WorldWideScience

Sample records for biosurfactant-producing bacillus sp

  1. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    Science.gov (United States)

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound.

  2. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil.

    Science.gov (United States)

    Sheng, Xiafang; He, Linyan; Wang, Qingya; Ye, Hesong; Jiang, Chunyu

    2008-06-30

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50mgkg(-1)). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p<0.05). In the Cd-added soil, above-ground biomass and root dry weights of tomatoes were increased by 24 and 59%, respectively, in live bacterial inoculation compared to dead bacterial inoculation control. There were no obvious differences in the above-ground tissue and root dry weight of maize and sudangrass between live bacterial inoculation and dead bacterial inoculation. In the soil treated with 50 mg Cdkg(-1), increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation.

  3. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Xiafang [MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: xfsheng604@sohu.com; He Linyan; Wang Qingya; Ye Hesong; Jiang Chunyu [MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2008-06-30

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50 mg kg{sup -1}). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p < 0.05). In the Cd-added soil, above-ground biomass and root dry weights of tomatoes were increased by 24 and 59%, respectively, in live bacterial inoculation compared to dead bacterial inoculation control. There were no obvious differences in the above-ground tissue and root dry weight of maize and sudangrass between live bacterial inoculation and dead bacterial inoculation. In the soil treated with 50 mg Cd kg{sup -1}, increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation.

  4. Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jenneman, G.E.; McInerney, M.J.; Knapp, R.M.; Clark, J.B.; Feero, J.M.; Revus, D.E.; Menzie, D.E.

    1983-01-01

    A biosurfactant-producing Bacillus licheniformis was isolated from oil-field injection water with properties potentially useful for in situ enhanced oil recovery. Conventional miscible flooding procedures use expensive synthetic detergents such as petroleum sulfonates that precipitate in high NaCl brines and adsorb to rock surfaces. The Bacillus sp. produced a biosurfactant when grown at 40 C in a sucrose mineral salts medium containing 5% NaCl. The biosurfactant was produced during the log phase of growth in the presence or absence of either crude oil or hexadecane. The surface tension of a 5% NaCl solution decreased from 74.0 mN/m to 27 mN/m when the surfactant was added. Interfacial tension of a 5% NaCl brine/octane mixture was as low as 0.43 mN/m when measured by a spinning drop tensiometer. The surfactant was extracted by acid precipitation at a pH of 2.0. The extracted surfactant exhibited optimal surface tension-lowering ability in 4-5% NaCl solutions between pH's of 6.0 to 10.0. The addition of calcium up to 340 mg/liter and incubation temperatures up to 100 C did not alter appreciably the surfactant activity. Mobilization of crude oil and oil bank formation occurred in a sandpack column after addition of the biosurfactant. 16 references, 1 figure, 2 tables.

  5. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  6. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey

    Directory of Open Access Journals (Sweden)

    Eman Zakaria Gomaa

    2013-04-01

    Full Text Available The aim of the present study was to investigate the antimicrobial effect of the lipopeptide biosurfactants produced by Bacillus licheniformis strain M104 grown on whey. The biosurfactant was investigated for potential antimicrobial activity by using the disc-diffusion method against different Gram-positive bacteria {B subtilis, B. thuringiensis (two strains, B. cereus, Staphylococcus aureus (two strains and Listeria monocytogenes}, Gram-negative bacteria {(Pseudomonas aeruginosa, Escherichia coli (two strains, Salmonella typhimurium, Proteous vulgaris and Klebsiella pneumoniae and a yeast (Candida albicans}. The biosurfactant showed profoundly distinct antibacterial activity toward tested bacteria and displayed an antifungal activity against the tested yeast. Maximum antimicrobial activity of the biosurfactant was shown against S. aureus ATCC 25928. The biosurfactant had a broad inhibition effect on intracellular components of S. aureus ATCC 25928. The antimicrobial effect of lipopeptide biosurfactant produced by B. licheniformis strain M104 was time and concentration dependent. When biosurfactant was added to S. aureus medium in a concentration of (48 μg / ml, the maximum reduction of acid soluble phosphorous (53.06 %, total lipid (90.47 % total proteins (53.43%, RNA (83.29 % and DNA (48.50% were recorded after 12 h of incubation period. From the preliminary characterization results, it could be concluded that biosurfactants were a suitable alternative in potential applications of medical fields.

  7. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.

    Science.gov (United States)

    Aparna, A; Srinikethan, G; Smitha, H

    2012-06-15

    Biosurfactant-producing bacteria were isolated from terrestrial samples collected in areas contaminated with petroleum compounds. Isolates were screened for biosurfactant production using Cetyl Tri Ammonium Bromide (CTAB)-Methylene blue agar selection medium and the qualitative drop-collapse test. An efficient bacterial strain was selected based on rapid drop collapse activity and highest biosurfactant production. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, 2B, identified the bacterium as Pseudomonas sp. Five different low cost carbon substrates were evaluated for their effect on biosurfactant production. The maximum biosurfactant synthesis (4.97 g/L) occurred at 96 h when the cells were grown on modified PPGAS medium containing 1% (v/v) molasses at 30 °C and 150 rpm. The cell free broth containing the biosurfactant could reduce the surface tension to 30.14 mN/m. The surface active compound showed emulsifying activity against a variety of hydrocarbons and achieved a maximum emulsion index of 84% for sunflower oil. Compositional analysis of the biosurfactant reveals that the extracted biosurfactant was a glycolipid type, which was composed of high percentages of lipid (∼65%, w/w) and carbohydrate (∼32%, w/w). Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. The mass spectra (MS) shows that dirhamnolipid (l-rhamnopyranosyl-l-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C(10)-C(10)) was detected in abundance with the predominant congener monorhamnolipid (l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate, Rha-C(10)-C(10)). The crude oil recovery studies using the biosurfactant produced by Pseudomonas sp. 2B suggested its potential application in microbial enhanced oil recovery and bioremediation.

  8. Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2.

    Science.gov (United States)

    Joshi, Sanket J; Geetha, S J; Desai, Anjana J

    2015-09-01

    The biosurfactant produced by Bacillus licheniformis R2 was characterized and studied for enhancing the heavy crude oil recovery at 80 °C in coreflood experiments. The strain was found to be nonpathogenic and produced biosurfactant, reducing the surface tension of medium from 70 to 28 mN/m with 1.1 g/l yield. The biosurfactant was quite stable during exposure to elevated temperatures (85 °C for 90 days), high salinity (10 % NaCl), and a wide range of pH (5-12) for 10 days. It was characterized as lipopeptide similar to lichenysin-A, with a critical micelle concentration of about 19.4 mg/l. The efficiency of crude biosurfactant for enhanced oil recovery by core flood studies revealed it to recovering additional 37.1 % oil from Berea sandstone cores at 80 °C. The results are indicative of the potential for the development of lipopeptide biosurfactant-based ex situ microbial enhanced heavy oil recovery from depleting oil fields with extreme temperatures.

  9. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun

    2014-07-15

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery.

  10. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source.

    Science.gov (United States)

    Sousa, M; Melo, V M M; Rodrigues, S; Sant'ana, H B; Gonçalves, L R B

    2012-08-01

    Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8 ± 0.0 and 27.1 ± 0.1 mN m(-1), respectively. Additionally, at 72 h of cultivation, 441.06 and 267.56 mg L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.

  11. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources

    Directory of Open Access Journals (Sweden)

    Juliana Guerra de Oliveira

    2013-02-01

    Full Text Available Biosurfactants are chemical molecules produced by the microorganisms with potential for application in various industrial and environmental sectors. The production parameters and the physicochemical properties of a biosurfactant synthesized by Bacillus pumilus using different concentrations of vinasse and waste frying oil as alternative carbon sources were analyzed. The microorganism was able to grow and produce a biosurfactant using both the residues. The surface tension was reduced up to 45 mN/m and the maximum production of crude biosurfactant was 27.7 and 5.7 g/l for vinasse and waste frying oil, respectively, in concentration of 5%. The critical micelle concentration (CMC results of 1.5 and 0.2 g/l showed the efficiency of the biosurfactant produced on both the substrates. The results showed that the alternative substrates could be used for the production of an efficient biosurfactant by B. pumilus. These properties have potential for industrial and environmental applications.

  12. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.

    Science.gov (United States)

    Sriram, Muthu Irulappan; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Gracerosepat, Raja; Srisakthi, Kandasamy; Gurunathan, Sangiliyandi

    2011-07-01

    Biosurfactants are worthful microbial amphiphilic molecules with efficient surface-active and biological properties applicable to several industries and processes. Among them lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. A heavy metal tolerant Bacillus strain has been isolated and the biofilm inhibition and antimicrobial activity of biosurfactant produced by the strain have been studied. Biosurfactant production was confirmed by the conventional screening methods including hemolytic activity, drop collapsing test, oil displacement test, emulsification and lipase production assays. The biosurfactant produced by this strain was a lipopeptide and exhibited strong surface activity. The biosurfactant has been characterized using FTIR, TLC and HPLC. The minimum active dose of this biosurfactant when compared with the other chemical surfactants was found as 0.150±0.06 μg. The critical micelle concentration was found to be 45 mg/l. The biosurfactant was found to be stable and active over a wide range of pH, temperature and NaCl concentration. It was also able to emulsify a wide range of hydrocarbons and oils thereby extending its application for the bioremediation of oil contaminated sites. The biosurfactant exhibited significant reduction in biofilm formation by pathogens and showed potent antimicrobial activity against various gram positive, gram negative bacteria and fungi. Agar diffusion assay for heavy metal resistance showed that the isolate was resistant to ferrous, lead and zinc. Considering the biofilm inhibition and antimicrobial property of biosurfactant, it can be utilized as a potential therapeutic molecule for numerous microbial infections. The heavy metal resistance of the strain can also be harnessed as an invaluable biological tool for in situ bioremediation.

  13. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.

    Science.gov (United States)

    Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

    2009-06-01

    In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

  14. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    Science.gov (United States)

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  15. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  16. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  17. Enrichment and identification of biosurfactant-producing oil field microbiota utilizing electron acceptors other than oxygen and nitrate.

    Science.gov (United States)

    Kryachko, Yuriy; Semler, Diana; Vogrinetz, John; Lemke, Markus; Links, Matthew G; McCarthy, E Luke; Haug, Brenda; Hemmingsen, Sean M

    2016-08-10

    Microorganisms indigenous to an oil reservoir were grown in media containing either sucrose or proteins in four steel vessels under anoxic conditions at 30°C and 8.3MPa for 30days, to enrich biosurfactant producers. Fermentation of substrate was possible in the protein-containing medium and either fermentation or respiration through reduction of sulfate occurred in the sucrose-containing medium. Growth of microorganisms led to 3.4-5.4-fold surface tension reduction indicating production of biosurfactants in amounts sufficient for enhancement of gas-driven oil recovery. Analysis of sequenced cpn60 amplicons showed that Pseudomonas sp. highly similar to biosurfactant producing P. fluorescens and to Pseudomonas sp. strain TKP predominated, and a bacterium highly similar to biosurfactant producing Bacillus mojavensis was present in vessels. Analysis of 16S rDNA amplicons allowed only genus-level identification of these bacteria. Thus, cpn60-amplicon analysis was a more relevant tool for identification of putative biosurfactant producers than 16S rDNA-amplicon analysis.

  18. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2007-05-01

    Full Text Available Biosurfactant-producing marine bacteria were isolated from oil-spilled seawater collected from harbors and docks in Songkhla Province, Thailand. Haemolytic activity, emulsification activity toward nhexadecane,emulsion of weathered crude oil, drop collapsing test as well as oil displacement test were used to determine biosurfactant producing activity of marine bacteria. Among two-hundred different strains, 40strains exhibited clear zone on blood agar plates. Only eight strains had haemolytic activity and were able to emulsify weathered crude oil in marine broth during cultivation. Eight strains named SM1-SM8 wereidentified by 16S rRNA as Myroides sp. (SM1; Vibrio paraheamolyticus (SM2; Bacillus subtilis (SM3; Micrococcus luteus (SM4; Acinetobacter anitratus (SM6; Vibrio paraheamolyticus (SM7 and Bacilluspumilus (SM8. However, SM5 could not be identified. Strain SM1 showed the highest emulsification activity against weathered crude oil, by which the oil was emulsified within 24 h of cultivation. In addition, strainSM1 exhibited the highest activity for oil displacement test and emulsification test toward n-hexadecane. The emulsification activity against n-hexadecane of crude extract of strain SM1 was stable over a broadrange of temperature (30-121oC, pH (5-12 and salt concentration (0-9% NaCl, whereas CaCl2 showed an adverse effect on emulsifying activity.

  19. Biochemical, Molecular, and Transcriptional Highlights of the Biosynthesis of an Effective Biosurfactant Produced by Bacillus safensis PHA3, a Petroleum-Dwelling Bacteria

    Science.gov (United States)

    Hanano, Abdulsamie; Shaban, Mouhnad; Almousally, Ibrahem

    2017-01-01

    Petroleum crude oil (PCO)-dwelling microorganisms have exceptional biological capabilities to tolerate the toxicity of petroleum contaminants and are therefore promising emulsifier and/or degraders of PCO. This study describes a set of PCO-inhabiting bacterial species, one of which, identified as Bacillus safensis PHA3, produces an efficient biosurfactant which was characterized as a glycolipid. Fourier transform infrared spectrometer, nuclear magnetic resonance, Thin layer chromatography, HPLC, and GC-MS analysis of the purified biosurfactant revealed that the extracted molecule under investigation is likely a mannolipid molecule with a hydrophilic part as mannose and a hydrophobic part as hexadecanoic acid (C16:0). The data reveal that: (i) PHA3 is a potential producer of biosurfactant (9.8 ± 0.5 mg mL-1); (ii) pre-adding 0.15% of the purified glycolipid enhanced the degradation of PCO by approximately 2.5-fold; (iii) the highest emulsifying activity of biosurfactant was found against the PCO and the lowest was against the naphthalene; (iv) the optimal PCO-emulsifying activity was found at 30–60°C, pH 8 and a high salinity. An orthologous gene encodes a putative β-diglucosyldiacylglycerol synthase (β-DGS) was identified in PHA3 and its transcripts were significantly up-regulated by exogenous PAHs, i.e., pyrene and benzo(e)pyrene but much less by mid-chain n-alkanes (ALKs) and fatty acids. Subsequently, the accumulation of β-DGS transcripts coincided with an optimal growth of bacteria and a maximal accumulation of the biosurfactant. Of particular interest, we found that PHA3 actively catalyzed the degradation of PAHs notably the pyrene and benzo(e)pyrene but was much less effective in the mono-terminal oxidation of ALKs. Such characteristics make Bacillus safensis PHA3 a promising model for enhanced microbial oil recovery and environmental remediation. PMID:28179901

  20. Production and characterization of Iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine pinctada martensii-derived Bacillus mojavensis B0621A.

    Science.gov (United States)

    Ma, Zongwang; Hu, Jiangchun

    2014-06-01

    Bacillus mojavensis B0621A was isolated from a pearl oyster Pinctada martensii collected from South China Sea. While screening for cyclic lipopeptides potentially useful as lead compounds for biological control against soil-bone fungal plant pathogens, three lipopeptides were isolated and purified from the fermentation broth of B. mojavensis B0621A via vacuum flash chromatography coupled with reversed-phase high performance liquid chromatography (RP-HPLC). The structural characterization and identification of these cyclic lipopeptides were performed by tandem mass spectrometry (MS/MS) combined with gas chromatography-mass spectrometry (GC-MS) analysis as well as chemical degradation. These lipopeptides were finally characterized as homologues of mojavensins, which contained identical amino acids back bones of asparagine1, tyrosine2, asparagine3, glutamine4, proline5, asparagine6, and asparagine7 and differed from each other by their saturated β-amino fatty acid chain residues, namely, iso-C14 mojavensin, iso-C16 mojavensin, and anteiso-C17 mojavensin, respectively. All lipopeptide isomers, especially iso-C16 mojavensin and anteiso-C17 mojavensin, displayed moderate antagonism and dose-dependent activity against several formae speciales of Fusarium oxysporum and presented surface tension activities. These properties demonstrated that the lipopeptides produced by B. mojavensis B0621A may be useful as biological control agent to fungal plant pathogens.

  1. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058.

    Science.gov (United States)

    Saeki, Hisashi; Sasaki, Masaru; Komatsu, Koei; Miura, Akira; Matsuda, Hitoshi

    2009-01-01

    A remediation agent containing a biosurfactant was prepared by spray drying the sterilized culture broth of Gordonia sp. strain JE-1058, and the agent was designated as JE1058BS. On subjection to the baffled flask test developed by the United States Environmental Protection Agency, JE1058BS showed a strong potential to be applied as an oil spill dispersant even in the absence of a solvent. It also proved to be an effective bioremediation agent for the remediation of oil spills at sea. The addition of JE1058BS to seawater stimulated the degradation of weathered crude oil (ANS 521) via the activity of the indigenous marine bacteria. Its addition also stimulated the removal of crude oil from the surface of contaminated sea sand. These results indicate that biosurfactant-containing JE1058BS has a strong potential to be applied as a remediation agent for the clean-up of oil spills at sea and on shorelines.

  2. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  3. Rhamnolipid Biosurfactants Produced by Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Banu Kaskatepe

    Full Text Available ABSTRACT: Surfactants are chemical products widely used in our daily life in toothpaste and other personal hygiene and cosmetic products, and in several industries. Biosurfactants are surfactants of biological origin that can be produced by microorganisms and have many advantages, such as low toxicity and high biodegradability, compared to synthetic counterparts. Unfortunately, high production costs limit the use of biosurfactants. Low-cost production is the most important factor for biosurfactants to be able to compete in the global market place. This review presents general information on rhamnolipid biosurfactant produced by Pseudomonas species, as well as on their production and applications. In addition, industrial products and their wastes used for rhamnolipid production are reviewed in detail based on recent studies.

  4. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    OpenAIRE

    Charoon Sarin; Siripun Sarin

    2010-01-01

    Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7) were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC) for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the hea...

  5. Bioremediation of polluted beaches with PAHs by using biosurfactant produced by bacterium isolated from Persian Gulf

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2016-07-01

    Full Text Available Background: PAHs was producted from incomplete combustion of fossil fuels and due to nature of publishing, it was categorized as the soil and beaches pollutant. These compounds are considered in pollutants which have priority, carcinogenic and certain mutagenic. The main difficulty of clearing contaminated areas to PAHs is the nature of highly water repellent of these pollutants and a strong attraction to the soil texture. The main objective of this current study was to determine the efficiency of phenanthrene removal from contaminated soil and beaches by using biosurfactant produced by a bacterium isolated from Persian Gulf. Materials & Methods: with primary screening, a Bacillus sp strain with surfactin production capability was isolated and purified in laboratory. A mixed bacterial consortium isolated which was consists of three bacterial species with of capable of metabolism of phenanthrene from Khark contaminated beaches and was used as a microbial seed. The synthetic soil samples with initial phenanthrene concentration of 100 mg/kg and also natural contaminated samples were subjected to bioremediation during 9 weeks. Results: The phenanthrene removal efficiency in the samples containing biosurfactants and with artificial and natural pollution were 82% and 39% respectively. The removal efficiency for samples without biosurfactant was 11%. Conclusion: The bioremediation process is considered an efficient, eco-friendly and operational for remediation of beache and soil polluted by petroleum hydrocarbons by using bacterial biosurfactant.

  6. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands.

    Science.gov (United States)

    Heyrman, Jeroen; Vanparys, Bram; Logan, Niall A; Balcaen, An; Rodríguez-Díaz, Marina; Felske, Andreas; De Vos, Paul

    2004-01-01

    A group of 42 isolates were isolated from the soil of several disused hay fields, in the Drentse A agricultural research area (The Netherlands), that were taken out of production at different times. The group represents hitherto-uncultured Bacillus lineages that have previously been found, by a non-cultural method, to be predominant in soil. The strains were subjected to a polyphasic taxonomic study, including (GTG)5-PCR, 16S rDNA sequence analysis, DNA-DNA hybridizations, DNA base-ratio determination, fatty acid analysis and morphological and biochemical characterization. By comparing the groupings obtained by (GTG)5-PCR and 16S rDNA sequence analysis, six clusters of similar strains could be recognized. A DNA-DNA relatedness study showed that these clusters represented five novel genospecies. Further analysis supported the proposal of five novel species in the genus Bacillus, namely Bacillus novalis sp. nov. (type strain IDA3307T=R-15439T=LMG 21837T=DSM 15603T), Bacillus vireti sp. nov. (type strain IDA3632T=R-15447T=LMG 21834T=DSM 15602T), Bacillus soli sp. nov. (type strain IDA0086T=R-16300T=LMG 21838T=DSM 15604T), Bacillus bataviensis sp. nov. (type strain IDA1115T=R-16315T=LMG 21833T=DSM 15601T) and Bacillus drentensis sp. nov. (type strain IDA1967T=R-16337T=LMG 21831T=DSM 15600T).

  7. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  8. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  9. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    NARCIS (Netherlands)

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black p

  10. Biosurfactan Production by Bacillus sp. Isolated from Petroleum Contaminated Soils of Sirri Island

    Directory of Open Access Journals (Sweden)

    M. G. Jazeh

    2012-01-01

    Full Text Available Problem statement: Biosurfactants are active surface components produced by some bacteria and fungi. These molecules reduce surface and interfacial tension in aqueous solutions and hydrocarbon mixtures. The most important application of biosurfactants is in oil industry to enhance oil quality and facilitate oil extraction. The aim of this study was to isolate biosurfactant producing bacteria and optimize the conditions like temperature and pH for maximum biosurfactant production. Approach: Samples were collected from 8 selected points of oil contaminated soils in Sirri Island-Iran. Primary screening tests including hemolytic activity, Drop collapse technique and Oil Spreading method were preformed and species with the best results were picked for complementary screening tests like emulsification activity, foaming and surface tension measurement. Results: Totally, 160 bacteria species were isolated. During primary and complementary screening tests, 59 species showed hemolytic activity, 46 had drop collapsing ability and 18 species showed positive results in emulsification, foaming and surface tension reduction. Finally, two Bacillus sp. were found to be able to reduce surface tension more than 30 mNm-1. Conclusion: Two strains with a high amount of biosurfactant production and emulsification ability were resulted from the present study. According to the high potential of Bacillus sp. especially for Microbial Enhanced Oil Recovery (MEOR and Bioremediation of oil contamination we can hope that further study of the isolates characteristics and looking for new local strains can play an important role in their application in oil industry.

  11. Alternative methodology for isolation of biosurfactant-producing bacteria.

    Science.gov (United States)

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  12. Alternative methodology for isolation of biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    N. Krepsky

    Full Text Available Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1 and Arabian Light oil (2 g.L-1 as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  13. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils.

    Science.gov (United States)

    Bodour, Adria A; Drees, Kevin P; Maier, Raina M

    2003-06-01

    Biosurfactants are a unique class of compounds that have been shown to have a variety of potential applications in the remediation of organic- and metal-contaminated sites, in the enhanced transport of bacteria, in enhanced oil recovery, as cosmetic additives, and in biological control. However, little is known about the distribution of biosurfactant-producing bacteria in the environment. The goal of this study was to determine how common culturable surfactant-producing bacteria are in undisturbed and contaminated sites. A series of 20 contaminated (i.e., with metals and/or hydrocarbons) and undisturbed soils were collected and plated on R(2)A agar. The 1,305 colonies obtained were screened for biosurfactant production in mineral salts medium containing 2% glucose. Forty-five of the isolates were positive for biosurfactant production, representing most of the soils tested. The 45 isolates were grouped by using repetitive extragenic palindromic (REP)-PCR analysis, which yielded 16 unique isolates. Phylogenetic relationships were determined by comparing the 16S rRNA gene sequence of each unique isolate with known sequences, revealing one new biosurfactant-producing microbe, a Flavobacterium sp. Sequencing results indicated only 10 unique isolates (in comparison to the REP analysis, which indicated 16 unique isolates). Surface tension results demonstrated that isolates that were similar according to sequence analysis but unique according to REP analysis in fact produced different surfactant mixtures under identical growth conditions. These results suggest that the 16S rRNA gene database commonly used for determining phylogenetic relationships may miss diversity in microbial products (e.g., biosurfactants and antibiotics) that are made by closely related isolates. In summary, biosurfactant-producing microorganisms were found in most soils even by using a relatively limited screening assay. Distribution was dependent on soil conditions, with gram-positive biosurfactant-producing

  14. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    Science.gov (United States)

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.

  15. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  16. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  17. INVESTIGATION ON ANTIMICROBIAL ACTIVITY OF BIOSURFACTANT PRODUCED BY PSEUDOMONAS FLUORESCENS ISOLATED FROM MANGROVE ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Govindammal M

    2013-01-01

    Full Text Available The aim of this present study is to investigate the antimicrobial activity of rhamnolipid biosurfactant produced by Pseudomonas fluorescens MFS03 isolated from mangrove forest soil using groundnut oil cake as substrate. The biosurfactant was extracted with an equal amount of ethyl acetate and the concentrated extract was subjected to FT-IR analysis. The important adsorption bands at 3466.24, 2926.45, 1743.47, 1407.30 and 1162.26 cm-1indicate the chemical structure of rhamnolipid. The rhamnolipid biosurfactant was investigated for the potential antimicrobial activity by using disc-diffusion method against Gram positive bacteria (Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Methicillin resistance S. aureus Gram negative bacteria (Escherichia coli, Salmonella typhimurium and a yeast (Candida albicans. The biosurfactant showed distinct antibacterial activity towards tested bacteria and shows an antifungal activity against yeast. The biosurfactant with different concentration was performed for the evaluation of antimicrobial activity. Maximum antimicrobial activity of the biosurfactant (50µl was observed in S. aureus (23 mm and it was found that the biosurfactant activity was dependent on the concentration. So it could be used as a therapeutic agent in pharmaceutical application.

  18. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    Science.gov (United States)

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  19. Bacillus endolithicus sp. nov., isolated from pebbles.

    Science.gov (United States)

    Parag, B; Sasikala, Ch; Ramana, Ch V

    2015-12-01

    Strain JC267T was isolated from pebbles collected from Pingleshwar beach, Gujarat, India. Cells are Gram-stain-positive, facultatively anaerobic, non-motile rods forming sub-terminal endospores in swollen ellipsoidal to oval sporangia. Strain JC267T contains anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0, iso-C16 : 0, C16 : 0 and anteiso-C17 : 0 as major (>5 %) cellular fatty acids. Polar lipids include phosphatidylglycerol, phospholipids (PL1-3), glycolipids (GL1-2) and an unidentified lipid. Cell-wall amino acids are composed of diagnostic meso-diaminopimelic acid, dl-alanine and a small amount of d-glutamic acid. The genomic DNA G+C content of strain JC267T is 45.5 mol%. The 16S rRNA gene sequence of strain JC267T showed highest sequence similarities of Bacillus when subjected to EzTaxon-e blast analysis. The reassociation values based on DNA-DNA hybridization of strain JC267T with Bacillus halosaccharovorans IBRC-M 10095T and Bacillus niabensis JCM 16399T were 26 ± 1 % and 34 ± 3 %, respectively. Based on taxonomic data obtained using a polyphasic approach, strain JC267T represents a novel species of the genus Bacillus, for which the name Bacillus endolithicus sp. nov. is proposed. The type strain is JC267T ( = IBRC-M 10914T = KCTC 33579T).

  20. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  1. Bacillus luteus sp. nov., isolated from soil.

    Science.gov (United States)

    Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2014-05-01

    Two bacterial strains (JC167T and JC168) were isolated from a soil sample collected from Mandpam, Tamilnadu, India. Colonies of both strains were orange and cells Gram-stain-positive. Cells were small rods, and formed terminal endospores of ellipsoidal to oval shape. Both strains were positive for catalase, oxidase and hydrolysis of starch/gelatin, and negative for chitin hydrolysis, H2S production, indole production and nitrate reduction activity. Major fatty acids of both strains (>5%) were anteiso-C15:0, iso-C16:0, iso-C15:0, anteiso-C17:0, iso-C14:0 and C16:0 with minor (1%) amounts of iso-C17:0, anteiso-C17:0 B/iso-C17:0 I and C16:1ω11c. Diphosphatydilglycerol, phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids of both strains. Cell wall amino acids were L-alanine, D-alanine, D-glutamic acid and meso-diaminopimelic acid. β-Carotene and five unidentified carotenoids were present in both strains. Mean genomic DNA G+C content was 53.4±1 mol% and the two strains were closely related (mean DNA-DNA hybridization>90%). 16S rRNA gene sequence comparisons of both strains indicated that they represent species of the genus Bacillus within the family Bacillaceae of the phylum Firmicutes. Both strains had a sequence similarity of 97.6% with Bacillus saliphilus 6AGT and Bacillus. Sequence similarity between strain JC167T and 168 was 100%. Strain JC167T showed 25.8±1% reassociation (based on DNA-DNA hybridization) with B. saliphilus DSM 15402T (=6AGT). Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strain JC167T as a representative of a novel species of the genus Bacillus, for which the name Bacillus luteus sp. nov. is proposed. The type strain is JC167T (=KCTC 33100T=LMG 27257T).

  2. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    Science.gov (United States)

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops.

  3. Bacillus crescens sp. nov., isolated from soil.

    Science.gov (United States)

    Shivani, Y; Subhash, Y; Dave Bharti, P; Sasikala, Ch; Ramana, Ch V

    2015-08-01

    Two bacterial strains (JC247T and JC248) were isolated from soil samples collected from Rann of Kutch, Gujarat, India. Colonies of both strains were creamy white. Cells were Gram-stain-positive, rods-to-curved rods (crescent-shaped), and produced centrally located oval-shaped endospores. Major (>5 %) fatty acids of both strains were iso-C16  :  0, iso-C14  :  0, iso-C15  :  0, C16  :  1ω11c and C16  :  0, with minor ( 1 %) amounts of anteiso-C15  :  0, anteiso-C17  :  0, iso-C16  :  1 H, iso-C17  :  0, iso-C18  :  0, C14  :  0, C17  :  0, C18  :  0, C18  :  1ω9c, iso-C17  :  1ω10c and anteiso-C17  :  0B/isoI. Diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids of both strains. Cell-wall amino acids were l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. The genomic DNA G+C content of strains JC247T and JC248 was 48.2 and 48.1 mol%, respectively. Both strains were closely related with mean DNA-DNA hybridization >90 %. 16S rRNA gene sequence analysis of both strains indicated that they are members of the genus Bacillus within the family Bacillaceae of the phylum Firmicutes. Both strains had a 16S rRNA gene sequence similarity of 96.93 % with Bacillus firmus NCIMB 9366T and Bacillus. Sequence similarity between strain JC247T and JC248 was 100 %. Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strains JC247T and JC248 as representatives of a novel species of the genus Bacillus, for which the name Bacilluscrescens sp. nov. is proposed. The type strain is JC247T ( = KCTC 33627T = LMG 28608T).

  4. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain

    Directory of Open Access Journals (Sweden)

    Debajit Borah

    2017-03-01

    Full Text Available Petroleum based hydrocarbon degrading and biosurfactant producing bacterial strain was isolated from an automobile engine. The strain was identified as Bacillus cereus DRDU1 on the basis of 16S rDNA sequencing analysis. The strain was found to be efficiently degrading 96% of kerosene making it a potential tool for bioremediation of petroleum based contaminants. Production and optimization of the biosurfactant produced by the isolate were also carried out. Surface hydrophobicity trait of isolate was found to be 60.67 ± 1.53% and foaming percentage of the crude biosurfactant was found to be 31.33 ± 0.58%. The presence of amino acids and sugar moieties in the biosurfactant was confirmed by biochemical tests and were further validated by FTIR (the Fourier transform infrared spectrometric analysis revealing the presence of υOH, υCOO, υCOOH, υCH (stretching, υNH, υCH2, υCH3, and υCH (bending, and υCO (ester in the surfactant. The decrease in contact angle of hydrocarbon oil from (30.67 ± 1.15° to (21.3 ± 1.53° respectively after 3 and 6 days of incubation reveals its potential to emulsify petroleum oil. Further, emulsification index (E24 of biosurfactant against kerosene, crude oil, and used engine oil were determined to be 55.33 ± 1.53%, 29.67 ± 1.53%, and 20 ± 1% respectively which attracts its future application in MEOR (microbial enhanced oil recovery process.

  5. Isolation of biosurfactant producing microorganisms and lipases from wastewaters from slaughterhouses and soils contaminated with hydrocarbons

    OpenAIRE

    Becerra, Lizzie; Horna, María

    2016-01-01

    Surfactants are amphipathic molecules which reduce stress at the interface, thereby increasing water solubility and availability of organic compounds are produced by bacteria, fungi, and yeasts. For the isolation of biosurfactant producing bacteria and lipases, was plant in inducing means 10% of sewage effluent from slaughterhouses and soils contaminated with hydrocarbons Province taps Trujillo - Peru. Isolates were seed in agar cultures lecithin and rhodamine agar for determination of lipase...

  6. Distribution of Biosurfactant-Producing Bacteria in Undisturbed and Contaminated Arid Southwestern Soils

    OpenAIRE

    Bodour, Adria A.; Drees, Kevin P.; Maier, Raina M.

    2003-01-01

    Biosurfactants are a unique class of compounds that have been shown to have a variety of potential applications in the remediation of organic- and metal-contaminated sites, in the enhanced transport of bacteria, in enhanced oil recovery, as cosmetic additives, and in biological control. However, little is known about the distribution of biosurfactant-producing bacteria in the environment. The goal of this study was to determine how common culturable surfactant-producing bacteria are in undist...

  7. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  8. Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin.

    Science.gov (United States)

    Toribio, Jeiry; Escalante, Ana E; Caballero-Mellado, Jesús; González-González, Andrea; Zavala, Sergio; Souza, Valeria; Soberón-Chávez, Gloria

    2011-11-01

    The aim of this work is the taxonomic characterization of three biosurfactant-producing bacterial isolates from the Churince system at Cuatro Ciénegas Basin (CCB) in the Mexican State of Coahuila, and the study of the possible role of biosurfactant production in their ecology and evolution. We determined that these isolates belong to a Pseudomonas koreensis lineage endemic to CCB, using standard taxonomical techniques, phylogenetic analysis of three chromosomal loci and phenotypic characterization. This new lineage has the distinct capacity to produce a biosurfactant when compared with previously reported P. koreensis isolates recovered from agricultural soils in Korea. We present evidence suggesting that the biosurfactant secreted by CCB P. koreensis strains is involved in their ability to compete with a CCB Exiguobacterium aurantiacum strain (m5-66) used as a model organism in competition experiments. Furthermore, the ethyl acetate extract of culture supernatant of CCB P. koreensis strains results in growth inhibition not only of E. aurantiacum m5-66, but also of a Bacillus subtilis type strain (ATCC6633). Based on these results we propose that the production of biosurfactant could be of ecological importance and could play a role in the separation of the P. koreensis CCB lineage.

  9. Biodegradation of 2-hydroxyquinoxaline (2-HQ) by Bacillus sp.

    Science.gov (United States)

    Reddy, G V Subba; Reddy, B R; Tlou, M G

    2014-08-15

    An aerobic Gram +ve bacterial strain capable of utilizing 2-Hydroxyquinoxaline (2-HQ) as sole source of carbon and energy was isolated from Chrysanthemum indicum Indian agricultural soil and named as HQ2. On the basis of morphology, physico-biochemical characteristics and 16S rRNA sequence analysis, strain HQ2 was identified as Bacillus sp. The generation time of Bacillus sp. in log phase during growth on 2-HQ is 0.79 h or 47.4 min. The optimal conditions for 2-HQ degradation by Bacillus sp. were inoculum density of 1.0 OD, pH of 6-8, temperature of 37-45 °C and 2-HQ concentration of 500 ppm. Among the additional carbon and nitrogen sources, carbon sources did not influence the degradation rate of 2-HQ, but nitrogen sources-yeast extract marginally enhanced the rate of degradation of 2-HQ. GC-MS analysis of the culture Bacillus sp. grown on 2-HQ indicated the formation of dimers from 2 molecules of 2-hydroxyquinoxaline. The formation of dimer for degradation of 2-HQ by the culture appears to be the first report to our scientific knowledge.

  10. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere.

    Science.gov (United States)

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Zhang, Lei; Zhang, Cai-Wen; Ma, Xiao-Tong; Zhang, Jun

    2016-09-01

    The taxonomy of strain 1DS3-10T, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus Bacillus and appeared to be closely related to the type strains Bacillus benzoevorans DSM 5391T (97.9 %), Bacillus circulans DSM 11T (97.7 %), Bacillus novalis JCM 21709T (97.3 %), Bacillus soli JCM 21710T (97.3 %), Bacillus oceanisediminis CGMCC 1.10115T (97.3 %) and BacillusnealsoniiFO-92T (97.1 %). The fatty acid profile of strain 1DS3-10T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus. The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained meso-diaminopimelic acid. DNA-DNA hybridization values between strain 1DS3-10T and the type strains of closely related species were 25-33 %, which supported that 1DS3-10T represented a novel species in the genus Bacillus. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10T represents a novel species of the genus Bacillus, for which the name Bacillus oryzisoli sp. nov. is proposed. The type strain of the novel species is 1DS3-10T (=ACCC 19781T=DSM 29761T).

  11. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  12. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    Science.gov (United States)

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    ABSTRACT To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium. The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods. IMPORTANCE The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by

  13. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2016-06-01

    Full Text Available The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015 [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  14. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    Science.gov (United States)

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  15. Preliminary characterization of biosurfactants produced by microorganisms isolated from refinery wastewaters.

    Science.gov (United States)

    Yalçin, Emine; Ergene, Aysun

    2010-02-01

    Some bacterial strains isolated from refinery wastewaters were identified as Pseudomonas aeruginosa RWI, Pseudomonas putida RWII, Pseudomonas fluorescens RWIII and Burkholderia cepacia RWIV, and the biosurfactants produced by these strains were coded as BS-I, BS-II, BS-III and BS-IV, respectively. The bacterial strains were characterized by the following biochemical methods: Gram stain, oxidase activity, indol, lactose and growth at 42 degrees C. Biosurfactant production was evaluated by: emulsification activity, surface tension measurement and critical micelle concentration. Chemical characterization of the biosurfactants was done by: FTIR and analysis of carbohydrate, protein and lipid content. The biosurfactants showed good emulsification activity against different hydrocarbon sources. The initial surface tension of culture broth was determined as 67.3 mN/m, and production of BS-I, BS-II, BS-III and BS-IV lowered this value to 35.9, 49.2, 51.6 and 45.7 mN/m, respectively. The critical micelle concentration of the biosurfactants was found to be in the range 10-50 mg/L. From the results of this study it was observed that the refinery wastewaters are a suitable source for isolation of biosurfactant-producing bacteria, but are not a substrate for biosurfactant production.

  16. [Depolymerization of chitosan by chinolytic complex from Bacillus sp. 739].

    Science.gov (United States)

    Il'ina, A V; Varlamov, V P; Melent'ev, A I; Aktuganov, G E

    2001-01-01

    Low-molecular-weight (3-6 kDa) water-soluble chitosan was obtained by enzymatic depolymerization. Hydrolysis of crab chitosan was induced by O-glycoside hydrolase (EC 3.2.1), an extracellular chitinolytic complex from Bacillus sp. 739. The optimum conditions for hydrolysis were found (sodium-acetate buffer, pH 5.2; 55 degrees C; an enzyme/substrate ratio 4 U/g chitosan; 1 h).

  17. Bacillus filamentosus sp. nov., isolated from sediment sample.

    Science.gov (United States)

    Sonalkar, Vidya V; Mawlankar, Rahul; Venkata Ramana, V; Joseph, Neetha; Shouche, Yogesh S; Dastager, Syed G

    2015-02-01

    A novel Gram-stain positive, endospore-forming bacterium, designated SGD-14(T), was isolated from a marine sediment sample in Goa Province, India. Cells of the isolate were found to be strictly aerobic. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SGD-14(T) showed a similarity of 99.5 % with Bacillus endophyticus and similarities to other Bacillus type strains were below 96 %. The whole-cell sugar pattern was found to consist of ribose, xylose and glucose. The predominant menaquinone was identified as MK-7 and the major fatty acids as anteiso-C15:0, iso-C15:0, iso-C16:0, anteiso-C17:0, C16:0 and iso-C14:0. The strain was found to grow optimally at 30 °C and pH 7.0-7.5. DNA G + C content was determined to be 39.6 mol%. The phospholipid pattern was found to consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. DNA-DNA hybridization studies between strain SGD-14(T) and B. endophyticus CIP106778(T) showed that strain SGD-14(T) exhibited Bacillus, for which the name Bacillus filamentosus sp. nov. is proposed. The type strain of Bacillus filamentosus is SGD-14(T) = (=NCIM 5491(T) = DSM 27955(T)).

  18. Production, purification and chemical characterization of biosurfactant produced by Bacillus subtilis from raw glycerol

    OpenAIRE

    2010-01-01

    Resumo: Os biossurfactantes são compostos amplamente estudados em todo o mundo. Suas características o tornam muito atrativo em relação aos surfactantes sintéticos. Dentre essas características podemos citar, a baixa toxicidade, boa compatibilidade com a pele e olhos, biodegradabilidade e produção a partir de substratos renováveis. No entanto, o custo de produção dos biossurfactantes ainda inviabiliza sua produção em escala industrial. Tradicionalmente, os hidrocarbonetos têm sido os substrat...

  19. Bacillus vini sp. nov. isolated from alcohol fermentation pit mud.

    Science.gov (United States)

    Ma, Kedong; Chen, Xiaorong; Guo, Xiang; Wang, Yanwei; Wang, Huimin; Zhou, Shan; Song, Jinlong; Kong, Delong; Zhu, Jie; Dong, Weiwei; He, Mingxiong; Hu, Guoquan; Zhao, Bingqiang; Ruan, Zhiyong

    2016-08-01

    A novel aerobic, Gram-stain-positive, sporogenous, rod-shaped bacterium, designated LAM0415(T), was isolated from an alcohol fermentation pit mud sample collected from Sichuan Luzhou-flavour liquor enterprise in China. The isolate was found to be able to grow at NaCl concentrations of 0-10 % (w/v) (optimum: 1.0 %), 10-50 °C (optimum: 30-35 °C) and pH 3.0-10.0 (optimum: 7.0-8.0). Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolate belonged to the genus Bacillus and was closely related to Bacillus sporothermodurans DSM 10599(T) and Bacillus oleronius DSM 9356(T), with 98.4 and 97.2 % sequence similarity, respectively. The DNA-DNA hybridization values between strain LAM0415(T) and the two reference strains were 33.3 ± 1.2 and 42.8 ± 0.8 %, respectively. The genomic DNA G+C content was 35.2 mol% as determined by the T m method. The major fatty acids were determined to be iso-C15:0, anteiso-C15:0 and anteiso-C17:0. The predominant menaquinones were identified as MK7 and MK8. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and four unidentified glycolipids. The diagnostic amino acid of the cell wall peptidoglycan was determined to be meso-diaminopimelic acid. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0415(T) (=ACCC 06413(T) = JCM 19841(T)) represents the type strain of a novel species of the genus Bacillus, for which the name Bacillus vini sp. nov. is proposed.

  20. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere.

    Science.gov (United States)

    Shivaji, S; Chaturvedi, Preeti; Begum, Zareena; Pindi, Pavan Kumar; Manorama, R; Padmanaban, D Ananth; Shouche, Yogesh S; Pawar, Shrikant; Vaishampayan, Parag; Dutt, C B S; Datta, G N; Manchanda, R K; Rao, U R; Bhargava, P M; Narlikar, J V

    2009-12-01

    Three novel bacterial strains, PVAS-1(T), B3W22(T) and B8W22(T), were isolated from cryotubes used to collect air samples at altitudes of between 27 and 41 km. Based on phenotypic characteristics, chemotaxonomic features, DNA-DNA hybridization with the nearest phylogenetic neighbours and phylogenetic analysis based on partial 16S rRNA gene sequences (PVAS-1(T), 1196 nt; B3W22(T), 1541 nt; B8W22(T), 1533 nt), the three strains were identified as representing novel species, and the names proposed are Janibacter hoylei sp. nov. (type strain PVAS-1(T) =MTCC 8307(T) =DSM 21601(T) =CCUG 56714(T)), Bacillus isronensis sp. nov. (type strain B3W22(T) =MTCC 7902(T) =JCM 13838(T)) and Bacillus aryabhattai sp. nov. (type strain B8W22(T) =MTCC 7755(T) =JCM 13839(T)).

  1. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  2. Bacillus composti sp. nov. and Bacillus thermophilus sp. nov., two thermophilic, Fe(III)-reducing bacteria isolated from compost.

    Science.gov (United States)

    Yang, Guiqin; Chen, Ming; Yu, Zhen; Lu, Qin; Zhou, Shungui

    2013-08-01

    Two novel thermophilic bacteria, designated SgZ-9(T) and SgZ-10(T), were isolated from compost. Cells of the two strains were catalase-positive, endospore-forming and Gram-staining-positive rods. Strain SgZ-9(T) was oxidase-positive and non-motile, and strain SgZ-10(T) was oxidase-negative and motile. The highest 16S rRNA gene sequence similarity for both strains SgZ-9(T) and SgZ-10(T) was observed with Bacillus fortis (97.5 % and 96.9 %, respectively). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SgZ-9(T) formed a cluster with B. fortis R-6514(T) and Bacillus fordii R-7190(T), and SgZ-10(T) formed a cluster with Bacillus farraginis R-6540(T). The DNA-DNA pairing studies showed that SgZ-9(T) displayed 41.6 % and 30.7 % relatedness to the type strains of B. fortis and B. fordii, respectively. The 16S rRNA gene sequence similarity between strains SgZ-9(T) and SgZ-10(T) was 97.2 %, and the level of DNA-DNA relatedness between them was 39.2 %. The DNA G+C content of SgZ-9(T) and SgZ-10(T) was 45.3 and 47.9 mol%, respectively. Chemotaxonomic analysis revealed that both strains contained the menaquinone 7 (MK-7) as the predominant respiratory quinone. The major cellular fatty acids (>5 %) were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C17 : 0 in SgZ-9(T) and iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0, anteiso-C17 : 0 and iso-C16 : 0 in SgZ-10(T). Based on the phenotypic characteristics, chemotaxonomic features, DNA-DNA hybridization with the nearest phylogenetic neighbours and phylogenetic analysis based on the 16S rRNA gene sequences, the two strains were determined to be two distinct novel species in the genus Bacillus, and the names proposed are Bacillus composti sp. nov. SgZ-9(T) ( = CCTCC AB2012109(T) = KACC 16872(T)) and Bacillus thermophilus sp. nov. SgZ-10(T) (CCTCC AB2012110(T) = KACC 16873(T)).

  3. Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake in mine soil

    Science.gov (United States)

    This study was aimed at assessing the potential of allochthonous Bacillus sp. SKK11 and sesame oil cake extract for transformation of Pb in mine soil. The bacteria were isolated from a brackish environment and identified as Bacillus sp. based on partial 16S rDNA sequences. The isolate SKK11 exhibite...

  4. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    Energy Technology Data Exchange (ETDEWEB)

    Prabhawathi, Veluchamy; Thirunavukarasu, Kathirvel; Doble, Mukesh, E-mail: mukeshd@iitm.ac.in

    2014-07-01

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm{sup 2} for B. subtilis and 13 and 8.6 μg/cm{sup 2} for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm{sup 2}, respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm{sup 2}, respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different.

  5. Application of Bacillus sp. as a biopreservative for food preservation

    Directory of Open Access Journals (Sweden)

    S. Nath,

    2015-04-01

    Full Text Available Food preservation is enhancing shelf-life and food quality to eliminate food-related illness and product spoilage, especially by the use of food additives.The growing consumer demand for effective preservation of food without altering its nutritional quality and free of potential health risks andto find an attractive and alternative approach to chemical preservatives, have stimulated research in the field of biopreservation by the use of natural or controlled microbiota and/or their antimicrobial compounds including very recent innovation: Bacillus sp., the ubiquitous, Gram positive bacteria, producing inhibitory substances like cyclic peptides and bacteriocins, with a broad antimicrobial spectrum and a history of safe use in food. Bacillus spores are also being used extensively as probiotic food supplements where they are used in human as dietary supplements and in feed for livestock and aquaculture as growth promoters.A novel concept multi-target food preservation has emerged in relation to hurdle technology stating the microbial safety, stability, sensorial and nutritional qualities of foods are based on the application of combined preservative factors (called hurdles including Bacillus sp. that microorganisms present in the food are unable to overcome, thus leading to inhibition of microbial growth by disturbing their homeostasis and metabolic exhaustion and avoiding tress reaction by bacteria. Future exploration of the natural preservatives and/or their metabolites, in combination with advanced technologies could result in replacement of chemical preservatives, or could allow less severe processing (e.g. heat treatments, while still maintaining adequate microbiological safety and quality in foods.

  6. Bacillus gobiensis sp. nov., isolated from a soil sample.

    Science.gov (United States)

    Liu, Bo; Liu, Guo-Hong; Cetin, Sengonca; Schumann, Peter; Pan, Zhi-Zhen; Chen, Qian-Qian

    2016-01-01

    A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterium designated FJAT-4402T, was isolated from the weed rhizosphere soil of the Gobi desert in the Xinjiang Autonomous Region in the north-west of China. Isolate FJAT-4402T grew at 15-40 °C (optimum 30 °C), pH 5-10 (optimum pH 7) and in 0-3 % (w/v) NaCl (optimum 0 %). Phylogenetic analyses, based on 16S rRNA gene sequences, showed that isolate FJAT-4402T was a member of the genus Bacillus and was most closely related to Bacillus licheniformis DSM 13T (96.2 %). The isolate showed 33.3 % DNA-DNA relatedness to the closest reference isolate, B. licheniformis DSM 13T. The diagnostic diamino acid of the peptidoglycan of isolate FJAT-4402T was meso-diaminopimelic acid and the predominant isoprenoid quinone was MK-7. The major cellular fatty acids were anteiso-C15 : 0 (28.5 %), iso-C15 : 0 (20.1 %), anteiso-C17 : 0 (14.3 %), iso-C16 : 0 (9.6 %), C16 : 0 (8.4 %), iso-C17 : 0 (6.2 %) and iso-C14 : 0 (4.7 %) and the DNA G+C content was 42.0 mol%. The phenotypic, chemotaxonomic and genotypic properties indicated that strain FJAT-4402T represents a novel species within the genus Bacillus, for which the name Bacillus gobiensis sp. nov. is proposed. The type strain is FJAT-4402T ( = DSM 29500T = CGMCC 1.12902T).

  7. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  8. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  9. Screening Three Strains of Pseudomonas aeruginosa: Prediction of Biosurfactant-Producer Strain

    Directory of Open Access Journals (Sweden)

    Gholamreza Dehghan-Noudeh

    2009-01-01

    Full Text Available Problem statement: The chemical surfactants have some disadvantages; especially, toxicity and no biodegradability. Approach: Biosurfactants were the structurally diverse group of surface-active molecules synthesize by micro-organisms. The microbial surfactants were interesting, because of the biodegradable and have many applications in industry, agriculture, medicine. Results: In the present study, the production of biosurfactant by three strains of Pseudomonas aeruginosa (PTCC 1074, 1310 and 1430 was investigated. The hemolytic and foam forming activity of different strains were studied and consequently, P. aeruginosa PTCC 1074 was selected as the suitable strain. P. aeruginosa PTCC 1074 was grown in the nutrient broth medium and biosurfactant production was evaluated every 24 h by emulsification index and surface tension for the best of production time. After that, in order to get maximum production of biosurfactant, the selected strain was grown with different additives in nutrient broth and the best culture medium was found. The biosurfactant was isolated from the supernatant and its amphipathic structure was confirmed by chemical methods. Conclusion: Biosurfactant produced by Pseudomonas aeruginosa PTCC 1074 would be considered as a suitable surfactant in industries due to its low toxicity.

  10. Biosurfactant-Producing Lactobacilli: Screening, Production Profiles, and Effect of Medium Composition

    Directory of Open Access Journals (Sweden)

    Eduardo J. Gudiña

    2011-01-01

    Full Text Available Biosurfactant production was screened in four lactobacilli strains. The highest biosurfactant production (excreted and cell-bound biosurfactants was achieved with Lactobacillus paracasei ssp. paracasei A20, a strain isolated from a Portuguese dairy plant, with a decrease in the surface tension of 6.4 mN m−1 and 22.0 mN m−1, respectively. Biosurfactant production by this strain was evaluated under different culture broth compositions. The use of different nitrogen sources revealed that yeast extract is essential for bacterial growth, while peptone is crucial for biosurfactant synthesis. For biosurfactant production, the use of peptone and meat extract yielded a higher production when compared to the standard medium, with a surface tension reduction of 24.5 mN m−1 Furthermore, experiments were also conducted in a reactor with pH and temperature control. Biomass and biosurfactant production in bioreactor was higher comparing with the experiments conducted in shake flaks. The optimization procedure adopted in the current work was found to improve the biosurfactant production and opened new perspectives for the use of L. paracasei ssp. paracasei A20 as a promising biosurfactant-producer.

  11. Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80.

    Science.gov (United States)

    Chiewpattanakul, Paramaporn; Phonnok, Sirinet; Durand, Alain; Marie, Emmanuelle; Thanomsub, Benjamas Wongsatayanon

    2010-12-01

    A new biosurfactant producer was isolated from palm-oilcontaminated soil and later identified through morphology and DNA sequencing as the yeast-like fungus Exophiala dermatitidis. Biosurfactant production was catalyzed by vegetable oil, supplemented with a basal medium. The culture conditions that provided the biosurfactant with the highest surface activity were found to be 5% palm oil with 0.08% NH4NO3, at a pH of 5.3, with shaking at 200 rpm, and a temperature of 30 degrees C for a 14-day period of incubation. The biosurfactant was purified, in accordance with surfactant properties, by solvent fractionation using silica gel column chromatography. The chemical structure of the strongest surface-active compound was elucidated through the use of NMR and mass spectroscopy, and noted to be monoolein, which then went on to demonstrate antiproliferative activity against cervical cancer (HeLa) and leukemia (U937) cell lines in a dose-dependent manner. Interestingly, no cytotoxicity was observed with normal cells even when high concentrations were used. Cell and DNA morphological changes, in both cancer cell lines, were observed to be cell shrinkage, membrane blebbling, and DNA fragmentation.

  12. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

    Directory of Open Access Journals (Sweden)

    Tri Handayani Kurniati

    2016-12-01

    Full Text Available Pyrene degradation and biosurfactant activity by a new strain identified as Gordonia cholesterolivorans AMP 10 were studied. The strain grew well and produced effective biosurfactants in the presence of glucose, sucrose, and crude oil. The biosurfactants production was detected by the decreased surface tension of the medium and emulsification activity.  Analysis of microbial growth parameters showed that AMP10 grew best at 50 µg mL-1 pyrene concentration, leading to 96 % degradation of pyrene within 7 days. The result of nested PCR analysis revealed that this isolate possessed the nahAc gene which encodes dioxygenase enzyme for initial degradation of Polycyclic Aromatic Hydrocarbon (PAH. Observation of both tensio-active and emulsifying activities indicated that biosurfactants which produced by AMP 10 when grown on glucose could lower the surface tension of medium from 71.3 mN/m to 24.7 mN/m and formed a stable emulsion in used lubricant oil with an emulsification index (E24 of 74%. According to the results, it is suggested that the bacterial isolates G. cholesterolivorans AMP10 are suitable candidates for bioremediation of PAH-contaminated environments.How to CiteKurniati, T. H.,  Rusmana, I. Suryani, A. & Mubarik, N. R. (2016. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika: Journal of Biology & Biology Education, 8(3, 336-343. 

  13. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    Science.gov (United States)

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507).

  14. Bacillus thermophilum sp. nov., isolated from a microbial fuel cell.

    Science.gov (United States)

    Tang, Jia; Yang, Guiqin; Wen, Junlin; Yu, Zhen; Zhou, Shungui; Liu, Zhi

    2014-09-01

    A novel thermophilic, Gram-staining positive bacterium, designated DX-2(T), was isolated from the anode biofilm of a microbial fuel cell. Cells of the strain were oxidase positive, catalase positive, facultative anaerobic, motile rods. The isolate grew at 30-60 °C (optimum 50 °C) and pH 5-9 (optimum pH 8-8.5). The pairwise 16S rRNA gene sequence similarities showed that strain DX-2(T) was most closely related to Bacillus fumarioli LMG 17489(T) (96.2 %), B. firmus JCM 2512(T) (96.0 %) and B. foraminis DSM 19613(T) (95.7 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DX-2(T) formed a cluster with B. smithii (95.5 %) and B. infernus (94.9 %). The genomic G+C content of DX-2(T) was 43.7 mol%. The predominant respiratory quinone was MK-7. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unknown phospholipids. The major cellular fatty acid was iso-C16:0. Based on its phenotypic characteristics, chemotaxonomic features, and results of phylogenetic analysis, the strain was identified to represent a distinct novel species in the genus Bacillus, and the name proposed is B. thermophilum sp. nov. The type strain is DX-2(T) (=CCTCC AB2012194(T) = KCTC 33128(T)).

  15. A Newly Isolated Thermostable Lipase from Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Salleh

    2011-05-01

    Full Text Available A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5–99.2%. Polymerase chain reaction (PCR cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55–80 °C and at a pH of 6–10. The L2 lipase had a melting temperature (Tm of 59.04 °C when analyzed by circular dichroism (CD spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA (100%, whereas phenylmethylsulfonyl fluoride (PMSF, pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.

  16. A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb.

    Directory of Open Access Journals (Sweden)

    Jong Shik Kim

    Full Text Available Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m. These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications.

  17. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    Daniela Franco Carvalho Jacobucci

    2009-08-01

    Full Text Available Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as the height (cm of the emulsion layers formed. The 72 h incubation experiment resulted in a COD (Chemical Oxygen Demand reduction of 76% with Planococcus citreus strain and 70% with Pantoea agglomerans.The COD reduction with bacterial biosurfactants was over 50% in 24 h of incubation. The COD reduction showed that these strains and the surfactants produced could be used in bioremediation processes.Duas bactérias isoladas de solo contaminado com derivados de petróleo, Pantoea agglomerans e Planococcus citreus, produzem biosurfactantes utilizando respectivamente 1.5% de querosene e óleo de oliva como únicas fontes de carbono. As bactérias e os biosurfactantes produzidos foram adicionados a um efluente oleoso obtido de uma indústria nacional de sabão e margarina. As atividades de emulsificação foram determinadas pelo aumento da absorbância das emulsões óleo em água a 610 nm, enquanto que as emulsões do tipo água em óleo foram expressas em centímetros, pela altura do halo de espumas formado. A redução da demanda química de oxigênio (COD mostra que as linhagens e os biosurfactantes produzidos podem ser utilizados em processos de biorremediação.

  18. Gene Cloning of Penicillin V Acylase from Bacillus sp BAC4 by Genomic Library

    Directory of Open Access Journals (Sweden)

    ELFI SUSANTI VH

    2004-01-01

    Full Text Available This research was aimed to clone and identify penicillin V acylase (PVA gene of Bacillus sp. BAC4 by genomic library. Chromosome DNA of Bacillus sp. BAC4 was isolated by Wang method. pHB201 of E. coli was isolated by alkali lyses method. Recombinant DNA of Bacillus sp. BAC4 chromosome fragment and pHB201 was made by ligase process using T4 DNA ligase. Transformation of E. coli using this recombinant plasmid was carried out according to Mandel-Higa method. The results indicated that chromosome DNA fragment of Bacillus sp. BAC4 was bigger 23 kb with purity 1,3. Plasmid DNA fragment of E coli was 6,5 kb. Transformants laboring pHB201 recombinant plasmid was screen as blue-white colonies in a medium containing IPTG/X-gal and chloramphenicol.

  19. Draft Genome Sequence of Bacillus sp. FMQ74, a Dairy-Contaminating Isolate from Raw Milk

    Science.gov (United States)

    Okshevsky, Mira; Regina, Viduthalai R.; Marshall, Ian P. G.; Schreiber, Lars

    2017-01-01

    ABSTRACT Representatives of the genus Bacillus are common milk contaminants that cause spoilage and flavor alterations of dairy products. Bacillus sp. FMQ74 was isolated from raw milk on a Danish dairy farm. To elucidate the genomic basis of this strain’s survival in the dairy industry, a high-quality draft genome was produced. PMID:28126940

  20. SCREENING OF BIOSURFACTANT PRODUCTION BY BACILLUS SP ISOLATED FROM COASTAL REGION IN CUDDALORE TAMILNADU

    OpenAIRE

    2016-01-01

    Marine microorganisms produce extracellular or membrane associated surface-active compounds (bio surfactants). Biosurfactant are organic compounds belonging to various classes including glycolipids, lipopeptides, fatty acids, phospholipids that reduce the interfacial tension between immiscible liquids.This study deals with production and characterization of biosurfactant from Bacillus sp. The efficiency of Bacillus spstrain isolated from a marine sediments soil sample from coastal region -Cud...

  1. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  2. Purification and Characterization of Agarase from Bacillus sp., H12

    Directory of Open Access Journals (Sweden)

    Ghazi M. Aziz

    2013-01-01

    Full Text Available The present study was conducted to study the Purification and Characterization of agarase from local isolate Bacillus sp., H12 to use in some industrial and pharmaceutical application. The agarase produced from local isolate Bacillus sp., H12 was purified by precipitation with 70% saturation ammonium sulphate, followed by ion-exchange chromotography and Gel filtration. Results showed appearance of two protein peaks, once in the wash step without enzyme activity and the other in the elution step have enzyme activity at this step by using Ion-exchanger DEAE-cellulose and separate one protein peak contain enzyme activity at gel filtration step by using the gel Sephadex G-100, the enzyme was purified to 5.67 times with an enzymes yields of 21.45%. Enzyme characterization of the enzyme indicated that the optimum pH for the enzyme activity and stability was 7. The maximum activity for enzyme appeared at 45°C and stable for 15 min at 35-45°C and lost approximately 60% of its activity at rang above 65°C. Enzyme characterization results showed that the chlorides of silver and mercury had inhibitory effect on enzyme activity, the remaining enzyme activity for the enzyme was 25%, for silver ions and 12.5% for mercury ions at 5 mM and 13.75% for silver ions and 7.5% for mercury ions at 10 mM. The enzyme was affected by chelating agent Ethylene Diamine Tetra Acetic Acid (EDTA at concentration 2, 5 mM the remaining activity 43.75 and 25%, respectively and the enzyme referred to metalloenzyme the enzyme was kept their activity when treated. by reducing agent (2-mercaptoethanol at 2 mM while the enzyme kept 83.75% of its activity at 5 mM of (2-mercaptoethanol. The enzyme was kept their activity when treated by Phenyl Methyl Sulphonyl Fluoride (PMSF at concentration 1, 5 mM, the remaining activity was 97.5 and 91.25%, respectively and this indicated that this enzyme did not refer to serine enzyme group.

  3. Isolation and Characterization of a New Heterotrophic Nitrifying Bacillus sp. Strain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To characterize the heterotrophic nitrifying bacteria. Methods The bacteria were isolated from membrane bioreactor for treating synthetic wastewater using the method newly introduced in this study. Fluorescence in situ hybridization (FISH) was used to validate the nonexistence of autotrophic ammonia oxidizers and nitrite oxidizers. Batch tests were carried out to investigate the capability of heterotrophic nitrification by the pure culture. Phylogenetic analysis of the pure culture was performed. Results A heterotrophic nitrifier, named Bacillus sp. LY, was newly isolated from the membrane bioreactor system in which the efficiency of TN removal was up to 80%. After 24-day, incubation, the removal efficiency of COD by Bacillus sp. LYwas 71.7%. The ammonium nitrogen removal rate after assimilation nearly ceased by Bacillus sp. LYwas 74.7%.The phylogenetic tree of Bacillus sp. LY and the neighbouring nitrifiers were given. Conclusions The batch test results indicate that Bacillus sp. LY can utilize the organic carbon as the source of assimilation when it grows on glucose and ammonium chloride medium accompanying the formation of oxidized-nitrogen. It also can denitrify nitrate while nitrifying. Bacillus sp. LY may become a new bacterial resource for heterotrophic nitrification and play a bioremediation role in nutrient removal.

  4. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    Science.gov (United States)

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.

  5. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation.

    Directory of Open Access Journals (Sweden)

    Liang Yin

    Full Text Available The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine, were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress.

  6. Enhancing the hydrolysis of excess sludge using thermophilic Bacillus sp. Hnu under different oxygen supply conditions

    Directory of Open Access Journals (Sweden)

    Zheng Wei

    2013-01-01

    Full Text Available A thermophilic Bacillus strain was isolated from excess sludge in the present study. The 16S rDNA analysis indicated that this strain was a Bacillus sp. and has not been reported previously (named Bacillus sp. Hnu. The aim of this paper was to investigate the enhanced efficiency of excess sludge hydrolysis by the addition of thermophilic Bacillus sp. Hnu under different oxygen supply conditions. The results indicated that higher temperature and more oxygen supply was advantageous to the volatile suspended solid removal ratio with the same effect to that of protease activity. The maximum volatile suspended solid removal ratio was achieved at 21.5 %, 42.5 %, and 54.4 % after 108 h digestion at pH 6.9 and 60°C and increased by 17.2 %, 38 %, and 45.4 % under anaerobic, microaerobic, and aerobic conditions compared with the control test, respectively. The hydrolysis rate constants for the anaerobic, microaerobic, and aerobic conditions were 3, 4.8, and 7 times (40°C and 3.5, 9.8, and 11.8 times (50°C and 2.7, 7.2, and 10.3 times (60°C. Hydrolysis performance indicated that the Bacillus sp. Hnu could accelerate the hydrolysis rate. The kinetic study showed that the hydrolysis of sludge with Bacillus sp. Hnu and the control test followed the first-order kinetics except at 60°C.

  7. Bacillus sp.处理含锑废水试验研究%Bacillus sp. Treatment of Wastewater Containing Antimony

    Institute of Scientific and Technical Information of China (English)

    李小娇; 陈平; 陈才丽; 成应向; 龚道新; 向仁军; 王强强

    2013-01-01

    Antimony ore dressing wastewater was treated by using Bacil us sp. and the influences of treatment time, temperature, inoculation size, and pH value on Sb removal effect were explored. The results showed that the best removal efficiency of Sb in mineral processing wastewater could reach 99.75% in 4 d under the optimum conditions of 30 ℃, microbial inoculated quantity 5%, and pH value at 2.0. After the treatment, the concentration of Sb in wastewater was reduced from 122.21 to 0.30 mg/L, which was lower than the local industrial wastewater discharge standard of 0.50 mg/L.%利用某芽孢杆菌属微生物( Bacillus sp.)对锑矿选矿废水进行了处理。研究微生物的接种量、作用时间、温度、体系 pH值等对废水中Sb的去除效果的影响。结果表明:作用时间4 d微生物接种量为5处理体系 pH为2最佳处理体系温度为30时,效果最佳,对废水中Sb的去除率达到99.75%,处理后废水中 Sb的浓度由122.21 mg/L降低至0.30 mg/L,出水Sb浓度低于湖南省地方标准排放限值0.50 mg/L。

  8. Degradation of 3-phenoxybenzoic acid by a Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available 3-Phenoxybenzoic acid (3-PBA is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L(-1 3-PBA within 72 h in mineral salt medium (MSM. Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM. The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q(max, K(s and K(i of 0.8615 h(-1, 626.7842 mg·L(-1 and 6.7586 mg·L(-1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t(1/2 for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.

  9. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2015-01-01

    The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of β isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.

  10. Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants

    Indian Academy of Sciences (India)

    Marí­a Soledad Figueredo; María Laura Tonellie; Tania Taurian; Jorge Angelini; Fernando Ibañez; Lucio Valetti; Vanina Muñoz; Marí­a Soledad Anzuay; Liliana Ludueña; Adriana Fabra

    2014-12-01

    Plant-growth-promoting bacteria are often used to enhance crop yield and for biological control of phytopathogens. Bacillus sp. CHEP5 is a biocontrol agent that induces systemic resistance (ISR) in Arachis hypogaea L. (peanut) against Sclerotium rolfsii, the causal agent of root and stem wilt. In this work, the effect of the co-inoculation of Bacillus sp. CHEP5 and the peanut nodulating strain Bradyrhizobium sp. SEMIA 6144 was studied on induction of both systemic resistance and nodulation processes. Bradyrhizobium sp. SEMIA 6144 did not affect the ability of Bacillus sp. CHEP5 to protect peanut plants from S. rolfsii by ISR and the priming in challenged-plants, as evidenced by an increment in phenylalanine ammonia-lyase enzyme activity. Additionally, the capacity of Bradyrhizobium sp. SEMIA 6144 to induce nodule formation in pathogen-challenged plants was improved by the presence of Bacillus sp. CHEP5.

  11. Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants.

    Science.gov (United States)

    Figueredo, Maria Soledad; Tonelli, Maria Laura; Taurian, Tania; Angelini, Jorge; Ibanez, Fernando; Valetti, Lucio; Munoz, Vanina; Anzuay, Maria Soledad; Luduena, Liliana; Fabra, Adriana

    2014-12-01

    Plant-growth-promoting bacteria are often used to enhance crop yield and for biological control of phytopathogens. Bacillus sp. CHEP5 is a biocontrol agent that induces systemic resistance (ISR) in Arachis hypogaea L. (peanut) against Sclerotium rolfsii, the causal agent of root and stem wilt. In this work, the effect of the co-inoculation of Bacillus sp. CHEP5 and the peanut nodulating strain Bradyrhizobium sp. SEMIA 6144 was studied on induction of both systemic resistance and nodulation processes. Bradyrhizobium sp. SEMIA 6144 did not affect the ability of Bacillus sp. CHEP5 to protect peanut plants from S. rolfsii by ISR and the priming in challenged-plants, as evidenced by an increment in phenylalanine ammonia-lyase enzyme activity. Additionally, the capacity of Bradyrhizobium sp. SEMIA 6144 to induce nodule formation in pathogen-challenged plants was improved by the presence of Bacillus sp. CHEP5.

  12. Bacillus lonarensis sp. nov., an alkalitolerant bacterium isolated from a soda lake.

    Science.gov (United States)

    Reddy, Sultanpuram Vishnuvardhan; Thirumala, Mothe; Farooq, Mohammed; Sasikala, Chintalapati; Ramana, Chintalapati Venkata

    2015-01-01

    A novel Gram-stain-positive, rod-shaped, motile and endospore-forming novel bacterial strain 25nlg(T) was isolated from Lonar soda lake, in India. Based on the 16S rRNA gene sequence analysis, it was identified as a member of Firmicutes, being most closely related to Bacillus patagoniensis PAT 05(T) (96.6 %) and other members in the genus Bacillus (Bacillus. Strain 25nlg(T) represents a novel member of the genus Bacillus, for which the name Bacillus lonarensis sp. nov. is proposed. The type strain is 25nlg(T) (=KCTC 33413(T) = LMG 27974(T) = CGMCC = 1.12817(T)).

  13. Tetrodotoxin-producing Bacillus sp. from the ribbon worm (Nemertea) Cephalothrix simula (Iwata, 1952).

    Science.gov (United States)

    Magarlamov, Timur Yu; Beleneva, Irina A; Chernyshev, Alexey V; Kuhlevsky, Andrey D

    2014-07-01

    Specimens of the toxic ribbon worm Cephalothrix simula from the Sea of Japan were screened for tetrodotoxin-producing bacteria. A single TTX-producing bacterial strain (No 1839) was isolated from tissues of C. simula and studied by immunohistochemical methods (including immunoelectron and immunofluorescent microscopies) with anti-TTX antibodies. Sequencing of 16S rRNA gene of the strain 1839 showed that it is most likely Bacillus sp. CU040510-015 and Bacillus asahii. Based on its morphological and biochemical properties, however we suppose that the isolated Bacillus sp. 1839 should be classified as representing a new species. Microdistribution of TTX in bacterial cell was investigated under electron microscope by immunoenzymatic methods. TTX was concentrated in the forespore and free spores, but it was not detected in the vegetative cells of Bacillus sp. 1839. We suggest that release of free mature spores from sporangium of Bacillus sp. 1839 leads to appearance of toxin in tissues of C. simula. Confocal laser-scanning microscopy (CLSM) method with anti-TTX antibodies can be recommended for preliminary detection of apparent TTX accumulation.

  14. Complete Genome Sequence of a Potential Novel Bacillus sp. Strain, FJAT-18017, Isolated from a Potato Field

    Science.gov (United States)

    Liu, Guo-Hong; Wang, Jie-Ping; Che, Jian-Mei; Chen, Qian-Qian

    2017-01-01

    ABSTRACT Bacillus sp. strain FJAT-18017 was isolated from a potato field in Xinjiang, China. This paper is the first report, to our knowledge, to demonstrate the fully sequenced and completely annotated genome of Bacillus sp. FJAT-18017. The genome size is 5,265,521 bp. The average G+C content was 42.42%. PMID:28104649

  15. Antifungal activity of Bacillus sp. isolated from compost.

    Science.gov (United States)

    Czaczyk, K; Stachowiak, B; Trojanowska, K; Gulewicz, K

    2000-01-01

    Four strains of Bacillus isolated from lupine compost exhibited an antifungal activity against six plant fungal pathogens (Rhizoctonia solani, Bipolaris sorokiniana, Sclerotinia sclerotiorum, Trichothecium roseum, Fusarium solani, Fusarium oxysporum). It was significantly influenced by the composition of the cultivation media.

  16. Karakterisasi Enzim Kitinase dari Bacillus sp. BK17, Isolat Potensial Pengendali Hayati Jamur Patogen Tanaman

    OpenAIRE

    Maimunah, Siti

    2016-01-01

    Characterization of chitinase of including pH and temperature, Km and Vmax of Bacillus sp. BK 17 has been conducted. Crude extract of Bacillus sp. BK17 growing in minimum salt medium with colloidal chitin for 5 days was precipited with ammonium sulphate. Optimum chitinase activity was found in 50% ammonium sulphate precipitation with specific activity of 0.545 Units. Chitinase activity in homogenated mycelia of Sclerotium rolfsii was 0.0012 U/ml. The Km and Vmax of the enzyme was 0.46 μg and ...

  17. Pengaruh pH dan Perubahan Temperatur Terhadap Pembentukan Spora Bacillus sp. BK17

    OpenAIRE

    2014-01-01

    Bacterial spores are the surviving structure under unfavourable physical and chemical conditions. Bacillus sp. BK17 is a spore forming bacteria that has been reported to have an ability to inhibit the growth of various pathogenic fungi.This study aims to determine the best pH and temperature for the formation of spore. The result showed that Bacillus sp. BK17 has the highest spore formation at the initial pH of media of 5,0 and at a heat shock of 70° C for 60 minutes. 090805025

  18. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    Directory of Open Access Journals (Sweden)

    Xianzhen Li

    2010-02-01

    Full Text Available A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relatives based on the 16S rRNA gene sequence are Bacillus anthracis, Bacillus thuringiensis, and Brevibacillus brevis (syn. Bacillus brevis with the similarity of 96.5%. The DNA–DNA hybridization data indicates a low level of genomic relatedness with the relative type strains of Bacillus thuringiensis (6.1%, Bacillus anthracis (10.5% and Brevibacillus brevis (8.7%. On the basis of the phenotypic and phylogenetic data together with the genomic distinctiveness, the LQQ strain represents a novel species of the genus Bacillus, for which the name Bacillus marcorestinctum sp. nov. is proposed. The type strain is LQQT.

  19. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    Science.gov (United States)

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage.

  20. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    2000-01-01

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In cont

  1. Characterization of an antifungal chitinase from Bacillus sp.SL-13

    Institute of Scientific and Technical Information of China (English)

    Chen; Shan

    2014-01-01

    Bacillus sp.SL-13 produced antifungal proteins.The growth of the plant-pathogenic fungi Rhizoctonia solani was considerably inhibited by the presence of the SL-13 culture supernatant.It is very suitable for the use in a relatively unstable environment,exhibiting effective biological control.

  2. Bacillus nakamurai sp. nov., a black pigment producing strain

    Science.gov (United States)

    Two isolates of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a da...

  3. Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas.

    Science.gov (United States)

    Reddy, G S N; Uttam, Anarasi; Shivaji, S

    2008-10-01

    Strain PN5(T) is a Gram-positive, aerobic, motile, rod-shaped, peritrichously flagellated bacterium that was isolated from the Pindari glacier using nutrient agar medium. Cells of PN5(T) are catalase-positive and oxidase-negative and contain lysine, glutamic acid and alanine in the peptidoglycan (peptidoglycan type A4alpha). Further, the cells are characterized by the presence of iso-C(15 : 0) and iso-C(16 : 1) as the predominant fatty acids and MK-7 as the isoprenoid quinone. Based on the above characteristics, strain PN5(T) was assigned to the genus Bacillus. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain PN5(T) clustered with the type strain of Bacillus silvestris with a sequence similarity of 97.2 %. DNA-DNA hybridization between PN5(T) and B. silvestris DSM 12223(T) resulted in a relatedness of only 15 %, clearly indicating that strain PN5(T) represents a novel species. Further, PN5(T) was different from B. silvestris with respect to various phenotypic and chemotaxonomic characteristics. Therefore, strain PN5(T) is identified as a representative of a novel species of the genus Bacillus, for which the name Bacillus cecembensis sp. nov. is proposed. Bacillus cecembensis is unique among psychrotolerant Bacillus species in containing l-Lys-d-Glu in the cell-wall peptidoglycan. The type strain is PN5(T) (=LMG 23935(T) =MTCC9127(T) =JCM 15113(T)).

  4. Anaerobic utilization of phosphite and hypophosphite by Bacillus sp.

    Science.gov (United States)

    Foster, T. L.; Winans, L., Jr.; Helms, S. J. S.

    1978-01-01

    A Bacillus species capable of using phosphite and hypophosphite under anaerobic conditions was isolated from Cape Canaveral soil samples and grown on a glucose-mineral salts medium with phosphate omitted. The optimum hypophosphite concentration was 60 microg/ml, while the optimum phosphite concentration was greater than 1000 microg/ml. P-32-labeled hypophosphite was incorporated into the cell as organic phosphate, and little or no phosphate appeared in the medium when either hypophosphite or phosphite was the phosphorus source. When phosphate was present in the medium, phosphite was not metabolized. When both phosphite and hypophosphite were present, phosphite was used first and then hypophosphite.

  5. Efficient Degradation of Feather by Keratinase Producing Bacillus sp.

    Directory of Open Access Journals (Sweden)

    P. Jeevana Lakshmi

    2013-01-01

    Full Text Available Keratinase producing microorganisms are being increasingly utilized for degradation and recycling of poultry feather waste. Two native strains BF11 (Bacillus subtilis and BF21 (Bacillus cereus degrading keratin completely were characterized. The native strains produced more than 10 KU/mL of enzyme. Strain improvement resulted in isolation of MBF11 and MBF21 from BF11 and BF21 isolates, respectively. Optimization of nutritional and physical parameters of these MBF isolates at laboratory scale increased the overall keratinase activity by 50-fold resulting in a yield of 518–520 KU/mL. Fermentation media designed with starch as carbon source and soya bean meal as nitrogen source supported high levels of enzyme production. The optimum conditions for enzyme production were determined to be pH 8.5 and temperatures of 45–55°C for MBF11 and 37°C for MBF21, respectively. Culture filtrate showed a significant increase in the amounts of cysteine, cystine, methionine, and total free amino acids during the fermentation period. The ratio of organic sulphur concentration was also considerably higher than that of the inorganic sulphate in the culture filtrate suggesting the hydrolysis of disulphide by the isolates.

  6. [Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls].

    Science.gov (United States)

    Aktuganov, G E; Galimzianova, N F; Melent'ev, A I; Kuz'mina, L Iu

    2007-01-01

    The mycolytic bacterial strain Bacillus sp. 739 produces extracellular enzymes which degrade in vitro the cell walls of a number of phytopathogenic and saprophytic fungi. When Bacillus sp. 739 was cultivated with Bipolaris sorokiniana, a cereal root-rot pathogen, the fungus degradation process correlated with the levels of the beta-1,3-glucanase and protease activity. The comparative characteristic of Bacillus sp. 739 enzymatic preparations showed that efficient hydrolysis of the fungus cell walls was the result of the action of the complex of enzymes produced by the strain when grown on chitin-containing media. Among the enzymes of this complex, chitinases and beta-1,3-glucanases hydrolyzed most actively the disintegrated cell walls of B. sorokiniana. However, only beta-1,3-glucanases were able to degrade the cell walls of native fungal mycelium in the absence of other hydrolases, which is indicative of their key role in the mycolytic activity of Bacillus sp. 739.

  7. [Probiotic features of carotene producing strains Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113].

    Science.gov (United States)

    Avdeeva, L V; Nechypurenko, O O; Kharhota, M A

    2015-01-01

    Researched probiotic properties of carotinproducing strains Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113. It was established that Bacillus sp. 1.1 characterized by high and middle antagonistic activity against museums and actual test cultures and B. amyloliquefaciens UCM B-5113 shown middle and low activity. They grew up and formed a pigment at pH 6.0 in the presence of 0.4% bile. Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113 were avirulent, had low antagonistic activity and characterized by susceptibility to antimicrobial agents, excluding colistin. The results suggested the possibility to create based on Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113 probiotic preparation.

  8. Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18.

    Science.gov (United States)

    Saimmai, Atipan; Rukadee, Onkamon; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2012-10-01

    Biosurfactant-producing bacteria were isolated from mangrove sediment in southern Thailand. Isolates were screened for biosurfactant production by using the surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Oleomonas sagaranensis AT18. It has also been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the culture supernatant to 25 mN/m. In all 5.30 g of biosurfactant yield was obtained after 54 h of cultivation by using molasses and NaNO₃ as carbon and nitrogen sources, respectively. The biosurfactant recovery by chloroform:methanol extraction showed a small critical micelle concentration value (8 mg/l), thermal and pH stability with respect to surface tension reduction. It also showed emulsification activity and a high level of salt concentration. The biosurfactant obtained was confirmed as a glycolipid by using a biochemical test, FT-IR and mass spectra. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  9. An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand.

    Science.gov (United States)

    Saimmai, Atipan; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2013-01-01

    Biosurfactant-producing bacteria, isolate CT2, was isolated from mangrove sediment in the south of Thailand. The sequence of the 16S rRNA gene from isolate CT2 showed 100 % similarity with Selenomonas ruminantium. The highest biosurfactant production (5.02 g/l) was obtained when the cells were grown on minimal salt medium containing 15 g/l molasses and 1 g/l commercial monosodium glutamate supplemented with 1 g/l NaCl, 0.1 g/l leucine, 5 % (v/v) inoculum size at 30 °C and 150 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small CMC value (8 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test, FT-IR, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  10. Stimulatory effects of biosurfactant produced by Pseudomonas aeruginosa BSZ-07 on rice straw decomposing[G1

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiuzhuo; CAI Weimin; WANG Juan

    2008-01-01

    Biosurfactant, produced by Pseudomonas aeruginosa BSZ-07, was added to the rice straw decomposing process to enhance the production of reducing sugars. Observed by Fourier Transform InfraRed (FT-IR) and Nuclear Magnetic Resonance [G2](NMR) analysis, the purified biosurfactant was considered as a mixture of RL1 and RL2, which are two different types of rhamnolipids. Two different adding methods, adding the purified rhamnolipid and the on-site production of it were compared. The results showed that 0.5 g/L was the optimum concentration for adding purified rhamnolipid and the optimum temperature for on-site production was 30℃ for the first 48 h and 34℃ for the next 48 h. Under the optimum conditions, these two adding methods could improve the production of reducing sugar to 2.730 g/L and 2.504 g/L, which was 22.30% and 12.20% higher than that of the rhamnolipid-free sample, respectively, which indicated that both of them were more effective than any other kind of surfactant discussed in this article. As the on-site production of rhamnolipid could omit the purification process, thus reducing the production cost effectively, it seemed to be a prospective adding method of the biosurfactant for enhancing rice straw decomposing.

  11. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity.

    Science.gov (United States)

    Ertuğrul, Sevgi; Dönmez, Gönül; Takaç, Serpil

    2007-11-19

    The bacteria that could grow on media containing olive mill wastewater (OMW) were isolated and their lipase production capacities were investigated. The strain possessing the highest lipase activity among 17 strains grown on tributyrin agar medium was identified as Bacillus sp. The effect of initial pH on the lipase activity was investigated in tributyrin medium and pH 6 was found to be the optimal. The liquid medium composition was improved by replacing tributyrin with various carbon sources. Among the media containing different compositions of triolein, trimyristin, trilaurin, tricaprin, tricaprylin, tributyrin, triacetin, Tween 80, OMW, glucose, and whey; the medium contained 20% whey +1% triolein was found to give the highest lipase activity. Cultivation of Bacillus sp. in the optimal medium at pH 6 and 30 degrees C for 64h resulted in the extracellular and intracellular lipase activities of 15 and 168U/ml, respectively.

  12. Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation.

    Science.gov (United States)

    Sriram, Muthu Irulappan; Gayathiri, Shanmugakani; Gnanaselvi, Ulaganathan; Jenifer, Paulraj Stanly; Mohan Raj, Subramanian; Gurunathan, Sangiliyandi

    2011-10-01

    Escherichia fergusonii KLU01, a propitious bacterial strain isolated from oil contaminated soil was identified to be hydrocarbon degrading, heavy metal tolerant and a potent producer of biosurfactant using diesel oil as the sole carbon and energy source. The biosurfactant produced by the strain was characterized to be a lipopeptide. The minimum active dose and critical micelle concentration of the biosurfactant were found as 0.165±0.08 μg and 36 mg/L, respectively. In spite of being an excellent emulsifier, the biosurfactant showed an incredible stability at extremes of temperature, pH and at various concentrations of NaCl, CaCl₂ and MgCl₂. Also the bacterium manifested tolerance towards Manganese, Iron, Lead, Nickel, Copper and Zinc. The strain emerges as a new class of biosurfactant producer with potential environmental and industrial applications, especially in hydrocarbon degradation and heavy metal bioremediation.

  13. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjiani Alou

    2015-11-01

    Full Text Available Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes.

  14. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2015-11-01

    Full Text Available Bacillus niameyensis sp. nov. strain SIT3T (= CSUR P1266 = DSM 29725 is the type strain of B. niameyensis sp. nov. This Gram-positive strain was isolated from the digestive flora of a child with kwashiorkor and is a facultative anaerobic rod and a member of the Bacillaceae family. This organism is hereby described alongside its complete genome sequence and annotation. The 4  286  116 bp long genome (one chromosome but no plasmid contains 4130 protein-coding and 66 RNA genes including five rRNA genes.

  15. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  16. Bacillus sp.Treating Wastewater Containing Antimony%Bacillus sp.处理含锑废水试验研究

    Institute of Scientific and Technical Information of China (English)

    李小娇; 成应向; 龚道新; 向仁军; 王强强

    2012-01-01

    利用某芽孢杆菌属微生物(Bacillus sp.)对锑矿选矿废水进行了处理.研究微生物的接种量、作用时间、温度、体系pH值等对废水中Sb的去除效果的影响.结果表明:作用时间4d、微生物接种量为5%、处理体系pH为2、最佳处理体系温度为30℃时,效果最佳,对废水中Sb的去除率达到99.75%,处理后废水中Sb的浓度由122.21 mg/L降低至0.30 mg/L,出水Sb浓度低于湖南省地方标准排放限值0.50 mg/L.%Antimony ore dressing wastewater was treated by using a certain Bacillus microorganism (Bacillus sp.). Sb removal efficiency in mineral processing wastewater was affected by microbial inoculums size, treating time, temperature and the system pH value. Results showed that the best removal efficiency of Sb in mineral processing wastewater could reach 99.75% in 4d under the optimum conditions of 30 ℃, microbial inoculated quantity 5% and pH value 2.0. After the treatment, the concentration of Sb in wastewater was reduced from 122.21 mg/L to 0.30 mg/L, which was lower than local industrial wastewater discharge standard of 0.50 mg/L.

  17. Bacillus sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India.

    Science.gov (United States)

    Joshi, Dhaval N; Flora, S J S; Kalia, Kiran

    2009-07-30

    Arsenic hypertolerant bacterial cells were isolated from the common industrial effluent treatment plant, Vapi, India. Strain DJ-1 sustaining 400 mM, As (V) out of 16 bacterial strains was identified as Bacillus sp. strain DJ-1 through 16S rRNA ribotyping. The maximum arsenic accumulation of 9.8+/-0.5 mg g(-1) (dry weight) was observed during stationary phase of growth. Intracellular compartmentalization has shown 80% of arsenic accumulation in cytoplasm. The lack of arsC gene and arsenate reductase activity indicated that Bacillus sp. strain DJ-1 may lack classical ars operon and detoxification may be mediated through some novel mechanism. The arsenite binding protein was purified by affinity chromatography and characterized as DNA protection during starvation (DPS) protein by electrospray ionization mass spectrometry. The induction of DPS showed the adaptation of bacteria in arsenic stress condition and/or in detoxification mechanism, relies on its ability to bind with arsenic. These results indicate the hypertolerance with higher intracellular accumulation of arsenic by Bacillus sp. strain DJ-1, which could be mediated by DPS protein thus signifying this organism is a potential candidate for the removal of arsenic from industrial wastewater, which needs further study.

  18. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism.

    Science.gov (United States)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Lan, Tu; Li, Feize; Zhang, Dong; Yang, Jijun; Yang, Yuanyou; Luo, Shunzhong; Tang, Jun; Liu, Ning

    2014-09-01

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process.

  19. Antifungal activity of indigenous bacillus sp. isolate Q3 against marshmallow mycobiota

    Directory of Open Access Journals (Sweden)

    Jošić Dragana Lj.

    2011-01-01

    Full Text Available Marshmallow is a host of a number of saprophytic and parasitic fungi in Serbia. The seeds of marshmallow are contaminated with fungi from different genera, especially Alternaria and Fusarium, which significantly reduced seed germination and caused seedling decay. In this study we investigate antagnonism of indigenous Bacillus sp. isolate Q3 against marshmallow mycopopulation. Bacillus sp. Q3 was isolated from maize rhizosphere, characterized by polyphasic approch and tested for plant growth promoting treats. Bacillus sp. Q3 produced antifungal metabolites with growth inhibition activity against numerous fungi in dual culture: 61.8% of Alternaria alternata, 74.8% of Myrothecium verrucaria and 33.6% of Sclerotinia sclerotiorum. That effect could be caused by different antifungal metabolites including siderophores, hydrolytic enzymes, organic acids and indole acetic acid (IAA. Suppression of natural marshmallow seed infection by Q3 isolate was observed. The seeds were immersed in different concentrations of bacterial suspension during 2h and their infections by phytopathogenic fungi were estimated. The results showed significant reduction of seed infection by Alternaria spp. The presented results indicate possible application of this isolate as promising biological agent for control of marshmallow seed pathogenic fungi.

  20. Biosurfactant produced by Salmonella Enteritidis SE86 can increase the adherence and resistance to sanitizers on lettuce leaves (Lactuca sativa L., cichoraceae

    Directory of Open Access Journals (Sweden)

    Eliandra Mirlei Rossi

    2016-01-01

    Full Text Available Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of biosurfactant produced by S. Enteritidis SE86 on the adherence to slices of lettuce leaves and on the resistance to sanitizers. First, S. Enteritidis SE86 was inoculated on lettuce leaves in order to determine the amount of biosurfactant produced. Subsequently, S. Enteritidis SE86 was inoculated on lettuce leaves, with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 hours (emulsification index of 11 to 52.15% and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves stomata in the presence of biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to the adherence and increased the resistance to sanitizers when the microorganism was present on lettuce leaves.

  1. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae).

    Science.gov (United States)

    Rossi, Eliandra M; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H; Tondo, Eduardo C

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves' stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves.

  2. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Mehrshad, Maliheh; Amoozegar, Mohammad Ali; Didari, Maryam; Bagheri, Maryam; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-08-01

    A novel Gram-stain-positive, moderately halophilic bacterium, designated strain E33(T), was isolated from water of the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain E33(T) were motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain E33(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-25 % (w/v), with optimum growth occurring at 5-15 % (w/v) NaCl. The optimum temperature and pH for growth were 40 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain E33(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity with the species Bacillus niabensis 4T19(T) (99.2 %), Bacillus herbersteinensis D-1-5a(T) (97.3 %) and Bacillus litoralis SW-211(T) (97.2 %). The DNA G+C content of the type strain of the novel species was 42.6 mol%. The major cellular fatty acids of strain E33(T) were anteiso-C15 : 0 and iso-C15 : 0, and the polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids, an unknown lipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (97 %), MK-6 (2 %) and MK-8 (0.5 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate E33(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed low levels of relatedness between strain E33(T) and Bacillus niabensis IBRC-M 10590(T) (22 %), Bacillus herbersteinensis CCM 7228(T) (38 %) and Bacillus litoralis DSM 16303(T) (19 %). On the basis of polyphasic evidence from this study, a novel species of the genus Bacillus, Bacillus halosaccharovorans sp. nov. is proposed, with strain E33(T) (= IBRC-M 10095(T) = DSM 25387(T)) as the type strain.

  3. Selection and Molecular Biological Identification of a Strain of Bacillus sp. Inhibiting the Growth of Saprolegnia ferax

    Institute of Scientific and Technical Information of China (English)

    Song; Zengfu; Fan; Bin; She; Linrong; Tang; Lei; Zhao; Shilin; Lv; Liqun; Yang; Xianle

    2014-01-01

    Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on the growth of S. ferax JL( P < 0. 05). Then,the effects of Bacillus sp. BA1 on different sources of S. ferax were carried out. Results showed that BA1 also had significantly inhibitory effects on S. ferax 6#,10# and S2( P < 0. 05). Sequence of 16 S r DNA of BA1 was analyzed; and homologous alignment analysis showed that BA1 had more than 99% similarity with Bacillus cereus. Therefore,it could be concluded that strain BA1 was B. cereus,which significantly inhibited the growth of S. ferax and could be used as the biological control agent for S. ferax diseases in aquaculture.

  4. Proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico Proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico

    Directory of Open Access Journals (Sweden)

    A. Sáez Vega

    2006-06-01

    Full Text Available Se evaluó el efecto de cuatro fuentes de nitrógeno sobre la actividad enzimática de proteasas alcalinas, secretadas por una cepa nativa de Bacillus sp Alcalofílico, cultivada a diferentes concentraciones de LMF (Licor de Maíz Fermentado. El crecimiento de la cepa no es afectado por los pH de inoculación de 7,0; 8,5 y 9,5; en contraste con la actividad enzimática y producción de proteína verdadera, que tuvieron sus mejores resultados a pH inicial de 8,5. A este pH se evaluaron dos fuentes de nitrógeno orgánico (extracto de levadura y peptona y dos inorgánicos (NH4Cl y NaNO3The effect of four nitrogen sources on the enzymatic activity of alkaline proteases from a wild strain of Alkalophilic Bacillus sp cultivated to different concentrations from CSL (Corn Steep Liquor. was evaluated. The growth of the strain is not affected by pH of inoculation of 7,0, 8,5 and 9,5, in contrast to the enzymatic activity and true protein production, that had their better results to initial pH of 8,5. To this initial pH of 8,5; two organic nitrogen sources (yeast extract and peptone and two inorganic ones were evaluated (NH4Cl and NaNO3. With peptone the best enzymatic activity to a relation appeared to molar C/N between 1 and 2 was found. For the studied interval of % CSL (0,5 to 2% p/v the concentration of the CSL does not affect the enzymatic activity.

  5. Bacillus salsus sp. nov., a halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Didari, Maryam; Bagheri, Maryam; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-09-01

    A Gram-staining-positive, endospore-forming, rod-shaped, strictly aerobic, slightly halophilic bacterium, designated strain A24(T), was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain A24(T) were motile rods and produced oval endospores at a terminal position in swollen sporangia. Strain A24(T) was catalase and oxidase positive. Growth occurred with between 0.5 and 7.5% (w/v) NaCl and the isolate grew optimally at 3% (v/w) NaCl. The optimum temperature and pH for growth were 35 °C and pH 8.0, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A24(T) belonged to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity with the species Bacillus alkalitelluris BA288(T) (97.2%), Bacillus herbersteinensis D-1,5a(T) (96.0%) and Bacillus litoralis SW-211(T) (95.6%). The G+C content of the genomic DNA of this strain was 35.9 mol%. The polar lipid pattern of strain A24(T) consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phospholipids. The major cellular fatty acids of strain A24(T) were anteiso-C(15:0) and iso-C(15:0). The respiratory quinones were MK-7 (94%) and MK-6 (4%). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate A24(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed a relatedness of 8% between strain A24(T) and Bacillus alkalitelluris IBRC-M 10596(T), supporting its placement as a novel species. Phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data suggest that this strain represents a novel species of the genus Bacillus, for which the name Bacillus salsus sp. nov. is proposed. The type strain is strain A24(T) ( = IBRC-M 10078 (T) = KCTC 13816(T)).

  6. High-quality genome sequence and description of Bacillus ndiopicus strain FF3T sp. nov.

    Directory of Open Access Journals (Sweden)

    C.I. Lo

    2015-11-01

    Full Text Available Strain FF3T was isolated from the skin-flora of a 39-year-old healthy Senegalese man. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not allow any identification. This strain exhibited a 16S rRNA sequence similarity of 96.8% with Bacillus massiliensis, the phylogenetically closest species with standing nomenclature. Using a polyphasic study made of phenotypic and genomic analyses, strain FF3T was Gram-positive, aeroanaerobic and rod shaped and exhibited a genome of 4 068 720 bp with a G+C content of 37.03% that coded 3982 protein-coding and 67 RNA genes (including four rRNA operons. On the basis of these data, we propose the creation of Bacillus ndiopicus sp. nov.

  7. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry.

  8. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

    Directory of Open Access Journals (Sweden)

    Ji-Seong Kim

    2015-06-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  9. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring

    Directory of Open Access Journals (Sweden)

    Somen Acharya

    2012-08-01

    Full Text Available The aim of this work was to study the effect of some nutritional and environmental factors on the production of cellulases, in particular endoglucanase (CMCase and exoglucanases (FPase from Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from an Indian hot spring. The characterization study indicated that the optimum pH and temperature value was 6.5 to 7.0 and 50-55°C, respectively. Maximum cellulases production by both the isolates was detected after 60 h incubation period using wheat and rice straw. The combination of inorganic and organic nitrogen source was suitable for cellulases production. Overall, FPase production was much higher than CMCase production by both of the strains. Between the two thermophiles, the cellulolytic activity was more in B.licheniformis MVS1 than Bacillus sp. MVS3 in varying environmental and nutritional conditions.

  10. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus).

    Science.gov (United States)

    Balcázar, José Luis; Pintado, José; Planas, Miquel

    2010-04-01

    A Gram-positive-staining, motile, rod-shaped, endospore-forming bacterium (BFLP-1( T)) was isolated from faeces of wild long-snouted seahorses ( Hippocampus guttulatus) captured in north-west Spain (Toralla, Galicia). Strain BFLP-1(T) grew at 10-30 degrees C and pH 5.5-9 (optimally at 20 degrees C and pH 7.2) and with 0-7 % (w/v) NaCl (optimally with 2 % NaCl). The G+C content of the DNA was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BFLP-1(T) was a member of the genus Bacillus and was most closely related to Bacillus herbersteinensis D-1,5a(T) (96.6 %), B. shackletonii LMG 18435(T) (96.0 %) and B. isabeliae CVS-8(T) (95.9 %). Chemotaxonomic data (peptidoglycan type, meso-diaminopimelic acid; major menaquinone, MK-7; predominant fatty acids, anteiso-C(15 : 0 ), anteiso-C(17 : 0) and C(16 : 1 )omega11c; major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminoglycophospholipid) supported the affiliation of strain BFLP-1(T) to the genus Bacillus . Comparative analysis of 16S rRNA gene sequences and chemotaxonomic and phenotypic features indicated that strain BFLP-1(T) represents a novel species within the genus Bacillus, for which the name Bacillus galliciensis sp. nov. is proposed. The type strain is BFLP-1( T) (=DSM 21539(T) =LMG 24668(T)).

  11. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    Science.gov (United States)

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  12. Bacillus persicus sp. nov., a halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Didari, Maryam; Amoozegar, Mohammad Ali; Bagheri, Maryam; Mehrshad, Maliheh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-04-01

    A novel gram-positive, slightly halophilic bacterium, designated strain B48(T), was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain B48(T) were non-motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain B48(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-10.0 % (w/v), with optimum growth occurring at 2.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain B48(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity to the species Bacillus foraminis CV53(T) (97.4 %) and Bacillus purgationiresistens DS22(T) (96.9 %). The DNA G+C content of this new isolate was 40.1 mol%. The major cellular fatty acids of strain B48(T) were iso-C15 : 0 and anteiso-C15 : 0, and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminophospholipid and two unknown phospholipids. The only quinone present was menaquinone 7 (MK-7). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate B48(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed a low level of relatedness between strain B48(T) and Bacillus foraminis IBRC-M 10625(T) (8.1 %). On the basis of polyphasic evidence from this study, a new species of the genus Bacillus, Bacillus persicus sp. nov., is proposed, with strain B48(T) ( = IBRC-M 10115(T) = DSM 25386(T) = CECT 8001(T)) as the type strain.

  13. Whole-Genome Sequence and Fosfomycin Resistance of Bacillus sp. Strain G3(2015) Isolated from Seawater off the Coast of Malaysia

    Science.gov (United States)

    Chan, Xin-Yue; Chen, Jian-Woon; Adrian, Tan-Guan-Sheng; Hong, Kar-Wai; Chang, Chien-Yi; Yin, Wai-Fong

    2017-01-01

    ABSTRACT Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation. PMID:28360153

  14. Draft Genome Sequence of the Obligate Halophilic Bacillus sp. Strain NSP22.2, Isolated from a Seasonal Salt Marsh of the Great Rann of Kutch, India

    Science.gov (United States)

    Pal, Kamal Krishna; Sherathia, Dharmesh; Vanpariya, Sejal; Patel, Ilaxi; Dalsania, Trupti; Savsani, Kinjal; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Rupapara, Rupal; Rawal, Priya

    2013-01-01

    Here, we report the 4.0-Mbp draft genome of an obligate halophile, Bacillus sp. strain NSP22.2, isolated from a seasonal salt marsh of the Great Rann of Kutch, India. To understand the mechanism(s) of obligate halophilism and to isolate the relevant gene(s), the genome of Bacillus sp. NSP22.2 was sequenced. PMID:24356848

  15. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    Science.gov (United States)

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  16. Bacillus kochii sp. nov., isolated from foods and a pharmaceuticals manufacturing site.

    Science.gov (United States)

    Seiler, Herbert; Schmidt, Verena; Wenning, Mareike; Scherer, Siegfried

    2012-05-01

    Three Gram-staining-positive, strictly aerobic, motile, catalase-positive, endospore-forming rods, designated WCC 4582(T), WCC 4581 and WCC 4583, were isolated from two different food sources and a pharmaceuticals production site. The three isolates were highly similar in their 16S rRNA gene sequences (100 % similarity) and groEL sequences (99.2-100 % similarity), Fourier-transform infrared spectroscopic fingerprints and other features tested. The isolates were most closely related to Bacillus horneckiae; the isolates and the type strain of B. horneckiae shared 97.6 % and 89.6 % 16S rRNA gene and groEL sequence similarities, respectively. The organisms grew optimally at 30 °C, at pH 7 and in the presence of 0.5 % (w/v) NaCl. The cell-wall peptidoglycan of WCC 4582(T) contained meso-diaminopimelic acid (A1γ) and the genomic DNA G+C content was 36.4 mol%. DNA-DNA relatedness between strain WCC 4582(T) and B. horneckiae NRRL B-59162(T) was 17 %. The three isolates are considered to represent a novel species of the genus Bacillus, for which the name Bacillus kochii sp. nov. is proposed. The type strain is WCC 4582(T) ( = DSM 23667(T) = CCUG 59877(T) = LMG 25855(T)).

  17. Protease with collagenolytic activity produced by Bacillus sp. DPUA 1728 from Amazonian soil

    Directory of Open Access Journals (Sweden)

    Lorena A. Lima

    2015-12-01

    Full Text Available Qualitative analyses were carried out on solid medium with insoluble collagen 0.25% (w/v to detect proteases with collagenolytic activity produced by Bacillus sp. In cultures incubated for 24 h, a 23 full factorial design with four repetitions at the center point was developed to analyze the effects and interactions between initial pH, temperature and the concentration of gelatin. Based on the results of the first 23 full factorial design, a successive 23 full factorial design was performed. The most favorable production conditions were found to be 1.5% (w/v gelatin, pH 9.0 and 37 °C with enzymatic activity of 86.27 U/mL. The enzyme showed optimal activity at 50 °C and pH 9.0, and it was stable over wide pH (7.2-10.0 and temperature (45 °C-60 °C ranges. These results indicate that Bacillus sp DPUA 1728 is a potential source for producing collagenolytic protease with possible biotechnological applications, such as in the food, cosmetics and leather industries.

  18. Biosorption of Cu(Ⅱ) on extracellular polymers from Bacillus sp. F19

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; FANG Xuliang; YE Zhilong; LI Yahong; CAI weimin

    2008-01-01

    Biosorption can be an effective process for the removal of heavy metals from aqueous solutions. The adsorption of Cu(Ⅱ) from aqueous solution on the extracellular polymers (EPS) from Bacillus sp. (named MBFF19) with respect to pH, incubation time,concentration of initial Cu(Ⅱ), and biosorbent dose was studied. Biosorption of Cu(Ⅱ) is highly pH dependent. The maximum uptake of Cu(Ⅱ) (89.62 mg/g) was obtained at pH 4.8. Biosorption equilibrium was established in approximately 10 min. The correlation coefficient of more than 0.90 turned out that the adsorption process of Cu(Ⅱ) on MBFF19 was in accordance with both Langmuir and Freundlich isotherms. The pseudo-first and second order models were applied to examine the kinetics of the adsorption, whereas the latter was found to be in harmony with the kinetic data better. Because of the outstanding uptake capacity of Cu(Ⅱ), MBFF19 produced by Bacillus sp. was proved to be an excellent biosorbent for removing Cu(Ⅱ) from aqueous solutions.

  19. Purification and Characterization of Organic Solvent and Detergent Tolerant Lipase from Thermotolerant Bacillus sp. RN2

    Directory of Open Access Journals (Sweden)

    Tadahiko Kajiwara

    2010-09-01

    Full Text Available The aim of this study was to characterize the organic solvent and detergent tolerant properties of recombinant lipase isolated from thermotolerant Bacillus sp. RN2 (Lip-SBRN2. The isolation of the lipase-coding gene was achieved by the use of inverse and direct PCR. The complete DNA sequencing of the gene revealed that the lip-SBRN2 gene contains 576 nucleotides which corresponded to 192 deduced amino acids. The purified enzyme was homogeneous with the estimated molecular mass of 19 kDa as determined by SDS-PAGE and gel filtration. The Lip-SBRN2 was stable in a pH range of 9–11 and temperature range of 45–60 °C. The enzyme was a non metallo-monomeric protein and was active against pNP-caprylate (C8 and pNP-laurate (C12 and coconut oil. The Lip-SBRN2 exhibited a high level of activity in the presence of 108% benzene, 102.4% diethylether and 112% SDS. It is anticipated that the organic solvent and detergent tolerant enzyme secreted by Bacillus sp. RN2 will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

  20. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1

    Directory of Open Access Journals (Sweden)

    Xuefei Yu

    2015-09-01

    Full Text Available Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8 with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons.

  1. Biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2 isolated from soil

    Institute of Scientific and Technical Information of China (English)

    兰图; 刘宁; 张东; 杨吉军; 罗顺忠; 安竹; 邬琦琦; 杨远友; 冯更生; 唐军

    2015-01-01

    To develop a microbe-based bioremediation strategy for cleaning up thorium-contaminated sites, we have investigated the biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2, one of the dominant species of bacterial groups isolated from soils in Southwest China. Thorium biosorption depended on the pH of environment, and its rapid biosorption reached a maximum of up to 10.75 mg Th per gram of the bacteria (wet wt.) at pH 3.0. The biosorption agreed bettter with Langmuir isotherm model than Freundlich model, indicating that thorium biosorption was a monolayer adsorption. The thermodynamic parameters, negative change in Gibbs free energy and positive value in enthalpy and entropy, suggested that the biosorption was spontaneous, more favorable at higher temperature and endothermic process with an increase of entropy. Scanning electron microscopy (SEM) indicated that thorium initially binded with the cell surface, while transmission electron microscopy (TEM) revealed that Th deposited in the cytoplasm and served as cores for growth of element precipitation (e.g., phosphate minerals) or by self-precipitation of hydroxides, which is probably controlled by ion-exchange, as evidenced by particle induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Fourier Transform Infrared (FTIR) further indicated that thorium biosorption involved carboxyl and phosphate groups and protein in complexation or electrostatic interaction. Overall results indicated that a combined electrostatic interaction-complexation-ion exchange mechanism could be involved in thorium biosorption by Bacillus sp. dwc-2.

  2. Arsenite Oxidation and Arsenite Resistance by Bacillus sp. PNKP-S2

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2015-01-01

    Full Text Available Arsenic causes human health problems after accumulate in the body for 10-15 years and arsenite [As(III] is generally regarded as being more mobile and toxic than other oxidation states. In this study, two-hundred and three bacterial strains were isolated from groundwater and soil samples collecting in Ubon Ratchathani Province, Thailand. All strains were screened for arsenic tolerant efficiency at 1-10 mM of sodium arsenite. Eighteen selected strains which had the highest resistance to 10 mM of As(III were further studied for their As(III-oxidizing activity and growth in enrichment and growth medium (EG medium supplemented with 0.58 mM of As(III. It was found that strain PNKP-S2 was able to grow in the medium with As(III as a sole energy source and had 89.11% As(III removal within 48 h. The PCR-based 16S rDNA sequencing analysis revealed that the strain PNKP-S2 was closed relative to Bacillus sp. This is the first report on Bacillus sp. chemolithoautotrophic As(III-oxidizer and this strain could be a potential candidate for application in arsenic remediation of contaminated water.

  3. Effect of temperature on batch elastase production by Bacillus sp.EL31410

    Institute of Scientific and Technical Information of China (English)

    何国庆; 徐莹; 陈启和; 阮晖; 李景军

    2004-01-01

    The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 ℃ to 28 ℃, were evaluated in shake flask. The result indicated that 37 ℃ was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 ℃. This result was verified by batch fermentation in 5-L bioreactor under 37 ℃ and 30 ℃ temperature, respectively. The specific cell growth rate at 37 ℃ was higher than that at 30 ℃ latory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 ℃ or 30 ℃, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37 ℃, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30 ℃ in batch process. It was concluded that cultivation at constant temperature of 30 ℃ was appropriate for elastase production by Bacillus sp. EL31410.

  4. Recovery of Aliphatic Hydrocarbons from Oil Field Sludge using Bacillus sp

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Bhutto

    2015-04-01

    Full Text Available Bioremediation of aliphatic HC (Hydrocarbons in the oily sludge of Kunnar oil and gas field, Pakistan was attempted by means of previously isolated and developed Bacillus sp. Both autoclaved and non-autoclaved sludge samples were analyzed for a reaction time of 30 days with pH 7 and temperature of 380C in 50 ml MSM growth media for the sludge concentration of 5, 10 and 50% with 2, 4 and 6ml of Bacillus sp. relatively, in air atmosphere. Stabilization of the samples by microbial activity resulted in the decrease in TPH (Total Petroleum Hydrocarbon concentration by 60, 69 and 87% in autoclaved samples in contrast to the decrease of 70, 84 and 94% observed in non-autoclaved samples, relatively. Hydrocarbon degradation in oily sludge was investigated via GC which transpired that 97 and 99% concentration of aliphatic hydrocarbons in autoclaved and non-autoclaved samples was removed at 5% of TPH concentration, relatively. However, with 10% TPH concentration aliphatic hydrocarbons reduction was 68% in autoclaved samples to that of 87% in non-autoclaved samples. Further increase in the hydrocarbons concentration by 50% yielded in the removal of aliphatic hydrocarbons by 65% in autoclaved samples as compared to 98% decrease in non-autoclaved samples.

  5. Purification and Partial characterization of manganese peroxidase from Bacillus pumilus AND Paenibacillus sp.

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2009-12-01

    Full Text Available The production of manganese peroxidase (MnP from Bacillus pumilus and Paenibacillus sp. was studied under absence and presence of the inducers indulin AT, guayacol, veratryl alcohol, lignosulfonic acid and lignosulfonic acid desulfonated. Indulin AT increased the activity of B. pumilus MnP up to 31.66 U/L after 8 h, but no improve was observed for Paenibacillus sp., which reached maximum activity (12.22 U/L after 20 h. Both MnPs produced by these microorganisms were purified in phenyl sepharose resin and the proteins from crude extracts were eluted in two fractions. However, only the first fraction of each extract exhibited MnP activities. Tests in different pH and temperature values, from pH 5.0 to pH 10.0 and 30 ºC to 60 ºC, respectively, were carried out with the purified MnP. The maximum activity reached for B. pumilus and Paenibacillus sp. MnPs were 4.3 U/L at pH 8.0 and 25 ºC and 11.74 U/L at pH 9.0 and 35 ºC, respectively. The molar masses determined by SDS-PAGE gel eletrophoresis were 25 kDa and 40 kDa, respectively, for the purified enzyme from B. pumilus and Paenibacillus sp.

  6. Bacillus daliensis sp. nov., an alkaliphilic, Gram-positive bacterium isolated from a soda lake.

    Science.gov (United States)

    Zhai, Lei; Liao, Tingting; Xue, Yanfen; Ma, Yanhe

    2012-04-01

    A Gram-positive, alkaliphilic bacterium, designated strain DLS13T, was isolated from Dali Lake in Inner Mongolia Autonomous Region, China. The isolate was able to grow at pH 7.5-11.0 (optimum at pH 9), in 0-8 % (w/v) NaCl (optimum at 2 %, w/v) and at 10-45 °C (optimum at 30 °C). Cells of the isolate were facultatively anaerobic, spore-forming rods with peritrichous flagella. The predominant isoprenoid quinone was MK-7 and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DLS13T was a member of the genus Bacillus and most closely related to Bacillus saliphilus DSM 15402T (96.9 % similarity). The DNA-DNA relatedness value between strain DLS13T and B. saliphilus DSM 15402T was 38.7±1.9 %. Comparative analysis of genotypic and phenotypic features indicated that strain DLS13T represents a novel species of the genus Bacillus, for which the name Bacillus daliensis sp. nov. is proposed; the type strain is DLS13T (=CGMCC 1.10369T=JCM 17097T=NBRC 107572T).

  7. Augmentation of tribenuron methyl removal from polluted soil with Bacillus sp.strain BS2 and indigenous earthworms

    Institute of Scientific and Technical Information of China (English)

    Qiang Tang; Zhiping Zhao; Yajun Liu; Nanxi Wang; Baojun Wang; Yanan Wang; Ningyi Zhou; Shuangjiang Liu

    2012-01-01

    Tribenuron methyl(TBM)is a member of the sulfonylurea herbicide family and is widely used worldwide.In this study,TBMdegrading bacteria were enriched with TBM as potential carbon,nitrogen or sulfur source,and 44 bacterial isolates were obtained.These isolates were phylogenetically diverse,and were grouped into 25 operational taxonomic units and 14 currently known genera.Three representatives,Bacillus sp.strain BS2,Microbacterium sp.strain BS3,and Cellulosimicrobium sp.strain BS 11,were selected,and their growth and TBM removal from culture broth were investigated.In addition,indigenous earthworms were collected and applied to augment TBM degradation in lab-scale soil column experiments.Results demonstrated that Bacillus sp.strain BS2 and earthworms significantly increased TBM removal during soil column experiments.

  8. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system.

    Science.gov (United States)

    Zhao, Zhenyong; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2011-06-15

    This study aimed at investigating the synergistic effect of temperature and biosurfactant on the biodegradation of phenanthrene in bioslurry. Bench-scale bioslurry experiments were conducted at 25 and 55°C. The desorption rate coefficients of phenanthrene (K(des)) obtained using the pseudo-first order model were 0.0026 and 0.0035 kg mg(-1)h(-1) at 25 and 55°C, respectively. Addition of 1500 mg L(-1) biosurfactant, produced by Acinetobacter calcoaceticus BU03, marginally increased the K(des) at 25°C since most of biosurfactant was sorbed onto soil; however, significantly increased the K(des) to 0.0087 kg mg(-1)h(-1) at 55°C as the thermophilic temperature reduced the adsorption of the biosurfactant onto soil and subsequently enhanced the desorption of phenanthrene. The biodegradation of phenanthrene well fitted pseudo-first order kinetics based on the assumption that biodegradation was limited by the desorption. About 78.7% of phenanthrene was degraded in 30 days at 25°C; and addition of biosurfactant did not affect the biodegradation. However, addition of the biosurfactant or inoculation of A. calcoaceticus BU03 at 55°C significantly enhanced the biodegradation by increasing the K(des). Results indicate that synergistic application of thermophilic temperature and biosurfactant or inoculation of biosurfactant producing microorganisms is an effective and innovative method to enhance the efficiency of PAH degradation in bioslurry system.

  9. Genome Sequence of Bacillus sp. Strain UMTAT18 Isolated from the Dinoflagellate Alexandrium tamiyavanichii Found in the Straits of Malacca

    Science.gov (United States)

    Ming, Gan Han; Mohd Noor, Mohd Ezhar; Sung, Yeong Yik; Usup, Gires

    2016-01-01

    Bacillus sp. strain UMTAT18 was isolated from the harmful dinoflagellate Alexandrium tamiyavanichii. Its genome consists of 5,479,367 bp with 5,546 open reading frames, 102 tRNAs, and 29 rRNAs. Gene clusters for biosynthesis of nonribosomal peptides, bacteriocin, and lantipeptide were identified. It also contains siderophore and genes related to stress tolerance.

  10. Electron Microscopic Analysis and Biochemical Characterization of a Novel Methanol Dehydrogenase from the Thermotolerant Bacillus sp. C1

    NARCIS (Netherlands)

    Vonck, Janet; Arfman, Nico; Vries, Gert E. de; Beeumen, Jozef van; Bruggen, Ernst F.J. van; Dijkhuizen, Lubbert

    1991-01-01

    Methanol dehydrogenase from the thermotolerant Bacillus sp. C1 was studied by electron microscopy and image processing. Two main projections can be distinguished: one exhibits 5-fold symmetry and has a diameter of 15 nm, the other is rectangular with sides of 15 and 9 nm. Subsequent image processing

  11. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-04-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  12. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-01-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions.Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  13. Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium.

    Science.gov (United States)

    Azmatunnisa, M; Rahul, K; Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2015-04-01

    Two Gram-stain-positive, diesel oil-degrading, solvent-tolerant, aerobic, endospore-forming, rod-shaped bacteria were isolated from a contaminated laboratory plate. Based on 16S rRNA gene sequence analysis, strains JC228(T) and JC279 were identified as belonging to the genus Bacillus within the family Bacillaceae of the phylum Firmicutes and were found to be most closely related to Bacillus carboniphilus JCM 9731(T) (98.1% 16S rRNA gene sequence similarity) and shared Bacillus . The DNA-DNA hybridization value between the two strains was 88±2%. Strain JC228(T) showed 23.4±1% reassociation (based on DNA-DNA hybridization) with B. carboniphilus LMG 18001(T). The DNA G+C content of strains JC228(T) and JC279 was 39 and 38.4 mol%, respectively. Both strains were positive for catalase and oxidase activities, and negative for hydrolysis of starch and Tween 80. Strains JC228(T) and JC279 grew chemoorganoheterotrophically with optimum growth at pH 7 (range pH 7-9.5) and 35 °C (range 25-40 °C). Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid (PL2) were the major polar lipids. Major cellular fatty acids were iso-C(15 : 0), anteiso-C(15 : 0), iso-C(17 : 0) and C(16 : 0). Whole-cell hydrolysates contained l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. Both strains utilized diesel oil as sole carbon and energy source. The results of physiological, biochemical, chemotaxonomic and molecular analyses allowed clear differentiation of strains JC228(T) and JC279 from their closest phylogenetic neighbours. Therefore strains JC228(T) and JC279 represent a novel species of the genus Bacillus , for which the name Bacillus oleivorans sp. nov. is proposed. The type strain is JC228(T) ( = LMG 28084(T) = CCTCC AB 2013353(T)).

  14. A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14.

    Science.gov (United States)

    Zhou, Junpei; Wu, Qian; Zhang, Rui; Mo, Minghe; Tang, Xianghua; Li, Junjun; Xu, Bo; Ding, Junmei; Lu, Qian; Huang, Zunxi

    2014-09-01

    A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52% amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55% of the maximum activity when assayed at 40-75 °C, 23% at 20 °C, 16% at 85 °C, and even 8% at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62% xylanase activity and stability at the concentration of 3-30% (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5-19.0, 15.3-19.0, 21.9-27.7, and 28.2-31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.

  15. Bacillus sp.CDB3 isolated from cattle dip-sites possesses two ars gene clusters

    Institute of Scientific and Technical Information of China (English)

    Somanath Bhat; Xi Luo; Zhiqiang Xu; Lixia Liu; Ren Zhang

    2011-01-01

    Contamination of soil and water by arsenic is a global problem.In Australia, the dipping of cattle in arsenic-containing solution to control cattle ticks in last centenary has left many sites heavily contaminated with arsenic and other toxicants.We had previously isolated five soil bacterial strains (CDB1-5) highly resistant to arsenic.To understand the resistance mechanism, molecular studies have been carried out.Two chromosome-encoded arsenic resistance (ars) gene clusters have been cloned from CDB3 (Bacillus sp.).They both function in Escherichia coli and cluster 1 exerts a much higher resistance to the toxic metalloid.Cluster 2 is smaller possessing four open reading frames (ORFs) arsRorf2BC, similar to that identified in Bacillus subtilis Skin element.Among the eight ORFs in cluster 1 five are analogs of common ars genes found in other bacteria, however, organized in a unique order arsRBCDA instead of arsRDABC.Three other putative genes are located directly downstream and designated as arsTIP based on the homologies of their theoretical translation sequences respectively to thioredoxin reductases, iron-sulphur cluster proteins and protein phosphatases.The latter two are novel of any known ars operons.The arsD gene from Bacillus species was cloned for the first time and the predict protein differs from the well studied E.coli ArsD by lacking two pairs of C-terrninal cysteine residues.Its functional involvement in arsenic resistance has been confirmed by a deletion experiment.There exists also an inverted repeat in the intergenic region between arsC and arsD implying some unknown transcription regulation.

  16. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Soares Márcia M.C.N.

    1999-01-01

    Full Text Available One hundred sixty eight bacterial strains, isolated from soil and samples of vegetable in decomposition, were screened for the use of citrus pectin as the sole carbon source. 102 were positive for pectinase depolymerization in assay plates as evidenced by clear hydrolization halos. Among them, 30% presented considerable pectinolytic activity. The cultivation of these strains by submerged and semi-solid fermentation for polygalacturonase production indicated that five strains of Bacillus sp produced high quantities of the enzyme. The physico-chemical characteristics, such as optimum pH of 6.0 - 7.0, optimum temperatures between 45oC and 55oC, stability at temperatures above 40oC and in neutral and alkaline pH, were determined.

  17. Produksi Enzim Amilolitik dari Bacillus megaterium Menggunakan Variasi Kadar Pati Sagu (Metroxylon sp.

    Directory of Open Access Journals (Sweden)

    Sandra Madonna

    2016-03-01

    Full Text Available The application of enzymes as biocatalysts for the industries in Indonesia has increased. Among the enzymes that are needed in Indonesia, one of which amylolytic enzymes. Amylolytic enzymes constitute a group of enzymes that catalyze the hydrolysis of starch into simple sugars consisting of glucose units. In this study amylolytic enzyme isolated from the bacterium Bacillus megaterium. Enzyme production was submerged fermentation method for 14 hours using sagostarch Metroxylon sp. varies. Measurement of enzyme activity was determined by the method amylolytik Somogy-Nelson. Research results showed that2 % (w/v of sago starchis the optimum consentration in media with highest amylolytic enzyme activity that is equal to 0.076 units/ml and sugar medium formed by181.254ug/ml in the fermentation medium.

  18. Cellular fatty acid composition, protein profile and antimicrobial activity of Bacillus sp., isolated from fish gut

    Directory of Open Access Journals (Sweden)

    Pushparaj Sujith

    2014-01-01

    Full Text Available Objective: To purify and partially characterize the antimicrobial compounds from bacteria Bacillus sp., isolated from fish gut. Methods: Protein and fatty acids were isolated from the bacteria and checked for the presence of antibacterial activity. Protein has been purified to apparent homogeneity from the supernatants of culture by means of ammonium sulphate precipitation followed by dialysis. Fourier transform infrared spectroscopy analyses were performed for proteins to identify the functional groups. Results: Protein showed an apparent molecular mass 56, 47 and 39 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Fatty acids were extracted and subjected to gas chromatographic analysis. Conclusions: The antimicrobial activity of the bacteria might be due to the presence of fatty acids and proteins which holds promise for the development of new drugs.

  19. Cellular fatty acid composition, protein profile and antimicrobial activity of Bacillus sp., isolated from fish gut

    Institute of Scientific and Technical Information of China (English)

    Pushparaj Sujith; Baskaran Rohini; Singaram Jayalakshmi

    2014-01-01

    Objective: To purify and partially characterize the antimicrobial compounds from bacteriaBacillus sp., isolated from fish gut. Methods: Protein and fatty acids were isolated from the bacteria and checked for the presence of antibacterial activity. Protein has been purified to apparent homogeneity from the supernatants of culture by means of ammonium sulphate precipitation followed by dialysis. Fourier transform infrared spectroscopy analyses were performed for proteins to identify the functional groups.Results:sulfate polyacrylamide gel electrophoresis. Fatty acids were extracted and subjected to gas chromatographic analysis.Conclusions:Protein showed an apparent molecular mass 56, 47 and 39 kDa on sodium dodecyl acids and proteins which holds promise for the development of new drugs. The antimicrobial activity of the bacteria might be due to the presence of fatty acids and proteins which holds promise for the development of new drugs.

  20. Efficient proteolysis and application of an alkaline protease from halophilic Bacillus sp. EMB9.

    Science.gov (United States)

    Sinha, Rajeshwari; Srivastava, A K; Khare, S K

    2014-10-03

    A salt-stable alkaline protease from moderately halophilic Bacillus sp. EMB9, isolated from the western coast of India, is described. This protease was capable of efficiently removing silver from used/waste X-Ray films, as well as hydrolyzing defatted soy flour with 31% degree of hydrolysis (DH). Production of the protease was optimized by using response surface methodology. Ca(2+) and NaCl were the most critical factors in enhancing the yield. Under optimized culture conditions, a maximum of 369 U protease/mL was obtained, which is quite comparable to the yields of commercial proteases. The elevated production level coupled with ability to efficiently hydrolyze protein-laden soy flour and complete recovery of silver from used X-Ray films makes it a prospective industrial enzyme.

  1. Biochemical characterisation of lipase from a new strain of Bacillus sp. ITP-001

    Directory of Open Access Journals (Sweden)

    José Murillo P. Barbosa

    2012-01-01

    Full Text Available Lipases are characterised mainly by catalytic versatility and application in different industrial segments. The aim of this study was to biochemically characterise a lipase from a new strain of Bacillus sp. ITP-001. The isoelectric point and molecular mass were 3.12 and 54 kDa, respectively. The optima lipase activity was 276 U g-1 at pH 7.0 and a temperature of 80 ºC, showing greater stability at pH 5.0 and 37 ºC. Enzymatic activity was stimulated by various ions and pyridine, and inhibited by Cu+ and ethanol. The values of Km and v max were 105.26 mmol and 0.116 mmol min-1 g-1, respectively determined by the Eadie-Scatchard method.

  2. Cloning and Expression of One Fibrinolytic Enzyme from Bacillus sp.zlw-2

    Institute of Scientific and Technical Information of China (English)

    NAN Xin-mian; GUO Run-fang; YU Hong-wei; JIA Ying-min

    2009-01-01

    The gene encoding fibrinolytic enzyme from Bacillus sp.zlw-2 was cloned and sequenced (accession no.EU734749),which was 1146 bp,encoded 381 amino acids and had 99% homology with Nattokinase YF308 and NAT.The genes encoding pre-pro-fibrinolytic enzyme (including signal peptide,propeptide,and mature peptide) and fibrinolytic enzyme (including mature peptide) were cloned into pET28a vector respectively and then transformed into Escherichia coil BL21 (DE3).The recombinant of pre-pro-fibrinolytic enzyme showed enzyme activity of 183 U mL-1,while no detectable enzyme activity could be found from the recombinant of the mature peptide.

  3. Biochemical properties of Bacillus sp. ITP-001 lipase immobilized with a sol gel process

    Directory of Open Access Journals (Sweden)

    Nayara Bezerra Carvalho

    2013-01-01

    Full Text Available This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB. The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.

  4. Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25.

    Science.gov (United States)

    Jones, Aubrey; Lamsa, Michael; Frandsen, Torben P; Spendler, Tina; Harris, Paul; Sloma, Alan; Xu, Feng; Nielsen, Jack Bech; Cherry, Joel R

    2008-04-30

    Directed evolution coupled with a high-throughput robotic screen was employed to broaden the industrial use of the maltogenic alpha-amylase Novamyl from Bacillus sp. TS-25. Wild-type Novamyl is currently used in the baking industry as an anti-staling agent in breads baked at neutral or near neutral pH. However, the enzyme is rapidly inactivated during the baking process of bread made with low pH recipes and Novamyl thus has very limited beneficial effect for this particular application. In an effort to improve the performance of Novamyl for low pH bread applications such as sourdough and rye, two error-prone PCR libraries were generated, expressed in Bacillus subtilis and screened for variants with improved thermal stability and activity under low pH conditions. Variants exhibiting improved performance were iteratively recombined using DNA shuffling to create two generations of libraries. Relative to wild-type Novamyl, a number of the resulting variants exhibited more than 10 degrees C increase in thermal stability at pH 4.5, one of which demonstrated substantial anti-staling properties in low pH breads.

  5. Characterization of a Bioflocculant (MBF-UFH Produced by Bacillus sp. AEMREG7

    Directory of Open Access Journals (Sweden)

    Kunle Okaiyeto

    2015-06-01

    Full Text Available A bioflocculant named MBF-UFH produced by a Bacillus species isolated from sediment samples of Algoa Bay of the Eastern Cape Province of South Africa was characterized. The bacterial identification was through 16S rDNA sequencing; nucleotide sequences were deposited in GenBank as Bacillus sp. AEMREG7 with Accession Number KP659187. The production of the bioflocculant was observed to be closely associated with cell growth. The bioflocculant had the highest flocculating activity of 83.2% after 72 h of cultivation, and approximately 1.6 g of purified MBF-UFH was recovered from 1 L of fermentation broth. Its chemical analyses indicated that it is a glycoprotein composed of polysaccharide (76% and protein (14%. Fourier transform infrared spectroscopy (FTIR revealed that it consisted of hydroxyl, amide, carboxyl and methoxyl as the functional moieties. Scanning electron microscopy (SEM revealed the amorphous structure of MBF-UFH and flocculated kaolin clay particles. The maximum flocculating activity of 92.6% against kaolin clay suspension was achieved at 0.3 mg/mL over pH ranges of 3–11 with the peak flocculating rate at pH 8 in the presence of MgCl2. The bioflocculant retained high flocculating activity of 90% after heating at 100 °C for 1 h. MBF-UFH appears to have immense potential as an alternative to conventional chemical flocculants.

  6. Production and characterization of a novel protease from Bacillus sp. RRM1 under solid state fermentation.

    Science.gov (United States)

    Rajkumar, Renganathan; Kothilmozhian, Jayappriyan; Ramasamy, Rengasamy

    2011-06-01

    A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-60 degrees C and pH 6-12, with maximum activity at 50 degrees C and pH 9.0. Whereas the metal ions Na+, Ca2+, and K+ enhanced the activity of the enzyme, others such as Hg2+, Cu2+, Fe2+, Co2+, and Zn2+ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by Cu2+ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

  7. Effect of temperature on batch elastase production by Bacillus sp. EL31410

    Institute of Scientific and Technical Information of China (English)

    何国庆; 徐莹; 陈启和; 阮晖; 李景军

    2004-01-01

    The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39℃ to 28℃, were evaluated in shake flask. The result indicated that 37℃ was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30℃. This result was verified by batch fermentation in 5-L bioreactor under 37 ℃ and 30 ℃ temperature, respectively. The specific cell growth rate at 37 ~C was higher than that at 30 ℃ during earlier stage of cultivation. The maximum value [5.5 U/(h-g DCW)] of elastase formation rate occurred at 24 h at 30℃ compared to 4.6 U/(h-g DCW) at 30 h at 37℃. Based on these results, two-stage temperature shift strategy and oscillatory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 ℃ or 30℃, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37℃, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30℃ in batch process. It was concluded that cultivation at constant temperature of 30℃ was appropriate for elastase production by Bacillus sp. EL31410.

  8. EFEKTIVITAS Bacillus thuringiensis H-14 STRAIN LOKAL DALAM BUAH KELAPA TERHADAP LARVA Anopheles sp dan Culex sp di KAMPUNG LAUT KABUPATEN CILACAP

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P

    2013-07-01

    Full Text Available Abstrak Bacillus thuringiensis serotipe H-14 strain lokal adalah bakteri patogen bersifat target spesifiknya larva nyamuk, aman bagi mamalia dan lingkungan. Penelitian bertujuan menentukan efektivitas B. thuringiensis H-14 strain lokal yang dikembangbiakkan dalam buah kelapa untuk pengendalian larva Anopheles sp dan Culex sp. Rancangan eksperimental semu, terdiri dari kelompok perlakuan dan kontrol. Bacillus thuringiensis H-14 strain lokal dikembangbiakan dalam10 buah kelapa umur 6–8 bulan, dengan berat kira-kira 1 kg, telah berisi air kelapa sekitar 400-500 ml/buah kelapa yang diperoleh dari Desa Klaces, Kampung Laut, Kabupaten Cilacap. Diinkubasi selama 14 hari pada temperatur kamar dan ditebarkan di 6 kolam yang menjadi habitat perkembangbiakan larva nyamuk dengan luas berkisar 3–100 m2.Hasil yang diperoleh menunjukkan efektivitas B. thuringiensis H-14 strain lokal terhadap larva Anopheles sp dan Culex sp selama 1 hari sesudah penebaran kematian larva berturut-turut sebesar 80–100% dan 79,31–100%. Sedangkan pada hari ke-14 sebesar 69,30–76,71% dan 67,69–86,04%. Buah kelapa dapat digunakan sebagai media lokal alternatif untuk pengembangbiakan B. thuringiensis H-14 strain lokal Kata kunci: B. thuringiensis H-14,  strain  lokal, buah kelapa, pengendalian larva Abstract Bacillus thuringiensis serotype H-14 local strain is pathogenic bacteria which specific  target to mosquito larvae. It is safe for mammals and enviroment. The aims of this study was to determine the effectivity of B. thuringiensis H-14 local strain which culturing in thecoconut wates against Anopheles sp and Culex sp mosquito larvae. This research is quasi experiment which consist of treated  and control groups. Bacillus thuringiensis H-14 local strain was cultured in 10 coconuts with 6–8 months age with weight around 1 kg that contained were approximately 400-500 ml/coconut were taken from Klaces village, Kampung Laut. After that the coconuts incubated for 14

  9. Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances.

    Science.gov (United States)

    Kim, Young-Sook; Song, Ja-Gyeong; Lee, In-Kyoung; Yeo, Woon-Hyung; Yun, Bong-Sik

    2013-09-01

    A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

  10. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    Science.gov (United States)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  11. Effect of aflatoxin B1 on growth and enzymatic activity of a native strain of Bacillus sp Efecto de la aflatoxina B1 sobre el crecimiento y actividad proteolítica de una cepa nativa de Bacillus sp

    Directory of Open Access Journals (Sweden)

    Márquez Edna Judith

    2004-07-01

    Full Text Available The effect of different aflatoxin B1 (AFAB1 concentrations on alkaline protease growth and enzymatic activity was evaluated; a native strain of alkalophilic Bacillus sp cultivated in CSL (Corn Steep Liquor was used. It was found that the effect of AFAB1 on the strain inhibited its growth and enzymatic activity to 1 ppm, showing that the strain is highly sensible to AFAB1, meaning that medium obtained f rom Colombian corn contaminated with this mycotoxin cannot be easily used. Concentrations less than 0.1 ppm did not affect growth and enzymatic activity. Key words: Bacillus, aflatoxin, alkaline proteases.Se evaluó el efecto de diferentes concentraciones de aflatoxina B1 (AFAB1 sobre el crecimiento y actividad enzimática de proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico cultivada en LAM (Licor Agotado de Maíz. Se encontró que la cepa inhibe su crecimiento y actividad enzimática a 1 ppm, lo que demuestra una alta sensibilidad de la cepa evaluada a la AFAB1 e imposibilita utilizar fácilmente medios obtenidos de maíz nacional contaminado con esta micotoxina. Las concentraciones inferiores a 0.1 ppm no tienen ningún efecto sobre el crecimiento y la actividad enzimática. Palabras clave: Bacillus, aflatoxina, proteasas alcalinas.

  12. Isolation and identification of N-butyl-tetrahydro-5-oxofuran-2-carboxamide produced by Bacillus sp. L60 and its antifungal activity.

    Science.gov (United States)

    Lee, Yong-Seong; Cho, Jeong-Yong; Moon, Jae-Hak; Kim, Kil-Yong

    2017-03-01

    Rhizoctonia solani is the cause of substantial economic loss in many crops. The aim of this study is to investigate biocontrol potential of Bacillus sp. L60 against R. solani and to purify an antifungal compound. In this study, Bacillus sp. L60 demonstrated significant antagonism toward R. solani with the dual culture assay. The antifungal compound was extracted from Bacillus sp. L60 culture supernatant with n-butanol, and identified as N-butyl-tetrahydro-5-oxofuran-2-carboxamide (BT-5O-2C) having molecular weights of 185.1052 Da with the formula C9 H15 NO3 using NMR and HR-ESI-MS analysis. The minimum inhibitory concentration (MIC) value of the antifungal compound was 256 µg ml(-1) against R. solani. Therefore, our results clearly demonstrated BT-5O-2C as well as Bacillus sp. L60 as potential biological control agents for the management of R. solani.

  13. Bacillus sp.处理锑矿选矿废水的优化试验%Experimental study of optimization of antimony ore-processed wastewater treatment by Bacillus sp.

    Institute of Scientific and Technical Information of China (English)

    成应向; 李小娇; 向仁军; 龚道新; 王强强; 肖亚琼

    2012-01-01

    Antimony ore-processed wastewater was treated with the optimized bacterium Bacillus sp. The effects of the evaluation indices, including the amount of inoculation, pH value, processing time, and temperature, on the treatment of antimony ore-processed wastewater were studied through orthogonal experiments. The results show that the degrees of effects of the indices on the removal of antimony from wastewater by Bacillus sp . Are in the following descending order: the amount of inoculation, pH value, processing time, and temperature. The optimal treatment conditions were attained when the amount of inoculation was 5 % , the PH value was 2.5, the processing time was three days, and the temperature was 30^1.%用某芽孢杆菌属微生物(Bacillus sp.)处理锑矿选矿废水.通过正交实验,研究该微生物在处理锑矿选矿废水过程中微生物接种量、pH值、处理时间、温度对去除效果的影响.结果表明:Bacillus sp.对废水中锑的去除效果影响程度由大到小的顺序为:微生物接种量、pH值、处理时间、温度;最优实验条件:微生物接种量为5%、pH值为2.5、处理时间为3d,处理温度为30℃.

  14. Identification and characterization of a novel class of extracellular poly(3-hydroxybutyrate) depolymerase from Bacillus sp. strain NRRL B-14911.

    Science.gov (United States)

    Ma, Wan-Ting; Lin, Ju-Hui; Chen, Hui-Ju; Chen, Syuan-Yi; Shaw, Gwo-Chyuan

    2011-11-01

    The catalytic, linker, and denatured poly(3-hydroxybutyrate) (dPHB)-binding domains of bacterial extracellular PHB depolymerases (PhaZs) are classified into several different types. We now report a novel class of extracellular PHB depolymerase from Bacillus sp. strain NRRL B-14911. Its catalytic domain belongs to type 1, whereas its putative linker region neither possesses the sequence features of the three known types of linker domains nor exhibits significant amino acid sequence similarity to them. Instead, this putative linker region can be divided into two distinct linker domains of novel types: LD1 and LD2. LD1 shows significant amino acid sequence similarity to certain regions of a large group of PHB depolymerase-unrelated proteins. LD2 and its homologs are present in a small group of PhaZs. The remaining C-terminal portion of this PhaZ can be further divided into two distinct domains: SBD1 and SBD2. Each domain showed strong binding to dPHB, and there is no significant sequence similarity between them. Each domain neither possesses the sequence features of the two known types of dPHB-binding domains nor shows significant amino acid sequence similarity to them. These unique features indicate the presence of two novel and distinct types of dPHB-binding domains. Homologs of these novel domains also are present in the extracellular PhaZ of Bacillus megaterium and the putative extracellular PhaZs of Bacillus pseudofirmus and Bacillus sp. strain SG-1. The Bacillus sp. NRRL B-14911 PhaZ appears to be a representative of a novel class of extracellular PHB depolymerases.

  15. Assessment of Bioflocculant Production by Bacillus sp. Gilbert, a Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay

    Directory of Open Access Journals (Sweden)

    Okoh I. Anthony

    2011-07-01

    Full Text Available The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity and ammonium chloride (91% flocculating activity were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg2+ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide.

  16. Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10

    OpenAIRE

    Fatemeh Shayesteh; Asmat Ahmad; Gires Usup

    2015-01-01

    The bacteriocin-producing strain Bacillus sp., Sh10, isolated from the marine environment, exhibited a broad spectrum of antimicrobial activity against different food spoilage and human pathogens, with a maximum inhibitory activity against Candida albicans. The inhibitory compound was sensitive to trypsin but resistant to proteinase K, lysozyme, lipase and &alpha-amylase. It was heat-stable and remained its activity after autoclaving. In addition, the antimicrobial substance demonstrated stri...

  17. A novel Bacillus sp. accumulating poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon substrate.

    Science.gov (United States)

    Reddy, S Vishnuvardhan; Thirumala, M; Mahmood, S K

    2009-06-01

    The objective of this paper was to report a bacterium designated as 88D, capable of producing poly (3-hydroxybutyrate-co-3-hydroxyvalerate) [P (3HB-co-3HV)] copolymer from a single carbon source, which was isolated from a municipal sewage treatment plant in Hyderabad, India. This microorganism, based on the phenotypical features and genotypic investigations, was identified as Bacillus sp. The optimal growth of Bacillus sp. 88D occurred between 28 and 30 degrees C and at pH 7. The strain yielded a maximum of 64.62% dry cell weight (DCW) polymer in the medium containing glucose as carbon source, which was followed by 60.46% DCW polymer in glycerol containing medium. Bacillus sp. 88D produced P (3HB-co-3HV) from glucose or glycerol, when they were used as a single carbon substrate. This bacterium produced polyhydrxybutyrate (PHB) when sodium acetate was used as sole carbon substrate. The viscosity average molecular mass (Mv) of the copolymers ranged from 523 to 627 kDa. The physical, chemical and mechanical properties of the biopolymers were characterized.

  18. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding.

    Science.gov (United States)

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning

    2016-11-01

    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  19. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23.

    Science.gov (United States)

    Lo, Huei-Fen; Lin, Long-Liu; Chiang, Wen-Ying; Chie, Meng-Chun; Hsu, Wen-Hwei; Chang, Chen-Tien

    2002-08-01

    The alpha-amylase from Bacillus sp. strain TS-23 is a secreted starch hydrolase with a domain organization similar to that of other microbial alpha-amylases and an additional functionally unknown domain (amino acids 517-613) in the C-terminal region. By sequence comparison, we found that this latter domain contained a sequence motif typical for raw-starch binding. To investigate the functional role of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23, four His(6)-tagged mutants with extensive deletions in this region were constructed and expressed in Escherichia coli. SDS-PAGE and activity staining analyses showed that the N- and C-terminally truncated alpha-amylases had molecular masses of approximately 65, 58, 54, and 49 kDa. Progressive loss of raw-starch-binding activity occurred upon removal of C-terminal amino acid residues, indicating the requirement for the entire region in formation of a functional starch-binding domain. Up to 98 amino acids from the C-terminal end of the alpha-amylase could be deleted without significant effect on the raw-starch hydrolytic activity or thermal stability. Furthermore, the active mutants hydrolyzed raw corn starch to produce maltopentaose as the main product, suggesting that the raw-starch hydrolytic activity of the Bacillus sp. strain TS-23 alpha-amylase is functional and independent from the starch-binding domain.

  20. Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China.

    Science.gov (United States)

    Xue, Yanfen; Ventosa, A; Wang, Xiaowei; Ren, Peigen; Zhou, Peijin; Ma, Yanhe

    2008-12-01

    A Gram-positive, halophilic bacterium was isolated from a sediment sample from Ai-Ding salt lake in China. The isolate, designated strain 17-5(T), grew at salinities of 8-33 % (w/v) NaCl (optimally at 12 %, w/v). The genomic DNA G+C content of strain 17-5(T) was 48.1 mol%. The predominant isoprenoid quinone was MK-7(H(2)) and the cell-wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol and an unidentified glycolipid. The major cellular fatty acids were anteiso-C(15 : 0), anteiso-C(17 : 0), iso-C(16 : 0) and C(16 : 0). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 17-5(T) was a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis JCM 14087(T) (96.0 % sequence similarity) and Bacillus salarius DSM 16461(T) (95.6 %). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species were less than 91.7 %. Comparative analysis of the 16S rRNA gene sequence data, chemotaxonomy and phenotypic features of the novel isolate and related species of Bacillus indicated that strain 17-5(T) represents a novel species within the genus Bacillus, for which the name Bacillus aidingensis sp. nov. is proposed. The type strain is 17-5(T) (=CGMCC 1.3227(T)=DSM 18341(T)).

  1. Effective extraction of elastase from Bacillus sp. fermentation broth using aqueous two-phase system

    Institute of Scientific and Technical Information of China (English)

    XU Ying; HE Guo-qing; LI Jing-jun

    2005-01-01

    This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KH2PO4-K2HPO4, in which elastase is mainly partitioned into the PEG-rich phase,while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KH2PO4-K2HPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2 000 and 11.7% (w/w) KH2PO4-K2HPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.

  2. Influence of medium components on elastase production using crude sources by Bacillus sp. EL31410

    Institute of Scientific and Technical Information of China (English)

    何国庆; 陈启和; 张丽; 刘小杰

    2003-01-01

    A newly isolated strain EL31410, producing elastase (E.C3.4.4.7) with high elastolytic activity was identified as Bacillus sp. In the medium optimization, it was found that wheat bran and soybean flour hydrosate were the best crude carbon and nitrogen source for enzyme production, respectively. Addition of corn steep flour can affect the bacterium growth and elastase production. A fractional factorial design was applied to study the main factors that affect the enzyme production, and central composite experimental design and response surface methodology were adopted to derive a statistical model for the effect of wheat bran and soybean flour hydrosate on elastase production. The experimental results showed that wheat bran had positive effect but soybean flour hydrosate had negative effect, on enzyme production. An initial concentration of 3.4%(w/v) wheat bran and 9.4%(v/v) soybean flour hydrosate were found to be optimal for enzyme production in batch culture. The time course of elastase production in the optimized medium composition was also described.

  3. Isolation and Purifi cation of Chitinase Bacillus sp. D2 Isolated from Potato Rhizosfer

    Directory of Open Access Journals (Sweden)

    Sebastian Margino

    2015-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Potato Cyst Nematodes (Globodera rostochiensis is one of the important potato’s pests and caused economic looses up to 70% in the several centrals of potato plantations in Indonesia. Potato Cyst Nematodes (PCN shell component of egg shell containing chitin (inner layer and vitelline/protein (outer layer, so the purpose of research was to fi nd out of chitin degrading bacteria for controlling of egg’s PCN by cutting of their life cycle. The results showed that Bacillus sp. D2 isolated from potato rhizosphere could produce extra cellular chitinase in the medium containing of 0.20% colloidal chitin and fermented for 72 hours. Result of chitinase purifi cation using ammonium sulphate precipitation and DEAE-Cellulose ion-exchange chromatography showed a specifi c activity 2691,052 U/mg and analyzing using SDS-PAGE 12.5% resulted in molecular weight 30 kDa. The apparent Km and Vmax of chitinase towards colloidal chitin were 2 mg/ml and 2.2 μg/h, respectively.  

  4. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  5. Purification and characterization of an antifungal chitinase from Bacillus sp.SL-13

    Institute of Scientific and Technical Information of China (English)

    Chen; Shan

    2014-01-01

    Bacillus sp.SL-13 produced antifungal proteins.The growth of the plant-pathogenic fungi Rhizoctonia solani was considerably inhibited by the presence of the SL-13 culture supernatant.The proteins were purified by DEAE-Sepharose fast flow ion exchange column chromatography and Sephadex G-75 gel filtration,and the main antifungal protein was purified to be chitinase.The molecular weight of chitinase was estimated to be 36 kD by 12%SDS PAGE.The optimal pH and temperature for the chitinase was 7.0 and 50℃.It demonstrated that the enzyme was stable from pH 5 to 9 and form 40?C to 60℃.The enzyme still kept 70%activity when incubated at 121℃,0.11MPa up to 20 minutes and the enzyme is also not lost the activity when treated with protease K and ultraviolet radiation for 1.5hours.It is very suitable for the use in a relatively unstable environment,exhibiting effective biological control.

  6. Enhanced Productivity of Serine Alkaline Protease by Bacillus sp. Using Soybean as Substrate

    Directory of Open Access Journals (Sweden)

    Saurabh, S.

    2007-01-01

    Full Text Available The growth and protease production by Bacillus sp. (SBP-29 was examined for poultry processing industries. The maximum protease activity was 3028 U/mL using 1.5% (w/v of soybean meal as substrate. Soybean meal is an inexpensive and readily available, thus it can be used as the cost effective crude material for the production of an extracellular protease. Inorganic nitrogen sources proved to be less favorable, for protease production as strong catabolic repression was observed with ammonium ions. A maximum of 3208 U/mL of protease was produced in 18 h in a 10L bioreactor. The enzyme has temperature and pH optima of 60°C and 9.5 respectively. However, the temperature stability range is from 20-90 °C and pH stability range is from 6.0–12.0. The protease was completely inhibited by phenylmethylsulfonyl fluoride (PMSF and diodopropyl fluorophosphate (DFP, with little increase (10-15% in the production of upon addition of Ca++ and Mg++.

  7. Purification and biochemical characterization of an acidophilic amylase from a newly isolated Bacillus sp. DR90.

    Science.gov (United States)

    Asoodeh, Ahmad; Alemi, Ashraf; Heydari, Akbar; Akbari, Jafar

    2013-03-01

    An acidophilic and Ca(2+)-independent amylase was purified from a newly isolated Bacillus sp. DR90 by ion-exchange chromatography, and exhibited a molecular weight of 68.9 kDa by SDS-PAGE. The optimum pH and temperature of the enzyme were found to be 4.0 and 45 °C, respectively. The enzyme activity was increased by Ba(2+), Fe(2+) and Mg(2+), and decreased by Hg(2+) and Zn(2+), while it was not affected by Na(+), K(+), phenylmethylsulfonyl fluoride and β-mercaptoethanol. Ca(2+) and EDTA did not have significant effect on the enzyme activity and thermal stability. The values of K m and V max for starch as substrate were 4.5 ± 0.13 mg/ml and 307 ± 12 μM/min/mg, respectively. N,N-dialkylimidazolium-based ionic liquids such as 1-hexyl-3-methylimidazolium bromide [HMIM][Br] have inhibitory effect on the enzyme activity. Thin layer chromatography analyses displayed that maltose and glucose are the main products of the enzyme reaction on starch. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.

  8. Microwave Accelerated Transglycosylation of Rutin by Cyclodextrin Glucanotransferase from Bacillus sp. SK13.002

    Directory of Open Access Journals (Sweden)

    Beilei Pan

    2011-06-01

    Full Text Available Rutin was subjected to intermolecular transglycosylation assisted with microwave irradiation using cyclodextrin glucanotransferase (CGTase produced from Bacillus sp. SK13.002. Compared with the conventional enzymatic method for rutin transglycosylation (without microwave irradiation, microwave-assisted reaction (MAR was much faster and thus more efficient. While the conventional reaction took dozens of hours to reach the highest conversion rate of rutin and yield of transglycosylated rutin, MAR of rutin transglycosylation completed within only 6 min providing almost the same conversion rate of rutin and yield of products consisting of mono-, di-, tri-, tetra-, penta-glucosylated rutins. The optimum transglycosylation conditions for microwave irradiation were 40 °C and 60 W with the reaction system consisting mainly of the mixture of 0.3 g rutin (0.49 mmol pre-dissolved in 15 mL methanol, 1.8 g maltodextrin in 15 mL of 0.2 M sodium acetate buffer (pH 5.5 and CGTase (900 U. Results from this study indicated that MAR could be a potentially useful and economical technique for a faster and more efficient transglycosylation of rutin.

  9. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-09-15

    Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through Superdex{sup TM} 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD{sub 99} dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 {+-} 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis.

  10. Degradation of polyisoprene rubber by newly isolated Bacillus sp. AF-666 from soil.

    Science.gov (United States)

    Shah, A A; Hasan, F; Shah, Z; Mutiullah; Hameed, A

    2012-01-01

    Various microorganisms were screened for their ability to degrade polyisoprene rubber (natural rubber latex gloves). Strain AF-666, newly isolated from a soil sample, was selected as the best strain having the ability to grow on polyisoprene containing plates. The strain identified as Bacillus sp. AF-666, was found to degrade polyisoprene rubber, both on basal agar plates (latex overlay) as well as in liquid medium. Qualitative analysis of degradation was done through scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy SEM showed changes in surface morphology, like appearance of pits and cracks, and marked difference in transmittance spectra of test and control due to changes in the functional groups, was detected through FTIR. CO2 evolution as a result of rubber degradation, was calculated gravimetrically by Sturm Test. About 4.43 g/1 of CO2 was produced in case of test, whereas, 1.57 g/1 in case of control. The viable number of cells (CFU/ml) was also higher in test than in control. Present study may provide an opportunity for further studies on the applications of biotechnological processes as a tool for rubber waste management.

  11. Enzymatic dehairing of goat skins using alkaline protease from Bacillus sp. SB12.

    Science.gov (United States)

    Briki, Selmen; Hamdi, Olfa; Landoulsi, Ahmed

    2016-05-01

    The present paper reports the production, purification and biochemical characterization of an extracellular alkaline protease from Bacillus sp. SB12. The enzyme has been used as an alternative to conventional chemicals treatment for dehairing of goat skins. The protease was optimally active at 37 °C and pH 9. Starch at 2% (w/v) was used as the best carbon source and the addition of yeast extract and peptone at 1% each supported the maximum level of protease production in the presence of 5 mM Ca(2+). Protease purification was performed with ammonium sulphate precipitation at 70% saturated fraction followed by dialysis and gel filtration chromatography using Sephadex G-100. The purified enzyme was homogeneous on non-denaturing PAGE and appeared as a single band with an apparent molecular weight of 41 kDa. This enzyme was moderately thermostable and has a wide pH stability range extending from pH 7 to 11. It showed high tolerance toward surfactants agents and organic solvents while it was completely inhibited by PMSF indicating the serine protease type. Purified protease was used to remove hair from goat skin proving its potential application in leather processing industry. The results revealed that the protease has enhanced the quality and physico-chemical properties of the skins while reducing the pollution.

  12. Biodegradation and metabolic pathway of β-chlorinated aliphatic acid in Bacillus sp. CGMCC no. 4196.

    Science.gov (United States)

    Lin, Chunjiao; Yang, Lirong; Xu, Gang; Wu, Jianping

    2011-04-01

    In this study, a bacterial Bacillus sp. CGMCC no. 4196 was isolated from mud. This strain exhibited the ability to degrade high concentration of 3-chloropropionate (3-CPA, 120 mM) or 3-chlorobutyrate (30 mM), but not chloroacetate or 2-chloropropionate (2-CPA). The growing cells, resting cells, and cell-free extracts from this bacterium had the capability of 3-CPA degradation. The results indicated that the optimum biocatalyst for 3-CPA biodegradation was the resting cells. The 3-CPA biodegradation pathway was further studied through the metabolites and critical enzymes analysis by HPLC, LC-MS, and colorimetric method. The results demonstrated that the metabolites of 3-CPA were 3-hydroxypropionic acid (3-HP) and malonic acid semialdehyde, and the critical enzymes were 3-CPA dehalogenase and 3-HP dehydroxygenase. Thus, the mechanism of the dehalogenase-catalyzed reaction was inferred as hydrolytic dehalogenation which was coenzyme A-independent and oxygen-independent. Finally, the pathway of β-chlorinated aliphatic acid biodegradation could be concluded as follows: the β-chlorinated acid is first hydrolytically dehalogenated to the β-hydroxyl aliphatic acid, and the hydroxyl aliphatic acid is oxidized to β-carbonyl aliphatic acid by β-hydroxy aliphatic acid dehydroxygenase. It is the first report that 3-HP was produced from 3-CPA by β-chlorinated aliphatic acid dehalogenase.

  13. Antiviral activity of a Bacillus sp. P34 peptide against pathogenic viruses of domestic animals

    Science.gov (United States)

    Silva, Débora Scopel e; de Castro, Clarissa Caetano; Silva, Fábio da Silva e; Sant’anna, Voltaire; Vargas, Gilberto D’Avila; de Lima, Marcelo; Fischer, Geferson; Brandelli, Adriano; da Motta, Amanda de Souza; Hübner, Silvia de Oliveira

    2014-01-01

    P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2), canine coronavirus (CCoV), canine distemper virus (CDV), canine parvovirus type 2 (CPV-2), equine arteritis virus (EAV), equine influenza virus (EIV), feline calicivirus (FCV) and feline herpesvirus type 1 (FHV-1). The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 104.5 TCID50 to 102.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections. PMID:25477947

  14. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  15. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.

    Science.gov (United States)

    Guo, Hanjun; Luo, Shenglian; Chen, Liang; Xiao, Xiao; Xi, Qiang; Wei, Wanzhi; Zeng, Guangming; Liu, Chengbin; Wan, Yong; Chen, Jueliang; He, Yejuan

    2010-11-01

    Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd (II), Pb (II) and Cu (II) under the initial concentration of 10mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system.

  16. Influence of medium components on elastase production using crude sources by Bacillus sp.EL31410

    Institute of Scientific and Technical Information of China (English)

    何国庆; 陈启和; 张丽; 刘小杰

    2003-01-01

    A newly isolated strain EL31410,producing elastase(E.C3.4.4.7) with high elastolytic activity was identified as Bacillus sp.In the medium optimization,it was found that wheat bran and soybean flour hydrosate were the best crude carbon ad nitrogen source for enzyme production,respectively.Addition of com steep flour can affect the bacterium growth and elastase production.A fractional factorial design was ap-plied to study the main factors that affect the enzyme production,and central composite experimental design and response surface methodology were adopted to derive a statistical model for the effect of wheat bran and soybean flour hydrosate on elastase production.The experimental results showed that wheat bran had positive cffect but soybean flour hydrosate had negative effect,on enzyme production.An initial concentration of 3.4%(w/v) wheat bran and 9.4%(v/v) soybean flour hydrosate were found to be optimal for enzyme produc-tion in batch culture.The time course of elastase production in the optimized medium composition was also de-scribed.

  17. Performa dan Bobot Organ Pencernaan Ayam Broiler yang Diberi Pakan Limbah Udang Hasil Fermentasi Bacillus sp.

    Directory of Open Access Journals (Sweden)

    I. H. Djunaidi

    2009-12-01

    Full Text Available An experiment examined the effect of the inclusion of different levels of shrimp waste meal (LUFb fermented with Bacillus sp. in diets on growth performance and digestive organ weight of broilers. A total of 75 d-old broiler chicks were randomized in five treatments with 3 replicate pens of 5 birds each. Treatments consisted of 0 (control, and inclusion of LUFb of 5%, 7.5%, 10%, and 12,5% in the diets. Birds were offered with feed and water ad-libitum. Feed and birds were weighed weekly up to 35 day to calculate determine body weight gain, feed intake and feed conversion. At the end of experimental period, the birds were sacrificed and dress up to calculate carcass percentage and digestive organ weight. There was a significant negative linear response in body weight, feed consumption and feed conversion with increasing of LUF more than 5% in the diets, but carcass percentage was almost the same for all treatments. There was no significant response in digestive organ weight with increasing levels of LUF. The present result indicated that LUFb is potential feed ingredient to substitute part of dietary protein requirement of broiler but should be limited upto 5% to maintain growth performance, and digestive organ weight.

  18. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis.

    Science.gov (United States)

    Gatson, Joshua W; Benz, Bruce F; Chandrasekaran, Chitra; Satomi, Masataka; Venkateswaran, Kasthuri; Hart, Mark E

    2006-07-01

    A Gram-positive, spore-forming bacillus was isolated from a sample taken from an approximately 2000-year-old shaft-tomb located in the Mexican state of Jalisco, near the city of Tequila. Tentative identification using conventional biochemical analysis consistently identified the isolate as Bacillus subtilis. DNA isolated from the tomb isolate, strain 10b(T), and closely related species was used to amplify a Bacillus-specific portion of the highly conserved 16S rRNA gene and an internal region of the superoxide dismutase gene (sodA(int)). Trees derived from maximum-likelihood methods applied to the sodA(int) sequences yielded non-zero branch lengths between strain 10b(T) and its closest relative, whereas a comparison of a Bacillus-specific 546 bp amplicon of the 16S rRNA gene demonstrated 99 % similarity with B. subtilis. Although the 16S rRNA gene sequences of strain 10b(T) and B. subtilis were 99 % similar, PFGE of NotI-digested DNA of strain 10b(T) revealed a restriction profile that was considerably different from those of B. subtilis and other closely related species. Whereas qualitative differences in whole-cell fatty acids were not observed, significant quantitative differences were found to exist between strain 10b(T) and each of the other closely related Bacillus species examined. In addition, DNA-DNA hybridization studies demonstrated that strain 10b(T) had a relatedness value of less than 70 % with B. subtilis and other closely related species. Evidence from the sodA(int) sequences, whole-cell fatty acid profiles and PFGE analysis, together with results from DNA-DNA hybridization studies, justify the classification of strain 10b(T) as representing a distinct species, for which the name Bacillus tequilensis sp. nov. is proposed. The type strain is 10b(T) (=ATCC BAA-819(T)=NCTC 13306(T)).

  19. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food.

    Science.gov (United States)

    Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun

    2016-03-16

    A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries.

  20. Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions.

    Science.gov (United States)

    Dubey, Kirti V; Charde, Pravin N; Meshram, Sudhir U; Shendre, Latika P; Dubey, Vijay S; Juwarkar, Asha A

    2012-12-01

    Surface-active potential of biosurfactants produced cost-effectively in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J were tested using parameters viz. surface tension (ST) reduction, F(CMC) (highest dilution factor to reach critical micelle concentration) and emulsification index (EI-24) of pesticides; monocrotophos and imidacloprid at extreme environmental conditions. Results have shown that ST reduction of biosurfactants was stable at pH 2-11. High F(CMC) of the biosurfactant in the fermented whey at low pH improved emulsification of pesticides. ST marginally increased at 5% and 15% NaCl, resulting in high EI-24 and F(CMC). Over a range of temperatures 30-121 °C, ST remained low with a higher F(CMC) and EI-24 at 60 °C than at 121 and 30 °C. The biosurfactants have shown differences in their surface-active property and have marked specificity to emulsify pesticides in extreme environmental conditions.

  1. [Cloning and expression of the alpha-amylase gene from a Bacillus sp. WS06, and characterization of the enzyme].

    Science.gov (United States)

    Peng, Ping; Wu, Jin; Cheng, An-Chun; Gao, Qi-Yu; Zhang, Shu-Zheng

    2005-12-01

    A Bacillus sp. WS06, which produces an extracellular alpha-amylase, was isolated from the cecum in a piglet. An amyF gene from this Bacillus strain was cloned and its nucleotide sequence was determined. An open reading frame composed of 1581 bases, which encodes 526 amino acid residues was found. The amyF gene shows high sequence homologies with other microbial amylase genes, such as Bacillus megaterium and Bacillus polymyxa (93% and 53% identity). The deduced amino acid sequence revealed that four highly conserved regions of the alpha-amylase family. The amyF gene was overepressed using the pET21a vector and Escherichia coli BL21 (DE3). The recombinant enzyme was purified 22.2 fold to electrophoretic homogeneity and had a molecular mass of 57kD (by SDS-PAGE). The enzyme was optimally active at pH 7 and 55 approximately 60 degrees C and showed stability at the temperature below 55 degrees C. This enzyme efficiently hydrolyzed various types of starch to yield a series of malto-oligosaccharides by endo-cleavage mode.

  2. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    Directory of Open Access Journals (Sweden)

    A. R. Othman

    2013-01-01

    Full Text Available Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong’s constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  3. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua.

    Science.gov (United States)

    Thamthiankul Chankhamhaengdecha, S; Tantichodok, A; Panbangred, Watanalai

    2008-09-10

    To enhance the toxicity of the Bacillus thuringiensis subsp. aizawai strain SP41 (SP41), the vegetative insecticidal protein (Vip) gene vip3A from SP41 was redirected to the sporulation stage by replacing its native promoter with the strong promoter P19 of the cry11Aa operon. Compared to the wild type, SP41 with PVIP (vip3A with its native promoter and ter) had the relative expression ratios of 457, 548, and 290 at 8, 14, and 20 h of cultivation, respectively, as measured by quantitative reverse transcription polymerase chain reaction (PCR). SP41 transformed by P19VIP (vip3A controlled by P19 promoter with vip3A ter) showed higher expressions (23, 2055, 1831) at the same time points. SP41 with P19VIP20 (vip3A controlled by P19 promoter and containing P20 and operon ter) had the lowest expression levels (3, 11, 9) at any time point. SDS-PAGE analysis of proteins in the culture supernatant of the P19VIP at 8, 14, and 20 h demonstrated a significant increase in Vip3A at the sporulation stage. Using the surface contamination bioassay, the 50% lethal concentration (LC(50)) of whole culture of PVIP, P19VIP, and P19VIP20 at 20 and 48 h of cultivation against Spodoptera exigua larvae were (68.3, 21.2, and 60.2 microg cm(-2)) and (69.8, 41.8, and 74.6 microg cm(-2)), respectively, compared with 86.6 and 104.4 microg cm(-2) for SP41. The results showed that Vip from P19VIP, expressed at spore stage at 20 and 48 h, can increase the toxicity of SP41 for 4.1- and 2.5-fold, respectively.

  4. Evaluación del antagonismo de Trichoderma sp. y Bacillus subtilis contra tres patógenos del ajo

    Directory of Open Access Journals (Sweden)

    Karina Astorga-Quirós

    2014-05-01

    Full Text Available La producción y calidad del cultivo del ajo criollo (Allium sativum se ven limitadas por diversas enfermedades de origen fungoso y bacterial, que llevan al productor a aplicar estrategias de control químico y en algunos casos abandonar la actividad por un incremento en las pérdidas. El control biológico es una estrategia útil para combatir este tipo de microorganismos. El objetivo de esta investigación consistió en evaluar el antagonismo in vitro de Trichoderma sp. y Bacillus subtilis contra tres de los principales patógenos del ajo: Sclerotium cepivorum, Penicillium sp. y Pseudomonas marginalis. Las especies mencionadas se aislaron e identificaron con pruebas bioquímicas y claves taxonómicas respectivamente y se determinó su actividad antagónica y efecto inhibitorio utilizando el crecimiento en platos duales. La cepa de B. subtilis mostró un potencial con valores bajos de PICR: 14,087 ante S. cepivorum y 3,328 ante Penicillium sp., por lo que se clasifica como un mal biocontrolador. Por su parte, Trichoderma presentó un potencial muy alto, con valores de PICR de 40,210 frente a S. cepivorum y de 45,034 ante Penicillium sp., lo que indica que es un muy buen controlador. Los resultados apoyan el potencial de las cepas de Trichoderma sp. como agentes de control biológico frente a la pudrición causada por Penicillium del ajo, la bacteriosis por P. marginalis y la pudrición blanca por S. cepivorum. No así Bacillus subtilis, pues la cepa aislada demostró poco potencial como biocontrolador.

  5. Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent Estudos sobre a estabilidade de uma protease de Bacillus sp. e sua compatibilidade com detergentes comerciais

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2006-09-01

    Full Text Available Enzymes, and particularly proteases, have become an important and indispensable part of industrial processes such as laundry detergents, pharmaceuticals and food products. Detergents such as Tide®, Ariel® and Biz® contain proteolytic enzymes, most of them produced by members of the genus Bacillus. This paper describes the compatibility of protease produced by the thermophilic Bacillus sp, with commercial laundry detergent. Stability studies indicated that this enzyme retained about 95% and 74% of its maximum activity after 1h at 60ºC in the presence of glycine in combination with MnSO4 and CaCl2, respectively. No inhibitory effect was observed at 1.0-5.0 mM of EDTA. Triton X-100 inhibited the enzyme in all the concentrations tested. The enzyme was unstable in a 5% (v/v concentration of peroxide solution. The protease retained more than 80% and 65% of its activity after 30 min incubation at 60ºC in the presence of Tide® and Cheer® detergents, respectively. After supplementation of CaCl2 (10 mM and glycine (1 mM, the enzyme in Tide® detergent retained more than 85% of its activity after 1h. Based on these findings, Bacillus sp. protease shows a good potential for application in laundry detergents.As enzimas, principalmente as proteases, têm uma participação importante e indispensável em muitos processos industriais tais como na indústria farmacêutica, de alimentos e de detergentes. Alguns detergentes como Tide®, Ariel® e Biz® contem enzimas proteolíticas em sua formulação, sendo a maioria produzida por bactérias do gênero Bacillus sp. Neste artigo, foi avaliada a compatibilidade de uma protease produzida por um microrganismo termofílico, Bacillus sp., com alguns detergentes comerciais. Estudos sobre a estabilidade mostraram que a enzima reteve cerca de 95% e 74% de sua máxima atividade após 1h a 60ºC na presença de glicina em combinação com MnSO4 e CaCl2 respectivamente. A enzima não foi inibida em presença de 1

  6. [Response of bacillus sp. F26 to different reactive oxygen species stress characterized by antioxidative enzymes synthesis].

    Science.gov (United States)

    Yan, Guoliang; Hua, Zhaozhe; Du, Guocheng; Chen, Jian

    2008-04-01

    The oxidative response of Bacillus sp F26 to different forms of reactive oxygen species (ROS) stress including H2O2, O2- * and OH * were investigated by using diverse generating source of ROS, which were characterized by synthesis of antioxidative enzymes. It was shown that the responses of cells to oxidative stress are largely dependent on species, mode (instantaneous and continual) and intensity of stress. Higher synthesis rate of catalase (CAT) is crucial for Bacillus sp F26 to resist H2O2 stress. The damage of H2O2 to cell was minor if CAT can efficiently decompose H2O2 entering into cell, furthermore, the response can stimulate cell growths and sugar consumption. Conversely, cell growth and synthesis of antioxidative enzymes are greatly inhibited when the intensity of H2O2 stress overwhelms the cell capability of clearing H2O2. Due to the difference in mode and effect on cells between O2- * and H2O2, higher synthesis rates of CAT and superoxide dismutase (SOD) couldn't guarantee cells to eliminate H2O2 and O2- * efficiently. Therefore, the toxicity to cells induced by intracellular O2- * is more severe than H2O2 stress. Unlike response to H2O2 and O2- *, OH stress significantly inhibited cell growth and synthesis of antioxidative enzymes due to the fact OH * is most active ROS. Our results indicated that Bacillus sp F26 will show diverse biological behaviour in response to H2O2, O2- * and OH * of stress due to the discrepancy in chemical property. In order to survive in oxidative stress, cells will timely adjust their metabolism to adapt to new environment including regulating synthesis level of antioxidative enzymes, changing rates of cells growth and substrate consumption.

  7. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  8. Efecto biocontrolador de Bacillus spp., frente a Fusarium sp., bajo condiciones de invernadero en plantas de tomillo (Thymus vulgaris L.)

    OpenAIRE

    Corrales, Lucia Constanza; Sánchez, Ligia Consuelo; Cuervo, Jairo; Joya, Julie Alexandra; Marquez, Katherine

    2012-01-01

    El desarrollo de estrategias diferentes al uso de agroquímicos en la agricultura ha abierto nuevas posibilidades a la investigación con microorganismos como alternativa en control biológico debido a sus capacidades bioquímicas y la facilidad de su manejo para la protección de cultivos. El objetivo del presente estudio fué establecer el efecto biocontrolador de Bacillus spp., frente a Fusarium sp., bajo condiciones de invernadero en tomillo. La metodología incluyó el aislamiento del posible pa...

  9. Simultaneous removal of Cr(Ⅵ) and phenol in consortium culture of Bacillus sp. and Pseudomonas putida Migula (CCTCC AB92019)

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; PAN Cui; XIA Wen-bin; ZENG Guang-ming; ZHOU Ming; LIU Yuan-yuan; KE Jie; HUANG Chao

    2008-01-01

    The simultaneous removal of Cr(Ⅵ) and phenol in a consortium culture containing Cr(Ⅵ) reducer, Bacillus sp. and phenol degrader, Pseudomonas putida Migula (CCTCC AB92019) was studied. Phenol was used as the sole carbon source. Bacillus sp. utilized metabolites formed from phenol degradation as electron donors and energy source for Cr(Ⅵ) reduction. Optimum Cr(Ⅵ) reduction was observed at a phenol concentration of 150 mg/L and an initial Cr(Ⅵ) concentration of 15 mg/L. Both the Cr(Ⅵ) reduction and phenol degradation were influenced by the cell composition of the culture, but the phenol degradation was not significantly affected by the content of Bacillus sp. The experiments also showed that the amount of phenol degraded was more than that stoichiometrically required for Cr(Ⅵ) reduction.

  10. COLONIZATION OF VIGNA RADIATA ROOTS BY CHROMIUM RESISTANT BACTERIAL STRAINS OF OCHROBACTRUM INTERMEDIUM, BACILLUS CEREUS AND BREVIBA CTERIUM SP.

    Institute of Scientific and Technical Information of China (English)

    MUHAMMAD Faisal; SHAHIDA Hasnain

    2005-01-01

    The present study deals with colonization potential of plant growth promoting bacterial strains ( Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp. ) on Vigna radiata roots. The roots were heavily colonized with O. intermedium and B. cereus as compared to Brevibacterium sp. O. intermedium mainly colonized rhizoplane while B. cereus occurred both on the rhizoplane and near root zone. O. intermedium and B. cereus were found to be present both on the rhizoplane and near root zone, while Brevibacterium only in the rhizosphere in the form of groups. The cells of B. cereus were found more in the sites where root exudates were existed. From the above results it was observed that the number of O. intermedium cells were large at root exudate site. Fig 2, Tab 1, Ref 15

  11. EFECTIVIDAD DE CEPAS DE Azotobacter sp. Y Bacillus sp. PARA EL CONTROL DE ESPECIES FÚNGICAS ASOCIADAS A HORTALIZAS

    Directory of Open Access Journals (Sweden)

    Janet Rodríguez Sánchez

    2016-01-01

    Full Text Available Los géneros Azotobacter y Bacillus tienen la potencialidad de fijar nitrógeno atmosférico, solubilizar elementos minerales y producir un grupo de sustancias estimuladoras del crecimiento vegetal. Bacillus se reconoce, además, por su actividad antagonista. Estas razones justifican su selección como principios activos de productos biofertilizantes. La presencia de enfermedades causadas por hongos en los cultivos hortícolas, constituye un problema en la agricultura cubana. El objetivo del presente trabajo fue evaluar la actividad antagonista de cepas de los géneros Azotobacter y Bacillus contra hongos que causan enfermedades a cultivos hortícolas. Para ello se emplearon las especies Fusarium chlamydosporum, Corynespora cassiicola y Cladosporium oxysporum . Todas las cepas pertenecen a las colecciones del INIFAT. Para desarrollar este trabajo se utilizó el Método de “Enfrentamiento de Cultivos Duales”, que permitió seleccionar aquellas que poseen dicha actividad y describir, a la vez, las principales afectaciones que provocan a las estructuras fúngicas. Los resultados arrojaron que dentro de los dos géneros hay cepas que logran inhibir el crecimiento micelial. Dentro de las cepas de Azotobacter cinco resultaron promisorias contra Cladosporium oxysporum, dos responden frente a Fusarium chlamydosporum y una sola resultó efectiva contra Corynespora cassiicola. La actividad mostrada por el género Bacillus fue mayor. En este caso, dos cepas muestran efectividad contra Corynespora casiicola; seis contra Cladosporium oxysporum y ocho contra Fusarium chlamydosporum. Se comprobó que existen cepas de Azotobacter capaces de inhibir a más de una especie fúngica, lo que resulta novedoso por encontrarse poco citada la actividad del género contra patógenos de hortalizas

  12. Isolation and identification of biosurfactant-producing strains from the genus Pseudomonas aeruginosa and antibacterial effects of biosurfactant production in vitro

    Directory of Open Access Journals (Sweden)

    Salman Ahmady-Asbchin

    2013-01-01

    Full Text Available Introduction: Biosurfactants are amphiphilic biological compounds produced extracellularly or as part of the cell membranes by a variety of microorganisms. Because of their use in various industries, they are of a particular importance. The aim of this study was to identify a strain of bacteria of the genus Pseudomonas aeruginosa biosurfactant producers. Materials and methods: In this study, different samples of oil, water and soil contaminated with oil were prepared. Hemolytic activity, emulsification activity and measurement of surface tension were used and selected strains were identified by biochemical tests. The nature and effect of antibacterial biosurfactant was evaluated for strain selection.Results: In this study, eighty eight bacterial strains were isolated. Twenty four strains were isolated from the isolated strains with hemolytic activity. Among which, 14 strains have emulsification activity more than 70% and at last four strains reached surface tension to be less than 40 mN/m. Selected strain based on biochemical tests was recognized as a Pseudomonas aeruginosa. The nature of biosurfactant was determined by TLC, and proved to be of glycolipid kind. Therefore, the produced biosurfactant of the selected strain had antibacterial activity against six bacterial infectious. Sensitive bacteria to the effects of biosurfactant extract of Pseudomonas aeruginosa83, was Staphylococcus aureus and the most resistant bacteria to these extract, was the Proteus mirabilis. The results of MIC, MBC showed that MIC of the extract in concentration of 63 and 125 mg/ml on Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus respectively. Also, the MBC were extract in concentration of 63 and 125mg/ml on Staphylococcus epidermidis and Staphylococcus aureus respectively.Discussion and conclusion: Pseudomonas aeruginosa had high potential in reducing the surface tension and biosurfactant extracted had high antibacterial effects. Therefore, it

  13. Production, purification and characterisation of thermostable metallo-protease from newly isolated Bacillus sp. KG5

    Directory of Open Access Journals (Sweden)

    Nazenin Ahmetoglu

    2015-03-01

    Full Text Available Background: Due to the importance of microbial proteases in biotechnological applications, a number of microorganisms are being explored. The production, purification and characterisation of extracellular metallo-proteases by producing Bacillus sp. KG5 was studied. Material and Methods: Bacterial strain KG5 was isolated from Kos (Bingol hot spring. The strain KG5 was identified by morphological, physiological, biochemical and 16S rRNA gene sequencing. The effects of various parameters on protease production, such as time, temperature, pH, carbon and nitrogen sources and CaCl2 were studied. The enzyme was purified by ammonium sulphate precipitation and Sephadex G-75 gel permeation chromatography. Molecular weight was calculated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE and zymographic analysis. The effects of some metal ions, chelators and inhibitors on enzyme activity were determined. Results: The optimum temperature, pH and incubation period for protease production were 40-45°C, 7.0 and 24 h, respectively. It was determined that the best nitrogen sources were yeast extract and urea, while the best carbon sources were lactose and galactose. However, glucose as a source of carbon was found to inhibit the production of the enzyme. The maximum enzyme production was increased in the presence of CaCl2. The molecular weight of purified enzyme was found to be approximately 48 kDa. It was found that the enzyme was fully stable in the presence of 2 mM CaCl2 at 50°C after 120 min. Purified protease was significantly activated by Ca2+ and Mg2+, while it was greatly inhibited by Cu2+, Zn2+, Hg2+ and SDS as well as by the metal ion chelators ethylenediaminetetraacetic (EDTA and 1,10-phenanthroline. Phenylmethylsulfonyl fluoride (PMSF had a little effect on the enzyme. Conclusions: Our findings suggest the potential of this isolate for protease production and that this enzyme may be suitable for biotechnological applications.

  14. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  15. Effect of the medium composition on formation of amylase by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Eliana de Oliveira. Santos

    2003-01-01

    Full Text Available Studies on the alpha -amylase synthesis was carried out with a moderately thermophilic, facultatively anaerobic Bacillus sp, isolated from soil samples. The cells were cultivated in a complex medium containing soluble starch or maltose as carbon source. The levels of the alpha -amylaseactivity detected in culture supernatants varied greatly with the type of carbon source used. Maltose, soluble starch and citrate stimulated alpha -amylaseformation. Addition of exogenous glucose repressed formation of alpha -amylase, demonstrating that a classical glucose effect was operative in this organism. The concentration of yeast extract was found to be important factor in the alpha -amylase synthesis bythe isolate.The activity of the enzyme increased between 2 and 5 g/L yeast extract concentration and then fell very rapidly beyond this point. The best concentration of peptone to alpha-amylase formation was found to be around 10g/L.Estudos sobre a síntese de alfa -amilase foram realizados com uma bactéria termofílica moderada e facultativa anaeróbica, isolada de amostras de solo. As células foram cultivadas em um meio complexo contendo amido solúvel ou maltose como fonte de carbono. Os níveis da atividade de alfa -amilase detectados no sobrenadante da cultura variaram grandemente com o tipo da fonte de carbono utilizada. Amido solúvel, maltose e citrato estimularam a formação de alfa -amilase. A adição de glicose as culturas reprimiu a formação da alfa -amilase, demonstrando que o clássico efeito glicose foi operativo neste organismo. A concentração de extrato de levedura foi um fator importante na formação de alfa -amilase pelo isolado. A atividade da enzima aumentou entre concentrações de 2 a 5 g/L e então caiu muito rapidamente em torno deste ponto. A melhor concentração de peptona para a formação da alfa -amilase foi em torno de 10 g/L.

  16. Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents.

    Science.gov (United States)

    Paar, A; Costa, S; Tzanov, T; Gudelj, M; Robra, K H; Cavaco-Paulo, A; Gübitz, G M

    2001-08-23

    Three thermoalkaliphilic bacteria, which were grown at pH 9.3-10 and 60-65 degrees C were isolated out of a textile wastewater drain. The unknown micro-organisms were identified as thermoalkaliphilic Bacillus sp. Growth conditions were studied and catalase activities and stabilities compared. Catalases from Bacillus SF showed high stabilities at 60 degrees C and pH 9 (t1/2=38 h) and thus this strain was chosen for further investigations, such as electron microscopy, immobilization of catalase and hydrogen peroxide degradation studies. Degradation of hydrogen peroxide with an immobilized catalase from Bacillus SF enabled the reuse of the water for the dyeing process. In contrast, application of the free enzyme for treatment of bleaching effluents, caused interaction between the denaturated protein and the dye, resulting in reduced dye uptake, and a higher color difference of 1.3DeltaE* of dyed fabrics compared to 0.9DeltaE* when using the immobilized enzyme.

  17. Biological removal of nickel (II by Bacillus sp. KL1 in different conditions: optimization by Taguchi statistical approach

    Directory of Open Access Journals (Sweden)

    Taran Mojtaba

    2015-09-01

    Full Text Available Bioremediation is the removal of heavy-metals such as nickel (Ni using microorganisms and has been considered as an important field in the biotechnology. Isolation and characterization of microorganisms exhibiting bioremediation activities and their optimization to treat polluted wastewaters is a vital and difficult task in remediation technologies. In this study, investigation was carried out to isolate Ni (II remediating microbial strains from soils contaminated with municipal solid waste leachate. Furthermore, Taguchi design of experiments were used to evaluate the influence of concentration, pH, temperature, and time on bioremediation of Ni (II using isolated bacteria. This study concluded that Bacillus sp. KL1 is a Ni (II-resistant strain and had Ni (II bioremediation activity. The highest bioremediation of Ni (II was observed as 55.06% after 24 h at 30ºC, pH 7, and 100 ppm concentration. Moreover, it was also observed that concentration is the most effective factor in the bioremediation process. In conclusion, we have demonstrated that bacteria isolated from soils contaminated with garbage leachate have the Bacillus sp. KL1 bacteria which can efficiently uptake and eliminate Ni (II from contaminated sites and thus makes it possible to treat heavy-metal containing wastewaters in industry by using this microorganism at optimized conditions.

  18. Growth temperature of different local isolates of Bacillus sp. in the solid state affects production of raw starch digesting amylases

    Directory of Open Access Journals (Sweden)

    Šokarda-Slavić Marinela

    2014-01-01

    Full Text Available Natural amylase producers, wild type strains of Bacillus sp., were isolated from different regions of Serbia. Strains with the highest amylase activity based on the starch-agar plate test were grown on solid-state fermentation (SSF on triticale. The influence of the substrate and different cultivation temperature (28 and 37°C on the production of amylase was examined. The tested strains produced α-amylases when grown on triticale grains both at 28 and at 37°C, but the activity of amylases and the number and intensity of the produced isoforms were different. Significant hydrolysis of raw cornstarch was obtained with the Bacillus sp. strains 2B, 5B, 18 and 24B. The produced α-amylases hydrolyzed raw cornstarch at a temperature below the temperature of gelatinization, but the ability for hydrolysis was not directly related to the total enzyme activity, suggesting that only certain isoforms are involved in the hydrolysis. [Projekat Ministarstva nauke Republike Srbije, br. 172048

  19. Purification and characterization of a thermo- and organic solvent-tolerant alkaline protease from Bacillus sp. JER02.

    Science.gov (United States)

    Badoei-Dalfard, Arastoo; Karami, Zahra; Ravan, Hadi

    2015-01-01

    Bacillus sp. JER02 is a bacterial strain that can be grown in a medium containing organic solvents and produce a protease enzyme. JER02 protease was purified with a yield of 31.9% of total protein and 328.83-fold purification. Km and Vmax of this protease were established as 0.826 µM and 7.18 µmol/min, respectively. JER02 protease stability was stimulated about 80% by cyclohexane. It exhibited optimum temperature activity at 70°C. Furthermore, this enzyme was active in a wide range of pH (4-12) and showed maximum activity at pH 9.0. The nonionic detergents Tween-20 and Triton X-100 improved the protease activity by 30 and 20%, respectively. In addition, this enzyme was shown to be very stable in the presence of strong anionic surfactants and oxidizing agents, since it retained 77%, 93%, and 98% of its initial activity, after 1 hr of incubation at room temperature with sodium dodecyl sulfate (SDS), sodium perborate (1%, v/v) and H2O2 (1%, v/v), respectively. Overall, the unique properties of the Bacillus sp. JER02 protease suggested that this thermo- and detergent-stable, solvent-tolerant protease has great potential for industrial applications.

  20. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS.

    Science.gov (United States)

    Dawkar, Vishal V; Jadhav, Umesh U; Ghodake, Gajanan S; Govindwar, Sanjay P

    2009-11-01

    Bacillus sp. VUS decolorized azo dye Navy blue 2GL in 48 h at static anoxic condition in yeast extract medium, whereas it took only 18 h for the decolorization in presence of CaCl(2). Different inducers played role in the decolorization of Navy blue 2GL. CaCl(2) found to be the most effective inducer among all inducers tested. The activity of enzymes like lignin peroxidase, laccase and reductases viz. NADH-DCIP, azo and riboflavin induced during decolorization represents their role in the biodegradation. Extracellular LiP and intracellular laccase activity induced with CaCl(2). Yeast extract was best medium for faster decolorization than other media. UV-vis spectrophotometer analysis and visual examinations showed decolorization of dye. High performance liquid chromatography, Fourier transforms infrared spectroscopy showed degradation of dye. Gas Chromatography-Mass Spectroscopy revealed formation of 4-Amino-3-(2-bromo-4, 6-dinitro-phenylazo)-phenol and acetic acid 2-(-acetoxy-ethylamino)-ethyl ester as final products. Bacillus sp. VUS also decolorized synthetic effluent. Phytotoxicity study showed detoxification of Navy blue 2GL.

  1. Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23.

    Science.gov (United States)

    Lin, L L; Chyau, C C; Hsu, W H

    1998-08-01

    The optimum temperature and initial medium pH for amylase production by Bacillus sp. TS-23 were 55 degrees C and 8.5 respectively. Maximum amylase activity was obtained in a medium containing peptone and soluble starch as nitrogen and carbon sources. Activity staining revealed that two amylases with molecular masses of 150 and 42 kDa were produced when maltose, soluble starch or amylose was used as carbon source for growth, whereas only the 150 kDa protein was detected in the medium containing water-insoluble carbon sources. A raw-starch-degrading amylase was purified from culture supernatant of Bacillus sp. TS-23. The molecular mass of the purified amylase was estimated at 42 kDa by electrophoresis. The enzyme had a pI of 4. 2. The optimal pH and temperature for activity were 9.0 and 70 degrees C respectively. The thermoactivity of the purified enzyme was enhanced in the presence of 5 mM Ca2+; under this condition, enzyme activity could be measured at a temperature of 90 degrees C. The enzyme was strongly inhibited by Hg2+, Pb2+, Zn2+, Cu2+ and EDTA, but less affected by Ni2+ and Cd2+. The enzyme preferentially hydrolysed high-molecular-mass substrates with an alpha-1, 4-glucosidic bond except glycogen. The raw starches were partly degraded by the purified amylase to yield predominantly oligosaccharides with degrees of polymerization 3, 4 and 5.

  2. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144.

    Science.gov (United States)

    Figueredo, María Soledad; Tonelli, María Laura; Ibáñez, Fernando; Morla, Federico; Cerioni, Guillermo; Del Carmen Tordable, María; Fabra, Adriana

    2017-04-01

    Synergism between beneficial rhizobacteria and fungal pathogens is poorly understood. Therefore, evaluation of co-inoculation of bacteria that promote plant growth by different mechanisms in pathogen challenged plants would contribute to increase the knowledge about how plants manage interactions with different microorganisms. The goals of this work were a) to elucidate, in greenhouse experiments, the effect of co-inoculation of peanut with Bradyrhizobium sp. SEMIA6144 and the biocontrol agent Bacillus sp. CHEP5 on growth and symbiotic performance of Sclerotium rolfsii challenged plants, and b) to evaluate field performance of these bacteria in co-inoculated peanut plants. The capacity of Bacillus sp. CHEP5 to induce systemic resistance against S. rolfsii was not affected by the inoculation of Bradyrhizobium sp. SEMIA6144. This microsymbiont, protected peanut plants from the S. rolfsii detrimental effect, reducing the stem wilt incidence. However, disease incidence in plants inoculated with the isogenic mutant Bradyrhizobium sp. SEMIA6144 V2 (unable to produce Nod factors) was as high as in pathogen challenged plants. Therefore, Bradyrhizobium sp. SEMIA6144 Nod factors play a role in the systemic resistance against S. rolfsii. Bacillus sp. CHEP5 enhanced Bradyrhizobium sp. SEMIA6144 root surface colonization and improved its symbiotic behavior, even in S. rolfsii challenged plants. Results of field trials confirmed the Bacillus sp. CHEP5 ability to protect against fungal pathogens and to improve the yield of extra-large peanut seeds from 2.15% (in Río Cuarto) to 16.69% (in Las Vertientes), indicating that co-inoculation of beneficial rhizobacteria could be a useful strategy for the peanut production under sustainable agriculture system.

  3. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust.

    Science.gov (United States)

    Sylvan, Jason B; Hoffman, Colleen L; Momper, Lily M; Toner, Brandy M; Amend, Jan P; Edwards, Katrina J

    2015-06-01

    A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 μm wide and 1-3 μm long, that occurred singly and in chains. Strain 1MBB1T stained Gram-positive. Catalase and oxidase were produced. The isolate grew optimally at 30 °C and pH 7.5, and could grow with up to 12 % (w/v) NaCl. The DNA G+C content was 40.5 mol%. The major cellular fatty acids were C16:1ω11c (26.5 %), anteiso-C15:0 (19.5 %), C16:0 (18.7 %) and iso-C15:0 (10.4 %), and the cell-wall diamino acid was meso-diaminopimelic acid. Endospores of strain 1MBB1T oxidized Mn(II) to Mn(IV), and siderophore production by vegetative cells was positive. Phylogenetic analysis of the 16S rRNA gene indicated that strain 1MBB1T was a member of the family Bacillaceae, with Bacillus foraminis CV53T and Bacillus novalis LMG 21837T being the closest phylogenetic neighbours (96.5 and 96.2 % similarity, respectively). This is the first novel species described from deep subseafloor basaltic crust. On the basis of our polyphasic analysis, we conclude that strain 1MBB1T represents a novel species of the genus Bacillus, for which we propose the name Bacillus rigiliprofundi sp. nov. The type strain is 1MBB1T ( = NCMA B78T = LMG 28275T).

  4. Bacillus piscis sp. nov., a novel bacterium isolated from the muscle of the antarctic fish Dissostichus mawsoni.

    Science.gov (United States)

    Lee, Jae-Bong; Jeon, Seon Hwa; Choi, Seok-Gwan; Jung, Hee-Young; Kim, Myung Kyum; Srinivasan, Sathiyaraj

    2016-12-01

    In this paper, a new bacterial strain designated as 16MFT21(T) is isolated from the muscle of a fish caught in the Antarctic Ocean. Strain 16MFT21(T) is a Gram-staining-positive, catalase-oxidase-positive, rod-shaped facultative-aerobic bacterium. The phylogenetic analysis that is based on the 16S-rRNA gene sequence of strain 16MFT21(T) revealed that it belongs to the genus Bacillus in the family Bacillaceae in the class Bacilli. The highest degrees of the sequence similarity of the strain 16MFT21(T) is with Bacillus licheniformis ATCC 14580(T) (96.6%) and Bacillus sonorensis NBRC 101234(T) (96.6%). The isolate formed a pale-yellow pigment, and it grew in the presence of 0% to 10% (w/v) NaCl (optimum at 2% NaCl), a pH of 6.0 to 10.0 (optimum pH from 7.0 to 8.0), and from 4°C to 30°C (optimum at 30°C). The major polar lipids consist of diphosphatidylglycerol (DPG) and phosphatidylglycerol (PG). The predominant fatty acids are iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The main respiratory quinone is menaquinone-7 (MK-7), and based on the use of the meso-diaminopimelic acid as the diagnostic diamino acid, the peptidoglycan cell-wall type is A1γ. Based on the phylogenetic, phenotypic, and chemotaxonomic data, strain 16MFT21(T) (=KCTC 18866(T) =JCM 31664(T)) for which the name Bacillus piscis sp. nov. is proposed should be classified as a new species.

  5. Bacillus alkalicola sp. nov., an alkaliphilic, gram-positive bacterium isolated from Zhabuye Lake in Tibet, China.

    Science.gov (United States)

    Zhai, Lei; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2014-09-01

    A Gram-positive, alkaliphilic bacterium, designated strain Zby6(T), was isolated from Zhabuye Lake in Tibet, China. The strain was able to grow at pH 8.0-11.0 (optimum at pH 10.0), in 0-8 % (w/v) NaCl (optimum at 3 %, w/v) and at 10-45 °C (optimum at 37 °C). Cells of the isolate were facultatively anaerobic and spore-forming rods with polar flagellum. The predominant isoprenoid quinone was MK-7, and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C(15:0), C(16:0) and anteiso-C(15:0). The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine. The genomic DNA G+C content of the isolate was 38.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Zby6(T) was a member of the genus Bacillus and most closely related to Bacillus cellulosilyticus DSM 2522(T) (97.7 % similarity). The DNA-DNA relatedness value between strain Zby6(T) and B. cellulosilyticus DSM 2522(T) was 59.2 ± 1.8 %. Comparative analysis of genotypic and phenotypic features indicated that strain Zby6(T) represents a novel species of the genus Bacillus, for which the name Bacillus alkalicola sp. nov. is proposed; the type strain is Zby6(T) (=CGMCC 1.10368(T) = JCM 17098(T) = NBRC 107743(T)).

  6. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.

    Science.gov (United States)

    Dou, Guiming; Liu, Hongcan; He, Wei; Ma, Yuchao

    2016-01-01

    Two alkaliphilic and halotolerant Gram-stain positive, rod-shaped and endospore-forming bacteria, designated strains 12-3(T) and 12-4, were isolated from saline and alkaline soils collected in Lindian county, Heilongjiang province, China. Both strains were observed to grow well at a wide range of temperature and pH values, 10-45 °C and pH 8-12, with optimal growth at 37 °C and pH 9.0, respectively. Growth of the two strains was found to occur at total salt concentrations of 0-12 % (w/v), with an optimum at 4 % (w/v). The G+C contents of the genomic DNA of strains 12-3(T) and 12-4 were determined to be 42.7 and 42.4 mol%, respectively, and the major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. In isolate 12-3(T), meso-diaminopimelic acid was found to be the diagnostic diamino acid of the cell wall peptidoglycan; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major cellular polar lipids; and menaquinone-7 was identified as the predominant isoprenoid quinone. Strains 12-3(T) and 12-4 share very close 16S rRNA gene sequence similarity (99.74 %) and their DNA-DNA relatedness was 95.3 ± 0.63 %, meaning that the two strains can be considered to belong to the same species. 16S rRNA gene sequence-based phylogenetic analysis revealed strains 12-3(T) and 12-4 exhibit high similarities to Bacillus pseudofirmus DSM 8715(T) (98.7 %), Bacillus marmarensis DSM 21297(T) (97.2 %) and Bacillus nanhaiisediminis CGMCC 1.10116(T) (97.1 and 97.0 %, respectively). DNA-DNA hybridization values between isolate 12-3(T) and the type strains of closely related Bacillus species were below 30 %. On the basis of the polyphasic evidence presented, strains 12-3(T) and 12-4 are considered to represent a novel species of the genus Bacillus, for which the name Bacillus lindianensis sp. nov. is proposed. The type strain is 12-3(T) (DSM 26864(T) = CGMCC 1.12717(T)).

  7. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge.

    Science.gov (United States)

    Wei, Xiu Li; Lin, Yan Bing; Xu, Lin; Han, Meng Sha; Dong, Dan Hong; Chen, Wei Min; Wang, Li; Wei, Ge Hong

    2015-10-01

    A Gram-positive, facultative anaerobic, rod-shaped, and endospore-forming strain, designated 53-2(T) was isolated from the root nodule of Oxytropis ochrocephala Bunge growing on Qilian mountain, China. The strain can grow at pH 7.0-8.0, 10-50 °C and tolerate up to 11% NaCl. Optimal growth occurred at pH 7.2 and 37 °C. The result of BLASTn search based on 16S rRNA gene sequence revealed that strain 53-2(T) , being closest related to Bacillus acidicola 105-2(T) , possessed remote similarity (less than 95.64%) to the species within genus Bacillus. The DNA G + C content was 37.8%. Chemotaxonomic data (major quinone is MK-7; major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipid, and aminoglycophospholipid; fatty acids are anteiso-C15: 0 , iso-C15:0 and anteiso-C17: 0 ) supported the affiliation of the isolate to the genus Bacillus. On the basis of physiological, phylogenetic, and biochemical properties, strain 53-2(T) represents a novel species within genus Bacillus, for which the name Bacillus radicibacter is proposed. The type strain is 53-2(T) (=DSM27302(T) =ACCC06115(T) =CCNWQLS5(T) ).

  8. Biosurfactant-producing Rhizobacteria Assisted Solanum nigrum L.Phytoremediation of Cd-polluted Soils%产表面活性剂根际菌协同龙葵修复镉污染土壤

    Institute of Scientific and Technical Information of China (English)

    黄文

    2011-01-01

    A biosurfactant-producing rhizobacteria LKS06 was isolated and selected from heavy metal contaminated soils of a mine and identified as Pseudomonas sp. Based on analysis of its physical and biochemical characteristics and its 16S rDNA gene sequence. The strain LKS06 which was found to exhibit high tolerance of different heavy metals had the capacity to produce indole acetic acid (IAA), siderophore and l-aminocyclopropane-1-carboxylate (ACC) deaminase, and also could activate heavy metals effectively when added to contaminated soils. Subsequently, a pot experiment was done for investigating the influence of inoculating of the strain LKS06 on plant growth and Cd uptake by hyperaccumulator Solanum nigrum L. In soils artificially contaminated with different levels of Cd (0, 10, 25, 50, 100 mg/kg). Results showed that inoculation of strain LKS06 stimulated the growth of plants, and Cd uptake by plants significantly increased as well. Compared to non-inoculated control, dry weights of root, tern and leaves tissues of plant inoculated with strain LKS06 were increased from 6.3% to 11.9%, 10.0% to 18.8% and from 4.8% to 23.7% respectively. Moreover, the largest total Cd contents of the root and above-ground tissues were increased by 36.7% and 42.4% respectively. The study using plant-microbe partnerships for elevating the efficiency of phytoremediation has provided a new approach for remediation, of heavy metal contaminated soils.%从某矿区重金属污染的土壤中分离筛选出一株能产生物表面活性剂的根际细菌LKS06,经生理生化特征及16S rDNA序列分析,将其鉴定为假单孢菌属(Pseudomonas sp.LKS06).生物学特性的测定表明,菌株LKS06对多种重金属有很高的耐受性,且具有分泌吲哚乙酸、产铁载体和ACC脱氨酶活性的能力,并对土壤重金属具有很好的活化效能.利用盆栽试验研究了接种菌株LKS06对超累积植物龙葵在含镉0、10、25、50和100 mg/kg的土壤中的生长及累积镉能

  9. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation

    Directory of Open Access Journals (Sweden)

    Arezoo Dadrasnia

    2015-08-01

    Full Text Available This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v was degraded on Day 20 (71.5. Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.

  10. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm.

    Science.gov (United States)

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mall, Gangotri; Panda, Himadri Tanaya; Sukla, Lala Behari; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2013-11-01

    Biosurfactants are amphiphilic molecules having hydrophobic and hydrophilic moieties produced by various microorganisms. These molecules trigger the reduction of surface tension or interfacial tension in liquids. A biosurfactant-producing halophile was isolated from Lake Chilika, a brackish water lake of Odisha, India (19°41'39″N, 85°18'24″E). The halophile was identified as Bacillus tequilensis CH by biochemical tests and 16S rRNA gene sequencing and assigned accession no. KC851857 by GenBank. The biosurfactant produced by B. tequilensis CH was partially characterized as a lipopeptide using thin-layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques. The minimum effective concentration of a biosurfactant for inhibition of pathogenic biofilm (Escherichia coli and Streptococcus mutans) on hydrophilic and hydrophobic surfaces was found to be 50 μg ml(-1). This finding has potential for a variety of applications.

  11. Characteristics of raw starch degrading alpha-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp.

    NARCIS (Netherlands)

    Puspasari, Fernita; Nurachman, Zeily; Noer, Achmad Saefuddin; Radjasa, Ocky Karna; van der Maarel, Marc J. E. C.; Natalia, Dessy

    2011-01-01

    Partially purified alpha-amylase from Bacillus aquimaris MKSC 6.2, a bacterium isolated from a soft coral Sinularia sp., Merak Kecil Island, West Java, Indonesia, showed an ability to degrade raw corn, rice, sago, cassava, and potato starches with adsorption percentage in the range of 65-93%. Corn h

  12. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome

    Science.gov (United States)

    Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-01-01

    ABSTRACT The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought. PMID:28153893

  13. Draft Genome Sequence of Bacillus sp. Strain NSP2.1, a Nonhalophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    Science.gov (United States)

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Saxena, Anil Kumar

    2013-01-01

    The 5.52-Mbp draft genome sequence of Bacillus sp. strain NSP2.1, a nonhalophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India, is reported here. An analysis of the genome of this organism will facilitate the understanding of its survival in the salt marsh. PMID:24158559

  14. Draft Genome Sequence of Bacillus sp. Strain NSP9.1, a Moderately Halophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    Science.gov (United States)

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Sukhadiya, Bhoomika; Mandaliya, Mona; Saxena, Anil Kumar

    2013-01-01

    We report the 4.52-Mbp draft genome sequence of Bacillus sp. strain NSP9.1, a moderately halophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance. PMID:24115550

  15. Draft Genome Sequence of Bacillus sp. Strain SB47, an Obligate Extreme Halophile Isolated from a Salt Pan of the Little Rann of Kutch, India

    Science.gov (United States)

    Dey, Rinku; Thomas, Manesh; Sherathia, Dharmesh; Dalsania, Trupti; Patel, Ilaxi; Savsani, Kinjal; Ghorai, Sucheta; Vanpariya, Sejal; Sukhadiya, Bhoomika; Mandaliya, Mona; Rupapara, Rupal; Rawal, Priya; Saxena, Anil Kumar

    2013-01-01

    Here, we report the 4.46-Mbp draft genome sequence of Bacillus sp. strain SB47, an extreme halophile isolated from a salt pan of the Little Rann of Kutch, India. Exploring the genome of this organism will facilitate the understanding and isolation of the gene(s) involved in its extreme osmotolerance. PMID:24115544

  16. Draft Genome Sequence of the Extremely Halophilic Bacillus sp. Strain SB49, Isolated from a Salt Crystallizer Pond of the Little Rann of Kutch, India

    Science.gov (United States)

    Dey, Rinku; Thomas, Manesh; Sherathia, Dharmesh; Dalsania, Trupti; Patel, Ilaxi; Savsani, Kinjal; Ghorai, Sucheta; Vanpariya, Sejal; Sukhadiya, Bhoomika; Mandaliya, Mona; Rupapara, Rupal; Rawal, Priya

    2013-01-01

    Here we report the draft whole-genome sequence (3.72 Mbp) of Bacillus sp. strain SB49, an extremely halophilic bacterium isolated from a salt crystallizer pond of the Little Rann of Kutch in India. Unraveling the genome of this organism will facilitate understanding and isolation of the genes involved in imparting extreme osmotolerance. PMID:24136852

  17. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  18. Purification and Properties of Xyalnase from Bacillus sp.ZBAW6%嗜碱菌(Bacillus sp.)ZBAW6的木聚糖酶的分离纯化及其性质

    Institute of Scientific and Technical Information of China (English)

    曾艳; 刘铁汉; 周培瑾; 马延和

    2004-01-01

    通过硫酸铵分级沉淀,阴离子交换层析,凝胶过滤3步从嗜碱菌Bacillus sp.ZBAW6纯化了木聚糖酶.结果表明该酶分子量为45kD.N末端序列为DPFAAAVAPL.在pH5.5~10.5范围内均具有较高酶活性和稳定性;最适反应温度为65℃,酶活力基本不变.该酶作用于Beech-xylan的Km为0.11mg/mL,Vmax为23.89μmol/(min·mg).Hg2+对该酶有强的抑制作用.

  19. Survival and retention of the probiotic properties of Bacillus sp. strains under marine stress starvation conditions and their potential use as a probiotic in Artemia culture.

    Science.gov (United States)

    Mahdhi, Abdelkarim; Esteban, Maria Ángeles; Hmila, Zeineb; Bekir, Karima; Kamoun, Fathi; Bakhrouf, Amina; Krifi, Boubaker

    2012-12-01

    The probiotic properties of Bacillus strains isolated from Artemia culture and the effect of marine stress on viability and survival were investigated, as well as the changes occurring in their properties. Analyses showed that these bacteria corresponded to the genus Bacillus sp. Antagonism and adherence assays revealed that Bacillus strains have an inhibitory effect against tested pathogenic bacteria and are fairly adherent. Normal and starved cells showed different enzymatic profiles. Challenge tests performed with Artemia larvae provided evidence that the tested Bacillus strains were neither pathogenic nor toxic to the host and conferred protection for Artemia culture against pathogens. The tested strains maintained their viability and their probiotic properties during the period of study. The results suggest that the tested strains have suffered changes allowing them to survive in seawater in the absence of nutrients and outside their natural host, identifying them as potential probiotic candidates for Artemia culture.

  20. Purification and characterization of an antimicrobial peptide produced by Bacillus sp. strain P7

    OpenAIRE

    Fernández Soto, Paulina Alexandra

    2014-01-01

    This study reports a potential novel antimicrobial peptide with narrow spectrum activity against S. aureus NCTC 7447, produced by Bacillus tequilensis. Further studies to improve AMP-P7 purification and characterization are requered to establish its potential used in medicine and industry.

  1. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    Science.gov (United States)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  2. Amylase produced by Bacillus sp. SI-136 isolated from sodic-alkaline soil for efficient starch desizing

    Directory of Open Access Journals (Sweden)

    Indira P. Sarethy

    2012-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Bacillus sp. SI-136, isolated from sodic-alkaline soil, showed 94% similarity to B. cereus group based on 16S rDNA sequence. It produced α-amylase of 26 kDa with maximum activity at pH 10.0, stable up to pH 12.0 and 80oC. Mn2+ enhanced its activity as also 10% NaCl in medium. Agricultural waste substrates supported growth and enzyme activity was enhanced by 30% with sugarcane bagasse. The partially purified enzyme showed efficient desizing of cotton fabric at 50oC (40-60 min or 70oC (60 min with Tegewa rating 7-8, and at 95oC (20 min with Tegewa rating 9, properties enabling utility in textile industries.

  3. Effective biotic elicitation of Ruta graveolens L. shoot cultures by lysates from Pectobacterium atrosepticum and Bacillus sp.

    Science.gov (United States)

    Orlita, A; Sidwa-Gorycka, M; Malinski, E; Czerwicka, M; Kumirska, J; Golebiowski, M; Lojkowska, E; Stepnowski, P

    2008-03-01

    Growth of Ruta graveolens shoots was induced when Bacillus sp. cell lysates were added to the culture medium. Elicitation of coumarin by this lysate was also very effective; the concentrations of isopimpinelin, xanthotoxin and bergapten increased to 610, 2120 and 1460 microg g(-1) dry wt, respectively. It also had a significant effect on the production of psoralen and rutamarin (680 and 380 microg g(-1) dry wt) and induced the biosynthesis of chalepin, which was not detected in the control sample, up to 47 microg g(-1) dry wt With lysates of the Pectobacterium atrosepticum, their effect on growth was not so significant and had no effect on the induction of coumarin accumulation. But elicitation with this lysate was much more effective for inducing the production of furoquinolone alkaloids; the concentrations of gamma-fagarine, skimmianine, dictamnine and kokusaginine rose to 99, 680, 172 and 480 microg g(-1) dry wt, respectively.

  4. Characterization of an antifungal compound produced by Bacillus sp. strain A(5) F that inhibits Sclerotinia sclerotiorum.

    Science.gov (United States)

    Kumar, Ankit; Saini, Sandeep; Wray, Victor; Nimtz, Manfred; Prakash, Anil; Johri, B N

    2012-12-01

    A potential antagonist, Bacillus sp. strain A(5) F was isolated from soybean rhizosphere following in vitro dual plate screening. The bacterium displayed strong inhibitory activity in vitro against soybean stem rot pathogen, Sclerotinia sclerotiorum. The culture supernatant of strain A(5) F completely suppressed the mycelial growth of the pathogen, indicating that suppression was due to the presence of antifungal compounds in the culture filtrate. The culture filtrate also suppressed other phytopathogenic fungi including Fusarium oxysporum and Macrophomina phaseolina, in vitro suggesting a broad spectrum antagonistic activity against fungal pathogens. Chemical extraction followed by chromatographic analysis resulted in two antifungal fractions. The high resolution-electron spin ionization-mass spectrometry (HR-ESI-MS) and Nuclear Magnetic Resonance (1D and 2D(1) H) spectra of these antifungal fractions revealed the presence of antifungal compounds, one of which showed similarity to bacillomycin D.

  5. Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10

    Directory of Open Access Journals (Sweden)

    Fatemeh Shayesteh

    2015-09-01

    Full Text Available The bacteriocin-producing strain Bacillus sp., Sh10, isolated from the marine environment, exhibited a broad spectrum of antimicrobial activity against different food spoilage and human pathogens, with a maximum inhibitory activity against Candida albicans. The inhibitory compound was sensitive to trypsin but resistant to proteinase K, lysozyme, lipase and &alpha-amylase. It was heat-stable and remained its activity after autoclaving. In addition, the antimicrobial substance demonstrated striking stability at low temperatures (4 and -20°C for up to one year and retained its activity in a wide pH range from 2 to 11. It was also stable and active in the presence of different surfactants, solvents and heavy metals. Analysis of the partially purified bacteriocin by SDS-PAGE showed an apparent molecular weight of ~11 KDa. This study reveals a remarkable potential of this bacteriocin to be used as a food preservative.

  6. Antimicrobial Activity of Bacillus sp. Natural Isolates and Their Potential Use in the Biocontrol of Phytopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Tanja Berić

    2012-01-01

    Full Text Available Screening of 203 Bacillus sp. natural isolates for antimicrobial activity against phytopathogenic bacteria showed that 127 tested strains inhibit at least one sensitive strain, which illustrates their potential use as biocontrol agents. Among them, 104 isolates showed significant antagonism against Xanthomonas oryzae pv. oryzae, and only one of these (VPS50.2 synthesizes bacteriocin. An additional screening tested whether 51 isolates contained genes involved in the biosynthesis of lipopeptides of the iturin and surfactin classes. Results show that 33 isolates harbour the operon for iturin biosynthesis, and six of them carry the sfp gene, responsible for the biosynthesis of surfactin. Lipopeptide purification from the supernatant of isolate SS12.9 (identified as B. subtilis or B. amyloliquefaciens was performed using ethyl acetate extraction, ultrafiltration and reversed phase HPLC. Mass spectrometry analysis confirmed that isolate SS12.9 produces a substance of the iturin class with potential for biocontrol of X. oryzae pv. oryzae.

  7. Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP)

    Energy Technology Data Exchange (ETDEWEB)

    Luo Shenglian, E-mail: sllou@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang 330063 (China); Xiao Xiao [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xi Qiang [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wan Yong; Chen Liang; Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Liu Chengbin [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Guo Hanjun; Chen Jueliang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-06-15

    Bioremediations of cadmium by endophytic bacterium (EB) L14 (Bacillus sp.) in the presence of industrially used metabolic inhibitors (DCC or DNP) were investigated. In the presence of DCC or DNP, the biomass population of EB L14 was greatly inhibited. However, the cadmium removal of EB L14 increased from 73.6% (in the absence of DCC or DNP) to 93.7% and 80.8%, respectively. The analysis of total and intracellular cadmium concentrations during 24 h of incubation indicated that this enhanced cadmium removal was the inhibition effect of DCC or DNP on the cations export resistance system of EB L14. This unique property strongly indicated the superiority of this endophyte for practical application in cadmium bioremediation in the presence of industrially used metabolic inhibitors.

  8. Cloning and Efficient Expression ofBacillus sp. BH072 tasAGene inEscherichia coli

    Institute of Scientific and Technical Information of China (English)

    Han Ye; Fan Jie; Zhou Zhijiang; Tan Xiqian; Zhao Xin

    2015-01-01

    TheBacillus strain BH072 isolated from a honey sample showed strong antifungal activity against phyto-pathogen. Gene cloning test demonstrated that the strain had a tasA gene encoding an antifungal TasA protein. Al-though the wild strain simultaneously produced various antifungal substances, only thephysicochemical property and antifungal activity of TasA protein were unclear due to the difficulty in extraction. In this study,tasA gene encoding the protein fromBacillus sp. BH072 was amplified by using the polymerase chain reaction(PCR) method and cloned into pET 28a(+) vector, and then expressed in host cellsEscherichia coli BL21(DE3). The expressed proteins were collected by centrifugation and ultrasonic treatment, and then purified by using nickel-nitrilotriacetic acid(Ni-NTA) metal affinity column and dialysis methods. The result of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) test showed that an expected protein band appeared with a size of 31 kDa. The expressed products pos-sessed antifungal activity against the phytopathogenic indicator strainBotrytis cinerea. A genetically engineered strain tasA ofE. coli was established in this study which can efficiently express Tas A protein.

  9. Direct starch fermentation to L-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07.

    Science.gov (United States)

    Poudel, Pramod; Tashiro, Yukihiro; Miyamoto, Hirokuni; Miyamoto, Hisashi; Okugawa, Yuki; Sakai, Kenji

    2015-01-01

    A newly isolated Bacillus sp. MC-07 showed 99.2 % 16S rRNA gene sequence similarity with the Bacillus thermoamylovorans LMG 18084(T). It demonstrated optimum and maximum growth temperatures of 50 and 62 °C, respectively. The ability of MC-07 to produce optically pure L-lactic acid via direct fermentation of starch without enzymatic hydrolysis was investigated at different pH values (6.0-8.0) by intermittent adjustments every 12 h. During batch fermentation in mineral salt medium containing 0.001 % yeast extract at pH 7.0, 20 g/L of soluble starch was utilized to produce 16.6 g/L L-lactic acid at 50 °C within 24 h of fermentation, with 100 % optical purity, 92.1 % lactic acid selectivity, and an L-lactic acid yield of 0.977 g/g. Direct starch fermentation at pHs 6.0, 6.5, 7.5, and 8.0 resulted in considerably lower concentrations of lactic acid than did at pH 7.0. Compared with B. thermoamylovorans LMG 18084(T), the ability of strain MC-07 to produce L-lactic acid was superior.

  10. Purification, characterization, and overexpression of an endo-1,4-β-mannanase from thermotolerant Bacillus sp. SWU60.

    Science.gov (United States)

    Seesom, Weeranuch; Thongket, Polphet; Yamamoto, Tomohiro; Takenaka, Shigeo; Sakamoto, Tatsuji; Sukhumsirichart, Wasana

    2017-03-01

    Endo-β-1,4-mannanases are important catalytic agents in several industries. The enzymes randomly cleave the β-1,4-linkage in the mannan backbone and release short β-1,4-mannooligosaccharides and mannose. In the present study, mannanase (ManS2) from thermotolerant Bacillus sp. SWU60 was purified, characterized, and its gene was cloned and overexpressed in Escherichia coli. ManS2 was purified from culture filtrate (300 ml) by using hydrophobic, ion-exchange, and size-exclusive liquid chromatography. The apparent molecular mass was 38 kDa. Optimal pH and temperature for enzyme activity were 6.0 and 60 °C, respectively. The enzyme was stable up to 60 °C for 1 h and at pH 5-9 at 4 °C for 16 h. Its enzyme activity was inhibited by Hg(2+). The full-length mans2 gene was 1,008 bp, encoding a protein of 336 amino acids. Amino acid sequence analysis revealed that it belonged to glycoside hydrolase family 26. Konjac glucomannan was a favorable substrate for recombinant ManS2 (rManS2). rManS2 also degraded galactomannan from locust bean gum, indicating its potential for production of glucomanno- and galactomanno-oligosaccharides. Both native and recombinant ManS2 from Bacillus sp. SWU60 can be applied in several industries especially food and feed.

  11. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Wu, Longhua; Luo, Yongming; Rajkumar, Mani; Rocha, Inês; Freitas, Helena

    2015-01-01

    A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.

  12. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    OpenAIRE

    Xianzhen Li; Bo Zhu; Nuo Li; Fang Chen; Yan Han

    2010-01-01

    A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relative...

  13. A thin layer chromatographic comparison of raw and soluble starch hydrolysis patterns of some α-amylases from Bacillus sp. isolated in Serbia

    Directory of Open Access Journals (Sweden)

    Gligorijević Nikola

    2014-01-01

    Full Text Available Several natural isolates of Bacillus strains namely 5B, 12B, 16B, 18 and 24B were grown on two different temperatures in submerged fermentation for the raw-starch-digesting a-amylases production. All strains except Bacillus sp. 18 produced more α-amylase on 37ºC. The hydrolysis of raw corn starch followed same pattern. Efficient hydrolysis was obtained with α-amylases from Bacillus sp. 5B, 12B, 16B and 24B grown on 37ºC and Bacillus sp. 18 grown on 50ºC. Zymography after isoelectric focusing shown that α-amylases were produced in multiple forms, from 2 to 6, depending on the strain when they were growing at 37 ºC, while growing at 50ºC induced only 1 or 2 isoforms. TLC analysis of hydrolysis products of raw corn and soluble starch by α-amylases revealed production of various mixtures of oligosaccharides. In most cases G3 was the most dominant product from soluble starch while G2, G3 and G5 were the main products of raw starch hydrolysis. This indicates that obtained a-amylases can be used for starch liquefying or short-chain-oligosaccharide forming, depending on what type of starch (raw or soluble was used for the hydrolysis. [Projekat Ministarstva nauke Republike Srbije, br. 172048

  14. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis.

    Science.gov (United States)

    Barger, Sarah R; Hoefler, B Chris; Cubillos-Ruiz, Andrés; Russell, William K; Russell, David H; Straight, Paul D

    2012-10-01

    Soil streptomycetes are saprotrophic bacteria that secrete numerous secondary metabolites and enzymes for extracellular functions. Many streptomycetes produce antibiotics thought to protect vegetative mycelia from competing organisms. Here we report that an organism isolated from soil, Streptomyces sp. Mg1, actively degrades colonies and causes cellular lysis of Bacillus subtilis when the organisms are cultured together. We predicted that the inhibition and degradation of B. subtilis colonies in this competition depends upon a combination of secreted factors, including small molecule metabolites and enzymes. To begin to unravel this complex competitive phenomenon, we use a MALDI imaging mass spectrometry strategy to map the positions of metabolites secreted by both organisms. In this report, we show that Streptomyces sp. Mg1 produces the macrolide antibiotic chalcomycin A, which contributes to inhibition of B. subtilis growth in combination with other, as yet unidentified factors. We suggest that efforts to understand competitive and cooperative interactions between bacterial species benefit from assays that pair living organisms and probe the complexity of metabolic exchanges between them.

  15. Bacillus coahuilensis sp. nov., a moderately halophilic species from a desiccation lagoon in the Cuatro Ciénegas Valley in Coahuila, Mexico.

    Science.gov (United States)

    Cerritos, René; Vinuesa, Pablo; Eguiarte, Luis E; Herrera-Estrella, Luis; Alcaraz-Peraza, Luis D; Arvizu-Gómez, Jackeline L; Olmedo, Gabriela; Ramirez, Enrique; Siefert, Janet L; Souza, Valeria

    2008-04-01

    A moderately halophilic, Gram-positive and rod-shaped bacterium, strain m4-4T, was isolated from a Chihuahuan desert lagoon in Cuatro Ciénegas, Coahuila, Mexico. Strain m4-4T was found to grow optimally at 30-37 degrees C, pH 7.0-8.0 and 5 % NaCl and to tolerate from 0.5 % to 10 % NaCl. It was shown to be aerobic. The genomic DNA G+C content was about 37 mol%. Strain m4-4T exhibited minimal or no growth on most sugars tested. Its major cellular fatty acids were C14 : 0, C16 : 0 and C18 : 1. Based on phylogenetic analysis of 16S rRNA and recA gene sequences, we observed that the closest relatives of the isolate are moderately halophilic Bacillus species, with 16S rRNA gene sequence similarity ranging from 96.6 to 97.4 % (Bacillus marisflavi, Bacillus aquimaris and Bacillus vietnamensis). Additionally, using genomic data it was determined that the type strain contains a total of nine rRNA operons with three slightly different sequences. On the basis of phenotypic and molecular properties, strain m4-4T represents a novel species within the genus Bacillus, for which the name Bacillus coahuilensis sp. nov. is proposed, with the type strain m4-4T (=NRRL B-41737T =CECT 7197T).

  16. Structure modeling and analysis of thermoactive azoreductase from Bacillus sp%产自 Bacillus sp .的热稳定偶氮还原酶结构模型研究

    Institute of Scientific and Technical Information of China (English)

    朱超; 解井坤; 花莉; 杨冰; 沈烁

    2014-01-01

    位于细菌膜上和胞内的偶氮还原酶可将电子传递给偶氮染料实现其脱色降解,特别是具备热稳定性的偶氮还原酶,在印染废水处理和硝基类芳香化合物污染治理等方面极具应用价值.但是,相关热稳定性偶氮还原酶结构和热稳定性等的研究数据仍然还很有限.Bacillus sp .产偶氮还原酶可在40℃~60℃下依旧保持活性,对其结构和活性关系的深入了解将有助于可应用于极端生产环境的工程化偶氮还原酶的开发.本研究利用同源建模构建了 Bacillus thuringiensis的偶氮还原酶STA的三级结构模型,并和其它黄素依赖型偶氮还原酶结构进行了比对.结果显示,STA单体具有类似黄素氧化还原蛋白的α/β型结构的亲水性蛋白质,还具有一个外‐内螺旋结构的跨膜区域.同时,通过对一株嗜热芽孢杆菌偶氮还原酶粗提液进行变性和脱色试验验证,并结合结构模型分析,推测出多数 Bacillus sp .产偶氮还原酶的热稳定性源于其蛋白质结构中的氢键及疏水相互作用.本研究结果为高温下偶氮还原酶活性的改进提供了理论基础.%Azo dyes pose serious threat to public health because of its toxicity and carcinoge‐nicity .Azoreductase locating on membrane and inside bacterial is capable of decolouring and degrading azodyes released by industrial effluents ,especially the ones with thermostability which are promising in the treatment of printing and dying wastewater and the nitro aromatic compound pollution control .But the data available on the structure and thermoactive azore‐ductase enzyme and its degradation pathway are still very less .We constructed the three‐di‐mensional structure model of STA using homology modeling method .Model analysis ,evalua‐tion and the comparisons with the structures of other bacteria‐oriented FMN independent azoreductases showed that STA was a hydrophilic proteins

  17. Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites.

    Science.gov (United States)

    Banerjee, Aditi; Ghoshal, Aloke K

    2010-04-15

    Bacillus cereus MTCC 9817 strain AKG1 and B. cereus MTCC 9818 strain AKG2 were isolated from petroleum refinery and oil exploration site, respectively. The 16S rDNA sequence of strain AKG1 showed the closest relation to B. cereus 99.63% and Bacillus coagulans 99.63% followed by 99.34% homology with Bacillus thuringiensis strain 2PR56-10. AKG2 is mostly related to B. thuringiensis strain CMG 861 with 99.37% homology. The similarity search between AKG1 and AKG2 gave the lowest similarity 99.19% among same genus similar sequences. At phenol concentration of 1000 mg/L, the optimum growth conditions for AKG1 were found to be 37 degrees C and pH 7.0 and the same were found to be 37 degrees C and pH 7.5 for AKG2. The growth kinetics of the strains AKG1 and AKG2 are best fitted by Yano model (maximum growth rate, mu(max)=1.024 h(-1) and inhibition constant, K(I)=171,800 mg/L) and Edward model (mu(max)=0.5969 h(-1) and K(I)=1483 mg/L) respectively. Growth kinetics of both the strains are also well fitted by the Haldane model with mu(max)=0.4396 h(-1) and K(I)=637.8 mg/L for AKG1 and mu(max)=0.9332 h(-1) and K(I)=494.4 mg/L for AKG2.

  18. Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite

    Institute of Scientific and Technical Information of China (English)

    SU Dan; LI Pei-jun; FRANK Stagnitti; XIONG Xian-zhe

    2006-01-01

    Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrane (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-ftmgal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-ftmgal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10-200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium,co-immobilized on vermiculite, for in situ bioremediation of BaP.

  19. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge.

    Science.gov (United States)

    Liu, Wuxing; Wang, Xiaobing; Wu, Longhua; Chen, Mengfang; Tu, Chen; Luo, Yongming; Christie, Peter

    2012-06-01

    Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues.

  20. Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.

    Science.gov (United States)

    Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

    2011-03-01

    The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry.

  1. Variability of the Quorum Sensing System in Natural Isolates of Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Ines Mandic-Mulec

    2003-01-01

    Full Text Available Bacteria communicate with one another by (emitting and/or reacting to chemical signals. These communications, also known as quorum sensing, enable cells to control gene expression in response to cell density at the intra- and inter-species level. While bacteria use common signaling themes, variations in the design of the extracellular signals, the signal detection apparatus, and the biochemical mechanisms of signal relay have allowed quorum sensing systems to be adapted to diverse uses. The quorum sensing systems that govern natural genetic competence in Bacillus subtilis involve the ComX pheromones and the ComP-ComA, two-component regulator. ComX is synthesized as an inactive precursor and is then cleaved and modified by ComQ before export to the extra-cellular environment. The comQXP' loci of a set of natural Bacillus isolates have been sequenced and a striking polymorphism that correlates with specific patterns of activation of the quorum sensing response was shown. The ComX molecules representing different pherotypes were purified and characterized by mass spectroscopy. The analyses revealed that ComX variants also differ at the level of posttranslational modification of a conserved tryptophane residue, which was found to be an isoprenoid. The striking variability found in competence quorum sensing systems might be important for the survival of these bacteria in nature to escape the inappropriate induction of competence by closely related strains, playing the role of a sexual isolation mechanism.

  2. Biodegradation of imidacloprid by consortium of two soil isolated Bacillus sp.

    Science.gov (United States)

    Sharma, Smriti; Singh, Balwinder; Gupta, V K

    2014-11-01

    Imidacloprid degradation potential of bacterial cultures from sugarcane growing soils was studied in liquid culture and Bacillus aerophilus and Bacillus alkalinitrilicus showed maximum potential to degrade imidacloprid. Hence, into a clay loam soil imidacloprid was added at 50, 100, and 150 mg kg(-1) along with 45 × 10(7) cells g(-1) soil of both species under autoclaved and unautoclaved conditions. Under autoclaved conditions imidacloprid residues were degraded after 56 days to 3.18, 5.83 and 10.48 mg kg(-1) and under unautoclaved conditions to 5.17, 6.23 and 10.31 mg kg(-1). 6-chloronicotinic acid, nitrosimine and imidacloprid-NTG metabolites were detected in measurable concentrations under both conditions. Dissipation pattern of imidacloprid did not follow first order kinetics under both sets of conditions. The half life value of imidacloprid ranged from 13 to 16 days after bacterial inoculation. This is first report of use of mixed culture of native soil bacterial isolates for remediation of imidacloprid contaminated soils.

  3. Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68 α-amilase alcalina termoestável de Bacillus sp AB68 halotolerante-alcalifílico

    Directory of Open Access Journals (Sweden)

    Ashabil Aygan

    2008-09-01

    Full Text Available An alkaliphilic and highly thermostable α-amylase producing Bacillus sp. was isolated from Van soda lake. Enzyme synthesis occurred at temperatures between 25ºC and 40ºC. Analysis of the enzyme by SDS-PAGE revealed a single band which was estimated to be 66 kDa. The enzyme was active in a broad temperature range, between 20ºC and 90ºC, with an optimum at 50ºC; and maximum activity was at pH 10.5. The enzyme was almost completely stable up to 80ºC with a remaining activity over 90% after 30 min pre-incubation. Thermostability was not increased in the presence of Ca2+. An average of 75% and 60ºC of remaining activity was observed when the enzyme was incubated between pH 5 and 9 for 1 h and for 2 h, respectively. The activity of the enzyme was inhibited by SDS and EDTA by 38% and 34%, respectively.Bacillus sp AB68 alcalifílico produtor de α-amilase alcalina termoestável foi isolado do lago Van soda. A síntese da enzima ocorreu entre 25ºC e 40ºC. A análise da enzima por SDS-PAGE revelou uma única banda estimada em 66 kDa. A enzima foi ativa em uma ampla faixa de temperatura, entre 20ºC e 90ºC, com um ótimo a 50ºC. A atividade máxima foi em pH 10,5. A enzima foi estável até 80ºC, mantendo 90% de atividade após 30 min de pré-incubação. A termoestabilidade não aumentou na presença de Ca2+. Quando incubada em pH entre 5 e 9 por 1h e por 2h, a enzima manteve 75% e 60% de atividade, respectivamente. SDS e EDTA causaram redução de 38% e 34% na atividade da enzima, respectivamente.

  4. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  5. Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage neutralised solids

    Directory of Open Access Journals (Sweden)

    Donald Cowan

    2010-03-01

    Full Text Available An arsenic resistant Bacillus sp. UWC was isolated from fly ash acid mine drainage (FA-AMD neutralised solids. A genomic library was prepared and screened in an arsenic sensitive mutant Escherichia coli strain for the presence of arsenic resistance (ars genes. Sequence analysis of a clone conferring resistance to both sodium arsenite and sodium arsenate revealed homologues to the arsR (regulatory repressor, arsB (membrane located arsenite pump, arsC (arsenate reductase, arsD (second regulatory repressor and a metallochaperone and arsA (ATPase genes from known arsenic resistance operons. The Bacillus sp. UWC arsRBCDA genes were shown to be arranged in an unusual manner with the arsDA genes immediately downstream of arsC.

  6. Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation

    Science.gov (United States)

    Rajendran, P.; Young Kwon, Oh; Kim, Young Ock

    2017-01-01

    Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings, Bacillus sp. IND12 was selected for fibrinolytic enzyme production. Bacillus sp. IND12 effectively used cow dung for its growth and enzyme production (687 ± 6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4 were the vital parameters with statistical significance (p white (100%), and bovine serum albumin (29 ± 4.9%). PMID:28321408

  7. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance.

    Science.gov (United States)

    Chang, Young-Cheol; Choi, Dubok; Takamizawa, Kazuhiro; Kikuchi, Shintaro

    2014-01-01

    Effective biological pretreatment method for enhancing cellulase performance was investigated. Two alkali lignin-degrading bacteria were isolated from forest soils in Japan and named CS-1 and CS-2. 16S rDNA sequence analysis indicated that CS-1 and CS-2 were Bacillus sp. Strains CS-1 and CS-2 displayed alkali lignin degradation capability. With initial concentrations of 0.05-2.0 g L(-1), at least 61% alkali lignin could be degraded within 48 h. High laccase activities were observed in crude enzyme extracts from the isolated strains. This result indicated that alkali lignin degradation was correlated with laccase activities. Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure (pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria) at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance.

  8. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0.

    Science.gov (United States)

    Bataillon; Nunes Cardinali A; Castillon; Duchiron

    2000-02-01

    A Bacillus spp. strain SPS-0, isolated from a hot spring in Portugal, produced an extracellular xylanase upon growth on wheat bran arabinoxylan. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange, gel filtration, and affinity chromatography. The optimum temperature and pH for activity was 75 degrees C and 6.0. Xylanase was stable up to 70 degrees C for 4 h at pH 6.0 in the presence of xylane. Xylanase was completely inhibited by the Hg(2+) ions. beta-Mercaptoethanol, dithiothreitol, and Mn(2+) stimulated the xylanase activity. The products of birchwood xylan hydrolysis were xylose, xylobiose, xylotriose, and xylotetraose. Kinetic experiments at 60 degrees C and pH 6.0 gave V(max) and K(m)values of 2420 nkat/mg and 0.7 mg/ml.

  9. Characterization of an extracellular polysaccharide produced by Bacillus sp.RL-2

    Institute of Scientific and Technical Information of China (English)

    LUO Ping; LUO Gu-yuan; JI Fang-ying; CAI Jiang-wei

    2005-01-01

    A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth in the batch culture and was recovered from supernatant by ethanol precipitation. The bioflocculant is thermo-stable as its activity remains stable after heated at 100℃ for 45 min. Its flocculating activity with kaolin suspensions was stimulated by the addition of Ca2+, Al3+ and Cu2+. The flocculant consists of glucose, mannose, and galacturonic acid. Its average molecular mass was estimated to be approximately 2.86×105 by the method of viscosity. The flocculant aggregates various inorganic and organic compounds in solution.

  10. Bioactive Secondary Metabolites of a Marine Bacillus sp. Inhibit Superoxide Generation and Elastase Release in Human Neutrophils by Blocking Formyl Peptide Receptor 1

    OpenAIRE

    Yin-Ting Huang; Tsong-Long Hwang; Pei-Jen Chung; Jimmy Kuo; Shun-Chin Yang; Wen-Yi Chang; Chwan-Fwu Lin

    2013-01-01

    It is well known that overwhelming neutrophil activation is closely related to acute and chronic inflammatory injuries. Formyl peptide receptor 1 (FPR1) plays an important role in activation of neutrophils and may represent a potent therapeutic target in inflammatory diseases. In the present study, we demonstrated that IA-LBI07-1 (IA), an extract of bioactive secondary metabolites from a marine Bacillus sp., has anti-inflammatory effects in human neutrophils. IA significantly inhibited supero...

  11. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization.

    Science.gov (United States)

    Božić, Nataša; Slavić, Marinela Šokarda; Gavrilović, Anja; Vujčić, Zoran

    2014-07-01

    α-Amylase production by solid-state fermentation of different Bacillus sp. was studied previously on different fermentation media. However, no study has been reported on the influence of selected media on expression of desired amylase isoforms such as raw-starch-digesting amylase (RSDA). In this paper, the influence of different inexpensive and available agro-resources as solid media (corn, wheat and triticale) on α-amylase isoform induction from three wild-type Bacillus sp., selected among one hundred strains tested, namely 9B, 12B and 24A was investigated. For all three strains, tested amylases were detected in the multiple forms; however, number and intensity of each form differed depending on the solid media used for growth. To determine which isoform from Bacillus sp. 12B was RSDA, the suspected isoform was purified. The optimum pH for the purified α-amylase isoform was 6.0-8.0, while the optimum temperature was 60-90 °C. Isoform was considerably thermostable and Ca(2+)-independent, and actually the only α-amylase active towards raw starch. Purification and characterization of RSDA showed that not all of the solid media tested induced RSDA. From an economic point of view, it might be significant to obtain pure isoenzyme for potential use in the raw-starch hydrolysis, since it was 5 times more efficient in raw corn starch hydrolysis than the crude amylase preparation.

  12. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization.

    Science.gov (United States)

    Shrinivas, Dengeti; Savitha, Gunashekaran; Raviranjan, Kumar; Naik, Gajanan Ramchandra

    2010-11-01

    A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0-10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K (m) and V (max) of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 µM min(-1) mg(-1), respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.

  13. Bacillus mesophilus sp. nov., an alginate-degrading bacterium isolated from a soil sample collected from an abandoned marine solar saltern.

    Science.gov (United States)

    Zhou, Yan-Xia; Liu, Guo-Hong; Liu, Bo; Chen, Guan-Jun; Du, Zong-Jun

    2016-07-01

    A novel Gram-stain positive, endospore-forming bacterium, designated SA4(T), was isolated from a soil sample collected from an abandoned marine solar saltern at Wendeng, Shandong Province, PR China. Cells were observed to be rod shaped, alginase positive, catalase positive and motile. The strain was found to grow at temperatures ranging from 15 to 40 °C (optimum 35 °C), and pH 5.0-11.0 (optimum pH 8.0) with 0-7.0 % (w/v) NaCl concentration (optimum NaCl 3.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SA4(T) belongs to the genus Bacillus and exhibits 16S rRNA gene sequence similarities of 96.6, 96.5, 96.3 and 96.2 % with Bacillus horikoshii DSM 8719(T), Bacillus acidicola 105-2(T), Bacillus shackletonii LMG 18435(T) and Bacillus pocheonensis Gsoil 420(T), respectively. The menaquinone was identified as MK-7 and the major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids detected were anteiso-C15:0 (22.3 %), iso-C15:0 (22.6 %), iso-C16:0 (14.8 %) and iso-C14:0 (14.7 %). The DNA G+C content was determined to be 42.4 mol %. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate SA4(T) represents a novel species within the genus Bacillus, for which the name Bacillus mesophius sp. nov. is proposed. The type strain is SA4(T) (=DSM 101000(T)=CCTCC AB 2015209(T)).

  14. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish

    Science.gov (United States)

    Zhou, Shuxin; Zhang, An; Yin, Hongping; Chu, Weihua

    2016-01-01

    Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases. PMID:28018866

  15. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications.

    Science.gov (United States)

    Simair, Altaf Ahmed; Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui

    2017-01-01

    Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60-70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.

  16. Enzymatic Properties of an Alkaline and Chelator Resistant alpha-amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L 711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 37 C, strain L711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5 - 10.0 and 7.0 - 7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55 C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co(2+) and EDTA (10 mM) enhanced enzymatic activity. The K(sub m), and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose.

  17. New Cyclic Lipopeptides of the Iturin Class Produced by Saltern-Derived Bacillus sp. KCB14S006

    Directory of Open Access Journals (Sweden)

    Sangkeun Son

    2016-04-01

    Full Text Available Salterns, one of the most extreme natural hypersaline environments, are a rich source of halophilic and halotolerant microorganisms, but they remain largely underexplored ecological niches in the discovery of bioactive secondary metabolites. In continued efforts to investigate the metabolic potential of microbial populations from chemically underexplored sites, three new lipopeptides named iturin F1, iturin F2 and iturin A9 (1–3, along with iturin A8 (4, were isolated from Bacillus sp. KCB14S006 derived from a saltern. The structures of the isolated compounds were established by 1D-, 2D-NMR and HR-ESIMS, and their absolute configurations were determined by applying advanced Marfey’s method and CD spectroscopy. All isolates exhibited significant antifungal activities against various pathogenic fungi and moderate cytotoxic activities toward HeLa and srcts-NRK cell lines. Moreover, in an in vitro enzymatic assay, compound 4 showed a significant inhibitory activity against indoleamine 2,3-dioxygenase.

  18. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications

    Directory of Open Access Journals (Sweden)

    Altaf Ahmed Simair

    2017-01-01

    Full Text Available Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60–70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.

  19. KINETIC STUDIES ON BIODEGRADATION OF LIPIDS FROM OLIVE OIL MILL WASTEWATERS WITH FREE AND IMMOBILIZED Bacillus sp. CELLS

    Directory of Open Access Journals (Sweden)

    Anca-Irina Galaction

    2012-03-01

    Full Text Available The studies on the biodegradation of lipids from olive oil mill wastewater with free and immobilized Bacillus sp. cells indicated that the maximum specific rate of the process is reached at pH = 8. The use of immobilized cells allows to increasing the number of biodegradation process cycles, but reduces the rate of the process. In this case, the process rate depends on the biocatalysts size and cells concentration inside them. Thus, at bacterial cells concentration of 9 g d.w./100 mL biocatalyst, the apparent specific rate varied from 4.65 to 1.46×10-2 h-1 by increasing the biocatalyst particles diameter from 3 to 4.2 mm.The cumulated influences of the particles size and cells concentration have been included in a mathematical model for the apparent specific rate of lipids biodegradation. The model offers a good concordance with the experimental data, the average deviation being of +/- 7.38%.

  20. Tolerance and removal of chromium(Ⅵ) by Bacillus sp. strain YB-1 isolated from electroplating sludge

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; FENG Bao-ying; FAN Ting; ZHOU Hai-zhou; LI Xin

    2008-01-01

    Four chromium(Ⅵ)-resistant bacteria named YB-1, YB-2, YB-3 and YB-4 were isolated from Cr-electroplating sludge. YB-1 and YB-2 were identified as a member of Bacillus sp. based on morphology and Biolog Microstation System. The strain of YB-1 was selected to test for its resistance and ability to remove Cr(Ⅵ) from aqueous solution. The results indicate that YB-1 exhibits high MIC value which can almost reach 140 mg/L and the growth of YB-1 in liquid medium containing 60 mg/L Cr(Ⅵ) is affected especially in the late exponential phase and stationary phase. Furthermore, the potential of living and freeze-dried YB-1 biomass to remove Cr(Ⅵ) was studied in different pH, biosorbent dose, contact time and initial concentration using the batch method. At the optimal conditions, living and freeze-dried biomass are capable of absorbing 34.5 mg/g and 17.8 mg/g chromium(Ⅵ) at initial concentration of 60 mg/L, respectively. The adsorption data were fitted to Langmuir isotherm model for these two sorbents. Kinetic studies show that the rates of sorption all follow the pseudo-second order kinetics.

  1. Heavy metal removal in groundwater originating from acid mine drainage using dead Bacillus drentensis sp. immobilized in polysulfone polymer.

    Science.gov (United States)

    Kim, Insu; Lee, Minhee; Wang, Sookyun

    2014-12-15

    Batch, column, and pilot scale feasibility experiments for a bio-sorption process using a bio-carrier (beads) with dead Bacillus drentensis sp. in polysulfone polymer were performed to remove heavy metals in groundwater originating from an acid mine drainage (AMD). For batch experiments, various amounts of bio-carrier each containing a different amount of dead biomass were added in artificial solution, of which the initial heavy metal concentration and pH were about 10 mg/L and 3, respectively. The heavy metal removal efficiencies of the bio-carrier under various conditions were calculated and more than 92% of initial Pb and Cu were found to have been removed from the solution when using 2 g of bio-carriers containing 5% biomass. For a continuous experiment with a column packed with bio-carriers (1 m in length and 0.02 m in diameter), more than 98% of Pb removal efficiency was maintained for 36 pore volumes and 1.553 g of Pb per g of bio-carrier was removed. For the pilot scale feasibility test, a total of 80 tons of groundwater (lower than pH of 4) were successfully treated for 40 working days and the removal efficiencies of Cu, Cd, Zn, and Fe were maintained above 93%, demonstrating that one kg of bio-carrier can clean up at least 1098 L of groundwater in the field.

  2. Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23.

    Science.gov (United States)

    Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu

    2012-12-01

    Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.

  3. Isolation of thermo-stable and solvent-tolerant Bacillus sp. lipase for the production of biodiesel.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2012-02-01

    This study presents the production of biodiesel from algae oil by transesterification using thermophilic microorganism. The microorganism used in this study was isolated from the soil sample obtained near the furnace. The organism was identified as Bacillus sp., and the lipase obtained was purified by ammonium sulfate precipitation and ion exchange chromatography leading to 8.6-fold purification and 13% recovery. Molecular weight of the enzyme was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was found to be 45 kDa. The effect of pH, temperature, and solvent addition on lipase activity was investigated. The enzyme showed maximum activity at 55 °C and at pH 7 and was also found to be highly active in the presence of organic solvents such as hexane and t-butanol. The isolated lipase was successfully used for the production of biodiesel. The transesterification activity of the isolated lipase showed 76% of fatty acid methyl esters yield in 40 h, which indicated that this enzyme can be used as a potential biocatalyst for the biodiesel production.

  4. Production, purification and characterization of thermostable α-amylase from soil isolate Bacillus sp. strain B-10

    Directory of Open Access Journals (Sweden)

    Ravindra Nath Singh

    2016-04-01

    Full Text Available A bacterial strain B-10 that produces α-amylase was isolated from compost and kitchen waste receiving agricultural soil. Based on microbiological and biochemical tests the isolate B-10 was identified as Bacillus sp. Alpha-amylase produced by this isolate was purified by (NH42SO4 precipitation and DEAE cellulose ion-exchange chromatography showing 15.91 and 48.21 fold purification, respectively. SDS-PAGE of the purified enzyme confirmed the purification and monomeric nature of the enzyme. The purified α-amylase showed maximum activity at pH 7 and temperature 50°C. The enzyme was significantly active in the temperature range of 30-60°C for the studied period of 2 h. During the incubation of purified enzyme at pH ranging from 5 to 10 for 24 h the maximum stability was observed at pH 7 followed by pH 8, whereas at extreme pH, the stability was very poor. Km and Vmax were found to be 1.4 mg/mL and 6.2 U/mL, respectively.

  5. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    Science.gov (United States)

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%.

  6. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  7. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies.

  8. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice.

    Science.gov (United States)

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-06-01

    , the two strains YC7007 and YC7010(T) represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is YC7010(T) (= KACC 18228(T)). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases.

  9. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    Directory of Open Access Journals (Sweden)

    Eu Jin Chung

    2015-06-01

    two strains YC7007 and YC7010T represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is YC7010T (= KACC 18228T. Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases.

  10. Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from brazilian soil Produção de ciclodextrina glicosiltransferase por novas cepas de Bacillus sp. isoladas de solo brasileiro

    Directory of Open Access Journals (Sweden)

    Vivian Menocci

    2008-12-01

    Full Text Available Three strains of Bacillus sp. (BACRP, BACNC-1 and BACAR were isolated from soil adhered to cassava husk. CGTase specific activity for the three isolated strains was higher when cultivated at 40ºC. Potato starch, cassava starch, maltodextrin and glucose were used as carbon source and growth temperatures varied from 25 to 55ºC. The three isolates presented higher CGTase specific activity when cultivated with potato starch at 40ºC. Isolated BACRP and BACAR presented specific activity of 4.0x10-3 and 2.2x10-3 U/mg prot at pH 7.0, respectively, when cultivated in mediums added with NaCl 2%; at pH 10,0 their activities were of 3.4x10-3 and 3.0x10-3 U/mg prot, respectively, in the same concentration of NaCl. On the other hand, the isolated BACNC-1 presented activity specific of 2.4x10-3 U/mg prot when cultivated at pH 7.0 added of NaCl 1%, and at pH 10.0 the specific activity was of 3.4x10-3 U/mg prot without NaCl addition. This work also showed the presence of cyclodextrins formed during fermentation process and that precipitation with acetone or lyophilization followed by dialysis was efficient at removing CDs (cyclodextrins, thus, eliminating interference in the activity assays. The enzyme produced by the BACAR strain was partially purified and β-CD was liberated as a reaction product.Três linhagens de Bacillus sp (BACRP, BACNC- 1 e BACAR foram isoladas a partir de solo aderido em casca de mandioca. Foram utilizados amido de batata, amido de mandioca, maltodextrina e glicose como fonte de carbono, e temperaturas de crescimento de 25-55ºC, sendo que os três isolados apresentaram maior atividade específica de CGTase quando cultivados com amido de batata a 40ºC. Em pH 7,0 os isolados BACRP e BACAR apresentaram atividade específica de 4,0x 10-3 e 2,2x10-3 U/mg prot, respectivamente, quando cultivados em meios acrescidos de 2% de NaCl; em pH 10,0 suas atividades foram de 3,4x10-3 e 3,0x10-3 U/mg prot na mesma concentração de NaCl. Por outro

  11. Magnetite nanoparticle aided immobilization of Pseudomonas sp. GBS.5 for carbazole degradation

    Directory of Open Access Journals (Sweden)

    Poorva Mehndiratta

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Pseudomonas sp. GBS.5 is a newly isolated biosurfactant producing and carbazole degrading bacterium. In the present study, this bacterium was coated with magnetite nanoparticles, synthesized using co-precipitation method. Scanning electron microscopy (SEM studies confirmed the coating of the bacterial surface with these nanoparticles. Degradation activity of the coated cells obtained was 1.4 ppm/min as compared to 0.32 ppm/min for free cells and could be reused for five different cycles. These results indicate that magnetite nanoparticle can be efficiently used for the immobilization of biosurfactant producing bacteria involved in the degradation of polyaromatic compounds.

  12. Production of 1, 3 Regiospecific Lipase From Bacillus sp. RK-3: Its Potential to Synthesize Cocoa Butter Substitute

    Directory of Open Access Journals (Sweden)

    Dutt, K.

    2011-01-01

    Full Text Available A Bacillus sp. RK-3 isolated from soil initially produced 3.28 IU/mL of 1, 3 regiospecific lipase in medium containing 1.0% olive oil. After process optimization, 10.56 IU/mL of lipase was produced in medium containing sunflower oil 1.5 %, tryptone 2 %, Ca2+ 20 mM using 3 % inoculum in 250 mL Erlenmeyer flask containing 50 mL of the medium at pH 7.0, 250 rpm and 30 °C for 36 h. Scale up in 10 L bioreactor with 7.5 L of the optimized medium yielded 16.41 IU/mL in 30 h resulting in net 6.0 fold increase in enzyme units as against initial units of 3.28 IU/mL obtained under unoptimized conditions. The productivity in 10 L bioreactor is 0.547 IU/mL/h as against initial of 0.091 IU/mL/h. The lipase exhibited 95.12 % stability in hexane, followed by THF (75.83 % and petroleum ether (73.85 % after 24 h of incubation. Cocoa butter substitute (CBS synthesis was attempted in a reaction containing 1.2 IU/mg of lipase using palm oil and methyl stearate in hexane. The reaction product being formed was analyzed qualitatively using Thin Layer Chromatography (TLC and quantified by gas chromatography (GC which showed 83.17 % conversion efficiency for CBS in 24 h.

  13. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis.

    Science.gov (United States)

    Zhao, Ming; Sun, Peng-Fei; Du, Lin-Na; Wang, Guan; Jia, Xiao-Ming; Zhao, Yu-Hua

    2014-05-01

    Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0-9.0 and 30-40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg(2+) and Mn(2+) (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe(3+) or Fe(2+) was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N'dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR.

  14. Purification, crystallization, and properties of F1-ATPase complexes from the thermoalkaliphilic Bacillus sp. strain TA2.A1.

    Science.gov (United States)

    Stocker, Achim; Keis, Stefanie; Cook, Gregory M; Dimroth, Peter

    2005-11-01

    Recently, we reported the cloning of the atp operon encoding for the F(1)F(0)-ATP synthase from the extremely thermoalkaliphilic bacterium Bacillus sp. strain TA2.A1. In this study, the genes encoding the F(1) moiety of the enzyme complex were cloned from the atp operon into the vector pTrc99A and expressed in Escherichia coli in two variant complexes, F(1)-wt consisting of subunits alpha(3)beta(3)gammadeltaepsilon and F(1)Deltadelta lacking the entire delta-subunit as a prerequisite for overproduction and crystallization trials. Both F(1)-wt and F(1)Deltadelta were successfully overproduced in E. coli and purified in high yield and purity. F(1)Deltadelta was crystallized by micro-batch screening yielding three-dimensional crystals that diffracted to a resolution of 3.1A using a synchrotron radiation source. After establishing cryo and dehydrating conditions, a complete set of diffraction data was collected from a single crystal. No crystals were obtained with F(1)-wt. Data processing of diffraction patterns showed that F(1)Deltadelta crystals belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters of a=121.70, b=174.80, and c=223.50A, alpha, beta, gamma=90.000. The asymmetric unit contained one molecule of bacterial F(1)Deltadelta with a corresponding volume per protein weight (V(M)) of 3.25A(3) Da(-1) and a solvent content of 62.1%. Silver staining of single crystals of F(1)Deltadelta analyzed by SDS-PAGE revealed four bands alpha, beta, gamma, and epsilon with identical M(r)-values as those found in the native F(1)F(0)-ATP synthase isolated from strain TA2.A1 membranes. ATPase assays of F(1)Deltadelta crystals exhibited latent ATP hydrolytic activity that was highly stimulated by lauryldimethylamine oxide, a hallmark of the native enzyme.

  15. Keratinolytic activities of alkaliphilic Bacillus sp. MBRL 575 from a novel habitat, limestone deposit site in Manipur, India.

    Science.gov (United States)

    Kshetri, Pintubala; Ningthoujam, Debananda S

    2016-01-01

    Microbial degradation of keratinous wastes is preferred over physicochemical methods as the latter is costlier and not eco-friendly. Novel habitats are promising for discovery of new microbial strains. Towards discovery of novel keratinolytic bacteria, screening of bacterial strains from a novel limestone habitat in Hundung, Manipur, India was done and a promising isolate, MBRL 575, was found to degrade native chicken feather efficiently. It could grow over a broad pH range (Langeveld et al. in J Infect Dis 188:1782-1789, 2003; Park and Son in Microbiol Res 164:478-485, 2009; Zaghloul et al. in Biodegradation 22:111-128, 2011; Takami et al. in Biosci Biotechnol Biochem 56:1667-1669, 1992; Riffel et al. in J Biotechnol 128:693-703, 2007; Wang et al. in Bioresour Technol 99:5679-5686, 2008) and in presence of 0-15 % NaCl. Based on phenotypic characterization and 16S rRNA gene sequence analysis, the new keratinolytic limestone isolate was identified as Bacillus sp. MBRL 575. It produced 305 ± 12 U/ml keratinase and liberated 120 ± 5.5 mg of soluble peptides and 158 ± 4 mg of amino acids per gram of feather after 48 h of incubation at 30 °C in chicken feather medium. The strain could also degrade feathers of other species besides chicken. The cell-free enzyme was also able to degrade feather. Citrate and soybean meal were found to be the best carbon and nitrogen supplements for enhanced enzyme, soluble peptide and amino acid production. In addition to keratinolytic activity, MBRL 575 also exhibited antagonistic activity against two major rice fungal pathogens, Rhizoctonia oryzae-sativae (65 %) and Rhizoctonia solani (58 %).

  16. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabditid [corrected] entomopathogenic nematode and its antimicrobial properties.

    Science.gov (United States)

    Kumar, Nishanth; Mohandas, C; Nambisan, Bala; Kumar, D R Soban; Lankalapalli, Ravi S

    2013-02-01

    Entomopathogenic nematodes (EPN) are well-known as biological control agents and are found to have associated bacteria which can produce a wide range of bioactive secondary metabolites. We report herewith isolation of six proline containing cyclic dipeptides cyclo(D-Pro-L-Leu), cyclo(L-Pro-L-Met), cyclo(D-Pro-L-Phe), cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-D-Tyr) from ethyl acetate extract of the Luria Broth (LB) cell free culture filtrate of Bacillus sp. strain N associated with a new EPN Rhabditis sp. from sweet potato weevil grubs collected from Central Tuber Crops Research Institute farm. Antimicrobial studies of these 2,5-diketopiperazines (DKPs) against both medicinally and agriculturally important bacterium and fungi showed potent inhibitory values in the range of μg/mL. Cyclic dipeptides showed significantly higher activity than the commercial fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani, and Pencillium expansum. The highest activity of 2 μg/mL by cyclo(L-Pro-L-Phe) was recorded against P. expansum, a plant pathogen responsible for causing post harvest decay of stored apples and oranges. To our knowledge, this is the first report on the isolation of these DKPs from Rhabditis EPN bacterial strain Bacillus sp.

  17. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    Science.gov (United States)

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  18. Purificación y caracterización de una œ- amilasa producida por la cepa nativa bacillus sp. bbm1

    OpenAIRE

    2010-01-01

    La cepa Bacillus sp. BBM1, productora de aamilasas, fue aislada a partir de una muestra de suelo de la Universidad Nacional de Colombia sede Medellín. La caracterización morfológica, bioquímica y molecular indica que esta bacteria está filogenéticamente relacionada con las especies B. subtilis o B. amyloliquefaciens. La amilasa producida (BBM1) fue purificada por precipitación con sulfato de amonio y su peso molecular fue estimado en 77.6 kDa por electroforésis SDSPAGE. Esta enzima es complet...

  19. Isolation of a biosurfactant-producing bacteria and its removal of heavy metals in sludge%生物表面活性剂产生菌的筛选及其对重金属的去除

    Institute of Scientific and Technical Information of China (English)

    明聪聪; 莫创荣; 吴小寅; 李小明

    2014-01-01

    The strain B2 being able to produce biosurfactant was isolated from tannery sludge by using a blue agar medium as selective medium. Through the analysis of physiological and bilchemi-cal characteristics and the comparison of gene sequences by 16S rDNA, the strain B2 was identified as Pseudomonas aeruginosa. The biosurfactant produced by B2 was identified as rhamnolipid by Fou-rier Transform-InfraRed( FTIR) analysis, and the production may reach 2.9 g/L. The biosurfactant was used as a washing agent to remove heavy metals in sewage sludge, and the removal ratio of Cu and Zn reached 63.7% and15.3%, respectively. The strain B2 was isolated from the tannery sludge with high content of heavy metals, therefore it had a certain degree of tolerance to heavy metals. At the same time, biosurfactant produced by B2 had high performance in removing heavy metals from sewage sludge in municipal wastewater treatment plant.%利用蓝色凝胶培养基作为选择培养基,从制革污泥中分离出产生物表面活性剂菌株B2,通过生理生化特征分析、16S rDNA 基因序列比对,确定B2为铜绿假单胞菌( Pseudomonas aeruginosa)。该菌株生产的生物表面活性剂经FT-IR分析确定为鼠李糖脂,其产量可达2.9 g/L。该生物表面活性剂作为洗脱剂去除污泥中的重金属,Cu、Zn的去除率分别可达63.7%、15.3%。菌株B2分离自重金属含量极高的制革污泥中,对重金属有一定的耐受性,其所产生的生物表面活性剂对城市污水处理厂剩余污泥中的重金属有较好的去除效果。

  20. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Science.gov (United States)

    Shahzad, Raheem; Khan, Abdul Latif; Bilal, Saqib

    2017-01-01

    Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser), and proline (Pro)) as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA) and higher amount of salicylic acid (SA) contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid) during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way. PMID:28321368

  1. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  2. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi.

    Science.gov (United States)

    Um, Soohyun; Fraimout, Antoine; Sapountzis, Panagiotis; Oh, Dong-Chan; Poulsen, Michael

    2013-11-19

    The ancient fungus-growing termite (Mactrotermitinae) symbiosis involves the obligate association between a lineage of higher termites and basidiomycete Termitomyces cultivar fungi. Our investigation of the fungus-growing termite Macrotermes natalensis shows that Bacillus strains from M. natalensis colonies produce a single major antibiotic, bacillaene A (1), which selectively inhibits known and putatively antagonistic fungi of Termitomyces. Comparative analyses of the genomes of symbiotic Bacillus strains revealed that they are phylogenetically closely related to Bacillus subtilis, their genomes have high homology with more than 90% of ORFs being 100% identical, and the sequence identities across the biosynthetic gene cluster for bacillaene are higher between termite-associated strains than to the cluster previously reported in B. subtilis. Our findings suggest that this lineage of antibiotic-producing Bacillus may be a defensive symbiont involved in the protection of the fungus-growing termite cultivar.

  3. Cow dung is a novel feedstock for fibrinolytic enzyme production from newly isolated Bacillus sp. IND7 and its application in in vitro clot lysis

    Directory of Open Access Journals (Sweden)

    Ponnuswamy eVijayaraghavan

    2016-03-01

    Full Text Available Bacterial fibrinolytic enzymes find great applications to treat and prevent cardiovascular diseases. The novel fibrinolytic enzymes from food grade organisms are useful for thrombolytic therapy. This study reports fibrinolytic enzyme production by Bacillus sp. IND7 in solid-state fermentation (SSF. In this study, cow dung was used as the cheap substrate for the production of fibrinolytic enzyme. Enzyme production was primarily improved by optimizing the nutrient and physical factors by one-variable-at-a-time approach. A statistical method (two-level full factorial design was applied to investigate the significant variables. Of the different variables, pH, starch, and beef extract significantly influenced on the production of fibrinolytic enzyme (p < 0.05. The optimum levels of these significant factors were further investigated using response surface methodology. The optimum conditions for enhanced fibrinolytic enzyme production were 1.23% (w/w starch and 0.3 % (w/w beef extract with initial medium pH 9.0. Under the optimized conditions, cow dung substrate yielded 8,345 U/g substrate, and an overall 2.5-fold improvement in fibrinolytic enzyme production was achieved due to its optimization. This is the first report of fibrinolytic enzyme production using cow dung substrate from Bacillus sp. in SSF. The crude enzyme displayed potent activity on zymography and digested goat blood clot completely in in vitro condition.

  4. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.

    Science.gov (United States)

    Peng, Lili; Wang, Limin; Che, Chengchuan; Yang, Ge; Yu, Bo; Ma, Yanhe

    2013-12-01

    In this study, efficient polymer-grade L-lactic acid production was achieved with the strain Bacillus sp. P38 by using cellulosic hydrolysate as the sole carbon source. In fed-batch fermentation, 180 g L(-1)L-lactic acid was obtained with a volumetric productivity of 2.4 g L(-1)h(-1) and a yield of 0.96 g g(-1) total reducing sugars. No D-isomer of lactic acid was detected in the broth. Strain P38 tolerated up to 10 g L(-1) 2-furfural, and lactate production was sharply inhibited only when the 2-furfural concentration was higher than 6 g L(-1). Moreover, strain P38 also tolerated high concentrations (>6 g L(-1)) of other fermentation inhibitors in cellulosic hydrolysate, such as vanillin and acetic acid, although it was slightly sensitive to formic acid. The efficient L-lactic acid production, combined with high inhibitor tolerance and efficient pentose utilization, indicate that Bacillus sp. P38 is a promising producer of polymer-grade L-lactic acid from cellulosic biomass.

  5. Polyphenols content of spent coffee grounds subjected to physico-chemical pretreatments influences lignocellulolytic enzymes production by Bacillus sp. R2.

    Science.gov (United States)

    Khelil, Omar; Choubane, Slimane; Cheba, Ben Amar

    2016-07-01

    The objective of this study was to investigate the impact of polyphenols content changes issued after physico-chemical treatments of spent coffee grounds on lignocellulolytic enzymes production by Bacillus sp. R2. Total polyphenols of the collected substrates were extracted with water under autoclaving conditions. Results showed that polyphenols content of spent coffee grounds decreased with continued treatments. Untreated spent coffee grounds were the best substrate for cellulase and pectinase (1.33±0.06μ/ml and 0.32±0.02μ/ml respectively). A strong positive correlation was noticed between polyphenols content and cellulase and pectinase activities. However, xylanase and peroxidase correlated moderately with polyphenols content and their highest activities were registered with spent coffee grounds treated with boiling water and 1% EDTA (0.31±0.002μ/ml and 15.56±0.56μ/ml respectively). The obtained results indicate that polyphenols content of the pretreated substrates influences the production of lignocellulolytic enzymes by Bacillus sp. R2.

  6. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    Directory of Open Access Journals (Sweden)

    Amira M. Embaby

    2014-01-01

    Full Text Available Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken was employed to optimize bacteriocin (BAC YAS 1 production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v, incubation time (62 hrs, and agitation speed (207 rpm in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora. BAC YAS 1 showed activity over a wide range of pH (1–13 and temperature (45–80°C. A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium, the plant pathogen (E. amylovora, and the food spoiler (Listeria innocua was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri. Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  7. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    Science.gov (United States)

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  8. Bacillus polymachus sp. nov., with a broad range of antibacterial activity, isolated from forest topsoil samples by using a modified culture method.

    Science.gov (United States)

    Nguyen, Tuan Manh; Kim, Jaisoo

    2015-02-01

    A new, modified culture method that utilizes a transwell plate with a 0.4 µm pore-size microporous membrane was developed. This system allows only trace nutrients from the soil into the liquid culture through the microporous membrane. The method is a more powerful tool for the discovery of novel species from soils than are traditional methods. Such newly identified species could potentially produce useful metabolites. A bacterial strain, T515(T), was isolated using this modified culture method. Growth of strain T515(T) occurred at pH 4-9 in a temperature range between 20 °C and 40 °C and in the presence of 0-2 % (w/v) NaCl on R2A agar. Colonies on the agar plates were tiny, white, and convex after 5 days incubation at 28 °C. Comparative analysis of the nearly full-length 16S rRNA gene sequence of strain T515(T) revealed close pairwise similarity with species of the genus Bacillus, and strain T515(T) was most closely related to Bacillus panaciterrae Gsoil 1517(T) (96.7 %) and Bacillus funiculus NAF001(T) (96.0 %). The major quinone of strain T515(T) was menaquinone-7 (MK-7) and the major fatty acids were iso-C15 : 0 (45.5 %), anteiso-C15 : 0 (23.2 %) and C16 : 0 (10.9 %). The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Strain T515(T) was sensitive to streptomycin and tetracycline, but resistant to rifampicin (0.125 µg ml(-1)), ampicillin (0.5 µg ml(-1)) and chloramphenicol (1 µg ml(-1)). The strain showed antimicrobial activities against the six strains tested: Bacillus subtilis KEMB 51201-001, Staphylococcus aureus KEMB 4659, Pseudomonas aeruginosa KACC 10185, Staphylococcus epidermidis KACC 13234, Paenibacillus larvae KACC 14031 and Escherichia coli KEMB 212-234. Based on these results, strain T515(T) represents a novel species of the genus Bacillus with the proposed name, Bacillus polymachus sp. nov. The type strain is T515(T) ( = KEMB 9005-168(T) = KACC 18242(T) = NBRC 110614(T)).

  9. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi

    DEFF Research Database (Denmark)

    Um, Soohyun; Fraimout, Antoine; Sapountzis, Panagiotis

    2013-01-01

    The ancient fungus-growing termite (Mactrotermitinae) symbiosis involves the obligate association between a lineage of higher termites and basidiomycete Termitomyces cultivar fungi. Our investigation of the fungus-growing termite Macrotermes natalensis shows that Bacillus strains from M. natalensis...... have high homology with more than 90% of ORFs being 100% identical, and the sequence identities across the biosynthetic gene cluster for bacillaene are higher between termite-associated strains than to the cluster previously reported in B. subtilis. Our findings suggest that this lineage of antibiotic......-producing Bacillus may be a defensive symbiont involved in the protection of the fungus-growing termite cultivar....

  10. Overexpression and secretion of AgaA7 from Pseudoalteromonas hodoensis sp. nov in Bacillus subtilis for the depolymerization of agarose.

    Science.gov (United States)

    Ramos, Kristine Rose M; Valdehuesa, Kris Niño G; Cabulong, Rhudith B; Moron, Llewelyn S; Nisola, Grace M; Hong, Soon-Kwang; Lee, Won-Keun; Chung, Wook-Jin

    2016-08-01

    Interest in agar or agarose-based pharmaceutical products has driven the search for potent agarolytic enzymes. An extracellular β-agarase (AgaA7) recently isolated from Pseudoalteromonas hodoensis sp. nov was expressed in Bacillus subtilis, which was chosen due to its capability to overproduce and secrete functional enzymes. Phenotypic analysis showed that the engineered B. subtilis secreted a functional AgaA7 when fused with the aprE signal peptide (SP) at the amino-terminus. The maximum agarolytic activity was observed during the late logarithmic phase. To further improve the secretion of AgaA7, an expression library of AgaA7 fused to different naturally occurring B. subtilis SPs was created. The amount of AgaA7 secreted by the clones was compared through activity assay, immuno-blot, and purification via affinity chromatography. Although the aprE SP can readily facilitate the secretion of AgaA7, other SPs such as yqgA, pel, and lipA were relatively more efficient. Among these SPs, lipA was the most efficient in improving the secretion of AgaA7.The use of B. subtilis as host for the expression and secretion of agarolytic and other hydrolytic enzymes can be a useful tool in the field of white biotechnology.

  11. A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L. syn Senna tora (L. Roxb. seed extract

    Directory of Open Access Journals (Sweden)

    Garg Satyendra K

    2011-07-01

    Full Text Available Abstract Background Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, Cassia tora (Senna tora is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, Aspergillus flavus and Bacillus sp. proteases. Methods The crushed seeds of Cassia tora were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90% followed by dialysis and size exclusion chromatography (SEC. The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60% and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD and ANOVA were employed as statistical tools. Results The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P Aspergillus flavus and Bacillus sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml-1 seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD of protease

  12. Selección de cepas nativas con actividad Quitino-Proteolítica de Bacillus sp. aisladas de suelos tropicales Selecting native

    Directory of Open Access Journals (Sweden)

    Beatriz Adriana Rodas Junco

    2009-10-01

    Full Text Available Bacillus sp. strains having chitinolytic and proteolytic activity which have been isolated from tropical soils Resumen: El objetivo de este trabajo fue la selección de cepas nativas del género Bacillus con actividad quitinolítica y proteolítica, en suelo tropical en la costa de Oaxaca, México. Se aislaron 150 cepas, de las cuales 22 fueron seleccionadas por presentar actividad quitinolítica y proteolítica. Dicha actividad se evaluó por la formación de halo de hidrólisis alrededor de la colonia en medios de cultivo suplementados con quitina coloidal al 5% y leche descremada al 1% respectivamente. Las cepas LUM B001, B003, B013, B015 y B065 presentaron mayor actividad quitinolítica y proteolítica, por lo que tienen el potencial para ser evaluadas en control biológico de hongos fitopatógenos. Se encontró al género Bacillus distribuido en suelos cultivados y no cultivados, no se encontraron diferencias estadísticas según el cultivo establecido (PPalabras clave: método de hidrólisis; quitina coloidal; quitinasas; proteasas.  Abstract: This work was aimed at selecting native strains from the Bacillus genus having chitinolytic and proteolytic activity from soil from the tropical coast of Oaxaca, Mexico. 150 strains were isolated, 22 of which were selected as they presented chitinolytic and proteolytic activity. Such activity was assessed by the formation of a hydrolysis halo around the colony in culture media supplemented with 5% colloidal chitin and 1% skimmed milk. The LUM B001, B003, B013, B015 and B065-chitin strains presented higher quitinolytic and proteolytic activity, thereby having the potential for being evaluated in the biological control of phytopathogenic fungi. The Bacillus genus was found in cultivated and uncultivated soils; no statistical differences were found according to established crop (p Key words: Hydrolysis method; colloidal chitin; chitinases; proteases.

  13. High biodegradation levels of 4,5,6-trichloroguaiacol by Bacillus sp. isolated from cellulose pulp mill effluent Altos níveis de biodegradação do 4,5,6-tricloroguaiacol por Bacillus sp. isolado de efluente de indústria de polpa de celulose

    Directory of Open Access Journals (Sweden)

    E.C. Tondo

    1998-10-01

    Full Text Available An aerobic Gram positive spore-forming bacterium was isolated from cellulose pulp mill effluent. This microorganism, identified as Bacillus sp. and named IS13, was able to rapidly degrade the organic chlorinated compound 4,5,6-trichloroguaiacol (4,5,6-TCG from a culture containing 50 mg/l, which corresponds to about 3x104 times the concentration found in the original effluent. The biodegradation of this compound, usually found in cellulose pulp mill effluents, was evaluated by spectrophotometry and gas chromatography analysis. During 4,5,6-TCG decreasing, the lack of by-products had shown by such analysis lead to verify the possibility of either adsorption or absorption of 4,5,6-TCG by the cells, instead of real biodegradation. There were no traces of 4,5,6-TCG after lysozyme and SDS cell disruption. Vigorous extraction was applied before spectrophotometry analysis and there was no release of residual 4,5,6-TCG. Plasmid isolation was attempted by using different protocols. The best results were reached by CTAB method, but no plasmid DNA was found in Bacillus sp. IS13. The results suggest that genes located at the bacterial chromosome might mediate the high decrease of 4,5,6-TCG. The importance of this work is that, in being a natural ocurring microorganism, Bacillus sp. IS13, can be used as inoculum in plant effluents to best organochlorinated compounds biodegradation.Isolou-se uma bactéria gram positiva, esporulada a partir de efluente de fábrica de polpa de celulose. Esse microrganismo, identificado como Bacillus sp. e nomeado IS13, foi capaz de degradar rapidamente o composto orgânico clorado 4,5,6-tricloroguaiacol (4,5,6-TCG presente em meio de cultura a uma concentração de 50mg/L. Essa concentração equivale a 3x104 vezes mais 4,5,6-TCG que a concentração encontrada no efluente original. A biodegradação desse composto foi analisada por espectrofotometria de varredura e cromatografia gasosa. A falta de sub-produtos de degrada

  14. The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Melanie F Kho

    Full Text Available The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry proteins, which are pore-forming toxins or pore-forming proteins (PFPs. Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1-2 days, leading to a "Bob" or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1-2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even "non-pathogenic" Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications.

  15. Effects of biosurfactant produced by Lactobacillus casei on gtfB, gtfC, and ftf gene expression level in S. mutans by real-time RT-PCR

    Directory of Open Access Journals (Sweden)

    Omid Savabi

    2014-01-01

    Full Text Available Background: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC and fructosyltransferase (ftf genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. Materials and Methods: The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392 on gene expression profile of gftB/C and tft of S. mutans (ATCC35668 using quantitative real-time PCR. Results: The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057. Conclusion: Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention.

  16. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Pepi, Milva; Borra, Marco [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy); Tamburrino, Stella [Consiglio Nazionale delle Ricerche, Istituto per l' Ambiente Marino Costiero UOS Capo Granitola, Palermo (Italy); Saggiomo, Maria [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy); Viola, Alfio [Università di Catania, Corso Italia 57, I-95129 Catania (Italy); Biffali, Elio; Balestra, Cecilia [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy); Sprovieri, Mario [Consiglio Nazionale delle Ricerche, Istituto per l' Ambiente Marino Costiero UOS Capo Granitola, Palermo (Italy); Casotti, Raffaella, E-mail: raffaella.casotti@szn.it [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy)

    2016-08-15

    A Pb-resistant bacterial strain (named hereinafter Pb15) has been isolated from highly polluted marine sediments at the Sarno River mouth, Italy, using an enrichment culture to which Pb(II) 0.48 mmol l{sup −1} were added. 16S rRNA gene sequencing (Sanger) allowed assignment of the isolate to the genus Bacillus, with Bacillus pumilus as the closest species. The isolate is resistant to Pb(II) with a minimum inhibitory concentration (MIC) of 4.8 mmol l{sup −1} and is also resistant to Cd(II) and Mn(II) with MIC of 2.22 mmol l{sup −1} and 18.20 mmol l{sup −1}, respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that Pb inoculated in the growth medium is absorbed by the bacterial cells at removal efficiencies of 31.02% and 28.21% in the presence of 0.48 mmol l{sup −1} or 1.20 mmol l{sup −1} Pb(II), respectively. Strain Pb15 forms a brown and compact biofilm when grown in presence of Pb(II). Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) confirm that the biofilm contains Pb, suggesting an active biosorption of this metal by the bacterial cells, sequestering 14% of inoculated Pb as evidenced by microscopic analyses. Altogether, these observations support evidence that strain Pb15 has potentials for being used in bioremediation of its native polluted sediments, with engineering solutions to be found in order to eliminate the adsorbed Pb before replacement of sediments in situ. - Highlights: • The strain is able to sequester Pb by biosorption in a biofilm. • A Pb-resistant Bacillus sp. isolated from marine polluted sediments. • The strain is proposed as a tool for bioremediation of Pb-polluted marine sediments.

  17. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Clarice Weis Arns

    2013-04-01

    Full Text Available The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18 and 584 (150 µg/mL, SI 27 showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C.

  18. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent Emprego de Bacillus pumilus CBMAI 0008 e Paenibacillus sp. CBMAI 868 para remoção da cor do efluente da indústria papeleira

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2009-06-01

    Full Text Available Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour.Bacillus pumilus e Paenibacillus sp. foram aplicados separadamente no efluente da indústria papeleira a pH 7,0, 9,0 e 11,0, para verificação da remoção da cor e da DQO. As remoções da cor real e DQO após 48h a pH 9,0 foram, respectivamente, de 41,87% e 22,08% após o tratamento com B. pumilus e 42,30% e 22,89% após tratamento com Paenibacillus sp. As massas molares dos compostos presentes no efluente não tratado e tratado foram determinadas por cromatografia de permeação em gel. O emprego dos microrganismos reduziu os compostos responsáveis pela cor do efluente da indústria papeleira.

  19. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation.

    Science.gov (United States)

    Nam, Myeong Hyeon; Park, Myung Soo; Kim, Hong Gi; Yoo, Sung Joon

    2009-05-01

    Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was 10(5) and 10(6) colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulation of B.velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

  20. Colonization of Potato Rhizosphere by GFP-Tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 Shown on Large Sections of Roots Using Enrichment Sample Preparation and Confocal Laser Scanning Microscopy

    Directory of Open Access Journals (Sweden)

    Sylwia Jafra

    2012-12-01

    Full Text Available The ability to colonize the host plants’ rhizospheres is a crucial feature to study in the case of Plant Growth Promoting Rhizobacteria (PGPRs with potential agricultural applications. In this work, we have created GFP-tagged derivatives of three candidate PGPRs: Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44. The presence of these strains in the rhizosphere of soil-grown potato (Solanum tuberosum L. was detected with a classical fluorescence microscope and a confocal laser scanning microscope (CLSM. In this work, we have used a broad-field-of-view CLMS device, dedicated to in vivo analysis of macroscopic objects, equipped with an automated optical zoom system and tunable excitation and detection spectra. We show that features of this type of CLSM microscopes make them particularly well suited to study root colonization by microorganisms. To facilitate the detection of small and scattered bacterial populations, we have developed a fast and user-friendly enrichment method for root sample preparation. The described method, thanks to the in situ formation of mini-colonies, enables visualization of bacterial colonization sites on large root fragments. This approach can be easily modified to study colonization patterns of other fluorescently tagged strains. Additionally, dilution plating of the root extracts was performed to estimate the cell number of MB73/2, P482 and A44 in the rhizosphere of the inoculated plants.

  1. Isolation of Bacillus sp Producing Polyhydroxyalkanoate (PHA from Isfahan Refinery Wastewater and Qualification of Production in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Mahsa Keshavarz Azam

    2015-12-01

    Full Text Available Introduction: The aim of present study was isolation of polyhydroxybutyrate producing Bacillus species from oil refinery waste water, Isfahan, Iran and primarily optimization of production condition. Petroleum wastes are rich of carbon sources and have low amounts of nitrogen and phosphorus sources. AS the most important factor in production of intracellular inclusions is increasing the C/N ratio, it seemed that polyhydroxybutyrate producing microorganisms will be found in these wastes. Materials and methods: Bacillus species were isolated and purified from oil refinery wastewater. The polymer was verified using different staining procedures. Polymer was extracted by digestion method and the optimum production conditions were investigated in minimal salt medium with the organic carbon source by submerged fermentation. Production of polyhydroxybutyrate was studied using dry weight and optical density measurement. Results: Between various isolated Bacillus strains, two of them (B1 and B2 were polyhydroxybutyrate producers. Maximum PHA production based on dry weight and concentration were obtained for strain B1 after 72 hours incubation, at 31°C, in the presence of glucose as carbon source and yeast extract as nitrogen source, pH=7, and aeration in 120 rpm; and for strain B2 in the same condition, except optimal temperature which was 32°C. The most production amounts were 367 mg.ml-1 for B1 and 473 mg.ml-1 for B2 isolates. Also the most polymer percentage was 52/16 and 58.43 for B1 and B2 isolates respectively. Discussion and conclusion: The results showed that the production of polyhydroxybutyrate was increased by optimization of the conditions in both isolates. Using petroleum wastes as well as production of biodegradable plastics, leads to decontamination of theses wastes.

  2. Isolation of a Halophilic Bacterium, Bacillus sp. Strain NY-6 for Organic Contaminants Removal in Saline Wastewater on Ship

    Institute of Scientific and Technical Information of China (English)

    Jie Gao; Zhenjiang Yu; Xiaohui Zhang; Dan Zhao; Fangbo Zhao

    2013-01-01

    The objective of this research was to examine if certain strains of Bacillus bacteria,could survive in dry powder products and if so,could the bacteria degrade organic contaminants in saline wastewater on a ship.As part of the study,we isolated 7 domesticated strains named NY1,NY2,…,and NY7,the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months.NY6 was identified as Bacillus aerius,based on the morphological and physic-chemical properties.Its optimal growth conditions were as follows:salinity was 2%; temperature was 37℃; pH was in 6.5-7.0; best ratio of C∶ N∶ P was 100∶5∶1.The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity.The spores in the dry powder were 1.972× 108 g1.

  3. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Mi-Na; Shim, Jaehong; You, Youngnam [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Myung, Hyun [Department of Environment Landscape Architecture-Design, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Bang, Keuk-Soo [Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Cho, Min [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Kamala-Kannan, Seralathan, E-mail: kannan@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Endophytic Bacillus spp. have reduced the lead toxicity in Alnus firma plants. Black-Right-Pointing-Pointer The bacteria have sequestered the Pb molecules extracellularly. Black-Right-Pointing-Pointer The bacteria have increased the growth rate of plants in the presence of Pb. - Abstract: The aim of this study was to isolate and characterize endophytic bacteria from the roots of the metal hyperaccumulator plant Alnus firma. A total of 14 bacterial endophytes were isolated from root samples and assayed for tolerance to heavy metals. Isolate MN3-4 exhibited maximum bioremoval of Pb and was subsequently identified as Bacillus sp. based on 16S rRNA sequences. The pH and initial metal concentration highly influenced the Pb bioremoval rate. The growth of isolate MN3-4 was moderately altered in the presence of metals. Scanning electron microscopy, energy dispersive spectroscopy, biological-transmission electron microscopy, and Fourier transform infrared spectroscopy studies revealed that isolate MN3-4 had extracellularly sequestered the Pb molecules with little intracellular accumulation. Isolate MN3-4 did not harbor pbrA and pbrT genes. Moreover, isolate MN3-4 had the capacity to produce siderophores and indoleacetic acid. A root elongation assay demonstrated an increase (46.25%) in the root elongation of inoculated Brassica napus seedlings compared to that of the control plants. Obtained results pointed out that isolate MN3-4 could potentially reduce heavy metal phytotoxicity and increase Pb accumulation in A. firma plants.

  4. In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L. flour using commercial protease and Bacillus sp. protease Digestibilidade protéica in vitro de farinhas de feijão (Phaseolus vulgaris L. pré-tratadas com protease comercial e protease de Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Disney Ribeiro Dias

    2010-03-01

    Full Text Available The common bean (Phaseolus vulgaris L. is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3. The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco, treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition. The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour. The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above was used. The concentration of total protein (g.100 g-1 of dry matter in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter. The in vitro protein digestibility of enzymatically untreated bean flour (control ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p O feijão (Phaseolus vulgaris L. é um alimento básico na refeição do brasileiro

  5. Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov.

    Science.gov (United States)

    Didari, Maryam; Amoozegar, Mohammad Ali; Bagheri, Maryam; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2012-11-01

    genus Bacillus and other related genera. On the basis of these data, strain P4B(T) is considered to represent a novel species of a new genus, for which the name Alteribacillus bidgolensis gen. nov., sp. nov. is proposed. The type strain of Alteribacillus bidgolensis is P4B(T) (=CCM 7963(T)=CECT 7998(T)=DSM 25260(T)=IBRC-M 10614(T)=KCTC 13821(T)). It is also suggested to transfer B. persepolensis to this new genus, as Alteribacillus persepolensis comb. nov. The type strain of Alteribacillus persepolensis is HS136(T) (=CCM 7595(T)=DSM 21632(T)=JCM 15720(T)=LMG 25222(T)).

  6. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67

    Directory of Open Access Journals (Sweden)

    T. R. Shamala

    2012-09-01

    Full Text Available Polyhydroxyalkanoates (PHA and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1 were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH or rice bran (RBH individually or in combination (5-20 g L-1, based on weight of soluble substrates-SS. In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L-1 of SS along with ammonium acetate (1.75 g L-1 and corn starch (30 g L-1 produced maximum quantity of biomass (10 g L-1 and PHA (5.9 g L-1. The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10-50 g L-1 in the medium enhanced fermentative yield of α-amylase (2-40 U mL-1 min-1. The enzyme was active in a wide range of pH (4-9 and temperature (40-60ºC. This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates.

  7. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.

    Science.gov (United States)

    Sinha, Rajeshwari; Khare, S K

    2013-10-01

    A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain.

  8. Characterization of an Alkaline Family I.4 Lipase from Bacillus sp. W130-35 Isolated from a Tidal Mud Flat with Broad Substrate Specificity.

    Science.gov (United States)

    Kim, Hee Jung; Jung, Won Kyeong; Lee, Hyun Woo; Yoo, Wanki; Kim, T Doohun; Kim, Hoon

    2015-12-28

    A gene encoding lipolytic enzyme, lip7-3, was isolated from Bacillus sp. W130-35 isolated from a tidal mud flat. The gene encoded a protein of 215 amino acids with a signal peptide composed of 34 amino acid residues. Lip7-3 belonged to the family I.4 lipase and showed its maximal activity at pH 9.0 and 60°C. Its activity increased in the presence of 30% methanol and, remarkably, increased as well to 154.6% in the presence of Ca(2+). Lip7-3 preferred pnitrophenyl octanoate (C8) as a substrate and exhibited broad specificity for short- to longchain fatty acid esters. Additionally, Lip7-3 showed a low degree of enantioselectivity for an S-enantiomer (e.g., (S)-methyl-3-hydroxy-2-methylpropionate). It efficiently hydrolyzed glyceryl tributyrate, but did not hydrolyze glyceryl trioleate, fish oil, or olive oil. Its substrate specificity and activation by the solvent might offer a merit to the biotechnological enzyme applications like transesterification in the production of biodiesel.

  9. Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil.

    Science.gov (United States)

    Becker, P; Abu-Reesh, I; Markossian, S; Antranikian, G; Märkl, H

    1997-08-01

    A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 degrees C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l-1 h-1 at a condition rate of 0.4 h-1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant Ks of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, mu max, of 1.0 h-1. Oxygen uptake rates of up to 2.9 g l-1 h-1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil.

  10. Enzymatic Properties of an Alkaline and Chelator Resistant Proportional to alpha-Amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L1711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 370 C, strain L1711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5-10.0 and 7.0-7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55?C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co2+ and EDTA (10 mM) enhanced enzymatic activity. The K(sub m) and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose .

  11. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin.

    Science.gov (United States)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-09

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L(-1) HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 microg L(-1) for aqueous samples and in the range of 2.5-9.4 ng g(-1) for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.

  12. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1)

    Indian Academy of Sciences (India)

    K Syed Musthafa; V Saroja; S Karutha Pandian; A Veera Ravi

    2011-03-01

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. -acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner (0.5–2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33–86%) and biofilm formation (33–88%), total protease (20–65%), LasA protease (59–68%), LasB elastase (36–68%), pyocyanin (17–86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751).

  13. Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity.

    Science.gov (United States)

    Mahmood, Faisal; Shahid, Muhammad; Hussain, Sabir; Shahzad, Tanvir; Tahir, Muhammad; Ijaz, Muhammad; Hussain, Athar; Mahmood, Khalid; Imran, Muhammad; Babar, Shahid Ali Khan

    2017-03-22

    In this study, a bacterial strain SR-2-1/1 was isolated from textile wastewater-irrigated soil for its concurrent potential of plant growth promotion and azo-dye decolorization. Analysis of 16S rRNA gene sequence confirmed its identity as Bacillus sp. The strain tolerated high concentrations (i.e. up to 1000mgL(-1)) of metals (Ni(2+), Cd(2+), Co(2+), Zn(2+), and Cr(6+)) and efficiently decolorized the azo dyes (i.e. reactive black-5, reactive red-120, direct blue-1 and congo red). It also demonstrated considerable in vitro phosphate solubilizing and 1-aminocyclopropane-1-carboxylic acid deaminase abilities at high metal and salt levels. Bioinformatics analysis of its 537bp azoreductase gene and deduced protein revealed that it decolorized azo dyes through NADH-ubiquinone:oxidoreductase enzyme activity. The deduced protein was predicted structurally and functionally different to those of its closely related database proteins. Thus, the strain SR-2-1/1 is a powerful bioinoculant for bioremediation of textile wastewater contaminated soils in addition to stimulation of plant growth.

  14. Deproteinization potential and antioxidant property of haloalkalophilic organic solvent tolerant protease from marine Bacillus sp. APCMST-RS3 using marine shell wastes

    Directory of Open Access Journals (Sweden)

    Thirumalai Maruthiah

    2015-12-01

    Full Text Available The current increase in the vast amount of marine crustacean shell waste produced by the fish processing industries has led to the need to find new methods for its disposal. Hence, the present study was carried out via marine shell wastes as substrate for protease production. The maximum production (4000.65 U/ml from Bacillus sp. APCMST-RS3 was noticed in 3:1% shrimp and oyster shell powder (SOSP as substrate. Purified protease showed 53.22% and 22.66% enzyme yield; 3.48 and 8.49 fold purity with 40 kDa molecular weight; whereas, its Km and Vmax values were 0.6666 g/l, 1111.11 U/ml. This enzyme showed optimum activity at pH 9 and 60 °C temperature. Also, it retained maximum protease activity in the presence of NaCl (2.5 M, surfactants (Tween 20, 40, 60, 80 and SDS and metal ions (MnCl2, CaCl2, HgCl2 and BaCl2 and solvents. The candidate bacterium effectively deproteinized (84.35% shrimp shell and its antioxidant potentials.

  15. Characterization of a Novel Butachlor Biodegradation Pathway and Cloning of the Debutoxylase (Dbo) Gene Responsible for Debutoxylation of Butachlor in Bacillus sp. hys-1.

    Science.gov (United States)

    Gao, Yang; Jin, Lei; Shi, Hui; Chu, Zhangjie

    2015-09-30

    Bacillus sp. strain hys-1, which was isolated from active sludge, could degrade >90% butachlor at a concentration of 100 mg/L within 7 days. The present work revealed that strain hys-1 could mineralize butachlor via the following pathway: butachlor was initially metabolized to 2-chloro-N-(2,6-diethylphenyl)-N-methylacetamide by debutoxylation and then transformed to form 2-chloro-N-(2,6-diethylphenyl)acetamide by N-demethylation. Subsequently, it was converted to 2,6-diethylaniline and further mineralized into CO2 and H2O. In addition, the catalytic efficiency of crude cell extracts descended as follows: alachlor > acetochlor > butachlor. Furthermore, a novel 744 bp gene responsible for transforming butachlor into 2-chloro-N-(2,6-diethylphenyl)-N-methylacetamide was cloned from strain hys-1 and the encoding debutoxylase was designated Dbo. Then Dbo was expressed in Escherichia coli BL21 (DE3) and purified using Ni-nitrilotriacetic acid affinity chromatography. Dbo displayed the highest activity against butachlor at pH 6.5 and 30 °C. Metal ions played an important role in Dbo activity. To the best of the authors' knowledge, this is the first report that strain hys-1 can mineralize butachlor by a novel metabolic mechanism and the first identification of a gene encoding butachlor debutoxylase.

  16. Production and partial characterization of alkaline polygalacturonase secreted by thermophilic Bacillus sp. SMIA-2 under submerged culture using pectin and corn steep liquor

    Directory of Open Access Journals (Sweden)

    Marcela Vicente Vieira de Andrade

    2011-03-01

    Full Text Available Polygalacturonase production by the thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.5% (w/v apple pectin and supplemented with 0.3% (w/v corn steep liquor, reached its maximum after 36 hours with levels of 39 U.mL-1. The increase in apple pectin and corn steep liquor concentrations in the medium from 0.5 and 0.3%, respectively, to 0.65%, markedly affected the production of polygalacturonase, whose activity increased four times, reaching a maximum of 150.3 U.mL-1. Studies on polygalacturonase characterization revealed that the optimum temperature of this enzyme was between 60-70 °C. Thermostability profile indicated that the enzyme retained about 82 and 63% of its activity at 60 and 70 °C, respectively, after 2 hours of incubation. The optimum pH of the enzyme was found to be 10.0. After incubation of crude enzyme solution at room temperature for 2 hours at pH 8.0, a decrease of about 29% on its original activity was observed. At pH 10.0, the decrease was 25%.

  17. Isolation and Characterisation of a Molybdenum-reducing and Metanil Yellow Dye-decolourising Bacillus sp. strain Neni-10 in Soils from West Sumatera, Indonesia

    Science.gov (United States)

    Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus

    2017-01-01

    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation. PMID:28228917

  18. Bioactive Secondary Metabolites of a Marine Bacillus sp. Inhibit Superoxide Generation and Elastase Release in Human Neutrophils by Blocking Formyl Peptide Receptor 1

    Directory of Open Access Journals (Sweden)

    Yin-Ting Huang

    2013-06-01

    Full Text Available It is well known that overwhelming neutrophil activation is closely related to acute and chronic inflammatory injuries. Formyl peptide receptor 1 (FPR1 plays an important role in activation of neutrophils and may represent a potent therapeutic target in inflammatory diseases. In the present study, we demonstrated that IA-LBI07-1 (IA, an extract of bioactive secondary metabolites from a marine Bacillus sp., has anti-inflammatory effects in human neutrophils. IA significantly inhibited superoxide generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP-activated neutrophils, but failed to suppress the cell responses activated by non-FPR1 agonists. IA did not alter superoxide production and elastase activity in cell-free systems. IA also attenuated the downstream signaling from FPR1, such as the Ca2+, MAP kinases and AKT pathways. In addition, IA inhibited the binding of N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein, a fluorescent analogue of FMLP, to FPR1 in human neutrophils and FPR1-transfected HEK293 cells. Taken together, these results show that the anti-inflammatory effects of IA in human neutrophils are through the inhibition of FPR1. Also, our data suggest that IA may have therapeutic potential to decrease tissue damage induced by human neutrophils.

  19. Bioactive secondary metabolites of a marine Bacillus sp. inhibit superoxide generation and elastase release in human neutrophils by blocking formyl peptide receptor 1.

    Science.gov (United States)

    Yang, Shun-Chin; Lin, Chwan-Fwu; Chang, Wen-Yi; Kuo, Jimmy; Huang, Yin-Ting; Chung, Pei-Jen; Hwang, Tsong-Long

    2013-06-03

    It is well known that overwhelming neutrophil activation is closely related to acute and chronic inflammatory injuries. Formyl peptide receptor 1 (FPR1) plays an important role in activation of neutrophils and may represent a potent therapeutic target in inflammatory diseases. In the present study, we demonstrated that IA-LBI07-1 (IA), an extract of bioactive secondary metabolites from a marine Bacillus sp., has anti-inflammatory effects in human neutrophils. IA significantly inhibited superoxide generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated neutrophils, but failed to suppress the cell responses activated by non-FPR1 agonists. IA did not alter superoxide production and elastase activity in cell-free systems. IA also attenuated the downstream signaling from FPR1, such as the Ca2+, MAP kinases and AKT pathways. In addition, IA inhibited the binding of N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein, a fluorescent analogue of FMLP, to FPR1 in human neutrophils and FPR1-transfected HEK293 cells. Taken together, these results show that the anti-inflammatory effects of IA in human neutrophils are through the inhibition of FPR1. Also, our data suggest that IA may have therapeutic potential to decrease tissue damage induced by human neutrophils.

  20. 废弃活性污泥中产聚羟基脂肪酸酯菌株Bacillus sp.PB-3的发酵条件优化%Optimization of PHAs production by Bacillus sp.PB-3 from waste activated sludge

    Institute of Scientific and Technical Information of China (English)

    郝大可; 李强; 韩省; 王佳佳; 罗琰; 宫恺

    2012-01-01

    A high-yield strain of PHAs, Bacillus sp. PB-3 was isolated from waste activated sludge by Nile red staining and fluorescence microscopy screening. Gas chromatography analysis indicated that the intracellular production of the strain was polyhydroxybutyrate ( PHB). Furthermore, medium composition and fermentation factors were investigated and optimized. The optimal carbon and nitrogen sources were glucose(12 g/L) and beef paste(2 g/L) , respectively. The optimal cultivation conditions were pH 7. 5 , 37 ℃ for 48 h, and 80 mL medium at an agitation rate of 200 r/min. Under the fermentation conditions, the yield of PHB was raised to 32. 09% (w/w) , 30% higher than that before optimized.%通过尼罗红染色法结合荧光显微镜镜检,从废弃活性污泥中分离得到1株高产聚羟基脂肪酸酯(PHAs)的菌株Bacillus sp.PB -3,经气相色谱法鉴定该菌株胞内产物为聚β-羟基丁酸酯(PHB).对培养基成分及发酵条件优化后,获得最佳培养方案:12 g/L的葡萄糖为C源,2 g/L的牛肉膏为N源,初始pH7.5,培养基装液量80 mL,转速为200 r/min,37℃培养48 h,PHB质量分数可达菌体干质量的32.09%,比优化前提高30%.

  1. Optimization of amylase fermentation conditions by marine bacterium Bacillus sp.YP07 using response surface methodology%响应面法优化海洋细菌Bacillus sp.YP07淀粉酶发酵条件研究

    Institute of Scientific and Technical Information of China (English)

    柳志强; 李晓宇

    2011-01-01

    An amylase producing marine bacterium Bacillus sp. YP07 was isolated from the coastal water of Yangpu in Hainan. Plackett-Burrnan design and Response Surface Methodology (RSM) were used to optimize the production conditions of amylase. The results showed that the concentrations of peptone, yeast extract and NaCl were the most significant factors to influence amylase production. The optimal conditions were as followed: starch 5.00g/L, peptone 3.88g/L, yeast extract 3.97g/L, NaCl 37.69g/L, pH 7.0, rotation speed 180r/min, temperature 35℃ and fermentation time 48h.Under these conditions, the amylase activity was 665.4U/mL, which was increased by more than 4.3 folds compared with that before optimization.%从海南洋浦近海分离到1株产淀粉酶的海洋细菌Bacillus sp.G23,利用Plackett-Burman设计对发酵条件进行了筛选,结果表明,蛋白胨、酵母粉和NaCl浓度对酶产量具有显著的影响;利用响应面法对3个因子进行了优化,获得了最佳发酵条件:可溶性淀粉5.00g/L,蛋白胨3.88g/L,酵母粉3.97g/L,NaCl 37.69g/L,pH7.0,180r/min、35℃培养48h,酶产量为665.4U/mL,较初始酶产量提高了4.3倍.

  2. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum

    Science.gov (United States)

    Gopinath, V.; Velusamy, P.

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml-1. The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.

  3. An Antimicrobial Metabolite from Bacillus sp.: Significant activity against pathogenic bacteria including multidrug-resistant clinical strains

    Directory of Open Access Journals (Sweden)

    AJAY GHOSH CHALASANI

    2015-12-01

    Full Text Available In this study, the cell free modified trypticase soya broth (pH 7.4+0.2 of Bacillus subtilis URID 12.1 showed significant antimicrobial activity against multidrug-resistant strains of Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes and Enterococcus faecalis. The partially purified antimicrobial molecule was found to be resistant to extremes of pH and temperatures and also to higher concentrations of trypsin and proteinase K. The antimicrobial molecule was purified by a three-step method that included reverse-phased high performance liquid chromatography (RP-HPLC. The minimum inhibitory concentration (MIC values were determined for 11 species of bacteria using a microbroth dilution technique. The HPLC-purified fraction showed the MICs ranging from 0.5 to 1 µg/ml for methicillin and vancomycin resistant Staphylococcus aureus (MVRSA and methicillin-resistant Staphylococcus epidermidis (MRSE strains. The molecular mass of the antimicrobial compound was determined to be 842.37 Da. The same antimicrobial fraction showed negligible haemolytic activity against human red blood cells even at a concentration as high as 100µg/ml. Because of its significant antimicrobial activity at low MIC values coupled with its non-haemolytic property, it may prove to be a novel antimicrobial lead molecule.

  4. Bacillus cereus X5 Enhanced Bio-Organic Fertilizers Effectively Control Root-Knot Nematodes (Meloidogyne sp.)

    Institute of Scientific and Technical Information of China (English)

    XIAO Tong-Jian; CHEN Fang; GAO Chao; ZHAO Qing-Yun; SHEN Qi-Rong; RAN Wei

    2013-01-01

    The efficacy of Bacillus cereus X5 as a potential biological control agent against root-knot nematodes was evaluated in vitro by examining second-stage juvenile mortality and egg hatching rate under addition of culture filtrate and in planta by application of bio-organic fertilizers enhanced with B.cereus X5,B.thuringiensis BTG,or Trichoderma harzianum SQR-T037 alone or together in greenhouse and field experiments.The biofumigation of the root-knot nematode-infested soil with organic materials (chicken manure,pig manure and rice straw) alone or in combination with B.cereus X5 was also conducted in greenhouse experiments.In laboratory,the filtrate of B.cereus X5 more effectively reduced egg hatching rates during the incubation period for 14 d and more effectively killed the second-stage juvenile during the incubation period of 24 h than that of B.thuringiensis BTG.The highest dry shoot weights for greenhouse tomatoes and field muskmelons were found in both the treatment consisting of the bio-organic fertilizer enhanced with the three biocontrol agents and the treatment consisting of the bio-organic fertilizer enhanced only with B.cereus X5.The two bio-organic fertilizers achieved better nematicidal effects than those enhanced only with B.thuringiensis BTG or T.harzianum SQR-T037.B.cereus X5 also enhanced effect of biofumigation,which resulted in increased plant biomass and reduced nematode counts in the roots and rhizosphere soil.Therefore,these results suggested that biological control of root-knot nematodes both in greenhouses and fields could be effectively achieved by using B.cereus X5 and agricultural wastes.

  5. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  6. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18.

    Science.gov (United States)

    Luo, Shenglian; Xu, Taoying; Chen, Liang; Chen, Jueliang; Rao, Chan; Xiao, Xiao; Wan, Yong; Zeng, Guangming; Long, Fei; Liu, Chengbin; Liu, Yutang

    2012-02-01

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg(-1)) and Cd (50 mg kg(-1)) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops.

  7. The critical role of partially exposed N-terminal valine residue in stabilizing GH10 xylanase from Bacillus sp.NG-27 under poly-extreme conditions.

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    Full Text Available BACKGROUND: Understanding the mechanisms that govern protein stability under poly-extreme conditions continues to be a major challenge. Xylanase (BSX from Bacillus sp. NG-27, which has a TIM-barrel structure, shows optimum activity at high temperature and alkaline pH, and is resistant to denaturation by SDS and degradation by proteinase K. A comparative circular dichroism analysis was performed on native BSX and a recombinant BSX (R-BSX with just one additional methionine resulting from the start codon. The results of this analysis revealed the role of the partially exposed N-terminus in the unfolding of BSX in response to an increase in temperature. METHODOLOGY: We investigated the poly-extremophilicity of BSX to deduce the structural features responsible for its stability under one set of conditions, in order to gain information about its stability in other extreme conditions. To systematically address the role of the partially exposed N-terminus in BSX stability, a series of mutants was generated in which the first hydrophobic residue, valine (Val1, was either deleted or substituted with various amino acids. Each mutant was subsequently analyzed for its thermal, SDS and proteinase K stability in comparison to native BSX. CONCLUSIONS: A single conversion of Val1 to glycine (Gly changed R-BSX from being thermo- and alkali- stable and proteinase K and SDS resistant, to being thermolabile and proteinase K-, alkali- and SDS- sensitive. This result provided insight into the structure-function relationships of BSX under poly-extreme conditions. Molecular, biochemical and structural data revealed that the poly-extremophilicity of BSX is governed by a partially exposed N-terminus through hydrophobic interactions. Such hitherto unidentified N-terminal hydrophobic interactions may play a similar role in other proteins, especially those with TIM-barrel structures. The results of the present study are therefore of major significance for protein folding

  8. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  9. Diversity analysis and identification of strains with antioxidantive property from Bacillus sp.%产纳豆激酶菌中抗氧化菌株的多样性分析和鉴定

    Institute of Scientific and Technical Information of China (English)

    谢昕; 吕晓腾; 黄继翔

    2015-01-01

    在产纳豆激酶菌株Bacillus sp.中分离筛选具有抗氧化能力的芽孢杆菌菌株,以豆粕为原料,以抗氧化性测试为筛选体系.对筛选得到的12个菌株的发酵上清液进行抗氧化稳定性测试,结果显示:HFBL261菌株抗氧化力残留最高,对HFBL261的表型形状和16S rDNA序列进行测定,该菌株鉴定为Bacillus subtilis.

  10. Bacillus sp. LT3 improves the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged with Vibrio campbellii by enhancing the innate immune response and by decreasing the activity of shrimp-associated vibrios.

    Science.gov (United States)

    Niu, Yufeng; Defoirdt, Tom; Baruah, Kartik; Van de Wiele, Tom; Dong, Shuanglin; Bossier, Peter

    2014-10-10

    Bacteria belonging to the genus Bacillus are amongst the most intensively studied group of bacteria for use as probiotics in aquaculture. However, the exact mechanism of action of these bacteria is often not well described, and the microbiota that are naturally present in cultures of test organisms often compromise the interpretation of the results. The present study aimed to evaluate the putative probiotic effect of Bacillus sp. LT3 in a model system with gnotobiotic brine shrimp Artemia franciscana larvae. The strain significantly increased the survival of brine shrimp larvae challenged with Vibrio campbellii when administered 6h before the challenge. Under these conditions, LT3 was able to colonize the brine shrimp gastrointestinal tract and to decrease the in vivo pathogen activity as indicated by the bioluminescence of the V. campbellii associated with brine shrimp larvae. In order to investigate the effect of the Bacillus strain on the innate immune system of the brine shrimp larvae, prophenoloxidase and transglutaminase mRNA levels were monitored, while heat shock protein 70 mRNA levels were measured as an indicator of physiological stress. Interestingly, 12h after challenge, the prophenoloxidase mRNA level in the larvae pre-treated with LT3 and challenged with V. campbellii was approximately 8-fold higher than in the other treatments. Further, a decreased mRNA level of transglutaminase gene and heat shock protein 70 gene suggested that pretreatment with LT3 results in less stress and tissue damage in the brine shrimp larvae upon V. campbellii challenge. These results indicated that Bacillus sp. LT3 could improve the survival of brine shrimp larvae when challenged with pathogenic V. campbellii, both by decreasing the in vivo activity of the pathogen and by priming the innate immune response through activating the prophenoloxidase system.

  11. Optimization of biosurfactant production by Bacillus brevis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Foukia E. Mouafi

    2016-03-01

    Full Text Available The present study aims to evaluate and validate a statistical model for maximizing biosurfactant productivity by Bacillus brevis using response surface methodology. In this respect, twenty bacterial isolates were screened for biosurfactant production using hemolytic activity, oil spreading technique, and emulsification index (E24. The most potent biosurfactant-producing bacterium (B. brevis was used for construction of the statistical response surface model. The optimum conditions for biosurfactant production by B. brevis were: 33 °C incubation temperature at pH 8 for 10 days incubation period and 8.5 g/L glucose concentration as a sole carbon source. The produced biosurfactant (BS (73% exhibited foaming activity, thermal stability in the range 30–80 °C for 30 min., pH stability, from 4 to 9 and antimicrobial activity against (Escherichia coli. The BS gave a good potential application as an emulsifier.

  12. 芽孢杆菌B3的鉴定及其对常见污染真菌的拮抗作用%Identification of Bacillus sp. B3 and its Antagonism against Contamina-tive Fungi

    Institute of Scientific and Technical Information of China (English)

    黄福常; 刘斌; 覃培升; 黎金锋; 吴浩

    2013-01-01

      从平菇废弃培养料中分离获得一株细菌B3,通过对其进行形态学、培养特征比较研究和16S rDNA序列分析,鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens).在与常见的三种食用菌污染真菌脉孢菌(Neur ospora sp.)、木霉(Trichoderma sp.)及鬼伞(Coprinus sp.)分别进行对峙培养时,都有明显的抑菌作用,形成的抑菌带分别为0.38 cm、0.57 cm及0.56 cm,而与平菇(Pleurotus ostreatus)、鸡腿菇(Coprinus comatus)及草菇(Volvariella volvacea)分别进行对峙培养时,除对草菇有明显的抑制作用外,对平菇和鸡腿菇的抑制作用很小.在混接B3菌株麸皮菌剂栽培料培养基上,B3菌株对三种污染真菌的抑制作用都很明显;可抑制木霉分生孢子形成、脉孢菌分生孢子萌发及鬼伞菌丝扩展;但不抑制平菇菌丝的生长.%The bacterial strain B3 was isolated from spend oyster mushroom substrate, it was identified as Bacill us amyloliquefaciens based on morphological and physiological characteristics and 16S rDNA analysis. The strain B3 showed high antagonistic activity against the common mushroom contaminative fungi such as Neurospora sp., Trichoderma sp. and Coprinus sp.. In dual plate assay, the inhibition zone was 0.38 cm, 0.57 cm and 0.56 cm, re-spectively. The strain B3 was also cultured in dual plate with Pleurotus ostreatus, Coprinus comatus and Volvariella volvacea, respectively. The strain B3 showed very low inhibition to Pleurotus ostreatus and Coprinus comatus, but it had significant inhibition to Volvariella volvacea. Strain B3 showed stronger inhibition to Neurospora sp., Trichod ermasp. and Coprinus sp. in the cottonseed husk substrate when inoculated with oyster mushroom. It could inhibit the conidia formation of Trichoderma sp., the spore germination of Neurospora sp. and the hyphal extension of Coprinus sp., but showed lower inhibition to oyster mushroom.

  13. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5, has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α(8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α(8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK(a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further

  14. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Korenblum Elisa

    2012-11-01

    Full Text Available Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1 that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS. It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml. Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential

  15. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth.

    Science.gov (United States)

    Sajna, Kuttuvan Valappil; Sukumaran, Rajeev Kumar; Gottumukkala, Lalitha Devi; Pandey, Ashok

    2015-09-01

    The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L(-1) supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L(-1). It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ∼46% improvement in degradation of C10-C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants.

  16. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation.

    Science.gov (United States)

    Kügler, Johannes H; Muhle-Goll, Claudia; Hansen, Silla H; Völp, Annika R; Kirschhöfer, Frank; Kühl, Boris; Brenner-Weiss, Gerald; Luy, Burkhard; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3' hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected.

  17. Produção de proteases por Bacillus sp SMIA-2 crescido em soro de leite e água de maceração de milho e compatibilidade das enzimas com detergentes comerciais Production of proteases by Bacillus sp. SMIA-2 grow on whey and corn steep liquor and compatibility of the enzyme with commercial detergents

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2006-09-01

    Full Text Available A produção de proteases por Bacillus sp. SMIA-2 cultivado em um meio de cultura contendo soro de leite e água de maceração de milho foi estudada. Além disso, a compatibilidade da enzima com detergentes comerciais foi também avaliada. A atividade máxima da enzima (70 U/mg proteína foi observada na fase estacionária de crescimento, com 32 h de incubação. Estudos sobre a caracterização da protease revelaram que a temperatura ótima para atividade desta enzima foi 70 °C e que a mesma manteve 91% de sua atividade quando incubada a 70 °C na presença do cálcio. O valor ótimo de pH encontrado para a protease foi 8,0, sendo que a enzima manteve 85% e 46% de sua atividade quando incubada por 1 h em pH 9 e pH 10 respectivamente. A protease manteve 64% e 50% de sua atividade quando incubada a 70 °C por 30 min com os detergentes Cheer® e Tide® respectivamente. A utilização da glicina juntamente com íons cálcio resultou em um aumento da estabilidade enzimática em todos os detergentes testados. Em presença dos detergentes Ultra bizz®, Cheer® e Tide®, a enzima manteve aproximadamente 100% de atividade, após 30 min de incubação a 70 °C.The production of protease by the thermophilic Bacillus sp. SMIA-2 cultivated in a medium containing whey and corn steep liquor was studied. In addition, the compatibility of the enzyme with commercial detergents was evaluated. The maximum activity of the enzyme (70 U/mg protein was observed in the phase stationary of growth, with 32 h of incubation. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 70 °C and that it maintained 91% of its activity when incubated a 70 °C in the presence of calcium. The optimum pH of the enzyme was found to be 8.0 and the enzyme maintained 85% and 46% of its original activity when incubated for 1 h at pH 9 and pH 10 respectively. Protease retained 64% and 50% of its activity after 30 min incubation at 70 °C in

  18. Isolation,Identification and Culture Conditions Optimization of a High-efficiency Bio-surfactant Producing Bacterium%一株高效生物表面活性剂产生菌的分离、鉴定及培养条件的优化

    Institute of Scientific and Technical Information of China (English)

    余焱; 张志坚; 宋柏函; 李洪静; 董文博

    2012-01-01

    A high-efficiency bio-surfactant producing bacterium X1A-2 was obtained from bio-trickling filter,in which seeded with waste activated sludge.X1A-2 was identified as Gordonia according to and morphology and 16SrDNA sequence.The experimental results showed that X1A-2 reached the steady state after 14h of fermentation culture,and the surface tension of the fermentation liquor decreased to 33.0mN/m under a large range of conditions.It had little effect on bio-surfactant producing capability when the petroleum hydrocarbon was carbon source.Further investigation showed that X1A-2maintained activity within 30d under the optimum conditions.The surface tension of the fermentation liquor kept below 35.0mN/m.X1A-2 is a high-efficiency bio-surfactant producing bacterium,and it has good prospect of bio-remediation in marine oil pollution.%以市政污水处理厂剩余活性污泥作为菌种来源,经过培养分离、筛选,得到一株高效生物表面活性剂产生菌X1A-2.经形态学与16SrDNA鉴定,X1A-2菌株属于戈登氏菌属.菌株X1A-2产生物表面活性剂的环境影响因素研究结果表明:菌株在发酵培养14h后达到稳定状态,发酵液表面张力降低至33.0mN/m;在较大的培养条件范围内,发酵液的表面张力均可显著降低;石油烃类碳源的存在对其产生物表面活性剂的影响甚微.在模拟石油污染的最优培养条件下,菌株能够长期保持活性,所产生物表面活性剂可使以石油为碳源的发酵液表面张力保持在35mN/m以下.研究结果表明,X1A-2是一株高效生物表面活性剂产生菌,在实际海洋石油污染的生物修复方面具有很好的应用前景.

  19. Mosquitocidal Bacillus amyloliquefaciens: Dynamics of growth & production of novel pupicidal biosurfactant

    Directory of Open Access Journals (Sweden)

    I Geetha

    2014-01-01

    Full Text Available Background & objectives: A strain of Bacillus amyloliquefaciens (VCRC B483 producing mosquito larvicidal and pupicidal biosurfactant was isolated from mangrove forest soil. The present study was aimed at studying the kinetics of growth and production of the mosquitocidal biosurfactant by this bacterium. Methods: Dynamics of growth, sporulation and production of mosquitocidal biosurfactant were studied by standard microbiological methods. The mosquitocidal biosurfactant was precipitated from the culture supernatant and bioassayed against immature stages of mosquito vectors to determine lethal dose and lethal time. The activity, biological and biochemical properties of the biosurfactant have also been studied. Results: The pupal stages of mosquitoes were found to be more vulnerable to the biosurfactant produced by this bacterium with Anopheles stephensi being the most vulnerable species. The median lethal time (LT 50 was found to be 1.23 h when the pupal stages of the above species were exposed to lethal concentration LC 90 (9 µg/ml dosage of the biosurfactant. Production of biosurfactant was found to increase with incubation time and maximum biomass, maximum quantity of biosurfactant (7.9 mg/ml, maximum biosurfactant activity (6 kBS unit/mg and maximum mosquitocidal activity (5 µg/ml were attained by 72 h of growth. The lipopeptide nature of the biosurfactant was confirmed by β-haemolysis, lipase activity, biofilm forming capacity, thermostability and biochemical analysis. Interpretation & conclusions: The mosquitocidal biosurfactant produced by B. amyloliquefaciens (VCRC B483 may be a prospective alternative molecule for use in mosquito control programmes involving bacterial biopesticides.

  20. Bacillus coagulans

    Science.gov (United States)

    Bacillus coagulans is a type of bacteria. It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for diarrhea, including infectious types such as ...

  1. 一株芽孢杆菌的分子鉴定及初步应用条件探究%Molecular identification and conditions for preliminary application of a Bacillus sp

    Institute of Scientific and Technical Information of China (English)

    吴翔; 曲毅; 程国军; 聂文超; 杜冬云

    2013-01-01

    Ethyl chloride is an important intermediate of pesticide. It is widely used to produce organic phosphorus pesticide with high effect and low toxicity. Toxic wastewater produced in the manufacture process contains high values of chemical oxygen demand, total phosphorus, and sulfur ion. A bacterial strain SCUN which could aerobically degrade ethyl chloride wastewater was isolated from the natural water body near the wastewater discharge facility. This strain was identified as Bacillus sp. SCUN. based on its morphological observation and 16S rDNA sequence analysis. Both indole and hydrogen sulfide were not detected in the experiments of IMViC. Salt tolerance of the microorganism could reach 7%. The condition for its industrial application was discussed.It was found that at pH value of 7.0, immobilized microorganism ratio of 5%, temperature of 30℃, the microorganism showed the best growth for biodegradation. With a newly developed ternary cycle treatment, the COD removal rate approached 58.3%.

  2. Antimicrobials of Bacillus species: mining and engineering

    OpenAIRE

    Zhao, Xin

    2016-01-01

    Bacillus sp. have been successfully used to suppress various bacterial and fungal pathogens. Due to the wide availability of whole genome sequence data and the development of genome mining tools, novel antimicrobials are being discovered and updated,;not only bacteriocins, but also NRPs and PKs. A new classification system of known and putative antimicrobial compounds of Bacillus by genome mining is presented in Chapter 2. Importantly, predicting, isolating and screening of Bacillus strains w...

  3. Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera.

    Science.gov (United States)

    Somwatcharajit, Rasapirose; Tiantad, Itsares; Panbangred, Watanalai

    2014-02-01

    The unexpressed cry2Ab27 gene of Bacillus thuringiensis subsp. aizawai SP41 (SP41) consists of a single open reading frame (ORF) of 1902bp encoding for 634 amino acid residues. The cry2Ab27 gene appears to be silent due to the lack of promoter and terminator sequences. In this study we fused the cry2Ab27 ORF with the cry1Ab promoter (500bp) and the terminator (300bp) in vector pHT304-18Z in order to drive the expression of cry2Ab27 in both SP41 and an acrystaliferous, B. thuringiensis subsp. thuringiensis 407 (407). A protein with a molecular mass of 65kDa, consistent with the Cry2Ab protein, was detected in both transformants using SDS-PAGE and Western blot analysis. Bipyramidal crystals were observed in SP41 and its transformant containing the pHT304-18Z vector (SPHT) in contrast, cells expressing cry2Ab27 (SPC2) exhibited crystal proteins with irregular shapes. No inclusion protein was detected in the 407 transformant expressing the cry2Ab27 gene. Cry2Ab27 was found in the purified crystal toxin from strain SPC2. The solubilized crystal toxin proteins from SPC2 were 6.9-fold more toxic toward the larvae of Helicoverpa armigera compared to toxin proteins from SPHT. However SPC2 crystal toxin displayed only slightly higher toxicity against the larvae of Spodoptera litura and S. exigua compared to SPHT produced toxin. Our data support the use of Cry2Ab in combination with the Cry1 toxin for enhanced control of heliothine insect pests.

  4. Distribution of the lipopeptide biosurfactant-producing microbes in oil reservoir environment%油藏环境产脂肽类表面活性剂微生物的分布

    Institute of Scientific and Technical Information of China (English)

    李彩风; 李阳; 曹嫣镔; 宋永亭; 李希明; 汪卫东; 包木太

    2015-01-01

    通过对表面活性素、地衣芽孢杆菌素等脂肽类表面活性剂合成酶基因(srfA/licA)的检测,在功能基因水平上分析了胜利油田55~95℃油藏中产脂肽类表面活性剂微生物的分布,同时对油藏样品进行了克隆文库分析.实验结果表明:油藏样品中存在各种不同类型的细菌,具有丰富的多样性;在所分析的4个油藏共8口油井产出液样品中,有3个油藏共6口油井产出液样品检测到srfA/licA,所有样品经振荡富集培养后,均检测到srfA/licA含量升高,产脂肽类表面活性剂微生物在胜利油田不同温度油藏中分布较为普遍;油藏中产脂肽类表面活性剂的细菌种属推测为芽孢杆菌(Bacillus)、假单胞菌(Pseudomonas)、沙雷氏菌(Serratia)、不动杆菌(A cinetobacter)和弓形杆菌(Arcobacter).因此向油藏中注入营养激活产脂肽类表面活性剂的微生物是一种实现生物表面活性剂提高原油采收率的有效途径.

  5. EFFECTS OF MIXED INOCULANTS OF BACILLUS SP. ON CROP EMERGENCE AND SEEDLING GROWTH%芽胞杆菌属(Bacillus sp.)10株细菌混合制剂对4种作物出苗及苗期生长的影响

    Institute of Scientific and Technical Information of China (English)

    陶光灿; 王素英; 王玉平; 路宝庆; 谢光辉

    2003-01-01

    以10株具有促生及抑制病害的芽胞杆菌属菌株(Bacillus sp.)的培养物,按不同比例配制成5个混合剂型细菌制剂.A、B、C、D剂型播种时接种不结球小白菜30 d后,株高、叶片数、根长和干重分别增加7.8 %、6.2 %、9.4 %和13.8 %,除C处理的株高与对照差异不显著外,其余均达显著水平.接种A和B剂型显著提高豌豆出苗率,出苗9 d时两菌剂处理的地上和地下部干重分别平均提高92.3 %和183.3 %,并发现5株供试菌株对引起豌豆病害病原菌有明显的抑菌作用.以A、B、E三个剂型菌悬液培养水稻种子4 d 时, 各处理的平均芽长提高33.3 %,根长提高16.0 %,培养25 d时株高、根数和地上部干重平均分别提高16.0 %、9.5 %和22.7 %,均达显著水平.B剂型的培养物培养小麦27 d时发现对株高、叶片数和植株干重的影响都不显著,但对根数和根重有显著的促进作用.综合分析认为,A菌剂最有利于供试作物出苗和苗期生长,其次为B剂型. 表5 参17

  6. Vacuum Distillation Residue Upgrading by an Indigenous Bacillus Cereus

    Directory of Open Access Journals (Sweden)

    Mitra Sadat Tabatabaee

    2013-07-01

    Full Text Available Background:Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly.Results:A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332. This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR, as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively.Conclusion:Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  7. 嗜碱芽孢杆菌Bacillus sp.F26过氧化氢酶的分离纯化及性质研究%Purification and Characterization of a Monofunctional Catalase from an Alkaliphilic Bacillus sp. F26

    Institute of Scientific and Technical Information of China (English)

    张心齐; 薛燕芬; 赵爱民; 堵国成; 许正宏; 陈坚; 马延和

    2005-01-01

    从一株低度嗜盐、兼性嗜碱芽孢杆菌Bacillus sp.F26中纯化得到一种碱性过氧化氢酶,并对该酶进行了性质研究.纯化过程经硫酸铵沉淀、阴离子交换层析、凝胶过滤层析及疏水层析四步最终获得电泳纯的目标酶(纯化58.5倍).该过氧化氢酶的分子量为140kD,由两个大小相同的亚基组成.天然酶分子在408 nm处显示特征吸收峰(Soret band).吡啶血色素光谱显示了酶分子以原卟啉Ⅸ(protohemeⅨ)作为辅基.计算获得酶的表观米氏常数为32.5 mmol/L.该过氧化氢酶不受连二亚硫酸钠的还原作用影响,但被氰化物、叠氮化物和3-氨基-1,2,4-三唑(单功能过氧化氢酶的专一抑制剂)强烈抑制.以邻联茴香胺、邻苯二胺和二氨基联苯胺作为电子供体测定酶活时,该酶不显示过氧化物酶活性.同时,酶的N-端序列比对结果说明,该过氧化氢酶与单功能过氧化氢酶亚群有一定的相似性,而与双功能过氧化氢酶亚群及猛过氧化氢酶亚群均没有同源性.因此,本文将纯化的碱性过氧化氢酶定性为单功能过氧化氢酶.此外,该酶具有热敏感的特点,且酶活在pH 5~9的范围内不受pH影响,此后,活性随着pH的升高而升高,并在pH 11处有明显的酶活高峰.20℃、pH 11条件下的酶活半衰期达49h.在pH 11的高碱条件下表现出最高活力和一定的稳定性,这在已报道的过氧化氢酶中还未见描述.同时,该酶也显示了良好的盐碱稳定性,0.5 mol/L NaCl、pH 10.5条件下的酶活半衰期达90 h.另一方面,本文所研究的过氧化氢酶是第一个来源于嗜碱微生物的同源二聚体单功能过氧化氢酶,也是第一个来源于天然碱湖的单功能过氧化氢酶,它能部分地反映出细胞抗氧化体系对相应环境的适应情况.%An alkaline catalase has been purified and characterized from a slightly halophilic and alkaliphilic bacterium Bacillus sp. F26. The purification was performed

  8. Biosurfactant Producing Characteristics of a Salt-tolerant BF40 Strain and Its Remediation in Petroleum Contaminated Saline Soil%耐盐菌BF40产表面活性剂特性及其对石油污染盐渍化土壤的修复能力

    Institute of Scientific and Technical Information of China (English)

    吴涛; 依艳丽; 谢文军; 许杰; 姚志刚; 李小彬

    2012-01-01

    为强化微生物修复石油污染盐渍化土壤并提供高效产表面活性剂菌种,研究了耐盐菌Serratia BF40产生物表面活性剂的条件、动力学特征以及对石油污染盐渍化土壤的修复能力.结果表明:BF40产表面活性剂最适碳源为牛肉膏,最适氮源为氯化铵.在30~37℃,pH 7.0~9.0范围内产表面活性剂的能力较强.BF40在对数生长期产生表面活性剂,产生方式与细胞生长相关联.在含2.0%NaC1的培养基中,BF40可将发酵液表面张力降低到32.0 mN·m-1,EI24达到66.9%.在含盐量为0.22%和0.61%土壤中添加BF40,降解40 d后,土壤总石油烃降解率达到50%以上,表明BF40在强化修复石油污染盐渍化土壤中具有很大的应用潜力.%To provide high-efficient biosurfactant-producing bacteria and enhance the bioremediation efficiency of petroleum contaminated saline soil, the biosurfactant-producing conditions and dynamics of a salt-tolerant Serratia BF40 strain and its remediation in petroleum contaminated saline soil were carried out. Results indicated that the optimum carbon and nitrogen sources for biosurfactant production were beef extract and NH4Cl, respectively. BF40 strain could produce more biosurfactant at 30~37 ℃ and pH ranged from 7.0 to 9.0. Biosurfactant was produced during the log phase and producing type was correlated with cell growth. Surface activity of fermentation broth was significantly effective in the presence of 2.0% NaCl, and the value of surface tension and EI24 were 32.0 mN · m-1 and 66.9%, respectively. Petroleum degradation experiments showed that BF40 strain could remove more than 50% of total petroleum hydrocarbons after 40 days in the soil with 0.22% and 0.60% salinity. These results indicated that BF40 strain had potential used in bioremediation of petroleum-contaminated saline soil.

  9. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.

    Science.gov (United States)

    Sumitani, J; Tottori, T; Kawaguchi, T; Arai, M

    2000-09-01

    The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III.

  10. 耐盐芽孢杆菌LAY的分类鉴定及其抗白色念珠菌活性研究%Identification of Bacillus sp. LAY and Its Antimicrobial Activity Against Candida albicans

    Institute of Scientific and Technical Information of China (English)

    曹建斌; 于慧瑛; 李新

    2015-01-01

    旨在从运城盐湖黑泥样品中分离获得一株耐盐细菌LAY,对其进行分类鉴定及抗菌特性研究。基于16S rRNA基因序列对菌株进行分类鉴定。以白色念珠菌为指示菌,采用杯碟法对菌株LAY发酵上清液进行抗菌活性检测,研究不同因素对其抗菌活性的影响;采用扫描电镜和透射电镜观察其抗菌效果,并对菌株基因组进行功能基因的PCR筛查。系统发育分析表明,菌株LAY为Bacillus属成员,为耐盐细菌。电镜观察发现,菌株LAY发酵上清液可导致白色念珠菌细胞结构出现明显异常。抗菌稳定性研究表明,菌株LAY发酵上清液活性较为稳定,表现出良好的对温度、pH、NaCl和紫外光的耐受性。功能基因筛查发现菌株LAY基因组中含有聚酮合酶(PKS)基因,表明该菌具有产聚酮类化合物的潜力。结果表明,盐湖环境中的极端微生物资源可作为抗菌活性物质的潜在新来源。%The goal of this work is to identify a halotolerant bacterium LAY isolated from Yuncheng Salt Lake and study its antimicrobial properties. The strain LAY was identified by 16S rRNA gene sequence analysis. Using Candida albicans as the indicator, the antimicrobial activity of the fermentation broth of strain LAY was detected by cylinder plate method, and meanwhile the effects of different factors on the activities were studied. Morphological and ultra-structural changes of treated cells were observed by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). PCR screening of functional genes were also carried out. The results of phylogenetic analysis indicated that it was a halotolerant bacterium, and characterized as the genus of Bacillus, and named as Bacillus sp. LAY. The observation by electron spectroscopy discovered that morphological and ultra-structural changes of C. albicans after treatment by fermentation broth of Bacillus sp. LAY were significant. Antimicrobial

  11. Kinetics of the simultaneous production of b- and g-cyclodextrins catalyzed by CGTase from alkalophilic Bacillus sp. - doi: 10.4025/actascitechnol.v35i4.13944

    Directory of Open Access Journals (Sweden)

    Marcos De Souza

    2013-10-01

    Full Text Available The cyclodextrins (CDs are cyclic maltooligosaccharides obtained by cyclization of linear chains of starch, catalyzed by the enzyme cyclomaltodextringlucanotransferase (CGTase. The interest in CD production results from the formation of inclusion complexes, which allow many important applications, especially in food, pharmaceutical and cosmetic industries. The substances complexed generally have their properties modified by complexation. It is appreciated if increased solubility and higher thermal and chemical stabilities are obtained. In this work, a kinetic model was developed for the production of cyclodextrins in the presence of CGTase from alkalophilic Bacillus sp., taking into account the reversibility of the cyclization reaction, the simultaneous production of b and g-CD and also the inhibitory influence of the substrate and products (CDs, on the enzymatic activity of the CGTase. The substrate formed from a solution of maltodextrins was treated as a single substrate. The model was compared with experimental results of 24h of reaction and this comparison demonstrated that there was a very good representation of the data throughout the test period. The model also allowed explaining the observation of different experimental values for each Michaelis-Menten constant and substrate inhibition constant for each CD, although the CDs are produced from the same substrate.  

  12. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic

    Science.gov (United States)

    Baesman, S.M.; Stolz, J.F.; Kulp, T.R.; Oremland, R.S.

    2009-01-01

    Mono Lake sediment slurries incubated with lactate and tellurite [Te(IV)] turned progressively black with time because of the precipitation of elemental tellurium [Te(0)]. An enrichment culture was established from these slurries that demonstrated Te(IV)-dependent growth. The enrichment was purified by picking isolated black colonies from lactate/Te(IV) agar plates, followed by repeated streaking and picking. The isolate, strain MLTeJB, grew in aqueous Te(IV)-medium if provided with a small amount of sterile solid phase material (e.g., agar plug; glass beads). Strain MLTeJB grew at high concentrations of Te(IV) (~8 mM) by oxidizing lactate to acetate plus formate, while reducing Te(IV) to Te(0). Other electron acceptors that were found to sustain growth were tellurate, selenate, selenite, arsenate, nitrate, nitrite, fumarate and oxygen. Notably, growth on arsenate, nitrate, nitrite and fumarate did not result in the accumulation of formate, implying that in these cases lactate was oxidized to acetate plus CO2. Strain MLTeJB is a low G + C Gram positive motile rod with pH, sodium, and temperature growth optima at 8.5-9.0, 0.5-1.5 M, and 40??C, respectively. The epithet Bacillus beveridgei strain MLTeJBT is proposed. ?? 2009 Springer.

  13. Individually and Synergistic Degradation of Hydrocarbons by Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Amirarsalan Kavyanifard

    2016-02-01

    Full Text Available Background: Increasing worldwide contamination with hydrocarbons has urged environmental remediation using biological agents such as bacteria. Our goal here was to study the phylogenetic relationship of two crude oil degrader bacteria and investigation of their ability to degrade hydrocarbons. Materials and Methods: Phylogenetic relationship of isolates was determined using morphological and biochemical characteristics and 16S rDNA gene sequencing. Optimum conditions of each isolate for crude oil degradation were investigated using one factor in time method. The rate of crude oil degradation by individual and consortium bacteria was assayed via Gas chromatography–mass spectrometry (GC-MS analysis. Biosurfactant production was measured by Du Noüy ring method using Krüss-K6 tensiometer. Results: The isolates were identified as Dietzia cinnamea KA1 and Dietzia cinnamea AP and clustered separately, while both are closely related to each other and with other isolates of Dietzia cinnamea. The optimal conditions for D. cinnamea KA1 were 35°C, pH9.0, 510 mM NaCl, and minimal requirement of 46.5 mM NH4Cl and 2.10 mM NaH2PO4. In the case of D. cinnamea AP, the values were 30°C, pH8.0, 170 mM NaCl, and minimal requirement of 55.8 mM NH4Cl and 2.10 mM NaH2PO4, respectively. Gas chromatography – Mass Spectroscopy (GC-MS analysis showed that both isolates were able to utilize various crude oil compounds, but D. cinnamea KA1 was more efficient individually and consortium of isolates was the most. The isolates were able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil and optimization of MSM conditions lead to increase in biosurfactant production. Conclusion: To the best of our knowledge this is the first report of synergistic relationship between two strains of D. cinnamea in biodegradation of crude oil components, including poisonous and carcinogenic compound in a short time.

  14. BIOREMEDIATION OF HEAVY METALS USING BIOSURFACTANT PRODUCING MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Vijayanand.S

    2015-05-01

    Full Text Available The present study was carried out to evaluate degradation of heavy metals in effluent waste water samples using microorganisms. The physical and chemical properties of the effluent samples were analyzed using standard methods. The soil sample collected from the heavy metal contaminated sites was subjected to serial dilution and streak-plating methods and six different strains were isolated from the samples. The activity of the isolates for hemolysis was studied on the Blood-Agar plates. The isolated strains were studied for its biochemical and morphological characteristics. The dark-blue colonies were observed by CTAB method, which confirmed the anionic bio surfactant produced by the isolate. The isolates were subjected to other screening tests like emulsification activity and oil displacement technique. These strains were used in the degradation of heavy metals present in the effluent waste water samples. The organism KDM 4 showed better degradation with 93.18% ability in reducing zinc when incubated for 72 hours and 86.36% when incubated for 24 hours in sample 3. The lead reduction was found to be 84.13% by the organism KDM3 when incubated at 37°C for 72 hours incubation. The chromium was reduced by the organism KDM 6 with 87.9% ability when incubated for 72 hours. The organisms had capacity to reduce the heavy metals depending on the factors like time and concentration of inoculum. As the time of incubation increases, more reduction was observed. The least amount of degradation was found in the organism KDM5 with only 27.08%. The percentage of reduction of heavy metals varies from one sample to another sample.

  15. Otimização das condições de cultivo para a produção de amilases pelo termofílico Bacillus sp. e hidrólise de amidos pela ação da enzima Optimization of culture conditions for the production of amylases by thermophilic Bacillus sp. and hydrolysis of starches by the action of the enzymes

    Directory of Open Access Journals (Sweden)

    Raquel Vieira de Carvalho

    2008-06-01

    Full Text Available A otimização das condições de cultivo para a produção de α-amilase por um termofílico Bacillus sp. cepa SMIA-2 foi realizada. Além disso, a hidrólise enzimática do amido, proveniente de várias fontes tais como batata, mandioca e milho, foi também investigada. A produção de α-amilase por Bacillus sp. SMIA-2, cultivado em meio líquido contendo amido (5 g.L-1 como fonte de carbono e suplementado com 0,5 g.L-1 de proteínas do soro de leite e 2 g.L-1 de peptona, alcançou o máximo em 32 horas com níveis de 37 U.mL-1. O microrganismo foi capaz de utilizar diversas fontes de carbono, porém a atividade da amilase variou com cada fonte. O amido foi a melhor fonte de carbono para a secreção da amilase, enquanto a sacarose, lactose, maltose, galactose e glicose não foram muito efetivas. Uma redução na concentração de amido de até 2,5 g.L-1 no meio de cultura melhorou o crescimento do organismo e a atividade enzimática. Em altas concentrações de amido, a produção da enzima foi comparativamente menor. Em relação às fontes de nitrogênio orgânico e inorgânico, a peptona (2 g.L-1 foi considerada a melhor. Considerando a quantidade de proteínas do soro de leite no meio de cultivo, a concentração de 0,25 g.L-1 foi considerada a mais efetiva para a secreção da α-amilase pelo microrganismo. A produção máxima da atividade enzimática foi observada a 50 °C e pH 8,5. A enzima foi capaz de degradar todos os amidos testados. A hidrólise do amido de batata resultou num alto rendimento de açúcares redutores em comparação às outras fontes de amido. Amido solúvel e amido de mandioca ocuparam, respectivamente, a segunda e terceira posição em relação à liberação dos açúcares redutores, enquanto que a amilase estudada mostrou apenas uma ligeira afinidade pelo amido de milho. Com o aumento da temperatura da reação para 70 °C, a hidrólise dos substratos, com exceção do amido solúvel, resultou em maiores

  16. Antifungal Substance from Bacillus sp. BJ-6 and Its Antagonism against Plant Pathogens%芽孢杆菌BJ-6的抗菌物质及其抑菌作用

    Institute of Scientific and Technical Information of China (English)

    任争光; 刘媛; 刘素花; 陈勇; 张志勇; 魏艳敏

    2006-01-01

    芽孢杆菌(Bacillus sp.)BJ-6菌株分离自北京市门头沟区杏树根际土壤,室内抑菌测定发现BJ-6菌株对苹果轮纹病(Physalospora piricola)、苹果斑点落叶病(Alternaria mali)和苹果树皮腐烂病(Valsa mali)、白菜黑斑病(A. brassicae)、番茄灰霉病(Botrytis cinerea)、茄子黄萎病(Verticillium dahliae)的病原菌均有较强的抑菌作用.对其代谢产生的抗菌物质的稳定性测定表明:抗菌物质在偏酸性和中性条件下能够耐受121 ℃高温处理20 min;但在偏碱性条件下不具备热稳定性,热处理后失去原来的抑菌活性.采用硫酸铵分级沉淀得到抗菌粗蛋白,其中饱和度在30%~40%之间沉淀的蛋白抗菌活性最强.紫外吸收测定显示只有具有274 nm附近吸收峰的蛋白液有抑菌活性,且抗菌粗蛋白可引起白菜黑斑病菌菌丝畸形.

  17. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor.

    Science.gov (United States)

    Coutte, François; Lecouturier, Didier; Yahia, Saliha Ait; Leclère, Valérie; Béchet, Max; Jacques, Philippe; Dhulster, Pascal

    2010-06-01

    Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air-liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l(-1) for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l(-1) for BB1, 207 mg l(-1) for BB2, and 393 mg l(-1) for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.

  18. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    Science.gov (United States)

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs.

  19. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    Science.gov (United States)

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  20. 芽孢杆菌中性植酸酶基因的原核表达及酶学性质分析%Prokaryotic Expression and Enzymological Property Analysis of Neutral Phytase Gene from Bacillus sp.

    Institute of Scientific and Technical Information of China (English)

    李镇刚; 赵爱春; 王茜龄; 金筱耘; 李军; 余茂德

    2012-01-01

    When used as feedstuff additive, phytase can effectively improve the utilization of phosphorus in feedstuff, reduce environmental pollution caused by fecal phosphorus excretion, and reduce anti-nutritional effect of phytic acid. In order to obtain highly active phytase with stable performance, the mature peptide coding sequence of neutral phytase gene phyC (GenBank accession number; FJ986327) was amplified from Bacillus sp. By PCR and cloned into prokaryot-ic expression vector pET-28a( +). The recombinant plasmid was subsequently transformed into E. Coli BL21 (DE3) for expression. Large amount of inclusion body protein was obtained after induction with 0.5 mmol/L IPTG for 4 h at 37 ℃, and the soluble protein could be easily obtained by induction with 0. 5 mmol/L IPTG for 6 h at 25 ℃. After being purified with Ni-NTA affinity chromatography, enzymological properties of the recombinant phytase were assayed. The results showed that the obtained phytase had favorable heat tolerance. The optimum reaction temperature was 55 ℃, and more than 20% of enzyme activity was maintained after incubation at 70 ℃ for 10 min. The enzyme also had high resistance to acid and alkali. The optimum pH value was 6. 0 to 7. 0, and more than 80%, 70% and 40% of enzyme activity was maintained when incubated at pH 5. 5~9. 0, pH 5. 0 ~10. 0 and pH 2. 0~4. 0 for 60 min, respectively. Using the con-structed prokaryotic expression vector containing coding sequence of Bacillus neutral phytase gene phyC of which signal peptide sequence had been removed, neutral phytase with stable performance could be highly expressed in E. Coli under the optimized induced expression condition.%植酸酶作为饲料添加剂能够有效提高动物对饲料中磷的利用率及减少粪便中磷排放对环境的污染,并降低植酸的抗营养作用.为了获得性能稳定的高活性植酸酶,采用PCR扩增芽孢杆菌(Bacillus sp.)中性植酸酶基因phyC(GenBank登录号:FJ986327)的成熟肽

  1. Antimicrobials of Bacillus species: mining and engineering

    NARCIS (Netherlands)

    Zhao, Xin

    2016-01-01

    Bacillus sp. have been successfully used to suppress various bacterial and fungal pathogens. Due to the wide availability of whole genome sequence data and the development of genome mining tools, novel antimicrobials are being discovered and updated,;not only bacteriocins, but also NRPs and PKs. A n

  2. Isolation and characterization of protease from Bacillus subtilis 1012M15

    Directory of Open Access Journals (Sweden)

    ELFI SUSANTI

    2003-01-01

    Full Text Available A local strain of Bacillus sp. BAC4, is known to produce penicillin G acylase (PGA enzyme with relatively high activity. This strain secretes the PGA into the culture medium. However, it has been reported that PGA activity fall and rise during culture, and the activity plummets during storege at –200C, which probably due to usage protease activity of Bacillus sp. BAC4. To study the possible use of Bacillus subtilis 1012M15 as a host cell for cloning the pga gene from Bacillus sp. BAC4, the protease activity of Bacillus subtilis 1012M15 were studied. Protease activity was determined by Horikoshi method. In this experiment, maximum protease activity in Bacillus subtilis 1012M15 culture was obsereved after 8 hours. At this optimum condition, protease activity of Bacillus sp. BAC4 is five time higher than that of Bacillus subtilis 1012M15. This situation promised the possible usage of Bacillus subtilis 1012M15 as a host cell for pga expression. For protease characterization, the bacterial culture had been separated from the cell debris by centrifugation. The filtrate was concentrated by freeze drying, fractionated by ammonium sulphate, dialyzed in selovan tube, and then fractionated by ion exchance chromatography employing DEAE-cellulose. The five peaks resulted indicated the presence of five protease. Based on inhibitor and activator influence analysis, it could be concluded that proteases from Bacillus subtilis 1012M15 contained of serin protease as well as metalloprotease and serin protease mixture.

  3. Bacillus probiotics.

    Science.gov (United States)

    Cutting, Simon M

    2011-04-01

    Bacterial spore formers are being used as probiotic supplements for use in animal feeds, for human dietary supplements as well as in registered medicines. Their heat stability and ability to survive the gastric barrier makes them attractive as food additives and this use is now being taken forward. While often considered soil organisms this conception is misplaced and Bacilli should be considered as gut commensals. This review summarises the current use of Bacillus species as probiotics, their safety, mode of action as well as their commercial applications.

  4. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides

    Science.gov (United States)

    Perez, Karla J.; Viana, Jaime dos Santos; Lopes, Fernanda C.; Pereira, Jamile Q.; dos Santos, Daniel M.; Oliveira, Jamil S.; Velho, Renata V.; Crispim, Silvia M.; Nicoli, Jacques R.; Brandelli, Adriano; Nardi, Regina M. D.

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances. PMID:28197131

  5. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides.

    Science.gov (United States)

    Perez, Karla J; Viana, Jaime Dos Santos; Lopes, Fernanda C; Pereira, Jamile Q; Dos Santos, Daniel M; Oliveira, Jamil S; Velho, Renata V; Crispim, Silvia M; Nicoli, Jacques R; Brandelli, Adriano; Nardi, Regina M D

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na](+)) and peak m/z 1079 (C15 iturin [M+Na](+)) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances.

  6. The site-specific deoxyribonuclease from Bacillus pumilus (endonuclease R.Bpu1387).

    Science.gov (United States)

    Ikawa, S; Shibata, T; Ando, T

    1976-12-01

    A new site-specific endonuclease (DNase) was isolated from the cells of Bacillus pumilus AHU 1387 strain. This enzyme (endonuclease R.Bpu 1387) introduced double-stranded scissions at unique sites on DNA's of coli phage lambda, lambdadvl, coli phage T7, Bacillus phage phi105C, Bacillus phage SP10, and Simian Virus 40, in the presence of magnesium ion. The activity was stimulated by the presence of NaCl.

  7. Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Nagle, V.L.; Jagtap, T.G.

    (sponges), Sinularia compressa (soft coral), and Cassiopeia sp. (jellyfish). Among the plants, Padina tetrastromatica (brown algae) extract exhibited significant activity (9-11-mm inhibition zone at 500 mu g per 6-mm disc) against Bacillus pumilus...

  8. The sponge-associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wahidullah, S.; Rodrigues, C.; DeSouza, L.

    for antibiotic activity against 16 strains of clinical pathogens. Bacillus sp. (SAB1), the most potent of them and antagonistic to several clinically pathogenic Gram-positive, Gram-negative bacteria and the fungus Aspergillus fumigatus was chosen for further...

  9. Antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus

    Directory of Open Access Journals (Sweden)

    Grabova A. Yu.

    2016-02-01

    Full Text Available Aim. To research the antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus. Methods. Deferred antagonism method, PCR, qRT-PCR, MALDI-TOF mass spectrometry. Results. It was revealed that Bacillus sp. strains C6 and Lg37s out of five tested strains had the highest antifungal activity. Based on the molecular genetic methods, it was shown that the expression of genes of lipopeptide antibiotics, related to the fengycin family, occurred in all these strains. At the same time, the gene expression of cyclolipopeptide iturin was found in the Bacillus sp. strains C6 and Lg37s. It was determined that Bacillus sp. C6 strain had the highest level of expression of the fengycin operon`s genes, whereas the lowest level was observed in Bacillus sp. C10 strain. By means of MALDI-TOF mass spectrometry, the presence of fengycins in the cell-free cultural fluid of Bacillus sp. C6 strain was detected. Conclusion. The direct correlation between the level of antifungal activity and the fengycin synthetases expression has not been disclosed. A higher level of antagonism detected for two Bacillus strains is more likely associated with the expression and subsequent synthesis of fengycin and iturin.

  10. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone.

    Science.gov (United States)

    Ceresa, Chiara; Rinaldi, Maurizio; Chiono, Valeria; Carmagnola, Irene; Allegrone, Gianna; Fracchia, Letizia

    2016-10-01

    Candida albicans is the major fungus that colonises medical implants, causing device-associated infections with high mortality. Antagonistic bacterial products with interesting biological properties, such as biosurfactants, have recently been considered for biofilm prevention. This study investigated the activity of lipopeptide biosurfactant produced by Bacillus subtilis AC7 (AC7 BS) against adhesion and biofilm formation of C. albicans on medical-grade silicone elastomeric disks (SEDs). Chemical analysis, stability, surface activities of AC7 BS crude extract and physicochemical characterisation of the coated silicone disk surfaces were also carried out. AC7 BS showed a good reduction of water surface tension, low critical micelle concentration, good emulsification activity, thermal resistance and pH stability. Co-incubation with 2 mg ml(-1) AC7 BS significantly reduced adhesion and biofilm formation of three C. albicans strains on SEDs in a range of 67-69 % and of 56-57 %, respectively. On pre-coated SEDs, fungal adhesion and biofilm formation were reduced by 57-62 % and 46-47 %, respectively. Additionally, AC7 BS did not inhibit viability of C. albicans strains in both planktonic and sessile form. Chemical analysis of the crude extract revealed the presence of two families of lipopeptides, principally surfactin and a lower percentage of fengycin. The evaluation of surface wettability indicated that AC7 BS coating of SEDs surface was successful although uneven. AC7 BS significantly prohibits the initial deposition of C. albicans and slows biofilm growth, suggesting a potential role of biosurfactant coatings for preventing fungal infection associated with silicone medical devices.

  11. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant.

  12. Optimization of biosurfactant production from Vibrio sp. BSM-30 isolated in tropical waters

    Science.gov (United States)

    Su, Zengjian; Li, Min; Zhang, Yuxiu

    2017-01-01

    The strain BSM-30 (Vibrio sp.), isolated from Chinese tropical waters, could be a biosurfactant producing bacteria according with results obtained by the oil spreading method. The culture conditions for biosurfactant production were tested respectively such as inoculation (2%,6%,10%,14% as setting), shaking speed(120 r/min,150 r/min,180 r/min as setting), temperature (25°C,30°C,35°C as setting), pH (7,8,9 as setting), salinity (1.5%, 2.5%, 3.0%, 4.5%, 5.5% as setting), which results showed that the best culture conditions for BS production were 10% inoculation quantity, 180 r/min, 25°C, pH 8, and 3.5% salinity. The optimization of carbon sources (20g/ of glucose, 20g/L of starch, 20g/L of paraffin oil 20g/L of diesel, 20g/L of oil as setting) and nitrogen sources (6g/L of NaNO3,7.1g/L of KNO3,5.6g/L of NH4NO3,9.3g/L of (NH4)2SO4, 4.2g/L of CO(NH2)2 as setting) were also tested, which results showed that the best nitrogen source and carbon source were (NH4) 2SO4 and soluble starch.

  13. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.

    Science.gov (United States)

    Priji, Prakasan; Sajith, Sreedharan; Unni, Kizhakkepowathial Nair; Anderson, Robin C; Benjamin, Sailas

    2017-01-01

    This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L(-1) ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L(-1) critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries.

  14. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  15. On the Optimization of Growth Conditions of Pseudomonas sp. YT3 and Bacillus subtilis DZ1 in Fermentation Cylinders%假单胞菌YT3和枯草芽孢杆菌DZ1的发酵罐生长条件优化

    Institute of Scientific and Technical Information of China (English)

    马海林; 井大炜; 王爱杰; 丁延芹; 刘方春; 杜振宇; 马丙尧

    2013-01-01

    假单胞菌(Pseudomonas sp.)YT3和枯草芽孢杆菌(Bacillus subtilis)DZ1是从植物根际土壤筛选出的具有应用潜力的植物根际促生细菌。研究发酵罐中接种量、转速、通气量等因素对 YT3菌量以及对 DZ1芽孢率、菌量的影响。结果表明:不同的接种量、转速和通气量对Pseudomonas sp. YT3的活菌数、Bacillus subtilis DZ1的活菌数及芽孢率均有显著影响。10%的接种量、2 m3/h的通气量对YT3和DZ1菌株的作用效果与15%的接种量、3 m3/h相当,但显著高于5%的接种量和1 m3/h。当转速为200 r/min时,YT3具有最高的活菌数,DZ1具有最高的活菌数和芽孢率。综合分析认为,YT3和DZ1发酵罐的最佳条件为接种量10%、转速200 r/min和通气量2 m3/h。%Pseudomonas sp. YT3 and Bacillus subtilis DZ1, isolated and screened from the plant rhizo-sphere soil, were plant growth-promoting rhizo-bacteria exhibiting broad application prospects in the bio-fertilizer production. Taking YT3 and DZ1 bacterial strains as research objects, the experiment were conducted to study the influence of inoculation quantity, rotating speed and minute ventilation on the bacteria population and spore rates of YT3 and DZ1 in the fermentation cylinders. The results indicated that different inoculation quantity, rotating speed and minute ventilation could have significantly effects on the bacteria population and spore rates of YT3 and DZ1. Effects of the 10%inoculation quantity and 2 m3/h ventilation were similar on the bacteria population and spore rates of YT3 and DZ1 with that of the 15% inoculation quantity and 3 m3/h ventilation, however, their effects were higher than that of the 5%inoculation quantity and 2 m3/h ventilation. The numbers of YT3, as well as the numbers and the spore rates of DZ1 reached the highest under 200r/min rotating speed. As a result, the optimum fermentation cylinder conditions of YT3 and DZ1 were 10% inoculation quantity, 200 r

  16. Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains

    NARCIS (Netherlands)

    Arfman, N.; Moezelaar, H.R.; Attwood, M.M.; Robinson, G.K.; Geel, M. van; Dijkhuizen, L.

    1992-01-01

    The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on met

  17. Isolation, Identification and Enzyme Producing Conditions of Poly-L-lactic Acid (PLA)-degrading Bacillus sp.Strain DSL09%1株聚乳酸降解细菌的筛选、鉴定及产酶研究

    Institute of Scientific and Technical Information of China (English)

    刘玲绯; 李凡; 林秀梅; 刘东波; 夏红梅; 陈珊

    2011-01-01

    A strain possessing activity to degrade poly-L-lactic acid ( PLA) DSL09 was screened from sludge. The strain had the effect to degrade PLA in emulsion, powder or film. It was identified as Bacillus sp. By the analyses of morphology, 16S rDNA comparison, physiological and biochemical characteristics. In order to enhance the degradation activity it was mutated with UV and obtained a genetically stable mutant strain DSL09-60b which increased PLA-degrading activity by 1.5 times of the original strain. The fermentation conditions and medium composition for the production of PLA degradase by DSL09-60b were optimized, it was tested that medium at initial pH 8.0, 0. 5% casein as inducer, 6% ( v/v) of inoculum and fermented at 37 t for 54 h the fermentation broth had the highest enzymatic activity.%从污泥中筛选出1株对聚乳酸( poly-L-lactic acid,PLA)具有降解活力的细菌DSL09,该菌株对PLA的乳化液、粉末及薄膜都具有降解作用.通过形态学、16S rDNA比对及生理生化特性的分析,鉴定该菌株属于芽胞杆菌属(Bacillus sp.).为提高该菌株对PLA的降解活力,对其进行了紫外诱变,获得了稳定遗传的突变株DSL09-60b,该突变株的PLA降解活性提高至原始菌株的1.5倍.对该突变株产PLA降解酶的发酵条件进行了优化,经测定DSL09-60b在初始培养基pH为8.0、0.5%酪蛋白为诱导物、接种量6%(体积比)的条件下37℃培养54 h时发酵液酶活性最高.

  18. 一株产脂肽类抗生素bacillopeptin A深海芽孢杆菌的筛选与鉴定%Screening and identification of a deep-sea derived Bacillus sp.producing lipopeptide bacillopeptin A

    Institute of Scientific and Technical Information of China (English)

    牛力轩; 王楠; 王雪梅; 胡江春; 王书锦

    2011-01-01

    Objective An anti-phytopathogenic bacterium was isolated from a deep sea-derived sediment collected from the South China Sea. The present study described the identification of the strain and active Hpopeptide metabolites it produced. Methods Acid precipitation, flash chromatography, SPE and semi-preparative HPLC were applied to isolate the pure lipopeptide from fermentation broth. Identification of the strain was based on combined using of the morphological, physiological, biochemical and 16S rDNA gene sequence analysis. Results A pure lipopeptide was isolated and identified as bacillopeptin A with a molecular weight of 1020.6Da. The strain was identified as Bacillus amyloliquefaciens SH-B74. Conclusion This strain has a wide antimicrobial spectrum to the phytopathogenic fungi, such as Rhizoctonia solani. The lipopeptide metabolite bacillopeptin A showed a good antagonistic effect against Botryosphaeria ribis. The results suggested that this strain and its metabolites may have the potential for further research and development values in biological control of plant fungal pathogens and soil bioremediation.%目的 筛选从中国南海深海3601m的海泥样品中分离得到的细菌,获得一株芽孢杆菌SH-B74,分离其产生抗植物病原真菌脂肽类化合物,并进行菌种鉴定.方法 使用酸沉淀、快速柱色谱、SPE和半制备反高效液相色谱技术分离发酵液中的脂肽类纯化合物,采用形态、生理生化特性和16S rDNA基因序列分析相结合方法鉴定菌株.结果 分离纯化得到一种拮抗植物病原真菌的脂肽类纯化合物bacillopeptin A,分子量为1020.6Da;菌株经鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens).结论 该菌株对玉米纹枯病等多种植物病原真菌具有拮抗作用,代谢产物bacillopeptin A对苹果干腐病菌具有良好的拮抗效果.显示了该菌及其代谢产物在植物病原真菌的生物防治和土壤生物修复方面具有潜在研发价值.

  19. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  20. 一株产絮凝剂芽孢杆菌的分离鉴定及絮凝剂特性分析%Isolation and identification of a flocculant-producing Bacillus sp.and analysis of the properties of the bioflocculant

    Institute of Scientific and Technical Information of China (English)

    赵伟伟; 王秀华; 孙振; 黄倢; 朱岩松; 史秀秀; 付军; 杨从海

    2012-01-01

    从山东及河北沿海分离到一株严絮凝剂细菌(编号200903091102,简称1102),分别用细菌全脂肪酸气相色谱法和16S rDNA序列分析比对法对该菌进行鉴定,两种方法的鉴定结果均显示细菌1102为一种芽孢杆菌(Bacillus sp.).系统发育分析显示,细菌1102与枯草芽孢杆菌(B.subtilis)、特基拉芽孢杆菌(B.tequilensis)等亲缘关系最近.应用高氏1号培养基培养细菌1102,提取其絮凝剂进行絮凝力测定,结果显示,该菌所产絮凝剂的絮凝率达到80.19%.发酵72 h时,絮凝剂得率最高达19.5 g/L;分别采用凝胶渗透色谱法、苯酚-硫酸法及氨基酸自动分析仪对所得絮凝剂的相对分子质量、多糖含量及氨基酸含量进行分析,结果显示絮凝剂的重均相对分子质量为7 063 D,多糖质量分数占58.58%,氨基酸质量分数占2.49%.提示该菌在海水养殖中将具有较高的开发价值.本研究旨在为海水养殖废水的生物净化提供科学依据.%Microbial bioflocculants (MBF) may be produced by various kinds of bacteria. They are usually composed of glycoprotein, polysaccharide, cellulose and nucleic acid. As MBF can agglutinate suspended solids in waste water and can be easily broken down by microorganisms in the environment, they have potential application in the sewage treatment industry. In aquaculture, some microorganisms that are able to produce MBF play an important role in the conversion of food energy and in the maintenance of the stability of the ecological systems in fish and shrimp ponds. In this study, we isolated a flocculant-producing bacterium numbered 200903091102 (hereinafter referred to as 1102) from coastal water of the south coast of Laizhou Bay China. Methods including 16S rDNA sequence analysis and gas chromatographic whole-cell fatty acid analysis were employed to identify the bacterium 1102. To analyze its flocculating activity, the MBF was extracted and purified from the fermentation broth of

  1. 污泥中一株产耐高温蛋白酶菌株的分离、鉴定及酶学特性%Isolation and characterization of protease-producing Bacillus sp. TC16 and its enzyme features

    Institute of Scientific and Technical Information of China (English)

    郑朝成; 周立祥

    2012-01-01

    Proteases are a kind of enzymes that can hydrolyze protein peptide bond and decompose proteins into amino acids which could then be absorbed and utilized directly by animals and plants. The method of clear zone in combination with protease activity detection was used to test the protease activity of a screened sewage sludge-borne strain TC16. The isolate was classified into Bacillus according to its morphology, physiological and biochemical features, and 16S rDNA sequence comparison and analysis. In addition, extracellular protease activity was also detected in the cultural supernatant of the strain Bacillus sp. TC16 was identified as a mesophily bacterium with a wide range of pH and temperature tolerance as well as high enzyme activity comparing with other strains%蛋白酶是水解蛋白质肽键的一类酶的总称,它可将蛋白质分解、转化为氨基酸,从而被动植物体直接吸收利用.基于此,以江苏省无锡市太湖新城污水处理厂的污泥为材料,通过观察水解圈大小和蛋白酶活性测定等方法,从中筛选出一株高产蛋白酶菌株TC16.同时,参照《伯杰氏细菌鉴定手册》和《常见细菌鉴定手册》,根据其形态学特征、生理生化特性,并结合16SrDNA序列的比对分析结果发现,该菌属于芽孢杆菌属菌株.对其酶学性质的研究发现,从该污泥中分离得到的菌株TC16分泌的胞外蛋白水解酶的活性最高可达621U·mL-1.研究表明,与其他芽孢杆菌属菌株相比,TC16菌株分泌的蛋白酶具有较高的酶活性,且具有较宽范围的pH和温度耐受性.

  2. 培养条件对嗜热芽孢杆菌HU1合成几丁质降解酶及脱乙酰基酶的影响%Effects of Culture Conditions on the Synthesis of Chitinase and Chitin Deacetylase from Thermophilic Bacillus sp. HU1

    Institute of Scientific and Technical Information of China (English)

    戴德慧; 胡伟莲; 李巍

    2011-01-01

    [ Objective ] The aims were to investigate the effects of culture conditions on the enzyme production by Thermophilic Bacillus sp.Hul and provide basis for fermentation of enzyme and preparation of chitosan oligosaccharide. [ Method] The shake flask culture was employed to research the culture conditions of Thermophilic Bacillus sp. for producing Chitinase and Chitin Deacetylase HU1. [ Result] The optimum carbon source was powder chitinase with the optimum addition of 3.5%; while yeast power was the optimum nitrogen source with the optimal addition of 1.0%. It was beneficial to synthesize chitinase and chitin deacetylase when the original pH was 6.0. In addition, the synthesis of chitinase and chitin deacetylaso was inhibited by Cu2+ , and activated by Ca2+. However, Mg2+ and Zn2+ did not show significant inhibitory effects on the synthesis of the two enzymes. Moreover, the production of chitinaso and chitin deacetylase reached peak after culture for 72 h.The hydrolysate components of the crude enzyme solution were analyzed by using powder chitin as substrate, and the result suggested that chitosan oligosaccharide with the molecular weight of less than hexaose was the main component. [ Conclusion ] The preparation process of chitosan oligosaccharide of small molecules by using crude enzyme solution was simple, which could provided a basis for the further developments of health care production, biological pesticide, animal feed additive and food additive.%[目的]研究培养条件对嗜热芽孢杆菌HU1产酶的影响,为工业化发酵生产酶及壳寡糖的制备提供依据.[方法]采用摇瓶培养方式,对嗜热芽孢杆菌HU1产几丁质降解酶及脱乙酰基酶的培养条件进行研究.[结果]最佳诱导碳源为粉末几丁质,其最适添加量为3.5%;最佳氮源为酵母粉,最适添加量为1.0%;初始pH值为6.0时,有利于产酶;Cu2+对酶的合成表现出明显的抑制作用;而Ca2+则能有效增加产酶能力.Mg2+及Zn2+

  3. 海榄雌瘤斑螟的生物学特性及Bt对其幼虫的毒力和防效%Biological Characters of Ptyomaxia sp. And the Toxicity and Effectiveness of Bacillus thuringiensis Against Its Larvae

    Institute of Scientific and Technical Information of China (English)

    李罡; 昝启杰; 赵淑玲; 肖宇宙; 王勇军; 徐华林; 彭辉银

    2007-01-01

    海榄雌瘤斑螟(Acrobasis sp.)是危害马鞭草科澳洲海榄雌(Avicennia marina var.austrasica)的主要害虫.在深圳红树林一年发生6~7代,每个世代25~32 d,其中幼虫历期13~16 d,蛹5~6 d,成虫7~10 d,卵3~5 d.幼虫剥食海榄雌的叶肉, 8月低龄幼虫蛀食嫩芽及种子, 10月低龄幼虫开始在嫩芽内越冬,翌年3月上中旬,越冬幼虫开始活动.每年4月下旬至6月中旬爆发的第2代和第3代密度较大,造成海榄雌大面积危害.在室内,用Bt感染2龄海榄雌瘤斑螟,致死浓度(C)-死亡几率值(Y)测定的回归线为Y=4.66+1.78C, 80%的致死浓度LC80为4.60 IU/mL;致死时间(T)-死亡几率值(Y)测定的回归线为Y=4.305T-1.51, 80%的致死时间LT80为50.86 h.在林间,用8~10 IU/mL的Bt稀释液喷雾对海榄雌瘤斑螟进行防治实验,平均防效为90.61%.图3 表5 参8

  4. Isolation and Identification of Serratia sp.Strain BRC-CXG2 and Synergism of Its Crude Extraction to Bacillus thuringiensis%沙雷氏菌菌株BRC-CXG2的分离、鉴定及其粗提物对苏云金芽胞杆菌的增效作用

    Institute of Scientific and Technical Information of China (English)

    吴松青; 陈思琪; 陈小刚; 熊悦婷; 李苹; 伍忠玲; 郭雅洁; 胡霞; 梁光红

    2015-01-01

    沙雷氏菌属(Serratia sp.)中的许多菌株是一些昆虫的机会致病菌,具有一定的杀虫活性.本研究通过从患败血症的松墨天牛(Monochamus alternatus Hope)尸体中分离出一株BRC-CXG2菌株(KT366770),并对该菌株进行形态学鉴定、16S rDNA系统发育分析、生理生化反应、药敏分析以及生物测定.结果表明,分离的菌株BRC-CXG2属于沙雷氏菌属的一种新种,且对头孢哌酮、头孢噻肟、头孢他啶等常见药物具有不同程度的敏感性,其中提取的灵杆菌素对苏云金芽胞杆菌以色列亚种(Bacillus thuringiensis israelensis,Bti)LLP29胞晶混合液杀埃及伊蚊(Aedes aegypti)活性具有显著增效作用(共毒系数为128.06).本研究为开发Bt增效剂及构建新型工程菌提供了理论基础.

  5. Antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus

    OpenAIRE

    Grabova A. Yu.; Dragovoz I. V.; Zelena L. B.; Tkachuk D. M.; Avdeeva L. V.

    2016-01-01

    Aim. To research the antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus. Methods. Deferred antagonism method, PCR, qRT-PCR, MALDI-TOF mass spectrometry. Results. It was revealed that Bacillus sp. strains C6 and Lg37s out of five tested strains had the highest antifungal activity. Based on the molecular genetic methods, it was shown that the expression of genes of lipopeptide antibiotics, related to the fengycin family, occurred in all these strains...

  6. 一株芽孢杆菌PC024的鉴定及其抗WSSV感染效果的研究%Isolation and identification of Bacillus sp.and evaluation of its effect on WSSV disease resistance in Litopenaeus vannamei

    Institute of Scientific and Technical Information of China (English)

    孙艳; 宋晓玲; 刘飞; 李玉宏; 黄健

    2013-01-01

    In order to select WSSV disease-resistant strains,a marine Bacillus sp. was isolated and purified from digestive tract from the healthy of Chinese shrimp( Fenneropenaeus chinensis). The morphology and gram stain indicated that the strain is a gram-positive and rod-shaped bacterium, with a single polar flagellum and oval spores. The colony is circular and slightly raised. Identification analyses by the Biolog Carbon Source Utilization, ATB Microbial Identification System, and the fatty acid gas chromatography indicated that the most similar strain in physiological and biochemical characteristics is Bacillus firmus. Phylogenetic analysis with 16S rRNA sequence showed that it has 100% homology with the previously reported Bacillus firmus. The cultured strain PC024 was added to feed by conglutinating to the surface of the pellets and fed to Litopenaeus vannamei. After feeding for 20 d,the shrimp was challenged with WSSV by intramuscular injection to observe the cumulative mortality in 14 d post-challenge. The results showed that the experimental group fed with the strain PC024 had a relative survival rate of 33. 7% in comparison with the control group. The immune-related enzyme activity in the serum and hepatopancreas of shrimp in the experimental group was significantly increased than the control group. And the total number of bacteria of the intestine of the experimental group is always significantly higher than that of the control group and Bacillus firmus can be isolated from the experimental group. This study suggests that the Bacillus firmus PC024 can be used as the WSSV disease prevention probiotic strains and can further be used in shrimp farming.%为了筛选WSSV的防病益生菌株,从健康中国明对虾消化道分离纯化一株芽孢杆菌PC024,经Biolog碳源利用反应、ATB微生物自动鉴定系统、脂肪酸气相色谱分析得出该菌株与坚强芽孢杆菌的生理生化特性最为相似,该菌株为革兰氏阳性菌,有一根端极鞭

  7. [BACILLUS STRAINS'S SCREENING--ACTIVE ANTAGONISTS OF BACTERIAL AND FUNGAL PHYTOPATHOGENS].

    Science.gov (United States)

    Grabova, A Yu; Dragovoz, I V; Kruchkova, L A; Pasichnik, L A; Avdeeva, L V

    2015-01-01

    Antagonistic activity 100 strains of Bacillus bacteria towards to museum and actual strains of phytopathogenic bacteria and fungy was defined. Relation between level of antagonistic activity to phytopathogenic bacteria and genus accessory of the last was shown. The medium level of antagonism to fungal phytopathogens at 30% of the studied strains of Bacillus bacteria was shown. 5 strains of Bacillus sp. with high and medium levels of antagonism to phytopathogens bacterial and fungy nature was selected and considered as perspective for creation of biological preparations for plant protection.

  8. Screening and Biological Characteristics of Bacillus sp. with High Anti-fungal activity against Pythium aphanidermatum%抗瓜果腐霉芽孢杆菌优良菌株的筛选及生物学特性

    Institute of Scientific and Technical Information of China (English)

    张旭; 尚楠; 张宝; 张志刚; 尚庆茂

    2012-01-01

    Pythium aphanidermatum is known as an important plant pathogenic fungus that can cause various types of crops rot and damping off, as well as results in spoilage of fruits and vegetables, thus leading to great loss of agricultural production and food industry. In order to obtain spore-forming bacteria with anti-fungal activity for fruit and vegetable preservation and biological control, we have screened 204 strains of spore-forming bacteria isolated from 26 kinds of foods, such as lemon, grape, Chinese date, yogurt, fermented bean curd, Harbin sausage, bean paste and other food samples. Totally 62 strains of spore- forming bacteria were assessed by confrontation culture tests to reveal strong anti-fungal activity against P. aphanidermatum. The fermentation supernatants of 4 strains with stronger anti-fungal activity through Oxford cup plate assay method were tested for their anti-fungal activity, and L-NM62 revealed the strongest anti-fungal activity against P. aphanidermatum. The inhibition zone of cell free supematant was (24.54 ± 0.13) mm in diameter. According to the characteristics of morphology, physiology and biochemistry tests, and the comparison of 16S rDNA sequence, strain L-NM62 was identified as Bacillus subtilis. Further study of L-NM62 on physiology characteristics showed that the optimal growth temperature, pH and inoculums were 37 ℃, 7.5 and 1.0%. Under these optimal conditions, L-NM62 had a wide anti-fungal and antibacterial activity and presented a potential prospect.%为获得具有高效抗菌活性的芽孢杆菌用于生物防治与果蔬保鲜,从柠檬、葡萄、红枣、酸奶、腐乳、豆瓣酱、哈尔滨红肠等26种食品样品中分离获得204株芽孢杆菌,通过对峙培养法,初筛得到62株抗瓜果腐霉(P.aphanidermatum)的菌株,选取其中抑菌效果明显的4株菌株,采用牛津杯扩散法经复筛得到1株显著抗瓜果腐霉的芽孢杆菌L-NM62,其发酵上清液对瓜果腐

  9. 76 FR 14289 - Bacillus thuringiensis

    Science.gov (United States)

    2011-03-16

    ... AGENCY 40 CFR Part 174 Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption From the... regulation extends a temporary exemption from the requirement of a tolerance for residues of Bacillus... permissible level for residues of Bacillus thuringiensis eCry3.1Ab protein in corn. The temporary...

  10. 75 FR 34040 - Bacillus thuringiensis

    Science.gov (United States)

    2010-06-16

    ... AGENCY 40 CFR Part 174 Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption from the... regulation establishes a temporary exemption from the requirement of a tolerance for residues of Bacillus... Bacillus thuringiensis eCry3.1Ab protein in corn under the FFDCA. The temporary tolerance exemption...

  11. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.

    Science.gov (United States)

    Chang, Jae-Soo; Cha, Daniel K; Radosevich, Mark; Jin, Yan

    2015-01-01

    This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns. P. strain R mineralized phenanthrene faster and to a greater extent than Isolate P5-2 in the test soil. Co-inoculation with the surfactant-producing bacteria significantly enhanced phenanthrene biodegradation by P. strain R but it did not affect the biodegradation by Isolate P5-2 in both batch and column systems. Production of biosurfactants by P. aeruginosa ATCC 9027 was negligible under the given conditions. This study demonstrated that bioaugmentation with surfactant-producing bacteria could enhance in situ bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and the beneficial effect of the bioaugmentation depended on types of PAH-degrading microorganisms present.

  12. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam

    NARCIS (Netherlands)

    Tran, H.; Kruijt, M.; Raaijmakers, J.M.

    2008-01-01

    Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity a

  13. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suman; Singh, Partapbir [Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Raj, Mayil [MTCC, IMTECH, Sector 39-A, Chandigarh 160036 (India); Chadha, Bhupinder Singh [Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Saini, Harvinder Singh, E-mail: sainihs@yahoo.com [Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab (India)

    2009-11-15

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal {gamma}-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, {beta}-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  14. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

    OpenAIRE

    2016-01-01

    Pyrene degradation and biosurfactant activity by a new strain identified as Gordonia cholesterolivorans AMP 10 were studied. The strain grew well and produced effective biosurfactants in the presence of glucose, sucrose, and crude oil. The biosurfactants production was detected by the decreased surface tension of the medium and emulsification activity.  Analysis of microbial growth parameters showed that AMP10 grew best at 50 µg mL-1 pyrene concentration, leading to 96 % degradation of pyrene...

  15. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913

    Directory of Open Access Journals (Sweden)

    Álvaro Silva Lima

    2009-04-01

    Full Text Available Surface-active compounds of biological origin are widely used for many industries (cosmetic, food, petrochemical. The Saccharomyces lipolytica CCT-0913 was able to grow and produce a biosurfactant on 5% (v/v diesel-oil at pH 5.0 and 32ºC. The cell-free broth emulsified and stabilized the oil-in-water emulsion through a first order kinetics. The results showed that the initial pH value and temperature influenced the emulsifier stability (ES, which was the time when oil was separated. The biosurfactant presented different stabilization properties for vegetable and mineral oil in water solution, despite the highest values of the ES occurring with vegetable oil. The biosurfactant presented smallest ES when compared to commercial surfactants; however, this biosurfactant was not purified.Os tensoativos de origem biológica são amplamente utilizados em diversas aplicações. O microrganismo Saccharomyces lipolytica CCT-0913 possui a habilidade de crescer em 5% (v/v óleo diesel a pH 5,0 e 32ºC e produzir biosurfactante. O caldo fermentado livre de células e produzido por S. lipolytica emulsiona e estabiliza emulsões óleo em água de acordo com uma cinética de primeira ordem. Os resultados mostram que o valor do pH inicial e a temperatura influenciam a estabilidade emulsificante (ES, que é medido pelo tempo que a quantidade de óleo. O biosurfactante apresenta diferentes valores de estabilidade emulsificante para óleos vegetais e minerais em emulsões óleo-água, os maiores valores de ES ocorrem nas emulsões utilizando óleo vegetal. O biosurfactante apresenta valores baixos de ES quando comparado com emulsificantes comerciais, entretanto sem sofrer nenhum processo de purificação.

  16. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267

    NARCIS (Netherlands)

    Kruijt, M.; Tran, H.; Raaijmakers, J.M.

    2009-01-01

    Aims: Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identif

  17. Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae.

    Science.gov (United States)

    Kügler, Johannes H; Muhle-Goll, Claudia; Kühl, Boris; Kraft, Axel; Heinzler, Raphael; Kirschhöfer, Frank; Henkel, Marius; Wray, Victor; Luy, Burkhard; Brenner-Weiss, Gerald; Lang, Siegmund; Syldatk, Christoph; Hausmann, Rudolf

    2014-11-01

    Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2' and 3' carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.

  18. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Dagbert, Catherine [ECP-LGPM, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)], E-mail: catherine.dagbert@ecp.fr; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle [INRA, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France); AGROPARISTECH, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France)

    2008-12-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  19. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    Science.gov (United States)

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  20. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...

  1. Characterization of Bacillus cereus

    NARCIS (Netherlands)

    Wijnands LM; Dufrenne JB; Leusden FM; MGB

    2002-01-01

    Bacillus cereus is a ubiquitary microorganism that may cause food borne disease. Pathogenicity, however, depends on various characteristics such as the ability to form (entero)-toxin(s) that can not be detected by microbiological methods. Further characterization of pathogenic properties is not only

  2. Biodiversity in Bacillus cereus

    NARCIS (Netherlands)

    Pielaat A; Fricker M; Nauta MJ; Leusden FM van; MGB

    2006-01-01

    Experiments have been performed by different partners to identify variability in properties of Bacillus cereus strains that contribute to the extent of their virulence as part of an EU project. To this end, 100 B. cereus strains were selected and screened for biological properties, such as toxin pro

  3. Draft Genome Sequences of Three Alkaliphilic Bacillus Strains, Bacillus wakoensis JCM 9140T, Bacillus akibai JCM 9157T, and Bacillus hemicellulosilyticus JCM 9152T

    OpenAIRE

    Yuki, Masahiro; Oshima, Kenshiro; Suda, Wataru; OSHIDA, Yumi; Kitamura, Keiko; Iida, Toshiya; Hattori, Masahira; Ohkuma, Moriya

    2014-01-01

    Here, we report the draft genome sequences of the type strains of three cellulolytic or hemicellulolytic alkaliphilic Bacillus species: Bacillus wakoensis, Bacillus akibai, and Bacillus hemicellulosilyticus. The genome information for these three strains will be useful for studies of alkaliphilic Bacillus species, their evolution, and biotechnological applications for their enzymes.

  4. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; Reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis

    Science.gov (United States)

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617**T and Bacillus malacitensis NRRL B-41618**T. Compara...

  5. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Leila Monteiro

    2005-01-01

    Full Text Available The antagonism of eight Bacillus isolates was investigated against nine strains of Xanthomonas campestris pv. campestris (causal agent of crucifers black rot to assess the role of lipopeptides in this process. Antimicrobial and hemolytic (surfactant activity tests were performed in vitro using agar diffusion methods. Antibiosis and hemolysis were positive for four Bacillus isolates against all X. campestris pv. campestris strains. The correlation observed between antimicrobial and hemolytic activities indicated that lipopeptides were involved in the antibiosis mechanism of the studied antagonists. Fermentation studies were carried out with the isolates that showed highest antimicrobial and hemolytic activities, to follow up growth and production of bioactive and surfactant compounds. Production of bioactive and surfactant compounds was observed during the late growth phase of the Bacillus isolates.Investigação sobre o antagonismo de oito isolados de Bacillus: B. subtilis R14, B. megaterium pv. cerealis RAB7, B. megaterium pv. cerealis C211, B. megaterium C116, Bacillus sp. RAB9, B. cereus C240, Bacillus sp. C11 e B. cereus C210, contra nove linhagens de X. campestris pv. campestris (bactéria responsável pela podridão negra das crucíferas foi realizada para se verificar a participação de lipopeptídeos neste mecanismo. Testes de atividades antimicrobiana e hemolítica (surfactante foram realizados, utilizando-se o método de difusão em ágar. Antibiose e hemólise foram positivas para quatro isolados de Bacillus: R14, RAB7, C116 e C210. A correlação observada entre as atividades antimicrobiana e a hemolítica indica que lipopeptídeos estão envolvidos no mecanismo de antibiose dos isolados investigados. As fermentações foram realizadas com os isolados que demonstraram melhores resultados nos testes de atividades antimicrobiana e hemolítica: R14, RAB7 e C116, para acompanhar o crescimento e a produção de compostos bioativos e

  6. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    Science.gov (United States)

    2008-03-01

    NANO-MECHANICAL PROPERTIES OF HEAT INACTIVATED BACILLUS ANTHRACIS AND BACILLUS THURINGIENSIS ...GAP/ENP/08-M07 NANO-MECHANICAL PROPERTIES OF HEAT INACTIVATED BACILLUS ANTHRACIS AND BACILLUS THURINGIENSIS SPORES THESIS...AFIT/GAP/ENP/08-M07 NANO-MECHANICAL PROPERTIES OF HEAT INACTIVATED BACILLUS ANTHRACIS AND BACILLUS THURINGIENSIS SPORES Jessica

  7. SP. Pescado

    Directory of Open Access Journals (Sweden)

    Renato Gendre

    2003-12-01

    Full Text Available Nell'occhiello di un articolo dal titolo Il Peru dei de[Jini rosa e de/la grande pioggia si legge: "da una partenza  in aereo al «pescado»  che ti  sfamera."1 Questa parola spagnola, giustamente chiusa tra caporali, a noi pare molto interes­ sante, perche, nonostante l'apparenza, non ha nulla da spartire sotto i1 profilo se­ mantico con l'it. pescato. lnfatti, tutti i piu importanti dizionari della lingua italiana, di ieri e di oggi, etimologici e non 2, registrano  accanto a pescata,  ii lemma pescato, 3 ma lo spiegano come "quantita di pesce catturato nel corso di una battuta o di una stagione di pesca",4 mentre lo sp. pescado  indica i1 "pesce (solo nel senso di: pesGe pescato da mangiare [...]".s

  8. AÇÃO ANTIFÚNGICA in vitro DE ISOLADOS DE Bacillu s sp. SOBRE Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    ODENILSON DE DEUS RIBEIRO LIMA

    2014-01-01

    Full Text Available This study aimed to evaluate antagonism and metabolites produced by different species of Ba- cillus in the inhibition of mycelial growth in vitro against F. oxysporum f. sp . lycopersici . For evaluating the antagonism of Bacillus spp. F. oxysporum f. sp . lycopersici was performed pairing of fungus and bacteria by the method of the circle. In the method for detection for the quality for thermostable metabolites liquids. Media BD were used for growth of the isolated Bacillus sp. And incubated for 15 days. After this period, was added 3 g of agar in each flask, and autoclaved broth and poured into Petri dishes. In the center of the plates were placed discs culture of the pathogen. The experimental design was completely randomized with 11 treatments and six repetitions in both experiments. Statistical difference was found between the isolate and the control. Special mention to strains B12 ( Bacillus sp., B41 ( B. cereus , B22' ( B.pentothenticus , B45 ( B. cereus , B47 ( B. cereus that exhibited the lowest average diameter of the colony. To study the inhibition of mycelial growth of F. oxysporum f. sp. lycopersici by thermostatable metabolites five differ statistically from the control they are: B35 ( B. pumilus , B47 ( B. cereus , B22' ( B. pentothenticus , B12 ( Bacillus sp. and B41 ( B. cereus the latter two treatments showed the best results of the pathogen colony diameters and 3.81 to 2.89 cm, respective- ly. B12 and B41 Isolates showed that their antibiotic products were able to inhibit 67.88 % and 57,66 % of F. oxysporum f. sp. lycopersici . These results highlight the possibility of using isolates of the genus Bacillus in the fight against fusarium wilt in tomato.

  9. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  10. Application of Bacillus sp. as a biopreservative for food preservation

    OpenAIRE

    S. Nath,; Chowdhury, S.

    2015-01-01

    Food preservation is enhancing shelf-life and food quality to eliminate food-related illness and product spoilage, especially by the use of food additives.The growing consumer demand for effective preservation of food without altering its nutritional quality and free of potential health risks andto find an attractive and alternative approach to chemical preservatives, have stimulated research in the field of biopreservation by the use of natural or controlled microbiota and/or the...

  11. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-09-01

    Surfactants and inorganic ligands are pointed as efficient to simultaneous removal of heavy metals and hydrophobic organic pollutants from soil. However, the biosurfactants are potentially less toxic to soil organisms than other chemical agents. Thus, in this study the efficiency of combinations of iodide (I(-)) ligand and surfactants produced by different bacterial species in the simultaneous removal of cadmium (Cd(2+)) and phenanthrene in a Haplustox soil sample was investigated. Four microbial surfactants and the synthetic surfactant Triton X-100 were tested with different concentrations of ligand. Soil samples contaminated with Cd(2+) and phenanthrene underwent consecutive washings with a surfactant/ligand solution. The removal of Cd(2+) increased with increased ligand concentration, particularly in solutions containing biosurfactants produced by the bacterial strains Bacillus subtilis LBBMA155 (lipopeptide) and Flavobacterium sp. LBBMA168 (mixture of flavolipids) and Triton X-100. Maximum Cd(2+) removal efficiency was 99.2% for biosurfactant produced by Arthrobacter oxydans LBBMA 201 (lipopeptide) and 99.2% for biosurfactant produced by Bacillus sp. LBBMA111A (mixed lipopeptide) in the presence of 0.336 mol iodide l(-1), while the maximum efficiency of Triton X-100 removal was 65.0%. The biosurfactant solutions removed from 80 to 88.0% of phenanthrene in soil, and the removal was not influenced by the presence of the ligand. Triton X-100 removed from 73 to 88% of the phenanthrene and, differently from the biosurfactants, iodide influenced the removal efficiency. The results indicate that the use of a single washing agent, called surfactant-ligand, affords simultaneous removal of organic contaminants and heavy metals.

  12. The Construction of the Probe for Amylase Ⅱ Gene Cloning from Bacillus halodurans Strain 38C1-1

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Primers and probes were established according to the sequences of the alpha-amylase genes of Bacillus. halodurans C-125, Thermus sp. IM6501, B. stearothermophilus ET-1, and B. acidopullulytics. Primers were designed and a 0.2 kb DNA fragment was amplified, the fragment was successfully used for the detection of the amylase Ⅱ gene in a 2 842 bp region from Bacillus halodurans strain 38C1-1.

  13. The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community.

    Science.gov (United States)

    Ramisse, V; Patra, G; Vaissaire, J; Mock, M

    1999-08-01

    Plasmid genes that are responsible for virulence of Bacillus anthracis are important targets for the DNA-based detection of anthrax. We evaluated the distribution of the Ba813 chromosomal DNA sequence (Ba813) within closely related Bacillus species. Ba813 was systematically identified from 47 strains or isolates of B. anthracis tested, thus indicating its reliability as a tracer for that species. From the 60 strains of closely related Bacillus spp. examined, three bona fide B. cereus and one bona fide B. thuringiensis were found to harbour Ba813. This marker was also detected in Bacillus sp. isolates that were present at high levels in soil samples collected in a place where an anthrax outbreak had occurred. The significance and the possible function of the Ba813 locus is discussed.

  14. Investigation and Analysis of Bacillus in Yogurt Production Environment%酸奶生产环境中芽孢杆菌的调查与分析

    Institute of Scientific and Technical Information of China (English)

    康博燕; 牟光庆; 陈历俊; 姜铁民

    2013-01-01

    According to the studies on the microbial community of yogurt production environment,found that the Bacillus.sp was the majority bacteria.Base on physiological and biochemical identification and molecular identification on the bacillus isolate from sampling plots,found that Bacillus subtilis account for 30%,Bacillus licheniformis account for 19%,Bacillus megaterium account for 14%,The rest of the seven kinds of the bacillus account for 37%.By traceability analysis,found that there was cross contamination in the connected workshop.%通过对某厂酸奶生产环境微生物菌群分析,发现此环境中微生物以芽孢杆菌属(Bacillus.sp)的菌种居多.对各个采样点分离、纯化的芽孢杆菌进行生理生化和分子鉴定,结果为枯草芽孢杆菌(Bacillus subtilis)占所分离鉴定芽孢杆菌的30%,地衣芽孢杆菌(Bacillus licheniformis)占19%,巨大芽孢杆菌(Bacillus megaterium)占14%,其余7种菌共占37%.对它们进行溯源分析,发现有连通的车间存在交叉污染.

  15. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    Science.gov (United States)

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production.

  16. Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge.

    Science.gov (United States)

    Thirumala, M; Reddy, Sultanpuram Vishnuvardhan; Mahmood, S K

    2010-03-01

    The present study reports two bacteria, designated 87I and 112A, which were isolated from soil and activated sludge samples from Hyderabad, India, and that are capable of producing poly-3-hydroxybutyrate (PHB). Based on phenotypical features and genotypic investigations, these microorganisms were identified as Bacillus spp. Their optimal growth occurred between 28 degrees C and 30 degrees C and pH 7. Bacillus sp. 87I yielded a maximum of 70.04% dry cell weight (DCW) PHB in medium containing glucose as carbon source, followed by 55.5% DCW PHB in lactose-containing medium, whereas Bacillus sp. 112A produced a maximum of 67.73% PHB from glucose, 58.5% PHB from sucrose, followed by 50.5% PHB from starch as carbon substrates. The viscosity average molecular mass (M (v)) of the polymers from Bacillus sp. 87I was 513 kDa and from Bacillus sp. 112A was 521 kDa. All the properties of the biopolymers produced by the two strains 87I and 112A were characterized.

  17. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided.

  18. Isolation and Purification of Exopolysaccharide from the Fermentation Broth of Bacillus sp.and Its Antioxidant Effect%一株芽孢杆菌胞外多糖的分离纯化及其抗氧化性测定

    Institute of Scientific and Technical Information of China (English)

    袁建锋; 蔡恒; 单咸旸; 徐传学; 万红贵

    2009-01-01

    基于实验室从新疆罗布泊沙漠筛选到一株芽孢杆菌,研究了该菌胞外多糖的分离纯化工艺及其抗氧化性质.发酵液经离心,抽滤等预处理后,使用Sevag试剂除蛋白,并以无水乙醇作提取溶剂,通过正交实验确定最佳提取条件为:pH为7.0,温度为4℃,时间为1.5 h,料液比为1:4,粗多糖溶解后上活性炭柱(1.5 cm×24 cm),用蒸馏水、60%乙醇及95%乙醇洗脱,分离得到主要部分,再经Sephadex G-100凝胶柱,用0.2 mol/L的NaCl溶液洗脱,硫酸苯酚法和考马斯亮蓝法分别检测洗脱多糖和蛋白质,结果表明,该产物为均一组分的糖蛋白(EPS).在体外抗氧化性实验显示EPS具有很强的抗氧化性,能清除羟基自由基(·OH)、超氧阴离子自由基(·O_2~-),并且对脂质过氧化有抑制作用,是一种很好的天然抗氧化剂.%Based on the Bacillus sp., isolated from Lop Nur Desert, the technology of separation and purification and the antioxidant effect were studied. After centrifugation and vacuum filtration, the deproteiniza-tion of supernatant was operated with Sevag reagent. The crude exopolysaccharide (EPS) was obtained by precipitation with ethanol. The optimum conditions for the isolation were as follow: pH 7.0, temperature 4?, time 1.5 h, and material to ethanol ratio 1: 4. Dissolved in water, the crude EPS was fractional separated on activated carbon column (1.5 cm×24 cm), eluted with distilled water, 60% ethanol, 95% ethanol, and the main fraction was collected. Then the EPS was purified on Sephadex G-100 gel column, eluted with NaCl (0.2 mol/L). Fractions (4 mL, each) were also combined according to total sugar by phenol-sulfuric acid method and protein content was determined by Coomassie brilliant blue. The results showed that EPS was relatively homogeneous glycoprotein. The data of antioxidation in vitro showed that the EPS had a high antioxidant activity, which could quench hydroxyl radical, superoxide radical and had antilipid

  19. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Directory of Open Access Journals (Sweden)

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  20. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi.

    Science.gov (United States)

    Ortega-Morales, B O; Ortega-Morales, F N; Lara-Reyna, J; De la Rosa-García, S C; Martínez-Hernández, A; Montero-M, Jorge

    2009-01-01

    We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested against C. gloeosporioides, Colletotrichum fragariae, and Fusarium oxysporum on two culture media, potato dextrose agar (PDA) and a marine medium-based agar [yeast extract agar (YEA)] at different times of growth of the antagonists (early, co-inoculation with the pathogen and late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture media and time of colonization (P Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial biocontrol strain Bacillus subtilis G03 (Kodiak). Further incubation studies and scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, and inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing its potential for fungal biocontrol. Additional studies are required to definitively identify the active isolates and to determine their mode of antifungal action, safety, and biocompatibility.

  1. The Sponge-associated Bacterium Bacillus licheniformis SAB1: A Source of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Prabha Devi

    2010-04-01

    Full Text Available Several bacterial cultures were isolated from sponge Halichondria sp., collected from the Gujarat coast of the Indo Pacific region. These bacterial cultures were fermented in the laboratory (100 mL and the culture filtrate was assayed for antibiotic activity against 16 strains of clinical pathogens. Bacillus sp. (SAB1, the most potent of them and antagonistic to several clinically pathogenic Gram-positive, Gram-negative bacteria and the fungus Aspergillus fumigatus was chosen for further investigation. Analysis of the nucleotide sequence of the 16S rDNA gene of Bacillus sp. SAB1 showed a strong similarity (100% with the 16S rDNA gene of Bacillus licheniformis HNL09. The bioactive compounds produced by Bacillus licheniformis SAB1 (GenBank accession number: DQ071568 were identified as indole (1, 3-phenylpropionic acid (2 and a dimer 4,4′-oxybis[3-phenylpropionic acid] (3 on the basis of their Fourier Transform Infrared (FTIR, Nuclear Magnetic Resonance (NMR and Electrospray Ionization Mass Spectrometer (ESI-MS data. There is a single reference on the natural occurrence of compound 3 from the leaves of a terrestrial herb Aptenia cordifolia in the literature, so to the best of our knowledge, this is a first report of its natural occurrence from a marine source. The recovery of bacterial strains with antimicrobial activity suggests that marine-invertebrates remain a rich source for the isolation of culturable isolates capable of producing novel bioactive secondary metabolites.

  2. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis

    OpenAIRE

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch, Gordon; Liolios, Konstantinos; Grechkin, Yuri

    2005-01-01

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-...

  3. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  4. Effect of heavy metals on marine Bacillus sp. and Flavobacterium sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P; Chandramohan, D.

    stream_size 10 stream_content_type text/plain stream_name Ecotoxicology_2_220.pdf.txt stream_source_info Ecotoxicology_2_220.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  5. THE EFFECT OF GROWTH PARAMETERS ON THE ANTIBIOTIC ACTIVITY AND SPORULATION IN BACILLUS SPP. ISOLATED FROM SOIL

    Directory of Open Access Journals (Sweden)

    Alev Usta

    2013-04-01

    Full Text Available Fifty-two Bacillus strains, which were isolated from different soil samples, were screened for antibiotic properties. The Bacillus strains were checked for antibacterial properties by the cross-streak method against 5 test pathogens, and 25 Bacillus strains had an effect on the test microorganisms. One strain of Bacillus, which exhibited the largest inhibition zone (25 mm against Shigella sonnei, was named Bacillus sp. EA62. The antibacterial activity from Bacillus sp. EA62 was tested in six different culture media against Shigella sonnei using the agar well diffusion method. The best activity medium was selected and used for further studies. The influence of the incubation period, pH, and different glucose and nitrogen concentrations on the antibacterial activity was studied. The optimal conditions for the strongest antibiotic activity were found to be 72 hours (18 mm, pH 7.5 (23 mm, 3% glucose (25 mm, and 0.3% nitrogen concentration (23 mm. Additionally, the relationship between the antibiotic activity and sporulation was investigated. Accordingly, it was determined that the increase of the activity paralleled sporulation.

  6. Enhanced secretion of natto phytase by Bacillus subtilis.

    Science.gov (United States)

    Tsuji, Shogo; Tanaka, Kosei; Takenaka, Shinji; Yoshida, Ken-ichi

    2015-01-01

    Phytases comprise a group of phosphatases that trim inorganic phosphates from phytic acid (IP6). In this study, we aimed to achieve the efficient secretion of phytase by Bacillus subtilis. B. subtilis laboratory standard strain 168 and its derivatives exhibit no phytase activity, whereas a natto starter secretes phytase actively. The natto phytase gene was cloned into strain RIK1285, a protease-defective derivative of 168, to construct a random library of its N-terminal fusions with 173 different signal peptides (SPs) identified in the 168 genome. The library was screened to assess the efficiency of phytase secretion based on clear zones around colonies on plates, which appeared when IP6 was hydrolyzed. The pbp SP enhanced the secretion of the natto phytase most efficiently, i.e. twice that of the original SP. Thus, the secreted natto phytase was purified and found to remove up to 3 phosphates from IP6.

  7. Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe

    Science.gov (United States)

    Background: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were rep...

  8. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H.; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  9. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis.

  10. Inhibition of mycotoxin-producing fungi by Bacillus strains isolated from fish intestines.

    Science.gov (United States)

    Veras, Flávio Fonseca; Correa, Ana Paula Folmer; Welke, Juliane Elisa; Brandelli, Adriano

    2016-12-05

    Bacillus strains isolated from the aquatic environment of the Brazilian Amazon region were tested for their activity against mycotoxigenic fungi. All tested bacteria showed antifungal activity, inhibiting at least 7 indicator fungi. Four Bacillus strains showing promising antifungal results were subsequently evaluated for their activity in reducing mycelial growth rate, sporulation, spore germination percentage, and mycotoxin production. Bacillus sp. P1 and Bacillus sp. P11 had a remarkable antifungal effect on toxigenic fungi. Washed bacterial cell suspension of strains P1 and P11 (10(7)CFU/ml) reduced by >70% the fungal colony diameters, including a complete inhibition of ochratoxin A (OTA) producing Aspergillus spp. Significant reduction of growth rate, sporulation and spore germination were also observed. The bacteria influenced the production of mycotoxins, causing a reduction around 99 and 97% in AFB1 and OTA concentration, respectively. Chromatographic analysis revealed the presence of lipopeptides (iturin A and surfactin isomers) in butanol extracts of cell-free supernatants and cell pellets of strains P1 and P11. Furthermore, antifungal activity of these extracts was confirmed against A. flavus A12 and A. carbonarius ITAL293, producers of AFB1 and OTA, respectively. These bacterial strains could be promising biocontrol agents against toxigenic fungi.

  11. Screening for Pseudomonas and Bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea

    Directory of Open Access Journals (Sweden)

    Hannane Abed

    2016-07-01

    Full Text Available The aim of this work is to study the ability of several isolates belonging to Rhizobacteria (Pseudomonas and Bacillus collected from several chickpea growing areas in Algeria, to control the mycelium growth of Fusarium oxysporum f. sp. ciceris. Interesting isolates were characterized for their morphological characteristics, physiological and biochemical activities as potential bio-control agent. Fungal inhibition tests were performed using plate assay and each isolate were tested for the production of protease, cyanide hydrogen, indole acetic acid, antifungal volatile and extracellular compound. According to API 50 CH, we are able to identify six Bacillus species (B. subtilis, B. circulans, B. lentus, B. aneurinilyticus, B. firmus, B. licheniformis; and with API 20NE test we have identified three Pseudomonas species (P. aeruginosa, P. luteola, P. fluorescens. The ability of bacterial isolates was varied in production of Protease, Gelatinase, Amylase, Cellulase, Acid Indole acetic, Lipase, Catalase and Cyanid Hydrogen. This is traduced in different rate of inhibition growth due to various extracellular compounds, where B61 (Bacillus aneurinilyticus and P39 (Pseudomonas luteola and P70 (Pseudomonas fluorescens were the most efficient with 77 and 55.5% respectively, while B39 (Bacillus firmus and P41 (Pseudomonas luteola were the most efficient by volatile compounds with 70.5 and 77.5% respectively. Our results indicate that these bacteria isolates can be used in the biocontrol of Fusarium oxysporum f. sp. ciceris.

  12. Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents

    OpenAIRE

    Costa, Silgia; Tzanov,Tzanko; Paar, Andreas; Gudelj, Marinka; Gübitz, Georg M.; Paulo, Artur Cavaco

    2001-01-01

    A catalase preparation from a newly isolated Bacillus sp. was covalently immobilized on silanized alumina using glutaraldehyde as crosslinking agent. The effect of the coupling time of the enzyme-support reaction was determined in terms of protein recovery and immobilization yield and a certain balance point was found after which the activity recovery decreased. The activity profile of the immobilized catalase at high pH and temperature was investigated. The immobilized enzyme showed...

  13. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus

    Science.gov (United States)

    Safary, Azam; Moniri, Rezvan; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-01-01

    Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries. PMID:28101462

  14. ProduÃÃo e caracterizaÃÃo de biossurfactantes obtidos por linhagens de Bacillus sp. isoladas de estaÃÃes de tratamento de Ãguas residuais e de solo de manguezais (Cearà - Brasil)

    OpenAIRE

    Darlane Wellen Freitas de Oliveira

    2014-01-01

    Los biosurfactantes son sustancias de origen microbiano que poseen actividad superficial. Un grupo de biosurfactantes especialmente eficaces son los lipopÃptidos, entre los que destaca la surfactina, que son producidos por bacterias del gÃnero Bacillus mediante la transformaciÃn de sustratos renovables. Dichos tensioactivos presentan un gran nÃmero de ventajas cuando se los compara con los tensioactivos sintÃticos tradicionales. En el presente estudio se investigà la producciÃn de biosurf...

  15. Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon.

    Science.gov (United States)

    Ulyanova, Vera; Vershinina, Valentina; Ilinskaya, Olga; Harwood, Colin R

    2015-01-01

    Extracellular low-molecular weight guanyl-preferring ribonucleases (LMW RNases) of Bacillus sp. comprise a group of hydrolytic enzymes that share highly similar structural and catalytic characteristics with barnase, a ribonuclease from Bacillus amyloliquefaciens, and binase, a ribonuclease from Bacillus intermedius. Although the physical-chemical and catalytic properties of Bacillus guanyl-preferring ribonucleases are very similar, there is considerably more variation in the environmental conditions that lead to the induction of the genes encoding these RNases. Based on structural differences of their genes the guanyl-preferring ribonucleases have been sub-divided into binase-like and barnase-like groups. Here we show the ability of the key regulator of phosphate deficiency response, PhoP, to direct the transcription of the binase-like RNases but not barnase-like RNases. These results, together with our demonstration that binase-like RNases are induced in response to phosphate starvation, allow us to categorise this group of ribonucleases as new members of Bacillus PhoP regulon. In contrast, the barnase-like ribonucleases are relatively insensitive to the phosphate concentration and the environmental conditions that are responsible for their induction, and the regulatory elements involved, are currently unknown.

  16. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  17. 海洋源拮抗细菌的分离、筛选及1株拮抗芽孢杆菌的鉴定%Isolation and screening of marine antagonistic bacteria and identification of a strain of antagonistic Bacillus sp.

    Institute of Scientific and Technical Information of China (English)

    曾海燕; 谢小保; 黄小茉; 李彩玲; 欧阳友生; 陈仪本

    2011-01-01

    72 strains of marine bacteria were isolated from marine samples collected at harbors and mangroves in Guangdong. These strains were screened for antimicrobial activities on Sta phylococcus aureus, Bacillus subtilis , Escherichia coli ? Candida albicans , Aspergillus niger and Penicillium funiculosum using cylinder-plate method. The results show that 12 strains have antimicrobial activity, accounting for 16. 7% of the total, in which 7 strains are Bacillus spp. (accounting for 9. 7%) and 5 strains are Gram-negative rod-shaped bacteria (accounting for 6. 9%). The effects of antimicrobial activity produced by the antagonistic bacteria strains on the tested microorganisms are in the order of Gram-positive bacteria > Gram-negative bacteria > filamentous fungi, and antimicrobial activity of marine spore-producing bacteria is stronger than that of the Gram-negative bacteria. The mean isolation rate of the marine antagonistic bacteria strains with antimicrobial activities from the mangrove samples is the highest, up to 25. 3%. The strain NB7. 2 with strong antimicrobial activity is identified as Bacillus subtilis according to its morphological, physiological and biochemical characteristics, and 16S rRNA sequence analysis.%对来自于不同海域的红树树皮、海苔(海洋生物样)和海泥(海洋底质)样品进行细菌分离,并采用管碟法测试了分离出的海洋细菌对金黄色葡萄球菌Staphylococcus aureus、枯草芽孢杆菌Bacillus subtilis、大肠杆菌Escherichia coli、白色念珠菌Candida albicans、黑曲霉Aspergillus niger和绳状青霉Penicillium uniculosum等6种指示菌的抑菌活性,对其中1株具有较强抑菌活性的NB7.2海洋细菌进行了菌种鉴定.研究结果表明:从样品中共分离出72株海洋细菌,从中筛选出具有抑菌活性的细菌为12株(下文称拮抗细菌),占总分离菌数的比率为16.7%,其中,芽孢杆菌为7株(占9.7%),革兰氏阴性杆菌为5株(占6.9%).指示菌被拮抗

  18. DAN IDENTIFIKASI PATOGEN POTENSIAL YANG MENGINFEKSI IKAN RAINBOW (Melanotaenia sp.

    Directory of Open Access Journals (Sweden)

    Lili Sholichah

    2014-03-01

    ., Lactobacillus sp., Bacillus sp., Arachnia sp., Haemophilus sp., Cardiobacterium sp., dan Enterobacter sp. sedangkan jamur tidak ditemukan dalam penelitian ini.

  19. Sp(2) Renormalization

    CERN Document Server

    Lavrov, Peter M

    2010-01-01

    The renormalization of general gauge theories on flat and curved space-time backgrounds is considered within the Sp(2)-covariant quantization method. We assume the existence of a gauge-invariant and diffeomorphism invariant regularization. Using the Sp(2)-covariant formalism one can show that the theory possesses gauge invariant and diffeomorphism invariant renormalizability to all orders in the loop expansion and the extended BRST symmetry after renormalization is preserved. The advantage of the Sp(2)-method compared to the standard Batalin-Vilkovisky approach is that, in reducible theories, the structure of ghosts and ghosts for ghosts and auxiliary fields is described in terms of irreducible representations of the Sp(2) group. This makes the presentation of solutions to the master equations in more simple and systematic way because they are Sp(2)- scalars.

  20. Sp(2) renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, Peter M., E-mail: lavrov@tspu.edu.r [Department of Mathematical Analysis, Tomsk State Pedagogical University, Kievskaya St. 60, Tomsk 634061 (Russian Federation)

    2011-08-11

    The renormalization of general gauge theories on flat and curved space-time backgrounds is considered within the Sp(2)-covariant quantization method. We assume the existence of a gauge-invariant and diffeomorphism invariant regularization. Using the Sp(2)-covariant formalism one can show that the theory possesses gauge-invariant and diffeomorphism invariant renormalizability to all orders in the loop expansion and the extended BRST-symmetry after renormalization is preserved. The advantage of the Sp(2) method compared to the standard Batalin-Vilkovisky approach is that, in reducible theories, the structure of ghosts and ghosts for ghosts and auxiliary fields is described in terms of irreducible representations of the Sp(2) group. This makes the presentation of solutions to the master equations in more simple and systematic way because they are Sp(2)-scalars.

  1. Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation.

    Science.gov (United States)

    Jeon, You La; Yang, John Jeongseok; Kim, Min Jin; Lim, Gayoung; Cho, Sun Young; Park, Tae Sung; Suh, Jin-Tae; Park, Yong Ho; Lee, Mi Suk; Kim, Soo Cheol; Lee, Hee Joo

    2012-12-01

    Species of the genus Bacillus are a common laboratory contaminant, therefore, isolation of these organisms from blood cultures does not always indicate infection. In fact, except for Bacillus anthracis and Bacillus cereus, most species of the genus Bacillus are not considered human pathogens, especially in immunocompetent individuals. Here, we report an unusual presentation of bacteraemia and mediastinitis due to co-infection with Bacillus subtilis and Bacillus licheniformis, which were identified by 16S RNA gene sequencing, in a patient with an oesophageal perforation.

  2. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles

    Science.gov (United States)

    Rajamanickam, Karthic; Sudha, S. S.; Francis, Mebin; Sowmya, T.; Rengaramanujam, J.; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem.

  3. Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Wig, Andrew G [ORNL; Arakawa, Edward T [ORNL; Passian, Ali [ORNL; Ferrell, Thomas L [ORNL; Thundat, Thomas George [ORNL

    2006-03-01

    Microcalorimetric optical and infrared spectroscopy is a method of determining the spectral absorption of small quantities of materials over a wide range of incident wavelengths. In this paper, the first spectroscopic results for microcantilevers coated with Bacillus anthracis (BA) are presented. These results, for B. anthracis from 2.5 to 14.5 {micro}m, are compared with results from microcantilevers coated with Bacillus cereus (BC) and standard spectroscopic absorption data. The results demonstrate strong correlation between the deflection measurements and the reference spectroscopic absorption peaks. An advantage of this microcantilever-based method over traditional spectroscopy is that much smaller amounts of material (nanogram quantities) can be detected in comparison with the milligram amounts needed for standard methods. Another advantage is that the complete system can be relatively small without sacrificing spectral resolution.

  4. Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163

    Directory of Open Access Journals (Sweden)

    Yousef Dashti

    2014-05-01

    Full Text Available Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by 1H NMR. Ten known compounds, including angucycline, diketopiperazine and β-carboline derivatives 1–10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl-acetamide (11, 1,6-dihydroxyphenazine (12 and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a. When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes.

  5. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  6. Screening of Bacillus Species with Potentials of Antibiotics Production

    Directory of Open Access Journals (Sweden)

    Faruk Adamu KUTA

    2009-07-01

    Full Text Available Sixteen soil samples were collected from different refuse dump sites in Minna, the capital Niger State, and analysed for the presence of Bacillus species. Physical-chemical analysis of the soil samples revealed the followings: PH value 6.89-8.47; moisture content 1.58 – 21.21% and temperature 27-28ºC. Using both pour plate and streak method of inoculation, total bacterial count in the soil samples ranged from 3.8×104 cfu/g 16.0×104 cfu/g. The identified Bacillus species included: Bacillus cereus (30.8%, Bacillus brevis (1.9% Bacillus polymyxa (3.8%, Bacillus lichenifomis (13.5%, Bacillus spherericus (7.7%, Bacillus mycoides (13.5%, Bacillus pumilus (7.7%, Bacillus subtilis (3.8%, Bacillus alvei (1.9%, Bacillus laterosporous (1.9%, Bacillus firmus (9.6% and Bacillus circulars (3.8%. Antibiotic production tests indicated that nine Bacillus species out of twelve isolated in this study could be used to produce antibiotics that had effect on the test organisms. However, Bacillus polymyxa, Bacillus sphaericus and Bacillus laterosporous had little or no effect on the tested organisms. This study suggests that some Bacillus species have potential to produce high quality antibiotics that can be use to control microbial growth in future.

  7. beta-Amylase production by some Bacillus cereus, Bacillus megaterium and Bacillus polymyxa [correction of polymaxa] strains.

    Science.gov (United States)

    Niziołek, S

    1997-01-01

    The production of extracellular beta-amylase by some Bacillus cereus, Bacillus megaterium and Bacillus polymyxa [corrected] strains was investigated, and the maximal yields of the enzyme were 3.6; 9.3 and 20.4 U/mL of the culture fluid, respectively (U, 1 mumol of maltose equivalent per min at 30 degrees C). Several cultivation media were used for beta-amylase production. Bacillus cereus and some strains of Bacillus megaterium gave good yields of beta-amylase only in medium with the addition of nutrient broth. However, beta-amylase produced during growth in protein rich medium (nutrient broth) was highly unstable, probably due to inactivation by proteolytic enzymes co-existing in the culture fluid. Bacillus polymyxa [corrected] strains can produce good yields of beta-amylase on a semi-synthetic medium consisting of inorganic salts, potato starch and inexpensive soybean extract instead of costly peptone and meat extract. The most potential beta-amylase producer was the strain Bacillus polymyxa [corrected] NCIB 8524. The tested Bacillus megaterium and Bacillus polymyxa [corrected] strains were apparently differentiated by temperature cultivation (30 and 37 degrees C) suitable for beta-amylase amylase yield.

  8. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.

    Science.gov (United States)

    Abbasi, Habib; Hamedi, Mir Manochehr; Lotfabad, Tayebe Bagheri; Zahiri, Hossein Shahbani; Sharafi, Hakimeh; Masoomi, Fatemeh; Moosavi-Movahedi, Ali Akbar; Ortiz, Antonio; Amanlou, Massoud; Noghabi, Kambiz Akbari

    2012-02-01

    An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence.

  9. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Steyn, A J; Pretorius, I S

    1991-04-01

    A glucoamylase-encoding gene (STA2) from Saccharomyces diastaticus and an alpha-amylase-encoding gene (AMY) from Bacillus amyloliquefaciens were cloned separately into a yeast-integrating shuttle vector (YIp5), generating recombinant plasmids pSP1 and pSP2, respectively. The STA2 and AMY genes were jointly cloned into YIp5, generating plasmid pSP3. Subsequently, the dominant selectable marker APH1, encoding resistance to Geneticin G418 (GtR), was cloned into pSP3, resulting in pSP4. For enhanced expression of GtR, the APH1 gene was fused to the GAL10 promoter and terminated by the URA3 terminator, resulting in pSP5. Plasmid pSP5 was converted to a circular minichromosome (pSP6) by the addition of the ARS1 and CEN4 sequences. Laboratory strains of Saccharomyces cerevisiae transformed with plasmids pSP1 through pSP6, stably produced and secreted glucoamylase and/or alpha-amylase. Brewers' and distillers' yeast transformed with pSP6 were also capable of secreting amylolytic enzymes. Yeast transformants containing pSP1, pSP2 and pSP3 assimilated soluble starch with an efficiency of 69%, 84% and 93%, respectively. The major starch hydrolysis products produced by crude amylolytic enzymes found in the culture broths of the pSP1-, pSP2- and pSP3-containing transformants, were glucose, glucose and maltose (1:1), and glucose and maltose (3:1), respectively. These results confirmed that co-expression of the STA2 and AMY genes synergistically enhanced starch degradation.

  10. Microarray-based Resequencing of Multiple Bacillus anthracis Isolates

    Science.gov (United States)

    2004-12-17

    al.: Iden- tification of anthrax toxin genes in a Bacillus cereus associ- ated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA...Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 2001, 67:4863-4873. 26. Radnedge L, Agron PG, Hill KK, Jackson PJ...Ticknor LO, Keim P, Andersen GL: Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis . Appl

  11. A new alkaline elastase of an alkalophilic bacillus.

    Science.gov (United States)

    Tsai, Y C; Yamasaki, M; Yamamoto-Suzuki, Y; Tamura, G

    1983-11-01

    A new alkaline elastase was purified from the culture broth of an alkalophilic Bacillus sp. Ya-B. This was a serine proteinase. Molecular weight was 25,000. The optimum pH for elastin and casein was 11.75. The enzyme had very high specific activity, 12,400 units/mg protein for casein, and 2,440 units/mg protein for elastin at the optimum pH. It showed marked preference for elastin. The relative activity of elastin/casein of this enzyme was 17 and 6 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively. This enzyme also had higher keratin and collagen hydrolyzing activity in comparison with subtilisin.

  12. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals

    Science.gov (United States)

    Margulis, L.; Jorgensen, J. Z.; Dolan, S.; Kolchinsky, R.; Rainey, F. A.; Lo, S. C.

    1998-01-01

    In the guts of more than 25 species of arthropods we observed filaments containing refractile inclusions previously discovered and named "Arthromitus" in 1849 by Joseph Leidy [Leidy, J. (1849) Proc. Acad. Nat. Sci. Philadelphia 4, 225-233]. We cultivated these microbes from boiled intestines of 10 different species of surface-cleaned soil insects and isopod crustaceans. Literature review and these observations lead us to conclude that Arthromitus are spore-forming, variably motile, cultivable bacilli. As long rod-shaped bacteria, they lose their flagella, attach by fibers or fuzz to the intestinal epithelium, grow filamentously, and sporulate from their distal ends. When these organisms are incubated in culture, their life history stages are accelerated by light and inhibited by anoxia. Characterization of new Arthromitus isolates from digestive tracts of common sow bugs (Porcellio scaber), roaches (Gromphodorhina portentosa, Blaberus giganteus) and termites (Cryptotermes brevis, Kalotermes flavicollis) identifies these flagellated, spore-forming symbionts as a Bacillus sp. Complete sequencing of the 16S rRNA gene from four isolates (two sow bug, one hissing roach, one death's head roach) confirms these as the low-G+C Gram-positive eubacterium Bacillus cereus. We suggest that B. cereus and its close relatives, easily isolated from soil and grown on nutrient agar, enjoy filamentous growth in moist nutrient-rich intestines of healthy arthropods and similar habitats.

  13. Optimal conditions for production of extracellular protease from newly isolated Bacillus cereus strain CA15

    Directory of Open Access Journals (Sweden)

    Fikret Uyar

    2011-02-01

    Full Text Available An alkaline protease producer Bacillus sp. strain CA15 was isolated from soil. The microorganism was found to be closely related to Bacillus cereus based on 16S ribosomal DNA sequencing. The culture conditions for higher protease production were optimized with respect to carbon and nitrogen sources, metal ions, pH and temperature. Maximum protease production was obtained in the medium supplemented with 1% skim milk, 1% starch and 0.6% MgSO4.7H2O, initial pH 8.0 at 35oC. The best enzyme production was obtained during the stationary phase in which the cell density reached to 1.8x108 cells/mL. The level of protease was found to be low in the presence of inorganic nitrogen sources. The protease production was diminished in the presence of sucrose and lactose. The extreme stability towards Triton X-100, Tween 20 and SDS was observed by Bacillus sp. CA15 alkaline protease. The enzyme activity was inhibited by PMSF suggested that presence of serine residues at the active sites.

  14. A selective chromogenic agar that distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.

    Science.gov (United States)

    Juergensmeyer, Margaret A; Gingras, Bruce A; Restaino, Lawrence; Frampton, Elon W

    2006-08-01

    A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholine-specific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37 degrees C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.

  15. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi.

    Science.gov (United States)

    Velho, R V; Medina, L F C; Segalin, J; Brandelli, A

    2011-07-01

    The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants.

  16. Classification of Bacillus beneficial substances related to plants, humans and animals.

    Science.gov (United States)

    Mongkolthanaruk, Wiyada

    2012-12-01

    Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

  17. Pacemaker-associated Bacillus cereus endocarditis.

    Science.gov (United States)

    Barraud, Olivier; Hidri, Nadia; Ly, Kim; Pichon, Nicolas; Manea, Petrus; Ploy, Marie-Cécile; Garnier, Fabien

    2012-11-01

    We report the case of a pacemaker-associated Bacillus cereus endocarditis in a nonimmunocompromised patient. Antibiotic treatment was ineffective, and the pacemaker had to be removed. B. cereus was cultured from several blood samples and from the pacemaker electrodes. This case underlines the contribution of the rpoB gene for Bacillus species determination.

  18. Alliacane sesquiterpenoids from submerged cultures of the basidiomycete Inonotus sp. BCC 22670.

    Science.gov (United States)

    Isaka, Masahiko; Sappan, Malipan; Supothina, Sumalee; Srichomthong, Kitlada; Komwijit, Somjit; Boonpratuang, Thitiya

    2017-02-04

    Nine alliacane sesquiterpenoids, inonoalliacanes A-I, were isolated from culture broth of the basidiomycete Inonotus sp. BCC 22670. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of inonoalliacane F was determined by application of the modified Mosher's method. Inonoalliacane A, the most abundant sesquiterpene constituent, exhibited moderate antibacterial activity against Bacillus cereus, whereas inonoalliacane B showed antiviral activity against herpes simplex virus type 1.

  19. Aeruginazole A, a novel thiazole-containing cyclopeptide from the cyanobacterium Microcystis sp.

    Science.gov (United States)

    Raveh, Avi; Carmeli, Shmuel

    2010-08-01

    A novel thiazole-containing cyclic peptide, aeruginazole A (1), was isolated from the cyanobacterium Microcystis sp. strain (IL-323), which was collected from a water reservoir near Kfar-Yehoshua, Valley of Armageddon, Israel. The planar structure of aeruginazole A was established using homonuclear and inverse-heteronuclear 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of the asymmetric centers was determined using Marfey's method. Aeruginazole A potently inhibited Bacillus subtilis.

  20. Inhibition of Candida albicans isocitrate lyase activity by sesterterpene sulfates from the tropical sponge Dysidea sp.

    Science.gov (United States)

    Lee, Dongha; Shin, Jongheon; Yoon, Kyung-Mi; Kim, Tae-Im; Lee, So-Hyoung; Lee, Hyi-Seung; Oh, Ki-Bong

    2008-10-15

    Seven sesterterpene sulfates (1-7) were isolated from the tropical sponge Dysidea sp. and their inhibitory activities against isocitrate lyase (ICL) from Candida albicans were evaluated. Among the isolated natural products compound 6 and 7 were found to be strong ICL inhibitors. The isolated compounds (1-7) also showed potent antibacterial effect against Bacillus subtilis and Proteus vulgaris, but did not display antifungal activity.

  1. IN VITRO ANTAGONISM AND EVALUATION OF CHITINASE ACTIVITY OF BACTERIAâBACILLUS CIRCULANS AGAINST PATHOGENIC FUNGI IN VIGNA UNGUICULATA

    OpenAIRE

    Florentyna Rodrigues; Priadharsini.K; S. Suja; P. Palani

    2014-01-01

    Scientists of agriculture and plant pathology are on the lookout for potential biological control agents to control the plant pathogenic organisms in order to avoid soil contamination. Rhizospheric bacteria are excellent agents to control soil-borne plant pathogens. In this study an attempt has been made to evaluate the antagonistic activity of a bacterial strain Bacillus circulans against Curvularia lunata, Alternaria alternata and Cladosporium sp., which are important seed and soil borne pa...

  2. Main: SP8BFIBSP8AIB [PLACE

    Lifescience Database Archive (English)

    Full Text Available SP8BFIBSP8AIB S000183 16-Feb-2001 (last modified) seki One of SPBF binding site (SP...o (I.b.); SP8BF recognizes both SP8a and SP8b sequences; See also SP8BFIBSP8BIB (S000184); SP8BF activity is

  3. Main: SP8BFIBSP8BIB [PLACE

    Lifescience Database Archive (English)

    Full Text Available SP8BFIBSP8BIB S000184 16-Feb-2001 (last modified) seki One of SPBF binding site (SP...; SP8BF recognizes both SP8a and SP8b sequences; See also SP8BFIBSP8AIB (S000183); SP8BF activity is also fo

  4. Isolation and screening of an electrochemically active strain Bacillus cereus sp.WL027 using phenol as fuel and preliminary study on its mechanism of electricity production%可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探

    Institute of Scientific and Technical Information of China (English)

    王丽丽; 国巍; 付春娜; 燕红

    2016-01-01

    Summary Microbial fuel cell(MFC)is an economic and effective way for wastewater treatment,which enables not only degradation of phenol but also conversion of biomass energy into electricity.Selection and breeding of electricigens from anode of a microbial fuel cell is the premise and foundation of MFC research;meanwhile,the problem of low energy efficiency can also be solved.Electronic delivery mechanisms of electricigens included biofilm mechanism and electron shuttle mechanism.Biofilm mechanism refers to the electricigens being attached to the electrode surface and then use cytochrome C or“nanowires"to transfer intracellular electrons to the electrode through the biofilm.Electronic shuttle mechanism concerns the use of a redox mediator to transfer electrons between the cell and the electrode.Currently,most Gram-negative bacteria with cell walls rich in cytochrome C, have been found to use cytochrome C to transfer electrons, such as Geobacter sulfurreducens,Aeromonas hydrophila and Rhodoferaxferrireducens,etc.In the process of electron transfer,the use of redox mediator for the electron transfer between the cell and the electrode is called electron shuttle mechanism.According to the source of redox mediator,it can be divided into exogenous redox mediator and endogenous redox mediator (cell autocrine).So far,little was known about the potential of Bacillus cereus to produce electricity. In this work,an efficient phenol-degrading electricigenic bacterium was separated and screened,and its MFC was built using the obtained strain,and the efficiencies of phenol degradation and electricity production were further investigated.Meanwhile,the anode carbon felt was analyzed by scanning electron microscopy,and the cyclic voltammetry curve of the obtained strain was measured during the four growth stages(7,18,31 and 52 h), to explore the potential related mechanism of electricity production. Twenty-one pure strains with potential ability of electricity production were

  5. Purification and characterization of alpha-L-arabinofuranosidase from Arthrobacter sp. MTCC 5214 in solid-state fermentation

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.T.H.; Mukherjee, B.; Satwekar, A.; Bhosle, N.B.

    acetobutylicum [6] and Bacillus pumilus PS213 [16], which were 92, 94 and 60 kDa, respectively. High molecular mass a-L-AFases with multiple subunits isolated from Streptomyces purpurascens [32], Butyrivibrio fibrisolvens GS113 [33] and Thermotoga maritime [39... was not observed with pNPAF tested up to 6.8 mmol l C01 concentration. The efficiency of a-L-AFase (V max /K m ) from Arthro- bacter sp. was less than that shown by the a-L-AFase produced by Bacillus stearothermophilus[9] andB. pumilus PS213[16].However...

  6. Antagonism of Bacillus spp.B1 and B2 Strains Against Fusarium oxysporum f.sp.pisi%芽孢杆菌B1、B2对豌豆尖镰孢菌抗菌机理的研究

    Institute of Scientific and Technical Information of China (English)

    刘晓妹; 陈秀蓉; 蒲金基

    2004-01-01

    同、异步培养结果表明:芽孢杆菌B1、B2对豌豆尖孢镰孢菌(Fusarium oxysporum Schl f.sp.pisi)有很强的抑菌作用.经B1、B2无菌液处理后的病原菌由灰白色变为白色,气生菌丝增多且纠结成团.抗菌显微特征是:导致病菌孢子和菌丝体膨大、畸形、原生质凝聚、孢子不萌发或萌发异常、菌丝生长点产生大量泡囊、生长受阻,后期菌丝体断裂、泡囊破裂、原生质外泄.B1、B2无菌液中蛋白含量分别为1795.53μg/mL和1345.93μg/mL,各含一种抗菌蛋白,其分子量分别为103.5 kD(B1)和127.6 kD(B2).

  7. Bacillus cereus endocarditis in native aortic valve.

    Science.gov (United States)

    Ngow, H A; Wan Khairina, W M N

    2013-02-01

    Bacillus cereus endocarditis is rare. It has been implicated in immunocompromised individuals, especially in intravenous drug users as well as in those with a cardiac prosthesis. The patient was a 31-year-old ex-intravenous drug addict with a past history of staphylococcal pulmonary valve endocarditis, who presented with symptoms of decompensated cardiac failure. Echocardiography showed severe aortic regurgitation with an oscillating vegetation seen on the right coronary cusp of the aortic valve. The blood cultures grew Bacillus cereus. We report this as a rare case of Bacillus cereus endocarditis affecting a native aortic valve.

  8. Microbial Transformation of Quercetin by Bacillus cereus

    OpenAIRE

    Rao, Koppaka V.; Weisner, Nghe T.

    1981-01-01

    Biotransformation of quercetin was examined with a number of bacterial cultures. In the presence of a bacterial culture (Bacillus cereus), quercetin was transformed into two crystalline products, identified as protocatechuic acid and quercetin-3-glucoside (isoquercitrin).

  9. 75 FR 862 - Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability

    Science.gov (United States)

    2010-01-06

    ... AGENCY Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability AGENCY... proposed registration review decision for the pesticide Bacillus subtilis (case 6012) and opens a public... EPA's proposed registration review decision Bacillus subtilis (case 6012). The Bacillus subtilis...

  10. Bacillus cereus Bacteremia in a Preterm Neonate

    OpenAIRE

    Hilliard, Nicholaus J.; Schelonka, Robert L.; Waites, Ken B.

    2003-01-01

    Bacillus cereus is an uncommon but potentially serious bacterial pathogen causing infections of the bloodstream, lungs, and central nervous system of preterm neonates. A case of bacteremia caused by B. cereus in a 19-day-old preterm neonate who was successfully treated with vancomycin, tobramycin, meropenem, and clindamycin is described. Implications for the diagnostic laboratory and clinicians when Bacillus species are detected in normally sterile sites are discussed, and the small numbers o...

  11. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.

  12. Control of Branchionus sp. and Amoeba sp. in cultures of Arthrospira sp. Control de Branchionus sp. y Amoeba sp. en cultivos de Arthrospira sp.

    Directory of Open Access Journals (Sweden)

    Carlos Méndez

    2012-09-01

    Full Text Available Cultivation of cyanobacterium Arthrospira sp. has been developed in many countries for the production of proteins, pigments and other compounds. Outdoor mass cultures are often affected by biological contamination, drastically reducing productivity as far as bringing death. This study evaluates the control of Branchionus sp. and Amoeba sp. with two chemical compounds: urea (U and ammonium bicarbonate (AB, in laboratory conditions and outdoor mass culture of Arthrospira sp. The lethal concentration 100 (LC100 at 24 h for Branchionus sp. and Amoeba sp. determined was of 60-80 mg L-1 (U and 100-150 mg L-1 (AB. The average effective inhibition concentration for 50% of the population (IC50 in Arthrospira sp., after 72 h, was 80 mg L-1 (U and 150 mg L-1 (AB. The application of doses of 60 mg L-1 (U or 100 mg L-1 (AB in the outdoor mass culture of this contaminated microalga, completely inhibited grazing and did not affect the growth of Arthrospira sp. but rather promoted rapid recovery of algal density at levels prior to infestation. These compounds provided an economical and effective control of predators in cultures of Arthrospira sp.El cultivo de la cianobacteria Arthrospira sp. ha sido desarrollado en muchos países para la obtención de proteínas, pigmentos y otros compuestos. Cultivo que a nivel industrial se ve afectado frecuentemente por contaminación biológica, reduciendo drásticamente la productividad hasta causar la muerte. Este estudio evalúa el control de Branchionus sp. y de Amoeba sp. con dos compuestos químicos, la urea (U y bicarbonato de amonio (AB en cultivos de Arthrospira sp. La concentración letal 100 (LC100 determinada a las 24 h para Branchionus sp. y Amoeba sp. fue de 60-80 mg L-1 (U y 100-150 mg L-1 (AB. La concentración media de inhibición efectiva, después de 72 h, para el 50% de la población (IC50 en Arthrospira fue de 80 mg L-1 (U y 150 mg L-1 (AB. La aplicación de dosis de 60 mg L-1 (U ó 100 mg L-1 (AB en

  13. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

    Science.gov (United States)

    Reddy, Chinreddy Subramanyam; Achary, V Mohan Murali; Manna, Mrinalini; Singh, Jitender; Kaul, Tanushri; Reddy, Malireddy K

    2015-03-01

    The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was