes harzianum A (HA) and botrydial (BOT), respectively, and also the polyketides aspinolides and botcinins (Botcs), respectively. We analysed the role of BOT and Botcs in the Ta37-B. cinerea interaction, including the transcriptomic changes in the genes involved in HA (tri) and ergosterol biosynthesis, as well as changes in the level of HA and squalene-ergosterol. We found that, when confronted with B. cinerea, the tri biosynthetic genes were up-regulated in all dual cultures analysed, but at higher levels when Ta37 was confronted with the BOT non-producer mutant bcbot2Δ. The production of HA was also higher in the interaction area with this mutant. In Ta37-bcbot2Δ confrontation experiments, the expression of the hmgR gene, encoding the 3-hydroxy-3-methylglutaryl coenzyme A reductase, which is the first enzyme of the terpene biosynthetic pathway, was also up-regulated, resulting in an increase in squalene production compared with the confrontation with B. cinerea B05.10. Botcs had an up-regulatory effect on the tri biosynthetic genes, with BotcA having a stronger effect than BotcB. The results indicate that the interaction between Ta37 and B. cinerea exerts a stimulatory effect on the expression of the tri biosynthetic genes, which, in the interaction zone, can be attenuated by BOT produced by B. cinerea B05.10. The present work provides evidence for a metabolic dialogue between T. arundinaceum and B. cinerea that is mediated by sesquiterpenes and polyketides, and that affects the outcome of the interaction of these fungi with each other and their environment. PMID:26575202

  16. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  17. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise;

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new...

  18. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled. PMID:27289100

  19. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled. PMID:27289100

  20. Characterization and expression of genes involved in the ethylene biosynthesis and signal transduction during ripening of mulberry fruit.

    Directory of Open Access Journals (Sweden)

    Changying Liu

    Full Text Available Although ethylene is well known as an essential regulator of fruit development, little work has examined the role ethylene plays in the development and maturation of mulberry (Morus L. fruit. To study the mechanism of ethylene action during fruit development in this species, we measured the ethylene production, fruit firmness, and soluble solids content (SSC during fruit development and harvest. By comparing the results with those from other climacteric fruit, we concluded that Morus fruit are probably climacteric. Genes associated with the ethylene signal transduction pathway of Morus were characterized from M. notabilis Genome Database, including four ethylene receptor genes, a EIN2-like gene, a CTR1-like gene, four EIN3-like genes, and a RTE1-like gene. The expression patterns of these genes were analyzed in the fruit of M. atropurpurea cv. Jialing No.40. During fruit development, transcript levels of MaETR2, MaERS, MaEIN4, MaRTE, and MaCTR1 were lower at the early stages and higher after 26 days after full bloom (DAF, while MaETR1, MaEIL1, MaEIL2, and MaEIL3 remained constant. In ripening fruit, the transcripts of MaACO1 and MaACS3 increased, while MaACS1 and MaACO2 decreased after harvest. The transcripts of MaACO1, MaACO2, and MaACS3 were inhibited by ethylene, and 1-MCP (1-methylcyclopropene upregulated MaACS3. The transcripts of the MaETR-like genes, MaRTE, and MaCTR1 were inhibited by ethylene and 1-MCP, suggesting that ethylene may accelerate the decline of MaETRs transcripts. No significant changes in the expression of MaEIN2, MaEIL1, and MaEIL3 were observed during ripening or in response to ethylene, while the expressions of MaEIL2 and MaEIL4 increased rapidly after 24 h after harvest (HAH and were upregulated by ethylene. The present study provides insights into ethylene biosynthesis and signal transduction in Morus plants and lays a foundation for the further understanding of the mechanisms underlying Morus fruit development and

  1. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms.

    Science.gov (United States)

    Leães, Fernanda Leal; Velho, Renata Voltolini; Caldas, Danielle Gregório Gomes; Ritter, Ana Carolina; Tsai, Siu Mui; Brandelli, Adriano

    2016-01-01

    Certain Bacillus strains are important producers of antimicrobial peptides with great potential for biological control. Antimicrobial peptide production by Bacillus amyloliquefaciens P11 was investigated in the presence of heat-inactivated cells of bacteria and fungi. B. amyloliquefaciens P11 exhibited higher antimicrobial activity in the presence of inactivated cells of Staphylococcus aureus and Aspergillus parasiticus compared to other conditions tested. Expression of essential genes related to biosynthesis of the antimicrobial peptides surfactin (sfp), iturin A (lpa-14 and ituD), subtilosin A (sboA) and fengycin (fenA) was investigated by quantitative real-time PCR (qRT-PCR). The genes lpa-14 and ituD were highly expressed in the presence of S. aureus (inactivated cells), indicating induction of iturin A production by B. amyloliquefaciens P11. The other inducing condition (inactivated cells of A. parasiticus) suppressed expression of lpa-14, but increased expression of ituD. A twofold increase in fenA expression was observed for both conditions, while strong suppression of sboA expression was observed in the presence of inactivated cells of S. aureus. An increase in antimicrobial activity was observed, indicating that synthesis of antimicrobial peptides may be induced by target microorganisms. PMID:26577655

  2. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L. MYB10 and bHLH Genes.

    Directory of Open Access Journals (Sweden)

    Pavel Starkevič

    Full Text Available Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  3. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    Science.gov (United States)

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  4. CURLY LEAF Regulates Gene Sets Coordinating Seed Size and Lipid Biosynthesis1[OPEN

    Science.gov (United States)

    Wang, Huan; Ye, Jian; Wu, Hui-Wen; Sun, Hai-Xi; Chua, Nam-Hai

    2016-01-01

    CURLY LEAF (CLF), a histone methyltransferase of Polycomb Repressive Complex 2 (PRC2) for trimethylation of histone H3 Lys 27 (H3K27me3), has been thought as a negative regulator controlling mainly postgermination growth in Arabidopsis (Arabidopsis thaliana). Approximately 14% to 29% of genic regions are decorated by H3K27me3 in the Arabidopsis genome; however, transcriptional repression activities of PRC2 on a majority of these regions remain unclear. Here, by analysis of transcriptome profiles, we found that approximately 11.6% genes in the Arabidopsis genome were repressed by CLF in various organs. Unexpectedly, approximately 54% of these genes were preferentially repressed in siliques. Further analyses of 118 transcriptome datasets uncovered a group of genes that was preferentially expressed and repressed by CLF in embryos at the mature-green stage. This observation suggests that CLF mediates a large-scale H3K27me3 programming/reprogramming event during embryonic development. Plants of clf-28 produced bigger and heavier seeds with higher oil content, larger oil bodies, and altered long-chain fatty acid composition compared with wild type. Around 46% of CLF-repressed genes were associated with H3K27me3 marks; moreover, we verified histone modification and transcriptional repression by CLF on regulatory genes. Our results suggest that CLF silences specific gene expression modules. Genes operating within a module have various molecular functions, but they cooperate to regulate a similar physiological function during embryo development. PMID:26945048

  5. Identification of certain cancer-mediating genes using Gaussian fuzzy cluster validity index

    Indian Academy of Sciences (India)

    Anupam Ghosh; Rajat K De

    2015-10-01

    In this article, we have used an index, called Gaussian fuzzy index (GFI), recently developed by the authors, based on the notion of fuzzy set theory, for validating the clusters obtained by a clustering algorithm applied on cancer gene expression data. GFI is then used for the identification of genes that have altered quite significantly from normal state to carcinogenic state with respect to their mRNA expression patterns. The effectiveness of the methodology has been demonstrated on three gene expression cancer datasets dealing with human lung, colon and leukemia. The performance of GFI is compared with 19 exiting cluster validity indices. The results are appropriately validated biologically and statistically. In this context, we have used biochemical pathways, -value statistics of GO attributes, -test and -score for the validation of the results. It has been reported that GFI is capable of identifying high-quality enriched clusters of genes, and thereby is able to select more cancer-mediating genes.

  6. Biochemical genomics for gene discovery in benzylisoquinoline alkaloid biosynthesis in opium poppy and related species.

    Science.gov (United States)

    Dang, Thu Thuy T; Onoyovwi, Akpevwe; Farrow, Scott C; Facchini, Peter J

    2012-01-01

    Benzylisoquinoline alkaloids (BIAs) are a large, diverse group of ∼2500 specialized plant metabolites. Many BIAs display potent pharmacological activities, including the narcotic analgesics codeine and morphine, the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine, the antimicrobial agents sanguinarine and berberine, and the muscle relaxant (+)-tubocurarine. Opium poppy remains the sole commercial source for codeine, morphine, and a variety of semisynthetic drugs, including oxycodone and buprenorphine, derived primarily from the biosynthetic pathway intermediate thebaine. Recent advances in transcriptomics, proteomics, and metabolomics have created unprecedented opportunities for isolating and characterizing novel BIA biosynthetic genes. Here, we describe the application of next-generation sequencing and cDNA microarrays for selecting gene candidates based on comparative transcriptome analysis. We outline the basic mass spectrometric techniques to perform deep proteome and targeted metabolite analyses on BIA-producing plant tissues and provide methodologies for functionally characterizing biosynthetic gene candidates through in vitro enzyme assays and transient gene silencing in planta. PMID:22999177

  7. Expression Analysis of Dihydroflavonol 4-Reductase Genes Involved in Anthocyanin Biosynthesis in Purple Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    Mao-Sen LIU; Fang WANG; Yu-Xiu DONG; Xian-Sheng ZHANG

    2005-01-01

    The grain color of wheat (Triticum aestivum L.) is an important characteristic in crop production.Dihydroflavonol 4-reductase genes (DFR) encode the key enzyme dihydroflavonol 4-reductase, which is involved in the pigmentation of plant tissues. To investigate the molecular mechanism of anthocyanin deposition in grains of wheat, we determined the expression of the wheat DFR gene in purple grains of cultivar Heimai 76. The results showed that DFR transcripts were localized in the seed coat of purple grains rather than in the pericarp, whereas anthocyanins were accumulated in both tissues of purple grains,suggesting that anthocyanin deposition was mainly regulated at the transcriptional level. Overexpression of the TaDFR-A gene in Arabidopsis showed that TaDFR-A was responsible for the pigmentation of Arabidopsis plant tissues, indicating TaDFR-A gene has the same role in Arabidopsis.

  8. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    OpenAIRE

    Yick Ching Wong; Qi Bin Kwong; Heng Leng Lee; Chuang Kee Ong; Sean Mayes; Fook Tim Chew; David R. Appleton; Harikrishna Kulaveerasingam

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis ...

  9. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  10. AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number

    Directory of Open Access Journals (Sweden)

    Cooper James B

    2010-03-01

    Full Text Available Abstract Background Clustering the information content of large high-dimensional gene expression datasets has widespread application in "omics" biology. Unfortunately, the underlying structure of these natural datasets is often fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and geometry. Results We integrated strategies from machine learning, cartography, and graph theory into a new informatics method for automatically clustering self-organizing map ensembles of high-dimensional data. Our new method, called AutoSOME, readily identifies discrete and fuzzy data clusters without prior knowledge of cluster number or structure in diverse datasets including whole genome microarray data. Visualization of AutoSOME output using network diagrams and differential heat maps reveals unexpected variation among well-characterized cancer cell lines. Co-expression analysis of data from human embryonic and induced pluripotent stem cells using AutoSOME identifies >3400 up-regulated genes associated with pluripotency, and indicates that a recently identified protein-protein interaction network characterizing pluripotency was underestimated by a factor of four. Conclusions By effectively extracting important information from high-dimensional microarray data without prior knowledge or the need for data filtration, AutoSOME can yield systems-level insights from whole genome microarray expression studies. Due to its generality, this new method should also have practical utility for a variety of data-intensive applications, including the results of deep sequencing experiments. AutoSOME is available for download at http://jimcooperlab.mcdb.ucsb.edu/autosome.

  11. Characterization of a plasmid-encoded urease gene cluster found in members of the family Enterobacteriaceae.

    OpenAIRE

    D'Orazio, S E; Collins, C M

    1993-01-01

    Plasmid-encoded urease gene clusters found in uropathogenic isolates of Escherichia coli, Providencia stuartii, and Salmonella cubana demonstrated DNA homology, similar positions of restriction endonuclease cleavage sites, and manners of urease expression and therefore represent the same locus. DNA sequence analysis indicated that the plasmid-encoded urease genes are closely related to the Proteus mirabilis urease genes.

  12. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67.

    Science.gov (United States)

    Wagh, Jitendra; Shah, Sonal; Bhandari, Praveena; Archana, G; Kumar, G Naresh

    2014-06-01

    Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions. PMID:24682480

  13. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1

    Directory of Open Access Journals (Sweden)

    Wagner Martin

    2006-03-01

    Full Text Available Abstract Background Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Recently, it has been shown that this toxin is produced by a nonribosomal peptide synthetase (NRPS, but its exact genetic organization and biochemical synthesis is unknown. Results The complete sequence of the cereulide synthetase (ces gene cluster, which encodes the enzymatic machinery required for the biosynthesis of cereulide, was dissected. The 24 kb ces gene cluster comprises 7 CDSs and includes, besides the typical NRPS genes like a phosphopantetheinyl transferase and two CDSs encoding enzyme modules for the activation and incorporation of monomers in the growing peptide chain, a CDS encoding a putative hydrolase in the upstream region and an ABC transporter in the downstream part. The enzyme modules responsible for incorporation of the hydroxyl acids showed an unusual structure while the modules responsible for the activation of the amino acids Ala and Val showed the typical domain organization of NRPS. The ces gene locus is flanked by genetic regions with high homology to virulence plasmids of B. cereus, Bacillus thuringiensis and Bacillus anthracis. PFGE and Southern hybridization showed that the ces genes are restricted to emetic B. cereus and indeed located on a 208 kb megaplasmid, which has high similarities to pXO1-like plasmids. Conclusion The ces gene cluster that is located on a pXO1-like virulence plasmid represents, beside the insecticidal and the anthrax toxins, a third type of B. cereus group toxins encoded on megaplasmids. The ces genes are restricted to emetic toxin producers, but pXO1-like plasmids are also present in emetic-like strains. These data might indicate the presence of an ancient plasmid in B. cereus which has acquired different virulence genes over time. Due to the unusual structure of the hydroxyl acid incorporating enzyme modules of Ces

  14. A rough set based rational clustering framework for determining correlated genes.

    Science.gov (United States)

    Jeyaswamidoss, Jeba Emilyn; Thangaraj, Kesavan; Ramar, Kadarkarai; Chitra, Muthusamy

    2016-06-01

    Cluster analysis plays a foremost role in identifying groups of genes that show similar behavior under a set of experimental conditions. Several clustering algorithms have been proposed for identifying gene behaviors and to understand their significance. The principal aim of this work is to develop an intelligent rough clustering technique, which will efficiently remove the irrelevant dimensions in a high-dimensional space and obtain appropriate meaningful clusters. This paper proposes a novel biclustering technique that is based on rough set theory. The proposed algorithm uses correlation coefficient as a similarity measure to simultaneously cluster both the rows and columns of a gene expression data matrix and mean squared residue to generate the initial biclusters. Furthermore, the biclusters are refined to form the lower and upper boundaries by determining the membership of the genes in the clusters using mean squared residue. The algorithm is illustrated with yeast gene expression data and the experiment proves the effectiveness of the method. The main advantage is that it overcomes the problem of selection of initial clusters and also the restriction of one object belonging to only one cluster by allowing overlapping of biclusters. PMID:27352972

  15. Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM gene cluster, including a new gene (nifP) which encodes a serine acetyltransferase.

    Science.gov (United States)

    Evans, D J; Jones, R; Woodley, P R; Wilborn, J R; Robson, R L

    1991-09-01

    Nucleotide sequence was obtained for a region of 7,099 bp spanning the nifU, nifS, nifV, nifW, nifZ, and nifM genes from Azotobacter chroococcum. Chromosomal mutations constructed at several sites within the locus confirmed a requirement for this region for expression of the molybdenum nitrogenase in this organism. The genes are tightly clustered and ordered as in Klebsiella pneumoniae except for two additional open reading frames (ORFs) between nifV and nifW. The arrangement of genes in A. chroococcum closely matches that described for Azotobacter vinelandii. The polypeptide encoded by ORF4 immediately downstream from nifV is 41% identical over 186 amino acids to the product of the cysE gene from Escherichia coli, which encodes serine acetyltransferase (SAT), a key enzyme in cysteine biosynthesis. Plasmids which potentially express ORF4 complemented E. coli JM39, a cysteine auxotroph which lacks SAT. SAT activity was detected in crude extracts of one such complemented strain. A strain of A. chroococcum carrying a chromosomal disruption of ORF4 grew normally with ammonium as the N source but more slowly than the parental strain when N2 was the sole N source. These data suggest that ORF4 encodes a nif-specific SAT required for optimizing expression of nitrogenase activity. ORF4 was assigned the name nifP. nifP may be required to boost rates of synthesis or intracellular concentrations of cysteine or methionine. Sequence identity between nifV and leuA gene products suggests that nifV may catalyze a condensation reaction analogous to that carried out by isopropylmalate synthase (LEUA) but in which acetyl coenzyme and alpha-ketoglutarate are substrates for the formation of homocitrate, the proposed product of NIFV activity. PMID:1885524

  16. Transcriptome Analysis Identifies Candidate Genes Related to Triacylglycerol and Pigment Biosynthesis and Photoperiodic Flowering in the Ornamental and Oil-Producing Plant, Camellia reticulata (Theaceae).

    Science.gov (United States)

    Yao, Qiu-Yang; Huang, Hui; Tong, Yan; Xia, En-Hua; Gao, Li-Zhi

    2016-01-01

    Camellia reticulata, which is native to Southwest China, is famous for its ornamental flowers and high-quality seed oil. However, the lack of genomic information for this species has largely hampered our understanding of its key pathways related to oil production, photoperiodic flowering process and pigment biosynthesis. Here, we first sequenced and characterized the transcriptome of a diploid C. reticulata in an attempt to identify genes potentially involved in triacylglycerol biosynthesis (TAGBS), photoperiodic flowering, flavonoid biosynthesis (FlaBS), carotenoid biosynthesis (CrtBS) pathways. De novo assembly of the transcriptome provided a catalog of 141,460 unigenes with a total length of ~96.1 million nucleotides (Mnt) and an N50 of 1080 nt. Of them, 22,229 unigenes were defined as differentially expressed genes (DEGs) across five sequenced tissues. A large number of annotated genes in C. reticulata were found to have been duplicated, and differential expression patterns of these duplicated genes were commonly observed across tissues, such as the differential expression of SOC1_a, SOC1_b, and SOC1_c in the photoperiodic flowering pathway. Up-regulation of SAD_a and FATA genes and down-regulation of FAD2_a gene in the TAGBS pathway in seeds may be relevant to the ratio of monounsaturated fatty acid (MUFAs) to polyunsaturated fatty acid (PUFAs) in seed oil. MYBF1, a transcription regulator gene of the FlaBS pathway, was found with great sequence variation and alteration of expression patterns, probably resulting in functionally evolutionary differentiation in C. reticulata. MYBA1_a and some anthocyanin-specific biosynthetic genes in the FlaBS pathway were highly expressed in both flower buds and flowers, suggesting important roles of anthocyanin biosynthesis in flower development. Besides, a total of 40,823 expressed sequence tag simple sequence repeats (EST-SSRs) were identified in the C. reticulata transcriptome, providing valuable marker resources for

  17. Transcriptome analysis identifies candidate genes related to triacylglycerol and pigment biosynthesis and photoperiodic flowering in the ornamental and oil-producing plant, Camellia reticulata (Theaceae

    Directory of Open Access Journals (Sweden)

    Qiu-Yang eYao

    2016-02-01

    Full Text Available Camellia reticulata, which is native to Southwest China, is famous for its ornamental flowers and high-quality seed oil. However, the lack of genomic information for this species has largely hampered our understanding of its key pathways related to oil production, photoperiodic flowering process and pigment biosynthesis. Here, we first sequenced and characterized the transcriptome of a diploid C. reticulata in an attempt to identify genes potentially involved in triacylglycerol biosynthesis (TAGBS, photoperiodic flowering, flavonoid biosynthesis (FlaBS, carotenoid biosynthesis (CrtBS pathways. De novo assembly of the transcriptome provided a catalogue of 141,460 unigenes with a total length of ~96.1 million nucleotides (Mnt and an N50 of 1080 nt. Of them, 22,229 unigenes were defined as differentially expressed genes (DEGs across five sequenced tissues. A large number of annotated genes in C. reticulata were found to have been duplicated, and differential expression patterns of these duplicated genes were commonly observed across tissues, such as the differential expression of SOC1_a, SOC1_b and SOC1_c in the photoperiodic flowering pathway. Up-regulation of SAD_a and FATA genes and down-regulation of FAD2_a gene in the TAGBS pathway in seeds may be relevant to the ratio of monounsaturated fatty acid (MUFAs to polyunsaturated fatty acid (PUFAs in seed oil. MYBF1, a transcription regulator gene of the FlaBS pathway, was found with great sequence variation and alteration of expression patterns, probably resulting in functionally evolutionary differentiation in C. reticulata. MYBA1_a and some anthocyanin-specific biosynthetic genes in the FlaBS pathway were highly expressed in both flower buds and flowers, suggesting important roles of anthocyanin biosynthesis in flower development. Besides, a total of 40,823 expressed sequence tag simple sequence repeats (EST-SSRs were identified in the C. reticulata transcriptome, providing valuable marker

  18. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis.

    Science.gov (United States)

    George, Rajani M; Hahn, Katherine L; Rawls, Alan; Viger, Robert S; Wilson-Rawls, Jeanne

    2015-10-01

    Notch2 and Notch3 and genes of the Notch signaling network are dynamically expressed in developing follicles, where they are essential for granulosa cell proliferation and meiotic maturation. Notch receptors, ligands, and downstream effector genes are also expressed in testicular Leydig cells, predicting a potential role in regulating steroidogenesis. In this study, we sought to determine if Notch signaling in small follicles regulates the proliferation response of granulosa cells to FSH and represses the up-regulation steroidogenic gene expression that occurs in response to FSH as the follicle grows. Inhibition of Notch signaling in small preantral follicles led to the up-regulation of the expression of genes in the steroid biosynthetic pathway. Similarly, progesterone secretion by MA-10 Leydig cells was significantly inhibited by constitutively active Notch. Together, these data indicated that Notch signaling inhibits steroidogenesis. GATA4 has been shown to be a positive regulator of steroidogenic genes, including STAR protein, P450 aromatase, and 3B-hydroxysteroid dehydrogenase. We observed that Notch downstream effectors HEY1, HEY2, and HEYL are able to differentially regulate these GATA4-dependent promoters. These data are supported by the presence of HEY/HES binding sites in these promoters. These studies indicate that Notch signaling has a role in the complex regulation of the steroidogenic pathway. PMID:26183893

  19. Screening for the genes involved in bombykol biosynthesis: Identification and functional characterization of Bombyx mori acyl carrier protein (BmACP

    Directory of Open Access Journals (Sweden)

    ShogoMatsumoto

    2011-12-01

    Full Text Available Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG via fatty acid synthesis (FAS. Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN, a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs, which store the sex pheromone (bombykol precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed sequence tag (EST clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another 8 EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP. Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis.

  20. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    Science.gov (United States)

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  1. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    Directory of Open Access Journals (Sweden)

    Daniel Mihálik

    2015-12-01

    Full Text Available The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v and 0%–1.53% (v/v from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.

  2. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea.

    Science.gov (United States)

    Larsson, John; Celepli, Narin; Ininbergs, Karolina; Dupont, Christopher L; Yooseph, Shibu; Bergman, Bigitta; Ekman, Martin

    2014-09-01

    Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here. PMID:24621524

  3. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea

    Science.gov (United States)

    Larsson, John; Celepli, Narin; Ininbergs, Karolina; Dupont, Christopher L; Yooseph, Shibu; Bergman, Bigitta; Ekman, Martin

    2014-01-01

    Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here. PMID:24621524

  4. Mapping the chromosome 16 cadherin gene cluster to a minimal deleted region in ductal breast cancer.

    Science.gov (United States)

    Chalmers, I J; Aubele, M; Hartmann, E; Braungart, E; Werner, M; Höfler, H; Atkinson, M J

    2001-04-01

    The cadherin family of cell adhesion molecules has been implicated in tumor metastasis and progression. Eight family members have been mapped to the long arm of chromosome 16. Using radiation hybrid mapping, we have located six of these genes within a cluster at 16q21-q22.1. In invasive lobular carcinoma of the breast frequent LOH and accompanying mutation affect the CDH1 gene, which is a member of this chromosome 16 gene cluster. CDH1 LOH also occurs in invasive ductal carcinoma, but in the absence of gene mutation. The proximity of other cadherin genes to 16q22.1 suggests that they may be affected by LOH in invasive ductal carcinomas. Using the mapping data, microsatellite markers were selected which span regions of chromosome 16 containing the cadherin genes. In breast cancer tissues, a high rate of allelic loss was found over the gene cluster region, with CDH1 being the most frequently lost marker. In invasive ductal carcinoma a minimal deleted region was identified within part of the chromosome 16 cadherin gene cluster. This provides strong evidence for the existence of a second 16q22 suppressor gene locus within the cadherin cluster. PMID:11343777

  5. Bayesian History Reconstruction of Complex Human Gene Clusters on a Phylogeny

    CERN Document Server

    Vinař, Tomáš; Song, Giltae; Siepel, Adam

    2009-01-01

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. Improved understanding of these clusters is of utmost importance, since they have been shown to be the source of evolutionary innovation, and have been linked to multiple diseases, including HIV and a variety of cancers. Previously, Zhang et al. (2008) developed an algorithm for reconstructing parsimonious evolutionary histories of such gene clusters, using only human genomic sequence data. In this paper, we propose a probabilistic model for the evolution of gene clusters on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate that our method will be useful in analyzing these valuable new data sets.

  6. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters

    Directory of Open Access Journals (Sweden)

    Larsson Tomas A

    2008-09-01

    Full Text Available Abstract Background Ever since the theory about two rounds of genome duplication (2R in the vertebrate lineage was proposed, the Hox gene clusters have served as the prime example of quadruplicate paralogy in mammalian genomes. In teleost fishes, the observation of additional Hox clusters absent in other vertebrate lineages suggested a third tetraploidization (3R. Because the Hox clusters occupy a quite limited part of each chromosome, and are special in having position-dependent regulation within the multi-gene cluster, studies of syntenic gene families are needed to determine the extent of the duplicated chromosome segments. We have analyzed in detail 14 gene families that are syntenic with the Hox clusters to see if their phylogenies are compatible with the Hox duplications and the 2R/3R scenario. Our starting point was the gene family for the NPY family of peptides located near the Hox clusters in the pufferfish Takifugu rubripes, the zebrafish Danio rerio, and human. Results Seven of the gene families have members on at least three of the human Hox chromosomes and two families are present on all four. Using both neighbor-joining and quartet-puzzling maximum likelihood methods we found that 13 families have a phylogeny that supports duplications coinciding with the Hox cluster duplications. One additional family also has a topology consistent with 2R but due to lack of urochordate or cephalocordate sequences the time window when these duplications could have occurred is wider. All but two gene families also show teleost-specific duplicates. Conclusion Based on this analysis we conclude that the Hox cluster duplications involved a large number of adjacent gene families, supporting expansion of these families in the 2R, as well as in the teleost 3R tetraploidization. The gene duplicates presumably provided raw material in early vertebrate evolution for neofunctionalization and subfunctionalization.

  7. Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination

    Directory of Open Access Journals (Sweden)

    Jiujiang Yu

    2012-10-01

    Full Text Available Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.

  8. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria

    OpenAIRE

    Potrafka Ruth M; Gao Qunjie; Palmer Kendra; Soule Tanya; Stout Valerie; Garcia-Pichel Ferran

    2009-01-01

    Abstract Background The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome) involved in the biosynthesis of scytonemin. We provide further genomic characterization of these genes in N. punctiforme and extend it to homologous regions in other cyanobacteria. Results Six putative genes in...

  9. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed. PMID:27072286

  10. Outlining eicosanoid biosynthesis in the crustacean Daphnia

    Directory of Open Access Journals (Sweden)

    Timmermans Martijn JTN

    2008-07-01

    Full Text Available Abstract Background Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX pathway; the lipoxygenase (LOX pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.

  11. Elucidation of the biosynthesis of meroterpenoid yanuthone D in Aspergillus Niger

    DEFF Research Database (Denmark)

    Holm, Dorte Koefoed; Petersen, Lene Maj; Klitgaard, Andreas;

    2012-01-01

    We have elucidated the mode of biosynthesis of the meroterpenoid compound Yanuthone D in Aspergillus niger. We have successfully deleted all cluster genes, and identified a number of intermediates. Structures of the intermediates were solved using a combined approach comprising classical 1D- and 2D...

  12. Expression Analysis of Ethylene Biosynthesis and Receptor Genes From Barley Embryo and Tissue Culture

    Science.gov (United States)

    Ethylene affects regeneration of green plants from barley tissue culture. With the availability of the HarvEST barley database and barley GeneChip, genome-wide expression studies have focused on differential development between Morex and Golden Promise at various stages of plant growth. The data f...

  13. Transcriptional analysis of the genes coding for valine and isoleucine biosynthesis in corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Elišáková, Veronika; Vaňátko, Petr; Pátek, Miroslav

    Stará Lesná, 2002, s. -. [Biochemický Zjazd /18./. Stará Lesná (SK), 10.09.2002-13.09.2002] R&D Projects: GA ČR GA525/01/0916 Keywords : genes ilvbn * enzymes * catalyzing Subject RIV: EE - Microbiology, Virology

  14. Exhaustive Analysis of BH4 and Dopamine Biosynthesis Genes in Patients with Dopa-Responsive Dystonia

    Science.gov (United States)

    Clot, Fabienne; Grabli, David; Cazeneuve, Cecile; Roze, Emmanuel; Castelnau, Pierre; Chabrol, Brigitte; Landrieu, Pierre; Nguyen, Karine; Ponsot, Gerard; Abada, Myriem; Doummar, Diane; Damier, Philippe; Gil, Roger; Thobois, Stephane; Ward, Alana J.; Hutchinson, Michael; Toutain, Annick; Picard, Fabienne; Camuzat, Agnes; Fedirko, Estelle; San, Chankannira; Bouteiller, Delphine; LeGuern, Eric; Durr, Alexandra; Vidailhet, Marie; Brice, Alexis

    2009-01-01

    Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of L-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the "GCH1" gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the "TH" (tyrosine hydroxylase) or "SPR" (sepiapterin…

  15. Transcriptome Analysis of Methyl Jasmonate-Elicited Panax ginseng Adventitious Roots to Discover Putative Ginsenoside Biosynthesis and Transport Genes

    Directory of Open Access Journals (Sweden)

    Hongzhe Cao

    2015-01-01

    Full Text Available The Panax ginseng C.A. Meyer belonging to the Araliaceae has long been used as an herbal medicine. Although public databases are presently available for this family, no methyl jasmonate (MeJA elicited transcriptomic information was previously reported on this species, with the exception of a few expressed sequence tags (ESTs using the traditional Sanger method. Here, approximately 53 million clean reads of adventitious root transcriptome were separately filtered via Illumina HiSeq™2000 from two samples treated with MeJA (Pg-MeJA and equal volumes of solvent, ethanol (Pg-Con. Jointly, a total of 71,095 all-unigenes from both samples were assembled and annotated, and based on sequence similarity search with known proteins, a total of 56,668 unigenes was obtained. Out of these annotated unigenes, 54,920 were assigned to the NCBI non-redundant protein (Nr database, 35,448 to the Swiss-prot database, 43,051 to gene ontology (GO, and 19,986 to clusters of orthologous groups (COG. Searching in the Kyoto encyclopedia of genes and genomes (KEGG pathway database indicated that 32,200 unigenes were mapped to 128 KEGG pathways. Moreover, we obtained several genes showing a wide range of expression levels. We also identified a total of 749 ginsenoside biosynthetic enzyme genes and 12 promising pleiotropic drug resistance (PDR genes related to ginsenoside transport.

  16. Variability in mycotoxin biosynthetic genes and gene clusters in Fusarium and its implications for mycotoxin contamination of crops

    Science.gov (United States)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As with other fungal secondary metabolites, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thus, fumonisin biosynthetic gen...

  17. KiWi: A Scalable Subspace Clustering Algorithm for Gene Expression Analysis

    OpenAIRE

    Griffith, Obi L.; Gao, Byron J.; Bilenky, Mikhail; Prichyna, Yuliya; Ester, Martin; Jones, Steven J.M.

    2009-01-01

    Subspace clustering has gained increasing popularity in the analysis of gene expression data. Among subspace cluster models, the recently introduced order-preserving sub-matrix (OPSM) has demonstrated high promise. An OPSM, essentially a pattern-based subspace cluster, is a subset of rows and columns in a data matrix for which all the rows induce the same linear ordering of columns. Existing OPSM discovery methods do not scale well to increasingly large expression datasets. In particular, twi...

  18. Comparative Analysis and Distribution of Omega-3 lcPUFA Biosynthesis Genes in Marine Molluscs

    Science.gov (United States)

    Surm, Joachim M.; Prentis, Peter J.; Pavasovic, Ana

    2015-01-01

    Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the

  19. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening

    OpenAIRE

    Pan, Lei; Zeng, Wenfang; Niu, Liang; Lu, Zhenhua; Liu, Hui; Cui, Guochao; Zhu, Yunqin; Chu, Jinfang; Li, Weiping; Fang, Weichao; Cai, Zuguo; Li, Guohuai; Wang, Zhiqiang

    2015-01-01

    High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performe...

  20. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    OpenAIRE

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat,...

  1. Gene Expression Regulation by the Curli Activator CsgD Protein: Modulation of Cellulose Biosynthesis and Control of Negative Determinants for Microbial Adhesion

    OpenAIRE

    Brombacher, Eva; Baratto, Andrea; Dorel, Corinne; Landini, Paolo

    2006-01-01

    Curli fibers, encoded by the csgBAC genes, promote biofilm formation in Escherichia coli and other enterobacteria. Curli production is dependent on the CsgD transcription activator, which also promotes cellulose biosynthesis. In this study, we investigated the effects of CsgD expression from a weak constitutive promoter in the biofilm formation-deficient PHL565 strain of E. coli. We found that despite its function as a transcription activator, the CsgD protein is localized in the cytoplasmic ...

  2. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats

    OpenAIRE

    Couturier, Aline; Ringseis, Robert; Most, Erika; Eder, Klaus

    2014-01-01

    BACKGROUND: Activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPARdelta causes an elevation of tissue carnitine concentrations through induction of genes involved in carnitine uptake [novel organic cation transporter 2, (OCTN2)], and carnitine biosynthesis [gamma-butyrobetaine dioxygenase (BBD), 4-N-trimethyl-aminobutyraldehyde dehydrogenase (TMABA-DH)]. Recent studies showed that administration of the plasma lipid-lowering drug niacin causes activation of PPARalpha and...

  3. UPLC/Q-TOF MS-Based Metabolomics and qRT-PCR in Enzyme Gene Screening with Key Role in Triterpenoid Saponin Biosynthesis of Polygala tenuifolia

    OpenAIRE

    Zhang, Fusheng; Li, Xiaowei; Li, Zhenyu; Xu, Xiaoshuang; Peng, Bing; Qin, Xuemei; Du, Guanhua

    2014-01-01

    Background The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear. Methodology/Findings In this study, ultra-performance liquid chromatography (UPLC) coupled w...

  4. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes.

    Science.gov (United States)

    Lai, Yung C; Wang, Shu Y; Gao, Huan Y; Nguyen, Khiem M; Nguyen, Chinh H; Shih, Ming C; Lin, Kuan H

    2016-05-15

    The functional properties of starches from six sweet potato varieties containing various starch components and structures were studied in an attempt to identify starch sources for industrial uses. Tainan 18 (TNN18) with high-amylose (AM) starch exhibited high setback and breakdown viscosities, high water solubility at 85°C but low swelling volume at 65°C, and high hardness and adhesiveness; in contrast, the low-AM starch of Tainung 31 (TNG31) had opposite characteristics. Seven genes related to starch biosynthesis were tested, and GBSS, SS, SBEII, ISA, and AGPase were highly expressed in TNN18 and TNG31; however, transcript levels in DBE and SBE were extremely low. GBSS and SS activity reflected the abundance of GBSS and SS mRNA in TNG31 and TNN18, and expression of AGPase, GBSS, SS, and SBE in TNN18 substantially increased content of AM. The expression and activity of DBE had a significant effect on TNG31 with increased AP content. PMID:26776008

  5. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters. PMID:26150486

  6. Taxonomically Clustering Organisms Based on the Profiles of Gene Sequences Using PCA

    Directory of Open Access Journals (Sweden)

    E. Ramaraj

    2006-01-01

    Full Text Available The biological implications of bioinformatics can already be seen in various implementations. Biological taxonomy may seem like a simple science in which the biologists merely observe similarities among organisms and construct classifications according to those similarities[1], but it is not so simple. By applying data mining techniques on gene sequence database we can cluster the data to find interesting similarities in the gene expression data. One of the applications of such kind of clustering is taxonomically clustering the organisms based on their gene sequential expressions. In this study we outlined a method for taxonomical clustering of species of the organisms based on the genetic profile using Principal Component Analysis and Self Organizing Neural Networks. We have implemented the idea using Matlab and tried to cluster the gene sequences taken from PAUP version of the ML5/ML6 database. The taxa used for some of the basidiomycetous fungi form the database. To study the scalability issues another large gene sequence database was used. The proposed method clustered the species of organisms correctly in almost all the cases. The obtained were more significant and promising. The proposed method clustered the species of organisms correctly in almost all the cases. The obtained results were more significant and promising.

  7. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  8. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system

    OpenAIRE

    Nah, Hee-Ju; Woo, Min-Woo; Choi, Si-Sun; Kim, Eung-Soo

    2015-01-01

    Background Direct cloning combined with heterologous expression of a secondary metabolite biosynthetic gene cluster has become a useful strategy for production improvement and pathway modification of potentially valuable natural products present at minute quantities in original isolates of actinomycetes. However, precise cloning and efficient overexpression of an entire biosynthetic gene cluster remains challenging due to the ineffectiveness of current genetic systems in manipulating large-si...

  9. Genetic weighted k-means algorithm for clustering large-scale gene expression data

    OpenAIRE

    2008-01-01

    Background The traditional (unweighted) k-means is one of the most popular clustering methods for analyzing gene expression data. However, it suffers three major shortcomings. It is sensitive to initial partitions, its result is prone to the local minima, and it is only applicable to data with spherical-shape clusters. The last shortcoming means that we must assume that gene expression data at the different conditions follow the independent distribution with the same variances. Nevertheless, ...

  10. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  11. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  12. Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster.

    Science.gov (United States)

    Kang, Houxiang; Weng, Yiqun; Yang, Yuhong; Zhang, Zhonghua; Zhang, Shengping; Mao, Zhenchuan; Cheng, Guohua; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-03-01

    Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F(9) recombinant inbred lines (RILs) and 1,944 F(2) plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F(2) population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region. PMID:21104067

  13. Identification and characterization of iron-regulated Bordetella pertussis alcaligin siderophore biosynthesis genes.

    OpenAIRE

    Kang, H.Y.; Brickman, T J; Beaumont, F C; Armstrong, S K

    1996-01-01

    Bordetella bronchiseptica mutants BRM1, BRM6, and BRM9 fail to produce the native dihydroxamate siderophore alcaligin. A 4.5-kb BamHI-Smal Bordetella pertussis genomic DNA fragment carried multiple genes required to restore alcaligin production to these siderophore-deficient mutants. Phenotypic complementation analysis using subclones of the 4.5-kb genomic region demonstrated that the closely linked BRM1 and BRM9 mutations were genetically separable from the BRM6 mutation, and both insertions...

  14. The Glycosyltransferase Gene Encoding the Enzyme Catalyzing the First Step of Mycothiol Biosynthesis (mshA)

    OpenAIRE

    Newton, Gerald L.; Koledin, Teresa; Gorovitz, Batia; Rawat, Mamta; Fahey, Robert C.; Av-Gay, Yossef

    2003-01-01

    Mycothiol is the major thiol present in most actinomycetes and is produced from the pseudodisaccharide 1d-myo-inosityl 2-acetamido-2-deoxy-α-d-glucopyranoside (GlcNAc-Ins). A transposon mutant of Mycobacterium smegmatis shown to be GlcNAc-Ins and mycothiol deficient was sequenced to identify a putative glycosyltransferase gene designated mshA. The ortholog in Mycobacterium tuberculosis, Rv0486, was used to complement the mutant phenotype.

  15. Isolation and characterisation of starch biosynthesis genes from cassava (Manihot esculenta Crantz).

    OpenAIRE

    Munyikwa, T.R.I.

    1997-01-01

    Cassava (Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is an increasing demand for the use of cassava in processed food and feed products, and in the paper and textile industries amongst others. This thesis describes research on the cloning of the genes encoding ADP-glucose pyrophosphorylase small and large subunits (AGPase B and S, respectively) and granule bound starch syntha...

  16. Identification and Characterization of a Novel Biotin Biosynthesis Gene in Saccharomyces cerevisiae

    OpenAIRE

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi

    2005-01-01

    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake ye...

  17. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis

    OpenAIRE

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-01-01

    Background Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. Result In this study, de novo sequencing was performed to select candidate genes involved in the saponi...

  18. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Science.gov (United States)

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  19. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Directory of Open Access Journals (Sweden)

    Yick Ching Wong

    2014-11-01

    Full Text Available Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA and triacylglycerol (TAG assembly, along with the tricarboxylic acid cycle (TCA and glycolysis pathway at 16 Weeks After Anthesis (WAA exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01, and rice (p-value < 0.01 arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01 throughout mesocarp development to transcriptome (RNA sequencing data, and improved correlation over quantitative real-time PCR (qPCR (r2 = 0.721, p < 0.01 of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  20. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.

    Science.gov (United States)

    Li, Boqiang; Zong, Yuanyuan; Du, Zhenglin; Chen, Yong; Zhang, Zhanquan; Qin, Guozheng; Zhao, Wenming; Tian, Shiping

    2015-06-01

    Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species. PMID:25625822

  1. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  2. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed. PMID:24531239

  3. Characterization of phosphatidylinositol-glycan biosynthesis protein class F gene in rice.

    Science.gov (United States)

    Lee, Dong Hoon; Kang, Sang Gu

    2008-06-01

    The glycosylphosphatidylinositol (GPI) anchors are linked to glycosylphosphatidylinositol-anchored proteins (GAPs) which are essential for the growth of mammalian, yeast and protozoan cells. The GPI anchor is covalently linked to GAP by amide bond formation between the carboxyl terminus and phosphoethanolamine attached at the third mannose and mediated by a transamidase complex. Mediation of GPI synthesis is by the sequential additions of GPI-N-acetylglucosaminyltransferase (GPI-GnT) complex, the GlcN-PI de-N-acetylase, the GlcN-PI mannosyltransferases and the GPI lipid anchor phosphoethanolamine transferase complexes. We report a rice gene OsPIG-F that encodes a homolog to the human PIG-F protein, one of GPI lipid anchor phosphoethanolamine transferase complexes. The amino acid sequences of rice PIG-F consisted of six helix transmembrane domains, one glycosaminoglycan attachment site, one cGMP-dependent protein kinase phosphorylation site and a protein C phosphorylation site at the C-terminus. This unique structure of rice PIG-F indicates the typical membrane bound structure of a protein. Polyclonal antibody for rice PIG-F was found to be cross-reactive with a protein extracted from the leaves of rice. The levels of rice PIG-F transcripts were found to be abundant in leaves, moderately in the milky stage of seed development and less in the floral spikelet, indicating that the rice PIG-F gene was differentially regulated in specific tissues. Furthermore, the levels of rice PIG-F transcription were up-regulated by growth hormones including GA(3), NAA and kinetin. These results indicated that the rice PIG-F gene expression may medicated by these growth regulators. PMID:17852346

  4. UPLC/Q-TOF MS-based metabolomics and qRT-PCR in enzyme gene screening with key role in triterpenoid saponin biosynthesis of Polygala tenuifolia.

    Directory of Open Access Journals (Sweden)

    Fusheng Zhang

    Full Text Available The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear.In this study, ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1 were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS, squalene monooxygenase (SQE, and beta-amyrin synthase (β-AS were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis.This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia.

  5. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    Directory of Open Access Journals (Sweden)

    Anthony E Glenn

    Full Text Available Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA. In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL superfamily. Deletion of this gene (MBL1 rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.

  6. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    Science.gov (United States)

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  7. Cloning, functional analysis and expression of a scytalone dehydratase gene ( SCD1) involved in melanin biosynthesis of the phytopathogenic fungus Bipolaris oryzae.

    Science.gov (United States)

    Kihara, Junichi; Moriwaki, Akihiro; Ueno, Makoto; Tokunaga, Toshiko; Arase, Sakae; Honda, Yuichi

    2004-04-01

    Scytalone dehydratase is involved in the production of fungal dihydroxynaphthalene melanin. We isolated and characterized SCD1, a gene encoding scytalone dehydratase, from the phytopathogenic fungus Bipolaris oryzae. Sequence analysis showed that SCD1 encodes a putative protein that has 185 amino acids, a molecular weight of 21 kDa and 51-75% sequence identity to other fungal scytalone dehydratases. Targeted disruption of SCD1 showed that this gene is necessary for melanin biosynthesis in B. oryzae. Northern blot analysis showed that SCD1 transcripts are specifically enhanced by near-ultraviolet (300-400 nm) radiation. PMID:14716498

  8. The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability.

    OpenAIRE

    Liu, M Y; Yang, H.; Romeo, T

    1995-01-01

    The carbon storage regulator gene, csrA, modulates the expression of genes in the glycogen biosynthesis and gluconeogenesis pathways in Escherichia coli and has been cloned, mapped and sequenced (T. Romeo, M. Gong, M.Y. Liu, and A.M. Brun-Zinkernagel, J. Bacteriol. 175:4744-4755, 1993; T. Romeo and M. Gong, J. Bacteriol. 175:5740-5741, 1993). We have now conducted experiments that begin to elucidate a unique mechanism for csrA-mediated regulation. Steady-state levels of glgC transcripts, enco...

  9. Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.

    Directory of Open Access Journals (Sweden)

    Yanan eYang

    2015-09-01

    Full Text Available Anthocyanin concentration is the key determinant for red skin color in pear fruit. However, the molecular basis for development of red skin is complicated and has not been well understood thus far. ‘Starkrimson’ (Pyrus communis L., an introduced red pear cultivated in the north of China and its green mutant provides a desirable red/green pair for identification of candidate genes involved in color variation. Here, we sequenced and annotated the transcriptome for the red /green color mutant at three stages of development using Illumina RNA-seq technology. The total number of mapped reads ranged from 26 to 46 million in six libraries. About 70.11-71.95% of clean reads could be mapped to the reference genome. Compared with green colored fruit, a total of 2,230 differentially expressed genes (DEGs were identified in red fruit. Gene Ontology (GO terms were defined for 4,886 differential transcripts involved in 15 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Three DEGs were identified as candidate genes in the flavonoid pathway, LAR, ANR and C3H. Tellingly, higher expression was found for genes encoding ANR and LAR in the green color mutant, promoting the proanthocyanidin (PA pathway and leading to lower anthocyanin. MYB-binding cis-motifs were identified in the promoter region of LAR and ANR. Based on these findings, we speculate that the regulation of PA biosynthesis might be a key factor for this red/green color mutant. Besides the known MYB and MADS transcription families, two new families, AP2 and WRKY, were identified as having high correlation with anthocyanin biosynthesis in red skinned pear. In addition, qRT-PCR was used to confirm the transcriptome results for 17 DEGs, high correlation of gene expression, further proved that AP2 and WARK regulated the anthocyanin biosynthesis in red skinned ‘Starkrimson’, and ANR and LAR promote PA biosynthesis and contribute to the green skinned variant. This study can serve as a valuable

  10. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  11. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    Full Text Available Abstract Background Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata and Phlegmariurus carinatus (P. carinatus as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. Results For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3% unique putative transcripts from H. serrata and 14,070 (44.2% from P. carinatus were assigned to at least one protein. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways. In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H

  12. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  13. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Science.gov (United States)

    Becerra-Moreno, Alejandro; Redondo-Gil, Mónica; Benavides, Jorge; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A.

    2015-01-01

    The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid) and secondary (phenylpropanoid) metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota) was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds, and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary metabolites when plants are

  14. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot.

    Science.gov (United States)

    Becerra-Moreno, Alejandro; Redondo-Gil, Mónica; Benavides, Jorge; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2015-01-01

    The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid) and secondary (phenylpropanoid) metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota) was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds, and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary metabolites when plants are

  15. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  16. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis.

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    Full Text Available Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L and root (101R which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L and 54,123 (101R could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.

  17. Molecular population genetics of the -esterase gene cluster of Drosophila melanogaster

    Indian Academy of Sciences (India)

    Evgeniy S. Balakirev; Francisco J. Ayala

    2003-12-01

    We have investigated nucleotide polymorphism at the -esterase gene cluster including the Est-6 gene and Est-6 putative pseudogene in four samples of Drosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplo-type structure is revealed in both Est-6 and Est-6. Total nucleotide diversity is twice in Est-6 as in Est-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within the -esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected within Est-6 and, to a much greater extent, within Est-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for the -esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the -esterase gene cluster. However there are some ‘footprints’ of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection between Est-6 and Est-6 may play an important role in the evolution of the -esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene. Est-6 and Est-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 or Est-6) cannot separately carry out the full functional role.

  18. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. PMID:26134579

  19. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  20. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  1. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening.

    Science.gov (United States)

    Pan, Lei; Zeng, Wenfang; Niu, Liang; Lu, Zhenhua; Liu, Hui; Cui, Guochao; Zhu, Yunqin; Chu, Jinfang; Li, Weiping; Fang, Weichao; Cai, Zuguo; Li, Guohuai; Wang, Zhiqiang

    2015-12-01

    High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performed. The expression patterns of auxin-homeostasis-related genes were compared in fruits of the melting flesh peach 'Goldhoney 3' and the stony hard flesh peach 'Yumyeong' during the ripening stage. It is revealed here that a YUCCA flavin mono-oxygenase gene (PpYUC11, ppa008176m), a key gene in auxin biosynthesis, displayed an identical differential expression profile to the profiles of IAA accumulation and PpACS1 transcription: the mRNA transcripts increased at the late ripening stage in melting flesh peaches but were below the limit of detection in mature fruits of stony hard peaches. In addition, the strong association between intron TC microsatellite genotypes of PpYUC11 and the flesh texture (normal or stony hard) is described in 43 peach varieties, indicating that this locus may be responsible for the stony hard phenotype in peach. These findings support the hypothesis that PpYUC11 may play an essential role in auxin biosynthesis during peach fruit ripening and is a candidate gene for the control of the stony hard phenotype in peach. PMID:26307136

  2. Life without Fe-S clusters.

    Science.gov (United States)

    Rocha, Agostinho G; Dancis, Andrew

    2016-03-01

    Fe-S clusters are critically important cofactors implicated in numerous cellular processes, including respiration, amino acid biosynthesis, cofactor biosynthesis, tRNA modification, DNA repair and regulation of gene expression. In the accompanying manuscript, Tanaka et al. show that reengineering of the isoprenoid biosynthetic pathway in E. coli (to bypass the usage of essential Fe-S cluster proteins by inserting the mevalonate pathway) can offset the indispensability of the Fe-S cluster biosynthetic systems. They show that the resulting Δisc Δsuf double mutants supplemented with mevalonate can grow slowly without detectable Fe-S cluster proteins. This result is astounding and raises interesting questions about what is essential and what is dispensable in the compendium of Fe-S cluster protein functions in this cell. PMID:26560645

  3. Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes.

    Science.gov (United States)

    Sugita, M; Sugishita, H; Fujishiro, T; Tsuboi, M; Sugita, C; Endo, T; Sugiura, M

    1997-08-11

    The structure of a large gene cluster containing 22 ribosomal protein (r-protein) genes of the cyanobacterium Synechococcus sp. strain PCC6301 is presented. Based on DNA and protein sequence analyses, genes encoding r-proteins L3, L4, L23, L2, S19, L22, S3, L16, L29, S17, L14, L24, L5, S8, L6, L18, S5, L15, L36, S13, S11, L17, SecY, adenylate kinase (AK) and the alpha subunit of RNA polymerase were identified. The gene order is similar to that of the E. coli S10, spc and alpha operons. Unlike the corresponding E. coli operons, the genes for r-proteins S4, S10, S14 and L30 are not present in this cluster. The organization of Synechococcus r-protein genes also resembles that of chloroplast (cp) r-protein genes of red and brown algal species. This strongly supports the endosymbiotic theory that the cp genome evolved from an ancient photosynthetic bacterium. PMID:9300823

  4. BIOSYNTHESIS OF microRNAs AND THEIR ROLE IN GENE EXPRESSION PROFILING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Leonardo Barcelos de Paula

    2011-01-01

    Full Text Available The aggressive nature of breast cancer in young women may be related to the occurrence of mutations in the BRCA1/BRCA2 genes responsible for DNA repair. Despite of cases are associated with and without a family history of breast and ovarian cancer such changes are present in only a small percentage of cases, which corresponds to 80-10% of patients with familial breast cancer and 3.2-10.6% of women withbreast cancer non-familial (sporadic. The penetrance rate of this variability is not well understood today, but we know that reproductive factors, risks posed by particular mutations and other genetic modifiers The expression profile of miRNAs can also reveal changes in the regulatory processes that distinguish the appearance of cancer familial and sporadic breast cancer in young patients. miRNAs have been described as related to the aggressiveness of breast cancer and the sensitivity of human mammary tumor strains to antiestrogen. Such evidence indicates that the molecular mechanisms responsible for the aggressive behavior of breast carcinoma in young women has not been sufficiently clarified.

  5. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    Science.gov (United States)

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature. PMID:25382584

  6. Concurrent changes in methyl jasmonate emission and the expression of its biosynthesis-related genes in Cymbidium ensifolium flowers.

    Science.gov (United States)

    Huang, Mingkun; Ma, Cuiping; Yu, Rangcai; Mu, Lanling; Hou, Jia; Yu, Yunyi; Fan, Yanping

    2015-04-01

    Methyl jasmonate (MeJA) is one of most abundant scent compounds in Cymbidium ensifolium flowers. In this study, the emission of MeJA and its regulation mechanism were investigated. Our results showed that emission of MeJA in C. ensifolium flowers was controlled developmentally and rhythmically. It occurred in a tissue-specific manner, and high MeJA emission was found in sepals and petals. A group of vital genes involved in the MeJA biosynthesis via the octadecanoid pathway were isolated from C. ensifolium flowers, including CeLOX, CeAOS, CeAOC and CeJMT. MeJA emission was at very low levels in unopened or half-opened C. ensifolium flowers and reached its maximal level between day 4 and 6 and declined from day 7 to 10 postanthesis. The expression of CeLOX, CeAOS, CeAOC and CeJMT increased from day 1 to day 6, and then declined from day 7 to 10 postanthesis, corresponding to the change in MeJA emission. Moreover, the expression of CeLOX, CeAOS, CeAOC and CeJMT oscillated in a rhythmic manner could reach the maximum level between 8:00 h and 16:00 h, which coincided with the MeJA emission. The high level of MeJA emission in sepals and petals coincided with the high transcript levels. The results suggest that MeJA emission in C. ensifolium flower might be directly regulated at the transcription levels. Moreover, the recombinant protein of CeJMT could specifically catalyze the jasmonic acid to form the corresponding ester MeJA. PMID:25214235

  7. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Science.gov (United States)

    Zhang, Yuanyuan; Huai, Dongxin; Yang, Qingyong; Cheng, Yan; Ma, Ming; Kliebenstein, Daniel J; Zhou, Yongming

    2015-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies. PMID:26465156

  8. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  9. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    Science.gov (United States)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  10. Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM for gene discovery.

    Directory of Open Access Journals (Sweden)

    Basel Abu-Jamous

    Full Text Available Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM, which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM. The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.

  11. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L..

    Directory of Open Access Journals (Sweden)

    Hairong Wei

    Full Text Available Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.. The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry.In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL, 4-coumarate-CoA ligase (4CL, chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, flavanone 3'-hydroxylase (F3'H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40 that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR.The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights

  12. Clustering of spore-specific genes in Aspergillus nidulans.

    OpenAIRE

    Orr, W C; Timberlake, W E

    1982-01-01

    We have investigated the chromosomal organization of genes that are expressed specifically in the asexual spores (conidia) of the Ascomycete fungus Aspergillus nidulans, using two experimental approaches. In the first, 30 different recombinant clones, containing long nuclear DNA inserts and at least one spore-specific gene, were selected randomly. The total number of spore-specific genes present in each clone was then determined by RNA blot analysis. In the second approach, several chromosoma...

  13. A CLUSTERING OF DJA STOCKS - THE APPLICATION IN FINANCE OF A METHOD FIRST USED IN GENE TRAJECTORY STUDY

    Directory of Open Access Journals (Sweden)

    Silaghi Gheorghe Cosmin

    2009-05-01

    Full Text Available Previously we employed the Gene Trajectory Clustering methodology to search for different associations of the stocks composing the DJA index, with the aim of finding different, logic clusters, supported by economic reasons, preferably different than the

  14. Conservation of the organization of five tightly clustered genes over 600 million years of divergent evolution.

    OpenAIRE

    Colombo, P; Yon, J.; Garson, K; Fried, M

    1992-01-01

    The organization of the mouse surfeit locus is unusual in that it contains six housekeeping genes (Surf-1-Surf-6), which are unrelated by sequence homology, in the tightest mammalian gene cluster thus far described. A maximum of only 73 base pairs separates any two of the four well-characterized genes, and two of the genes overlap at their 3' ends. The direction of transcription of each of the five surfeit genes, Surf-1-Surf-5, alternates with respect to that of its neighbor, suggesting cis-i...

  15. Trajectory Clustering: a Non-Parametric Method for Grouping Gene Expression Time Courses, with Applications to Mammary Development

    OpenAIRE

    Phang, T. L.; Neville, M.C.; Rudolph, M.; HUNTER, L.

    2003-01-01

    Trajectory clustering is a novel and statistically well-founded method for clustering time series data from gene expression arrays. Trajectory clustering uses non-parametric statistics and is hence not sensitive to the particular distributions underlying gene expression data. Each cluster is clearly defined in terms of direction of change of expression for successive time points (its ‘trajectory’), and therefore has easily appreciated biological meaning. Applying the method to a dataset from ...

  16. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Science.gov (United States)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  17. Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins.

    Science.gov (United States)

    Ogasawara, Yasushi; Fujimori, Michiko; Kawata, Junpei; Dairi, Tohru

    2016-08-01

    We recently reported a novel class of amide bond forming enzymes (peptide ligases) involved in the biosynthesis of pheganomycins, resorcinomycins and ketomemicins. This class of enzymes exclusively utilizes Nα-amidino amino acids as the N-terminal substrate. In this Letter, we characterized three new amidinotransferases involved in the biosynthesis of ketomemicins and showed that l-arginine was the amidino-acceptor of amidinotransferases in both the Micromonospora sp. and Streptomyces mobaraensis clusters, while the Salinispora tropica enzyme recognized l-valine. Unexpectedly, the S. tropica enzyme accepted several different amino acids as amidino acceptors in addition to l-valine. Accordingly, we re-investigated the specific metabolites governed by the gene cluster of S. tropica and identified several minor congeners of ketomemicin C with different N-terminal amidino-amino acids. These results indicate that the amidinotransferase of S. tropica is promiscuous and could be useful to generate new ketomemicin-type natural products. PMID:27289319

  18. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.).

    Science.gov (United States)

    Fatima, Tahira; Kesari, Vigya; Watt, Ian; Wishart, David; Todd, James F; Schroeder, William R; Paliyath, Gopinadhan; Krishna, Priti

    2015-10-01

    In this study, phenolic compounds were analyzed in developing berries of four Canadian grown sea buckthorn (Hippophae rhamnoides L.) cultivars ('RC-4', 'E6590', 'Chuyskaya' and 'Golden Rain') and in leaves of two of these cultivars. Among phenolic acids, p-coumaric acid was the highest in berries, while gallic acid was predominant in leaves. In the flavonoid class of compounds, myricetin/rutin, kaempferol, quercetin and isorhamnetin were detected in berries and leaves. Berries of the 'RC-4' cultivar had approximately ⩾ 2-fold higher levels of myricetin and quercetin at 17.5mg and 17.2 mg/100 g FW, respectively, than the other cultivars. The flavonoid content in leaves was considerably more than in berries with rutin and quercetin levels up to 135 mg and 105 mg/100 g FW, respectively. Orthologs of 15 flavonoid biosynthesis pathway genes were identified within the transcriptome of sea buckthorn mature seeds. Semi-quantitative RT-PCR analysis of these genes in developing berries indicated relatively higher expression of genes such as CHS, F3'H, DFR and LDOX in the 'RC-4' cultivar than in the 'Chuyskaya' cultivar. Vitamin C levels in ripened berries of the Canadian cultivars were on the high end of the concentration range reported for most other sea buckthorn cultivars. Orthologs of genes involved in vitamins C and E biosynthesis were also identified, expanding the genomic resources for this nutritionally important plant. PMID:26318327

  19. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A

    Directory of Open Access Journals (Sweden)

    Gunsalus Robert P

    2010-02-01

    Full Text Available Abstract Background The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. Results The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr, hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd as well as tungsten-type (fwd formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. Conclusions The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens.

  20. vanI: a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense.

    Science.gov (United States)

    Kruse, Thomas; Levisson, Mark; de Vos, Willem M; Smidt, Hauke

    2014-09-01

    The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A chromosomal vancomycin resistance gene cluster was previously described for the anaerobic Desulfitobacterium hafniense Y51. We demonstrate that this gene cluster, characterized by its d-Ala-d-Lac ligase-encoding vanI gene, is present in all strains of D. hafniense, D. chlororespirans and some strains of Desulfosporosinus spp. This gene cluster was not found in vancomycin-sensitive Desulfitobacterium or Desulfosporosinus spp., and we show that this antibiotic resistance can be exploited as an intrinsic selection marker for Desulfitobacterium hafniense and D. chlororespirans. The gene cluster containing vanI is phylogenetically only distantly related with those described from soil and gut bacteria, but clusters instead with vancomycin resistance genes found within the phylum Actinobacteria that include several vancomycin-producing bacteria. It lacks a vanH homologue, encoding a D-lactate dehydrogenase, previously thought to always be present within vancomycin resistance gene clusters. The location of vanH outside the resistance gene cluster likely hinders horizontal gene transfer. Hence, the vancomycin resistance cluster in D. hafniense should be regarded a novel one that we here designated vanI after its unique d-Ala-d-Lac ligase. PMID:25042042

  1. GENE DUPLICATION, MODULARITY AND ADAPTATION IN THE EVOLUTION OF THE AFLATOXIN GENE CLUSTER

    Science.gov (United States)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although these precurso...

  2. Identification of the Fucose Synthetase Gene in the Colanic Acid Gene Cluster of Escherichia coli K-12

    OpenAIRE

    Andrianopoulos, Kanella; Wang, Lei; Reeves, Peter R.

    1998-01-01

    GDP–l-fucose, the substrate for fucosyltransferases for addition of fucose to polysaccharides or glycoproteins in both procaryotes and eucaryotes, is made from GDP–d-mannose. l-Fucose is a component of bacterial surface antigens, including the extracellular polysaccharide colanic acid produced by most Escherichia coli strains. We previously sequenced the E. coli colanic acid gene cluster and identified one of the GDP–l-fucose biosynthetic pathway genes, gmd. We report here the identification ...

  3. Sequencing and mapping hemoglobin gene clusters in the australian model dasyurid marsupial sminthopsis macroura

    Energy Technology Data Exchange (ETDEWEB)

    De Leo, A.A.; Wheeler, D.; Lefevre, C.; Cheng, Jan-Fang; Hope, R.; Kuliwaba, J.; Nicholas, K.R.; Westermanc, M.; Graves, J.A.M.

    2004-07-26

    Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta-like omega gene in the alpha cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.

  4. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    Directory of Open Access Journals (Sweden)

    Teresa Thiel

    2014-12-01

    Full Text Available The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

  5. Insights on the evolution of trehalose biosynthesis

    Directory of Open Access Journals (Sweden)

    Morett Enrique

    2006-12-01

    Full Text Available Abstract Background The compatible solute trehalose is a non-reducing disaccharide, which accumulates upon heat, cold or osmotic stress. It was commonly accepted that trehalose is only present in extremophiles or cryptobiotic organisms. However, in recent years it has been shown that although higher plants do not accumulate trehalose at significant levels they have actively transcribed genes encoding the corresponding biosynthetic enzymes. Results In this study we show that trehalose biosynthesis ability is present in eubacteria, archaea, plants, fungi and animals. In bacteria there are five different biosynthetic routes, whereas in fungi, plants and animals there is only one. We present phylogenetic analyses of the trehalose-6-phosphate synthase (TPS and trehalose-phosphatase (TPP domains and show that there is a close evolutionary relationship between these domains in proteins from diverse organisms. In bacteria TPS and TPP genes are clustered, whereas in eukaryotes these domains are fused in a single protein. Conclusion We have demonstrated that trehalose biosynthesis pathways are widely distributed in nature. Interestingly, several eubacterial species have multiple pathways, while eukaryotes have only the TPS/TPP pathway. Vertebrates lack trehalose biosynthetic capacity but can catabolise it. TPS and TPP domains have evolved mainly in parallel and it is likely that they have experienced several instances of gene duplication and lateral gene transfer.

  6. Comparison of lipooligosaccharide biosynthesis genes of Campylobacter jejuni strains with varying abilities to colonize the chicken gut and to invade Caco-2 cells.

    Science.gov (United States)

    Müller, Jens; Meyer, Birgit; Hänel, Ingrid; Hotzel, Helmut

    2007-12-01

    Campylobacter jejuni strains develop a high variability of lipooligosaccharide (LOS) structures on the cell surface based on variations in the genetic content of the LOS biosynthesis locus. While the importance of these variations for ganglioside mimicry as a critical factor in the triggering of Guillain-Barré syndrome has already been shown, little work has been done on the investigation of LOS structures and their function in the pathogenesis of gastrointestinal disease. In this study, the presence of several LOS genes in 40 C. jejuni strains with different abilities to colonize the chicken gut and to invade Caco-2 cells was investigated by PCR. Two genes, cgtB and wlaN, encoding putative beta-1,3-galactosyltransferases were detected in most strongly invasive strains and rarely in non-invasive strains. A homopolymeric tract within the wlaN gene resulted in an intact gene product only in strongly invasive strains. The specific function of these genes during LOS biosynthesis is still unknown. cgtB and wlaN gene products are suggested to be involved in development of the colonization and invasion ability of C. jejuni. After a classification of the complete LOS loci, an association between a particular LOS class and colonization and invasion ability of the C. jejuni strain could not be detected. Lack of the pglB gene involved in protein glycosylation in one strain could be responsible for the weak colonization and invasion ability of this strain. There is some evidence that different genetic characteristics were responsible for strong or weak colonization and the invasion ability of C. jejuni strains. PMID:18033824

  7. Genome-guided investigation of plant natural product biosynthesis.

    Science.gov (United States)

    Kellner, Franziska; Kim, Jeongwoon; Clavijo, Bernardo J; Hamilton, John P; Childs, Kevin L; Vaillancourt, Brieanne; Cepela, Jason; Habermann, Marc; Steuernagel, Burkhard; Clissold, Leah; McLay, Kirsten; Buell, Carol Robin; O'Connor, Sarah E

    2015-05-01

    The medicinal plant Madagascar periwinkle, Catharanthus roseus (L.) G. Don, produces hundreds of biologically active monoterpene-derived indole alkaloid (MIA) metabolites and is the sole source of the potent, expensive anti-cancer compounds vinblastine and vincristine. Access to a genome sequence would enable insights into the biochemistry, control, and evolution of genes responsible for MIA biosynthesis. However, generation of a near-complete, scaffolded genome is prohibitive to small research communities due to the expense, time, and expertise required. In this study, we generated a genome assembly for C. roseus that provides a near-comprehensive representation of the genic space that revealed the genomic context of key points within the MIA biosynthetic pathway including physically clustered genes, tandem gene duplication, expression sub-functionalization, and putative neo-functionalization. The genome sequence also facilitated high resolution co-expression analyses that revealed three distinct clusters of co-expression within the components of the MIA pathway. Coordinated biosynthesis of precursors and intermediates throughout the pathway appear to be a feature of vinblastine/vincristine biosynthesis. The C. roseus genome also revealed localization of enzyme-rich genic regions and transporters near known biosynthetic enzymes, highlighting how even a draft genome sequence can empower the study of high-value specialized metabolites. PMID:25759247

  8. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    Science.gov (United States)

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-02-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster. PMID:2644218

  9. Aspergillus nidulans Natural Product Biosynthesis Is Regulated by MpkB, a Putative Pheromone Response Mitogen-Activated Protein Kinase

    International Nuclear Information System (INIS)

    The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters. (author)

  10. Auxin Biosynthesis

    OpenAIRE

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then unde...

  11. Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis-activating neuropeptide and other neuropeptides.

    OpenAIRE

    Ma, P W; Knipple, D C; Roelofs, W.L.

    1994-01-01

    Sex pheromone biosynthesis in a number of moth species is induced by a conserved 33-amino acid amidated neuropeptide PBAN (pheromone biosynthesis-activating neuropeptide). We have isolated and characterized the Helicoverpa zea PBAN cDNA corresponding to a 766-nucleotide mRNA that is expressed in the subesophageal ganglion of adult moths. This mRNA is encoded on a transcription unit comprising 6 exons. The longest open reading frame of the cDNA encodes a 194-amino acid precursor protein that c...

  12. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    Science.gov (United States)

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism. PMID:26882658

  13. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  14. A Single Module Type I Polyketide Synthase Directs de Novo Macrolactone Biogenesis during Galbonolide Biosynthesis in Streptomyces galbus*

    Science.gov (United States)

    Kim, Hyun-Ju; Karki, Suman; Kwon, So-Yeon; Park, Si-Hyung; Nahm, Baek-Hie; Kim, Yeon-Ki; Kwon, Hyung-Jin

    2014-01-01

    Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-13C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications. PMID:25336658

  15. A single module type I polyketide synthase directs de novo macrolactone biogenesis during galbonolide biosynthesis in Streptomyces galbus.

    Science.gov (United States)

    Kim, Hyun-Ju; Karki, Suman; Kwon, So-Yeon; Park, Si-Hyung; Nahm, Baek-Hie; Kim, Yeon-Ki; Kwon, Hyung-Jin

    2014-12-12

    Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-(13)C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications. PMID:25336658

  16. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    Science.gov (United States)

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. PMID:24716518

  17. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila.

    Science.gov (United States)

    Enya, Sora; Ameku, Tomotsune; Igarashi, Fumihiko; Iga, Masatoshi; Kataoka, Hiroshi; Shinoda, Tetsuro; Niwa, Ryusuke

    2014-01-01

    In insects, the precise timing of moulting and metamorphosis is strictly guided by ecdysteroids that are synthesised from dietary cholesterol in the prothoracic gland (PG). In the past decade, several ecdysteroidogenic enzymes, some of which are encoded by the Halloween genes, have been identified and characterised. Here, we report a novel Halloween gene, noppera-bo (nobo), that encodes a member of the glutathione S-transferase family. nobo was identified as a gene that is predominantly expressed in the PG of the fruit fly Drosophila melanogaster. We generated a nobo knock-out mutant, which displayed embryonic lethality and a naked cuticle structure. These phenotypes are typical for Halloween mutants showing embryonic ecdysteroid deficiency. In addition, the PG-specific nobo knock-down larvae displayed an arrested phenotype and reduced 20-hydroxyecdysone (20E) titres. Importantly, both embryonic and larval phenotypes were rescued by the administration of 20E or cholesterol. We also confirm that PG cells in nobo loss-of-function larvae abnormally accumulate cholesterol. Considering that cholesterol is the most upstream material for ecdysteroid biosynthesis in the PG, our results raise the possibility that nobo plays a crucial role in regulating the behaviour of cholesterol in steroid biosynthesis in insects. PMID:25300303

  18. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Salim, Vonny; Yu, Fang; Altarejos, Joaquín; De Luca, Vincenzo

    2013-12-01

    Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus. PMID:24103035

  19. Regulation of a Novel Acidithiobacillus caldus Gene Cluster Involved in Metabolism of Reduced Inorganic Sulfur Compounds▿

    OpenAIRE

    Rzhepishevska, Olena I.; Valdés, Jorge; Marcinkeviciene, Liucija; Gallardo, Camelia Algora; Meskys, Rolandas; Bonnefoy, Violaine; Holmes, David S.; Dopson, Mark

    2007-01-01

    Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, rsrR, rsrS, tetH, and doxD, coding for a transposase, a two-component response regulator (RsrR and Rs...

  20. A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2)

    OpenAIRE

    Pawlik, Krzysztof; Kotowska, Magdalena; Chater, Keith F.; Kuczek, Katarzyna; Takano, Eriko

    2007-01-01

    The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransf...

  1. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis.

    Science.gov (United States)

    Zeng, Jiao-Ke; Li, Xian; Zhang, Jing; Ge, Hang; Yin, Xue-Ren; Chen, Kun-Song

    2016-08-01

    Transcriptional regulatory mechanisms underlying lignin metabolism have been widely studied in model plants and woody trees, as well as fruit, such as loquat (Eriobotrya japonica). Unlike the well-known NAC, MYB and AP2/ERF transcription factors, the roles of heat shock factors (HSFs) in lignin regulation have been rarely reported. Two treatments (heat treatment, HT; low temperature conditioning, LTC) were applied to alleviate low temperature-induced lignification in loquat fruit. Gene expression analysis indicated that EjHSF1 transcript abundance, in parallel with heat shock protein genes (EjHsp), was induced by HT, while expression of EjHSF3 was repressed by LTC. Using dual-luciferase assays, EjHSF1 and EjHSF3 trans-activated the promoters of EjHsp genes and lignin biosynthesis-related genes, respectively. Thus, two distinct regulatory mechanisms of EjHSF transcription factors in chilling injury-induced fruit lignification are proposed: EjHSF1 transcriptionally regulated EjHsp genes are involved in chilling tolerance, while EjHSF3 transcriptionally regulated lignin biosynthesis. Furthermore, the relations between EjHSF3 and previously characterized fruit lignification regulators, including EjAP2-1, EjMYB1 and EjMYB2, were also investigated. Yeast-two hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays demonstrated protein-protein interaction between EjHSF3 and EjAP2-1. Thus, the involvement of EjHSF3 in fruit lignification is via both lignin biosynthetic genes and the regulator, EjAP2-1. PMID:27006258

  2. Organization of the human keratin type II gene cluster at 12q13

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.J.; LeBlanc-Straceski, J.; Krauter, K. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1994-12-01

    Keratin proteins constitute intermediate filaments and are the major differentiation products of mammalian epithelial cells. The epithelial keratins are classified into two groups, type I and type II, and one member of each group is expressed in a given epithelial cell differentiation stage. Mutations in type I and type II keratin genes have now been implicated in three different human genetic disorders, epidermolysis bullosa simplex, epidermolytic hyperkeratosis, and epidermolytic palmoplantar keratoderma. Members of the type I keratins are mapped to human chromosome 17, and the type II keratin genes are mapped to chromosome 12. To understand the organization of the type II keratin genes on chromosome 12, we isolated several yeast artificial chromosomes carrying these keratin genes and examined them in detail. We show that eight already known type II keratin genes are located in a cluster at 12q13, and their relative organization reflects their evolutionary relationship. We also determined that a type I keratin gene, KRT8, is located next to its partner, KRT18, in this cluster. Careful examination of the cluster also revealed that there may be a number of additional keratin genes at this locus that have not been described previously. 41 refs., 3 figs., 1 tab.

  3. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster.

    Science.gov (United States)

    Gaisser, S; Lill, R; Wirtz, G; Grolle, F; Staunton, J; Leadlay, P F

    2001-09-01

    Using a previously developed expression system based on the erythromycin-producing strain of Saccharopolyspora erythraea, O-methyltransferases from the spinosyn biosynthetic gene cluster of Saccharopolyspora spinosa have been shown to modify a rhamnosyl sugar attached to a 14-membered polyketide macrolactone. The spnI, spnK and spnH methyltransferase genes were expressed individually in the S. erythraea mutant SGT2, which is blocked both in endogenous macrolide biosynthesis and in ery glycosyltransferases eryBV and eryCIII. Exogenous 3-O-rhamnosyl-erythronolide B was efficiently converted into 3-O-(2'-O-methylrhamnosyl)-erythronolide B by the S. erythraea SGT2 (spnI) strain only. When 3-O-(2'-O-methylrhamnosyl)-erythronolide B was, in turn, fed to a culture of S. erythraea SGT2 (spnK), 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was identified in the culture supernatant, whereas S. erythraea SGT2 (spnH) was without effect. These results confirm the identity of the 2'- and 3'-O-methyltransferases, and the specific sequence in which they act, and they demonstrate that these methyltransferases may be used to methylate rhamnose units in other polyketide natural products with the same specificity as in the spinosyn pathway. In contrast, 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was found not to be a substrate for the 4'-O-methyltransferase SpnH. Although rhamnosylerythromycins did not serve directly as substrates for the spinosyn methyltransferases, methylrhamnosyl-erythromycins were obtained by subsequent conversion of the corresponding methylrhamnosyl-erythronolide precursors using the S. erythraea strain SGT2 housing EryCIII, the desosaminyltransferase of the erythromycin pathway. 3-O-(2'-O-methylrhamnosyl)-erythromycin D was tested and found to be significantly active against a strain of erythromycin-sensitive Bacillus subtilis. PMID:11555300

  4. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum

    International Nuclear Information System (INIS)

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60–70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of themechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products

  5. A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data

    Directory of Open Access Journals (Sweden)

    Tcha Hong

    2008-01-01

    Full Text Available Abstract Background The previous studies of genome-wide expression patterns show that a certain percentage of genes are cell cycle regulated. The expression data has been analyzed in a number of different ways to identify cell cycle dependent genes. In this study, we pose the hypothesis that cell cycle dependent genes are considered as oscillating systems with a rhythm, i.e. systems producing response signals with period and frequency. Therefore, we are motivated to apply the theory of multivariate phase synchronization for clustering cell cycle specific genome-wide expression data. Results We propose the strategy to find groups of genes according to the specific biological process by analyzing cell cycle specific gene expression data. To evaluate the propose method, we use the modified Kuramoto model, which is a phase governing equation that provides the long-term dynamics of globally coupled oscillators. With this equation, we simulate two groups of expression signals, and the simulated signals from each group shares their own common rhythm. Then, the simulated expression data are mixed with randomly generated expression data to be used as input data set to the algorithm. Using these simulated expression data, it is shown that the algorithm is able to identify expression signals that are involved in the same oscillating process. We also evaluate the method with yeast cell cycle expression data. It is shown that the output clusters by the proposed algorithm include genes, which are closely associated with each other by sharing significant Gene Ontology terms of biological process and/or having relatively many known biological interactions. Therefore, the evaluation analysis indicates that the method is able to identify expression signals according to the specific biological process. Our evaluation analysis also indicates that some portion of output by the proposed algorithm is not obtainable by the traditional clustering algorithm with

  6. Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus.

    Science.gov (United States)

    Ross, Claudia; Opel, Viktoria; Scherlach, Kirstin; Hertweck, Christian

    2014-12-01

    Fungi-bacteria interactions can impact the course of fungal infection and biotechnological use. The mucoralean fungus Rhizopus microsporus, traditionally used in food fermentations (tempe and sufu), is frequently accompanied by Burkholderia gladioli pv. cocovenenans. When producing tempe bongkrek, the bacterial contamination can lead to lethal food-related intoxications caused by the respiratory toxin bongkrekic acid. To unveil the metabolic potential of the fungus-associated bacterium, we sequenced its genome, assigned secondary metabolite biosynthesis gene clusters and monitored the metabolic profile under various growth conditions. In addition to the bongkrekic acid biosynthesis gene cluster we found gene clusters coding for the biosynthesis of toxoflavin and a complex polyketide. The orphan polyketide synthase gene cluster was activated under conditions that emulate tempe production, which enabled isolation and structure elucidation of four members of the enacyloxin family of antibiotics, out of which one is new. Moreover, we found that the fungus positively influences the growth of the bacteria and dramatically increases bongkrekic acid production in stationary culture, which inhibits the growth of the fungus. These results showcase the context-dependent formation of antifungal and antibacterial agents at the fungal-bacterial interface, which may also serve as a model for scenarios observed in mixed infections. PMID:25250879

  7. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  8. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction

    Directory of Open Access Journals (Sweden)

    Albersmeier Andreas

    2005-09-01

    Full Text Available Abstract Background Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. Results The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of

  9. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D;

    2010-01-01

    simulated as well as for two real data sets. We also implement a bootstrap-based pre-processing procedure for SOM, that improves the false discovery ratio of differentially expressed genes. Code in Matlab is freely available, as well as some supplementary material, at the following address: https://ipe...

  10. Biclustering for the comprehensive search of correlated gene expression patterns using clustered seed expansion

    OpenAIRE

    Yun, Taegyun; Yi, Gwan-Su

    2013-01-01

    Background In a functional analysis of gene expression data, biclustering method can give crucial information by showing correlated gene expression patterns under a subset of conditions. However, conventional biclustering algorithms still have some limitations to show comprehensive and stable outputs. Results We propose a novel biclustering approach called “BIclustering by Correlated and Large number of Individual Clustered seeds (BICLIC)” to find comprehensive sets of correlated expression p...

  11. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    Science.gov (United States)

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  12. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  13. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome

    Directory of Open Access Journals (Sweden)

    Vaiman Daniel

    2005-05-01

    Full Text Available Abstract Background Genes specifically expressed in the oocyte play key roles in oogenesis, ovarian folliculogenesis, fertilization and/or early embryonic development. In an attempt to identify novel oocyte-specific genes in the mouse, we have used an in silico subtraction methodology, and we have focused our attention on genes that are organized in genomic clusters. Results In the present work, five clusters have been studied: a cluster of thirteen genes characterized by an F-box domain localized on chromosome 9, a cluster of six genes related to T-cell leukaemia/lymphoma protein 1 (Tcl1 on chromosome 12, a cluster composed of a SPErm-associated glutamate (E-Rich (Speer protein expressed in the oocyte in the vicinity of four unknown genes specifically expressed in the testis on chromosome 14, a cluster composed of the oocyte secreted protein-1 (Oosp-1 gene and two Oosp-related genes on chromosome 19, all three being characterized by a partial N-terminal zona pellucida-like domain, and another small cluster of two genes on chromosome 19 as well, composed of a TWIK-Related spinal cord K+ channel encoding-gene, and an unknown gene predicted in silico to be testis-specific. The specificity of expression was confirmed by RT-PCR and in situ hybridization for eight and five of them, respectively. Finally, we showed by comparing all of the isolated and clustered oocyte-specific genes identified so far in the mouse genome, that the oocyte-specific clusters are significantly closer to telomeres than isolated oocyte-specific genes are. Conclusion We have studied five clusters of genes specifically expressed in female, some of them being also expressed in male germ-cells. Moreover, contrarily to non-clustered oocyte-specific genes, those that are organized in clusters tend to map near chromosome ends, suggesting that this specific near-telomere position of oocyte-clusters in rodents could constitute an evolutionary advantage. Understanding the biological

  14. Down regulation of ethylene biosynthesis in apples. Cloning and sequencing of the partial ACC synthase gene in the McIntosh cultivar

    International Nuclear Information System (INIS)

    Ethylene is a plant hormone that regulates many aspects of plant growth, development and senescence. 1-aminocyclopropane-1-carboxylate (ACC) synthase has been identified as the key enzyme in the biosynthesis of ethylene. Down regulation of ethylene biosynthesis via transformation with the antisense ACC synthase gene (as has already been proved with tomato) might lengthen the storability of apple. To produce the antisense gene of the apple, RNA was isolated from the McIntosh cultivar and the cDNA synthesized. The cDNA template was amplified by polymerase chain reaction (PCR) using ACC specific primers that have been found to be highly conserved in several plant species. PCR resulted in a 1.1 kb DNA band, which was cloned and sequenced. Sequenced analysis of the McIntosh clones (K1, G1, G2, G3, G4) showed a similarity of 63.5-71.6% with the apple ACC synthase known so far and found comparable homology with the ACC syntheses of other plant species in the databank. 8 refs, 2 tabs

  15. Compensation for a Mutated Auxin Biosynthesis Gene of Agrobacterium Ti Plasmid A66 in Nicotiana glutinosa Does Not Result from Increased Auxin Accumulation.

    Science.gov (United States)

    Campell, B R; Su, L Y; Pengelly, W L

    1989-04-01

    Nicotiana glutinosa compensated for a mutated tumor-morphology-shooty (tms) (auxin biosynthesis) locus of Agrobacterlum tumefaciens strain A66 and showed the same virulent tumor response to infection by strain A66 or the wild-type strain A6. Cloned cell lines transformed by strains A6 or A66 were fully hormone independent in culture and grew rapidly as friable, unorganized tissues on hormone-free growth medium. Growth of N. glutinosa tumor cells was inhibited by addition of alpha-naphthaleneacetic acid to the growth medium, and A6- and A66-transformed cells showed similar dose responses to this auxin. On the other hand, A6-transformed cells contained much higher levels of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) than A66-transformed cells. Differences in IAA and ACC levels in N. glutinosa tumor lines were consistent with the expected activity of the tms locus and were quantitatively similar to results obtained previously with A6- and A66-transformed cells of Nicotiana tabacum, which does not compensate for mutated tms genes. Thus, compensation for mutated tms genes in N. glutinosa did not result from increased auxin accumulation and did not appear to be related to the capacity of this host for auxin biosynthesis. PMID:16666706

  16. Design-based re-engineering of biosynthetic gene clusters : plug-and-play in practice

    NARCIS (Netherlands)

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods

  17. The Apolipoprotein E/CI/CII Gene Cluster and Late-Onset Alzheimer Disease

    OpenAIRE

    Yu, Chang-En; Payami, Haydeh; Olson, Jane M.; Boehnke, Michael; Wijsman, Ellen M; Orr, Harry T.; Kukull, Walter A.; Goddard, Katrina A B; Nemens, Ellen; White, June A.; Alonso, M. Elisa; Taylor, Todd D.; Ball, Melvyn J.; Kaye, Jeffrey; Morris, John

    1994-01-01

    The chromosome 19 apolipoprotein E/CI/CII gene cluster was examined for evidence of linkage to a familial Alzheimer disease (FAD) locus. The family groups studied were Volga German (VG), early-onset non-VG (ENVG; mean age at onset