WorldWideScience

Sample records for biosurfactants glycolipidiques par

  1. Production of glycolipidic bio surfactants by environment bacteria: diversity and physiological part; Production de biosurfactants glycolipidiques par les bacteries de l`environnement: diversite et role physiologique

    Energy Technology Data Exchange (ETDEWEB)

    Arino, S.

    1996-10-09

    About a hundred bacterial strains, isolated from soils, polluted or not by hydrocarbons, were tested for their capacity to excrete glycosides. The biggest productions were obtained for a soluble carbon source (glycerol) in a culture medium limited in the nitrogen source. In these conditions, 18 g/l of rhamnose lipids were produced by train Pseudomonas aeruginosa GL1 in a 200 h culture. Pseudomonas aeruginosa GL1, Cellulomonas celulans SA43 and Rhodococcus erythropolis DSM 43060 were studied in detail. The bio-surfactants produced were identified respectively as rhamnose lipids, oligosaccharide lipids and trehalose lipids, using various original analytical methods. Sugars and fatty acids composing these glycolipids had been shown to be usual components of the outer part of the cell wall in these microbial species. Moreover, cell hydrophobicity of the producing bacteria varied in time during culture. These results showed that both the cell wall and the extracellular glycolipids take part in the process of hydrocarbon uptake in the polluted environments. As other bacteria of the same species from different origins present the same characteristics, it may be concluded that glycolipid excretion does not constitute a specific response for hydrocarbon assimilation. In fact, a more general physiological role of glycolipids, concerning modifications of hydrophobic interfaces between the producing bacteria and their surrounding environment, could explain the production of glycolipids, and could also be utilized in hydrocarbon uptake. (author)

  2. Factorial design evaluation of oil removal from fibrous sorbents by bio-surfactant; Evaluation par analyse factorielle de l'elimination de petrole sur des adsorbants fibreux par des biotensioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Q.F.; Huang, F.L. [Southern Yangtze Univ., Key Lab. of Eco-textiles, Ministry of Education (China); Mather, R.R.; Fotheringham, A.F. [Heriot-Watt Univ., Galashiels TD1 3HF (United Kingdom)

    2007-07-01

    The objective of this study was to test the feasibility of bio-surfactant for the removal of oil from used polypropylene nonwoven sorbents and to investigate the effect of basic parameters such as sorbent type, washing time, surfactant dosage and temperature. Bio-surfactants are biodegradable and can also enhance the biodegradation of oil by increasing the bioavailability of hydrophobic compounds. Factorial design was employed to examine the oil removal from used sorbents by bio-surfactant. The study revealed that pore size, bio-surfactant concentration, temperature and washing time exhibit different effects on oil removal for different types of oil. For crude oil and 25% weathered (weight loss from crude oil by evaporation), pore size and washing time are significant factors influencing oil removal from used sorbents. For 50% weathered oil, temperature appears to be most significant factor influencing oil removal. It has been shown that bio-surfactant washing has considerable potential for recycling used oil sorbents. (authors)

  3. Bio-surfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain; Production de biosurfactants sur un substrat economique et degradation du gasoil par une souche du genre Rhodococcus

    Energy Technology Data Exchange (ETDEWEB)

    Sadouk, Z.; Tazerouti, A. [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Lab. de Synthese Organique, Faculte de Chimie, Algiers (Algeria); Sadouk, Z.; Hacene, H. [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Lab. de Microbiologie, Faculte des Sciences Biologiques, Algiers (Algeria)

    2008-07-01

    The ability of a Rhodococcus strain to produce surface-active agents from residual sunflower frying oil (RSFO) has been screened in batch cultures. During cultivation with RSFO at the concentration 3% (vol/vol), the strain has synthesized extra-cellular compounds which increase the E{sub 24} emulsion index of the culture medium up to 63%. In their crude form, these substances lower the surface tension of water until 31.9 mN m{sup -1}. The exponential growth with RSFO as the sole carbon source has developed at a specific growth rate {mu} = 0.55 d{sup -1}. The critical micelle concentration of the crude product reached the value 287 mg L{sup -1} ({gamma}CMC = 31.9 mN m{sup -1}). After methyl-esterification, the lipid fraction of bio-surfactants has been analyzed by GC-MS in EI, which reveals the presence of fatty acid methyl esters. The microorganism was also cultivated with the diesel oil as the sole carbon source at the concentration 1% (vol/vol): the active growth phase has developed at rate = 0.02 d{sup -1}, without production of emulsifying substance: the microorganism seems to develop different modes of substrate uptake, according to the nature of the carbon source. The potential use of surface-active agents synthesized on RSFO by Rhodococcus erythropolis 16 LM.USTHB is in the oil industry with minimum purity specification, so that crude preparation could be used, at low cost, in clean-up of hydrocarbons contaminated sites and for enhanced oil recovery. (authors)

  4. Biosurfactants in agriculture.

    Science.gov (United States)

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics. PMID:23280539

  5. Biosurfactants in agriculture

    OpenAIRE

    Sachdev, Dhara P.; Cameotra, Swaranjit S.

    2013-01-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and ...

  6. Environmental applications of biosurfactants: recent advances.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-01

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  7. Environmental Applications of Biosurfactants: Recent Advances

    Directory of Open Access Journals (Sweden)

    Swaranjit Singh Cameotra

    2011-01-01

    Full Text Available Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  8. Biotechnological opportunities in biosurfactant production.

    Science.gov (United States)

    Geys, Robin; Soetaert, Wim; Van Bogaert, Inge

    2014-12-01

    In the recent years, biosurfactants proved to be an interesting alternative to petrochemically derived surfactants. Two classes of biosurfactants, namely glycolipids and lipopeptides, have attracted significant commercial interest. Despite their environmental advantages and equal performance, commercialization of these molecules remains a challenge due to missing acquaintance of the applicants, higher price and lack of structural variation. The latter two issues can partially be tackled by screening for novel and better wild-type producers and optimizing the fermentation process. Yet, these traditional approaches cannot overcome all hurdles. In this review, an overview is given on how biotechnology offers opportunities for increased biosurfactant production and the creation of new types of molecules, in this way enhancing their commercial potential. PMID:24995572

  9. Production and Biomedical Applications of Probiotic Biosurfactants.

    Science.gov (United States)

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants. PMID:26742771

  10. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  11. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release

    Directory of Open Access Journals (Sweden)

    Khanna Sunil

    2011-06-01

    Full Text Available Abstract Background Biosurfactants have been reported to utilize a number of immiscible substrates and thereby facilitate the biodegradation of panoply of polyaromatic hydrocarbons. Olive oil is one such carbon source which has been explored by many researchers. However, studying the concomitant production of biosurfactant and esterase enzyme in the presence of olive oil in the Bacillus species and its recombinants is a relatively novel approach. Results Bacillus species isolated from endosulfan sprayed cashew plantation soil was cultivated on a number of hydrophobic substrates. Olive oil was found to be the best inducer of biosurfactant activity. The protein associated with the release of the biosurfactant was found to be an esterase. There was a twofold increase in the biosurfactant and esterase activities after the successful cloning of the biosurfactant genes from Bacillus subtilis SK320 into E.coli. Multiple sequence alignment showed regions of similarity and conserved sequences between biosurfactant and esterase genes, further confirming the symbiotic correlation between the two. Biosurfactants produced by Bacillus subtilis SK320 and recombinant strains BioS a, BioS b, BioS c were found to be effective emulsifiers, reducing the surface tension of water from 72 dynes/cm to as low as 30.7 dynes/cm. Conclusion The attributes of enhanced biosurfactant and esterase production by hyper-producing recombinant strains have many utilities from industrial viewpoint. This study for the first time has shown a possible association between biosurfactant production and esterase activity in any Bacillus species. Biosurfactant-esterase complex has been found to have powerful emulsification properties, which shows promising bioremediation, hydrocarbon biodegradation and pharmaceutical applications.

  12. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  13. Biosurfactants: a sustainable replacement for chemical surfactants?

    Science.gov (United States)

    Marchant, Roger; Banat, Ibrahim M

    2012-09-01

    Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step. PMID:22618240

  14. Application of biosurfactant in oil spill management

    International Nuclear Information System (INIS)

    Surfactants are surface active agents which reduce surface tension and interfacial tension between two immiscible phases and help in emulsification. Toxicity, nonbiodegradability, and limited structural types of chemical surfactants have initiated the need for effective substitutes. Biosurfactants, which are synthesized by specific microbial cultures, have surface active properties comparable to chemical surfactants. They are compounds that can help in oil spill cleanup operations without presenting the problem posed by chemical surfactants. Two bacterial cultures were isolated from oil-contaminated soil and were used for biosurfactant production. The biosurfactants produced by Bacillus licheniformis, BS1, and Pseudomonas aeruginosa, BS2, in mineral media containing glucose as the carbon source belong to the class of lipoprotein and glycolipid, respectively. They were found to reduce the surface and interfacial tension of water and water-hexadecane system from 72 dynes/cm and 40 dynes/cm to 28 to 30 dynes/cm and 1 to 3 dynes/cm, respectively. These results were comparable with chemical surfactants with respect to surface tension reduction (Slic Gone 34 dynes/ cm and Castrol 30 dynes/cm). The low interfacial tension allows the formation of stable emulsion. The two cultures were grown on different substrates, namely, glucose, mannitol, glycerol, hexadecane, oily sludge, and crude oil. Emulsion formation of hexadecane in water was tested with the cell-free broth containing biosurfactant from the respective substrate broths. Emulsions of 56% stability to 100% stability were obtained from these biosurfactant-containing broths. Both biosurfactants were able to emulsify crude oil. A surfactant's ability to form a stable emulsion is the first step in oil spill cleanup. The emulsified oil can then be acted upon very easily by the microorganism under study

  15. Biosurfactant production using mixed cultures under non-aseptic conditions

    International Nuclear Information System (INIS)

    The use of surfactants is of increasing interest for remediation of petroleum hydrocarbons in groundwater and soil. Surfactants increase the accessibility of adsorbed hydrocarbons and mobilize immiscible petroleum hydrocarbons for treatment. Biosurfactants have the advantage of biodegradability and non-toxicity over their synthetic counterparts, and can be produced from renewable sources. In this study the production of biosurfactant from molasses was investigated in continuously stirred batch reactors. The effects of substrate concentration, yeast extract and peptone on biomass accumulation and biosurfactant production were investigated. Biosurfactant production was quantified by surface tension reduction and critical micelle dilution (CMD). Biosurfactant production was directly correlated with biomass production, and was improved with the addition of yeast extract. Centrifugation of the whole broth reduced surface tension. The performance of the biosurfactant produced from molasses under non-aseptic condition is comparable to other published results

  16. Contributions of biosurfactants to natural or induced bioremediation.

    Science.gov (United States)

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes. PMID:23400445

  17. Contributions of biosurfactants to natural or induced bioremediation

    OpenAIRE

    Ławniczak, Łukasz; Marecik, Roman; Chrzanowski, Łukasz

    2013-01-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. Th...

  18. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources

    OpenAIRE

    Thavasi, R.; Subramanyam Nambaru, V. R. M.; Jayalakshmi, S.; Balasubramanian, T.; Banat, Ibrahim M.

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8...

  19. Microbial biosurfactants as additives for food industries.

    Science.gov (United States)

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. PMID:23956227

  20. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    NARCIS (Netherlands)

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black p

  1. Microbial biosurfactants: challenges and opportunities for future exploitation.

    Science.gov (United States)

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants. PMID:22901730

  2. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature. PMID:26494247

  3. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  4. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  5. [Advance in glycolipid biosurfactants--mannosylerythritol lipids].

    Science.gov (United States)

    Fan, Linlin; Zhang, Jun; Cai, Jin; Dong, Yachen; Xu, Tengyang; He, Guoqing; Chen, Qihe

    2013-09-01

    Mannosylerythritol lipids (MELs), mainly produced by Ustilago and Pseudozyma, are surface active compounds that belong to the glycolipid class of biosurfactants. MELs have potential application in food, pharmaceutical and cosmetics industries due to their excellent surface activities and other peculiar bioactivities. In recent years, the research field of MELs has regained much attention abroad. However, MELs are rarely studied in China. In this review, the producing microorganisms and production conditions, diverse structures, biochemical properties, structure-function relationship and biosynthetic pathways of MELs are described. Some research problems and prospects are summarized and discussed as well. PMID:24409686

  6. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  7. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  8. Functional Roles of Biosurfactants in Bacterial and Environmental Processes

    OpenAIRE

    Belcher, Richard Wilson

    2012-01-01

    Biosurfactants are amphipathic molecules exuded by bacteria that play critical roles in a variety of bacterial and environmental processes due to their interfacial interactions. The involvement of biosurfactants in these processes has vast potential to enhance bioremediation and expedite swarming motility, to name a few, and research into this arena is pivotal. Surface tension reduction by surface active agents can induce swarming motility lending competence of plant growth-promoting soil ino...

  9. Genetic Analysis of Biosurfactant Production in Ustilago maydis

    OpenAIRE

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-01-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated β-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfact...

  10. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  11. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Grażyna A. Płaza

    2014-08-01

    Full Text Available Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance.

  12. Pseudomonas Lipopeptide Biosurfactants

    DEFF Research Database (Denmark)

    Bonnichsen, Lise

    Pseudomonas lipopetide biosurfactants are amphiphilic molecules with a broad range of natural functions. Due to their surface active properties, it has been suggested that Pseudomonas lipopetides potentially play a role in biodegradation of hydrophobic compounds and have essential functions in...... biofilm formation, however, detailed studies of these roles have not yet been carried out. The overall aim of this PhD project was therefore to elucidate in more depth the roles played by Pseudomonas lipopetides in pollutant biodegradation and biofilm formation. This study investigated the effect of the...... Pseudomonas lipopeptides belonging to different structural groups on important biodegradation parameters, mainly; solubilization and emulsification of hydrophobic pollutants (alkanes and PAHs) and increase of cell surface hydrophobicity of bacterial degraders. Ultimately, it was tested if these parameters led...

  13. Multiple Roles of Biosurfactants in Biofilms.

    Science.gov (United States)

    Satputea, Surekha K; Banpurkar, Arun G; Banat, Ibrahim M; Sangshetti, Jaiprakash N; Patil, Rajendra H; Gade, Wasudev N

    2016-01-01

    Microbial growth and biofilms formation are a continuous source of contamination on most surfaces with biological, inanimate, natural or man-made. The use of chemical surfactants in daily practice to control growth, presence or adhesion of microorganisms and ultimately the formation of biofilms and biofouling is therefore becoming essential. Synthetic surfactants are, however, not preferred or ideal and biologically derived surface active biosurfactants (BSs) molecules produced mainly by microorganisms are therefore becoming attractive and sought by many industries. The search for innovative and interesting BS molecules that have effective antimicrobial activities and to use as innovative alternatives to chemical surfactants with added antimicrobial value among many other advantages has been ongoing for some time. This review discusses the various roles of BS molecules in association with biofilm formation. Recent updates on several mechanisms involved in biofilm development and control are presented vide this article. PMID:26786675

  14. Biosurfactants: Multifunctional Biomolecules of the 21st Century

    Directory of Open Access Journals (Sweden)

    Danyelle Khadydja F. Santos

    2016-03-01

    Full Text Available In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

  15. Renewable resources for biosurfactant production by yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    G. C. Fontes

    2012-09-01

    Full Text Available In this work, the production of a biosurfactant synthesized by Yarrowia lipolytica using different renewable resources as carbon source was investigated. Crude glycerol, a biodiesel co-product, and clarified cashew apple juice (CCAJ, an agroindustrial residue, were applied as feedstocks for the microbial surfactant synthesis. The microorganism was able to grow and produce biosurfactant on CCAJ and crude glycerol, achieving maximum emulsification indexes of 68.0% and 70.2% and maximum variations in surface tension of 18.0 mN.m-1and 22.0 mN.m-1, respectively. Different organic solvents (acetone, ethyl acetate and chloroform - methanol were tested for biosurfactant extraction. Maximum biosurfactant recovery was obtained with chloroform - methanol (1:1, reaching 6.9 g.L-1for experiments using CCAJ and 7.9 g.L-1for media containing crude glycerol as carbon source.The results herein obtained indicate that CCAJ and the co-product of biodiesel production are appropriate raw materials for biosurfactant production by Y. lipolytica.

  16. Biosurfactants: Multifunctional Biomolecules of the 21st Century

    Science.gov (United States)

    Santos, Danyelle Khadydja F.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries. PMID:26999123

  17. Possibilities and challenges for biosurfactants use in petroleum industry.

    Science.gov (United States)

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry. PMID:20545279

  18. Biosurfactants: Multifunctional Biomolecules of the 21st Century.

    Science.gov (United States)

    Santos, Danyelle Khadydja F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries. PMID:26999123

  19. Physicochemical and microbiological effects of biosurfactant on the remediation of HOC-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    ZENG Guangming; ZHONG Hua; HUANG Guohe; FU Haiyan

    2005-01-01

    Remediation of soil contaminated by hydrophobic organic compounds using biosurfactants as additives involves interactions between soil matrix, hydrophobic organic compound contaminants, biosurfactants and microorganisms. In this paper, the mechanism for biosurfactants to enhance the contaminant degradation is basically revealed. Biosurfactants can enhance solubilization of the contaminants in the soil matrix, change their mass transfer properties into the aqueous phase, as well as affect their sorption properties. Furthermore, biosurfactants can act on microorganisms and change their surface properties, accordingly cause new growth and uptake behavior of the bacteria in the soil matrix. Both the physicochemical and the microbiological effects can basically increase the bioavailability of the contaminants and enhance their degradation.

  20. Performance of a biosurfactant produced by Bacillus subtilis LAMI005 on the formation of oil / biosurfactant / water emulsion: study of the phase behaviour of emulsified systems

    OpenAIRE

    M.Sousa; I. T. Dantas; F. X. Feitosa; A. E. V. Alencar; S. A. Soares; V.M.M. Melo; L.R.B. Gonçalves; H. B. de Sant'Ana

    2014-01-01

    In this study, the phase behaviour of emulsified systems (oil + biosurfactant + water) was analyzed. The biosurfactant was produced in a 4-L batch bioreactor by Bacillus subtilis LAMI005, using residual glycerine from biodiesel production as a carbon source. Fourier Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR), and High Performance Liquid Chromatography (HPLC) analyses demonstrated that the biosurfactant produced by Bacillus subtilis (LAMI005) consists of a lipope...

  1. Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN

    Energy Technology Data Exchange (ETDEWEB)

    Tuleva, B.; Christova, N. [Inst. of Microbiology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Jordanov, B.; Nikolova-Damyanova, B. [Inst. of Organic Chemistry, Sofia (Bulgaria); Petrov, P. [National Center of Infectious and Parasitic Diseases, Sofia (Bulgaria)

    2005-08-01

    Biosurfactant activity and naphthalene degradation by a new strain identified as Bacillus cereus 28BN were studied. The strain grew well and produced effective biosurfactants in the presence of n-alkanes, naphthalene, crude oil and vegetable oils. The biosurfactants were detected by the surface tension lowering of the medium, thin layer chromatography and infrared spectra analysis. With (2%) naphthalene as the sole carbon source, high levels of rhamnolipids at a concentration of 2.3 g l{sup -1} were determined in the stationary growth. After 20 d of incubation 72 {+-} 4% of the initial naphthalene was degraded. This is the first report for a Bacillus cereus rhamnolipid producing strain that utilized naphthalene under aerobic conditions. The strain looks promising for application in environmental technologies. (orig.)

  2. Biosurfactant-producing yeasts widely inhabit various vegetables and fruits.

    Science.gov (United States)

    Konishi, Masaaki; Maruoka, Naruyuki; Furuta, Yoshifumi; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2014-01-01

    The isolation of biosurfactant-producing yeasts from food materials was accomplished. By a combination of a new drop collapse method and thin-layer chromatography, 48 strains were selected as glycolipid biosurfactant producers from 347 strains, which were randomly isolated from various vegetables and fruits. Of the producers, 69% were obtained from vegetables of the Brassica family. Of the 48 producers, 15 strains gave relatively high yields of mannosylerythritol lipids (MELs), and were identified as Pseudozyma yeasts. These strains produced MELs from olive oil at yields ranging from 8.5 to 24.3 g/L. The best yield coefficient reached 0.49 g/g as to the carbon sources added. Accordingly, MEL producers were isolated at high efficiency from various vegetables and fruits, indicating that biosurfactant producers are widely present in foods. The present results should facilitate their application in the food and related industries. PMID:25036844

  3. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2007-05-01

    Full Text Available Biosurfactant-producing marine bacteria were isolated from oil-spilled seawater collected from harbors and docks in Songkhla Province, Thailand. Haemolytic activity, emulsification activity toward nhexadecane,emulsion of weathered crude oil, drop collapsing test as well as oil displacement test were used to determine biosurfactant producing activity of marine bacteria. Among two-hundred different strains, 40strains exhibited clear zone on blood agar plates. Only eight strains had haemolytic activity and were able to emulsify weathered crude oil in marine broth during cultivation. Eight strains named SM1-SM8 wereidentified by 16S rRNA as Myroides sp. (SM1; Vibrio paraheamolyticus (SM2; Bacillus subtilis (SM3; Micrococcus luteus (SM4; Acinetobacter anitratus (SM6; Vibrio paraheamolyticus (SM7 and Bacilluspumilus (SM8. However, SM5 could not be identified. Strain SM1 showed the highest emulsification activity against weathered crude oil, by which the oil was emulsified within 24 h of cultivation. In addition, strainSM1 exhibited the highest activity for oil displacement test and emulsification test toward n-hexadecane. The emulsification activity against n-hexadecane of crude extract of strain SM1 was stable over a broadrange of temperature (30-121oC, pH (5-12 and salt concentration (0-9% NaCl, whereas CaCl2 showed an adverse effect on emulsifying activity.

  4. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2009-05-01

    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described. PMID:19341364

  5. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.

    Science.gov (United States)

    Gottfried, Avery; Singhal, Naresh; Elliot, Roy; Swift, Simon

    2010-05-01

    The majority of polycyclic aromatic hydrocarbons (PAHs) sorb strongly to soil organic matter posing a complex barrier to biodegradation. Biosurfactants can increase soil-sorbed PAHs desorption, solubilisation, and dissolution into the aqueous phase, which increases the bioavailability of PAHs for microbial metabolism. In this study, biosurfactants, carbon sources, and metabolic pathway inducers were tested as stimulators of microorganism degradation. Phenanthrene served as a model PAH and Pseudomonas putida ATCC 17484 was used as the phenanthrene degrading microorganism for the liquid solutions and soil used in this investigation. Bench-scale trials demonstrated that the addition of rhamnolipid biosurfactant increases the apparent aqueous solubility of phenanthrene, and overall degradation by at least 20% when combined with salicylate or glucose in liquid solution, when compared to solutions that contained salicylate or glucose with no biosurfactant. However, salicylate addition, with no biosurfactant addition, increased the total degradation of phenanthrene 30% more than liquid systems with only biosurfactant addition. In soil slurries, small amounts of biosurfactant (0.25 g/L) showed a significant increase in total removal when only biosurfactant was added. In soil slurries containing salicylate, the effects of biosurfactant additions were negligible as there was greater than 90% removal, regardless of the biosurfactant concentration. The results of experiments performed in this study provide further evidence that an in situ enhancement strategy for phenanthrene degradation could focus on providing additional carbon substrates to induce metabolic pathway catabolic enzyme production, if degradation pathway intermediates are known. PMID:20146061

  6. Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36.

    Science.gov (United States)

    Manivasagan, Panchanathan; Sivasankar, Palaniappan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-05-01

    A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett-Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment. PMID:24061563

  7. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    Science.gov (United States)

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations. PMID:25300549

  8. Identification of potential local isolated for biosurfactant production

    Science.gov (United States)

    Shafiei, Zahra; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul; Moazami, Nasrin; Hamzah, Ainon; Fooladi, Taybeh

    2013-11-01

    Biosurfactant are amphiphilic molecule that have received increasing attention in recent years because of their role in the growth of microorganisms on water-insoluble hydrophobic materials such as hydrocarbons as well as their commercial potential in the cosmetics, food, oil recovery and agricultural industries. In this study a potential biosurfactant producing strain was isolated from several soil samples of Terengganu oil refinery, Malaysia and selected during preliminary screening using hemolytic activity, oil spreading and drop collapsed technique. Isolates with at least more than one positive response to these three methods were subjected to complementary screening by measuring surface tension reduction as well as emulsification capacity. The biosurfactant produced by isolated 5M was able to reduced surface tension of culture medium from 60 mN/m to30mN/m. The biochemical and morphological characterization, 16SrRNA gene sequencing showed that the isolated 5M belongs to bacillus groups. The maximum production of biosurfactant by Bacillus 5M was observed after 48 h of incubation.

  9. Isolation and screening of glycolipid biosurfactant producers from sugarcane.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Hirose, Naoto; Kitamoto, Dai

    2012-01-01

    Forty-three fungal producers for glycolipid biosurfactants, mannosylerythritol lipids (MELs), were isolated from leaves and smuts of sugarcane plants. These isolates produced MELs with sugarcane juice as nutrient source. The strains were taxonomically categorized into the genera Pseudozyma and Ustilago on the basis of partial sequences of the ribosomal RNA gene. PMID:22972331

  10. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Science.gov (United States)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  11. Performance of a biosurfactant produced by Bacillus subtilis LAMI005 on the formation of oil / biosurfactant / water emulsion: study of the phase behaviour of emulsified systems

    Directory of Open Access Journals (Sweden)

    M. Sousa

    2014-09-01

    Full Text Available In this study, the phase behaviour of emulsified systems (oil + biosurfactant + water was analyzed. The biosurfactant was produced in a 4-L batch bioreactor by Bacillus subtilis LAMI005, using residual glycerine from biodiesel production as a carbon source. Fourier Transform Infrared Spectroscopy (FT-IR, Nuclear Magnetic Resonance (NMR, and High Performance Liquid Chromatography (HPLC analyses demonstrated that the biosurfactant produced by Bacillus subtilis (LAMI005 consists of a lipopeptide similar to surfactin. The influences of temperature and the composition of oil + biosurfactant + water were determined by using phase diagrams. Three types of oil were used, namely: motor oil, hydrogenated naphthenic oil (NH140 and castor bean oil. The emulsified systems were analyzed using optical micrography. The results presented here indicated that the biosurfactant produced in this work presents a potential use as stabilizing agent for oil-in-water emulsions.

  12. Bacillus amyloliquefaciens AG1 biosurfactant: Putative receptor diversity and histopathological effects on Tuta absoluta midgut.

    Science.gov (United States)

    Ben Khedher, Saoussen; Boukedi, Hanen; Kilani-Feki, Olfa; Chaib, Ikbel; Laarif, Asma; Abdelkefi-Mesrati, Lobna; Tounsi, Slim

    2015-11-01

    The use of biosurfactant in pest management has received much attention for the control of plant pathogens, but few studies reported their insecticidal activity. The present study describes the insecticidal activity of biosurfactant extracted from Bacillus amyloliquefaciens strain AG1. This strain produces a lipopeptide biosurfactant exhibiting an LC50 of about 180ng/cm(2) against Tuta absoluta larvae. Accordingly, the histopathologic effect of this biosurfactant on T. absoluta larvae showed serious damages of the midgut tissues including rupture and disintegration of epithelial layer and cellular vacuolization. By PCR, we showed that this biosurfactant could be formed by several lipopeptides and polyketides including iturin, fengycin, surfactin, bacyllomicin, bacillaene, macrolactin and difficidin. Binding experiment revealed that it recognized five putative receptors located in the BBMV of T. absoluta with sizes of 68, 63, 44, 30 and 19kDa. Therefore, biosurfactant AG1 hold potential for use as an environmentally friendly agent to control the tomato leaf miner. PMID:26299754

  13. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    OpenAIRE

    Nguyen, Thu T.; Sabatini, David A.

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extrac...

  14. Characterization and phylogenetic analysis of biosurfactant-producing bacteria isolated from palm oil contaminated soils

    OpenAIRE

    Kanokrat Saisa-ard; Atipan Saimmai; Suppasil Maneerat

    2014-01-01

    Biosurfactant-producing bacteria were isolated from 89 different soil samples contaminated with palm oil in 35 palm oil industry sites in the south of Thailand. The phylogenetic diversity of the isolates was evaluated by 16S rRNA gene analysis. Among 1,324 colonies obtained, 134 isolates released extracellular biosurfactant when grown on low-cost substrates by a drop collapsing test. Among these, the 53 isolates that showed the highest biosurfactant production on different substra...

  15. Strategies for administration of biosurfactants-producing pseudomonads in closed hydroponic systems

    OpenAIRE

    Hultberg, Malin; Holmkvist, Anna; Alsanius, Beatrix

    2011-01-01

    Zoospore-producing oomycetes are major plant pathogens of particular concern in hydroponic systems. Compared with pesticides, biocontrol using antagonistic microorganisms is a sustainable approach to control oomycetes. Previous research has demonstrated that biosurfactants and biosurfactant-producing microorganisms are potentially useful components of a sustainable biocontrol strategy. In this study three ways of supplying a biosurfactant-producing strain to a recirculating hydroponic cu...

  16. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications.

    Science.gov (United States)

    Nguyen, Thu T; Sabatini, David A

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications. PMID:21541055

  17. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. PMID:24240116

  18. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    Science.gov (United States)

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. PMID:24850435

  19. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    Directory of Open Access Journals (Sweden)

    Thu T. Nguyen

    2011-02-01

    Full Text Available Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications.

  20. Is rhamnolipid biosurfactant useful in cadmium phytoextraction?

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jia; Stacey, Samuel P. [Adelaide Univ., Glen Osmond, SA (Australia). Soil and Land Systems; McLaughlin, Mike J. [Adelaide Univ., Glen Osmond, SA (Australia). Soil and Land Systems; CSIRO Land and Water, Agricultural Sustainable Flagship, Environmental Biogeochemistry Program, Waite Campus, Urrbrae, SA (Australia); Kirby, Jason K. [CSIRO Land and Water, Agricultural Sustainable Flagship, Environmental Biogeochemistry Program, Waite Campus, Urrbrae, SA (Australia)

    2010-10-15

    Successful chelant-assisted phytoextraction requires application of an eco-friendly metal-complexing agent which enhances metal uptake but does not pose a significant risk of off-site movement of metals. Rhamnolipid biosurfactant has been used to enhance cadmium (Cd) removal from contaminated soil by washing. It has a strong affinity for Cd compared to some other hazardous metals, suggesting that rhamnolipid could be useful in Cd phytoextraction. This study investigated the potential use of rhamnolipid to enhance Cd phytoextraction. Adsorption patterns of rhamnolipid in soils were investigated by batch adsorption experiments. Hydrophobicity of rhamnolipid-metal complexes were determined by assessing partitioning in an octanol/water system. Phytotoxicity of rhamnolipid to maize (Zea mays) and chelant-assisted phytoextraction efficiency of maize and sunflower (Helianthus annuus) were determined in pot experiments. The results showed that rhamnolipid was prone to adsorb strongly to soil at low application rates (0.1-1.7 mM) possibly due to its hydrophobic interactions with soil organic matter, hence reducing its capacity to complex and transport metals to plant roots. Rhamnolipid mobility increased (i.e. decreased soil phase partitioning) at elevated concentrations ({proportional_to}4.4 mM), which increased soil solution Cd concentrations possibly due to its reduced hydrophobic nature. The use of rhamnolipid at concentrations >4.4 mM severely reduced maize biomass yield, reducing the potential for chelant-assisted phytoextraction. At lower concentrations of rhamnolipid (0.02-1.4 mmol/kg), there was insignificant enhancement of Cd accumulation by plant (Z. mays and H. annuus) shoots, likely through strong retention of the chelant (or Cd-associated rhamnolipid) on soil surfaces. High rates of rhamnolipid addition to soils in this study caused severe phytotoxicity to maize and sunflower. Lower rates of rhamnolipid addition to soils in this study did not improve Cd

  1. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    OpenAIRE

    Atla, Shashi B.; Jyoti Prakash Maity; Wei Pan; Hung-Tsan Liu; Min-Jen Tseng; Wun Rong Li; Chien-Yen Chen; A. Satyanarayana Reddy; Chien-Cheng Chen; Hau-Ren Chen

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The h...

  2. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  3. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Singh Pooja

    2009-03-01

    Full Text Available Abstract Background Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery. Results With an aim to gain more insight into hydrocarbon uptake mechanism, an efficient biosurfactant producing and n-hexadecane utilizing Pseudomonas sp was isolated from oil contaminated soil which was found to produce rhamnolipid type of biosurfactant containing a total of 13 congeners. Biosurfactant action brought about the dispersion of hexadecane to droplets smaller than 0.22 μm increasing the availability of the hydrocarbon to the degrading organism. Involvement of biosurfactant was further confirmed by electron microscopic studies. Biosurfactant formed an emulsion with hexadecane thereby facilitating increased contact between hydrocarbon and the degrading bacteria. Interestingly, it was observed that "internalization" of "biosurfactant layered hydrocarbon droplet" was taking place suggesting a mechanism similar in appearance to active pinocytosis, a fact not earlier visually reported in bacterial systems for hydrocarbon uptake. Conclusion This study throws more light on the uptake mechanism of hydrocarbon by Pseudomonas aeruginosa. We report here a new and exciting line of research for hydrocarbon uptake involving internalization of biosurfactant covered hydrocarbon inside cell for subsequent breakdown.

  4. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population. PMID:21797277

  5. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil. PMID:23681773

  6. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267

    NARCIS (Netherlands)

    Kruijt, M.; Tran, H.; Raaijmakers, J.M.

    2009-01-01

    Aims: Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identif

  7. Optimization of biosurfactant production by Bacillus brevis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Foukia E. Mouafi

    2016-03-01

    Full Text Available The present study aims to evaluate and validate a statistical model for maximizing biosurfactant productivity by Bacillus brevis using response surface methodology. In this respect, twenty bacterial isolates were screened for biosurfactant production using hemolytic activity, oil spreading technique, and emulsification index (E24. The most potent biosurfactant-producing bacterium (B. brevis was used for construction of the statistical response surface model. The optimum conditions for biosurfactant production by B. brevis were: 33 °C incubation temperature at pH 8 for 10 days incubation period and 8.5 g/L glucose concentration as a sole carbon source. The produced biosurfactant (BS (73% exhibited foaming activity, thermal stability in the range 30–80 °C for 30 min., pH stability, from 4 to 9 and antimicrobial activity against (Escherichia coli. The BS gave a good potential application as an emulsifier.

  8. Factorial design evaluation of oil removal from fibrous sorbents by bio-surfactant

    International Nuclear Information System (INIS)

    The objective of this study was to test the feasibility of bio-surfactant for the removal of oil from used polypropylene nonwoven sorbents and to investigate the effect of basic parameters such as sorbent type, washing time, surfactant dosage and temperature. Bio-surfactants are biodegradable and can also enhance the biodegradation of oil by increasing the bioavailability of hydrophobic compounds. Factorial design was employed to examine the oil removal from used sorbents by bio-surfactant. The study revealed that pore size, bio-surfactant concentration, temperature and washing time exhibit different effects on oil removal for different types of oil. For crude oil and 25% weathered (weight loss from crude oil by evaporation), pore size and washing time are significant factors influencing oil removal from used sorbents. For 50% weathered oil, temperature appears to be most significant factor influencing oil removal. It has been shown that bio-surfactant washing has considerable potential for recycling used oil sorbents. (authors)

  9. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.

    Science.gov (United States)

    Kiran, George Seghal; Ninawe, Arun Shivanth; Lipton, Anuj Nishanth; Pandian, Vijayalakshmi; Selvin, Joseph

    2016-01-01

    Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review. PMID:25641324

  10. Study on mechanisms of biosurfactant-enhanced composting technology for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.Y.; Huang, G.H.; Chen, B.; Xi, B.D.; Maqsood, I. [Regina Univ., SK (Canada)

    2003-07-01

    Composting is increasingly being used for solid waste treatment. The efficiency of solid waste composting might be enhanced using biosurfactants produced by microbial activities. This study was conducted to characterize the effect of biosurfactant on solid waste biodegradation throughout the composting process. The method employed involves shredding solid waste, followed by a treatment in an 8-litre (L) batch reactor. Biosurfactant production was monitored daily along with characteristics and maturity degree. Surface tension and emulsification capacity were of particular concern. The measurement of indices such as humic acid carbon (CHA) and fulvic acid carbon (CFA) were used to evaluate the maturity degree. The results indicated that the highest level of biosurfactant concentration was achieved on the third day, and within two days, related emulsification capacity reached its peak. This study confirmed the presence of biosurfactants and their function during the composting process. 16 refs., 2 tabs., 4 figs.

  11. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    Science.gov (United States)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  12. Effect of biosurfactant[0] on the sorption of phenanthrene onto original and H2O2-treated soils

    Institute of Scientific and Technical Information of China (English)

    PEI Xiaohong; ZHAN Xinhua; ZHOU Lixiang

    2009-01-01

    The objective of this study was to examine the effect of biosurfactant on sorption of phenanthrene (PHE) onto the original or H2O2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferralisols). The sorption isotherms were performed with the original and "soft" carbon-removed soils in the presence and absence of biosurfactant (200 mg/L). The sorption and degradation of biosurfactant were investigated. The result showed that organic matter played an important role in PHE sorption onto the black loamy and red sandy soils, and the PHE sorption isotherms on the "soft" carbon-removed soils exhibited more nonlinearity than those on the original soils. The values of partition coefficient (Kd) on the original black loamy soil with or without 200 mg/L biosurfactant were 181.6 and 494.5 mL/g, respectively. Correspondingly, in the red sandy soil, Kd was 246.4 and 212.8 mL/g in the presence or absence of biosurfactant, respectively. The changes of Kd suggested that biosurfactant inhibited PHE sorption onto the black loamy soil, but facilitated PHE sorption onto the red sandy soil. The nonlinearity of PHE sorption isotherm was decreased in the presence of biosurfactant. Site specific sorption might occur during PHE sorption onto both the original and the "soft" carbon-removed soils in the presence of biosurfactant. It was noted that biosurfactant could also be sorbed onto soils. The maximal sorption capacity of the red sandy soil for biosurfactant was (76.9 ± 0.007) μg/g, which was 1.31 times that of black loamy soil. Biosurfactant was degraded quickly in the two selected soils, and 92% of biosurfactant were mineralized throughout the incubation experiment for 7 d. It implied that biosurfactant should be added frequently when the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils was conducted through PAH desorption approach facilitated by biosurfactant.

  13. Rhamnolipid biosurfactant against Fusarium sacchari--the causal organism of pokkah boeng disease of sugarcane.

    Science.gov (United States)

    Goswami, Debahuti; Handique, Pratap Jyoti; Deka, Suresh

    2014-06-01

    Pokkah boeng disease on sugarcane caused by the fungus Fusarium sacchari results considerable damage to the crop leading to top rot, the most serious and advanced stage of pokkah boeng, where the growing point is killed and the entire top of the plant dies. In the present study, the effect of rhamnolipid biosurfactant as an antifungal agent against F. sacchari to control pokkah boeng disease was investigated. On the basis of surface tension reduction, 12 bacterial isolates were selected as potent biosurfactant producers and eight of them showed antagonistic effect against F. sacchari. Among the eight, the isolate DS9 was found as the effective inhibitor of the fungus in vitro which was further evaluated using its biosurfactant present in whole culture, cell-free culture supernatant and crude biosurfactant at various concentrations. Reductions of fungal growths were found more with crude biosurfactant. By sequencing 16S rRNA, DS9 was identified as P. aeruginosa and the produced biosurfactant was characterized as rhamnolipid by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. The rhamnolipid biosurfactant inhibits phytopathogenic fungi F. sacchari and therefore seems to be a good biocontrol agent to control pokkah boeng disease of sugarcane. PMID:23687052

  14. Exploration on production of rhamnolipid biosurfactants using native Pseudomonas aeruginosa strains

    Directory of Open Access Journals (Sweden)

    RAVISH BHAT

    2015-08-01

    Full Text Available Biosurfactants are structurally diverse surface-active molecules, produced on living surfaces, mostly microbial cell surfaces or excreted extracellularly. Rhamnolipid biosurfactants have wide spectrum use and are predominantly produced by the bacteria Pseudomonas aeruginosa. In this study, 75 Pseudomonas strains isolated from distinct native habitats were screened following oil spreading technique, methylene blue agar method, hemolytic blood agar method and surface tension measurement of the cell free culture. Ten selected isolates were tested for their ability to produce rhamnolipid biosurfactants in glycerol mediated broth. The best among them, Pa24, was confirmed as Pseudomonas aeruginosa through 16S rRNA sequence analysis. Experiments carried out on the ability of P. aeruginosa strain Pa24 revealed its potential to utilize range of vegetable oils such as coconut oil, palm oil, jatropha oil, neem oil and mineral glycerol as sole source of carbon and produce rhamnolipid biosurfactant. The extracted biosurfactant was characterized by thin layer chromatography and high performance thin layer chromatography as mixture of di-rhamnolipid and mono-rhamnolipid biosurfactants. The crude extract of rhamnolipid was tested in-vitro for antifungal activity against Phytophthora capsici and Phytophthora infestans and the MIC50 were found to be 815.8 ppm and 373.9 ppm, respectively. Further exploration on different renewable carbon sources including agriculture industrial wastes to produce rhamnolipid biosurfactants can improve the efficiency and reduce the environmental pollution through waste discharge from these industries.

  15. Characterization and phylogenetic analysis of biosurfactant-producing bacteria isolated from palm oil contaminated soils

    Directory of Open Access Journals (Sweden)

    Kanokrat Saisa-ard

    2014-04-01

    Full Text Available Biosurfactant-producing bacteria were isolated from 89 different soil samples contaminated with palm oil in 35 palm oil industry sites in the south of Thailand. The phylogenetic diversity of the isolates was evaluated by 16S rRNA gene analysis. Among 1,324 colonies obtained, 134 isolates released extracellular biosurfactant when grown on low-cost substrates by a drop collapsing test. Among these, the 53 isolates that showed the highest biosurfactant production on different substrates were found to belong to 42 different bacterial genera. Among these sixteen (Caryophanon; Castellaniella; Filibacter; Geminicoccus; Georgenia; Luteimonas; Mesorhizobium; Mucilaginibacter; Nubsella; Paracoccus; Pedobacter; Psychrobacter; Rahnella; Sphingobium; Sphingopyxis and Sporosarcina were first reported as biosurfactant-producing strains. By using low-cost, agro-industrial by-products or wastes, Azorhizobium doebereinerae AS54 and Geminicoccus roseus AS73 produced extracellular biosurfactant, which exhibited the lowest surface tension reduction (25.5 mN/m and highest emulsification activity (69.0% when palm oil decanter cake and used palm oil was used as a carbon sources, respectively. Overall, this is the first study of a phylogenetic analysis of biosurfactant-producing bacteria from palm oil refinery industry site and their ability to produce biosurfactant on renewable substrates.

  16. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    Science.gov (United States)

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. PMID:21030223

  17. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth.

    Science.gov (United States)

    Sajna, Kuttuvan Valappil; Sukumaran, Rajeev Kumar; Gottumukkala, Lalitha Devi; Pandey, Ashok

    2015-09-01

    The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L(-1) supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L(-1). It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ∼46% improvement in degradation of C10-C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants. PMID:25985416

  18. Isolation and characterization of halophilic Bacillussp. BS3 able to produce pharmacologically important biosurfactants

    Institute of Scientific and Technical Information of China (English)

    MBS Donio; SFA Ronica; V Thanga Viji; S Velmurugan; J Adlin Jenifer; M Michaelbabu; T Citarasu

    2013-01-01

    Objective:To characterize the pharmacological importance of biosurfactants isolated from halophilicBacillus spBS3.Methods:HalophilicBacillus sp.BS3 was isolated from solar salt works, identified by16S rRNA sequencing and was used for screening their biosurfactant production.Characters of the biosurfactant and their anticancer activity were analyzed and performed in mammary epithelial carcinoma cell at different concentrations.Results:The biosurfactant were characterized byTLC,FTIR andGC-MS analysis and identified as lipopeptide type.GC-MS analysis revealed that, the biosurfactant had various compounds including13-Docosenamide,(Z);Mannosamine,9- andN,N,N',N'-tetramethyl.Surprisingly the antiviral activity was found against shrimp white spot syndrome virus(WSSV) by suppressing the viral replication and significantly raised shrimp survival(P<0.01).Anticancer activity performed in the mammary epithelial carcinoma cell at different concentrations of biosurfactants, among the various concentrations of biosurfactants such as0.00025,0.0025,0.025,0.25 and2.5μg, the 0.25 μg concentration suppressed the cells significantly(P<0.05) to24.8%.Conclusions:Based on the findings, the present study concluded that, there is a possibility to develop eco-friendly antimicrobial and anticancer drugs from the extremophilic origin.

  19. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    Science.gov (United States)

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted. PMID:25037876

  20. INVESTIGATION ON ANTIMICROBIAL ACTIVITY OF BIOSURFACTANT PRODUCED BY PSEUDOMONAS FLUORESCENS ISOLATED FROM MANGROVE ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Govindammal M

    2013-01-01

    Full Text Available The aim of this present study is to investigate the antimicrobial activity of rhamnolipid biosurfactant produced by Pseudomonas fluorescens MFS03 isolated from mangrove forest soil using groundnut oil cake as substrate. The biosurfactant was extracted with an equal amount of ethyl acetate and the concentrated extract was subjected to FT-IR analysis. The important adsorption bands at 3466.24, 2926.45, 1743.47, 1407.30 and 1162.26 cm-1indicate the chemical structure of rhamnolipid. The rhamnolipid biosurfactant was investigated for the potential antimicrobial activity by using disc-diffusion method against Gram positive bacteria (Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Methicillin resistance S. aureus Gram negative bacteria (Escherichia coli, Salmonella typhimurium and a yeast (Candida albicans. The biosurfactant showed distinct antibacterial activity towards tested bacteria and shows an antifungal activity against yeast. The biosurfactant with different concentration was performed for the evaluation of antimicrobial activity. Maximum antimicrobial activity of the biosurfactant (50µl was observed in S. aureus (23 mm and it was found that the biosurfactant activity was dependent on the concentration. So it could be used as a therapeutic agent in pharmaceutical application.

  1. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    Science.gov (United States)

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals. PMID:25865657

  2. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  3. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance)

    International Nuclear Information System (INIS)

    Highlights: • Biosurfactant producing bacteria were isolated from Persian Gulf. • There is high diversity of biosurfactant producing bacteria in the Persian Gulf. • These bacteria are very useful for management of oil pollution in the sea. - Abstract: Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted

  4. Factorial Design to Optimize Biosurfactant Production by Yarrowia lipolytica

    OpenAIRE

    Gizele Cardoso Fontes; Priscilla Filomena Fonseca Amaral; Marcio Nele; Maria Alice Zarur Coelho

    2010-01-01

    In order to improve biosurfactant production by Yarrowia lipolytica IMUFRJ 50682, a factorial design was carried out. A 24 full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone) on maximum variation of surface tension (ΔST) and emulsification index (EI). The best results (67.7% of EI and 20.9 mN m−1 of ΔST) were obtained in a medium composed of 10 g 1−1 of ammonium ...

  5. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  6. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  7. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    International Nuclear Information System (INIS)

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution

  8. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Jl. Ir. Sutami 36A, Surakarta, Central Java 57126 (Indonesia)

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  9. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  10. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  11. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  12. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs. PMID:26293409

  13. Factorial Design to Optimize Biosurfactant Production by Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Gizele Cardoso Fontes

    2010-01-01

    Full Text Available In order to improve biosurfactant production by Yarrowia lipolytica IMUFRJ 50682, a factorial design was carried out. A 24 full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone on maximum variation of surface tension (ΔST and emulsification index (EI. The best results (67.7% of EI and 20.9 mN m−1 of ΔST were obtained in a medium composed of 10 g 1−1 of ammonium sulfate and 0.5 g 1−1 of yeast extract. Then, the effects of carbon sources (glycerol, hexadecane, olive oil, and glucose were evaluated. The most favorable medium for biosurfactant production was composed of both glucose (4% w/v and glycerol (2% w/v, which provided an EI of 81.3% and a ΔST of 19.5 mN m−1. The experimental design optimization enhanced ΔEI by 110.7% and ΔST by 108.1% in relation to the standard process.

  14. Genetic analysis of biosurfactant production in Ustilago maydis.

    Science.gov (United States)

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-06-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated beta-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi. PMID:15932999

  15. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    Science.gov (United States)

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil. PMID:25994261

  16. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil.

    Science.gov (United States)

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-04-01

    This study aimed at investigating the application of biosurfactant from Sphingobacterium spiritivorum AS43 using molasses as a substrate and fertilizer to enhance the biodegradation of used lubricating oil (ULO). The cell surface hydrophobicity of bacteria, the emulsification activity, and the biodegradation efficiency of ULO were measured. The bacterial adhesion in the hydrocarbon test was used to denote the cell surface hydrophobicity of the used bacterial species. The results indicate a strong correlation between cell surface hydrophobicity, emulsification activity, and the degree of ULO biodegradation. The maximum degradation of ULO (62 %) was observed when either 1.5 % (w/v) of biosurfactant or fertilizer was added. The results also revealed that biosurfactants alone are capable of promoting biodegradation to a large extent without added fertilizer. The data indicate the potential for biosurfactant production by using low-cost substrate for application in the bioremediation of soils contaminated with petroleum hydrocarbons or oils. PMID:24590892

  17. Isolation of biosurfactant-producing bacteria from the Rancho La Brea Tar Pits.

    Science.gov (United States)

    Belcher, Richard W; Huynh, Kelvin V; Hoang, Timothy V; Crowley, David E

    2012-12-01

    This research was conducted to identify culturable surfactant-producing bacterial species that inhabit the 40,000-year-old natural asphalt seep at the Rancho La Brea Tar Pits in Los Angeles, CA. Using phenanthrene, monocyclic aromatic hydrocarbons, and tryptic soy broth as growth substrates, culturable bacteria from the tar pits yielded ten isolates, of which three species of gamma-proteobacteria produced biosurfactants that accumulated in spent culture medium. Partially purified biosurfactants produced by these strains lowered the surface tension of water from 70 to 35-55 mN/m and two of the biosurfactants produced 'dark halos' with the atomized oil assay, a phenomenon previously observed only with synthetic surfactants. Key findings include the isolation of culturable biosurfactant-producing bacteria that comprise a relatively small fraction of the petroleum-degrading community in the asphalt. PMID:22851192

  18. Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexandecane

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva-Tonkova, E.; Galabova, D. [Bulgarian Academy of Sciences, Dept. of Microbial Biochemistry, Sofia (Bulgaria); Stoimenova, E.; Lalchev, Z. [Dept. of Biochemistry, Sofia Univ. ' ' St. Kliment Ohridski' ' , Sofia (Bulgaria)

    2006-07-15

    The newly isolated from industrial wastewater Pseudomonas fluorescens strain HW-6 produced glycolipid biosurfactants at high concentrations (1.4-2.0 g 1{sup -1}) when grown on hexadecane as a sole carbon source. Biosurfactants decreased the surface tension of the air/water interface by 35 mN m{sup -1} and possessed a low critical micelle concentration value of 20 mg 1{sup -1}, which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, n-paraffins and mineral oils. Biosurfactant production contributed to a significant increase in cell hydrophobicity correlated with an increased growth of the strain on hexadecane. The results suggested that the newly isolated strain of Ps. fluorescens and produced glycolipid biosurfactants with effective surface and emulsifying properties are very promising and could find application for bioremediation of hydrocarbon-polluted sites. (orig.)

  19. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal

    Directory of Open Access Journals (Sweden)

    Graziela Jardim Pacheco

    2010-10-01

    Full Text Available The influence of different nutrients on biosurfactant production by Rhodococcus erythropolis was investigated. Increasing the concentration of phosphate buffer from 30 up through 150 mmol/L stimulated an increase in biosurfactant production, which reached a maximum concentration of 285 mg/L in shaken flasks. Statistical analysis showed that glycerol, NaNO3,MgSO4 and yeast extract had significant effects on production. The results were confirmed in a batchwise bioreactor, and semi-growth-associated production was detected. Reduction in the surface tension, which indicates the presence of biosurfactant, reached a value of 38 mN/m at the end of 35 hours. Use of the produced biosurfactant for washing crude oil-contaminated soil showed that 2 and 4 times the critical micellar concentration (CMC were able to remove 97 and 99% of the oil, respectively, after 1 month of impregnation.

  20. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  1. Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite.

    Science.gov (United States)

    Perez-Ameneiro, M; Vecino, X; Cruz, J M; Moldes, A B

    2015-10-20

    In this work, a natural lipopeptide biosurfactant obtained from corn steep liquor was included in the formulation of a lignocellulosic biocomposite used for the treatment of wastewater. The results obtained indicate that the dye sorption capacity of the hydrogel containing hydrolysed vineyard pruning waste can be significantly promoted via surfactant modification using natural detergents. The elimination of dye compounds and the removal of sulphates were increased around 10% and 62%, respectively, when the biocomposite modified with biosurfactant was used. This outcome can be intrinsically related to the rougher, rounder, more compact and better-emulsified sphere achieved after the addition of the lipopeptide biosurfactant. The bioadsorption process followed a pseudo-second order kinetic model and both intraparticle diffusion and liquid film diffusion were involved in the bioadsorption mechanism. Therefore, the utilisation of biosurfactants shows great potential in the formulation of eco-friendly adsorbents for environmental application. PMID:26256175

  2. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources

    Directory of Open Access Journals (Sweden)

    Juliana Guerra de Oliveira

    2013-02-01

    Full Text Available Biosurfactants are chemical molecules produced by the microorganisms with potential for application in various industrial and environmental sectors. The production parameters and the physicochemical properties of a biosurfactant synthesized by Bacillus pumilus using different concentrations of vinasse and waste frying oil as alternative carbon sources were analyzed. The microorganism was able to grow and produce a biosurfactant using both the residues. The surface tension was reduced up to 45 mN/m and the maximum production of crude biosurfactant was 27.7 and 5.7 g/l for vinasse and waste frying oil, respectively, in concentration of 5%. The critical micelle concentration (CMC results of 1.5 and 0.2 g/l showed the efficiency of the biosurfactant produced on both the substrates. The results showed that the alternative substrates could be used for the production of an efficient biosurfactant by B. pumilus. These properties have potential for industrial and environmental applications.

  3. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    OpenAIRE

    Amit Arora; Swaranjit Singh Cameotra; Rajnish Kumar; Chandrajit Balomajumder; Anil Kumar Singh; Santhakumari, B.; Pushpendra Kumar; Sukumar Laik

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids r...

  4. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions.

    OpenAIRE

    Herman, D C; Y. Zhang; Miller, R M

    1997-01-01

    The objective of this research was to evaluate the effect of low concentrations of a rhamnolipid biosurfactant on the in situ biodegradation of hydrocarbon entrapped in a porous matrix. Experiments were performed with sand-packed columns under saturated flow conditions with hexadecane as a model hydrocarbon. Application of biosurfactant concentrations greater than the CMC (the concentration at which the surfactant molecules spontaneously form micelles or vesicles [0.03 mM]) resulted primarily...

  5. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    Science.gov (United States)

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications. PMID:25748124

  6. Isolation and partial characterization of a biosurfactant produced by streptococcus thermophilus A

    OpenAIRE

    Rodrigues, L. R.; Teixeira, J.A.; Mei, Henny van der; Oliveira, Rosário

    2006-01-01

    Isolation and characterization of the surface active components from the crude biosurfactant produced by Streptococcus thermophilus A was studied. A fraction rich in glycolipids was obtained by the fractionation of crude biosurfactant using hydrophobic interaction chromatography. Molecular (by Fourier transform infrared spectroscopy) and elemental compositions (by X-ray photoelectron spectroscopy) were determined. Critical micelle concentration achieved was 20 g/l, allowing for a surfac...

  7. Low-cost fermentative medium for biosurfactant production by probiotic bacteria

    OpenAIRE

    Rodrigues, L. R.; Teixeira, J.A.; Oliveira, Rosário

    2006-01-01

    Potential use of alternative fermentative medium for biosurfactant production by Lactococcus lactis 53 and Streptococcus thermophilus A was studied. Suitable models were established to describe the response of the experiments pertaining to glucose, lactose or sucrose consumption, cell growth and biosurfactant production. Synthetic media MRS and M17 broth were used as control experiments. When the synthetic media were replaced by cheaper alternative media, as cheese whey and molasses, ferme...

  8. Antibiofilm Activity of Biosurfactant Producing Coral Associated Bacteria Isolated from Gulf of Mannar

    OpenAIRE

    Padmavathi, Alwar Ramanujam; Pandian, Shunmugiah Karutha

    2014-01-01

    Coral Associated Bacteria (CAB) (N = 22) isolated from the mucus of the coral Acropora digitifera were screened for biosurfactants using classical screening methods; hemolysis test, lipase production, oil displacement, drop collapse test and emulsifying activity. Six CAB (U7, U9, U10, U13, U14, and U16) were found to produce biosurfactants and were identified by 16S ribosomal RNA gene sequencing as Providencia rettgeri, Psychrobacter sp., Bacillus flexus, Bacillus anthracis, Psychrobacter sp....

  9. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    OpenAIRE

    Daniela Franco Carvalho Jacobucci; Maria Raquel de Godoy Oriani; Lucia Regina Durrant

    2009-01-01

    Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as t...

  10. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    Science.gov (United States)

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites. PMID:19438062

  11. Isolation of Biosurfactant Producing Bacteria From Oily Skin Areas of Small Animals

    OpenAIRE

    Azizollah Ebrahimi; Najmeh Tashi; Sharareh Lotfalian

    2012-01-01

    Background: Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. They are a structurally diverse group of surface-active molecules and are highly sought after biomolecules for both present and future applications.Objectives: The aim of the present study was to isolate and identify biosurfactant producing bacteria from the ear canal and inguinal areas (oily skin areas) of dogs and cats.Materials and Methods: Eighty inguinal a...

  12. Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria

    OpenAIRE

    L. R. Rodrigues; J.A. Teixeira; Oliveira, Rosário; Mei, Henny van der

    2006-01-01

    Optimization of the medium for biosurfactants production by probiotic bacteria (Lactococcus lactis 53 and Streptococcus thermophilus A) was carried out using response surface methodology. Both biosurfactants were proved to be growth-associated, thus the desired response selected for the optimization was the biomass concentration. The selected factors based on MRS medium for L. lactis 53 growth were peptone, meat extract, yeast extract, lactose, ammonium citrate and KH2PO4. For S. thermophi...

  13. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    OpenAIRE

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Met...

  14. Role of a waste-derived polymeric biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Perrone, Daniele G.; Magnacca, Giuliana;

    2014-01-01

    area in the synthesized oxide, whereas TEM and XRD data indicate that particle size decreases by increasing biosurfactant amount. These results suggest that biosurfactant molecules play a role in the nucleation step, during the formation of the titanium dioxide particles. The biosurfactant amount in...... the synthesis mixture affects also the hydrophilicity of the titanium dioxide surface, as demonstrated by water-adsorption microcalorimetry measurements, but the results suggest that this aspect is also connected to crystal nucleation and growth during the oxide formation....

  15. Screening Three Strains of Pseudomonas aeruginosa: Prediction of Biosurfactant-Producer Strain

    Directory of Open Access Journals (Sweden)

    Gholamreza Dehghan-Noudeh

    2009-01-01

    Full Text Available Problem statement: The chemical surfactants have some disadvantages; especially, toxicity and no biodegradability. Approach: Biosurfactants were the structurally diverse group of surface-active molecules synthesize by micro-organisms. The microbial surfactants were interesting, because of the biodegradable and have many applications in industry, agriculture, medicine. Results: In the present study, the production of biosurfactant by three strains of Pseudomonas aeruginosa (PTCC 1074, 1310 and 1430 was investigated. The hemolytic and foam forming activity of different strains were studied and consequently, P. aeruginosa PTCC 1074 was selected as the suitable strain. P. aeruginosa PTCC 1074 was grown in the nutrient broth medium and biosurfactant production was evaluated every 24 h by emulsification index and surface tension for the best of production time. After that, in order to get maximum production of biosurfactant, the selected strain was grown with different additives in nutrient broth and the best culture medium was found. The biosurfactant was isolated from the supernatant and its amphipathic structure was confirmed by chemical methods. Conclusion: Biosurfactant produced by Pseudomonas aeruginosa PTCC 1074 would be considered as a suitable surfactant in industries due to its low toxicity.

  16. Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis

    Directory of Open Access Journals (Sweden)

    Bicca Flávio Correa

    1999-01-01

    Full Text Available There is world wide concern about the liberation of hydrocarbons in the environment, both from industrial activities and from accidental spills of oil and oilrelated compounds. Biosurfactants, which are natural emulsifiers of hydrocarbons, are produced by some bacteria, fungi and yeast. They are polymers, totally or partially extracellular, with an amphipathyc structure, which allows them to form micelles that accumulate at the interface between liquids of different polarities such as water and oil. This process is based upon the ability of biosurfactants to reduce surface tension, blocking the formation of hydrogen bridges and certain hydrophilic and hydrophobic interactions. The ability of biosurfactant production by five strains of Rhodococcus isolated from oil prospecting sites was evaluated. Surface tension measurement and emulsifying index were used to quantify biosurfactant production. The influence of environmental conditions was also investigated - pH, temperature, medium composition, and type of carbon source - on cell growth and biosurfactant production. Strain AC 239 was shown to be a potential producer, attaining 63% of emulsifying index for a Diesel-water binary system. It could be used, either directly on oil spills in contained environments, or for the biotechnological production of biosurfactant.

  17. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    Science.gov (United States)

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites. PMID:25903403

  18. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    Science.gov (United States)

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced. PMID:24659382

  19. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    Science.gov (United States)

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant. PMID:26521551

  20. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.

    Science.gov (United States)

    Saikia, Rashmi Rekha; Deka, Suresh; Deka, Manab; Sarma, Hemen

    2012-08-01

    A biosurfactant producing Pseudomonas aeruginosa RS29 (identified on the basis of 16S rDNA analysis) with good foaming and emulsification properties has been isolated from crude oil contaminated sites. Optimization of different environmental factors was carried out with an objective to achieve maximum production of biosurfactant. Production of biosurfactant was estimated in terms of surface tension reduction and emulsification (E24) index. It was recorded that the isolated strain produced highest biosurfactant after 48 h of incubation at 37.5 °C, with a pH range of 7-8 and at salinity Ammonium nitrate used in the experiment was the best nitrogen source for the growth of biomass of P. aeruginosa RS29. On the other hand sodium and potassium nitrate enhanced the production of biosurfactant (Surface tension, 26.3 and 26.4 mN/m and E24 index, 80 and 79% respectively). The CMC of the biosurfactant was 90 mg/l. Maximum biomass (6.30 g/l) and biosurfactant production (0.80 g/l) were recorded at an optimal C/N ratio of 12.5. Biochemical analysis and FTIR spectra confirmed that the biosurfactant was rhamnolipid in nature. GC-MS analysis revealed the presence of C(8) and C(10) fatty acid components in the purified biosurfactant. PMID:22144225

  1. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  2. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    Science.gov (United States)

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  3. Par Pond water balance

    International Nuclear Information System (INIS)

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs

  4. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. PMID:26350801

  5. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source.

    Science.gov (United States)

    Sousa, M; Melo, V M M; Rodrigues, S; Sant'ana, H B; Gonçalves, L R B

    2012-08-01

    Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8 ± 0.0 and 27.1 ± 0.1 mN m(-1), respectively. Additionally, at 72 h of cultivation, 441.06 and 267.56 mg L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol. PMID:22218992

  6. Influence of biosurfactants on mass transfer, biodegradation, and transport of mixed wastes in multiphase systems: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M., Brusseau, M.L. [Arizona Univ., Tucson, AZ (United States), Dept. of Soil, Water and Environmental Science

    1997-01-17

    The overall results of this project suggest that is situ treatment with biosurfactants has the potential to be an effective,economical, and nontoxic remediation technology. Specifically, we have demonstrated that a rhamnolipid biosurfactant may be used to increase the apparent solubility and biodegradation rate of organic compounds.

  7. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration

    Directory of Open Access Journals (Sweden)

    Dhouha Ghribi

    2011-01-01

    Full Text Available Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L.

  8. Genome Sequence of the Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an Efficient Producer of Biosurfactant Mannosylerythritol Lipids

    OpenAIRE

    Lorenz, Stefan; Guenther, Michael; Grumaz, Christian; Rupp, Steffen; Zibek, Susanne; Sohn, Kai

    2014-01-01

    Pseudozyma aphidis is an efficient producer of mannosylerythritol lipids exceeding concentrations of >100 g/liter from renewable feed stocks. Additionally, a biosurfactant cellobiose lipid is also secreted during nitrogen limitation. Here, we describe the sequencing of P. aphidis to unravel the genomic basis of biosurfactant metabolism in P. aphidis.

  9. Genome Sequence of the Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an Efficient Producer of Biosurfactant Mannosylerythritol Lipids.

    Science.gov (United States)

    Lorenz, Stefan; Guenther, Michael; Grumaz, Christian; Rupp, Steffen; Zibek, Susanne; Sohn, Kai

    2014-01-01

    Pseudozyma aphidis is an efficient producer of mannosylerythritol lipids exceeding concentrations of >100 g/liter from renewable feed stocks. Additionally, a biosurfactant cellobiose lipid is also secreted during nitrogen limitation. Here, we describe the sequencing of P. aphidis to unravel the genomic basis of biosurfactant metabolism in P. aphidis. PMID:24526638

  10. Production of Biosurfactant in 2L Bioreactor Using Sludge Palm Oil as a Substrate

    Directory of Open Access Journals (Sweden)

    P. JAMAL

    2011-12-01

    Full Text Available In this study, sludge palm oil was utilized as a raw material for process optimization in a stirred tank bioreactor for the biosurfactant production. Optimized parameters include temperature, agitation and aeration while the pH and media compositions such as NaNO3, NaCl, FeSO4, Meat extract, and glucose have been fixed from the previous study. The design of this research was made by using the Design-Expert software (2 level factorial design. Surface tension was used as indirect indicator for biosurfactant production. After model validation, yield of biosurfactant was found to be highest when surface tension was at its lowest value (<24 mN/m at temperature of 300C , agitation 300 rpm and around 0.5 vvm of aeration with percentage error less than 10% between observed value and predicted value. The finding in this research can be applied to produce biosurfactant in large amount from the less expensive material such as sludge palm oil by using the same optimized model equation.ABSTRAK: Dalam kajian ini, enapcemar kelapa sawit digunakan sebagai bahan mentah untuk pengoptimuman proses dalam bioreaktor bagi penghasilan biosurfactant. Parameter yang dioptimumkan termasuk suhu, pergolakan dan pengudaraan manakala pH dan komposisi media seperti NaNO3, NaCl, FeSO4, ekstrak daging, dan glukos telah ditetapkan daripada kajian sebelumnya. Reka bentuk kajian ini telah dilakukan dengan menggunakan perisian Design Expert (2 Level factorial design. Tegangan permukaan digunakan sebagai penunjuk tidak langsung untuk penghasilan biosurfactant. Selepas pengesahan, hasil biosurfactant didapati terbanyak apabila tegangan permukaan pada nilai terendah (<24 mN/m pada suhu 300C, pergolakan 300 rpm, dan sekitar 0.5 vvm pengudaraan dengan margin perbezaan kurang daripada 10% antara nilai sebenar cerapan dan nilai yang diramalkan. Penemuan dalam kajian ini boleh digunakan untuk menghasilkan biosurfactant dalam jumlah yang besar dari bahan yang murah seperti enapcemar kelapa

  11. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    Science.gov (United States)

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases. PMID:27102127

  12. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B.

    Science.gov (United States)

    Joshi, Sanket; Bharucha, Chirag; Desai, Anjana J

    2008-07-01

    A biosurfactant producing strain, Bacillus subtilis 20B, was isolated from fermented food in India. The strain also showed inhibition of various fungi in in-vitro experiments on Potato Dextrose Agar medium. It was capable of growth at temperature 55 degrees C and salts up to 7%. It utilized different sugars, alcohols, hydrocarbons and oil as a carbon source, with preference for sugars. In glucose based minimal medium it produced biosurfactant which reduced surface tension to 29.5 mN/m, interfacial tension to 4.5 mN/m and gave stable emulsion with crude oil and n-hexadecane. The biosurfactant activity was stable at high temperature, a wide range of pH and salt concentrations for five days. Oil displacement experiments using biosurfactant containing broth in sand pack columns with crude oil showed 30.22% recovery. The possible application of organism as biocontrol agent and use of biosurfactant in microbial enhanced oil recovery (MEOR) is discussed. PMID:17855083

  13. Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation.

    Science.gov (United States)

    Jain, Rakeshkumar M; Mody, Kalpana; Joshi, Nidhi; Mishra, Avinash; Jha, Bhavanath

    2013-11-01

    The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhibited significantly higher viscosity and maximum reduction in surface tension as compared to other substrates. Among several carbon substrates tested, production of biosurfactant was found to be the highest with corn powder (15.40 ± 0.21 g/l) as compared to others. The comparative chemical characterization of purified biosurfactant was done using advance analytical tools such as NMR, FT-IR, SEM, GPC, MALDI TOF-TOF MS, GC-MS, TG and DSC. Analyses indicated variation in the functional groups, monosaccharide composition, molecular mass, thermostability. Higher yield with cheaper raw materials, noteworthy stress tolerance of CP-biosurfactant toward pH and salt as well as compatibility with chemical surfactants and detergents revealed its potential for commercialization and application in bioremediation. PMID:23994788

  14. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    Directory of Open Access Journals (Sweden)

    Fábio Raphael Accorsini

    2012-03-01

    Full Text Available Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  15. Effects of a Biosurfactant and a Synthetic Surfactant on Phenanthrene Degradation by a Sphingomonas Strain

    Institute of Scientific and Technical Information of China (English)

    PEI Xiao-Hong; ZHAN Xin-Hua; WANG Shi-Mei; LIN Yu-Suo; ZHOU Li-Xiang

    2010-01-01

    A novel phenanthrene(PHE)-degrading strain named as Sphingomonas sp.GF2B was isolated and identified from a farmland soil.Effects of a synthetic surfactant(Tween-80)and a rhamnolipid biosurfactant on PHE degradation by Sphin-gomonas sp.GF2B were investigated at different concentrations of the surfactants.The results showed that Sphingomonas sp.GF2B was able to mineralize up to 83.6% of PHE within 10 days without addition of surfactants.The addition of Tween-80 to the reaction medium inhibited greatly PHE biodegradation,with only 33.5% of PHE degraded.However,the biosurfactant facilitated PHE biodegradation,with up to 99.5% of PHE degraded.The preferential utilization of PHE as a carbon source and the enhanced solubility of PHE by the biosurfactant were likely responsible for the higher biodegra-dation efficiency of PHE in the presence of the biosurfactant.Therefore,it could be concluded that the application of the biosurfactant to PHE-contaminated soils was perhaps a feasible way to facilitate the PHE biodegradation.

  16. Use of weathered diesel oil as a low-cost raw material for biosurfactant production

    Directory of Open Access Journals (Sweden)

    A. P. Mariano

    2008-06-01

    Full Text Available This work aimed to investigate the capability of biosurfactant production by Staphylococcus hominis, Kocuria palustris and Pseudomonas aeruginosa LBI, using weathered diesel oil from a long-standing spillage as raw material. The effect of the culture media (Robert or Bushnell-Haas and of the carbon source (spilled diesel oil or commercial diesel oil on biosurfactant production was evaluated. Erlenmeyer flasks (250 mL containing the cell broth were agitated (240 rpm for 144 h at 27±2ºC. Biosurfactant production was monitored according to the De Nöuy ring method using a Krüss K6 tensiometer. Considering the possibility of intracellular storage of biosurfactant in the cell wall of the cultures S. hominis and K. palustris, experiments were also done applying ultrasound as a way to rupture the cells. For the conditions studied, the cultures did not indicate production of biosurfactants. Results obtained with a hydrocarbon biodegradability test based on the redox indicator 2,6-dichlorophenol indophenol showed that only the commercial diesel was biodegraded by the cultures.

  17. Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2.

    Science.gov (United States)

    Joshi, Sanket J; Geetha, S J; Desai, Anjana J

    2015-09-01

    The biosurfactant produced by Bacillus licheniformis R2 was characterized and studied for enhancing the heavy crude oil recovery at 80 °C in coreflood experiments. The strain was found to be nonpathogenic and produced biosurfactant, reducing the surface tension of medium from 70 to 28 mN/m with 1.1 g/l yield. The biosurfactant was quite stable during exposure to elevated temperatures (85 °C for 90 days), high salinity (10 % NaCl), and a wide range of pH (5-12) for 10 days. It was characterized as lipopeptide similar to lichenysin-A, with a critical micelle concentration of about 19.4 mg/l. The efficiency of crude biosurfactant for enhanced oil recovery by core flood studies revealed it to recovering additional 37.1 % oil from Berea sandstone cores at 80 °C. The results are indicative of the potential for the development of lipopeptide biosurfactant-based ex situ microbial enhanced heavy oil recovery from depleting oil fields with extreme temperatures. PMID:26186955

  18. Potential production of biosurfactants under electric field supplied to clayey soil

    Energy Technology Data Exchange (ETDEWEB)

    Ju, L.; Elektorowicz, M.

    1999-07-01

    The possibility of the introduction of nutrients and bacteria into clayey soil using electrokinetic methodology makes bioremediation more popular. However, biodegradation of polynuclear aromatic hydrocarbons (PAHs) is limited by their low solubility. The potential production of biosurfactants in clayey soil under the electric field was presented in this study. The electrokinetic cell tests were carried out to investigate the production of biosurfactants in the contaminated soil and soil without contaminants. The results showed that there was 1.5 times higher production in the soil contaminated by phenanthrene than that without it. In the middle of the electrokinetic cell, there are more biosurfactants produced than at the anode and the cathode areas. It was observed that there was migration of micelles with the electromigration and electroosmosis. In spite of the anionic properties of biosurfactant, the movement of the micelle was only partially directed to the anode. It was also observed that the electroosmosic flow transported micelles to the cathode. The results suggested the possibility of production of biosurfactants under the electric field and uniform distribution in the subsoil. The results could find a direct applicability in the enhanced remediation of PAH-contaminated sites.

  19. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    Science.gov (United States)

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol. PMID:24031810

  20. Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater.

    Science.gov (United States)

    Liu, Jianghong; Chen, Yitong; Xu, Ruidan; Jia, Yunpeng

    2013-06-01

    The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C. PMID:24426104

  1. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    Science.gov (United States)

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability. PMID:25989147

  2. Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from gulf of mannar.

    Science.gov (United States)

    Padmavathi, Alwar Ramanujam; Pandian, Shunmugiah Karutha

    2014-12-01

    Coral Associated Bacteria (CAB) (N = 22) isolated from the mucus of the coral Acropora digitifera were screened for biosurfactants using classical screening methods; hemolysis test, lipase production, oil displacement, drop collapse test and emulsifying activity. Six CAB (U7, U9, U10, U13, U14, and U16) were found to produce biosurfactants and were identified by 16S ribosomal RNA gene sequencing as Providencia rettgeri, Psychrobacter sp., Bacillus flexus, Bacillus anthracis, Psychrobacter sp., and Bacillus pumilus respectively. Their cell surface hydrophobicity was determined by Microbial adhesion to hydrocarbon assay and the biosurfactants produced were extracted and characterized by Fourier Transform Infrared spectroscopy. Since the biosurfactants are known for their surface modifying capabilities, antibiofilm activity of positive isolates was evaluated against biofilm forming Pseudomonas aeruginosa ATCC10145. Stability of the active principle exhibiting antibiofilm activity was tested through various temperature treatments ranging from 60 to 100 °C and Proteinase K treatment. CAB isolates U7 and U9 exhibited stable antibiofilm activity even after exposure to higher temperatures which is promising for the development of novel antifouling agents for diverse industrial applications. Further, this is the first report on biosurfactant production by a coral symbiont. PMID:25320434

  3. Experimental and numerical simulation study of microbial enhanced oil recovery using bio-surfactants

    Science.gov (United States)

    Maudgalya, Saikrishna

    An experimental and numerical study were conducted to investigate the ability of bio-surfactant produced by the microbe Bacillus mojavensis strain JF-2 to recover residual oil from consolidated porous media. Experiments showed that the bio-surfactant at concentrations as low as 40.0 ppm. (0.04 mg/scc) and viscosified with 1000.0 ppm of polymer could recover 10.0 % to 40.0 % of residual oil when injected through sandstone cores at typical field rates. A 2-phase, 10-component microbial enhanced oil recovery numerical simulator was modified to include reservoir salinity and facilitate surfactant and polymer injection. The effects of reservoir brine salinity and divalent ion effects on bio-surfactant and polymer adsorption, polymer retention, polymer viscosity, bio-surfactant interfacial tension and the shear rate effect on polymer viscosity were added to the simulator. Core flood experiments where JF-2 bio-surfactant viscosified with partially hydrolyzed polyacrylamide was injected into Berea cores at waterflood residual oil saturation were simulated. The effects of brine salinity and hardness on surfactant and polymer behavior were tested and the core flood simulation results compared with the experimental results. After the laboratory and simulation studies, a residual oil recovery method based on non-aqueous phase liquid (NAPL) contaminant removal from aquifers is discussed and functional form of the transport equation presented. In this method, residual oil is treated as another chemical species dispersed in porous media instead of a phase that is uniformly distributed across the media.

  4. Applying Neural Network to Dynamic Modeling of Biosurfactant Production Using Soybean Oil Refinery Wastes

    Directory of Open Access Journals (Sweden)

    Shokoufe Tayyebi

    2013-01-01

    Full Text Available Biosurfactants are surface active compounds produced by various microorganisms. Production of biosurfactants via fermentation of immiscible wastes has the dual benefit of creating economic opportunities for manufacturers, while improving environmental health. A predictor system, recommended in such processes, must be scaled-up. Hence, four neural networks were developed for the dynamic modeling of the biosurfactant production kinetics, in presence of soybean oil or refinery wastes including acid oil, deodorizer distillate and soap stock. Each proposed feed forward neural network consists of three layers which are not fully connected. The input and output data for the training and validation of the neural network models were gathered from batch fermentation experiments. The proposed neural network models were evaluated by three statistical criteria (R2, RMSE and SE. The typical regression analysis showed high correlation coefficients greater than 0.971, demonstrating that the neural network is an excellent estimator for prediction of biosurfactant production kinetic data in a two phase liquid-liquid batch fermentation system. In addition, sensitivity analysis indicates that residual oil has the significant effect (i.e. 49% on the biosurfactant in the process.

  5. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    Science.gov (United States)

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. PMID:21569958

  6. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  7. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  8. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    Science.gov (United States)

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  9. Removal of PAH using electrokinetic transport of biosurfactants in clayey soil

    Energy Technology Data Exchange (ETDEWEB)

    Maria, E.; Lin, J. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    The electrokinetic introduction of non-toxic, biodegradable surfactants (produced ex-situ) to remediate PAH-contaminated soil was investigated. The lab tests demonstrated the possibility of removal of organic contaminants from clayey soil without hazardous impact to the environment. The rhamnolipids (biosurfactants), produced by Pseudomonas aeruginosa to increase the solubility of PAHs into the aqueous phase, were used in the enhancement of electrokinetic remediation. This study determined the potential on-site production of biosurfactants that was directly introduced to soil by means of electrokinetics. The average removal of phenanthrene achieved 74% in the presence of biosurfactants above CMC. The remaining compounds are left for biodegradation. These results contribute to the development of a new remediation technology - bioelectrokinetics. (orig.)

  10. Production of Biosurfactant by Pseudomonas aeruginosa Grown on Cashew Apple Juice

    Science.gov (United States)

    Rocha, Maria V. P.; Souza, Maria C. M.; Benedicto, Sofia C. L.; Bezerra, Márcio S.; Macedo, Gorete R.; Saavedra Pinto, Gustavo A.; Gonçalves, Luciana R. B.

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30°C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  11. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  12. Biosurfactant and Heavy Metal Resistance Activity of Streptomyces spp. Isolated from Saltpan Soil

    Directory of Open Access Journals (Sweden)

    Lakshmipathy Deepika

    2010-06-01

    Full Text Available Actinomycetes were isolated from the marine soil samples collected at the Ennore saltpan and were screened for biosurfactant and heavy metal resistance activity. Biosurfactant activity was evaluated by haemolysis, drop collapsing test and lipase production. Similarly heavy metal resistance was determined by tube method and agar diffusion method. Among them, two actinomycetes isolates VITDDK1 and VITDDK2 exhibited significant biosurfactant and heavy metal resistance activity. Based on the Hideo Nonomura’s key for classification of actinomycetes, the isolate VITDDK1 was similar to Streptomyces orientalis and VITDDK2 to Streptomyces aureomonopodiales. However molecular phylogeny based on neighbour-joining method showed 99% similarity of VITDDK1 with Streptomyces sp. A403Ydz-QZ and 93% similarity of VITDDK2 with Streptomyces sp. strain 346.

  13. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    Directory of Open Access Journals (Sweden)

    Rita de Cássia F. S. Silva

    2014-07-01

    Full Text Available Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  14. It's quicker "Par Avignon"!

    CERN Multimedia

    2005-01-01

    For a few years, the CERN Library has been receiving books from the University of Hanover sent via Avignon, at least that's what it says on the envelope. Such a detour would mean that parcels were travelling 720 km more than the distance separating Geneva and Hanover, which would be a very strange state of affairs. The explanation lies in a spelling mistake. The sender has been stamping parcels with a stamp that says "Par Avignon prioritaire" (first-class via Avignon) instead of "Par Avion prioritaire" (First Class Air Mail), a source of much amusement to the librarians!

  15. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    Science.gov (United States)

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation. PMID:27380091

  16. Boolean Models of Biosurfactants Production in Pseudomonas fluorescens

    Science.gov (United States)

    Richard, Adrien; Rossignol, Gaelle; Comet, Jean-Paul; Bernot, Gilles; Guespin-Michel, Jannine; Merieau, Annabelle

    2012-01-01

    Cyclolipopeptides (CLPs) are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene () and not restored by complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained. PMID:22303435

  17. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed. PMID:24531239

  18. Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Khire, J M

    2010-01-01

    Surfactants are chemically synthesized surface-active compounds widely used for large number of applications in various industries. During last few years there is increase demand of biological surface-active compounds or biosurfactants which are produced by large number of microorganisms as they exert biodegradability, low toxicity and widespread application compared to chemical surfactants. They can be used as emulsifiers, de-emulsifiers, wetting agents, spreading agents, foaming agents, functional food ingredients and detergents. Various experiments at laboratory scale on sand-pack columns and field trials have successfully indicated effectiveness of biosurfactants in microbial enhanced oil recovery (MEOR). PMID:20545280

  19. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  20. INVESTIGATION ON ANTIMICROBIAL ACTIVITY OF BIOSURFACTANT PRODUCED BY PSEUDOMONAS FLUORESCENS ISOLATED FROM MANGROVE ECOSYSTEM

    OpenAIRE

    Govindammal M; Parthasarathi R

    2013-01-01

    The aim of this present study is to investigate the antimicrobial activity of rhamnolipid biosurfactant produced by Pseudomonas fluorescens MFS03 isolated from mangrove forest soil using groundnut oil cake as substrate. The biosurfactant was extracted with an equal amount of ethyl acetate and the concentrated extract was subjected to FT-IR analysis. The important adsorption bands at 3466.24, 2926.45, 1743.47, 1407.30 and 1162.26 cm-1indicate the chemical structure of rhamnolipid. The rhamnoli...

  1. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.

    Science.gov (United States)

    Sriram, Muthu Irulappan; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Gracerosepat, Raja; Srisakthi, Kandasamy; Gurunathan, Sangiliyandi

    2011-07-01

    Biosurfactants are worthful microbial amphiphilic molecules with efficient surface-active and biological properties applicable to several industries and processes. Among them lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. A heavy metal tolerant Bacillus strain has been isolated and the biofilm inhibition and antimicrobial activity of biosurfactant produced by the strain have been studied. Biosurfactant production was confirmed by the conventional screening methods including hemolytic activity, drop collapsing test, oil displacement test, emulsification and lipase production assays. The biosurfactant produced by this strain was a lipopeptide and exhibited strong surface activity. The biosurfactant has been characterized using FTIR, TLC and HPLC. The minimum active dose of this biosurfactant when compared with the other chemical surfactants was found as 0.150±0.06 μg. The critical micelle concentration was found to be 45 mg/l. The biosurfactant was found to be stable and active over a wide range of pH, temperature and NaCl concentration. It was also able to emulsify a wide range of hydrocarbons and oils thereby extending its application for the bioremediation of oil contaminated sites. The biosurfactant exhibited significant reduction in biofilm formation by pathogens and showed potent antimicrobial activity against various gram positive, gram negative bacteria and fungi. Agar diffusion assay for heavy metal resistance showed that the isolate was resistant to ferrous, lead and zinc. Considering the biofilm inhibition and antimicrobial property of biosurfactant, it can be utilized as a potential therapeutic molecule for numerous microbial infections. The heavy metal resistance of the strain can also be harnessed as an invaluable biological tool for in situ bioremediation. PMID:21458961

  2. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance

    OpenAIRE

    Donio, Mariathason Birdilla Selva; Ronica, Fernando Arul; Viji, Vijayaragavan Thanga; Velmurugan, Subramanian; Jenifer, John Selesteen Charles Adlin; Michaelbabu, Mariavincent; Dhar, Prasenjit; Citarasu, Thavasimuthu

    2013-01-01

    Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16 S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8 pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified...

  3. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    Science.gov (United States)

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. PMID:26615815

  4. Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    Kanga, S.A.; Bonner, J.S.; Page, C.A.; Mills, M.A.; Autenrieth, R.L. [Texas A & M University, College Station, TX (United States). Dept. of Civil Engineering

    1997-02-01

    Glycolipids produced by Rhodococcus species H13-A and a representative synthetic surfactant Tween-80 (polyoxyethylene sorbitan monooleate) were used to demonstrate enhanced substrate `solubility` (aqueous-plus-micellar phase) in the presence of surfactants. Nascent concentrations of naphthalene and its methyl-substituted derivatives in crude oil were used as representative polycyclic aromatic hydrocarbons for the study. Both biosurfactant glycolipids from H13-A and Tween-80 lowered the surface tension of aqueous solutions from 72 to {approximately} 30 dyn/cm. The two-ring aromatics showed a substantial increase in their apparent solubilities in the presence of surfactants; the increase being significantly greater for the biosurfactant as compared to the synthetic surfactant. The aqueous phase solubility enhancement was greater for the highly substituted derivatives as compared to the lesser substituted compounds. Higher toxicity levels, as seen by the lower EC{sub 50} values, of the surfactant mixtures indicated enhanced partitioning of the petroleum contaminants in the aqueous phase. Higher initial EC{sub 50} values for the biosurfactant meant that they exhibit lesser aqueous toxicity as compared to the synthetic surfactant. When compared on a toxicity per mass of PAH basis, the end point Tween-80 system was approximately 50% more toxic than the biosurfactant system. This technique is potentially useful in the treatment of coal tar contaminated soils. 30 refs., 4 figs., 2 tabs.

  5. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62.

    Science.gov (United States)

    Konishi, Masaaki; Nagahama, Takahiko; Fukuoka, Tokuma; Morita, Tomotake; Imura, Tomohiro; Kitamoto, Dai; Hatada, Yuji

    2011-06-01

    We improved the culture conditions for a biosurfactant producing yeast, Pseudozyma hubeiensis SY62. We found that yeast extract greatly stimulates MEL production. Furthermore, we demonstrated a highly efficient production of MELs in the improved medium by fed-batch cultivation. The final concentration of MELs reached 129 ± 8.2g/l for one week. PMID:21393057

  6. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam

    NARCIS (Netherlands)

    Tran, H.; Kruijt, M.; Raaijmakers, J.M.

    2008-01-01

    Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity a

  7. Rhamnolipid biosurfactant from Pseudomonas aeruginosa: From discovery to application in contemporary technology

    Directory of Open Access Journals (Sweden)

    Rikalović Milena G.

    2015-01-01

    Full Text Available The rhamnolipids are most likely the next generation of biosurfactants which will reach the market. They should follow closely after alkyl polyglycosides, already established in the biosurfactants market, and sophorolipids, which can be found in several cleaning agents. However, the greatest number of recent publications and patents among glycolipid biosurfactants has been dedicated to rhamnolipids. Produced mainly by Pseudomonas aeruginosa, rhamnolipids are mixtures of different rhamnolipid congeners, which show physico-chemical properties that differ from those of single congeners, with the most abundant structure in the mixture having the largest impact on the overall characteristics of the total mixture. Characteristics of biodegradability, low toxicity, production from renewable sources and antimicrobial (particularly antifungal activity together make rhamnolipid biosurfactants particularly promising for broad commercial application. Although to date, bioremediation has been the major topic filed for patents utilizing rhamnolipids, an increasing number of patents for applications in cosmetics, agronomy and food industries, formulation of cleaners and nanotechnology indicates their future implementation in these fields. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  8. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, L; van der Mei, H; Banat, IM; Teixeira, J; Oliveira, R

    2006-01-01

    Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone

  9. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants.

    Science.gov (United States)

    López, Carmen; Cruz-Izquierdo, Alvaro; Picó, Enrique A; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J; Serra, Juan L

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271

  10. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    Science.gov (United States)

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications. PMID:27372634

  11. Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair.

    Science.gov (United States)

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), are produced from feedstock by the genus Pseudozyma, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the hair care properties of MELs were investigated using damaged hair. On electron microscopic observation, the damaged hair was dramatically recovered with applying MEL-A and MEL-B. The tensile strength of the damaged hair increased by treatment with MEL-A (122.0 +/- 13.5 gf/p), MEL-B (119.4 +/- 7.6 gf/p) and ceramide (100.7 +/- 15.9 gf/p) compared with only lauryl glucoside (96.7 +/- 12.7 gf/p), indicating the advantage of MELs on hair care treatment. In addition, the average friction coefficient of the damaged hair was maintained after treatment with MEL-A (0.108 +/- 0.002), MEL-B (0.107 +/- 0.003) and the ceramide (0.111 +/- 0.003), although lauryl glucoside treatment increased the average friction coefficient (0.126 +/- 0.003). The increase of bending rigidity by treatment with lauryl glucoside (0.204 +/- 0.002) was prevented by treatment with MEL-A (0.129 +/- 0.002), MEL-B (0.176 +/- 0.003) and the ceramide (0.164 +/- 0.002). Consequently, MELs are proposed to be the new hair care ingredient, which are the highly useful agent for not only for the recovery of damaged hair but also for providing the smooth and flexible hair. PMID:20431244

  12. ViPAR

    DEFF Research Database (Denmark)

    Carter, Kim W; Francis, Richard W; Bresnahan, M; Gissler, M; Grønborg, T K; Gross, R; Gunnes, N; Hammond, G; Hornig, M; Hultman, C M; Huttunen, J; Langridge, A; Leonard, H; Newman, S; Parner, E T; Petersson, G; Reichenberg, A; Sandin, S; Schendel, Diana; Schalkwyk, L; Sourander, A; Steadman, C; Stoltenberg, C; Suominen, A; Surén, P; Susser, E; Sylvester Vethanayagam, A; Yusof, Z

    2015-01-01

    free and open source methods to provide researchers with a web-based platform to analyse datasets housed in disparate locations. METHODS: Database federation permits controlled access to remotely located datasets from a central location. The Secure Shell protocol allows data to be securely exchanged......PAR infrastructure, remote sites manage their own harmonized research dataset in a database hosted at their site, while a central server hosts the data federation component and a secure analysis portal. When an analysis is initiated, requested data are retrieved from each remote site and virtually pooled at the...... central site. The data are then analysed by statistical software and, on completion, results of the analysis are returned to the user and the virtually pooled data are removed from memory. CONCLUSIONS: ViPAR is a secure, flexible and powerful analysis platform built on open source technology that is...

  13. Effect of bio-surfactant on municipal solid waste composting process

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou; LIU Hong-liang; HUANG G H; ZHANG Bai-yu; QIN Xiao-sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains Ⅲ (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains Ⅲ (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains Ⅲ (2),the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains Ⅲ (2) were both higher than those without Strains Ⅲ (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains Ⅲ (2)with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate(PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  14. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture.

    Science.gov (United States)

    Seghal Kiran, G; Anto Thomas, T; Selvin, Joseph; Sabarathnam, B; Lipton, A P

    2010-04-01

    The biosurfactant production of a marine actinobacterium Brevibacterium aureum MSA13 was optimized using industrial and agro-industrial solid waste residues as substrates in solid state culture (SSC). Based on the optimization experiments, the biosurfactant production by MSA13 was increased to threefold over the original isolate under SSC conditions with pre-treated molasses as substrate and olive oil, acrylamide, FeCl(3) and inoculums size as critical control factors. The strain B. aureum MSA13 produced a new lipopeptide biosurfactant with a hydrophobic moiety of octadecanoic acid methyl ester and a peptide part predicted as a short sequence of four amino acids including pro-leu-gly-gly. The biosurfactant produced by the marine actinobacterium MSA13 can be used for the microbially enhanced oil recovery processes in the marine environments. PMID:19959354

  15. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil.

    Science.gov (United States)

    Liu, Boqun; Liu, Jinpeng; Ju, Meiting; Li, Xiaojing; Yu, Qilin

    2016-06-15

    In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement. PMID:27114088

  16. Standardization of biosurfactant enrichment process by factorial design and elucidating its physico-chemical and structural characteristics

    OpenAIRE

    Karadi RV; Lokesh KN; . Channarayappa; Bindu Sadanandan*; Marikunte Venkatrangana; Siva Kiran R R

    2012-01-01

    Biosurfactant recovery by Flavobacterium sp. was standardized by factorial design 3(k-p). The extraction of biosurfactant was carried out by organic solvent extraction, ammonium sulphate precipitation and acid precipitation. The organic solvent extraction was performed with varied proportion (3 levels) of chloroform and methanol i.e. (X*:1) designated as F1 (varied proportion of chloroform) and (1: X**) referred as F2 (varied proportion of methanol) respectively, similarly ammonium sulphate (...

  17. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants

    OpenAIRE

    Rodrigues, L. R.; Ibrahim M. Banat; Mei, Henny van der; J. A. Teixeira; Oliveira, Rosário

    2006-01-01

    Aims: The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonas aeruginosa DS10-129 was studied. Methods and Results: The ability of rhamnolipid biosurfactant to inhibit adhesion of micro-organisms to silicone rubber was investigated in a parallel-plate flow chamber. The anti-adhesive activity of the bio...

  18. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil

    OpenAIRE

    Kumar, Arthala Praveen; Janardhan, Avilala; Viswanath, Buddolla; Monika, Kallubai; Jung, Jin-Young; Narasimha, Golla

    2016-01-01

    A Gram-positive bacterium was isolated from mangrove soil and was identified as Bacillus licheniformis (KC710973). The potential of a mangrove microorganism to utilize different natural waste carbon substrates for biosurfactant production and biodegradation of hydrocarbons was evaluated. Among several substrates used in the present study, orange peel was found to be best substrate of biosurfactant yield with 1.796 g/L and emulsification activity of 75.17 % against diesel. Fourier transform in...

  19. Assessment of the antidiabetic and antilipidemic properties of Bacillus subtilis SPB1 biosurfactant in alloxan-induced diabetic rats.

    Science.gov (United States)

    Zouari, Raida; Ben Abdallah-Kolsi, Rihab; Hamden, Khaled; Feki, Abdelfattah El; Chaabouni, Khansa; Makni-Ayadi, Fatma; Sallemi, Fahima; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2015-11-01

    The present study aimed to scrutinize the potential of Bacillus subtilis SPB1biosurfactant, orally administered, for preventing diabetic complications in rats. The findings revealed that, Bacillus subtilis biosurfactant was an effective reducer of α-amylase activity in the plasma. Moreover, this supplement helped protect the β-cells from death and damage. Both the inhibitory action of SPB1 biosurfactant on α-amylase and the protection of the pancreas' β-cells lead to a decrease of the blood glucose levels, consequently antihyperglycemic effect. Interestingly, this lipopeptide biosurfactant modulated key enzyme related to hyperlipidemia as lipase; which leads to the regulation of the lipid profile in serum by the delay in the absorption of LDL-cholesterol and triglycerides, and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted a protective action on the pancreases and efficiently preserved the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, gamma-glytamyl transpeptidase and lactate deshydrogenase activities in the plasma, as well as in the creatinine and urea contents. Overall, the present study demonstrated that the hypoglycemic and antilipidemic activities exhibited by Bacillus subtilis biosurfactant were effective enough to alleviate induced diabetes in experimental rats. Therefore, SPB1biosurfactant could be considered as a potential strong candidate for the treatment and prevention of diabetes. PMID:26228442

  20. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    Science.gov (United States)

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils. PMID:26683200

  1. A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb.

    Directory of Open Access Journals (Sweden)

    Jong Shik Kim

    Full Text Available Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m. These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications.

  2. Mobilization and co-transport of pyrene in the presence of Pseudomonas aeruginosa UG2 biosurfactants in sandy soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Lafrance, P.; Lapointe, M.

    1998-12-31

    Washing technologies are currently applied for the remediation of contaminated soils. The efficiency of biosurfactants produced by Pseudomonas aeruginosa strains to mobilize some hydrocarbons sorbed on soils has already been demonstrated. However, few studies have been made to define optimal procedures for the injection of these rhamnolipids in soil. This study examines (1) the efficiency of the biosurfactants produced by P. aeruginosa UG2 to mobilize pyrene from a contaminated sandy loam as compared to that of sodium dodecyl sulfate (SDS); (2) the injection procedures that might affect the efficiency of pyrene mobilization using UG2 biosurfactants; and (3) the co-transport of UG2 biosurfactants and pyrene. Based on the experimental results, it would be advantageous to use a high UG2 biosurfactant concentration, a high pore water velocity, and possibly a flow interruption of more than 15 h in order to reduce the injected volume and the duration of the treatment required. The 0.25% UG2 biosurfactant concentration greatly enhanced pyrene transport and could facilitate contaminant recovery.

  3. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  4. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    Science.gov (United States)

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  5. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suman; Singh, Partapbir [Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Raj, Mayil [MTCC, IMTECH, Sector 39-A, Chandigarh 160036 (India); Chadha, Bhupinder Singh [Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Saini, Harvinder Singh, E-mail: sainihs@yahoo.com [Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab (India)

    2009-11-15

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal {gamma}-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, {beta}-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  6. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2

    International Nuclear Information System (INIS)

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal γ-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, β-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  7. Extracellular aromatic biosurfactant produced by Tsukamurella pseudospumae and T. spumae during growth on n-hexadecane.

    Science.gov (United States)

    Kügler, Johannes H; Kraft, Axel; Heißler, Stefan; Muhle-Goll, Claudia; Luy, Burkhard; Schwack, Wolfgang; Syldatk, Christoph; Hausmann, Rudolf

    2015-10-10

    Biosurfactants are surface-active agents produced by microorganisms and show increasing significance in various industrial applications. A great variety of these secondary metabolites are described to occur within actinomycetes, amongst trehalose lipids and oligosaccharide lipids produced by the family Tsukamurellaceae. This study reports on the production of not yet described compounds with surface active behavior by non-pathogenic Tsukamurella pseudospumae and Tsukamurella spumae during growth on hydrophobic carbon sources. Extracts of the purified compounds differ in terms of structure and performance properties to other biosurfactants described within their family. Infrared and nuclear magnetic resonance spectroscopic analysis revealed the presence of aromatic moieties within the surfactant produced, which to date is only known to occur within phenolic glycolipids of some mycobateria. PMID:26223030

  8. Comparison of some indigenous bacterial strains of pseudomonas ssp. for production of biosurfactants

    International Nuclear Information System (INIS)

    Some indigenous pseudomonas spp. were found to have the ability of emulsification, lowering the surface and interfacial tensions, and formation of high reciprocal CMCs. Six strains of Pseudomonas spp were compared for biosurfactant production grown on hexadecane. Supernatant from whole culture broth of these strains could lower surface tension from 65 mN/m to 28-32 nM/m, interfacial tension from 40 nM/m to 1-3 mN/m and had high reciprocal CMCs. When compared for emulsification ability by the culture broth of these strains, the emulsification index (E24) was found to range between 60-65. Biosurfactant containing culture broth of some strains could retain the property up to 80 C, pH of 13 and sodium chloride concentration for 17% which indicates their possible role in some depleted oil well. (author)

  9. Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol lipid-a.

    Science.gov (United States)

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is a glycolipid biosurfactant abundantly produced from soybean oil by microorganisms at a yield of up to 100 g/L. In this study, the formation of water-in-oil (W/O) microemulsion based on the single component of MEL-A was confirmed using dynamic light scattering (DLS) and freeze fracture electron microscopy (FF-EM). DLS and FF-EM measurements revealed that the diameter of the microemulsion increases with an increase in water-to-surfactant mole ratio (W(0)) ranging from 20 to 60 nm, and the maximum W(0) value was found to be 20, which is as high as that of soybean lecithin. Glycolipid biosurfactant has a great potential for the formation of W/O microemulsion without using any cosurfactants. PMID:18075224

  10. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection.

    Science.gov (United States)

    Ueno, Yoshinobu; Hirashima, Naohide; Inoh, Yoshikazu; Furuno, Tadahide; Nakanishi, Mamoru

    2007-01-01

    Recently we showed significance of biosurfactants in the field of non-viral vectors for gene transfection. There, a biosurfactant, mannosylerythritol lipid A (MEL-A), especially increased the efficiency of gene transfection mediated with cationic liposomes. However, the molecular mechanism has not been well-understood yet. Here, through the examination of the ability of cationic liposomes containing an MEL (MEL-A, MEL-B or MEL-C) for important transfectional processes of the DNA capsulation and the membrane fusion with anionic liposomes, we found that MEL-A-containing liposomes increased both processes, but that MEL-B and MEL-C-containing liposomes just increased either of them. The results indicated that these kinds of the physicochemical properties in MEL-A-containing liposomes are able to increase the efficiency of liposome-mediated gene transfection. PMID:17202680

  11. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D.

    Science.gov (United States)

    Fukuoka, Tokuma; Yanagihara, Takashi; Ito, Seya; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are secreted by yeasts and are promising glycolipid biosurfactants. In our study on the non-aqueous phase behaviors of MEL homologues, we found that MEL-D (4-O-[2',3'-di-O-alka(e)noyl-β-D-mannopyranosyl]-(2R,3S)-erythritol) forms aggregates in decane. The microscopic observation and the X-ray scattering measurement of these aggregates revealed that they are reverse vesicles that consist of bilayers whose hydrophilic domains are located in the interior of the bilayers. In addition, MEL-D formed reverse vesicles without co-surfactants and co-solvents in various oily solutions, such as n-alkanes, cyclohexane, squalane, squalene, and silicone oils at a concentration below 10 mM. This is the first report on the reverse vesicle formation from biosurfactants. PMID:22531056

  12. Eduquer par la musique

    OpenAIRE

    Zhe, Ji

    2011-01-01

    La politique et l’éducation sont indissociables dans les tentatives de promouvoir le confucianisme en Chine contemporaine. L’union alors célébrée du sacré, du pouvoir et du savoir s’inscrit en tension avec une modernité d’abord caractérisée par la différenciation des institutions et des valeurs. Partant de ce constat, l’article étudie le cas particulier d’une société engagée depuis 2000 dans l’initiation des enfants à la musique classique et dans la promotion de la « culture de soi » chez les...

  13. Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72.

    Science.gov (United States)

    Monteiro, Andrea S; Miranda, Tatiana T; Lula, Ivana; Denadai, Ângelo M L; Sinisterra, Rubén D; Santoro, Marcelo M; Santos, Vera L

    2011-06-01

    This study evaluated the effects of glycolipid-type biosurfactant produced by Trichosporon montevideense CLOA72 in the formation of biofilms in polystyrene plate surfaces by Candida albicans CC isolated from the apical tooth canal. Biofilm formation was reduced up to 87.4% with use of biosurfactant at 16 mg/ml concentration. It has been suggested that the interaction with the cell or polystyrene plate surface could ultimately be responsible for these actions. Therefore, the interaction of C. albicans CC cells with the biosurfactant, as well as the corresponding thermodynamic parameters, have been determined by isothermal titration calorimetry and zeta potential measurements. This process is endothermic (((int)H°=+1284±5 cal/mg OD(600)) occurring with a high increase of entropy (T((int)S°=+10635 cal/mg OD(600)). The caloric energy rate data released during the titulation indicates saturation of the cell-biosurfactant at 1.28 mg/ml OD(600). Also, the zeta potential of the cell surface was monitored as a function of the biosurfactant concentration added to cell suspension showing partial neutralization of net surface charge, since the value of zeta potential ranged from -16 mV to -6 mV during the titration. The changes of cell surface characteristics can contribute to the inhibition of initial adherence of cells of C. albicans in surface. The CMC of the purified biosurfactant produced from T. montevideense CLOA72 is 2.2 mg/ml, as determined both by ITC dilution experiments and by surface tension measurements. This biomolecule did not presented any cytotoxic effect in HEK 293A cell line at concentrations of 0.25-1 mg/ml. This study suggests a possible application of the referred biosurfactant in inhibiting the formation of biofilms on plastic surfaces by C. albicans. PMID:21376544

  14. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum.

    Science.gov (United States)

    Smith, Derek D N; Nickzad, Arvin; Déziel, Eric; Stavrinides, John

    2016-01-01

    Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID:27303689

  15. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species. PMID:26888203

  16. Study of Hydrocarbon Waste Biodegradation and the Role of Biosurfactants in the Process

    OpenAIRE

    Fallon, Agata M.

    1998-01-01

    Two types of oily waste sludges generated by a railroad maintenance facility were studied to reduce the volume of hydrocarbon waste. The specific goals of this laboratory study were to evaluate rate and extent of microbial degradation, benefits of organism addition, role of biosurfactant, and dewatering properties. The oily waste sludges differed in characteristics and contained a mixture of water, motor oil, lubricating oil, and other petroleum produ...

  17. Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes

    OpenAIRE

    Zhang, Y.; Miller, R M

    1995-01-01

    A study to quantify the effect of rhamnolipid biosurfactant structure on the degradation of alkanes by a variety of Pseudomonas isolates was conducted. Two dirhamnolipids were studied, a methyl ester form (dR-Me) and an acid form (dR-A). These rhamnolipids have different properties with respect to interfacial tension, solubility, and charge. For example, the interfacial tension between hexadecane and water was decreased to

  18. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane.

    OpenAIRE

    Y. Zhang; Miller, R M

    1994-01-01

    In this study, the effect of a purified rhamnolipid biosurfactant on the hydrophobicity of octadecane-degrading cells was investigated to determine whether differences in rates of octadecane biodegradation resulting from the addition of rhamnolipid to four strains of Pseudomonas aeruginosa could be related to measured differences in hydrophobicity. Cell hydrophobicity was determined by a modified bacterial adherence to hydrocarbon (BATH) assay. Bacterial adherence to hydrocarbon quantitates t...

  19. The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium

    OpenAIRE

    Bak, Frederik; Bonnichsen, Lise; Jørgensen, Niels O. G.; Nicolaisen, Mette Haubjerg; Nybroe, Ole

    2014-01-01

    Pseudomonas produces powerful lipopeptide biosurfactants including viscosin, massetolide A, putisolvin, and amphisin, but their ability to stimulate alkane mineralization and their utility for bioremediation have received limited attention. The four Pseudomonas lipopeptides yielded emulsification indices on hexadecane of 20–31 % at 90 mg/l, which is comparable to values for the synthetic surfactant Tween 80. Viscosin was the optimal emulsifier and significantly stimulated n-hexadecane mineral...

  20. Biosurfactant producing microorganisms and its application to enhanced oil recovery at lab scale

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; L. R. Rodrigues; Coutinho, J. A.; J.A. Teixeira; Soares, L. P.

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery process where microorganisms and their metabolites are used to retrieve unrecoverable oil from mature reservoirs. Stimulation of biosurfactant production by indigenous microorganisms can reduce the capillary forces that retain the oil into the reservoir. The studied reservoir is characterized by alternated oil and water sand layers, with an average porosity of 25% and a permeability of 50 mD. It’s a flat structure at 450 m dept...

  1. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913

    Directory of Open Access Journals (Sweden)

    Álvaro Silva Lima

    2009-04-01

    Full Text Available Surface-active compounds of biological origin are widely used for many industries (cosmetic, food, petrochemical. The Saccharomyces lipolytica CCT-0913 was able to grow and produce a biosurfactant on 5% (v/v diesel-oil at pH 5.0 and 32ºC. The cell-free broth emulsified and stabilized the oil-in-water emulsion through a first order kinetics. The results showed that the initial pH value and temperature influenced the emulsifier stability (ES, which was the time when oil was separated. The biosurfactant presented different stabilization properties for vegetable and mineral oil in water solution, despite the highest values of the ES occurring with vegetable oil. The biosurfactant presented smallest ES when compared to commercial surfactants; however, this biosurfactant was not purified.Os tensoativos de origem biológica são amplamente utilizados em diversas aplicações. O microrganismo Saccharomyces lipolytica CCT-0913 possui a habilidade de crescer em 5% (v/v óleo diesel a pH 5,0 e 32ºC e produzir biosurfactante. O caldo fermentado livre de células e produzido por S. lipolytica emulsiona e estabiliza emulsões óleo em água de acordo com uma cinética de primeira ordem. Os resultados mostram que o valor do pH inicial e a temperatura influenciam a estabilidade emulsificante (ES, que é medido pelo tempo que a quantidade de óleo. O biosurfactante apresenta diferentes valores de estabilidade emulsificante para óleos vegetais e minerais em emulsões óleo-água, os maiores valores de ES ocorrem nas emulsões utilizando óleo vegetal. O biosurfactante apresenta valores baixos de ES quando comparado com emulsificantes comerciais, entretanto sem sofrer nenhum processo de purificação.

  2. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

    OpenAIRE

    Singh Pooja; Cameotra Swaranjit

    2009-01-01

    Abstract Background Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms ...

  3. Production and characterization of microbial biosurfactants for potential use in oil-spill remediation.

    Science.gov (United States)

    Marti, M E; Colonna, W J; Patra, P; Zhang, H; Green, C; Reznik, G; Pynn, M; Jarrell, K; Nyman, J A; Somasundaran, P; Glatz, C E; Lamsal, B P

    2014-02-01

    Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate. PMID:24411443

  4. Rhizoremediation of Petrol Engine Oil Using Biosurfactants Producing Microbial Consortium in Mustard Crop

    OpenAIRE

    Govind Kumar; Rajesh Kumar; Anita Sharma

    2015-01-01

    Contamination of soil / water resources by petroleum products poses severe threats to underground water and soil quality. In the present study biosurfactant producing bacterial cultures were used to degrade petrol engine oil under in situ conditions in the plant rhizosphere system. Two bacterial isolates used in this study were recovered from Haldia oil refinery sites and identified as Pseudomonas aeruginosa (JX100389) and P. moraviensis (JX149542). Application of consortium C2, (Pseudomonas ...

  5. Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes

    OpenAIRE

    Fabienne Baillieul; Stephan Dorey; Christophe Clement; Parul Vatsa; Lisa Sanchez

    2010-01-01

    Rhamnolipids are known as very efficient biosurfactant molecules. They are used in a wide range of industrial applications including food, cosmetics, pharmaceutical formulations and bioremediation of pollutants. The present review provides an overview of the effect of rhamnolipids in animal and plant defense responses. We describe the current knowledge on the stimulation of plant and animal immunity by these molecules, as well as on their direct antimicrobial properties. Given their ecologica...

  6. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    OpenAIRE

    Silva, Rita de Cássia F. S.; Darne G. Almeida; Rufino, Raquel D.; Juliana M. Luna; Santos, Valdemir A.; Leonie Asfora Sarubbo

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportati...

  7. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2016-06-01

    Full Text Available The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015 [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  8. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3.

    Science.gov (United States)

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL(-1), and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m(-1). Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  9. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    Science.gov (United States)

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-02-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter.

  10. Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal

    Directory of Open Access Journals (Sweden)

    Arezoo Dadrasnia

    2016-07-01

    Full Text Available Many toxic substances have been introduced into environment through human activities. These compounds are danger to human health when they are ultimately or immediately in contact with soil particles. A conventional method to reduce, degrade and remove these substances is associated with some risk. In recent years, microorganisms have proved a unique role in the degradation and detoxification of polluted soil and water environments and, this process has been termed bio reclamation. The diversity of bioemulsifiers/biosurfactants makes them an attractive group and important key roles in various fields of industrial as well as biotechnological applications such as enhanced oil recovery, biodegradation of pollutants, and pharmaceutics. Environmental application of microbial surfactant has been shown as a promising due to solubilization of low solubility compounds, low toxicity observed and efficacy in improving biodegradation. However, it is important to note that full scale tests and more information is require to predict the behavior and model of surfactant function on the remediation process with biosurfactants. The purpose of this review is to describe the state of art in the potential applications of biosurfactants in remediation of environmental pollution caused by oil and heavy metal.

  11. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3

    Directory of Open Access Journals (Sweden)

    Deepansh Sharma

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB are ubiquitous and well-known commensal bacteria in the human and animal microflora. LAB are extensively studied and used in a variety of industrial and food fermentations. They are widely used for humans and animals as adjuvants, probiotic formulation, and dietary supplements and in other food fermentation applications. In the present investigation, LAB were isolated from raw milk samples collected from local dairy farms of Haryana, India. Further, the isolates were screened for simultaneous production of biosurfactants and bacteriocins. Biosurfactant produced was found to be a mixture of lipid and sugar similar to glycolipids. The bacteriocin obtained was found to be heat stable (5 min at 100°C. Further, DNA of the strain was extracted and amplified by the 16S rRNA sequencing using universal primers. The isolate Lactobacillus casei MRTL3 was found to be a potent biosurfactant and bacteriocin producer. It seems to have huge potential for food industry as a biopreservative and/or food ingredient.

  12. The use of biosurfactants in the removal of metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, C.N. [SNC Group, Montreal, PQ (Canada); Gibbs, B.F. [Bivan Consultants, Montreal, PQ (Canada); Yong, R.N. [McGill Univ., Montreal, PQ (Canada). Dept. of Civil Engineering and Applied Mechanics

    1997-12-31

    The use of surfactants in soil decontamination projects was discussed. Many different synthetic surfactants were evaluated in soil decontamination tests. Surfactants can be added to washing water for contact with excavated soils in a washing unit for eventual return of the clean soils to their original sites. Surfactants can also be used during pump and treat procedures where the groundwater is recovered from ground level treatment after in-situ flushing of the contaminated soil with a surfactant containing solution. This study focused on the removal of metals from soil by biosurfactants to determine the feasibility of using three different types of biosurfactants to enhance the removal of heavy metals (lead, zinc and copper) from soil. The three types of biological surfactants studied were Bacillus subtilis ATCC 21332, Pseudomonas aeruginosa ATCC 9027, and Torulopsis bombicola ATCC 22214. Soil characterization included soil pH and moisture content, particle size distribution, oil and grease content, organic matter content, heavy metal and chemical oxygen demand content, and cation exchange capability. It was concluded that copper was easier to remove by the biosurfactants than zinc. 18 refs., 3 tabs., 9 figs.

  13. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants.

    Science.gov (United States)

    Portet-Koltalo, F; Ammami, M T; Benamar, A; Wang, H; Le Derf, F; Duclairoir-Poc, C

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic type (amphisin and viscosin-like mixture), produced by two Pseudomonas fluorescens strains. The desorption of PAHs (from naphthalene to pyrene), from the highly retentive kaolinite fraction, could be favored by adding SDS or amphisin, but viscosin-like biosurfactants were only effective for 2-3 ring PAHs desorption (naphthalene to phenanthrene). Moreover, while SDS favors the release of all the target PAHs from a model sediment containing organic matter, the two biosurfactants tested were only effective to desorb the lowest molecular weight PAHs (naphthalene to fluorene). PMID:23995556

  14. Biosurfactants as demulsifying agents for oil recovery from oily sludge--performance evaluation.

    Science.gov (United States)

    Chirwa, Evans M N; Mampholo, Tshepo; Fayemiwo, Oluwademilade

    2013-01-01

    The oil producing and petroleum refining industries dispose of a significant amount of oily sludge annually. The sludge typically contains a mixture of oil, water and solid particles in the form of complex slurry. The oil in the waste sludge is inextractible due to the complex composition and complex interactions in the sludge matrix. The sludge is disposed of on land or into surface water bodies thereby creating toxic conditions or depleting oxygen required by aquatic animals. In this study, a fumed silica mixture with hydrocarbons was used to facilitate stable emulsion ('Pickering' emulsion) of the oily sludge. The second step of controlled demulsification and separation of oil and sludge into layers was achieved using either a commercial surfactant (sodium dodecyl sulphate (SDS)) or a cost-effective biosurfactant from living organisms. The demulsification and separation of the oil layer using the commercial surfactant SDS was achieved within 4 hours after stopping mixing, which was much faster than the 10 days required to destabilise the emulsion using crude biosurfactants produced by a consortium of petrochemical tolerant bacteria. The recovery rate with bacteria could be improved by using a more purified biosurfactant without the cells. PMID:23787332

  15. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  16. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3

    Science.gov (United States)

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL−1, and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m−1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  17. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  18. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  19. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.

    Science.gov (United States)

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-03-01

    A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility. PMID:24081911

  20. Draft Genome Sequence of Bacillus amyloliquefaciens Strain RHNK22, Isolated from Rhizosphere with Biosurfactant (Surfactin, Iturin, and Fengycin) and Antifungal Activity.

    Science.gov (United States)

    Narendra Kumar, Papathoti; Swapna, T H; Sathi Reddy, Koppula; Archana, K; Nageshwar, Lingampalli; Nalini, S; Khan, Mohamed Yahya; Hameeda, Bee

    2016-01-01

    Bacillus amyloliquefaciens strain RHNK22 isolated from groundnut rhizosphere showed direct and indirect plant growth-promoting traits along with biosurfactant activity and reduction in surface tension of water. Biosurfactants were identified as lipopeptides (surfactin, iturin, and fengycin) by molecular and biochemical analysis in our studies. PMID:26823600

  1. Draft Genome Sequence of Bacillus amyloliquefaciens Strain RHNK22, Isolated from Rhizosphere with Biosurfactant (Surfactin, Iturin, and Fengycin) and Antifungal Activity

    OpenAIRE

    Narendra Kumar, Papathoti; Swapna, T. H.; Sathi Reddy, Koppula; K. Archana; Nageshwar, Lingampalli; Nalini, S.; Khan, Mohamed Yahya; Hameeda, Bee

    2016-01-01

    Bacillus amyloliquefaciens strain RHNK22 isolated from groundnut rhizosphere showed direct and indirect plant growth-promoting traits along with biosurfactant activity and reduction in surface tension of water. Biosurfactants were identified as lipopeptides (surfactin, iturin, and fengycin) by molecular and biochemical analysis in our studies.

  2. 生物表面活性剂应用研究进展%Progress on the Applications of Biosurfactants

    Institute of Scientific and Technical Information of China (English)

    刘江红; 陈逸桐; 贾云鹏; 芦艳

    2013-01-01

    生物表面活性剂是由微生物产生的天然产物,具有表面活性高、对环境无污染、生物可降解性及良好的抑菌作用等优于化学合成的表面活性剂的独特性质.本文对生物表面活性剂的特性、分类及其制备方法进行了介绍,对生物表面活性剂在石油工业、环境工业、医药、食品、农业和化妆品工业等领域的应用进行了总结,展望了生物表面活性剂的良好应用前景.%Biosurfactants are natural products produced by microorganisms.The biosurfactants have unique properties,such as,high surface activity,environmental friendliness,biodegradable and good anti-microbial activity,which chemical surfactants do not have.Herein the properties,classifications and preparation methods of biosurfactants are introduced in brief.The applications of biosurfactants in various fields such as petroleum exploit,environmental protection,preparation of medicals,food products as well as agriculture and cosmetics are summarized.The prospect in the development of the biosurfactants is predicted.

  3. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

    Science.gov (United States)

    Sharma, Deepak; Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Adgaba, Nuru; Khan, Khalid Ali; Pruthi, Vikas; Al-Waili, Noori

    2015-11-01

    Among 348 microbial strains isolated from petroleum hydrocarbon-contaminated soil, five were selected for their ability to produce biosurfactant based on battery of screening assay including hemolytic activity, surface tension reduction, drop collapse assay, emulsification activity, and cell surface hydrophobicity studies. Of these, bacterial isolate DSVP20 was identified as Pseudomonas aeruginosa (NCBI GenBank accession no. GQ865644) based on biochemical characterization and the 16S rDNA analysis, and it was found to be a potential candidate for biosurfactant production. Maximum biosurfactant production recorded by P. aeruginosa DSVP20 was 6.7 g/l after 72 h at 150 rpm and at a temperature of 30 °C. Chromatographic analysis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) revealed that it was a glycolipid in nature which was further confirmed by nuclear magnetic resonance (NMR) spectroscopy. Bioremediation studies using purified biosurfactant showed that P. aeruginosa DSVP20 has the ability to degrade eicosane (97%), pristane (75%), and fluoranthene (47%) when studied at different time intervals for a total of 7 days. The results of this study showed that the P. aeruginosa DSVP20 and/or biosurfactant produced by this isolate have the potential role in bioremediation of petroleum hydrocarbon-contaminated soil. PMID:26146372

  4. Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization.

    Science.gov (United States)

    Nalini, S; Parthasarathi, R

    2013-11-01

    The aim of the study was to characterize and optimize the growth media for biosurfactant production from Serratia rubidaea SNAU02 isolated from hydrocarbon-contaminated soil from Cuddalore district, Tamilnadu, India. The biosurfactant produced by S. rubidaea SNAU02, was able to reduce the surface tension to 34.4 mN m(-1) in MSM medium. The biosurfactant was characterized by FT-IR and GC-MS analysis. The GC-MS analysis shows that dirhamnolipid was detected in abundance as predominant congener than monorhamnolipid. The response surface methodology (RSM) -central composite design (CCD) was performed to optimize the media for biosurfactant production. The maximum emulsification index was obtained under the optimal condition of 29.31 g L(-1) mannitol; 2.06 g L(-1) yeast extract, medium pH 6.97 and 5.69 g L(-1) NaCl. The biosurfactant produced by S. rubidaea recovered 92% of used engine oil adsorbed to a sand sample, suggested the potential application in microbial enhanced oil recovery and bioremediation. PMID:23993704

  5. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Dhouha Ghribi

    2012-01-01

    Full Text Available During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size. Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  6. Enrichment and identification of biosurfactant-producing oil field microbiota utilizing electron acceptors other than oxygen and nitrate.

    Science.gov (United States)

    Kryachko, Yuriy; Semler, Diana; Vogrinetz, John; Lemke, Markus; Links, Matthew G; McCarthy, E Luke; Haug, Brenda; Hemmingsen, Sean M

    2016-08-10

    Microorganisms indigenous to an oil reservoir were grown in media containing either sucrose or proteins in four steel vessels under anoxic conditions at 30°C and 8.3MPa for 30days, to enrich biosurfactant producers. Fermentation of substrate was possible in the protein-containing medium and either fermentation or respiration through reduction of sulfate occurred in the sucrose-containing medium. Growth of microorganisms led to 3.4-5.4-fold surface tension reduction indicating production of biosurfactants in amounts sufficient for enhancement of gas-driven oil recovery. Analysis of sequenced cpn60 amplicons showed that Pseudomonas sp. highly similar to biosurfactant producing P. fluorescens and to Pseudomonas sp. strain TKP predominated, and a bacterium highly similar to biosurfactant producing Bacillus mojavensis was present in vessels. Analysis of 16S rDNA amplicons allowed only genus-level identification of these bacteria. Thus, cpn60-amplicon analysis was a more relevant tool for identification of putative biosurfactant producers than 16S rDNA-amplicon analysis. PMID:27212608

  7. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    International Nuclear Information System (INIS)

    Highlights: → The combined DOM and biosurfactant significantly enhanced desorption of PAHs. → Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. → Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. → Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  8. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shubina, V., E-mail: varvara.shubina2014@gmail.com [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Gaillet, L. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Ababou-Girard, S. [Institut de Physique de Rennes, Département Matériaux et Nanosciences, UMR 6251 CNRS, Université Rennes 1, 35000 Rennes-Cedex (France); Gaudefroy, V. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Chaussadent, T.; Farças, F. [Université Paris-Est, IFSTTAR, MAST, CPDM, F-77447 Marne-la-Vallée (France); Meylheuc, T. [INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas (France); AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas (France); Dagbert, C. [2 Chemin de la Grand’côte, 36270 Éguzon-Chantôme (France); Creus, J. [LaSIE, UMR7356, Université de La Rochelle, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2015-10-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L{sup −1}, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe{sup 2+} and Fe{sup 3+} mixed-oxide layer and the outer layer, mostly composed of Fe{sup 3+} associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties.

  9. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L−1, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe2+ and Fe3+ mixed-oxide layer and the outer layer, mostly composed of Fe3+ associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties

  10. Elusloom lennukiga puhkusele / Inge Parring

    Index Scriptorium Estoniae

    Parring, Inge

    2003-01-01

    Ilmunud ka: Delovõje Vedomosti 1. okt. lk. 13. Air Cargo Estonia/ACE Logisticsi müügijuht Inge Parring tutvustab elusloomade transpordivõimalusi. Vt. samas: Loomade transportimiseks vajalikud dokumendid

  11. Datation par thermoluminescence

    Directory of Open Access Journals (Sweden)

    1976-01-01

    Full Text Available Depuis 1953, de nombreux chercheurs se sont intéressés à la datation par thermoluminescence de minéraux anciennement brûlés ou cuits. Dans ce travail, après avoir rappelé quelques principes physiques de la thermoluminescence, on présente cette méthode de datation en mettant l'accent sur le mécanisme thermoluminescent dans une poterie. Ainsi la dose d'irradiation reçue par le matériau étant proportionnelle au temps écoulé depuis le 'zéro archéologique', il est possible de déterminer 'la dose archéologique' et d'en déduire l'âge de l'échantillon après avoir calculé la dose d'irradiation annuelle. La réalisation pratique d'un tel ensemble de mesure est cependant très ardue. Dans un prochain article, E. A. Decamps et A. Roman montreront des résultats relatifs à la thermoluminescence d'échantillons de quartz naturels, purs et dopés et la mise au point d'une nouvelle méthode de datation. Desde 1953, muchos investigadores se han interesado en la datación por termoluminiscencia de minerales antiguamente quemados o cocidos. Dentro de este trabajo, luego de haber recordado algunos principios físicos de la termoluminiscencia, se presenta este método de datación poniendo mayor atención en el mecanismo termoluminescente en una vasija de metal o de barro. Siendo proporcional la dosis de irradiación recibida al tiempo transcurrido desde el 'cero arqueológico', es posible determinar 'la dosis arqueológica', y deducir la edad de la muestra luego de haber calculado la dosis de irradiación anual. La realización práctica de un trabajo de tal dimensión es sin embargo muy ardua. En un próximo artículo, E. A. Decamps y A. Román presentarán los resultados relativos a la termoluminiscencia de muestras de cuarzo naturales, puras y dopadas y la elaboración de un nuevo método de datación. Since 1953, a number of scientists have been concerned with the use of thermoluminescence for the dating of burned or fired minerals

  12. Par Pond vegetation status 1996

    International Nuclear Information System (INIS)

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned

  13. Immunopathogenic Background of Pars Planitis.

    Science.gov (United States)

    Przeździecka-Dołyk, Joanna; Węgrzyn, Agnieszka; Turno-Kręcicka, Anna; Misiuk-Hojło, Marta

    2016-04-01

    Pars planitis is defined as an intermediate uveitis of unknown background of systemic disease with characteristic formations such as vitreous snowballs, snowbanks and changes in peripheral retina. The incidence of pars planitis varies 2.4-15.4 % of the uveitis patients. The pathogenesis of the disease is to be determined in future. Clinical and histopathological findings suggest an autoimmune etiology, most likely as a reaction to endogenous antigen of unknown source, with T cells predominant in both vitreous and pars plana infiltrations. T cells subsets play an important role as a memory-effector peripheral cell. Snowbanks are formed as an effect of post inflammatory glial proliferation of fibrous astrocytes. There is also a genetic predisposition for pars planitis by human leukocyte antigen and several other genes. A coexistence of multiple sclerosis and optic neuritis has been described in numerous studies. Epiretinal membrane, cataract, cystoid macular edema, retinal detachment, retinal vasculitis, neovascularization, vitreous peripheral traction, peripheral hole formation, vitreous hemorrhage, disc edema are common complications observed in pars planitis. There is a need to expand the knowledge of the pathogenic and immunologic background of the pars planitis to create an accurate pharmacological treatment. PMID:26438050

  14. suPAR: the molecular crystal ball

    DEFF Research Database (Denmark)

    Thunø, Maria; Macho, Betina; Eugen-Olsen, Jesper

    2009-01-01

    soluble urokinase Plasminogen Activator Receptor (suPAR) levels reflect inflammation and elevated suPAR levels are found in several infectious diseases and cancer. suPAR exists in three forms; suPAR(I-III), suPAR(II-III) and suPAR(I) which show different properties due to structural differences...... inflammation and pathogenic processes. We focus on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process,as this could lead to medical applications in infectious and pathological conditions....

  15. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry.

    Science.gov (United States)

    Luna, Juliana M; Rufino, Raquel D; Sarubbo, Leonie A; Campos-Takaki, Galba Maria

    2013-02-01

    The development of less toxic, biodegradable, surfactants, such as biosurfactants, is a key strategy for acquiring environmentally friendly compounds. The aim of the present study was to employ an optimised medium containing 9% ground nut oil refinery residue and 9% corn steep liquor for the production of a biosurfactant by Candida sphaerica. Fermentation was carried out at 28 °C and 200 rpm for 144 h. Biosurfactant yield was 9 g/l. The biosurfactant reduced the surface tension of the medium to 25 mN/m, with a critical micelle concentration of 0.025%. The product demonstrated stability with regard to surface tension reduction and emulsification in a range of temperatures (5-120 °C) and pH values (2-12) as well as tolerance to high concentrations of NaCl (2-10%). Hydrophobicity tests indicate two possible insoluble substrate uptake mechanisms: direct interfacial uptake and biosurfactant-mediated transfer (cell contact with emulsified or solubilised hydrocarbons). The biosurfactant was characterised as an anionic glycolipid consisting of 70% lipids and 15% carbohydrates and demonstrated no toxicity to the microcrustacean Artemia salina or the vegetables Brassica oleracea, Solanum gilo, Lactuca sativa L. and Brassica oleracea L. The biosurfactant recovered 95% of motor oil adsorbed to a sand sample, demonstrating considerable potential for use in bioremediation processes, especially in the petroleum industry. PMID:23006562

  16. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity

    Science.gov (United States)

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z.

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics. PMID:25566212

  17. Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells

    Directory of Open Access Journals (Sweden)

    Arezoo Tahmourespour

    2011-03-01

    Full Text Available Streptococcus mutans (S. mutans, harboring biofilm formation, considered as a main aetiological factor of dental caries. Gtf genes play an important role in S. mutans biofilm formation. The purpose of this study was to investigate the effect of Lactobacillus acidophilus-derived biosurfactant on S. mutans biofilm formation and gtfB/C expression level (S. mutans standard strain ATCC35668 and isolated S. mutans strain (22 from dental plaque. The Lactobacillus acidophilus (L. acidophilus DSM 20079 was selected as a probiotic strain to produce biosurfactant. The FTIR analysis of its biosurfactant showed that it appears to have a protein-like component. Due to the release of such biosurfactants, L. acidophilus was able to interfere in the adhesion and biofilm formation of the S. mutans to glass slide. It also could make streptococcal chains shorter. Using realtime RT-PCR quantitation method made it clear that gtfB and gtfC gene expression were decreased in the presence of L. acidophilus-derived biosurfactant fraction. Several properties of S. mutans cells (the surface properties, biofilm formation, adhesion ability and gene expression were changed after L. acidophilus-derived biosurfactant treatment. It is also concluded that biosurfacant treatment can provide an optional way to control biofilm development. On the basis of our findings, we can suggest that the prepared biosurfactant may interfere with adhesion processes of S. mutans to teeth surfaces, provided additional evaluation produce satisfactory results.

  18. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae)

    Science.gov (United States)

    Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  19. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    Daniela Franco Carvalho Jacobucci

    2009-08-01

    Full Text Available Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as the height (cm of the emulsion layers formed. The 72 h incubation experiment resulted in a COD (Chemical Oxygen Demand reduction of 76% with Planococcus citreus strain and 70% with Pantoea agglomerans.The COD reduction with bacterial biosurfactants was over 50% in 24 h of incubation. The COD reduction showed that these strains and the surfactants produced could be used in bioremediation processes.Duas bactérias isoladas de solo contaminado com derivados de petróleo, Pantoea agglomerans e Planococcus citreus, produzem biosurfactantes utilizando respectivamente 1.5% de querosene e óleo de oliva como únicas fontes de carbono. As bactérias e os biosurfactantes produzidos foram adicionados a um efluente oleoso obtido de uma indústria nacional de sabão e margarina. As atividades de emulsificação foram determinadas pelo aumento da absorbância das emulsões óleo em água a 610 nm, enquanto que as emulsões do tipo água em óleo foram expressas em centímetros, pela altura do halo de espumas formado. A redução da demanda química de oxigênio (COD mostra que as linhagens e os biosurfactantes produzidos podem ser utilizados em processos de biorremediação.

  20. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    Science.gov (United States)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  1. Production of Biosurfactant in 2L Bioreactor Using Sludge Palm Oil as a Substrate

    OpenAIRE

    P. Jamal; Md. Zahangir Alam; E. A. Zainuddin; and W. M. F. W. Nawawi

    2011-01-01

    In this study, sludge palm oil was utilized as a raw material for process optimization in a stirred tank bioreactor for the biosurfactant production. Optimized parameters include temperature, agitation and aeration while the pH and media compositions such as NaNO3, NaCl, FeSO4, Meat extract, and glucose have been fixed from the previous study. The design of this research was made by using the Design-Expert software (2 level factorial design). Surface tension was used as indirect indicator for...

  2. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    OpenAIRE

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-01-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015) [1]; however, man...

  3. Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes

    Directory of Open Access Journals (Sweden)

    Fabienne Baillieul

    2010-12-01

    Full Text Available Rhamnolipids are known as very efficient biosurfactant molecules. They are used in a wide range of industrial applications including food, cosmetics, pharmaceutical formulations and bioremediation of pollutants. The present review provides an overview of the effect of rhamnolipids in animal and plant defense responses. We describe the current knowledge on the stimulation of plant and animal immunity by these molecules, as well as on their direct antimicrobial properties. Given their ecological acceptance owing to their low toxicity and biodegradability, rhamnolipids have the potential to be useful molecules in medicine and to be part of alternative strategies in order to reduce or replace pesticides in agriculture.

  4. Production of biosurfactants from Pseudomonas aeruginosa PA 1 isolated in oil environments

    OpenAIRE

    L.M. Santa Anna; Sebastian, G.V.; E.P. Menezes; ALVES T. L. M.; Santos, A.S.(LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil); N. Pereira Jr.; D.M.G. Freire

    2002-01-01

    The potential production of rhamnolipid-type biosurfactants is assessed based on the development of a fermentative process with a strain of Pseudomonas aeruginosa PA1, which was isolated from oil production wastewater in the Northeast of Brazil. These production of molecules using different carbon (n-hexadecane, paraffinic oil, glycerol and babassu oil) and nitrogen sources (NaNO3, (NH4)2SO4 and CH4N2O) was studied. The best results were obtained when using glycerol as substrate. A C/N ratio ...

  5. Avaliação cinética da produção de biossurfactantes bacterianos Bacteria biosurfactants production kinetic evaluation

    Directory of Open Access Journals (Sweden)

    Marta Heidtmann Pinto

    2009-01-01

    Full Text Available Biosurfactants present advantages in relation to the synthetic surfactants, as the biodegradability and low toxicity, and can be applied in the food industry, in pharmaceutical products, cosmetics and in the petroleum recovery. This paper aimed at selecting bacteria for biosurfactant production, evaluating the surface tension and the emulsifying activity and studying the fermentation process kinetics. The pure culture of Corynebacterium aquaticum showed capacity to promote emulsions formation and presented the smallest surface tension (28.8 mN m-1, and, in general, larger kinetic parameters, being selected as biosurfactant producer.

  6. ParAB Partition Dynamics in Firmicutes: Nucleoid Bound ParA Captures and Tethers ParB-Plasmid Complexes

    OpenAIRE

    Lioy, Virginia S.; Andrea Volante; Nora E Soberón; Rudi Lurz; Silvia Ayora; Alonso, Juan C.

    2015-01-01

    In Firmicutes, small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins, in concert with cis-acting plasmid-borne parS and the host chromosome, secure stable plasmid inheritance in a growing bacterial population. This study shows that (ω:YFP)2 binding to parS facilitates plasmid clustering in the cytosol. (δ:GFP)2 requires ATP binding but not hydrolysis to localize onto the cell's nucleoid as a fluorescent cloud. The interaction of (δ:CFP)2 or δ2 bound to the nucleoid with (ω:YFP)2 foci f...

  7. Designing Tone Reservation PAR Reduction

    Directory of Open Access Journals (Sweden)

    Johansson Albin

    2006-01-01

    Full Text Available Tone reservation peak-to-average (PAR ratio reduction is an established area when it comes to bringing down signal peaks in multicarrier (DMT or OFDM systems. When designing such a system, some questions often arise about PAR reduction. Is it worth the effort? How much can it give? How much does it give depending on the parameter choices? With this paper, we attempt to answer these questions without resolving to extensive simulations for every system and every parameter choice. From a specification of the allowed spectrum, for instance prescribed by a standard, including a PSD-mask and a number of tones, we analytically predict achievable PAR levels, and thus implicitly suggest parameter choices. We use the ADSL2 and ADSL2+ systems as design examples.

  8. Selective cultures for the isolation of biosurfactant producing bacteria: comparison of different combinations of environmental inocula and hydrophobic carbon sources.

    Science.gov (United States)

    Domingues, Patrícia M; Louvado, António; Oliveira, Vanessa; Coelho, Francisco J C R; Almeida, Adelaide; Gomes, Newton C M; Cunha, Angela

    2013-01-01

    The potential of estuarine microniches as reservoirs of biosurfactant-producing bacteria was evaluated by testing different combinations of inocula and hydrophobic carbon sources. Selective cultures using diesel, petroleum, or paraffin as hydrophobic carbon sources were prepared and inoculated with water from the surface microlayer, bulk sediments, and sediment of the rhizosphere of Halimione portulacoides. These inocula were compared regarding the frequency of biosurfactant-producing strains among selected isolates. The community structure of the selective cultures was profiled using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene fragments at the end of the incubation. The DGGE profiles corresponding to the communities established in selective cultures at the end of the incubation revealed that communities were different in terms of structural diversity. The highest diversity was observed in the selective cultures containing paraffin (H (') = 2.5). Isolates were obtained from the selective cultures (66) and tested for biosurfactant production by the atomized oil assay. Biosurfactant production was detected in 17 isolates identified as Microbacterium, Pseudomonas, Rhodococcus, and Serratia. The combination of estuarine surface microlayer (SML) water as inoculum and diesel as carbon source seems promising for the isolation of surfactant-producing bacteria. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file. PMID:23379272

  9. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste

    Directory of Open Access Journals (Sweden)

    Khushboo Bhange

    2016-06-01

    Full Text Available The present study is an attempt to optimize simultaneous production of keratinolytic protease, amylase and biosurfactant from feather meal, potato peel and rape seed cake in a single media by response surface methodology to evaluate their biochemical properties for detergent additive. The optimization was carried out using 20 run, 3 factor and 5-level of central composite design on design expert software which resulted in a 1.2, 0.84 and 2.28 fold increase in protease, amylase and biosurfactant production. The proteolytic activity was found to be optimum at pH 9.0 and 60 °C while optimum amylolytic activity was recorded at pH 6.0 and 70 °C respectively. Both enzymes were found to be stable in the presence of organic solvents, ionic and commercial detergent and oxidizing agents. The biosurfactant was extracted with chloroform and was found to be stable at varying pH and temperature; however a reduction in the activity was observed at temperature higher than 70 °C. The isolated enzymes and biosurfactants may find applications in the effective removal of stains.

  10. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3.

    Science.gov (United States)

    Nie, Maiqian; Yin, Xihou; Ren, Chunyan; Wang, Yang; Xu, Feng; Shen, Qirong

    2010-01-01

    A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na(+), 2Na(+) and K(+)), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3. PMID:20580808

  11. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil. PMID:24294259

  12. Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317(T).

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Microbial conversion of glycerol into functional bio-based materials was investigated, aiming to facilitate the utilization of waste glycerol. A basidiomycete yeast, Pseudozyma antarctica JCM 10317, efficiently produced mannosylerythritol lipids (MELs) as glycolipid biosurfactants from glycerol. The amount of MEL yield reached 16.3 g l(-1) by intermittent feeding of glycerol. PMID:17697987

  13. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    Science.gov (United States)

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds. PMID:26825819

  14. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    Science.gov (United States)

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products. PMID:27181392

  15. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    Science.gov (United States)

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states. PMID:23798147

  16. Enhanced biological control of phytophthora blight of pepper by biosurfactant-producing pseudomonas.

    Science.gov (United States)

    Ozyilmaz, Umit; Benlioglu, Kemal

    2013-12-01

    Pseudomonas isolates from different crop plants were screened for in vitro growth inhibition of Phytophthora capsici and production of biosurfactant. Two in vivo experiments were performed to determine the efficacy of selected Pseudomonas strains against Phytophthora blight of pepper by comparing two fungicide treatments [acibenzolar-S-methyl (ASM) and ASM + mefenoxam]. Bacterial isolates were applied by soil drenching (1 × 10(9) cells/ml), ASM (0.1 μg a.i./ml) and ASM + mefenoxam (0.2 mg product/ml) were applied by foliar spraying, and P. capsici inoculum was incorporated into the pot soil three days after treatments. In the first experiment, four Pseudomonas strains resulted in significant reduction from 48.4 to 61.3% in Phytophthora blight severity. In the second experiment, bacterial treatments combining with olive oil (5 mL per plant) significantly enhanced biological control activity, resulting in a reduction of disease level ranging from 56.8 to 81.1%. ASM + mefenoxam was the most effective treatment while ASM alone was less effective in both bioassays. These results indicate that our Pseudomonas fluorescens strains (6L10, 6ba6 and 3ss9) that have biosurfactant-producing abilities are effective against P. capsici on pepper, and enhanced disease suppression could be achieved when they were used in combination with olive oil. PMID:25288970

  17. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd2+ or Zn2+. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: → The enhanced solubilization of PAHs by saponin was investigated in this study. → Saponin showed great solubilization capability for PAHs. → Saponin is more effective in enhancing HOCs solubilization at lower solution pH. → Increasing ionic strength can enhance HOCs solubilization in saponin solution. → Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  18. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Wenjun, E-mail: wenjunzhou@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China); Yang Juanjuan; Lou Linjie [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China)

    2011-05-15

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd{sup 2+} or Zn{sup 2+}. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: > The enhanced solubilization of PAHs by saponin was investigated in this study. > Saponin showed great solubilization capability for PAHs. > Saponin is more effective in enhancing HOCs solubilization at lower solution pH. > Increasing ionic strength can enhance HOCs solubilization in saponin solution. > Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  19. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry.

    Science.gov (United States)

    Mnif, Inès; Ghribi, Dhouha

    2016-10-01

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry. PMID:27098847

  20. Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Hiroko K; Kitamoto, Dai

    2007-03-01

    Pseudozyma antarctica is one of the best producers of the glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. In order to obtain a variety of producers, all the species of the genus were examined for their production of MELs from soybean oil. Pseudozyma fusiformata, P. parantarctica and P. tsukubaensis were newly identified to be MEL producers. Of the strains tested, P. parantarctica gave the best yield of MELs (30 g L(-1)). The obtained yield corresponded to those of P. antarctica, P. aphidis and P. rugulosa, which are known high-level MEL producers. Interestingly, P. parantarctica and P. fusiformata produced mainly 4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-A), whereas P. tsukubaensis produced mainly 4-O-[(6'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-B). Consequently, six of the nine species clearly produced MELs. Based on the MEL production pattern, the nine species seemed to fall into four groups: the first group produces large amounts of MELs; the second produces both MELs and other biosurfactants; the third mainly produces MEL-B; and the fourth is non-MEL-producing. Thus, MEL production may be an important taxonomic index for the Pseudozyma yeasts. PMID:17328742

  1. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases.

    Science.gov (United States)

    Imura, Tomohiro; Hikosaka, Yusuke; Worakitkanchanakul, Wannasiri; Sakai, Hideki; Abe, Masahiko; Konishi, Masaaki; Minamikawa, Hiroyuki; Kitamoto, Dai

    2007-02-13

    The aqueous-phase behavior of mannosylerythritol lipid A (MEL-A), which is a glycolipid biosurfactant produced from vegetable oils by yeast strains of the genus Pseudozyma, was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). MEL-A was found to self-assemble into a variety of distinctive lyotropic liquid crystals including sponge (L3), bicontinuous cubic (V2), and lamella (Lalpha) phases. On the basis of SAXS measurements, we determined the structure of the liquid crystals. The estimated lattice constant for Lalpha was 3.58 nm. DSC measurement revealed that the phase transition enthalpies from the liquid crystal to the fluid isotropic phase were in the range of 0.22-0.44 kJ/mol. Although the present MEL-A phase diagram closely resembled that obtained from relatively hydrophobic poly(oxyethylene) or fluorinated surfactants, the MEL-A L3 region was spread considerably over a wide temperature range (20-65 degrees C) compared to L3 of those surfactants: this is probably due to the unique structure which is molecularly engineered by microorganisms. In this paper, we clarify the aqueous phase diagram of the natural glycolipid biosurfactant MEL-A, and we suggest that the obtained lyotropic crystals are potentially useful as novel nanostructured biomaterials. PMID:17279642

  2. Production of biosurfactants for application in the removal of environmental contaminants generated in the petroleum industry; Producao de biossurfactantes para aplicacao na remocao de contaminantes ambientais gerados na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Sarubbo, Leonie A.; Rufino, Raquel D.; Luna, Juliana M. de; Farias, Charles B.B.; Santos, Valdemir A. dos [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil)

    2012-07-01

    This paper describes the application of microbial surfactants in removing crude oil and marine environment located in the proximity of the Pernambuco Thermoelectric. Two biosurfactants were produced by yeasts Candida sphaerica and C. lipolytica grown in industrial wastes during 72 and 144 hours, respectively. The surface tensions of the biomolecules (25 mN/m) were determined, the production yields were estimated (8 and 9 g/L) and the CMC determined (0.03%). The biosurfactants were applied to samples of sea water and rocks contaminated with petroleum and motor oil. The results demonstrated the oil dispersant action of the biosurfactant from C. sphaerica and the emulsifying ability of the biosurfactant from C. lipolytica. Percentages removals of 100% of oil and petroleum were obtained for both biosurfactants. The possibility of application of biosurfactants in the remediation of oil polluted environments motivates the advancement of research to develop this alternative technology for effective use in the Termope Thermoelectric treatment systems. (author)

  3. Par Pond Fish, Water, and Sediment Chemistry

    International Nuclear Information System (INIS)

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond

  4. EPS solubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands.

    Science.gov (United States)

    Du, Mingpu; Xu, Dong; Trinh, Xuantung; Liu, Shuangyuan; Wang, Mei; Zhang, Yi; Wu, Junmei; Zhou, Qiaohong; Wu, Zhenbin

    2016-10-01

    Application of extracellular polymeric substances (EPS) solubilization treatment with biosurfactant rhamnolipid (RL) to reduce clogging in constructed wetlands was first conducted in this study. The results showed significant improvement in the solubilization and dispersion of clogging matter following the treatment. And RL dosage of 0.09-0.15g/L altered microbial group make-up and had an overall positive effect on the growth of microorganisms. Moreover, RL was found to enhance EPS dissolution and dispersion, which was beneficial for the release of enzymes embedded in the EPS, and resulted in enhanced pollutant removal. The treatment had no apparent detrimental effect on wetland plants. Our results indicate that the optimum dosage of RL is 0.12g/L, and that the approach provides a promising and moderate option to reverse wetland clogging through RL-mediated solubilization treatment. PMID:27428300

  5. In-situ production of biosurfactants: An alternative method for dispersing and bioremediating marine oil spills

    International Nuclear Information System (INIS)

    A study of surfactant producing bacteria for the dispersion of oil spills was conducted. Isolation procedures, shoreline experiments, flume basin experiments, and simulated open sea meso-scale experiments and results were described. Bacteria strains were obtained from several locations world-wide, though more success was experienced with strains from colder regions. Two strains were used in the meso-scale experiment. A rapid reduction in the aliphatic fraction of the dispersed oil was observed. Most strains were found to be capable of dispersing crude oils with differing compositions. Efforts to emulsify oil-in-water on an artificial shoreline with biosurfactants producing bacteria showed only limited success in mobilizing the oil. 8 figs., 2 tabs., 14 refs

  6. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry.

    Science.gov (United States)

    Anjum, Farhan; Gautam, Gunjan; Edgard, Gnansounou; Negi, Sangeeta

    2016-08-01

    In this study Bacillus sp. MTCC5877 was explored for the production of biosurfactant (BSs) and various carbon sources 1% (w/v), 0.5% (w/v) nitrogen sources were tested at different pH, and temperature. Yield was measured in terms of Emulsification index (EI), Oil Displacement Area (ODA) and Drop Collapse Area (DCA) and maximum emulsification activities of BSs were found (E24) 50%, 76% and 46%, respectively, and maximum ODA of 5.0, 6.2 and 4.7cm, were shown respectively. The BS was able to reduce the surface tension of water from 72 to 30mN/m and 72 to 32mN/m. Structural compositions of BS were confirmed by FTIR, GC-MS and NMR. Anti-adhesive property of BS was determined and found effective against biofilm formation. It could remove 73% Cd from vegetable which confirms its application in food industry. PMID:27013189

  7. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    Science.gov (United States)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  8. Rhizoremediation of Petrol Engine Oil Using Biosurfactants Producing Microbial Consortium in Mustard Crop

    Directory of Open Access Journals (Sweden)

    Govind Kumar

    2015-06-01

    Full Text Available Contamination of soil / water resources by petroleum products poses severe threats to underground water and soil quality. In the present study biosurfactant producing bacterial cultures were used to degrade petrol engine oil under in situ conditions in the plant rhizosphere system. Two bacterial isolates used in this study were recovered from Haldia oil refinery sites and identified as Pseudomonas aeruginosa (JX100389 and P. moraviensis (JX149542. Application of consortium C2, (Pseudomonas aeruginosa and P. moraviensis degraded 79.02 % petrol engine oil @ 2% in the soil planted with mustard (Brassica juncea var. Kranti crop after 120 days. GC-MS of biodegraded fuel showed the presence of new product like hexadecanoic acid 2, oxo-methyl ester.

  9. Biosurfactants and increased bioavailability of sorbed organic contaminants: Measurements using a biosensor

    International Nuclear Information System (INIS)

    Bioremediation of sites contaminated with hydrophobic materials that sorb onto the soil matrix is very difficult due to reduced microbial (bio)availability. Following biosurfactant addition, we have measured an increase in contaminant bioavailability by using a lux biosensor. Direct microbial bioavailability was determined by using a genetically engineered microbial bioreporter strain of Pseudomonas putida. This strain was engineered so the lux genes, which code for light production, are transcriptionally fused with genes that code for contaminant degradation and are thus induced in the presence of specific compounds. By using a bioreporter we can quantify the actual microbial bioavailability of the contaminants and compare it to concentrations measured by other analytical methods (e.g. gas chromatograph). It is possible that these values are not equal to each other. Thus, bioremediation rates may not be accurately predicted if bioavailability is not considered

  10. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  11. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  12. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection.

    Science.gov (United States)

    Ueno, Yoshinobu; Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2007-11-20

    Gene transfection is a fundamental technology for molecular and cell biology, and also clinical gene therapy. A variety of non-viral vectors have been investigated for gene transfection, but their gene delivery had remained an inefficient process. Recently, we found that a biosurfactant, mannosylerythritol lipid (MEL)-A, dramatically increased the efficiency in transfection of plasmid DNA mediated by cationic liposomes. However, its mechanism has not been understood yet. Here we examined the mechanism of the transfection mediated by cationic liposomes with NBD-conjugated MEL-A. We found that MEL-A first gradually distributed on the intracellular membranes through the plasma membranes of target cells, while the cationic liposomes with MEL-A fused to the plasma membranes in 20-35 min. Thereafter, the oligonucleotide released from the vesicles was immediately transferred to the nucleus. The present results showed a new role of non-viral vectors in transfection. PMID:17884224

  13. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    Science.gov (United States)

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  14. Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity.

    Science.gov (United States)

    Sponza, Delia Teresa; Gok, Oguzhan

    2011-12-15

    A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of SRT on the removal of three less hydrophobic and six more hydrophobic PAHs in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. Among the biosurfactants it was found that RD exhibits a better performance than the others in the removal of PAHs. At a RD of 15 mg l(-1) aerobic treatment for 25 days SRT was enough to remove over 90% of the total PAHs, 88% of the COD originating from the inert organics (COD(inert)) and 93% of the COD originating from the inert soluble microbial products (COD(imp)). At this SRT and RD concentration, about 96-98% of the RD was biodegraded by the AASR system, 1.2-1.4% was accumulated in the system, 1.1-1.3% was released in the effluent, and 1.2-1.4% remained in the waste sludge. The addition of electron acceptors (NO(3)(-1), SO(4)(-2)) and increasing of temperature up to 45°C enhanced the PAH yields. The most effective PAH degradation occurred in high-oxygenated and neutral pH conditions. The PAH concentration affecting half of the Daphnia magna organism (EC(50) value) was reduced from EC(50)=45.02 ng ml(-1) to the PAH concentration affecting only 6% of the live Daphnia magna (EC(6)=5.30 ng ml(-1)) at the end of the aerobic treatment at a SRT of 25 days. Toxicity removals originating from the PAHs were 96%. PMID:22023905

  15. Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2009-07-01

    The development of a novel glycolipid biosurfactant was undertaken using the high-level producers of mannosylerythritol lipids (MELs) such as Pseudozyma parantarctica, Pseudozyma antarctica, and Pseudozyma rugulosa. Besides the conventional MELs (MEL-A, MEL-B, and MEL-C), these yeasts produced an unknown glycolipid when they were cultivated in a medium containing 4% (w/v) olive oil and 4% (w/w) mannitol as the carbon source. The unknown glycolipid extracted from the culture medium of P. parantarctica JCM 11752(T) displayed the spot with lower mobility than that of known MELs on TLC and provided mainly two peaks identical to mannose and mannitol on high-performance liquid chromatography after acid hydrolysis. Based on structural analysis by (1)H and (13)C nuclear magnetic resonance, the novel glycolipid was composed of mannose and mannitol as the hydrophilic sugar moiety and was identified as mannosylmannitol lipid (MML). Of the strains tested, P. parantarctica JCM 11752(T) gave the best yield of MML (18.2 g/L), which comprised approximately 35% of all glycolipids produced. We further investigated the interfacial properties of the MML, considering the unique hydrophilic structure. The observed critical micelle concentration (CMC) and the surface tension at CMC of the MML were 2.6 x 10(-6) M and 24.2 mN/m, respectively. In addition, on a water-penetration scan, the MML efficiently formed not only the lamella phase (Lalpha) but also the myelins at a wide range of concentrations, indicating its excellent self-assembling properties and high hydrophilicity. The present glycolipid should thus facilitate the application of biosurfactants as new functional materials. PMID:19296097

  16. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B.

    Science.gov (United States)

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2008-08-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants produced by yeast strains of the genus Pseudozyma. In this study, the aqueous-phase behavior of a new monoacetyl MEL derivative, 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-d-mannopyranosyl)-d-erythritol (MEL-B), was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC). The present MEL-B was found to self-assemble into a lamellar (L(alpha)) phase over remarkably wide concentration and temperature ranges. According to SAXS measurement, the interlayer spacing (d) was estimated to be almost constant (about 4.7 nm) at the low MEL-B concentration (60 wt.%) region, the d-spacing gradually decreased to 3.1 nm with an increase in the MEL-B concentration. The thermal stability of the liquid crystalline phase was investigated by DSC measurement. The obtained L(alpha) phase was found to be stable up to 95 degrees C below a MEL-B concentration of 85 wt.%; then, the melting temperature of the liquid crystalline phase dramatically decreased with an increase in MEL-B concentration (above 85 wt.%). Furthermore, we found relatively large vesicles (1-5 microm) at the low MEL-B concentration using CLSM observation. The trapped volume of the obtained MEL-B vesicle was estimated to be about 0.42 microL/mumol by glucose dialysis method. These results suggest that the natural glycolipid biosurfactant, the newly found MEL-B, would be useful in various fields of applications as an L(alpha) phase- and/or vesicle-forming lipid. PMID:18456469

  17. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    Science.gov (United States)

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem. PMID:25139301

  18. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; Costa, Rita; Coutinho, João A. P.; J.A. Teixeira; L. R. Rodrigues

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of resi...

  19. A biosurfactant-producing and oil-degrading Bacillus subtilis strain enhances oil recovery under simulated reservoir conditions

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; Costa, Rita; L. R. Rodrigues; Coutinho, João A. P.; J.A. Teixeira

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions reduces the capillary forces that retain the oil inside the reservoir and decreases oil viscosity, thus promoting its flow and increasing oil production. Bacillus subtilis #573, isolated from crude oil s...

  20. Biosurfactant-producing Bacillus subtilis strains isolated from crude oil samples enhance oil recovery at lab scale

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira

    2012-01-01

    Biosurfactant-producing Bacillus subtilis strains isolated from crude oil samples enhance oil recovery at lab scale Eduardo J Gudiña, Lígia R. Rodrigues, José A. Teixeira IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using micro...

  1. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    OpenAIRE

    Martínez-Toledo Ángeles; Rodríguez-Vázquez Refugio

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against...

  2. Antibiotic and Biosurfactant Properties of Cyclic Lipopeptides Produced by Fluorescent Pseudomonas spp. from the Sugar Beet Rhizosphere

    OpenAIRE

    Nielsen, T H; Sørensen, D.; Tobiasen, C.; Andersen, J B; Christophersen, C.; Givskov, M.; Sørensen, J.

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600 fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting...

  3. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  4. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  5. Biosurfactant-and-Bioemulsifier Produced by a Promising Cunninghamella echinulata Isolated from Caatinga Soil in the Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    Nadielly R. Andrade Silva

    2014-09-01

    Full Text Available A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW and corn steep liquor (CSL as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E24 of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w, carbohydrates (35.2% w/w and protein (20.3% w/w. In addition, the biosurfactant solution (1% demonstrated its ability for an oil displacement area (ODA of 37.36 cm2, which is quite similar to that for Triton X-100 (38.46 cm2. The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%–6% w/v. The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes.

  6. Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730.

    Science.gov (United States)

    Morita, Tomotake; Ishibashi, Yuko; Hirose, Naoto; Wada, Koji; Takahashi, Makoto; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants excreted by fungal strains. They show not only excellent surface-active properties but also versatile biochemical actions. Ustilago scitaminea NBRC 32730 has been reported mainly to produce a mono-acetylated and di-acylated MEL, MEL-B, from sucrose as sole carbon source. In order to make biosurfactant production more efficient, we focused our attention on the use of sugarcane juice, one of the most economical resources. The fungal strain produced MEL-B at the yield of 12.7 g/L from only sugarcane juice containing 22.4% w/w sugars. Supplementation with organic (yeast extract, peptone, and urea) and inorganic (sodium nitrate and ammonium nitrate) nitrogen sources markedly enhanced the production yield. Of the nitrogen sources, urea gave the best yield. Under optimum conditions, the strain produced 25.1 g/L of MEL-B from the juice (19.3% sugars) supplemented with 1 g/L of urea in a jar fermenter at 25 °C over 7 d. The critical micelle concentration (CMC) and the surface-tension at the CMC for the present MEL-B were 3.7×10(-6) M and 25.2 mN/m respectively. On water-penetration scan, the biosurfactant efficiently formed the lamella phase (L(α)) and myelins over a wide range of concentrations, indicating excellent surface-active and self-assembling properties. More significantly, the biosurfactant showed a ceramide-like skin-care property in a three-dimensional cultured human skin model. Thus, sugarcane juice is likely to be effective in glycolipid production by U. scitaminea NBRC 32730, and should facilitate the application of MELs. PMID:21737925

  7. Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties.

    Science.gov (United States)

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-10-01

    Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs. PMID:19809166

  8. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    OpenAIRE

    Jin-Feng Liu; Serge Maurice Mbadinga; Shi-Zhong Yang; Ji-Dong Gu; Bo-Zhong Mu

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last tw...

  9. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.

    Science.gov (United States)

    Ammami, M T; Portet-Koltalo, F; Benamar, A; Duclairoir-Poc, C; Wang, H; Le Derf, F

    2015-04-01

    Dredged harbor sediment co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) was subjected to enhanced electrokinetic treatments, using a mixture of a chelating agent (citric acid CA) and a surfactant as additives in the processing fluids. We tested various operating conditions (at 1 V cm(-1)): different CA concentrations, applying a periodic voltage gradient, pre-conditioning the sediment with the additives, and replacing the synthetic surfactant Tween 20 (TW20) by biosurfactants. Increasing the CA concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of CA and TW20 provided the best results for Zn, Cd and Pb removal and also for removal of the 16 priority PAHs. Promising results were obtained with solutions containing rhamnolipids (0.028%) and a viscosin-like biosurfactant produced by Pseudomonas fluorescens Pfa7B (0.025%), associated to a periodic voltage gradient. Although the rhamnolipid and the viscosin-like compounds involved a higher electrical current than TW20, metals were less removed from the sediment. The electroosmotic flow was lower when we used biosurfactants, hence a less effective effect on PAH removal. PMID:25644703

  10. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    Science.gov (United States)

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons. PMID:26217887

  11. Effects of sludge retention time and biosurfactant on the treatment of polyaromatic hydrocarbon (PAH) in a petrochemical industry wastewater.

    Science.gov (United States)

    Sponza, D T; Gok, O

    2011-01-01

    A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of sludge retention time (SRT) on the removal of three polyaromatic hydrocarbons (PAHs) with low benzene rings [(acenaphthene (ACT), fluorene (FLN) and phenanthrene (PHE)] and six PAHs with high benzene rings [(benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP)] in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. This study showed that biosurfactants enhance the PAH biodegradation by increasing the biomass growth. RD exhibits a better performance than the other biosurfactants in the removal of the chemical oxygen demand (COD) and PAHs. At a RD concentration of 15 mg/L aerobic treatment for 25 days, SRT was enough to remove over 95% of total PAHs, and COD(dis). Under the same conditions 75% of COD originating from the inert organics (COD(inert)) and 96% of COD originating from the inert soluble microbial products (COD(imp)) were removed. At 25 days SRT and 15 mg/L RD concentration, about 88% of PAHs were biodegraded by the AASR system, 4% were accumulated in the system, 3% were released in the effluent, and 5% remained in the waste sludge. PMID:22156134

  12. Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources

    Directory of Open Access Journals (Sweden)

    Wael Ismail

    2015-09-01

    Full Text Available A Pseudomonas aeruginosa AK6U strain produced rhamnolipid biosurfactants to variable extents when grown on MgSO4 or organosulfur compounds as sulfur sources and glucose as a carbon source. Organosulfur cultures produced much higher biosurfactants amounts compared to the MgSO4 cultures. The surface tension of the growth medium was reduced from 72 mN/m to 54 and 30 mN/m in cultures containing MgSO4 and 4,6-dimethyldibenzothiophene (4,6-DM-DBT, respectively. AK6U cultures produced different rhamnolipid congener profiles depending on the provided sulfur source. The dibenzothiophene (DBT culture produced more diverse and a higher number of rhamnolipid congeners as compared to the DBT-sulfone and MgSO4 cultures. The number of mono-rhamnolipid congeners in the DBT culture was also higher than that detected in the DBT-sulfone and MgSO4 cultures. Di-rhamnolipids dominated the congener profiles in all the analyzed cultures. The sulfur source can have a profound impact on the quality and quantity of the produced biosurfactants.

  13. Sulfur source-mediated transcriptional regulation of the rhlABC genes involved in biosurfactants production by Pseudomonas sp. strain AK6U

    Science.gov (United States)

    Ismail, Wael; El Nayal, Ashraf M.; Ramadan, Ahmed R.; Abotalib, Nasser

    2014-01-01

    Despite the nutritional significance of sulfur, its influence on biosurfactants production has not been sufficiently studied. We investigated the expression of key biosurfactants production genes, rhlABC, in cultures of Pseudomonas sp. AK6U grown with inorganic or organic sulfur sources. AK6U grew with either inorganic sulfate (MgSO4), dibenzothiophene (DBT), or DBT-sulfone as a sole sulfur source in the presence of glucose as a carbon source. The AK6U cultures produced variable amounts of biosurfactants depending on the utilized sulfur source. Biosurfactants production profile of the DBT cultures was significantly different from that of the DBT-sulfone and inorganic sulfate cultures. The last two cultures were very similar in terms of biosurfactants productivity. Biosurfactants yield in the DBT cultures (1.3 g/L) was higher than that produced by the DBT-sulfone (0.5 g/L) and the inorganic sulfate (0.44 g/L) cultures. Moreover, the surface tension reduction in the DBT cultures (33 mN/m) was much stronger than that measured in the DBT-sulfone (58 mN/m) or inorganic sulfate (54 mN/m) cultures. RT-qPCR revealed variations in the expression levels of the rhlABC genes depending on the sulfur source. The DBT cultures had higher expression levels for the three genes as compared to the DBT-sulfone and inorganic sulfate cultures. There was no significant difference in the expression profiles between the DBT-sulfone and the MgSO4 cultures. The increased expression of rhlC in the DBT cultures is indicative for production of higher amounts of dirhamnolipids compared to the DBT-sulfone and inorganic sulfate cultures. The gene expression results were in good agreement with the biosurfactants production yields and surface tension measurements. The sulfur source mediates a fine-tuned mechanism of transcriptional regulation of biosurfactants production genes. Our findings can have an impact on industrial production of biosurfactants and other biotechnological processes like

  14. USE OF BUTTER MILK AND POULTRY-TRANSFORMING WASTES FOR ENHANCED PRODUCTION OF Bacillus subtilis SPB1 BIOSURFACTANT IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Raida Zouari

    2015-04-01

    Full Text Available Biosurfactants are valuable microbial amphiphilic molecules with effective surface-active and biological properties applicable to several industries and processes. Microorganisms synthesize them, especially during growth on water-immiscible substrates, providing an alternative to chemically prepared conventional surfactants. Microbial surfactants are not yet a sustainable alternative to chemically synthesized surfactants seeing their potentially high production charges. This study highlights the use of low-cost agro-industrial raw material for fermentative production of biosurfactants. The Box–Behnken Design and response surface methodology were employed to optimize the concentrations of the ratio butter milk /distilled water, poultry-transforming wastes and inoculum size for lipopeptide biosurfactant production by B.subtilis SPB1 in submerged fermentation.The best production yield was about 12.61 ± 0.7 g/L of crude lipopeptide biosurfactant. It can be obtained when using a ratio butter milk /distilled water of 1.5, poultry-transforming wastes of 23g/L and an inoculum size of 0.12. In comparison to the highest biosurfactant production yield reported for Bacillus subtilis SPB1, three fold increases were obtained.

  15. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  16. Performance testing of passive autocatalytic recombiners (PARs)

    International Nuclear Information System (INIS)

    Passive autocatalytic recombiners (PARs) have been under consideration in the U.S. as a combustible gas control system in advanced light water reactor (ALWR) containments for design basis and severe accidents. PARs do not require a source of power. Instead they use palladium or platinum as a catalyst to recombine hydrogen and oxygen gases into water vapor upon contact with the catalyst. Energy from the recombination of hydrogen with oxygen is released at a relatively slow but continuous rate into the containment which prevents the pressure from becoming too high. The heat produced creates strong buoyancy effects which increases the influx of the surrounding gases to the recombiner. These natural convective flow currents promote mixing of combustible gases in the containment. PARs are self-starting and self-feeding under a very wide range of conditions. The recombination rate of the PAR system needs to be great enough to keep the concentration of hydrogen (or oxygen) below acceptable limits. There are several catalytic recombiner concepts under development worldwide. The USNRC is evaluating a specific design of a PAR which is in an advanced stage of engineering development and has been proposed for ALWR designs. Sandia National laboratories (SNL), under the sponsorship and the direction of the USNRC, is conducting an experimental program to evaluate the performance of PARs. The PAR will be tested at the SURTSEY facility at SNL. The test plan currently includes the following experiments: experiments will be conducted to define the startup characteristics of PARs (i.e., to define what is the lowest hydrogen concentration that the PAR starts recombining the hydrogen with oxygen); experiments will be used to define the hydrogen depletion rate of PARs as a function of hydrogen concentration; and experiments will be used to define the PAR performance in the presence of high concentrations of steam. (author)

  17. Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Dokuz Eylul University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar Campus, 35160 Izmir (Turkey); Gok, Oguzhan [Dokuz Eylul University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar Campus, 35160 Izmir (Turkey)

    2011-12-15

    Graphical abstract: Acute toxicities in (a) influent wastewater (EC{sub 50} = 45.02 ng ml{sup -1}) and (b) effluent wastewater in aerobic activated sludge reactor at SRT = 25 days (EC{sub 6} = 5.30 ng ml{sup -1}). Highlights: Black-Right-Pointing-Pointer Over 90% of the total PAHs was removed at Rhamnolipid and sludge retention time of 15 mg l{sup -1} and 25 days. Black-Right-Pointing-Pointer 93% of the COD originating from the inert organics was removed in the aerobic reactor. 96-97% of the Rhamnolipid was biodegraded. Black-Right-Pointing-Pointer The EC50 value was reduced from EC{sub 50} = 45.02 ng ml{sup -1} to C{sub 6} = 5.30 ng ml{sup -1} with Daphnia magna. Toxicity removals originating from the PAHs were 96%. - Abstract: A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of SRT on the removal of three less hydrophobic and six more hydrophobic PAHs in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. Among the biosurfactants it was found that RD exhibits a better performance than the others in the removal of PAHs. At a RD of 15 mg l{sup -1} aerobic treatment for 25 days SRT was enough to remove over 90% of the total PAHs, 88% of the COD originating from the inert organics (COD{sub inert}) and 93% of the COD originating from the inert soluble microbial products (COD{sub imp}). At this SRT and RD concentration, about 96-98% of the RD was biodegraded by the AASR system, 1.2-1.4% was accumulated in the system, 1.1-1.3% was released in the effluent, and 1.2-1.4% remained in the waste sludge. The addition of electron acceptors (NO{sub 3}{sup -1}, SO{sub 4}{sup -2}) and increasing of temperature up to 45 Degree-Sign C enhanced the PAH yields. The most effective PAH degradation occurred in high-oxygenated and neutral pH conditions. The PAH concentration affecting half of the Daphnia magna organism (EC{sub 50} value) was reduced from EC{sub 50} = 45.02 ng ml{sup -1} to the PAH

  18. Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity

    International Nuclear Information System (INIS)

    Graphical abstract: Acute toxicities in (a) influent wastewater (EC50 = 45.02 ng ml−1) and (b) effluent wastewater in aerobic activated sludge reactor at SRT = 25 days (EC6 = 5.30 ng ml−1). Highlights: ► Over 90% of the total PAHs was removed at Rhamnolipid and sludge retention time of 15 mg l−1 and 25 days. ► 93% of the COD originating from the inert organics was removed in the aerobic reactor. 96–97% of the Rhamnolipid was biodegraded. ► The EC50 value was reduced from EC50 = 45.02 ng ml−1 to C6 = 5.30 ng ml−1 with Daphnia magna. Toxicity removals originating from the PAHs were 96%. - Abstract: A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of SRT on the removal of three less hydrophobic and six more hydrophobic PAHs in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. Among the biosurfactants it was found that RD exhibits a better performance than the others in the removal of PAHs. At a RD of 15 mg l−1 aerobic treatment for 25 days SRT was enough to remove over 90% of the total PAHs, 88% of the COD originating from the inert organics (CODinert) and 93% of the COD originating from the inert soluble microbial products (CODimp). At this SRT and RD concentration, about 96–98% of the RD was biodegraded by the AASR system, 1.2 1.4% was accumulated in the system, 1.1–1.3% was released in the effluent, and 1.2–1.4% remained in the waste sludge. The addition of electron acceptors (NO3−1, SO4−2) and increasing of temperature up to 45 °C enhanced the PAH yields. The most effective PAH degradation occurred in high-oxygenated and neutral pH conditions. The PAH concentration affecting half of the Daphnia magna organism (EC50 value) was reduced from EC50 = 45.02 ng ml−1 to the PAH concentration affecting only 6% of the live Daphnia magna (EC6 = 5.30 ng ml−1) at the end of the aerobic treatment at a SRT of 25 days. Toxicity removals originating from the

  19. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5

    Directory of Open Access Journals (Sweden)

    Janek Tomasz

    2012-02-01

    Full Text Available Abstract Background Pseudofactin II is a recently identified biosurfactant secreted by Pseudomonas fluorescens BD5, the strain obtained from freshwater from the Arctic Archipelago of Svalbard. Pseudofactin II is a novel compound identified as cyclic lipopeptide with a palmitic acid connected to the terminal amino group of eighth amino acid in peptide moiety. The C-terminal carboxylic group of the last amino acid forms a lactone with the hydroxyl of Thr3. Adhesion is the first stage of biofilm formation and the best moment for the action of antiadhesive and anti-biofilm compounds. Adsorption of biosurfactants to a surface e.g. glass, polystyrene, silicone modifies its hydrophobicity, interfering with the microbial adhesion and desorption processes. In this study the role and applications of pseudofactin II as a antiadhesive compound has been investigated from medicinal and therapeutic perspectives. Results Pseudofactin II lowered the adhesion to three types of surfaces (glass, polystyrene and silicone of bacterial strains of five species: Escherichia coli, Enterococcus faecalis, Enterococcus hirae, Staphylococcus epidermidis, Proteus mirabilis and two Candida albicans strains. Pretreatment of a polystyrene surface with 0.5 mg/ml pseudofactin II inhibited bacterial adhesion by 36-90% and that of C. albicans by 92-99%. The same concentration of pseudofactin II dislodged 26-70% of preexisting biofilms grown on previously untreated surfaces. Pseudofactin II also caused a marked inhibition of the initial adhesion of E. faecalis, E. coli, E. hirae and C. albicans strains to silicone urethral catheters. The highest concentration tested (0.5 mg/ml caused a total growth inhibition of S. epidermidis, partial (18-37% inhibition of other bacteria and 8-9% inhibition of C. albicans growth. Conclusion Pseudofactin II showed antiadhesive activity against several pathogenic microorganisms which are potential biofilm formers on catheters, implants and internal

  20. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2008-01-01

    A basidiomycetous yeast, Pseudozyma graminicola CBS 10092, was found to accumulate a large amount of glycolipids in the cultured medium when grown on soybean oil as the sole carbon source. Based on thin layer chromatography, the extracellular glycolipids gave spots corresponding to those of mannosylerythritol lipids (MELs), which are highly functional and promising biosurfactants. From the structural characterization by 1H and 13C NMR, the main product was identified as 4-O-[(4'-mono-O-acetyl-2', 3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, which is a highly hydrophilic derivative of MELs known as MEL-C. According to high-performance liquid chromatography analysis, the main product, MEL-C, comprised approximately 85% of all the MELs, and the total amount reached approximately 10 g/L for 7 days. The fatty acids of the present MEL-C consisted of mainly C6, C8 and C14 acids, considerably different from those of MEL-C produced by other Pseudozyma strains such as P. antarctica and P. shanxiensis. The observed critical micelle concentration (CMC) and the surface-tension at CMC of the MEL-C were 4.0 x 10(-6) M and 24.2 mN/m, respectively, while those of MEL-A, the most intensively studied MEL, were 2.7 x 10(-6) M and 28.4 mN/m, respectively. This implied that the MEL-C has higher hydrophilicity than conventional MELs hitherto reported. In addition, on a water-penetration scan, the MEL-C efficiently formed the lamella phase (Lalpha) at a wide range of concentrations, indicating its excellent self-assembling properties. From these results, the newly identified MELs produced by P. graminicola are likely to have great potential for use in oil-in-water type emulsifiers and/or washing detergents, and would thus facilitate a broad range of applications for the promising yeast biosurfactants. PMID:18198469

  1. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  2. Production of biosurfactants for environment remediation contaminated with oil and derivatives; Producao de biossurfactantes para remediacao de ambiente contaminados com petroleo e derivados

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriano Henrique Soares de; Guimaraes, Juliana Aguilar; Hiluy Filho, Joao Jose; Lopes, Ada Amelia Sanders [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Dept. de Engenharia Quimica]. E-mail: hiluy@ufc.br

    2003-07-01

    Biosurfactants are emulsifiers of hydrocarbons produced by bacteria, yeast and fungi. They are polymers that form micelles and stay at the interface between liquid of different polarities. This work aim to study the development of the biosurfactant production process and its application related to oil sludge. This research has been done in three different steps: the Acinetobacter iwoffii inoculation, its growth in a nutritive broth and the fermentation under specific conditions. It was used three different kind of substrates: ethanol, glycerol and kerosene for comparison. The surfactant potential was evaluated by the emulsification indexes with suspension biomass and efficiency tests with oil sludge. Preliminary results show that biosurfactant production by Acinetobacter iwoffii can be a feasible process due to the satisfactory emulsification indexes that have been obtained. (author)

  3. Par Pond vegetation status Summer 1995 -- Summary

    International Nuclear Information System (INIS)

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  4. Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos.

    Science.gov (United States)

    S, Chandirasekar; C, Chandrasekaran; T, Muthukumarasamyvel; G, Sudhandiran; N, Rajendiran

    2016-07-01

    We report the biosurfactant (sodium cholate) templated bright bluish-green emitting gold nanoclusters (AuNCs) by green chemical approach. Optical properties of the AuNCs were studied using UV-vis and luminescence spectroscopy. Lifetime of the fluorescent AuNCs was measured using time correlated single photon counting technique (TCSPC). High-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS) were used to measure the sizes of the clusters. In-vivo toxicity and bioimaging studies of sodium cholate (NaC) templated AuNCs were carried out at different developmental stages of zebrafish embryos. The survival rate, hatching rate, heart rate, malformation and apoptotic gene expression experiments shows no significant toxicity in developing embryos up to 100μL/mL of AuNCs concentration and the AuNCs stained embryos exhibited green fluorescence with high intensity over the period from 4 to 96hpf (hours post fertilization) which shows that AuNCs were stable in living organisms. PMID:27037785

  5. Biological activities of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Cedenir Pereira de Quadros

    2011-03-01

    Full Text Available In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1. In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05.

  6. Influence of salinity and temperature on the activity of biosurfactants by polychaete-associated isolates.

    Science.gov (United States)

    Rizzo, Carmen; Michaud, Luigi; Syldatk, Christoph; Hausmann, Rudolf; De Domenico, Emilio; Lo Giudice, Angelina

    2014-02-01

    Influence of different parameters on biosurfactant (BS) activity was carried out on strains that were isolated from the polychaetes Megalomma claparedei, Sabella spallanzanii and Branchiomma luctuosum and additional 30 strains that were previously identified as potential BS producers from crude oil enrichments of the same polychaete specimens. The selection of BS-producing strains from polychaete natural samples was carried out by using standard screening tests. The BS activity by each isolate was evaluated for the effect of salinity and temperature on emulsion production and surface tension reduction, during incubation in mineral medium supplemented with tetradecane or diesel oil. All isolates showed a similar time course of BS activity, and the latter was more influenced by salinity rather than temperature. Some of the BS producers belonged to genera that have not (i.e. Citricoccus, Cellulophaga, Tenacibaculum and Maribacter) or have poorly been (Psychrobacter, Vibrio, and Pseudoalteromonas) reported as able to produce BSs. This is remarkable as some of them have previously been detected in hydrocarbon-enriched samples. Results confirm that filter-feeding polychaetes are an efficient source for the isolation of BS producers. PMID:24170506

  7. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    Science.gov (United States)

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001. PMID:26185165

  8. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  9. Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution.

    Science.gov (United States)

    Jin, Lei; Garamus, Vasil M; Liu, Fang; Xiao, Jingwen; Eckerlebe, Helmut; Willumeit-Römer, Regine; Mu, Bozhong; Zou, Aihua

    2016-11-01

    The interaction between biosurfactant Surfactin and cationic Gemini surfactant ethanediyl-1,3-bis(dodecyldimethylammonium bromide) (abbreviated as 12-3-12) was investigated using turbidity, surface tension, dynamic light scattering (DLS) and small angle neutron scattering (SANS). Analysis of critical micelle concentration (CMC) values in Surfactin/12-3-12 mixture indicates that there is synergism in formation of mixed Surfactin/12-3-12 micelles. Although Surfactin and 12-3-12 are oppositely charged in phosphate buffer solution (PBS, pH7.4), there are no precipitates observed at the concentrations below the CMC of Surfactin/12-3-12 system. However, at the concentration above CMC value, the Surfactin/12-3-12 mixture is severely turbid with high 12-3-12 content. DLS and SANS measurements follow the size and shape changes of mixed Surfactin/12-3-12 aggregates from small spherical micelles via elongated aggregates to large bulk complexes with increasing fraction of Gemini surfactant. PMID:27475707

  10. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    Directory of Open Access Journals (Sweden)

    Niran Roongsawang

    2010-12-01

    Full Text Available Lipopeptide biosurfactants (LPBSs consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive and Pseudomonas (Gram-negative have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs. Production of active‑form NRPSs requires not only transcriptional induction and translation but also post‑translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.

  11. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils

  12. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Song Saisai [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)], E-mail: zlz@zju.edu.cn; Zhou Wenjun [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2008-12-15

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils.

  13. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications.

    Science.gov (United States)

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi, and yeast. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin, and fengycin of Bacillus subtilis are among the most popular lipopeptides. Lipopepetides can be applied in diverse domains as food and cosmetic industries for their emulsification/de-emulsification capacity, dispersing, foaming, moisturizing, and dispersing properties. Also, they are qualified as viscosity reducers, hydrocarbon solubilizing and mobilizing agents, and metal sequestering candidates for application in environment and bioremediation. Moreover, their ability to form pores and destabilize biological membrane permits their use as antimicrobial, hemolytic, antiviral, antitumor, and insecticide agents. Furthermore, lipopeptides can act at the surface and can modulate enzymes activity permitting the enhancement of the activity of certain enzymes ameliorating microbial process or the inhibition of certain other enzymes permitting their use as antifungal agents. This article will present a detailed classification of lipopeptides biosurfactant along with their producing strain and biological activities and will discuss their functional properties and related applications. PMID:25808118

  14. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.

    Science.gov (United States)

    Chang, Jae-Soo; Cha, Daniel K; Radosevich, Mark; Jin, Yan

    2015-01-01

    This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns. P. strain R mineralized phenanthrene faster and to a greater extent than Isolate P5-2 in the test soil. Co-inoculation with the surfactant-producing bacteria significantly enhanced phenanthrene biodegradation by P. strain R but it did not affect the biodegradation by Isolate P5-2 in both batch and column systems. Production of biosurfactants by P. aeruginosa ATCC 9027 was negligible under the given conditions. This study demonstrated that bioaugmentation with surfactant-producing bacteria could enhance in situ bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and the beneficial effect of the bioaugmentation depended on types of PAH-degrading microorganisms present. PMID:25837563

  15. Molasses as a whole medium for biosurfactants production by Bacillus strains and their application.

    Science.gov (United States)

    Saimmai, Atipan; Sobhon, Vorasan; Maneerat, Suppasil

    2011-09-01

    Two types of biosurfactant (BS)-producing bacteria, Bacillus licheniformis TR7 and Bacillus subtilis SA9, were isolated from mangrove sediment in the south of Thailand. The BS production was done by using only molasses as a whole medium for growth and production. Under optimized conditions, the yields of TR7 and SA9 BS were found to be 3.30 and 3.78 g/l, respectively. It could reduce the surface tension of pure water to 28.5 and 29.5 mN/m, with the critical micelle concentrations of about 10 and 30 mg/l, respectively. Good thermal, pH, and salt stability were exhibited. Both BSs could recover oil more effectively than the two synthetic surfactants. In addition, TR7 and SA9 BS could enhance the solubility of polyaromatic hydrocarbons (PAHs). Thus, these BSs have the potential for the removal of oil and PAHs from the combined contaminated environment and facilitate its bioremediation. These studies indicate that molasses, as a renewable, relatively inexpensive and easily available resource, can be used for important biotechnological processes. PMID:21509601

  16. Influence of biosurfactant on the diesel oil remediation in soil-water system

    Institute of Scientific and Technical Information of China (English)

    LI Yu-ying; ZHENG Xi-lai; LI Bing

    2006-01-01

    There were six high diesel oil degrading bacteria strains isolated from the oil contaminated soil that collected from Linzi City. The strain Y1 was able to produce biosurfactant rhamnolipid when cultivated on diesel oil as carbon source. The critical micelle concentrations (CMC) of rhamnolipid in water and in the soil were measured respectively according to the correlation between the surface tension of the medium and the added rhamnolipid concentration. The results showed that the CMC of rhamnolipid in water was 65 mg/L, and was 185 mg/L in soil. The tests on diesel oil biodegradation were conducted with the addition of different concentrations of rharnnolipid in water and in soil respectively. When 0.01% rhamnolipid was added to water, the diesel oil degradation was enhanced. On the contrary, when the same concentration of rhamnolipid was added to the soil, the degradation of diesel oil was inhibited. The results suggested that the rhamnolipid could enhance the diesel oil biodegradation, indicating that the concentration of rhamnolipid was higher than the corresponding CMC in the medium. Kinetics parameters for the diesel oil biodegradation parameters such as biodegradation constant (λ), coefficient of correlation (r) and half life (t1/2) in both tests were numerically analyzed in this paper, indicating that the moderate concentration of rhamnolipid in the medium could not only enhance the extent of diesel oil biodegradation but also shorten the time for oil remediation.

  17. Production of biosurfactants from Pseudomonas aeruginosa PA 1 isolated in oil environments

    Directory of Open Access Journals (Sweden)

    Santa Anna L.M.

    2002-01-01

    Full Text Available The potential production of rhamnolipid-type biosurfactants is assessed based on the development of a fermentative process with a strain of Pseudomonas aeruginosa PA1, which was isolated from oil production wastewater in the Northeast of Brazil. These production of molecules using different carbon (n-hexadecane, paraffinic oil, glycerol and babassu oil and nitrogen sources (NaNO3, (NH42SO4 and CH4N2O was studied. The best results were obtained when using glycerol as substrate. A C/N ratio of 60/1 and use of sodium nitrate as nitrogen source resulted in higher production of the rhamnolipid, expressed by rhamnose (3.16 g/L and by the yield in relation to biomass (Yp/x = 0.70 g/g. Additionally, physical-chemical characteristics of the spent broth with and without cells were studied, providing a low critical micelle concentration of 19 mg/L and toxicity values of 13 and 13.8 mg/L using two test organisms, the micro crustacean Daphnia similis and the bacterium Vibrio fisheri (Microtox, respectively.

  18. Synergistic effect of a biosurfactant and protamine on gene transfection efficiency.

    Science.gov (United States)

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2013-04-11

    Several barriers need to be overcome to ensure successful gene transfection, including passing of the foreign gene through the plasma membrane, escape of this material from lysosomal degradation, and its translocation into the nucleus. We previously showed that the biosurfactant mannosylerythritol lipid-A (MEL-A) enhanced the efficiency of gene transfection mediated by cationic liposomes by facilitating rapid delivery of foreign genes into target cells through membrane fusion between liposomes and the plasma membrane. Moreover, using MEL-A-containing cationic liposomes, the foreign gene was efficiently delivered into the nucleus because it was released directly into the cytosol and thus escaped lysosomal degradation. Here we investigated the effect of pre-condensation of plasmid DNA by a cationic polymer, protamine, on gene transfection. We found that the efficiency of pre-condensed DNA transfection mediated by MEL-A-containing OH liposomes was >10 times higher than that of non-condensed DNA transfection. In contrast, the efficiency of pre-condensed DNA transfection mediated by OH liposomes was only 1.5 times higher than that of non-condensed DNA transfection. MEL-A did not influence plasmid DNA encapsulation by cationic liposomes, but it greatly accelerated the nuclear delivery of pre-condensed plasmid DNA. Our findings indicate that MEL-A and protamine synergistically accelerate the nuclear delivery of foreign gene and consequently promote gene transfection efficiency. PMID:23422688

  19. [Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties].

    Science.gov (United States)

    Kitamoto, Dai

    2008-05-01

    Biosurfactants (BS) are functional amphiphilic compounds produced by a variety of microorganisms. They show unique properties (e.g. mild production conditions, lower toxicity, and environmental compatibility) compared to chemically synthesized counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in energy and environmental technologies as well. Mannosylerythritol lipids (MELs) are one of the most promising BS known, and are produced at yields of over 100 g/l from vegetable oils by yeast strains belonging to the genus Pseudozyma. MELs exhibit excellent surface-active and self-assembling properties leading to the formation of different lyotropic liquid crystals such as sponge (L(3)), bicontinuous cubic (V(2)) and lamella (L(alpha)) phases. They also show versatile biochemical actions, including antitumor and differentiation-inducing activities against human leukemia cells, rat pheochromocytoma cells and mouse melanoma cells. MELs also display high binding affinity toward different immunoglobulins and lectins, indicating great potentials as new affinity ligands for the glycoproteins. More significantly, the cationic liposomes bearing MELs increase dramatically the efficiency of gene transfection into mammalian cells via membrane fusion processes. The yeast BS should thus be novel nanobiomaterials, and broaden their applications in various advanced technologies. PMID:18451615

  20. Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Suzuki, Michiko; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), the extracellular glycolipids produced from feedstock by yeasts belonging to the genus Pseudozyma, are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the cell activating property of MELs was investigated using cultured fibroblast and papilla cells, and a three-dimensional cultured human skin model. The di-acetylated MEL (MEL-A) produced from soybean oil significantly increased the viability of the fibroblast cells over 150% compared with that of control cells. On the other hand, no cell activation was observed by the treatment with MEL-A produced from olive oil. The mono-acetylated MEL (MEL-B) hardly increased the cell viability. The viability of the fibroblast cells decreased with the addition of more than 1 microg/L of MELs, whereas the cultured human skin cells showed high viability with 5 microg/L of MELs. Interestingly, the papilla cells were dramatically activated with 0.001 microg/L of MEL-A produced from soybean oil: the cell viability reached at 150% compared with that of control cells. Consequently, the present MEL-A produced from soybean oil should have a potential as a new hair growth agent stimulating the papilla cells. PMID:20625237

  1. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    Science.gov (United States)

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products. PMID:22790172

  2. Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior.

    Science.gov (United States)

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-02-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. In this study, we succeeded in the preparation of a novel MEL homolog having no acetyl groups, namely MEL-D. MEL-D was synthesized by lipase-catalyzed hydrolysis of acetyl groups from a known MEL, and identified as 4-O-[2',3'-di-O-alka(e)noyl-β-d-mannopyranosyl]-(2R,3S)-erythritol. The obtained MEL-D showed a higher critical aggregation concentration (CAC=1.2 × 10(-5)M) and hydrophilicity compared to known MELs, retaining an excellent surface tension lowering activity (the surface tension at the CAC was 24.5mN/m). In addition, we estimated the binary phase diagram of the MEL-D-water system based on a combination of visual inspection, polarized optical microscopy, and SAXS measurement. From these results, MEL-D was found to self-assemble into a lamellar (L(α)) structure over all ranges of concentration. Meanwhile, the one-phase L(α) region of MEL-D was extended wider than those of known MELs. MEL-D might keep more water between the polar layers in accordance with the extension of the interlayer spacing (d). These results suggest that the newly obtained MEL-D would facilitate the application of MELs in various fields as a lamellar-forming glycolipid with higher hydrate ability. PMID:21163471

  3. Lipase-catalyzed acylation of microbial mannosylerythritol lipids (biosurfactants) and their characterization.

    Science.gov (United States)

    Recke, Verena K; Beyrle, Catharina; Gerlitzki, Melanie; Hausmann, Rudolf; Syldatk, Christoph; Wray, Victor; Tokuda, Harukuni; Suzuki, Nobutaka; Lang, Siegmund

    2013-05-24

    Culturing Pseudozyma aphidis on glucose as main carbon source and soybean oil as co-substrate the mannosylerythritol lipids MEL-A and MEL-B were produced. Based on their excellent surface/interfacial active behavior they possess a high potential among all known biosurfactants. The components of a microbial MEL mixture were purified by medium pressure liquid chromatography (MPLC) and were used as substrates for in vitro enzymatic modifications. Lipase-catalyzed acylations of MEL-A and MEL-B with uncommon fatty acids from other microbial glycolipids-3-hydroxydecanoic acid from rhamnolipids and 17-hydroxyoctadecanoic acid from classical sophorolipids-yielded functionalized products at the C-1 position of the erythritol. The novel products were purified by MPLC and their structures elucidated by (1)H and (13)C nuclear magnetic resonance spectroscopy and mass spectrometry. In physicochemical characterization experiments two of the three new glycoconjugates lowered the surface tension of water from 72 mN m(-1) to 27-38 mN m(-1). Moreover the novel compounds inhibited the growth of gram-positive bacteria and showed a potential for anti-tumor-promoting activity. PMID:23584591

  4. The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection.

    Science.gov (United States)

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2010-10-15

    An unsaturated hydrocarbon chain in phospholipid was reported to affect a phase transition and a fusogenic activity after mixing membranes, and consequently to achieve a high DNA transfection efficiency. We previously showed that a biosurfactant mannosylerythritol lipid-A (MEL-A) enhances the gene transfection efficiency of cationic liposomes. Here, we have studied the effects of unsaturated fatty acid ratio of MEL-A on the physicochemical properties and gene delivery into cells of cationic liposomes using MEL-A with three different unsaturated fatty acid ratios (9.1%, 21.5%, and 46.3%). The gene transfer efficiency of cationic liposomes containing MEL-A (21.5%) was much higher than that of those containing MEL-A (9.1%) and MEL-A (46.3%). MEL-A (21.5%)-containing cationic liposomes induced highly efficient membrane fusion after addition of anionic liposomes and led to subsequent DNA release. Imaging analysis revealed that MEL-A (21.5%)-containing liposomes fused with the plasma membrane and delivered DNA into the nucleus of NIH-3T3 cells, MEL-A (46.3%)-containing liposomes fused with the plasma membrane did not deliver DNA into the nucleus, and MEL-A (9.1%)-containing liposomes neither fused with the plasma membrane nor delivered DNA into the nucleus. Thus, it is understandable that the unsaturated fatty acid ratio of MEL-A strongly influences the gene transfection efficiency of cationic liposomes. PMID:20674726

  5. A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants.

    Science.gov (United States)

    Fukuoka, Tokuma; Kawamura, Mayo; Morita, Tomotake; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-11-24

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties, but also versatile biochemical actions. During a survey of new MEL producers, we found that a basidiomycetous yeast, Pseudozyma crassa, extracellularly produces three glycolipids. When glucose and oleic acid were used as the carbon source, the total amount of glycolipids reached approximately 4.6g/L in the culture medium. The structures of these glycolipids were similar to those of well-known MEL-A, -B, and -C, respectively. Very interestingly, in all the present glycolipids, the configuration of the erythritol moiety was entirely opposite to that of conventional MELs. The present glycolipids were identified to have the carbohydrate structure of 4-O-beta-D-mannopyranosyl-(2R,3S)-erythritol, stereochemically different from 4-O-beta-D-mannopyranosyl-(2S,3R)-erythritol of conventional MELs. Furthermore, these new glycolipids possessed both short-chain acids (C(2) or C(4)) and long-chain acids (C(14), C(16), or C(18)) on the mannose moiety. The major component of the present glycolipids clearly showed different interfacial and biological properties, compared to conventional MELs comprising two medium-chain acids on the mannose moiety. Accordingly, the novel MEL diastereomers produced by P. crassa should provide us with different glycolipid functions, and facilitate a broad range of applications of MELs. PMID:18805521

  6. Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin

    Directory of Open Access Journals (Sweden)

    Young-Fo Chang

    2011-06-01

    Full Text Available In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000. The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter and needle-like (8–14 nm in diameter and 80–100 nm in length noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter, oval (~300 nm in diameter and nanorod (200–400 nm in length particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.

  7. Estudo da produção de biossurfactante em caldo de fermentação Study on the production of biosurfactant fermentation broth

    Directory of Open Access Journals (Sweden)

    Silvia Messias Bueno

    2010-01-01

    Full Text Available A bacterium isolated from soil contaminated by hydrocarbon was studied and, by biochemical tests and analysis of PCR, the presence of Bacillus pumilus was identified. The production of biosurfactant was optimized, test of oil degradation and antimicrobial activity determination. The results showed that pH 5.0 and 7.0, 72 h of fermentation, sucrose and sugar cane juice (2% had best yields. The bacterium is able to degrade crude oil and displays bacteriostatic and fungistatic activity. From the analysis of proximate composition of biosurfactant found the presence of biopolymer formed by a lipopolysaccharide-protein complex.

  8. IDENTIFICATION OF PSEUDOZYMA HUBEIENSIS Y10BS025 AS A POTENT PRODUCER OF GLYCOLIPID BIOSURFACTANT MANNOSYLERYTHRITOL LIPIDS

    Directory of Open Access Journals (Sweden)

    Martha Sari

    2013-01-01

    Full Text Available Mannosylerythritol Lipids (MEL’s are glycolipid biosurfactants that contain 4-O-β-D-mannopyranosyl-meso-erythritol as a hydrophilic moiety and fatty acids as a hydrophobic moiety. MEL’s are abundantly produced by several kinds of microorganism and are one of the most promising biosurfactants currently known. The search for a novel endogenous producer of MEL’s was undertaken based on the available collection of the yeast strains from the genus Pseudozyma. Using thin layer chromatography and based on morphological and molecular taxonomic analysis using the D1/D2 domains of the large subunit 26S rRNA gene, Pseudozyma hubeiensis Y10BS025 was found to be a potential producer of MEL’s from soybean oil. The structure of the major glycolipid produced by the strain was analyzed by 1H and 13C nuclear magnetic resonance and was found to be similar to those of well known MEL-A, -B and -C respectively. Under improved shaking culture conditions, using yeast extract as nitrogen source and soybean oil as substrate, a maximum yield of 115±3.2 g.L-1 of MEL’s for 8 days of fermentation was achieved. The major fatty acids of MEL’s produced by P. hubeiensis Y10BS025 were C-18 acids, considerably different from those of MEL-C produced by other Pseudozyma strains such as P. antarctica and P. shanxiensis. The main product, MEL-C produced by P. hubeiensis Y10BS025 exhibited surface-tension-lowering activity. The results demonstrated that the newly isolated P. hubeiensis Y10BS025 provided high efficiency in MEL’s production and would thus be highly advantageous in commercial production of promising biosurfactants.

  9. Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1

    OpenAIRE

    Grishina, Zoryana; Ostrowska, Ewa; Halangk, Walter; Sahin-Tóth, Miklós; Reiser, Georg

    2005-01-01

    Trypsin-like serine proteinases trigger signal transduction pathways through proteolytic cleavage of proteinase-activated receptors (PARs) in many tissues. Three members, PAR-1, PAR-2 and PAR-4, are trypsin substrates, as trypsinolytic cleavage of the extracellular N terminus produces receptor activation. Here, the ability of the three human pancreatic trypsin isoforms (cationic trypsin, anionic trypsin and mesotrypsin (trypsin IV)) as recombinant proteins was tested on PARs.Using fura 2 [Ca2...

  10. Microbiological Method for Eor RAH par la méthode microbiologique

    Directory of Open Access Journals (Sweden)

    Yulbarisov E. M.

    2006-11-01

    filtration au cours du déplacement du pétrole par l'action microbiologique, la biomasse et la production de biogaz, les biosurfactants, les biopolymères, les acides, les solvants, les ferments etc. , revêtent une grande importance. Une méthode efficace a été mise au point pour améliorer la récupération des hydrocarbures par un procédé commercial de biocénose des micro-organismes.

  11. Radioecological implications of the Par Pond drawdown

    International Nuclear Information System (INIS)

    The drawdown of the Par Pond reservoir created dramatic alterations in this formerly stable lentic ecosystem. In addition, the radiation environment at Par Pond has changed significantly because of the exposure of Cesium 137-contaminated sediments and the appearance of new transport pathways to the terrestrial environment. In response to this situation, SREL was asked to study the radioecological implications of the reservoir drawdown. This report contains the objectives, methods, and results of the SREL study

  12. Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Rasoul Salehi

    2014-01-01

    Full Text Available Background: Streptococci are the main causative agents in plaque formation and mutans streptococci are the principle etiological agent of dental plaque and caries. The process of biofilm formation is a step-wise process, starting with adhesion of planktonic cells to the surfaces. It is now a well known fact that expression of glucosyltransferases (gtfs and fructosyltransferase (ftf genes play a critical role in the initial adhesion of Streptococcus mutans to the tooth surface, which results in the formation of dental plaques and consequently caries and other periodontal diseases. Materials and Methods: In the present study, we have determined the effect of biosurfactants purified from Lactobacillus reuteri (DSM20016 culture on gene expression profile of gftB/C and fft of S. mutans (ATCC35668 using quantitative real-time polymerase chain reaction. Results: The application of biosurfactant caused considerable down-regulation of the expression of all three genes under study. The reduction in gene expression was statistically very significant (P > 0.0001 for all three genes. Conclusions: Inhibition of these genes by the extracted L. reuteri biosurfactant shows the emergence of a powerful alternative to the presently practicing alternatives. In view of the importance of these gene products for S. mutans attachment to the tooth surface, which is the initial important step in biofilm production and dental caries, we believe that the biosurfactant prepared in this study could be considered as a step ahead in dental caries prevention.

  13. Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate.

    Science.gov (United States)

    Priji, Prakasan; Unni, K N; Sajith, S; Benjamin, Sailas

    2013-03-01

    This unique study reports a new strain (BPU1) of Candida tropicalis isolated from the rumen of the Malabari goat, showing dual production of biosurfactant and polyhydroxybutyrate. C. tropicalis strain BPU1, a facultative anaerobe, was tuned to become an aerobe in specially designed flask, the Benjamin flask. The puffy circular colonies were smooth, white-to-cream in colour, with pseudo-filaments. The strain fermented glucose, sucrose, maltose and dextrose, but not lactose and cellulose. It assimilated (NH4 )2 SO4 , peptone, glycine and arginine, but not NaNO3 , as the nitrogen source. Interestingly, it utilized groundnut oil (up to 0.3%) in a specially designed basal mineral salt medium (BSM). Its capability for dual production of a biosurfactant and a polyhydroxybutyarate (PHB) was explored by various methods from the BSM-oil medium. Extracted biosurfactant from 6 day-old culture was biochemically characterized as a complex of lipid and carbohydrate with an Rf value of 0.88 by thin layer chromatography. Its PHB production was confirmed by specific staining methods with Nile blue sulphate, Sudan black B and Sudan 3. Briefly, this first-ever report gives ample physical evidence for the dual production of a glycolipid (biosurfactant) and PHB by C. tropicalis strain BPU1 on a specially designed medium, which would open up elaborate research on this yeast. PMID:23447374

  14. Draft Genome Sequence of the Basidiomycetous Yeast-Like Fungus Pseudozyma hubeiensis SY62, Which Produces an Abundant Amount of the Biosurfactant Mannosylerythritol Lipids.

    Science.gov (United States)

    Konishi, Masaaki; Hatada, Yuji; Horiuchi, Jun-Ichi

    2013-01-01

    The basidiomycetous yeast-like fungus Pseudozyma hubeiensis strain SY62 is capable of producing an abundant amount of the glycolipid biosurfactant mannosylerythritol lipids (MELs), which are a major component of monoacetylated MEL (MEL-C). To reveal the synthetic pathway of the MELs of strain SY62, we present the 18.44-Mb draft genome sequence. PMID:23814110

  15. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola.

    Science.gov (United States)

    Roelants, Sophie L K W; Ciesielska, Katarzyna; De Maeseneire, Sofie L; Moens, Helena; Everaert, Bernd; Verweire, Stijn; Denon, Quenten; Vanlerberghe, Brecht; Van Bogaert, Inge N A; Van der Meeren, Paul; Devreese, Bart; Soetaert, Wim

    2016-03-01

    Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently. PMID:26301720

  16. Optimizing the use of biosurfactants to remove diesel contamination in porous media

    International Nuclear Information System (INIS)

    It has been demonstrated that biosurfactants can be used to successfully enhance the removal of hydrocarbon contamination from soils. The Environmental Technology Laboratory (ETL) at the University of Alaska Fairbanks is currently involved in a multiyear study of surfactant usage in oil spill remediation in cold climates. Funding for this work is provided by the National Science Foundation, Petroleum Environmental Services, Inc., the Alaska Department of Conservation, and the University of Alaska Fairbanks. In the Summer of 1993, researchers from ETL successfully used a biologically derived surfactant to remove weathered crude oil contamination remaining from the Exxon Valdez oil spill. This same technology may be applicable to other hydrocarbon-contaminated sites. Subsequent laboratory studies are being performed using soil columns to quantify the interaction between surfactant usage and soil characteristics. Specifically, the amount of surfactant applied, the method of application, the level of diesel contamination, and the type of soil matrix are being investigated. Diesel fuel has been chosen as a common type of hydrocarbon contamination. Adsorption of the surfactant on particle surfaces within the soil matrix can increase the cost of surfactant application and potentially diminish oil recovery. Four soil types are being used in these studies; a well-sorted, medium-grained sand; a moderately-sorted gravel, a volcanically-derived soil and a silt representative of tundra conditions. All of these soils are frequently encountered in oil spill remediation. This paper focuses on the relationships being identified between the level of contamination, soil matrix type, and the effectiveness of contaminant removal by biologically-derived surfactants

  17. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    Science.gov (United States)

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. PMID:22001930

  18. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).

    Science.gov (United States)

    Faria, Nuno Torres; Marques, Susana; Fonseca, César; Ferreira, Frederico Castelo

    2015-04-01

    Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cellulose (Avicel(®)) and xylan (beechwood) as carbon and energy source has been assessed along with their capacity of producing cellulolytic and hemicellulolytic enzymes, toward a consolidated bioprocess (CBP) for MEL production. The yeasts assessed were neither able to grow in medium containing Avicel(®) nor produce cellulolytic enzymes under the conditions tested. On contrary, both yeasts were able to efficiently grow in xylan, but MEL production was only detected in P. antarctica PYCC 5048(T) cultures. MEL titers reached 1.3g/l after 10 days in batch cultures with 40g/l xylan, and 2.0g/l in fed-batch cultures with xylan feeding (additional 40g/l) at day 4. High levels of xylanase activities were detected in xylan cultures, reaching 47-62U/ml (31-32U/mg) at 50°C, and still exhibiting more than 10U/ml under physiological temperature (28°C). Total β-xylosidase activities, displayed mainly as wall-bounded and extracellular activity, accounted for 0.154 and 0.176U/ml in P. antarctica PYCC 5048(T) and P. aphidis PYCC 5535(T) cultures, respectively. The present results demonstrate the potential of Pseudozyma spp. for using directly a fraction of lignocellulosic biomass, xylan, and combining in the same bioprocess the production of xylanolytic enzymes with MEL production. PMID:25765311

  19. C9.A/14 steelwork joints de poutres par plaque frontale : assemblages par gousset

    CERN Document Server

    2015-01-01

    Les Tables de résistances ultimes des assemblages boulonnés par plaque frontale et par gousset, complétées par une description des modèles de calcul et des exemples d’application, ont pour but de faciliter la tâche de l'ingénieur et du constructeur. Cette première partie C9.A/14 contient les chapitres suivants: - Joints de poutres par plaque frontale en acier S235 et S355 - Assemblages par gousset en acier S235 et S355 Les Tables contiennent des données relatives à la géométrie ainsi que les valeurs de calcul correspondantes des résistances ultimes des assemblages ; elles remplacent le chapitre « Assemblages par plaques frontales et boulons HR » des anciennes Tables C9.1 de 1983 / 2002. Le calcul de ces assemblages par plaque frontale est basé sur les hypothèses du modèle de la méthode des composants décrite dans la norme SN EN 1993-1-8. Les vérifications sont effectuées selon la norme SIA 263:2013. Les assemblages par gousset remplacent les assemblages par double cornière, (telle...

  20. Regulatory cross-talk in the double par locus of plasmid pB171

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Ebersbach, Gitte; Borch, Jonas; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2007-01-01

    The double par locus of Escherichia coli virulence factor pB171 consists of two adjacent and oppositely oriented par loci of different types, called par1 and par2. par1 encodes an actin ATPase (ParM), and par2 encodes an oscillating, MinD-like ATPase (ParA). The par loci share a central cis...... partition and promoter repression complexes. Surprisingly, ParB repressed transcription of the noncognate par operon, indicating cross-talk and possibly epistasis between the two systems. The par promoters, P1 and P2, affected each other negatively. The DNA binding activities of ParR and ParB correlated...

  1. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns.

    Science.gov (United States)

    Gudiña, Eduardo J; Pereira, Jorge F B; Costa, Rita; Coutinho, João A P; Teixeira, José A; Rodrigues, Lígia R

    2013-10-15

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of residual oil by the selected microorganisms. Four different hydrocarbon mixtures and three Bacillus subtilis strains isolated from crude oil samples were used. Additional oil recoveries ranged from 6 to 24% depending on the hydrocarbon mixture and microorganism used. Biosurfactant production was observed with all the microorganisms and hydrocarbon mixtures studied. The oils recovered after incubation with B. subtilis isolates showed a reduction in the percentage of long-chain n-alkanes and lower viscosity when compared with the original oils. The results obtained suggest that stimulation of the selected B. subtilis strains in situ can contribute to mobilize entrapped oil in mature reservoirs. PMID:23911831

  2. Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp.

    Science.gov (United States)

    Perneel, Maaike; D'hondt, Liesbet; De Maeyer, Katrien; Adiobo, Amayana; Rabaey, Korneel; Höfte, Monica

    2008-03-01

    In this study, the putative role of phenazines and rhamnolipid-biosurfactants, antagonistic metabolites produced by Pseudomonas aeruginosa PNA1, was tested in the biological control of Pythium splendens on bean (Phaseolus vulgaris L) and Pythium myriotylum on cocoyam (Xanthosoma sagittifolium L Schott). A rhamnolipid-deficient and a phenazine-deficient mutant of PNA1 were used either separately or jointly in plant experiments. When the mutants were applied separately, no disease-suppressive effect was observed, although both mutants still produced one of the antagonistic compounds (phenazines or rhamnolipids). When the mutants were concurrently introduced in the soil, the biocontrol activity was restored to wild-type levels. Bean seeds developed significantly less pre-emergence damping-off caused by P. splendens when treated with a mixture of purified phenazine-1-carboxamide and rhamnolipids than with any of the chemicals alone. When phenazines and rhamnolipids were combined at concentrations that had no observable effects when the metabolites were applied separately, mycelial growth of P. myriotylum was significantly reduced. In addition, microscopic analysis revealed substantial vacuolization and disintegration of Pythium hyphae after incubation in liquid medium amended with both metabolites. Results of this study indicate that phenazines and biosurfactants are acting synergistically in the control of Pythium spp. PMID:18237310

  3. Cookies from composite wheat-sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition.

    Science.gov (United States)

    Zouari, Raida; Besbes, Souhail; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-03-01

    Sesame coat is a valuable by-product. The study was carried out on sesame peels flour at different replacing levels of white wheat flour in five cookies dough formulations. The functional properties of composite flours such as swelling capacity, water holding capacity, oil holding capacity, emulsifying capacity, foam capacity, gelatinization temperature, least gelation concentration and bulk density were increased with increase in the sesame peels flour incorporation along with wheat flour. Texture analysis of dough revealed that, the addition of sesame peels flour affected the quality of dough in terms of hardness, cohesion, adhesion and breaking strength. Cookies supplemented with sesame peels flour showed interesting physical properties with lower moisture content and higher spread factor than those made by white wheat flour. But, their hardness increase with the increase of the replacement ratio and their color becomes indesirable. Interestingly, sensory results indicated that cookies supplemented with sesame peels flour were acceptable at a level that not exceeds 30% of incorporation. By the addition of SPB1 biosurfactant at 0.1%, the dough texture profile was significantly improved and the action of this bioemulsifier was more pronounced than a commercial emulsifier known as glycerol monostearate. With the addition of SPB1 biosurfactant on cookies' dough, we manage to obtain cookies softer and with better overall quality. PMID:26471616

  4. Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis.

    Science.gov (United States)

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These show not only the excellent surface-active properties but also versatile biochemical actions. In course of MEL production from soybean oil by P. shanxiensis, new extracellular glycolipids (more hydrophilic than the previously reported MELs) were found in the culture medium. As a result of the structural characterization, the glycolipids were identified as a mixture of 4-O-[(2', 4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol. Interestingly, the new MELs possessed a much shorter chain (C(2) or C(4)) at the C-2' position of the mannose moiety compared to the MELs hitherto reported, which mainly possess a medium-chain acid (C(10)) at the position. They would thus show higher hydrophilicity and/or water-solubility, and expand the development of the environmentally advanced yeast biosurfactants. PMID:17898510

  5. Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Ogura, Yuki; Takashima, Masako; Hirose, Naoto; Fukuoka, Tokuma; Imura, Tomohiro; Kondo, Yukishige; Kitamoto, Dai

    2011-08-01

    An ustilaginomycetous anamorphic yeast species isolated from the leaves of Saccharum officinarum (sugarcane) in Okinawa, Japan, was identified as a novel Pseudozyma species based on morphological and physiological aspects and molecular taxonomic analysis using the D1/D2 domains of the large subunit (26S) rRNA gene and the internal transcribed spacer 1 (ITS1)-5.8S-ITS2 regions. The name Pseudozyma churashimaensis sp. nov. was proposed for the novel species, with JCM 16988(T) as the type strain. Interestingly, P. churashimaensis was found to produce glycolipid biosurfactants, a mixture of mannosylerythritol lipids (MELs), including a novel tri-acetylated derivative (MEL-A2), from glucose. The observed critical micelle concentration (CMC) and the surface tension at CMC of MEL-A2 were 1.7 × 10⁻⁶ M and 29.2 mN/m, respectively. Moreover, on a water-penetration scan, MEL-A2 efficiently formed different lyotropic liquid crystalline phases, including the lamella phase at a wide range of concentrations, indicating its excellent surface-active and self-assembling properties. The novel strain of the genus Pseudozyma should thus facilitate the application of glycolipid biosurfactants in combination with other MEL producers. PMID:21606002

  6. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of Lipopeptide Biosurfactants in Whole Cells and Culture Filtrates of Bacillus subtilis C-1 Isolated from Petroleum Sludge

    OpenAIRE

    Vater, Joachim; Kablitz, Bärbel; Wilde, Christopher; Franke, Peter; Mehta, Neena; Cameotra, Swaranjit Singh

    2002-01-01

    An innovative method was developed for rapid sensitive detection and efficient structural characterization of lipopeptide biosurfactants by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry by using whole microbial cells and crude culture filtrates as targets in combination with surface tension measurements. This was done for a bacterial strain that was isolated from petroleum sludge and efficiently produces biosurfactants. This organism was identified b...

  7. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P;

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA....... coli plasmid pB171. ParR forms a tight dimer resembling a large family of dimeric ribbon-helix-helix (RHH)2 site-specific DNA-binding proteins. Crystallographic and electron microscopic data further indicate that ParR dimers assemble into a helix structure with DNA-binding sites facing outward. Genetic...... and biochemical experiments support a structural arrangement in which the centromere-like parC DNA is wrapped around a ParR protein scaffold. This structure holds implications for how ParM polymerization drives active DNA transport during plasmid partition....

  8. The Expression of the Thrombin Receptors PAR-3 and PAR-4 is Downregulated in Pancreatic Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Claudia Rudroff

    2015-05-01

    Full Text Available Background: Patients with pancreatic cancer frequently suffer from thrombosis as a consequence of excess thrombin generation. In addition to its role in the plasmatic coagulation cascade, thrombin induces numerous cellular effects by activating a unique group of G-protein-coupled receptors on the cell membrane, the proteinase-activated receptors (PARs. At present, PAR-1, PAR-3 and PAR-4 are known to be activated by thrombin. We previously demonstrated a putative role for PAR-1 in pancreatic cancer progression, but little is known about the physiological and pathophysiological roles of PAR-3 and PAR-4. In the present study, we examined the expression patterns of PAR-3 and PAR-4 in pancreatic tissue and pancreatic cancer cells. Methods: Tissue samples from three patients with pancreatic adenocarcinoma and six human pancreatic carcinoma cell lines were examined. Gene expression was analysed by RT-PCR and quantified by HPLC. Protein expression was determined by Western blot analysis. Data analysis was performed using ANOVA in SPSS. Results and Conclusion: In contrast to PAR-1, both PAR-3 and PAR-4 were expressed in healthy pancreases but downregulated in pancreatic cancer. The contrasting expression patterns of PAR-3 and PAR-4 compared with PAR-1 indicate that the mechanism that regulates the cellular effects of thrombin on tumor progression remains to be fully elucidated.

  9. Biosurfactants production in biofilm reactor and their recovery by pertraction [abstract

    Directory of Open Access Journals (Sweden)

    Chtioui, O.

    2010-01-01

    Full Text Available This study was focused on production and isolation of microbial surfactants with interesting properties for application in agriculture, petrol industry, pollution remediation and pharmaceutical fields. The biosurfactant production was performed by free and immobilized aerobic cells of Bacillus subtilis ATCC 21332. This strain produces lipopeptides of the surfactin and fengycin families. The colonizing behavior of Bacillus subtilis strain was evaluated under several experimental and cultural conditions at different sterile solid materials with modified surface properties. After preliminary screening tests with five polymer materials, polypropylene foamed with powder activated carbon (PPch was selected for cells immobilization and production of lipopeptides. The aims of work are to develop a new technology using the specificity of a biofilm reactor as well as a perspective continuous separation based on a liquid membrane technique (known also as pertraction. Using the classical aerated reactor the lipopeptides generate extensive foaming that imposes difficulties on plant-scale process realization. In order to avoid this drawback, while using the new type reactor conditions, the air was injected over the surface of cultural medium. With this configuration, the biofilm on the solid support and the culture medium are alimented in oxygen directly from the interfaces. The obtained results showed that the production of both lipopeptides and especially of the fengycin was greatly enhanced by the immobilization. The longer time of preliminary cells colonization enhanced highly the production of surfactin, especially at the beginning of fermentation process (the first 24 h. This effect was less evident after 48 h fermentation. To confirm the applicability of the liquid membrane process to lipopeptides recovery from aqueous media, including fermentation broth, extraction behavior of the lipopeptides into organic solvents was studied. For both lipopeptides

  10. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Inoh, Yoshikazu; Furuno, Tadahide [School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan); Hirashima, Naohide [Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603 (Japan); Kitamoto, Dai [National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1 Higashi, Tsukuba 305-8565 (Japan); Nakanishi, Mamoru, E-mail: mamoru@dpc.agu.ac.jp [School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  11. Traitement des eaux par électrofloculation

    OpenAIRE

    Cansado, Isabel

    1997-01-01

    Traitement des eaux par electrofloculation Les écosystèmes aquatiques sont très affectés par les eaux de rejet qui sont déversées dans les cours d’eau. La charge de ces eaux existe sous diverses formes: solutés, colloïdes ou particules. Il est important de traiter l’eau usée à de faibles coûts au lieu de la rejeter directement dans le milieu récepeteur. Dans le but d’améliorer les procédés physico-chimiques de déstabilisation des émulsions, nous étudions les traitements par électrocoagulat...

  12. A new biosurfactant produced by Candida glabrata UCP 1002: characteristics of stability and application in oil recovery

    Directory of Open Access Journals (Sweden)

    Juliana Moura de Luna

    2009-08-01

    Full Text Available The production of a new biosurfactant by Candida glabrata UCP1002 was studied to evaluate the influence of the concentration of the cotton seed oil, glucose and yeast extract. The dynamics of the growth and surfactant production were showed for all the cultivation conditions studied. The best emulsification of the n-hexadecane, quantified by the emulsifying index was observed in the medium containing 7.5% cotton seed oil, 5% glucose and 0.3% yeast extract. The isolated biosurfactant showed a CMC of 2.5% and the surface tension at that point showed to be 31mN/m. The potential application of the biosurfactant in oil recovery from the sand, in acid and alkaline environments and over exposure to high salinity and different temperatures was demonstrated by the percentage of oil removal and by the stability of the surface tension, respectively.A produção de um novo biossurfactante por Candida glabrata UCP1002 foi inicialmente investigada com a finalidade de avaliar a influência da concentração dos substratos óleo de algodão, glicose e extrato de levedura. As cinéticas de crescimento e de produção do surfactante foram demonstradas para todas as condições de cultivo testadas. A melhor emulsificação do nhexadecano, quantificada através do índice de emulsificação foi observada na condição de cultivo contendo 7,5% de óleo de algodão, 5% de glicose e 0,3% de extrato de levedura. O biossurfactante produzido apresentou uma concentração micelar crítica de 2,5%, sendo a tensão superficial nesse ponto de 31mN/m. O potencial de aplicação do biossurfactante na recuperação de óleo de areia contaminada, em condições ácidas e alcalinas, bem como sob exposição a altas salinidades e diferentes temperaturas, foram demonstrados com base no percentual de remoção do óleo e na estabilidade da tensão superficial, respectivamente.

  13. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    Energy Technology Data Exchange (ETDEWEB)

    Prabhawathi, Veluchamy; Thirunavukarasu, Kathirvel; Doble, Mukesh, E-mail: mukeshd@iitm.ac.in

    2014-07-01

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm{sup 2} for B. subtilis and 13 and 8.6 μg/cm{sup 2} for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm{sup 2}, respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm{sup 2}, respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different.

  14. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    International Nuclear Information System (INIS)

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm2 for B. subtilis and 13 and 8.6 μg/cm2 for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm2, respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm2, respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different. • So they need diverse

  15. Programmation par contraintes avec des fourmis

    OpenAIRE

    Khichane, Madjid; Albert, Patrick; Solnon, Christine

    2008-01-01

    National audience On explore dans cet article les possibilités d'intégration de la métaheuristique d'optimisation par colonies de fourmis (ACO) dans un langage de programmation par contraintes (PPC). L'idée est d'utiliser un langage de PPC pour décrire le problème à résoudre, ainsi que pour propager et vérifier les contraintes, et d'utiliser ACO pour guider la recherche de solutions. On illustre notre approche sur le problème d'ordonnancement de voitures.

  16. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation.

    Science.gov (United States)

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara

    2016-04-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  17. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T H; Sørensen, D; Tobiasen, C;

    2002-01-01

    some also had antibiotic properties towards root-pathogenic microfungi. The CLP-producing P. fluorescens strains provide a useful resource for selection of biological control agents, whether a single strain or a consortium of strains was used to maximize the synergistic effect of multiple antagonistic......Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting the sandy soil, compared to a low proportion (approximately 6%) in the loamy soil. Chemical structure...

  18. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.

    Science.gov (United States)

    Kim, Pyoung Il; Ryu, Jaewon; Kim, Young Hwan; Chi, Youn-Tae

    2010-01-01

    A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at 30degreesC. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. Molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1080, (b) 1486, and (c) 1044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, Ile, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A. PMID:20134245

  19. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani.

    Science.gov (United States)

    Mnif, Inès; Grau-Campistany, Ariadna; Coronel-León, Jonathan; Hammami, Inès; Triki, Mohamed Ali; Manresa, Angeles; Ghribi, Dhouha

    2016-04-01

    This study reports the potential of a soil bacterium, Bacillus subtilis strain SPB1, to produce lipopeptide biosurfactants. Firstly, the crude lipopeptide mixture was tested for its inhibitory activity against phytopathogenic fungi. A minimal inhibitory concentration (MIC), an inhibitory concentration at 50 % (IC50 %), and an inhibitory concentration at 90 % (IC90 %) values were determined to be 0.04, 0.012, and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with a fungistatic mode of action. For Rhizoctonia solani, a MIC, an IC50 %, and IC90 % values were determined to be 4, 0.25, and 3.3 mg/ml, respectively, with a fungicidal mode of action. For both of the fungi, a loss of sclerotial integrity, granulation and fragmentation of hyphal mycelia, followed by hyphal shriveling and cell lysis were observed with the treatment with SPB1 biosurfactant fraction. After extraction, separation, and purification, different lipopeptide compounds were identified in the culture filtrate of strain SPB1. Mass spectroscopic analysis confirmed the presence of different lipopeptide compounds consisting of surfactin isoforms with molecular weights of 1007, 1021, and 1035 Da; iturin isoforms with molecular weights of 1028, 1042, and 1056 Da; and fengycin isoforms with molecular weights of 1432 and 1446 Da. Two new clusters of lipopeptide isoforms with molecular weights of 1410 and 1424 Da and 973 and 987 Da, respectively, were also detected. This study reported the ability of a B. subtilis strain to co-produce lipopeptide isoforms with potential use as antifungal compounds. PMID:26645234

  20. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition.

    Science.gov (United States)

    Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha

    2016-01-01

    Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents. PMID:26396008

  1. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation.

    Science.gov (United States)

    Salmani Abyaneh, Ali; Fazaelipoor, Mohammad Hassan

    2016-01-01

    Rhamnolipid (RL) is a biosurfactant which is produced by the bacterial species Pseudomonas aeruginosa. Although applications of this material have been examined in various fields, its applications in the flotation of heavy metals remain to be explored. In this research, rhamnolipid was applied as a collector in the flotation of Cr(III) from aqueous solutions. FeSO4 was used for the precipitation of Cr(VI) to Cr(III) which was subsequently removed by flotation. A two level full factorial design (with center points) was used to evaluate the effects of pH, air flow rate, RL/Cr and Fe/Cr molar ratios on the performance of the flotation system. The results showed that the biosurfactant was highly effective in the removal of chromium, and all of the factors had significant effects on the flotation performance. The chromium removal efficiencies of greater than 95% were obtained with the initial chromium concentration of 40 ppm within 5 min. Kinetic studies showed that a first order kinetic model was appropriate to describe the precipitate flotation of Cr(III) using rhamnolipid as a collector. The interference of NaCl, CaCl2, CaSO4, and CaCO3 on the Cr removal was also investigated, and it was demonstrated that CaSO4 and CaCO3 as sparingly water soluble salts, and CaCl2 as a contributor to water hardness had significant negative impacts on Cr removal efficiency of rhamnolipid. PMID:26433359

  2. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płociniczak, Tomasz; Iwan, Joanna; Żarska, Monika; Chorążewski, Mirosław; Dzida, Marzena; Piotrowska-Seget, Zofia

    2016-03-01

    Forty-two hydrocarbon-degrading bacterial strains were isolated from the soil heavily contaminated with petroleum hydrocarbons. Forty-one strains were identified based on their whole-cell fatty acid profiles using the MIDI-MIS method. Thirty-three of them belong to species Rhodococcus erythropolis, while the others to the genera Rahnella (4), Serratia (3) and Proteus (1). Isolates were screened for their ability to produce biosurfactants/bioemulsifiers. For all of them the activity of several mechanisms characteristic for plant growth-promoting bacteria was also determined. In order to investigate surface active and emulsifying abilities of isolates following methods: oil-spreading, blood agar, methylene blue agar and determination of emulsification index, were used. Among studied bacteria 12 strains (CD 112, CD 126, CD 131, CD 132, CD 135, CD 147, CD 154, CD 155, CD 158, CD 161, CD 166 and CD 167) have been chosen as promising candidates for the production of biosurfactants and/or bioemulsifiers. Among them 2 strains (R. erythropolis CD 126 and Rahnella aquatilis CD 132) had the highest potential to be used in the bioaugmentation of PH-contaminated soil. Moreover, 15 of tested strains (CD 105, CD 106, CD 108, CD 111, CD 116, CD 120, CD 124, CD 125, CD 130, CD 132, CD 134, CD 154, CD 156, CD 161 and CD 170) showed the activity of four mechanisms (ACC deaminase activity, IAA and siderophore production, phosphate solubilization) considered to be characteristic for plant growth-promoting bacteria. Two of them (R. erythropolis CD 106 and R. erythropolis CD 111) showed the highest activity of above-mentioned mechanisms and thus are considered as promising agents in microbe assisted phytoremediation. PMID:26708648

  3. Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants

    Directory of Open Access Journals (Sweden)

    Aura M. Pedroza-Rodríguez

    2010-12-01

    Full Text Available To isolate biosurfactant-producing microorganisms from the rhizosphere of fique and to select the best genus to evaluate theeffect of nutritional and fermentation conditions on the production of rhamnolipids. Materials and methods. Rhizospheric soil wassampled in three areas of Cauca. The best genus was selected for the experimental designs (Plackett Burman and 22 factorial and to find theproduction conditions for the growth kinetics at an Erlenmeyer flask scale. Results. Isolates from the rhizosphere of fique plants were fromgroups (or genera of Bacillus, Pseudomonas and Actinomycetes, being Pseudomonas the more responsive in preliminary testing foremulsification. From the results of the experimental designs and the kinetics of production, we found that rhamnose synthesis associatedwith rhamnolipids (3.2 g/l and emulsification (68% EC24 was significantly favored (p <0.0001 by cultivating an inoculum of 10% v/vof Pseudomonas fluorescens in a medium composed of: soybean oil 2% (v/v, K2HPO40.2% (w/v, yeast extract 0.4 g/l, NH4NO33.7 g/l, 1 ml trace elements (CoCl320 mg/l, H3BO330 mg/l, ZnSO410 mg/l, Cu2SO41 mg/l, Na2MoO43 mg/l, FeSO410 mg/l MnSO42,6 mg/l and pH 7.2. Conclusion. Of all the microbial genera isolated from the rhizosphere of fique, Pseudomonas fluorescens had the greatestpotential in the production of biosurfactants of the rhamnolipids family.

  4. Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-11-01

    In order to develop novel glycolipid biosurfactants, Pseudozyma parantarctica JCM 11752(T), which is known as a producer of mannosylerythritol lipids (MEL), was cultivated using different sugar alcohols with the presence of vegetable oil. When cultivated in a medium containing 4 % (w/v) olive oil and 4 % D-ribitol or D-arabitol, the yeast strain provided different glycolipids, compared to the case of no sugar alcohol. On TLC, both of the extracted glycolipid fractions gave two major spots corresponding to MEL-A (di-acetylated MEL) and MEL-B (mono-acetylated MEL). Based on (1)H NMR analysis, one glycolipid was identified as MEL-A, but the other was not MEL-B. On high-performance liquid chromatography after acid hydrolysis, the unknown glycolipid from the D-ribitol culture provided mainly two peaks identical to D-mannose and D-ribitol, and the other unknown glycolipid from the D-arabitol culture did two peaks identical to D-mannose and D-arabitol. Accordingly, the two unknown glycolipids were identified as mannosylribitol lipid (MRL) and mannosylarabitol lipid (MAL), respectively. The observed critical micelle concentration (CMC) and surface tension at CMC of MRL were 1.6 × 10(-6) M and 23.7 mN/m, and those of MAL were 1.5 × 10(-6) M and 24.2 mN/m, respectively. These surface-tension-lowering activities were significantly higher compared to conventional MEL. Furthermore, on a water-penetration scan, MRL and MAL efficiently formed not only the lamella phase (L(α)) but also the myelins at a wide range of concentrations, indicating their excellent self-assembling properties and high hydrophilicity. The present two glycolipids should thus facilitate the application of biosurfactants as new functional materials. PMID:22722912

  5. Efficient production of di- and tri-acylated mannosylerythritol lipids as glycolipid biosurfactants by Pseudozyma parantarctica JCM 11752(T).

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants known, because of their multifunctionality and biocompatibility. In order to attain an efficient production of MELs, Pseudozyma parantarctica JCM 11752(T), which is a newly identified strain of the genus, was examined for the productivity of MELs at different culture conditions. The yeast strain showed significant cell growth and production of di-acylated MELs even at 36 degrees C. In contrast, on conventional high-level MEL producers including P. rugulosa, the MEL yield considerably decreased with an increase of the cultivation temperature at over 30 degrees C. On P. parantarctica, soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. Under the optimal conditions on a shake-flask culture at 34 degrees C, the amount of di-acylated MELs reached over 100 g/L by intermittent feeding of only soybean oil. Interestingly, the yeast strain produced tri-acylated MELs as well as di-acylated ones when grown on the medium containing higher soybean oil concentrations than 8% (vol/vol). The production of tri-acylated MELs was significantly accelerated at between 34 and 36 degrees C. With 20 % (vol/vol) of soybean oil at 34 degrees C, the yield of tri-acylated MELs reached 22.7 g/L. The extracellular lipase activity considerably depended on the culture temperature, and became the maximum at 34 degrees C; this would bring the accelerated production of tri-acylated MELs. Accordingly, the present strain of P. parantarctica provided high efficiency in MEL production at elevated temperatures compared to conventional MEL producers, and would thus be highly advantageous for the commercial production of the promising biosurfactants. PMID:18781056

  6. SWANN ORGANIQUE (EN PASSANT PAR BECKETT PANOPTIQUE

    Directory of Open Access Journals (Sweden)

    Sjef Houppermans

    2013-12-01

    Full Text Available Comme quoi Swann a bel et bien un corps souffrant et jouissant. Comme quoi Swann absorbe le monde surtout par ses six sens. Comme quoi l´univers de Swann est une aire de dissémination que Samuel Beckett sonde exemplairement dans son étude de 1930.

  7. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition

    International Nuclear Information System (INIS)

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  8. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition Assembly

    Energy Technology Data Exchange (ETDEWEB)

    B Chaudhuri; S Gupta; V Urban; M Chance; R DMello; L Smith; K Lyons; J Gee

    2011-12-31

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  9. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Barnali [University of Buffalo, The State University of New York; Gupta, Sayan [Case Western Reserve University; Urban, Volker S [ORNL; Chance, Mark [Case Western Reserve University; D' Mello, Rhijuta [Case Western Reserve University; Smith, Lauren [University of Buffalo, The State University of New York; Lyons, Kelly [University of Buffalo, The State University of New York; Gee, Jessica [University of Buffalo, The State University of New York

    2010-01-01

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  10. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking.

    Science.gov (United States)

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-07-01

    Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra- or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish aquaculture. PMID

  11. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    OpenAIRE

    Lidi Gao; Naoki Kano; Yuichi Sato; Chong Li; Shuang Zhang; Hiroshi Imaizumi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid...

  12. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    Science.gov (United States)

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. PMID:27016896

  13. Isolation and Identification of Lactobacilli From Cheese, Yoghurt and Silage by 16S rDNA Gene and Study of Bacteriocin and Biosurfactant Production

    Directory of Open Access Journals (Sweden)

    Sharareh Peymanfar

    2012-09-01

    Full Text Available Background: Background: The Lactobacilli belong to lactic acid bacteria, whose primary fermentation end product from sugars is lactic acid and that is why foods are conserved. Lactic acid bacteria have been used for millennia in the production of silage. Therefore, they are an indispensable part of intestinal microflora in human and animals. .Objectives: This research meant to isolate lactic acid bacteria with significant effects from different environments. .Materials and Methods: In this study, heterofermentative LAB were isolated from cheese, yoghurt and corn silage in Broujerd ,Iran. The standard biochemical methods were applied. Acid tolerance was studied by exposure to acidic PBS and growth in bile salt was measured by the spectrophotometric method. The isolated bacteria were studied for antagonistic effects on environment isolated E.coli, bacteriocin and biosurfactant production. Bacterial DNA was extracted, and amplified by PCR method. .Results: The 3 isolates from cheese, yoghurt and silage were effective against isolated E.coli and could produce biosurfactants. Phylogenic relationships of the 3 potential candidates were determined comparing the 16Sr DNA gene sequences, they were found to be as 3 isolates of Lactobacillus buchneri, L.brevis and L.kefiri that were effective on the isolated E.coli from environment. .Conclusions: It was found that the isolated bacteria produced biosurfactants that had a great potential for different industries.

  14. Sewage Sludge Polycyclic Aromatic Hydrocarbon (PAH) Decontamination Technique Based on the Utilization of a Lipopeptide Biosurfactant Extracted from Corn Steep Liquor.

    Science.gov (United States)

    Vecino, Xanel; Rodríguez-López, Lorena; Cruz, Jose M; Moldes, Ana B

    2015-08-19

    A decontamination technique based on the utilization of a lipopeptide biosurfactant extracted from corn steep liquor has been developed to eliminate polycyclic aromatic hydrocarbons (PAHs) from sewage sludge. High concentrations of PAHs were used during experiments observing that 408.3 mg/kg of naphthalene was almost completely mobilized and biodegraded, only 1.7% of naphthalene remained in the sewage sludge, whereas anthracene and pyrene were reduced up to 51.7 and 69.4%, respectively. The biodegradation of PAHs was fitted to several kinetic models (zero- and first-order kinetic models), observing good correlation coefficient values when biodegradation was described by the first-order kinetic model. Experimental results suggest that biosurfactant extracted from corn steep liquor may have great potential, as an ecofriendly washing agent, for the treatment of sewage sludge contaminated with PAHs. Therefore, in situ application of natural biosurfactants may be considered to be a good remediation alternative as they are not hazardous for water and soil organisms. PMID:26206325

  15. Effects of biosurfactants on assays of PCB congeners in transgenic arabidopsis plants carrying a recombinant guinea pig AhR-mediated GUS reporter gene expression system.

    Science.gov (United States)

    Shimazu, Sayuri; Ohta, Masaya; Inui, Hideyuki; Nanasato, Yoshihiko; Ashida, Hitoshi; Ohkawa, Hideo

    2010-11-01

    The transgenic Arabidopsis plants carrying a recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system were generated for assays of polychlorinated biphenyl (PCB) congeners. The selected transgenic Arabidopsis plant XgD2V11-6 exhibited a correlation between uptake of PCB126 and PCB126-induced GUS activity. Also, the plants showed induced GUS activity towards the supplemental indole 3-acetic acid (IAA). Thus, the GUS assay may reflect induction by both endogenous and exogenous AhR ligands. When biosurfactants, MEL-B, produced in the culture of yeast isolated from plants were used for assays of PCB congeners in the transgenic Arabidopsis plants, they showed marked PCB126 dose-dependent and toxic equivalency factor (TEF) dependent GUS activities. The effects of biosurfactants were clearer when the plants were cultivated on soils containing PCB congeners for 7 days as compared with on soils for 3 days as well as in the medium for 3 days. Therefore, it was estimated that biosurfactants form micellae with PCB congeners, which are easily uptaken by the plants in a mode of passive diffusion, transport into the aerial parts and then induce GUS activity. PMID:20936563

  16. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity.

    Science.gov (United States)

    Khemili-Talbi, Souad; Kebbouche-Gana, Salima; Akmoussi-Toumi, Siham; Angar, Yassmina; Gana, Mohamed Lamine

    2015-11-01

    Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology. PMID:26334644

  17. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Directory of Open Access Journals (Sweden)

    Grégory Baronian

    Full Text Available Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  18. Regulatory cross-talk in the double par locus of plasmid pB171

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Ebersbach, Gitte; Borch, Jonas;

    2007-01-01

    The double par locus of Escherichia coli virulence factor pB171 consists of two adjacent and oppositely oriented par loci of different types, called par1 and par2. par1 encodes an actin ATPase (ParM), and par2 encodes an oscillating, MinD-like ATPase (ParA). The par loci share a central cis-actin...... well with the observed transcriptional regulation of the par operons in vivo and in vitro. Integration host factor (IHF) was identified as a novel factor involved in par2-mediated plasmid partitioning....

  19. Les Brulures Chimiques Par Le Laurier Rose

    OpenAIRE

    Bakkali, H.; Ababou, M.; Nassim Sabah, T.; Moussaoui, A.; Ennouhi, A.; Fouadi, F.Z.; Siah, S.; Ihrai, H.

    2010-01-01

    Le laurier rose ou Nerium oleander est un arbuste qui pousse naturellement dans les régions méditerranéennes. Au Maroc on le trouve dans les lieux humides. Il est réputé par ses risques de toxicité systémique en cas d'empoisonnement à cause de la présence de deux alcaloïdes, surtout l'oléandrine. La littérature illustre des cas d'utilisation locale des feuilles de cette plante contre la gale, les hémorroïdes et les furoncles. Nous rapportons deux cas de brûlures chimiques par le laurier rose ...

  20. Annotation sémantique par classification

    OpenAIRE

    Toussaint, Yannick; Tenier, Sylvain

    2007-01-01

    Les systèmes actuels d'annotation sémantique exploitent peu les connaissances du domaine et fonctionnent essentiellement du texte vers l'ontologie. Pourtant, il est fréquent qu'un élément dans une page doive être annoté par un concept parce que certains autres éléments de cette même page sont annotés par d'autres concepts. Cet article propose une méthode d'annotation prenant en compte cette dépendance entre concepts, exprimée dans une ontologie sous forme de concepts définis. L'utilisation de...

  1. Recombination in the Human Pseudoautosomal Region PAR1

    OpenAIRE

    Anjali G Hinch; Nicolas Altemose; Nudrat Noor; Peter Donnelly; Simon R Myers

    2014-01-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this o...

  2. Par Pond refill water quality sampling

    International Nuclear Information System (INIS)

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column

  3. Combined DSEK and Transconjunctival Pars Plana Vitrectomy

    Directory of Open Access Journals (Sweden)

    Mona Sane

    2016-01-01

    Full Text Available We report here three patients who underwent combined Descemet’s stripping with endothelial keratoplasty and transconjunctival pars plana vitrectomy for bullous keratopathy and posterior segment pathology. A surgical technique and case histories are described. Anatomic and visual outcomes of combined Descemet’s stripping with endothelial keratoplasty and vitrectomy were excellent. Our experience provides technical guidelines and limitations. The combined minimally invasive techniques allow for rapid anatomical recovery and return of function and visual acuity in a single sitting.

  4. Taare Zameen Par and dyslexic savants

    OpenAIRE

    Chakravarty, Ambar

    2009-01-01

    The film Taare Zameen Par (Stars upon the Ground) portrays the tormented life at school and at home of a child with dyslexia and his eventual success after his artistic talents are discovered by his art teacher at the boarding school. The film hints at a curious neurocognitive phenomenon of creativity in the midst of language disability, as exemplified in the lives of people like Leonardo da Vinci and Albert Einstein, both of whom demonstrated extraordinary creativity even though they were pr...

  5. Evaluation of the PAR corneal topography system

    Science.gov (United States)

    Jindal, Prateek; Cheung, Susan; Pirouzian, Amir; Keates, Richard H.; Ren, Qiushi

    1995-05-01

    The purpose of this study was to evaluate the raster photogrammetry based Corneal Topography System by determining: inter-operator variability, reproducibility of images, effects of defocused and decentered images, and the precision of data at different optical zones. 4 human cadaver eyes were used to study the inter-operator variability. To study the reproducibility of images, 3 human cadaver eyes and a test surface doped with flourescine (provided by PAR Vision Systems Corporation) were focused and their images taken four successive times. Defocused and decentered images were taken of 4 human cadaver eyes and four times of the test surface mentioned above. The precision of defocused/decentered cadaver eyes was evaluated at the following optical zones: 3 mm, 4 mm, 5 mm, and 6 mm. All human cadaver eyes used in the above experiments had their epithelial layer removed before imaging. Average inter-operator variability was 0.06 D. In reproducibility attempts, there was an average deviation of 0.28 D for the human cadaver eyes and 0.04 D for the test surface. The defocused and decentered test surface gave an average deviation of 0.09 D. Defocused and decentered cadaver eyes resulted in an average deviation of 0.52 D, 0.37 D, 0.24 D, and 0.22 D at optical zones of 3 mm, 4 mm, 5 mm, and 6 mm, respectively. The imaging method employed by PAR Vision Systems Corporation virtually eliminates inter-operator variability. The PAR Corneal Topography System's clinical usefulness, however, could be improved by improving the reproducibility of images, decreasing the sensitivity to spatial alignment, and increasing accuracy over smaller optical zones.

  6. Childhood Pars Planitis; Clinical Features and Outcomes

    Directory of Open Access Journals (Sweden)

    Homayoon Nikkhah

    2011-01-01

    Full Text Available Purpose: To evaluate the demographic and clinical features of childhood pars planitis, and to determine the therapeutic and visual outcomes of the disease. Methods: Medical records of pediatric patients (less than 16 years of age at diagnosis with pars planitis and at least 6 months of follow-up who were referred to Labbafinejad Medical Center, Tehran, Iran over a 22 year period were reviewed. Results: Overall, 117 eyes of 61 patients including 51 (83.6% male subjects were included. Mean age at the time of diagnosis was 7.8΁3.2 (range, 3-16 years. Mean best corrected visual acuity (BCVA was 0.88΁0.76 logMAR at presentation which improved to 0.39΁0.51 logMAR at final visit (P<0.001. Endotheliitis was present in 23 (19.6% eyes and was significantly more prevalent in subjects younger than 9 years (P=0.025. Cataract formation (41.9% and cystoid macular edema (19.7% were the most prevalent complications. Univariate regression analysis showed that better baseline visual acuity (OR=0.38, 95%CI 0.21-0.70, P=0.002, age older than 5 years at disease onset (OR=0.36, 95%CI 0.14-0.9, P=0.029, absence of endotheliitis (OR=0.39, 95%CI 0.15-0.99, P=0.047 and female gender (OR=3.77, 95%CI 1.03-13.93, P=0.046 were significantly associated with final BCVA of 20/40 or better. Conclusion: Childhood pars planitis was much more common among male subjects. Endotheliitis may be a sign of inflammation spillover and is more prevalent in younger patients. Visual prognosis is favorable in most patients with appropriate treatment.

  7. Synthesis of silver nanoparticles by Bacillus subtilis T-1 growing on agro-industrial wastes and producing biosurfactant.

    Science.gov (United States)

    Płaza, Grażyna Anna; Chojniak, Joanna; Mendrek, Barbara; Trzebicka, Barbara; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Zboril, Radek; Paraszkiewicz, Katarzyna; Bernat, Przemysław

    2016-04-01

    In this study, culture supernatnats of Bacillus subtilis T-1 growing on brewery effluents and molasses was used for silver nanoparticles (Ag-NPs) synthesis. The biosurfactant production of B. subtilis T-1 was confirmed by the detection of genes in the genome and by the identification of the product in the supernatants. The genes for synthesis of surfactin (sfp, srfAA) and iturin (ituC) were noted by PCR reactions. Also, in examined culture supernatants the presence of C13, C14 and C15 surfactin homologues with the sodiated molecules [M + Na](+) at m/z 1030, 1044 and 1058 was confirmed using LC/MS/MS analysis. The formation of NPs in the culture supernatants was confirmed by UV-vis spectroscopy. The dynamic light scattering measurements and transmission electron microscopy images showed the nanometric sizes of the biosynthesised Ag-NPs which ranged from several nm to several tens of nm depending on the used culture supernatant. Biological properties of Ag-NPs were evaluated by binding of Ag-NPs with DNA isolated from the Escherichia coli ATCC 25922 and B. subtilis ATCC 6633. Biogenic Ag-NPs were actively bound to DNA in increased concentration which could be the one important mode of antibacterial action of the Ag-NPs. PMID:27074855

  8. Chlorpyrifos-methyl solubilisation by humic acids used as bio-surfactants extracted from lignocelluloses and kitchen wastes.

    Science.gov (United States)

    Scaglia, Barbara; Baglieri, Andrea; Tambone, Fulvia; Gennari, Mara; Adani, Fabrizio

    2016-09-01

    Chlorpyrifos-methyl (CLP-m) is a widely used organophosphate insecticide that can accumulate in soil and become toxic to humans. CLP-m can be removed from soil by its solubilisation using synthetic surfactants. However, synthetic surfactants can accumulate in soil causing contamination phenomena themselves. Bio-surfactants can be used as an alternative to synthetic ones, reducing costs and environmental issues. In this work, humic acid (HA) extracted from raw biomasses, i.e. lignocelluloses (HAL) and lignocelluloses plus kitchen food waste (HALF), corresponding composts (C) (HALC and HALFC) and leonardite (HAc), were tested in comparison with commercial surfactants, i.e. SDS, Tween 20 and DHAB, to solubilize CLP-m. Results obtained indicated that only biomass-derived HA, composted biomass-derived HA, and SDS solubilized CLP-m: SDS = 0.006; HAL = 0.007; HALC = 0.009 g; HALF = 0.025; HALFC = 0.024) (g CLP-m g(-1) surfactant). Lignocelluloses HAs (HAL, HALF) solubilized CLP-m just as well as SDS while lignocellulosic plus kitchen food waste HA (HALF, HALFC) showed a three times higher CLP-m solubilisation capability. This difference was attributed to the higher concentration of alkyl-Carbon that creates strong links with CLP-m in the hydrophobic micelle-core of the surfactants. PMID:27289207

  9. [Effect of Cu2+ on synthesis of biosurfactants of Acinetobacter calcoaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017].

    Science.gov (United States)

    Pirog, T P; Konon, A D; Sofilkanich, A P; Shevchuk, T A; Parfeniuk, S A

    2013-01-01

    Synthesis of biosurfactants (surface-active substances, SAS) was investigated under the conditions of growth of Rhodococcus erythropolis IMV Ac-5017 and Acinetobacter calcoaceticus IMV B-7241 on hydrophobic (n-hexadecane, liquid paraffins, sunflower oil) and hydrophilic (ethanol) substrates depending on concentration (0.01-0.5 mM) and time of copper cations introduction in the medium. It is established that Cu2+ addition in the exponential phase of growth of the strains IMV B-7241 and IMV Ac-5017 on all studied substrates was accompanied by the increase of conventional concentration of SAS by 25-140% as compared with the indices in the medium without copper cations. Maximum synthesis intensification of SAS of A. calcoaceticus IMV B-7241 and R. erythropolis IMV Ac-5017 was observed in the case of Cu2+ introduction in the medium with hydrocarbons. The increase of SAS synthesis in the presence of copper cations is determined by their activating effect on activity of alkane hydroxylase of the both strains, as well as 4-nitroso-N,N-dimethylaniline-dependent alcohol dehydrogenase and enzymes of biosynthesis of surface active glyco-(phosphoenolpyruvate-synthetase) and aminolipids (NADP(+)-dependent glutamate dehydrogenase) in A. calcoaceticus IMV B-7241. PMID:23516834

  10. Wax ester-like compounds as biosurfactants produced by Dietzia maris from n-alkane as a sole carbon source.

    Science.gov (United States)

    Nakano, Miyo; Kihara, Masaki; Iehata, Shunpei; Tanaka, Reiji; Maeda, Hiroto; Yoshikawa, Takeshi

    2011-10-01

    The hydrocarbon-degrading bacterium Dietzia maris WR-3 was isolated from a consortium comprising ammonia-oxidizing and denitrifying bacteria derived from marine sediments. Here, we examined biosurfactant production by strain WR-3 when cultured using several different carbon (D-glucose, n -decane, n -hexadecane, motor oil, olive oil, and rapeseed oil) and nitrogen (NH(4) )(2) SO(4) , NaNO(3) , yeast extract, and polypeptone) sources as growth substrates. Strain WR-3 was able to grow and reduce the surface tension of culture broth to 31±1.0 mN m(-1) when cultured using n -hexadecane and nitrate ions. The surface-active compounds produced by strain WR-3 were extracted and analyzed by thin layer chromatography. Moreover, the main components in the extract were further purified and subjected to gas chromatography/mass spectrometry (GC/MS). From the analysis, the surface-active compounds were tentatively identified as wax ester-like compounds, which were synthesized from the degradation process of n -alkane. The production of surface-active compounds by strain WR-3 promoted attachment of cells to hydrocarbon droplets via increased cell hydrophobicity, thus allowing enhanced degradation of water immiscible substrates. As Dietzia spp. can grow and produce wax esters from the degradation process of hydrocarbons, these marine bacteria are potentially useful for the bioremediation of hydrocarbon-contaminated environments. PMID:21656811

  11. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  12. Analytical characterization of mannosylerythritol lipid biosurfactants produced by biosynthesis based on feedstock sources from the agrofood industry.

    Science.gov (United States)

    Onghena, Matthias; Geens, Tinne; Goossens, Eliane; Wijnants, Marc; Pico, Yolanda; Neels, Hugo; Covaci, Adrian; Lemiere, Filip

    2011-05-01

    Mannosylerythritol lipids (MELs) are currently one of the most promising biosurfactants because of their multifunctional applications and good biodegradability. Depending on the yeast strain and the feedstock used for the fermentation process, structural variations in the MELs obtained occur. Therefore, MELs produced by Pseudozyma aphidis DSMZ 70725 with a soybean oil feedstock were characterized by chromatography and mass spectrometry (MS). Column chromatography with silica provided fractionation of the different types of MEL. High-performance liquid chromatography combined with MS was employed for the analysis of the MEL fractions and crude mixtures. A characteristic MS pattern for the MELs was obtained and indications of the presence of new MEL homologues, showing the incorporation of longer and more unsaturated fatty acid chains than previously reported, were given. Gas chromatography-MS analysis confirmed the presence of such unsaturated fatty acid chains in the MELs, demonstrating the incorporation of fatty acids with lengths ranging from C(8) to C(14) and with up to two unsaturations per chain. The incorporation of C(16) and C(18) fatty acid chains requires further investigation. MS/MS data allowed the unambiguous identification of the fatty acids present in the MELs. The product ion spectra also revealed the presence of a new isomeric class of MELs, bearing an acetyl group on the erythritol moiety. PMID:21318245

  13. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B.

    Science.gov (United States)

    Morita, Tomotake; Takashima, Masako; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2010-10-01

    The producers of glycolipid biosurfactant, mannosylerythritol lipid-B (MEL-B), were isolated from leaves of Perilla frutescens on Ibaraki in Japan. Four isolates, 1D9, 1D10, 1D11, and 1E5, were identified as basidiomycetous yeast Pseudozyma tsukubaensis by rDNA sequence and biochemical properties. The structure of MEL-B produced by these strains was analyzed by (1)H nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as the diastereomer MEL-B produced by P. tsukubaensis NBRC 1940. Of these isolates, P. tsukubaensis 1E5 (JCM 16987) is capable of producing the largest amount of the diastereomer MEL-B from vegetable oils. In order to progress the diastereomer MEL-B production by strain 1E5, factors affecting the production, such as carbon and organic nutrient sources, were further examined. Olive oil and yeast extract were the best carbon and nutrient sources, respectively. Under the optimal conditions, a maximum yield, productivity, and yield coefficient of 73.1 g/L, 10.4 g L(-1) day(-1), and 43.5 g/g were achieved by feeding of olive oil in a 5-L jar-fermenter culture using strain 1E5. PMID:20652239

  14. Functions and potential applications of glycolipid biosurfactants--from energy-saving materials to gene delivery carriers.

    Science.gov (United States)

    Kitamoto, Dai; Isoda, Hiroko; Nakahara, Tadaatsu

    2002-01-01

    Biosurfactants (BS) produced by various microorganisms show unique properties (e.g., mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared to their chemical counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in environmental protection and energy-saving technology as well. Glycolipid BS are the most promising, due to high productivity from renewable resources and versatile biochemical properties. Mannosylerythritol lipids (MEL), which are glycolipid BS produced by a yeast Candida antarctrica, exhibit not only excellent interfacial properties but also remarkable differentiation-inducing activities against human leukemia cells. MEL also show a potential anti-agglomeration effect on ice particles in ice slurry used for cold thermal storage. Recently, the cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BS should broaden its applications in new advanced technologies. The current status of research and development on glycolipid BS, especially their function and potential applications, is discussed. PMID:16233292

  15. Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-07-15

    Pseudozyma antarctica T-34 secretes a large amount of biosurfactants (BS), mannosylerythritol lipids (MEL), from different carbon sources such as hydrocarbons and vegetable oils. The detailed biosynthetic pathway of MEL remained unknown due to lack of genetic information on the anamorphic basidiomycetous yeasts, including the genus Pseudozyma. Here, in order to obtain genetic information on P. antarctica T-34, we constructed a cDNA library from yeast cells producing MEL from soybean oil and identified the genes expressed through the creation of an expressed sequence tags (EST) library. We generated 398 ESTs, assembled into 146 contiguous sequences. Based upon a BLAST search similarity cut-off of E

  16. Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2007-02-01

    Vegetable oil is the usual carbon source for the production of biosurfactants (BS), mannosylerythritol lipids (MEL). To simplify the procedures of BS production and recovery, we investigated the extracellular production of MEL from water-soluble carbon sources instead of vegetable oils by using two representative yeast strains. The formation of extracellular MEL from glucose was confirmed by thin layer chromatography (TLC) and HPLC analysis. On glucose cultivation, pure MEL were easily prepared by only solvent extraction of the culture medium, different from the case of soybean oil cultivation. The fatty acid profile of the major MEL produced from glucose was similar to that produced from soybean oil based on GC-MS analysis. The resting cells of Pseudozyma antarctica T-34 produced MEL by feeding of glucose only and gave a yield of 12 g l(-1). In contrast, Pseudozyma aphidis ATCC 32657 gave no MEL from glucose. Moreover, the extracellular lipase activities were detected at high levels during the cultivation regardless of the carbon sources. These results indicate that all the biosynthesis pathways for MEL in P. antarctica T-34 should constitutively function. In conclusion, P. antarctica T-34 thus has potential for BS production from glucose. PMID:17103161

  17. Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants known because of their multifunctionality and biocompatibility. The search for novel producers of MELs was undertaken based on the analysis of ribosomal DNA sequences on basidiomycetous yeasts. The bermuda grass smut fungus Ustilago cynodontis NBRC 7530, which taxonomically relates to Pseudozyma shanxiensis known as a MEL-C producer, was found to accumulate glycolipids in the cultured medium. Under a shake flask culture with soybean oil, the amount of the glycolipids was 1.4 g/L for 7 days at 25 degrees C. As a result of the structural characterization, the main glycolipids was identified as 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, and the major fatty acids were C(14) and C(16) ones. The glycolipid was highly hydrophilic MEL-C, and very similar to those produced by P. shanxiensis. The fungi of the genus Ustilago are thus likely to be potential producers of MELs as well as the yeasts of the genus Pseudozyma. PMID:18781055

  18. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system.

    Science.gov (United States)

    Konishi, Masaaki; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai

    2007-03-01

    Mannosylerythritol lipids (MEL), which are glycolipid biosurfactants secreted by the Pseudozyma yeasts, show not only excellent surface-active properties but also versatile biochemical actions including antitumor and cell-differentiation activities. In order to address the biochemical actions, interactions between MEL-A, the major component of MEL, and different lectins were investigated using the surface plasmon resonance spectroscopy. The monolayer of MEL-A showed high binding affinity to concanavalin A (ConA) and Maackia amurensis lectin-I (MAL-I). The observed affinity constants for ConA and MAL-I were estimated to be 9.48 +/- 1.31 x 10(6) and 3.13 +/- 0.274 x 10(6) M(-1), respectively; the value was comparable to that of Manalpha1-6(Manalpha1-3)Man, which is one of the most specific probe to ConA. Significantly, alpha-methyl-D-mannopyranoside (1 mM) exhibited no binding inhibition between MEL-A and ConA. MEL-A is thus likely to self-assemble to give a high affinity surface, where ConA binds to the hydrophilic headgroup in a different manner from that generally observed in lectin-saccharide interactions. The binding manner should be related with the biochemical actions of MEL toward mammalian cells via protein-carbohydrate interactions. PMID:17205206

  19. Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation.

    Science.gov (United States)

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed. PMID:25741767

  20. Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties.

    Science.gov (United States)

    Zhao, Pengchao; Quan, Chunshan; Jin, Liming; Wang, Lina; Wang, Jianhua; Fan, Shengdi

    2013-03-01

    In this study, influence of three critical parameters nitrogen sources, initial pH and metal ions was discussed in the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426. The results revealed that lipopeptide biosynthesis might have relations with the population density of strain Q-426 and some special amino acids. Also, the alkali-resistant strain Q-426 could grow well in the presence of Fe(2+) ions below 0.8 M l(-1) and still maintain the competitive advantage below 0.2 M l(-1). Moreover, lipopeptides exhibited significant inhibitory activities against Curvularia lunata (Walk) Boed even at the extreme conditions of temperature, pH and salinity. Finally, biosurfactant properties of lipopeptides mixture were evaluated by use with totally six different methods including bacterial adhesion to hydrocarbons assay, lipase activity, hemolytic activity, emulsification activity, oil displacement test and surface tension measurement. The research suggested that B. amyloliquefaciens Q-426 may have great potential in agricultural and environmental fields. PMID:23329061

  1. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    International Nuclear Information System (INIS)

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  2. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  3. ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Antonio A Iniesta

    Full Text Available Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequences near the origin of replication, and it is shown here that M. xanthus ParB binds preferentially to a consensus parS sequence in vitro. ParB and ParA are essential for cell viability in M. xanthus as in Caulobacter crescentus, but unlike in many other bacteria. Absence of ParB results in anucleate cells, chromosome segregation defects and loss of viability. Analysis of ParA subcellular localization shows that it clusters at the poles in all cells, and in some, in the DNA-free cell division plane between two chromosomal DNA masses. This ParA localization pattern depends on ParB but not on FtsZ. ParB inhibits the nonspecific interaction of ParA with DNA, and ParA colocalizes with chromosomal DNA only when ParB is depleted. The subcellular localization of ParB suggests a single ParB-parS complex localized at the edge of the nucleoid, next to a polar ParA cluster, with a second ParB-parS complex migrating after the replication of parS takes place to the opposite nucleoid edge, next to the other polar ParA cluster.

  4. Identification des gaz combustibles par capteur catalytique

    OpenAIRE

    Rose, Gérard

    1995-01-01

    L'explosimètre est un instrument destiné à prévenir le risque d'inflammation d'un mélange d'air et de gaz en informant de la présence du gaz par une alarme, et en délivrant une mesure qu'il exprime en pourcentage de la limite inférieure d'explosivité du mélange (LIE). Il répond à tous les gaz et vapeurs combustibles, mais il ne donne une mesure juste que pour un seul d'entre-eux : celui pour lequel il a été étalonné. Cet inconvénient est sans conséquence si l'utilisateur identifie le gaz, car...

  5. Parálisis cerebral Cerebral palsy

    OpenAIRE

    Jorge Malagon Valdez

    2007-01-01

    El término parálisis cerebral (PC) engloba a un gran número de síndromes neurológicos clínicos, de etiología diversa. Estos síndromes se caracterizan por tener una sintomatología común: los trastornos motores. Algunos autores prefieren manejar términos como "encefalopatía fija", "encefalopatías no evolutivas". Se mencionan la utilidad de programas de intervención temprana y métodos especiales de rehabilitación, así como el manejo de las deficiencias asociadas como la epilepsia, deficiencia me...

  6. Taare Zameen Par and dyslexic savants.

    Science.gov (United States)

    Chakravarty, Ambar

    2009-04-01

    The film Taare Zameen Par (Stars upon the Ground) portrays the tormented life at school and at home of a child with dyslexia and his eventual success after his artistic talents are discovered by his art teacher at the boarding school. The film hints at a curious neurocognitive phenomenon of creativity in the midst of language disability, as exemplified in the lives of people like Leonardo da Vinci and Albert Einstein, both of whom demonstrated extraordinary creativity even though they were probably affected with developmental learning disorders. It has been hypothesized that a developmental delay in the dominant hemisphere most likely 'disinhibits' the nondominant parietal lobe, unmasking talents-artistic or otherwise-in some such individuals. It has been suggested that, in remedial training, children with learning disorders be encouraged to develop such hidden talents to full capacity, rather than be subjected to the usual overemphasis on the correction of the disturbed coded symbol operations. PMID:20142854

  7. Taare Zameen Par and dyslexic savants

    Directory of Open Access Journals (Sweden)

    Chakravarty Ambar

    2009-01-01

    Full Text Available The film Taare Zameen Par (Stars upon the Ground portrays the tormented life at school and at home of a child with dyslexia and his eventual success after his artistic talents are discovered by his art teacher at the boarding school. The film hints at a curious neurocognitive phenomenon of creativity in the midst of language disability, as exemplified in the lives of people like Leonardo da Vinci and Albert Einstein, both of whom demonstrated extraordinary creativity even though they were probably affected with developmental learning disorders. It has been hypothesized that a developmental delay in the dominant hemisphere most likely ′disinhibits′ the nondominant parietal lobe, unmasking talents-artistic or otherwise-in some such individuals. It has been suggested that, in remedial training, children with learning disorders be encouraged to develop such hidden talents to full capacity, rather than be subjected to the usual overemphasis on the correction of the disturbed coded symbol operations.

  8. Paris vu par Jaime Gil de Biedma

    OpenAIRE

    Massip, Estrella

    2013-01-01

    Le poème París, postal del cielo de l’écrivain barcelonais en langue castillane Jaime Gil de Biedma (1929-1990) laisse entendre une multiplicité de voix dont chacune nous communique une image de Paris. C’est la mémoire du « je » poétique qui filtre cette polyphonie. Le voyage dans le Paris réel qui est à l’origine du poème est aussi le voyage de Gil de Biedma lecteur dans le double littéraire de cette ville. Les rapports intertextuels avec les œuvres de Blas de Otero et de Baudelaire permette...

  9. Plasma suPAR is lowered by smoking cessation

    DEFF Research Database (Denmark)

    Eugen-Olsen, Jesper; Ladelund, Steen; Sørensen, Lars Tue

    2016-01-01

    46 never smokers (1·9 ng/mL (1·7-2·2)). In smokers randomized to smoking cessation, suPAR levels after 4 weeks of stopping were decreased and no longer significantly different from the never smokers values. SuPAR decreased in both those who received a placebo as well as nicotine patch. Interestingly...

  10. Bio-surfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain

    International Nuclear Information System (INIS)

    The ability of a Rhodococcus strain to produce surface-active agents from residual sunflower frying oil (RSFO) has been screened in batch cultures. During cultivation with RSFO at the concentration 3% (vol/vol), the strain has synthesized extra-cellular compounds which increase the E24 emulsion index of the culture medium up to 63%. In their crude form, these substances lower the surface tension of water until 31.9 mN m-1. The exponential growth with RSFO as the sole carbon source has developed at a specific growth rate μ = 0.55 d-1. The critical micelle concentration of the crude product reached the value 287 mg L-1 (γCMC = 31.9 mN m-1). After methyl-esterification, the lipid fraction of bio-surfactants has been analyzed by GC-MS in EI, which reveals the presence of fatty acid methyl esters. The microorganism was also cultivated with the diesel oil as the sole carbon source at the concentration 1% (vol/vol): the active growth phase has developed at rate = 0.02 d-1, without production of emulsifying substance: the microorganism seems to develop different modes of substrate uptake, according to the nature of the carbon source. The potential use of surface-active agents synthesized on RSFO by Rhodococcus erythropolis 16 LM.USTHB is in the oil industry with minimum purity specification, so that crude preparation could be used, at low cost, in clean-up of hydrocarbons contaminated sites and for enhanced oil recovery. (authors)

  11. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  12. Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma.

    Science.gov (United States)

    Konishi, Masaaki; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kakugawa, Koji; Kitamoto, Dai

    2007-06-01

    Mannosylerythritol lipids (MEL), which are abundantly secreted by yeasts, are one of the most promising biosurfactants known. To obtain various types of MEL and to attain a broad range of applications for them, screening of novel producers was undertaken. Thirteen strains of yeasts were successfully isolated as potential MEL producers; they showed high production yields of MEL of around 20 g l(-1) from 40 g l(-1) of soybean oil. Based on the taxonomical study, all the strains were classified to be the genus Pseudozyma. It is interesting to note that they were categorized into three groups according to their production patterns of MEL. The first group, which included 11 strains taxonomically closely related to high-level MEL producers such as Pseudozyma antarctica and Pseudozyma aphidis, mainly produced 4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl]-meso-erythritol (MEL-A) together with 4-O-[(6'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl]-meso-erythritol (MEL-B) and 4-O-[(4'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl]-meso-erythritol (MEL-C) as the minor components. The second group of one strain, which was related to Pseudozyma tsukubaensis, predominantly produced MEL-B. The third group of one strain, which was closely related to Pseudozyma hubeiensis, mainly produced MEL-C; this is the first observation of the efficient production of MEL-C from soybean oil. Moreover, the major fatty acids of the obtained MEL-C were C(6), C(12), and C(16) acids, and were considerably different from those of the other MEL hitherto reported. The biosynthetic manner for MEL is thus likely to significantly vary among the Pseudozyma strains; the newly isolated strains would enable us to attain a large-scale production of MEL and to obtain various types of MEL with different hydrophobic structures. PMID:17505770

  13. Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance.

    Science.gov (United States)

    Ito, Seya; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2007-08-01

    Kinetic studies on the interactions between self-assembled monolayers of mannosylerythritol lipids (MELs), which are glycolipid biosurfactants abundantly produced by microorganisms, and various classes of immunoglobulins including human IgG, IgA, and IgM were performed using surface plasmon resonance (SPR). The effect of the MEL structure on the binding behavior of HIgG was examined. Assembled monolayers of MEL-A having two acetyl groups on the headgroup gave a high affinity (K(d)=1.7x10(-6)M) toward HIgG, while those of MEL-B or MEL-C having only one acetyl group at C-6' or C-4' position gave little affinity. Our kinetic analysis revealed that the binding manner of HIgG, HIgA (K(d)=2.4x10(-7)M), and HIgM (K(d)=2.2x10(-7)M) to the assembled monolayers of MEL-A is not the monovalent mode but the bivalent mode, and both the first and second rate association constants (k(a1), k(a2)) increase with an increase in the number of antibody binding sites, while those for dissociation (k(d1), k(d2)) changed little. Moreover, we succeeded in directly observing great amounts of HIgG, HIgA, and HIgM bound to MEL-A monolayers using atomic force microscopy (AFM). Finally, we found that MEL-A assembled monolayer binds toward various IgG derived from mouse, pig, rabbit, horse, goat, rat, and bovine as well as human IgG (HIgG), and the only exception was sheep IgG. These results clearly demonstrate that MEL-A assembled monolayers would be useful as noble affinity ligand system for various immunoglobulins. PMID:17428643

  14. Packing density of glycolipid biosurfactant monolayers give a significant effect on their binding affinity toward immunoglobulin G.

    Science.gov (United States)

    Imura, Tomohiro; Masuda, Yuma; Ito, Seya; Worakitkanchanakul, Wannasiri; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature. PMID:18622124

  15. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL. PMID:26512003

  16. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.

    Science.gov (United States)

    Kim, Hee-Sik; Jeon, Jong-Woon; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Yoon, Byung-Dae

    2006-04-01

    Candida sp. strain SY16 produces a glycolipid-type biosurfactant, mannosylerythritol lipid (MEL-SY16), which can reduce the surface tension of a culture broth from 72 to 30 dyne cm(-1) and highly emulsify hydrocarbons when cultured in soybean-oil-containing media. As such, laboratory-scale fermentation for MEL-SY16 production was performed using optimized conditions. In batch fermentation, MEL-SY16 was mainly produced during the stationary phase of growth, and the concentration of MEL-SY16 reached 37 g l(-1) after 200 h. The effect of pH control on the production of MEL-SY16 was also examined in batch fermentation. The highest production yield of MEL-SY16 was when the pH was controlled at 4.0, and the production was significantly improved compared to batch fermentation without pH control. In fed-batch fermentation, glucose and soybean oil (1:1, w/w) were used in combination as the initial carbon sources for cell growth, and soybean oil was used as the feeding carbon source during the MEL production phase. The feeding of soybean oil resulted in the disappearance of any foam and a sharp increase in the MEL production until 200 h, at which point the concentration of MEL-SY16 was 95 g l(-1). Among the investigated culture systems, the highest MEL-SY16 production and volumetric production rate were achieved with fed-batch fermentation. PMID:16133323

  17. High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants.

    Science.gov (United States)

    Behrens, Beate; Baune, Matthias; Jungkeit, Janek; Tiso, Till; Blank, Lars M; Hayen, Heiko

    2016-07-15

    A method using high performance liquid chromatography coupled to charged-aerosol detection (HPLC-CAD) was developed for the quantification of rhamnolipid biosurfactants. Qualitative sample composition was determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The relative quantification of different derivatives of rhamnolipids including di-rhamnolipids, mono-rhamnolipids, and their precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) differed for two compared LC-MS instruments and revealed instrument dependent responses. Our here reported HPLC-CAD method provides uniform response. An inverse gradient was applied for the absolute quantification of rhamnolipid congeners to account for the detector's dependency on the solvent composition. The CAD produces a uniform response not only for the analytes but also for structurally different (nonvolatile) compounds. It was demonstrated that n-dodecyl-β-d-maltoside or deoxycholic acid can be used as alternative standards. The method of HPLC-ultra violet (UV) detection after a derivatization of rhamnolipids and HAAs to their corresponding phenacyl esters confirmed the obtained results but required additional, laborious sample preparation steps. Sensitivity determined as limit of detection and limit of quantification for four mono-rhamnolipids was in the range of 0.3-1.0 and 1.2-2.0μg/mL, respectively, for HPLC-CAD and 0.4 and 1.5μg/mL, respectively, for HPLC-UV. Linearity for HPLC-CAD was at least 0.996 (R(2)) in the calibrated range of about 1-200μg/mL. Hence, the here presented HPLC-CAD method allows absolute quantification of rhamnolipids and derivatives. PMID:27283098

  18. Contribution a l'industrialisation du soudage par friction malaxage

    OpenAIRE

    Zimmer, Sandra

    2009-01-01

    Le soudage par friction malaxage, ou FSW, est un procédé de soudage à l'« état solide » permettant d'éviter certains problèmes rencontrés en soudage par fusion comme la fissuration à chaud ou la création de soufflures. La soudure est réalisée par l'action d'un outil à l'interface de deux pièces à souder. Celui-ci a pour rôle de malaxer et d'échauffer par frottement la matière. Le cordon est réalisé de proche en proche. Les efforts générés à l'interface outil/matière doivent être repris par la...

  19. ANISOTROPIE STRUCTURELLE INDUITE PAR L'ETIRAGE A CHAUD D'UNE PREFORME EN SILICE PURE – ETUDE PAR DYNAMIQUE MOLECULAIRE ET PAR SPECTROMETRIE RAMAN

    OpenAIRE

    Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried; R. Neuville, D.

    2014-01-01

    Cette étude révèle un nouvel aspect sur la structure de la silice à l'échelle nanométrique. L'orientation acquise par les petits anneaux (Si-O) n pour n ≤ 5 suite à la déformation à chaud persiste à froid et induit une anisotropie structurale dont la forme « isotropie transverse » est vérifiée par spectrométrie Raman.

  20. Recombination in the human Pseudoautosomal region PAR1.

    Directory of Open Access Journals (Sweden)

    Anjali G Hinch

    2014-07-01

    Full Text Available The pseudoautosomal region (PAR is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.

  1. Recombination in the human Pseudoautosomal region PAR1.

    Science.gov (United States)

    Hinch, Anjali G; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R

    2014-07-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  2. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil

    International Nuclear Information System (INIS)

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50 mg kg-1). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p -1, increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation

  3. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    Directory of Open Access Journals (Sweden)

    Lidi Gao

    2012-01-01

    Full Text Available In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs, thorium (Th, and uranium (U in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni from the polluted sludge was studied with biosurfactant (saponin and sophorolipid elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1 Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2 Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates and F5 (the fraction bound to Fe-Mn oxides. (3 The recovery efficiency of heavy metals (Pb, Ni, and Cr reached about 90–100% using a precipitation method with alkaline solution.

  4. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    Science.gov (United States)

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  5. Molecular interactions of CPC, CPB, CTAB, and EPC biosurfactants in aqueous olive oil mixtures analyzed with physicochemical data and SEM micrographs

    Directory of Open Access Journals (Sweden)

    Man Singh

    2014-12-01

    Full Text Available Structural studies of olive oil–water–biosurfactants mixtures are most attracting for several academic as well as industrial significances. Thus, densities (ρ, viscosities (η, and surface tensions (γ of cetylpyridinium chloride (CPC and bromide (CPB, cetyltrimethylammonium bromide (CTAB and egg-phosphatidylcholine (EPC biosurfactants (BS 2–10 mm kg−1 in olive oil + water mixture in 2 mm kg−1 interval at 310.15 K are reported. The densities were for apparent molal volume (Vϕ/10−6 m3 mol−1, η and γ determinations. The viscosities were fitted in extended Jones–Doles equation for intrinsic viscosity (B, kg mol−1 and slope (D, kg mol−12 derivation. The γ and Vϕ data were regressed for their limiting γ0 andVϕ0 data and the SEMs were illustrated surface morphology. The EPC caused maximum oil–water dissolution as compared to other surfactants. Intramolecular multiple force theory [IMMFT] is proposed to explain molecular interactions of olive oil–water–EPC mixtures with a possible correlation of surface and bulk reorientations with microstructures depicted with SEM. Frictional and cohesive forces as Friccohesity have been noted as driving forces to assert for validity of the IMMFT model and its link with SEM.

  6. Synergy and lubricant effect of biosurfactant/biodiesel addition in polymeric fluids; Acao lubrificante e sinergia da adicao de biosurfactante/biodiesel em fluidos polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Suzan I.G.; Costa, Marta; Macedo, Sinara P.N. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The lubricity coefficient (CL) and filtrate volume of the polymeric drilling fluids contained glycerin, paraffin, biodiesel and biosurfactant were investigated to evidence the influence and efficiency when used individually or through associated. All the tested fluids were aged in rotative oven for 16 hours, at 200 deg F. In this study, the association of biodiesel with biosurfactant proved to be promising because it reduced the CL in 87% and the volume of filtered by 22%. Those results become promising when the applicability is approached in perforation of wells, because it means a smaller wear and tear of the drills when we told the lubricity data, and a smaller damage the formation when we provided a smaller invasion of the perforation fluid the formations. To evaluate the effect of the degradation of the products, the fluids were stocked to room temperature by thirty (30) days, being soon afterwards. That time of stockpiling went ideal to the hydration of the molecules, because its viscosity was alters sensibly and influencing positively in the filtrate and in rheologic mediated. (author)

  7. Effects of thrombin, PAR-1 activating peptide and a PAR-1 antagonist on umbilical artery resistance in vitro

    Directory of Open Access Journals (Sweden)

    Elliott John T

    2005-02-01

    Full Text Available Abstract Background The non-thrombotic effects of thrombin in cardiovascular tissues, as mediated via the protease activated receptors (PARs, and particularly PAR-1, have been the focus of much recent research. The aims of this study were to evaluate the effects of thrombin, a specific PAR-1 activating peptide (PAR1-AP, and a PAR-1 antagonist on human umbilical artery tone in vitro. Methods Human umbilical artery samples were obtained from 17 women at term. Arterial rings were suspended under physiologic conditions for isometric recording. The in vitro effects of thrombin (0.5 units/mL to 3 units/mL, PAR1-AP TFLLR-NH2 [10(-9 to 10(-6 M], and PAR-1 antagonist (N-trans cinnamoyl- p-fluoroPhe-p-guanidinoPhe-Leu-Arg-Orn-NH2 [10(-9 M to 10(-5 M] on umbilical artery tone were measured. Results Both thrombin and TFLLR-NH2 exerted a potent cumulative vasodilatory effect on human umbilical artery resistance (P 0.05. Conclusion These findings highlight a potential role for thrombin and PAR-1 receptors in vascular regulation of feto-placental blood flow in normal pregnancy, and in association with the vascular lesions associated with IUGR and pre-eclampsia.

  8. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  9. The inflammatory marker suPAR after cardiac arrest

    DEFF Research Database (Denmark)

    Rundgren, Malin; Lyngbaek, Stig; Fisker, Helle; Friberg, Hans

    2015-01-01

    pilot study aimed at investigating suPAR levels in relation to outcome after CA and mild induced hypothermia. METHODS: suPAR levels were measured at 6, 36, and 72 hours in patients treated with hypothermia after CA. suPAR levels were analyzed in relation to survival after 6 months. Receiver operating...... characteristic curve (ROC)-analyses were performed, and area under the curve (AUC) was calculated. Time to return of spontaneous circulation (ROSC) was correlated to suPAR levels. RESULTS: Fifty-five patients (40 male, median 65 years) were included, and 33 (60%) were alive after 6 months. The suPAR levels were...... significantly higher in nonsurviving patients compared with survivors at 6 and 36 hours (p=0.006 and 0.034 respectively), but not at 72 hours. The suPAR levels increased from 6 to 72 hours (p<0.0001). Time to ROSC correlated positively with suPAR levels at 6 hours (p=0.003) but not at 36 and 72 hours. ROC...

  10. PAR elevation influence on hydrogen floor layer depth

    International Nuclear Information System (INIS)

    In order to circumvent problems associated with containment loads resulting from a possible hydrogen combustion, French containments for instance are equipped with passive autocatalytic recombiners (PAR). The aim of this safety device is to recombine hydrogen with oxygen in order to limit hydrogen concentration. Hence, PAR distribution within the containment is a key feature to limit the hydrogen risk. According with the PARIS benchmark scenario and boundary conditions therein (EU-FP6, SARNET project) a floor layer developed with low mass and thermal mixing processes. In this paper we illustrate the link between the PAR elevation and the floor layer depth. (author)

  11. Endophthalmitis following pars plana vitrectomy for vitreous floaters

    Directory of Open Access Journals (Sweden)

    Henry CR

    2014-08-01

    Full Text Available Christopher R Henry, Stephen G Schwartz, Harry W Flynn Jr Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA Abstract: A case of Staphylococcus caprae endophthalmitis in a young patient following pars plana vitrectomy for symptomatic vitreous floaters is reported here. Recent literature suggests that there is an increasing trend of performing pars plana vitrectomy for symptomatic floaters. Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters. Keywords: endophthalmitis, pars plana vitrectomy, vitreous floaters, floaterectomy, posterior vitreous detachment

  12. First-in-human uPAR PET

    DEFF Research Database (Denmark)

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene;

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive of....... The ligand exhibited good in vivo stability and fast clearance from plasma and tissue compartments by renal excretion. In addition, high uptake in both primary tumor lesions and lymph node metastases was seen and paralleled high uPAR expression in excised tumor tissue. Overall, this first-in-human...

  13. Formalisation d'annotations produites par des apprenants

    OpenAIRE

    Mille, Dominique

    2005-01-01

    L'objet de cet article est la description d'une formalisation computable des annotations produites par des apprenants, représentée par une ontologie. Cette formalisation explicite la sémantique des annotations grâce à des attributs auxquels le lecteur devrait donner une valeur. Elle contient également les valeurs possibles de ces attributs. L'intérêt d'une telle formalisation est de couvrir toutes les annotations produites par des apprenants, et d'expliciter tout ce qui constitue leur sens, a...

  14. Limnological database for Par Pond: 1959 to 1980

    International Nuclear Information System (INIS)

    A limnological database for Par Pond, a cooling reservoir for hot reactor effluent water at the Savannah River Plant, is described. The data are derived from a combination of research and monitoring efforts on Par Pond since 1959. The approximately 24,000-byte database provides water quality, primary productivity, and flow data from a number of different stations, depths, and times during the 22-year history of the Par Pond impoundment. The data have been organized to permit an interpretation of the effects of twenty years of cooling system operations on the structure and function of an aquatic ecosystem

  15. PAR1- and PAR2-induced innate immune markers are negatively regulated by PI3K/Akt signaling pathway in oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Dale Beverly A

    2010-10-01

    Full Text Available Abstract Background Protease-Activated Receptors (PARs, members of G-protein-coupled receptors, are activated by proteolytic activity of various proteases. Activation of PAR1 and PAR2 triggers innate immune responses in human oral keratinocytes (HOKs, but the signaling pathways downstream of PAR activation in HOKs have not been clearly defined. In this study, we aimed to determine if PAR1- and PAR2-mediated signaling differs in the induction of innate immune markers CXCL3, CXCL5 and CCL20 via ERK, p38 and PI3K/Akt. Results Our data show the induction of innate immunity by PAR1 requires both p38 and ERK MAP kinases, while PAR2 prominently signals via p38. However, inhibition of PI3K enhances expression of innate immune markers predominantly via suppressing p38 phosphorylation signaled by PAR activation. Conclusion Our data indicate that proteases mediating PAR1 and PAR2 activation differentially signal via MAP kinase cascades. In addition, the production of chemokines induced by PAR1 and PAR2 is suppressed by PI3K/Akt, thus keeping the innate immune responses of HOK in balance. The results of our study provide a novel insight into signaling pathways involved in PAR activation.

  16. Investigations on interfaciale activity of a biosurfactant from a xanthan broth; Untersuchungen zur Grenzflaechenaktivitaet eines Biotensids aus Xanthan-Bruehen

    Energy Technology Data Exchange (ETDEWEB)

    Birdi, K.S. [Royal Danish School of Pharmacy, Kopenhagen (Denmark); Kleinitz, W. [Preussag Energie GmbH, Lingen (Germany); Littmann, W. [Littmann Consult, Wunstorf (Germany)

    1997-10-01

    In order to improve crude oil production, various field projects have been conducted by Preussag Energie GmbH. In these tests, the viscosity of the reservoir water was increased to the value of crude oil by polymer addition. It is well known that this displacement process results in enhanced oil recovery. A surprising discovery was the pressure of stable oil-in-water emulsions when xanthane a biopolymer which is stable in salt water was used in the form of the fermentation broth and if xanthane was also detected in the reservoir water in the production fluid. Industrial xanthanes from various manufacturers exhibited interfacial activity only when used as fermentation broths. Powdered products were inert. The application of fluorescence spectrometry has proved that the biosurfactant is not a protein. The interfacial activity has been determined by monolayer measurements at various pll-values and salt concentrations. The critical micelle concentration of about 100 mg/l is stable over a wide range of temperatures and salinities. Potential applications of this surfactant include the stimulation of oil and gas wells. (orig.) [Deutsch] Zur Verbesserung der Rohoelfoerderung wurden von der Preussag Energie GmbH verschiedene Feldprojekte durchgefuehrt, bei denen durch Polymerzugabe die Viskositaet des Lagerstaettenwassers auf den Betrag des Rohoels angehoben wurde. Dieser Verdraengungsvorgang fuehrt bekanntlich zu einer Erhoehung der Erdoelausbeute. Bei Einsatz des salzwasserstabilen Biopolymers Xanthan in Form der Fermentationsbruehe wurden ueberraschenderweise dann stabile Oel-in-Wasser-Emulsionen festgestellt, wenn in dem Fluid an der Produktionsbohrung auch Xanthan im Lagerstaettenwasser nachgewiesen werden konnte. Industrielle Xanthane von verschiedenen Herstellern zeigten nur bei Verwendung von Fermentationsbruehen Grenzflaechenaktivitaet. Pulverprodukte waren inert. Mittels Fluoreszenzspektrometrie konnte nachgewiesen werden dass es sich bei dem Biotensid nicht um

  17. Récolte et consommation de pollen par les abeilles

    OpenAIRE

    Odoux, Jean Francois

    2005-01-01

    La récolte de pollen par les abeilles fait appel à des organes spécialisés de l'abeille, comme celle du nectar. Par contre, elle est régie par de très nombreux facteurs, en fonction des ressources, bien sûr, mais aussi des besoins de la colonie, alors que son attractivité n'est pas toujours en rapport avec la qualité. Ce texte décrit le contexte de l'utilisation du pollen par les abeilles, de la récolte à la digestion, d'après une synthèse bibliographique.

  18. La preuve apportée par les sciences

    Directory of Open Access Journals (Sweden)

    1997-04-01

    Full Text Available A propos d´une enquête menée par deux immunologistes de l´Université de Göteborg, rapportée par la très sérieuse revue Nature, le journal Le Monde n´hésitait pas à titrer : " La preuve du sexisme apportée par les sciences ". Les auteurs avaient en effet pu démontrer, irréfutables tests statistiques à l´appui, que, pour obtenir une bourse de post-doctorat offerte par le Swedisch Medical Research Council, les femmes devaient être deux fois et demie plus productives que les hommes ! Nous voulons...

  19. A turquesa de Itacupim, Pará

    Directory of Open Access Journals (Sweden)

    Marcondes Lima da Costa

    2004-12-01

    Full Text Available Na ilha de Itacupim, localizada na região costeira do nordeste do Pará, foram encontrados veios de fosfatos de alumínio contendo turquesa, além de quartzo e argilominerais. A ilha é sustentada por espesso perfil laterítico maturo desenvolvido sobre complexo alcalino-ultramáfico mineralizado em apatita. Os veios e vênulas são de espessura centimétrica, normalmente constituídos de wavellita fibro-radial, onde pode ser observada turquesa verde-azulada, em massas subesferolíticas, microcristalinas, intercrescidas com caulinita e oxi-hidróxidos de Mn, além de quartzo. A identificação mineral foi realizada por DRX, microscopia óptica, análises químicas de rocha total, MEV/SED. Os teores de CuO são inferiores aos das turquesas em geral, compensados por Fe2O3 e ZnO. Os subesferolitos de turquesa contêm inúmeras inclusões micrométricas de goyazita ou svanbergita. A ocorrência da turquesa, na forma de veios e vênulas, seu aspecto porcelanado e a conhecida relação desse mineral com ambiente hidrotermal sugerem que a turquesa de Itacupim também seja de origem hidrotermal, reforçada pela sua associação com wavellita, goyazita ou svanbergita, quartzo e argilominerais. Ela não foi encontrada no perfil laterítico. Seu aspecto compacto e sua cor esverdeada abrem perspectivas para seu uso como mineral de gema.Veins and veinlets of aluminum phosphates with turquoise occur at the Itacupim Island in the coastal plain northeast the state of Pará. A thick mature lateritic iron crust rich in aluminum phosphates developed an apatite-bearing alkaline-ultramafic complex which constitutes the Island. The veins and veinlets are cm-thick, usually constituted by wavellite, fibrous to radialfibrous, with bony or porcelaneous aspect, and can turquoise. Pebbles of these phosphates inside of apatite-bearing ultramafic rocks are very common at the base of the hang wall, and locally form expressive agglomerates. Turquoise forms half spheroids and

  20. Parálisis cerebral Cerebral palsy

    Directory of Open Access Journals (Sweden)

    Jorge Malagon Valdez

    2007-01-01

    Full Text Available El término parálisis cerebral (PC engloba a un gran número de síndromes neurológicos clínicos, de etiología diversa. Estos síndromes se caracterizan por tener una sintomatología común: los trastornos motores. Algunos autores prefieren manejar términos como "encefalopatía fija", "encefalopatías no evolutivas". Se mencionan la utilidad de programas de intervención temprana y métodos especiales de rehabilitación, así como el manejo de las deficiencias asociadas como la epilepsia, deficiencia mental, trastornos del lenguaje, audición, visión, déficit de la atención que mejoran el pronóstico de manera significativa. El pronóstico también depende de la gravedad del padecimiento y de las manifestaciones asociadas.The term cerebral palsy (CP, is used for a great number of clinical neurological syndromes. The syndromes are characterized by having a common cause, motor defects. It is important, because they can cause a brain damage by presenting motor defects and some associated deficiencies, such as mental deficiency, epilepsy, language and visual defects and pseudobulbar paralysis, with the nonevolving fact. Some authors prefer using terms such as "non-evolving encephalopathies". In the treatment the utility of prevention programs of early stimulation and special rehabilitation methods, and treatment of associated deficiencies such as epilepsy, mental deficiency, language, audition and visual problems, and the attention deficit improve the prognosis in an important way. The prognosis depends on the severity of the disease and the associated manifestations.

  1. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    Science.gov (United States)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  2. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180)

    DEFF Research Database (Denmark)

    Behrendt, Niels

    2004-01-01

    processes involve a highly organized interplay between proteases and their cellular binding sites as well as specific substrates and internalization receptors. This review article is focused on two components, the urokinase plasminogen activator receptor (uPAR) and the uPAR-associated protein (uPARAP, also......The breakdown of the barriers formed by extracellular matrix proteins is a pre-requisite for all processes of tissue remodeling. Matrix degradation reactions take part in specific physiological events in the healthy organism but also represent a crucial step in cancer invasion. These degradation...... designated Endo180), that are considered crucially engaged in matrix degradation. uPAR and uPARAP have highly diverse functions, but on certain cell types they interact with each other in a process that is still incompletely understood. uPAR is a glycosyl-phosphatidylinositol-anchored glycoprotein on the...

  3. Propriedades emulsificantes e estabilidade do biossurfactante produzido por Bacillus subtilis em manipueira Studies of emulsifying properties and stability of the biosurfactant produced by Bacillus subtilis in cassava wastewater

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2008-12-01

    Full Text Available Devido ao elevado poder tensoativo, baixa toxidez e biodegradabilidade, os lipopeptídios produzidos por bactérias do gênero Bacillus estão entre os biossurfactantes mais conhecidos e estudados. Estes compostos são apontados como potenciais insumos para diversos setores industriais, inclusive o de alimentos. Para que seja possível sua aplicação industrial, no entanto, é necessário que estes compostos apresentem estabilidade e manutenção de suas propriedades em condições extremas, que estão freqüentemente associadas a esses processos. O objetivo deste trabalho foi estudar a estabilidade do biossurfactante produzido pela linhagem LB5a de Bacillus subtilis, cultivado em manipueira (resíduo da industrialização da mandioca em um processo piloto. Os estudos de estabilidade foram realizados em função da variação de temperatura, pH e concentração salina. Foram realizadas avaliações da sua capacidade emulsificante em misturas de água com hidrocarbonetos e óleos vegetais, bem como a estabilidade das emulsões formadas. Os resultados mostraram que o biossurfactante foi estável à temperatura de 100 °C por 140 minutos e a 121 °C por até 60 minutos, à concentração de 2,5 a 20% de NaCl e na faixa de pH de 6 a 10. Em relação ao índice de emulsão com 24 horas (IE24, o biossurfactante mostrou elevados valores para diversos hidrocarbonetos cíclicos e alifáticos, além de óleos vegetais com diferentes perfis de ácidos graxos. Todos os resultados obtidos demonstraram a importância do biossurfactante para potenciais aplicações em diversos ramos industriais.Due to the high surface activity, low toxicity, and biodegradability lipopeptides produced by bacteria of the genus Bacillus are among the best biosurfactants known and studied. These compounds are mentioned as potential inputs for various industrial sectors. However, to allow their implementation in industrial processes, it is necessary stability under extreme

  4. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Xiafang [MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: xfsheng604@sohu.com; He Linyan; Wang Qingya; Ye Hesong; Jiang Chunyu [MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2008-06-30

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50 mg kg{sup -1}). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p < 0.05). In the Cd-added soil, above-ground biomass and root dry weights of tomatoes were increased by 24 and 59%, respectively, in live bacterial inoculation compared to dead bacterial inoculation control. There were no obvious differences in the above-ground tissue and root dry weight of maize and sudangrass between live bacterial inoculation and dead bacterial inoculation. In the soil treated with 50 mg Cd kg{sup -1}, increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation.

  5. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments. PMID:23928846

  6. Pars planitis: Epidemiology, clinical characteristics, management and visual prognosis

    Directory of Open Access Journals (Sweden)

    Pinar Cakar Ozdal

    2015-01-01

    Full Text Available Pars planitis is an idiopathic chronic intermediate uveitis which predominantly affects children and adolescents, and accounts for 5-26.7% of pediatric uveitis. Although an autoimmune process with a genetic predisposition has been suggested, its etiology still remains unknown. The most common presenting symptoms are floaters and blurred vision. Diffuse vitreous cells, haze, snowballs and snowbanks are typical findings of pars planitis. Peripheral retinal vasculitis, optic disc edema and anterior segment inflammation are other well-known findings. Although pars planitis is known to be a benign form of uveitis in most cases, it may become a potentially blinding disease due to complications including cataract, cystoid macular edema, vitreous opacities and optic disc edema. Cystoid macular edema is the most common cause of visual morbidity. Band keratopathy, epiretinal membrane formation, vitreous condensation, neovascularizations, vitreous hemorrhage, retinal detachment, cyclitic membranes, glaucoma and amblyopia may develop as a consequence of the chronic course of the disease. Exclusion of infectious and non-infectious causes which may present with intermediate uveitis is of utmost importance before starting treatment. Treatment of pars planitis has been a controversial issue. There is no consensus specifically for treatment of cases with minimal inflammation and relatively good visual acuity. However, current experience shows that pars planitis may cause severe inflammation and needs an aggressive treatment. A stepladder approach including corticosteroids, immunosupressive agents, anti-tumor necrosis factor-alpha and pars plana vitrectomy and/or laser photocoagulation is the most commonly used method for treatment of pars planitis. Adequate control of inflammation and prompt detection of associated complications are crucial in order to improve the overall prognosis of the disease.

  7. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    International Nuclear Information System (INIS)

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments have been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned

  8. Par-4 Down-regulation Promotes Breast Cancer Recurrence by Preventing Multinucleation following Targeted Therapy

    OpenAIRE

    Alvarez, James V.; Pan, Tien-chi; Ruth, Jason; Feng, Yi; Zhou, Alice; Pant, Dhruv; Grimley, Joshua S.; Wandless, Thomas J.; DeMichele, Angela; Chodosh, Lewis A.

    2013-01-01

    Most deaths from breast cancer result from tumor recurrence, but the mechanisms underlying tumor relapse are largely unknown. We now report that Par-4 is down-regulated during tumor recurrence and that Par-4 down-regulation is necessary and sufficient to promote recurrence. Tumor cells with low Par-4 expression survive therapy by evading a program of Par-4-dependent multinucleation and apoptosis that is otherwise engaged following treatment. Low Par-4 expression is associated with poor respon...

  9. Une terreur par l’image

    Directory of Open Access Journals (Sweden)

    Annie DULONG

    2011-09-01

    Full Text Available Si d’autres événements — Hiroshima, la découverte des camps de concentration, la chute du mur de Berlin — ont, au cours du XXe siècle, marqué suffisamment l’imaginaire pour trouver leur réponse dans des œuvres d’art, le 11 septembre 2001 pose la question de la fictionnalisation autrement : il ne s’agit plus tant de combler les manques de la représentation, liés à l’absence d’images ou au délai dans leur dévoilement, mais bien de composer avec l’omniprésence d’une représentation martelée à la télévision et sur Internet. Que cette représentation soit partielle, tronquée et qu’il lui manque la présence des corps, ces grands absents des photographies et des images tournées par les journalistes, ne change rien au fait que c’est avec le trop-plein que les artistes doivent maintenant négocier.Cet article s’intéresse aux romans qui traitent l’événement de front au lieu de l’aborder sur un mode mineur, et a pour objectif de tracer un portrait de la représentation des médias dans les romans du 11 septembre 2001. Ces romans, outre le fait qu’ils traitent des événements de New York, ont comme point commun un personnage, ou décor : les médias, représentés par la télévision, l’Internet, les photographies de presse, interviennent dans les récits d’une manière significative et témoignent de la force brute des images. À travers une étude de certains des mécanismes à l’œuvre dans The Writing on the Wall (Lynne Sharon Schwartz, Extremely Loud and Incredibly Close (Jonathan Safran Foer, Falling Man (Don DeLillo et A Disorder Peculiar to the Country (Ken Kalfus, il s’agira de proposer des réponses à ces quelques questions : quel rôle les médias jouent-ils, et comment participent-ils au récit ? Quelle pression les images exercent-elles sur les personnages ? Que révèlent les personnages enfants dans leur rapport aux médias ? Quelle critique, finalement, les romans

  10. Combined pars plana vitrectomy-scleral buckle versus pars plana vitrectomy for proliferative vitreoretinopathy.

    Science.gov (United States)

    Lai, Frank H P; Lo, Ernie C F; Chan, Vesta C K; Brelen, Mårten; Lo, Wai Ling; Young, Alvin L

    2016-04-01

    The purpose of the study is to evaluate the surgical outcomes of combined pars plana vitrectomy-scleral buckle (PPV-SB) versus pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment complicated with proliferative vitreoretinopathy (PVR). One thousand one hundred and seventy four patients with rhegmatogenous retinal detachment surgery between January 2002 and December 2013 were retrospectively reviewed. Patients with grade C PVR treated with either combined PPV-SB or PPV alone were included in the study. Study outcomes included single surgery anatomic success rate and postoperative visual outcome at 12 months postoperatively. Seventy-seven patients with grade C PVR were identified for analysis. At the end of 12-month follow-up, 80.5 % eyes (33/41) in the PPV-SB group and 58.3 % eyes (21/36) in the PPV group achieved single surgery anatomical success. In a multiple logistic regression model, none of the baseline variables (age, gender, macula status, grade of PVR, extent of detachment, presence of vitreous hemorrhage, lens status, status of high myopia) nor types of retinal detachment surgery (use of scleral buckle, barrier endolaser, 360 degree endolaser, cryopexy, retinectomy, tamponade agent, phacoemulsification) had significant effect on single surgery anatomical success. The post-treatment mean logMAR visual acuity of the PPV-SB group was 1.58 ± 0.58 and the PPV group was 1.57 ± 0.61. There was no significant difference in the postoperative visual acuity between the two groups (P = 0.849). For patients with grade C PVR, PPV-SB did not demonstrate a superiority over PPV alone in achieving single surgery anatomical success. PMID:26260357

  11. Analytical modeling and numerical optimization of the biosurfactants production in solid-state fermentation by Aspergillus fumigatus - doi: 10.4025/actascitechnol.v36i1.17818

    Directory of Open Access Journals (Sweden)

    Gabriel Castiglioni

    2014-01-01

    Full Text Available This is an experimental, analytical and numerical study to optimize the biosurfactants production in solid-state fermentation of a medium containing rice straw and minced rice bran inoculated with Aspergillus fumigatus. The goal of this work was to analytically model the biosurfactants production in solid-state fermentation into a column fixed bed bioreactor. The Least-Squares Method was used to adjust the emulsification activity experimental values to a quadratic function semi-empirical model. Control variables were nutritional conditions, the fermentation time and the aeration. The mathematical model is validated against experimental results and then used to predict the maximum emulsification activity for different nutritional conditions and aerations. Based on the semi-empirical model the maximum emulsification activity with no additional hydrocarbon sources was 8.16 UE·g-1 for 112 hours. When diesel oil was used the predicted maximum emulsification activity was 8.10 UE·g-1 for 108 hours.

  12. Selection of microorganisms for biosurfactant production using agroindustrial wastes Seleção de microrganismos para a produção de biossurfatantes em resíduos agroindustriais

    OpenAIRE

    Marcia Nitschke; Cristina Ferraz; Gláucia M. Pastore

    2004-01-01

    Biosurfactant production by some bacterial isolates using molasses, milk whey and cassava flour wastewater (manipueira) as substrates was evaluated and compared with the production in conventional medium. Isolates growing in manipueira medium decreased the surface tension around 42%, the highest reduction among all the substrates tested. From the eleven isolates tested, eight were able to decrease the surface tension to levels below 30 mN/m using manipueira as substrate. The isolates LB5a, LB...

  13. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    International Nuclear Information System (INIS)

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  14. Par Pond vegetation status Summer 1995 -- September survey descriptive summary

    International Nuclear Information System (INIS)

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this mid-September survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maidencane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys during the late growing seasons of 1995, and throughout 1996 and 1997, along with the evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  15. Accompaniment of the biomass growth and synthesis of biosurfactants by microorganism isolated in oil wells; Acompanhamento do crescimento da biomassa e sintese de biosurfactantes por microorganismos isolados de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ana Katerine de Carvalho Lima; Araujo, Manuelle Meike Silva de [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Engenharia Quimica]. E-mail: manuelle@eq.ufrn.br; Macedo, Gorete Ribeiro de [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Engenharia Quimica

    2003-07-01

    Biosurfactants are structurally diversified groups of active surface molecules synthesized by microorganisms as bacteria and fungi, cultivated in several carbon sources such as sucrose and hydrocarbons. These molecules, composed by a part hydrophilic and other hydrophobic one, they act preferentially in the interface among the flowing phases with different polarities linking interfaces oil/water or water/oil reducing the superficial tensions and interfacial among these phases. They have been used in environmental applications, such as bioremediation of soils, treatment of contaminated water fountains and in cleaning process of tanks and equipment. Oil reservoirs present conditions where some microorganisms can grow. These microorganisms when isolated and cultivated at laboratory can be characterized with relation to surfactants production. In this work, microorganisms were isolated of oil wells and the biosurfactants producers were selected, among the isolated ones, to form a culture bank with potential application in environmental pollution treatment and advanced oil recovery. A microorganism stump of the developed bank was cultivated in sucrose and hydrocarbon medium and the biosurfactant production was evaluated by superficial tension measurement. The microorganism biomass production was evaluated by optical density using a spectrophotometer and the substratum consumption by Dns method. (author)

  16. OXYDATION DU CYCLOHEXANE PAR COMPLEXE DE RUTHÉNIUM

    OpenAIRE

    HAMOUDI, Badreddine

    2008-01-01

    Le complexe RuCl2(PPh3)3 a été préparé dans le but de son application sur la réaction d’oxydation du cyclohexane en cyclhexanol et cyclohexanone. Les analyses par chromatographie en phase gaz sur la phase organique montrent la production de l’alcool et la cétone dans le cas du t-BuOOH comme oxydant, ce qui n’est le cas avec l’eau oxygénée et l’oxygène moléculaire. La réaction a été effectuée dans différents solvants, où l’eau a apportée une meilleure conversion par rapport a...

  17. CFD Application to Hydrogen Risk Analysis and PAR Qualification

    Directory of Open Access Journals (Sweden)

    Jinbiao Xiong

    2009-01-01

    Full Text Available A three dimensional computation fluid dynamics (CFD code, GASFLOW, is applied to analyze the hydrogen risk for Qinshan-II nuclear power plant (NPP. In this paper, the effect of spray modes on hydrogen risk in the containment during a large break loss of coolant accident (LBLOCA is analyzed by selecting three different spray strategies, that is, without spray, with direct spray and with both direct and recirculation spray. A strong effect of spray modes on hydrogen distribution is observed. However, the efficiency of the passive auto-catalytic recombiners (PAR is not substantially affected by spray modes. The hydrogen risk is significantly increased by the direct spray, while the recirculation spray has minor effect on it. In order to simulate more precisely the processes involved in the PAR operation, a new PAR model is developed using CFD approach. The validation shows that the results obtained by the model agree well with the experimental results.

  18. Terapia Miofuncional en pacientes con parálisis cerebral

    OpenAIRE

    Gónzalez Amigo, José

    2015-01-01

    En el presente trabajo, se va a llevar a cabo una visión de la parálisis cerebral desde el punto de vista de la motricidad. La parálisis cerebral es una patología que se caracteriza fundamentalmente por una alteración a nivel motriz, que puede afectar a las diferentes extremidades así como a los órganos involucrados en el habla. Estas limitaciones en la región orofacial pueden producir importantes distorsiones y como consecuencia el discurso puede resultar ininteligible para los interlocutore...

  19. La parálisis cerebral en el cine

    OpenAIRE

    Merino Marcos, María Lucila

    2005-01-01

    [ES] En los últimos veinticinco años se han rodado un número importante de películas en las que el protagonista o algún personaje secundario presentaban o simulaban una parálisis cerebral. Estos personajes en ocasiones han sido interpretados por personas con minusvalías. En la narración de su historia las cintas han incluido diversos aspectos sanitario-asistenciales, sociales y familiares obligados en el campo de la parálisis cerebral. [EN] In the last twenty-five years, a number of import...

  20. Apprentissage par Renforcement Développemental en Robotique Autonome

    OpenAIRE

    Sarzyniec, Luc; Buffet, Olivier; Dutech, Alain

    2011-01-01

    National audience Cet article présente une approche développementale de l'apprentissage par renforcement dans un cadre de robotique autonome. Le but est de permettre au robot de tirer parti de la richesse de son environnement sans que cette richesse ne le noie sous trop d'information à traiter. L'idée principale testée ici est de faire croître les capacités perceptives et motrices de l'agent au fur et à mesure de l'apprentissage. Cette approche est combinée avec un apprentissage par renfor...

  1. Ejercicios activos en la parálisis facial

    OpenAIRE

    Bohoyo Aramburu, Cristina

    2013-01-01

    Diseño: Se trata de una revisión bibliográfica en la que se incluyen revisiones sistemáticas y artículos sobre el tratamiento de la parálisis facial mediante ejercicios faciales, que en su conjunto engloban lo que se denomina la “mímicoterapia”. Objetivos: el objetivo principal es determinar la eficacia de los ejercicios faciales activos en el tratamiento de la parálisis de Bell. El objetivo secundario es describir dichos ejercicios. Métodos: se ha realizado una búsqueda mediante la base d...

  2. Cyclanthaceae no estado do Pará, Brasil Cyclanthaceae in Pará State, Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Leal

    2012-12-01

    Full Text Available Cyclanthaceae apresenta distribuição exclusiva na região neotropical sendo bem diversificada nas terras baixas das florestas pluviais tropicais, ocorrendo do sul do México até a Mata Atlântica do sul do Brasil. Consistem de ervas terrestres, epífitas, hemiepífitas ou lianas. O tratamento taxonômico de Cyclanthaceae no Pará foi baseado em coleções de herbário, trabalhos de campo e consulta a bibliografia referente à família. Foram registradas 11 espécies: Asplundia altiscandens E.S. Leal, A. fanshawei (Maguire Harling, A. glandulosa (Gleason Harling, A. heteranthera Harling, A. latifrons (Drude Harling, A. schizotepala Harling, A. xiphophylla Harling, Cyclanthus bipartitus Poit. ex A. Rich., Evodianthus funifer (Poit. Lindm., Ludovia lancifolia Brongn. e Thoracocarpus bissectus (Vell. Harling. São apresentadas chave de identificação, descrições e ilustrações das espécies, além de comentários sobre distribuição geográfica, hábitat e período de floração e frutificação.Cyclanthaceae is a family with a distribution exclusively in the Neotropics and is well diversified in lowland rainforests, occurring from southern Mexico to the Atlantic Forest of southern Brazil. The family consists of terrestrial herbs, epiphytes, hemiepiphytes and lianas. This taxonomic treatment of the Cyclanthaceae from the state of Pará was based on herbarium specimens, fieldwork, and the literature. Eleven species were recorded: Asplundia altiscandens E.S. Leal, A. fanshawei (Maguire Harling, A. glandulosa (Gleason Harling, A. heteranthera Harling, A. latifrons (Drude Harling, A. schizotepala Harling, A. xiphophylla Harling, Cyclanthus bipartitus Poit. ex A. Rich., Evodianthus funifer (Poit. Lindm., Ludovia lancifolia Brongn. and Thoracocarpus bissectus (Vell. Harling. An identification key, descriptions and illustrations of species are presented. Additional information on the geographic distribution, habitat, and flowering and

  3. Problemes methodologiques poses par l'extraction et la recuperation des bacteries telluriques pour leur quantification par immunofluorescence

    OpenAIRE

    Crozat, Y.; Cleyet-Marel, Jean Claude

    1984-01-01

    Afin d’améliorer la valeur quantitative de la technique de dénombrement des bactéries telluriques (Rhizobium japonicum) par immunofluorescence, on compare différents modes d’extraction et de récupération. L’utilisation de membranes en polycarbonates (Nucléopores) supprime les 40 p. 100 de pertes occasionnées par les membranes cellulosiques (Millipores) classiquement employées. Parmi les différents floculants testés, Ca(OH)2/MgCO3(2/5) permet d’obtenir les meilleurs résultats. Cependant po...

  4. Limitation des populations de ravageurs de l’olivier par le recours à la lutte biologique par conservation

    OpenAIRE

    Warlop, Francois

    2006-01-01

    L’olivier est une culture relativement rustique, mais qui peut être fortement attaquée par la mouche Bactrocera oleae (Gmelin), son principal ravageur. Les parasitoïdes de cette mouche sont connus, mais leur impact sur les populations de Diptères demeure faible, faute d’aménagement adéquat du paysage et suite à une intensification abusive des pratiques culturales. Le programme d’installation de bandes florales mené par le Groupe de recherches en agriculture biologique qui a débuté en 2004 vis...

  5. IGF-II receptors in luminal and basolateral membranes isolated from pars convoluta and pars recta of rabbit proximal tubule

    DEFF Research Database (Denmark)

    Jacobsen, Christian; Jessen, H; Flyvbjerg, A

    1995-01-01

    The binding of 125I-labeled insulin-like growth factor-II (125I-IGF-II) to luminal and basolateral membrane vesicles isolated from pars convoluta and the straight part (pars recta) of rabbit proximal tubule was investigated. Analyses of the binding data by use of the general stoichiometric binding...... inhibitory effect of beta-galactosidase. Analyses of 125I-IGF-II binding curves in the presence of beta-galactosidase or D-mannose 6-phosphate demonstrated that none of these compounds changed the binding affinity of 125I-IGF-II for the membrane vesicles. The IGF-II/M6P receptor content in the luminal...

  6. PH motifs in PAR1&2 endow breast cancer growth.

    Science.gov (United States)

    Kancharla, A; Maoz, M; Jaber, M; Agranovich, D; Peretz, T; Grisaru-Granovsky, S; Uziely, B; Bar-Shavit, R

    2015-01-01

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26600192

  7. Par Pond vegetation status summer 1995 - July survey descriptive summary

    International Nuclear Information System (INIS)

    A survey of the emergent shoreline aquatic plant, communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet (61 meters) above mean sea level, and continued with this July survey. Aquatic plant communities, similar to the pre-drawdown Par Pond communities, are becoming reestablished. Beds of maidencane (Panicum hemitomon), lotus (Nelumbo lutea), water lily (Nymphaea odorata), and watershield (Brasenia schreberi) are now extensive and well established. In addition, within isolated coves, extensive beds of water lilies and spike-rush (Eleocharis sp.) are common. Cattail occurrence has increased since refill, but large beds common to Par Pond prior to the drawdown have not formed. Invasion of willow (Salix sp.) and red maple (Acer rubrum) occurred along the lake shoreline during drawdown. The red maples along the present shoreline are beginning to show evidence of stress and mortality from flooding over the past four months. Some of the willows appear to be stressed as well. The loblolly pines (Pinus taeda), which were flooded in all but the shallow shoreline areas, are now dead. Future surveys are planned for the growing seasons of 1995, 1996, and 1997, along with the evaluation of satellite data for mapping the areal extent of the macrophyte beds of Par Pond

  8. Radiative Transfer Code: Application to the calculation of PAR

    Indian Academy of Sciences (India)

    D Emmanuel; D Phillippe; C Malik

    2000-12-01

    The production of carbon in the ocean, the so-called primary production, depends on various physico- biological parameters: the biomass and nutrient amounts in oceans, the salinity and temperature of the water and the light available in the water column. We focus on the visible spectrum of the solar radiation defined as the Photosynthetically Active Radiation (PAR). We developed a model (Chami et al. 1997) to simulate the behavior of the solar beam in the atmosphere and the ocean. We first describe the theoretical basis of the code and the method we used to solve the radiative transfer equation (RTE): the successive orders of scattering (SO). The second part deals with a sensitivity study of the PAR just above and below the sea surface for various atmospheric conditions. In a cloudy sky, we computed a ratio between vector fluxes just above the sea surface and spherical fluxes just beneath the sea surface. When the optical thickness of the cloud increases this ratio remains constant and around 1.29. This parameter is convenient to convert vector flux at the sea surface as retrieved from satellite to PAR. Subsequently, we show how solar radiation as vector flux rather than PAR leads to an underestimate of the primary production up to 40% for extreme cases.

  9. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine;

    2011-01-01

    Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...

  10. Radiological impact of Par Pond drawdown from liquid effluent pathways

    International Nuclear Information System (INIS)

    The water level of Par Pond has been lowered over the past several months to reduce the effects in the event of catastrophic dam failure while assessing the condition of the dam and determining if repairs are necessary. In lowering the level of Par Pond, 60 billion liters of water containing low levels of tritium and cesium-137 were discharged to several onsite streams. SRS surface streams flow to the Savannah River. An assessment made to determine the total amount of tritium and Cs-137 discharged and to estimate the consequences to downstream Savannah River users. It is estimated that a total of 160 curies of tritium were displaced from Par Pond to the Savannah River between June 28, 1991 and September 19, 1991. This release could hypothetically result in a maximum individual dose of 3. 2x10-4 mrem and a total (80-km and drinking water populations) population dose of 1.4x10-2 person-rem. Likewise, a maximum individual dose of 5.0x10-2 mrem and a total population dose of 1.7x10-1 person- rem are predicted as a result of an estimated 0.21 curies of Cs-137 being discharged from Par Pond to the Savannah River

  11. Pollution par les nitrates: quels remèdes?

    OpenAIRE

    Zilliox, Lothaire; Schenck, Charles; Kobus, Helmut; Huwe, Bernd

    1990-01-01

    Au cours des dix dernières années, la pollution des eaux souterraines par les nitrates n'a cessé d'augmenter. Principale accussée: l'agriculture, l'application de méthodes de techniques culturales devrait permettre une meilleure gestion des engrais azotés.

  12. La lecture de Merleau-Ponty par Renaud Barbaras

    Czech Academy of Sciences Publication Activity Database

    Pechar, Jiří

    2015-01-01

    Roč. 11, č. 2 (2015). ISSN 1336-6556 Institutional support: RVO:67985955 Keywords : Merleau-Ponty * Husserl * phenomenology * linguistics of Ferdinand de Saussure Subject RIV: AA - Philosophy ; Religion http://www.ostium.sk/sk/la-lecture-de-merleau-ponty-par-renaud-barbaras/

  13. Den eneste ene - hvordan etniske minoritetsunge i Danmark danner par

    DEFF Research Database (Denmark)

    Singla, Rashmi

    Rapporten handler om etniske unges måde at danne par på. Rapporten er baseret på en større empirisk undersøgelse gennemført af forfatteren i 2003 og er desuden inspireret af forfatterens egen ph.d.-afhandling: "Ungdom, etnicitet og psychosocial intervention" (2000, Københavns Universitet). Rappor...

  14. Predicting spectral and PAR light attenuation in Greenlandic coastal waters

    DEFF Research Database (Denmark)

    Murray, Ciarán; Markager, Stiig; Stedmon, Colin

    present models for spectral and PAR (photosynthetically active radiation) attenuation in two contrasting Greenlandic fjords, Godthåbsfjord (SW Greenland) and Young Sound (NE Greenland). The fjords differ in the character and concentrations of optically active components present: dissolved organic material...

  15. Development of quantitative RT-PCR assays for wild-type urokinase receptor (uPAR-wt) and its splice variant uPAR-del5

    International Nuclear Information System (INIS)

    The receptor for the serine protease urokinase-type plasminogen activator, uPAR (CD 87), plays an important role in tumor cell invasion and metastasis of solid malignant tumors. uPAR is a highly glycosylated, glycan lipid-anchored membrane protein, consisting of three homologous domains. Each individual domain is encoded by two exons: DI by exons 2+3, DII by exons 4+5, and DIII by exons 6+7. Beside the wild-type (wt) uPAR mRNA, two splice variants either lacking exon 5 (uPAR-del5) or both exons 4 and 5 (uPARdel4/ 5) have been described. Previously, we studied expression of the mRNA variant uPAR-del4/5 and uPAR mRNA encompassing exons 2, 3, and 4 (i.e. uPAR-wt plus uPAR-del5) applying real-time RT-PCR assays for quantification of the mRNA concentration. In the present paper, we established two additional specific, robust and highly sensitive RT-PCR assays, based on the LightCycler technology, to specifically quantify either uPAR-wt or its splice variant, uPARdel5. Expression of uPAR-wt and uPAR-del5 was analyzed in different human malignant cell lines (ovarian cancer cell lines OVMZ-6 and OVMZ-10; breast cancer cell lines MDA-MB 231, MDA-MB 231 BAG, MDA-MB 435, and aMCF-7; brain tumor cell line LN 18) as well as in a set of 174 breast cancer tissue samples. uPAR-del5 mRNA was found to be expressed very frequently at a rather low level (typically less than 1% of uPAR-wt mRNA). In tumor tissue from breast cancer patients, a statistically significant correlation between uPAR-del5 and uPAR-wt mRNA (r = 0.779; P < 0.001) was observed. There was no association between the expression level of either mRNA and clinical parameters such as nodal status, tumor size and grade. In estrogen receptor negative tumors, a significantly higher uPAR-del5 expression was found (P 0.023). The two developed quantitative RT-PCR assays described here may aid further analysis of the function and clinical relevance of uPAR-wt and one of its splice variants, uPAR-del5, in malignant tumors

  16. Detection of suPAR in the Saliva of Healthy Young Adults: Comparison with Plasma Levels

    OpenAIRE

    Anna Gustafsson; Vjosa Ajeti; Lennart Ljunggren

    2011-01-01

    The soluble urokinase plasminogen activator receptor (suPAR) has been detected in blood, plasma, serum, urine, ovarian cystic fluid, and cerebrospinal fluid. Elevated suPAR levels in plasma have been associated with negative outcomes in various diseases, such as bacteremia, sepsis, SIRS, cardiovascular disease, cancer, and tuberculosis. The primary aim of this study was to investigate whether suPAR can be detected in saliva from healthy individuals and thus, if saliva suPAR can be related to ...

  17. Detection of suPAR in the Saliva of Healthy Young Adults: Comparison with Plasma Levels

    Science.gov (United States)

    Gustafsson, Anna; Ajeti, Vjosa; Ljunggren, Lennart

    2011-01-01

    The soluble urokinase plasminogen activator receptor (suPAR) has been detected in blood, plasma, serum, urine, ovarian cystic fluid, and cerebrospinal fluid. Elevated suPAR levels in plasma have been associated with negative outcomes in various diseases, such as bacteremia, sepsis, SIRS, cardiovascular disease, cancer, and tuberculosis. The primary aim of this study was to investigate whether suPAR can be detected in saliva from healthy individuals and thus, if saliva suPAR can be related to plasma suPAR, CRP, BMI, or gender. Blood and unstimulated whole saliva was collected from 20 healthy individuals (10 female and 10 male, median age of 28 years; range 21–41). CRP and suPAR were measured with ELISA in saliva and serum/plasma. suPAR was detected in all saliva samples in the 5.2–28.1 ng/mL range, with a median value of 17.1 ng/mL. Saliva suPAR was significantly higher (P < 0.001) but not correlated to plasma suPAR in healthy young adults with normal plasma suPAR levels. suPAR and CRP levels were correlated in blood but not in saliva. No correlation was found between BMI, age, or gender and suPAR in saliva. PMID:22084570

  18. Intact and cleaved uPAR forms: diagnostic and prognostic value in cancer

    DEFF Research Database (Denmark)

    Rasch, M.G.; Lund, I.K.; Hoyer-Hansen, G.;

    2008-01-01

    identified in tissue and body fluids. It is well-established, that the total amount of all uPAR forms is a strong prognostic marker in different types of cancer. Using immunoassays, measuring the individual uPAR forms, has revealed that the cleaved uPAR forms are even stronger prognostic markers and have...

  19. ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome

    Science.gov (United States)

    The small serine resolvase ParA from bacterial plasmids RK2 and RP4 catalyzes the recombination of two identical 133 bp recombination sites known as MRS. Previously, we reported that ParA is active in the fission yeast Schizosaccharomyces pombe. In this work, the parA recombinase gene was placed un...

  20. The urokinase receptor (uPAR) facilitates clearance of Borrelia burgdorferi

    NARCIS (Netherlands)

    J.W.R. Hovius; M.F. Bijlsma; G.J.W. van der Windt; W.J. Wiersinga; B.J.D. Boukens; J. Coumou; A. Oei; R. de Beer; A.F. de Vos; C. van 't Veer; A.P. van Dam; P. Wang; E. Fikrig; M.M. Levi; J.J.T.H. Roelofs; T. van der Poll

    2009-01-01

    The causative agent of Lyme borreliosis, the spirochete Borrelia burgdorferi, has been shown to induce expression of the urokinase receptor (uPAR); however, the role of uPAR in the immune response against Borrelia has never been investigated. uPAR not only acts as a proteinase receptor, but can also

  1. First (18)F-labeled ligand for PET imaging of uPAR

    DEFF Research Database (Denmark)

    Persson, Morten; Liu, Hongguang; Madsen, Jacob;

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) is overexpressed in human prostate cancer and uPAR has been found to be associated with metastatic disease and poor prognosis. AE105 is a small linear peptide with high binding affinity to uPAR. We synthesized an N-terminal NOTA...

  2. Is There an "F" in Your PAR? Understanding, Teaching and Doing Action Research

    Science.gov (United States)

    Lorenzetti, Liza; Walsh, Christine Ann

    2014-01-01

    Participatory Action Research (PAR) is increasingly recognized within academic research and pedagogy. What are the benefits of including feminism within participatory action research and teaching? In responding to this question, we discuss the similarities and salient differences between PAR and feminist informed PAR (FPAR). There are eight themes…

  3. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2004-01-01

    with a single plasmid focus, the focus located preferentially at mid-cell. In cells with two foci, these located at quarter-cell positions. In the absence of ParB and parC1/parC2, ParA-GFP formed stationary helices extending from one end of the nucleoid to the other. In the presence of ParB and parC1/parC2, ParA-GFP......The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells...... oscillated in spiral-shaped structures. Amino acid substitutions in ParA simultaneously abolished ParA spiral formation, oscillation and either plasmid localization or plasmid separation at mid-cell. Therefore, our results suggest that ParA spirals position plasmids at the middle of the bacterial nucleoid...

  4. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.

    Science.gov (United States)

    Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab

    2013-05-01

    Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. PMID:23376749

  5. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, L. [Univ. of Quebec, PQ (Canada). INRS-Eau]|[National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Lafrance, P. [Univ. of Quebec, PQ (Canada). INRS-Eau; Villeneuve, J.P. [Univ. of Quebec, PQ (Canada). INRS-Eau; Samson, R. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    1996-12-31

    The effect of two anionic surfactants was assessed during biodegradation of 13 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAH) in a wood-preserving soil contaminated with creosote and pentacholorophenol for a period of at least 20 years. Sodium dodecyl sulfate (SDS) and biosurfactants from Pseudomonas aeruginosa UG2 were utilized at concentrations of 10, 100 and 500 {mu}g/g soil. Because both surfactants are readily biodegradable, the microcosms received a fresh spike of surfactant every 2 weeks. Biodegradation of aged PAH residues was monitored by GC/MS for a period of 45 weeks. Results indicated that the biodegradation of the three-ring PAH was rapid and almost complete but was slowed by the addition of 100 {mu}g/g and 500 {mu}g/g chemical surfactant. Similarly, at the same concentrations, the two surfactants significantly decreased the biodegradation rate of the four-ring PAH. In this case, the inhibition was more pronounced with SDS. High-molecular-mass PAH (more than four rings) were not biodegraded under the test conditions. It was suggested that the preferential utilization of surfactants by PAH degraders was responsible for the inhibition observed in the biodegradation of the hydrocarbons. The high biodegradability and the inhibitory effect of these two surfactants would have a significant impact on the development of both above-ground and in situ site reclamation processes. (orig.)

  6. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    Science.gov (United States)

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. PMID:27015374

  7. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

    Science.gov (United States)

    Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients. PMID:22864517

  8. A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B.

    Science.gov (United States)

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2008-02-25

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties but also versatile biochemical activities. In the course of MEL production by Pseudozyma tsukubaensis, we found an unusual MEL that had a different carbohydrate structure from that of conventional MELs. The carbohydrate structure was identified as 1-O-beta-D-mannopyranosyl-D-erythritol, and the MEL was confirmed to be 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol. Interestingly, the configuration of the erythritol moiety in the present MEL was opposite to that of the known MEL-B, 4-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol, and to that of all MELs hitherto reported. The present MEL should thus provide different interfacial and biochemical properties compared to conventional MELs. PMID:18083152

  9. Co-produção de lipase e biossurfactante em estado sólido para utilização em biorremediação de óleos vegetais e hidrocarbonetos Lipases and biosurfactant production by solid state fermentation for utilization in bioremediation of vegetable oils and hydrocarbons

    Directory of Open Access Journals (Sweden)

    Vilásia Guimarães Martins

    2008-01-01

    Full Text Available Recently lipases have been increasing in prominence due to its wide industrial application. The lipase production can be influenced by different variables such as the producing microorganism, carbon sources, aeration and agitation conditions, inductor type and the geometry of the reactor. Biosurfactants are composites of surface active produced by microbial cells which reduce superficial and interfacial tensions. The objective of this study was to verify the influence of different process variables in the lipase production during a fermentative process. The results showed that the concomitant production of lipases and biosurfactant was possible in different cultivation conditions.

  10. Des guides touristiques pour le peuple et par le peuple

    Directory of Open Access Journals (Sweden)

    Ninon Vinsonneau

    2006-04-01

    Full Text Available Le Federal Writers’ Project (FWP constitua l’un des quatre programmes « culturels » lancés par l’administration du New Deal en 1935 en vue de résorber le problème du chômage parmi les professions dites « en col blanc ». Il employa de 1935 à 1943, entre quatre et six mille chômeurs par an, tous membres des « professions de l’écrit » — les « écrivains », au sens large que l’administration fédérale donnait à ce terme : romanciers, poètes, dramaturges, mais aussi journalistes, enseignants, cherc...

  11. La syphilis congenitale revelee par une fracture spontanee

    Directory of Open Access Journals (Sweden)

    Mounia Lakhdar Idrissi

    2011-11-01

    Full Text Available Alors qu�elle est actuellement oubliee dans les pays developpes, la syphilis congenitale se voit encore chez nous faute du depistage antenatal. Ses formes cliniques sont polymorphes et orientent a tord vers d�autres pathologies surtout en periode neonatale. Le diagnostic n�est donc pas toujours facile. La revelation d�une syphilis congenitale par une fracture spontanee est exceptionnellement decrite. Nous rapportons dans ce travail le cas d�un nourrisson de 2 mois ramene en consultation pour limitation douloureuse des mouvements du bras droit. Le diagnostic est evoque sur les donnees radiologiques et confirme par la serologie syphilitique. Le traitement a repose essentiellement sur l�administration de la penicilline G avec une bonne evolution clinique.

  12. Diffusion d'un champ electromagnetique par un batiment modelise

    OpenAIRE

    Bourrely, Claude

    2008-01-01

    Cette étude présente la diffusion d'un champ électromagnétique par un batiment de bureaux modélisé suivant un réseau bipériodique, en particulier, l'objectif est de calculer le champ réfléchi et transmis. Ce champ est produit par une antenne extérieure au batiment, on suppose qu'elle émet une onde plane. On travaille dans un domaine de longueur d'onde qui est inférieur à la plus petite dimension de la structure, ce qui correspond à l'épaisseur des murs. Les calculs sont effectués suivant la m...

  13. Valorisation de biogaz pour industrie chimie par voie catalytique

    OpenAIRE

    Taimoor, Aqeel Ahmad

    2010-01-01

    La production de l'hydrogène à partir de biomasse est actuellement à l'étude mais la méthode de valorisation du biogaz (mélange H2/CO2) par réactions catalytiques, autres que la simple combustion, n'a pas encore été retenue. Par conséquent, le principal objectif de ce travail est d'explorer les autres voies. L'effet du CO2 sur le système catalytique est mal connu et seulement un effet négatif sur la dissociation de l'hydrogène a été mentionné. L'hydrogénation du toluène sur un catalyseur Pt a...

  14. L'exraction par micro-ondes: un choix de qualité

    OpenAIRE

    Ramdani, M.; Ghazi, Z.; Fadel, O.; Mouni, L.; Wathelet, Jean-Paul

    2010-01-01

    Le but de ce travail est de comparer l’extraction faite par chauffage classique (CC) avec celle réalisée sous micro-ondes (MO). Deux modes d’extraction ont été réalisés : - L’hydro-distillation par chauffage classique (extraction par entraînement à la vapeur d’un solvant) et, - L’hydro-distillation activée par micro-ondes. Les MO permettent un gain de temps considérable. Par exemple, dans le cas du lavandula dentata : on note une cinétique 3 fois plus rapide, de plus le rendement ...

  15. MetaPar: Metagenomic Sequence Assembly via Iterative Reclassification

    OpenAIRE

    Kim, MinJi; Ligo, Jonathan G.; Emad, Amin; Farnoud, Farzad; Milenkovic, Olgica; Veeravalli, Venugopal V.

    2013-01-01

    We introduce a parallel algorithmic architecture for metagenomic sequence assembly, termed MetaPar, which allows for significant reductions in assembly time and consequently enables the processing of large genomic datasets on computers with low memory usage. The gist of the approach is to iteratively perform read (re)classification based on phylogenetic marker genes and assembler outputs generated from random subsets of metagenomic reads. Once a sufficiently accurate classification within gen...

  16. Design Studies and Commissioning Plans for PARS Experimental Program

    OpenAIRE

    Mete, O.; Hanahoe, K.; G. Xia; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-01-01

    PARS (Plasma Acceleration Research Station) is an electron beam driven plasma wakefield acceleration test stand proposed for VELA/CLARA facility in Daresbury Laboratory. In order to optimise various operational configurations, 2D numerical studies were performed by using VSIM for a range of parameters such as bunch length, radius, plasma density and positioning of the bunches with respect to each other for the two-beam acceleration scheme. In this paper, some of these numerical studies and co...

  17. Design Studies and Commissioning Plans for PARS Experimental Program

    CERN Document Server

    Mete, O; Xia, G; Dover, M; Wigram, M; Wright, J; Zhang, J; Smith, J

    2015-01-01

    PARS (Plasma Acceleration Research Station) is an electron beam driven plasma wakefield acceleration test stand proposed for VELA/CLARA facility in Daresbury Laboratory. In order to optimise various operational configurations, 2D numerical studies were performed by using VSIM for a range of parameters such as bunch length, radius, plasma density and positioning of the bunches with respect to each other for the two-beam acceleration scheme. In this paper, some of these numerical studies and considered measurement methods are presented.

  18. Four cases of endophthalmitis after 25-gauge pars plana vitrectomy

    OpenAIRE

    Mutoh T; Kadoya K; Chikuda M

    2012-01-01

    Tetsuya Mutoh, Koji Kadoya, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, JapanAbstract: We report our recent experience with four cases of endophthalmitis (one male, three females) after 25-gauge pars plana vitrectomy (PPV). One was a case of persistent cystoid macular edema caused by branch retinal vein occlusion, whereas the remaining three were cases of epiretinal membrane. Preoperative antibiotics before the first PPV procedu...

  19. «La Promenade par les aventures surprenants»

    OpenAIRE

    Duarte, Alexandre Freire

    2010-01-01

    É nossa intenção, neste estudo, focar a atenção heurística no par: Jean-Joseph Surin (1600-1665), e Michel de Certeau, um homem que, intermitentemente – revelando uma vida queimada pelo fascínio por Jean-Joseph Surin –, constituiu, nas nossas mãos atentamente vazias, num vasto arvoredo que nos remetia continuamente para uma sombria clareira luminosa que irradiava do meio daquele.

  20. Taare Zameen Par and dyslexic savants

    OpenAIRE

    Chakravarty Ambar

    2009-01-01

    The film Taare Zameen Par (Stars upon the Ground) portrays the tormented life at school and at home of a child with dyslexia and his eventual success after his artistic talents are discovered by his art teacher at the boarding school. The film hints at a curious neurocognitive phenomenon of creativity in the midst of language disability, as exemplified in the lives of people like Leonardo da Vinci and Albert Einstein, both of whom demonstrated extraordinary creativity even though they were ...