WorldWideScience

Sample records for bioreactors beeinflussung des

  1. Lipoprotein(a: Metabolismus und Beeinflussung des Plasmaspiegels

    Directory of Open Access Journals (Sweden)

    Kostner GM

    2002-01-01

    Full Text Available Lipoprotein(a [Lp(a] ist eines der atherogensten Lipoproteine. Es besteht aus einem Core Low Density Lipoprotein (LDL und dem spezifischen Antigen, Apo(a. Letzteres ist ein extrem polymorphes Glykoprotein, welches aus zwischen 11 und mehr als 40 Kringel-IV-Einheiten besteht, die homolog zum Kringel-IV des Plasminogens sind. Die Atherogenität von Lp(a, die einerseits auf seine Strukturähnlichkeit mit Plas-minogen, andererseits auf seine extrem hohe Affinität zu Proteoglykanen der Blutgefäße zurückzuführen ist, wurde in zahlreichen prospektiven Studien dokumentiert. Die Mittel- bzw. Medianwerte für Lp(a in der weißen Bevölkerung betragen 17 bzw. 9 mg/dl. Als Grenzwert, ab welchem ein erhöhtes Atheroskleroserisiko auftritt, gilt allgemein 25?30 mg/dl. Die Plasmakonzentration von Lp(a ist streng genetisch determiniert und korreliert negativ mit der Kringelzahl. Andererseits wird die Plasmakonzentration von der Syntheserate und nicht vom Katabolismus bestimmt. Hormone wie T3/T4, Steroid- und im besonderen Wachstumshormone und ILG-1 zeigen sehr deutliche Einflüsse auf den Lp(a-Metabolismus. Leberpatienten haben im Verhältnis zu ihrer Kringelzahl stark erniedrigte und Nierenpatienten stark erhöhte Plasma-Lp(a-Spiegel. Die stärkste pharmakologische Wirkung auf Lp(a haben anabole Steroide. Aber auch Alkohol, Acetylsalicylsäure, Ascorbinsäure und vor allem Nikotinsäure wirken Lp(a-senkend. Die herkömmlichen Lipidsenker zeigen - wenn überhaupt - nur eine geringe Wirkung. Bisher ist kein nennenswert Lp(a-senkendes Statin gefunden worden. Eine futuristische Möglichkeit, therapeutisch einzugreifen, wurde von uns mittels "anti-sense Oligonucleotide"-Therapie an Versuchstieren getestet. Es gelang damit, die Apo(a-Synthese praktisch auf Null zu senken.

  2. Bioreactor

    Science.gov (United States)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  3. Therapeutic management of radiation-induced oral mucositis; Therapeutische Beeinflussung der radiogenen oralen Mukositis

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, W. [Klinik und Poliklinik fuer Strahlentherapie, Universitaetsklinikum Carl Gustav Carus, Technische Univ. Dresden (Germany); Doelling-Jochem, I. [Klinik und Poliklinik fuer Strahlentherapie, Universitaetsklinikum Carl Gustav Carus, Technische Univ. Dresden (Germany); Baumann, M. [Klinik und Poliklinik fuer Strahlentherapie, Universitaetsklinikum Carl Gustav Carus, Technische Univ. Dresden (Germany); Herrmann, T. [Klinik und Poliklinik fuer Strahlentherapie, Universitaetsklinikum Carl Gustav Carus, Technische Univ. Dresden (Germany)

    1997-04-01

    Proliferation von Tumorstammzellen, die in der Folge die Tumorheilungsaussichten drastisch verringern kann. Zudem fuehren ueberschiessende Akutreaktionen in vielen Faellen zu einer Verstaerkung von spaeten Strahlenfolgen. Die Verminderung der Schleimhautreaktion mit dem Ziel der Vermeidung von Bestrahlungspausen und der Verminderung von Spaetschaeden kann den therapeutischen Erfolg der Radiotherapie entscheidend verbessern. Verschiedene Ansaetze zur Beeinflussung der strahleninduzierten Mukositis auf symptomatischer oder strahlen- und epithelbiologischer Grundlage wurden zusammengefass und systematisch dargestellt. Es existiert eine Vielzahl prophylaktischer und therapeutischer Ansaetze zur Verminderung akuter radiogener Reaktionen der Mundschleimhaut. Haeufig ist die Wirksamkeit jedoch nur fuer Chemotherapie oder im Zusammenhang mit einer immunsuppressiven Therapie nachgewiesen, so dass oft eher ein systemischer als ein lokaler Effekt angenommen werden muss. Als allgemeine Mukositisprophylaxe koennen neben einer Zahnsanierung regelmaessige mundhygienische Massnahmen sowie antiseptische Spuelungen herangezogen werden. Die Bedeutung einer engmaschigen persoenlichen Betreuung der Patienten ist zu betonen. Das Anlegen eines perkutanen endoskopischen Gastrostoma muss am Zustand des Patienten sowie an der Ausdehnung und Lage des Bestrahlungsfeldes und damit der zu erwartenden Beeintraechtigung der Nahrungsaufnahme orientiert werden. Als therapeutische Massnahmen bei manifesten Schleimhautreaktionen kommen eine lokale bzw. systemische Schmerzbehandlung sowie die lokale Applikation von Antimykotika und Antibiotika in Betracht. (orig./VHE)

  4. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. Treatment of sediments from soil washing plants. Investigation of the suitability of a gas/solids fluidized bed bioreactor for the decontamination; Bodenwaschanlagen-Sedimente behandeln. Untersuchungen der Eignung des Gas/Feststoff-Wirbelschicht-Bioreaktors zur Dekontaminierung

    Energy Technology Data Exchange (ETDEWEB)

    Behns, W.; Haida, H. [Magdeburg Univ. (Germany). Inst. fuer Apparate- und Umwelttechnik; Friedrich, C. [Allgaier-Werke, Uhingen (Germany)

    1997-09-01

    This article deals with the possibility of microbiological decontamination of sediments from soil washing plants in gas/solids fluidized bed bioreactors. The sediments are pressed to granulates. The pollutants which are removed are mineral oil hydrocarbons. The degradation results of this process are presented, the process seems to be an alternative to common waste treatment processes. (SR) [Deutsch] Die mikrobiologische Dekontaminierung sandiger Boeden in einem Gas/Feststoff-Wirbelschicht-Bioreaktor ist eine erfolgversprechende Alternative zu anderen biologischen Reinigungsverfahren. Die biologische Dekontaminierung von Schlufffraktionen oder von Bodenwaschanlagensedimenten (BWS) ist deutlich schwieriger. In der Literatur werden vor allem Verfahren unter Einsatz von Suspensionsreaktoren verwendet, um fuer Feinkorn-Fraktionen eine biologische Reinigung zu ermoeglichen. Hier soll ueber Untersuchungen berichtet werden, mit denen die Eignung des Gas/Feststoff-Wirbelschicht-Bioreaktors fuer die Dekontaminierung derartiger Boeden ueberprueft werden sollte. (orig.)

  6. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  7. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  9. Use of gas/solid matter fluidized-bed bioreactors in microbiological soil cleanup; Nutzung des Gas/Feststoff-Wirbelschicht-Bioreaktors in der mikrobiologischen Bodensanierung

    Energy Technology Data Exchange (ETDEWEB)

    Behns, W.; Friedrich, K.; Haida, H. [Marburg Univ. (Germany). Inst. fuer Apparate- und Umwelttechnik

    1998-04-01

    The fluidization of contaminated soil with air in a gas/solid matter fluidized-bed bioreactor basically offers favourable preconditions for aerobic microbiological pollutant degradation, in the meaning of a kind of solid state fermentation. The technical principle, the pilot plant, and experimental investigations using a model system made up of soil, a pollutant (dibutyl-phthalate), and micro-organisms has already been reported on. This article presents results of experimental studies using soil substrates with real contaminations of mineral oil hydrocarbons (MHCs) or hexachloro-cyclohexane(HCH). In economic terms, the combination of treatment in a fluidized bed with subsequent treatment in a bed or pit has proved expedient. (orig.) [Deutsch] Wird schadstoffbelasteter Boden in einem Gas/Feststoff-Wirbelschicht-Bioreaktor mit Luft fluidisiert, bestehen prinzipiell gute Voraussetzungen fuer den aeroben mikrobiologischen Schadstoffabbau im Sinne einer Solid-State-Fermentation. Ueber das Verfahrensprinzip, die Versuchsanlage und experimentelle Untersuchungen an einem Modellsystem Boden - Schadstoff (Dibutylphthalat) - Mikroorganismen wurde bereits berichtet. Nachfolgend sollen Ergebnisse experimenteller Untersuchungen mit real kontaminierten Bodenmassen - Schadstoffe Mineraloelkohlenwasserstoffe (MKW) bzw. Hexachlorcyclohexan (HCH) - dargestellt werden. Aus oekonomischer Sicht hat sich die Kombination einer Behandlung in der Wirbelschicht und nachfolgend in einem Beet bzw. Eine Miete als guenstig erwiesen. (orig.)

  10. Bioreactors addressing diabetes mellitus.

    Science.gov (United States)

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  11. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  12. Relevance of silvicultural and forest-protective factors to forest decline and the possibilities of their influence. Faktoren des Waldbaus und Forstschutzes beim Waldsterben und Moeglichkeiten ihrer Beeinflussung

    Energy Technology Data Exchange (ETDEWEB)

    Dimitri, L. (Hessische Forstliche Versuchsanstalt, Hann Muenden (Germany). Abt. Waldschutz)

    1990-01-01

    Long-term substantial atmospheric input has a direct and/or indirect effect on tree parts both above and below ground as well as on chemical and biological processes in the soil. The damaging effects to soil and stand can be obviated only by a quick reduction - or even better elimination - of the pollution load. This paper describes expedicent silvicultural measures for creating the prerequisites for a stable, well-growing stand as well as suitable preventive and, when necessary, combative forest protection measures which complement the former and minimize losses. (orig.).

  13. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  14. Bestrahlungsinduziertes kriechen und schwellen des austenitischen werkstoffes NR. 1.4981 zwischen 400 und 500°C (RIPCEX I)

    Science.gov (United States)

    Herschbach, K.; Schneider, W.; Ehrlich, K.

    1981-10-01

    ZusammenfassungFür den Werkstoff Nr. 1.4981 wurde das bestrahlungsinduzierte Volumenschwellen und Kriechen im Temperaturbereich 400 bis 500°C bis zu einer Dosis von max. 63 dpa mittels nichtzerstörender und zerstörender Nachuntersuchungen bestimmt. Dabei zeigte sich eine deutliche Beeinflussung des Volumenschwellens durch eine angelegte Spannung. Das bestrahlungsinduzierte Kriechen wird für den Stahl Nr. 1.4981 durch mindestens zwei Prozesse hervorgerufen, einmal durch den sog. SIPA-Prozess, der auf bevorzugter Absorption von Zwischengitteratomen beruht, zum anderen durch das sog. I-Creep, einem Prozess, der erst nach Einsetzen des Volumenschwellens zum Tragen kommen kann. Für höhere Dosen liefert letzterer Vorgang den dominierenden Beitrag zum Kriechen.

  15. Bioreactors and bioseparation.

    Science.gov (United States)

    Zhang, Siliang; Cao, Xuejun; Chu, Ju; Qian, Jiangchao; Zhuang, Yingping

    2010-01-01

    Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid

  16. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  17. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. Cascades of bioreactors.

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :i) processes with a variable stoichiometry ,ii) processes with a consta

  19. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. Basic bioreactor design.

    NARCIS (Netherlands)

    Riet, van 't K.; Tramper, J.

    1991-01-01

    Based on a graduate course in biochemical engineering, provides the basic knowledge needed for the efficient design of bioreactors and the relevant principles and data for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms. Includes exercises.

  1. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  2. Design challenges for space bioreactors

    Science.gov (United States)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  3. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  4. Cells growing in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. Latinismen des Italienischen in DELI und LEI

    Directory of Open Access Journals (Sweden)

    Gerhard Ernst

    1991-12-01

    Full Text Available Als "Latinismen" sollen im folgenden diejenigen Wörter verstanden werden, deren Existenz, Form oder Bedeutung in einer der romanischen Sprachen auf Lehnbeziehungen während der lateinischen Diglossie oder auf die weiterbestehenden kulturellen Kontakte zum Lateinischen zurückgehen. Die Spendersprache bzw. beeinflussende Sprache kann dabei das Latein der Vergangenheit sein – insbesondere der Zeit, in der von romanischen Sprachen noch keine Rede sein konnte -, aber auch dasjenige, das neben den romanischen Sprachen als Mittellatein, Humanistenlatein, Kirchenlatein, Gelehrtenlatein weiterexistierte. Trotz verschiedener Terminologien ("gelehrte Wörter", "Buchwörter", "voci dotte", "mots savants", "cultismos" bestehen in der Abgrenzung dieses Teilbereichs des Lexikons der romanischen Sprachen keine gravierenden Unterschiede in neuerer einschlägiger Literatur. Allerdings laßt sich zwischen solchen Latinismen unterscheiden, die als sprachliches Zeichen (mit Form und Bedeutung aus dem Latein in die jeweilige romanische Sprache übernommen wurden (mehr oder weniger an das jeweilige Sprachsystem adaptiert, und solchen, die - bei ununterbrochener Überlieferung - nur eine Beeinflussung durch ein entsprechendes lateinisches Wort erfuhren ("voci semidotte", "rriots demi-sevants", "semicultismos". "El latín, en este caso, no presta términos, sino que ayuda - únicamente - a mantener fonemas y morfemas: siglo, virgen" (Alvar/Mariner 1967, 6. Alvar/Mariner (1967, 7 haben daneben auch eine weitere Untergruppe der "semicultismos": Latinismen, die phonetisch adaptiert wurden; wie respeto, afición. Diese beiden Typen von "semicultismos" verhalten sich ihrem Ursprung nach komplementär: a Erbwörter mit Beibehaltung lautlicher Elemente (evtl. auch der Bedeutung durch den Kontakt mit dem Lateinischen3 ; b Latinismen mit starker volkssprachlicher Adaptierung.

  6. Spiral vane bioreactor

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  7. Controlled-Turbulence Bioreactors

    Science.gov (United States)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  8. Bioreactor Mass Transport Studies

    Science.gov (United States)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  9. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewater

  10. Progress in bioreactors of bioartiifcial livers

    Institute of Scientific and Technical Information of China (English)

    Cheng-Bo Yu; Xiao-Ping Pan; Lan-Juan Li

    2009-01-01

    BACKGROUND: Bioartiifcial liver support systems are becoming an effective therapy for hepatic failure. Bioreactors, as key devices in these systems, can provide a favorable growth and metabolic environment, mass exchange, and immunological isolation as a platform. Currently, stagnancy in bioreactor research is the main factor restricting the development of bioartiifcial liver support systems. DATA SOURCES: A PubMed database search of English-language literature was performed to identify relevant articles using the keywords "bioreactor", "bioartiifcial liver", "hepatocyte", and "liver failure". More than 40 articles related to the bioreactors of bioartiifcial livers were reviewed. RESULTS: Some progress has been made in the improvement of structures, functions, and modiifed macromolecular materials related to bioreactors in recent years. The current data on the improvement of bioreactor conifgurations for bioartiifcial livers or on the potential of the use of certain scaffold materials in bioreactors, combined with the clinical efifcacy and safety evaluation of cultured hepatocytesin vitro, indicate that the AMC (Academic Medical Center) BAL bioreactor and MELS (modular extracorporeal liver support) BAL bioreactor system can partly replace the synthetic and metabolic functions of the liver in phaseⅠ clinical studies. In addition, it has been indicated that the microlfuidic PDMS (polydimethylsiloxane) bioreactor, or SlideBioreactor, and the microfabricated grooved bioreactor are appropriate for hepatocyte culture, which is also promising for bioartiifcial livers. Similarly, modiifed scaffolds can promote the adhesion, growth, and function of hepatocytes, and provide reliable materials for bioreactors.CONCLUSIONS: Bioreactors, as key devices in bioartiifcial livers, play an important role in the therapy for liver failure both now and in the future. Bioreactor conifgurations are indispensable for the development of bioartiifcial livers used for liver

  11. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.;

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed-b...

  12. Preliminary Study on Airlift Membran—Bioreactor

    Institute of Scientific and Technical Information of China (English)

    XUNong; XINGWeihong; 等

    2002-01-01

    A new type of membrane bioreactor named “airlift membrane-bioreactor”is discussed.For municipal wastewater reclamation,the preliminary study on airlift membrane-bioreactor shows its good performance such as high flux and lower energy consumption.The airlift membrane-bioreactor is potentially applicable in bioengineering and environmental protection fields.

  13. Tissue grown in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  14. Measures to influence nitric oxide formation and alkali release in coal dust combustion under pressure; Massnahmen zur Beeinflussung der Stickoxidbildung und Alkalienfreisetzung bei der Kohlenstaubdruckverbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, W.; Niepel, H. [Steinmueller (L.u.C.) GmbH, Gummersbach (Germany)

    1999-09-01

    Messrs. Steinmueller are making the following contributions to the Dorsten experimental plant: Development of pressure burner and combustion chamber, fuel supply and flue gas analysis, especially the development of a high-temperature flue gas tapping unit at the end of the hot reaction zone. Burner development should always aim at complete converstion of the fuel and minimal pollutant emissions, as well as stable combustion over a wide range of operating conditons and maximum reliability in case of disturbances. Tools for development and experiment analysis are flow measurements in isothermal models, numerical flow and radiation excchange calculation programs, and reference data from the hot operation under pressure of the small-scale Dorsten pilot plant. The contribution presents the results of the burner experiments with a view to nitric oxide and alkali emissions; finally, the effects of different influencing parameters on combustion control and on the still unresolved fields of investigation are indicated. [Deutsch] Die Druckkohlenstaubfeuerung erschliesst fuer den Brennstoff Kohle durch Nutzung des Gas- und Dampfturbinenprozesses Kraftwerkswirkungsgrade im Bereich von 50 % und mehr. Dabei soll das unter Druck verbrannte Rauchgas nach Abscheidung aller schaedlichen Bestandteile, insbesondere der Asche, die in diesem Temperaturbereich durchweg schmelzfluessig vorliegt, direkt auf die Gasturbine geleitet werden. Mit Foerderung des Bundes (seinerzeit BMFT) wurde unter Beteiligung der GHS Essen, mehrerer Industriepartner und Energieversorger am Zechenstandort Dorsten eine Kleinpilotanlage mit einer thermischen Leistung von ca 1 MW errichtet und seither betrieben. Der Forschungsschwerpunkt der L. und C. Steinmueller GmbH richtete sich darin auf die Thematik Kohleumwandlung. Die Aktivitaeten umfssten die Bereiche Druckbrenner- und Brennkammerentwicklung, die Brennstoffversorgung und die Rauchgasanalytik, hier insbesondere die Entwicklung einer Hochtemperatur

  15. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  16. Two new disposable bioreactors for plant cell culture: The wave and undertow bioreactor and the slug bubble bioreactor.

    Science.gov (United States)

    Terrier, Bénédicte; Courtois, Didier; Hénault, Nicolas; Cuvier, Arnaud; Bastin, Maryse; Aknin, Aziz; Dubreuil, Julien; Pétiard, Vincent

    2007-04-01

    The present article describes two novel flexible plastic-based disposable bioreactors. The first one, the WU bioreactor, is based on the principle of a wave and undertow mechanism that provides agitation while offering convenient mixing and aeration to the plant cell culture contained within the bioreactor. The second one is a high aspect ratio bubble column bioreactor, where agitation and aeration are achieved through the intermittent generation of large diameter bubbles, "Taylor-like" or "slug bubbles" (SB bioreactor). It allows an easy volume increase from a few liters to larger volumes up to several hundred liters with the use of multiple units. The cultivation of tobacco and soya cells producing isoflavones is described up to 70 and 100 L working volume for the SB bioreactor and WU bioreactor, respectively. The bioreactors being disposable and pre-sterilized before use, cleaning, sterilization, and maintenance operations are strongly reduced or eliminated. Both bioreactors represent efficient and low cost cell culture systems, applicable to various cell cultures at small and medium scale, complementary to traditional stainless-steel bioreactors.

  17. Use of dexpanthenol and aloe vera to influence the irradiation response of the oral mucous membrane (mouse); Beeinflussung der Strahlenreaktion der Mundschleimhaut (Maus) durch Dexpanthenol {+-} Aloe vera

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, S. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Dresden Univ. (Germany); Spekl, K.; Doerr, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Dresden Univ. (Germany)]|[Experimentelles Zentrum, Medizinische Fakultaet Carl Gustav Carus, Dresden Univ. (Germany)

    2004-07-01

    In summarising the outcome of the present study it can be said spraying the agent on the oral mucous membrane once a day had an effect on the incidence of mucous membrane ulceration in the case of both placebo and dexpanthenol treatment. However, there was no significant difference between placebo and dexpanthenol treatment, the only finding being a slight prolongation of latency time through aloe vera. These experimental findings give good reason to critically reconsider the clinical use of dexpanthenol as a supportive treatment for the prevention of radiogenic mucositis enoralis following irradiation of tumours in the head and neck region. However thorough oral lavage is an effective means of moderating the irradiation response of the oral mucous membrane. [German] Zusammenfassend ist festzustellen, dass in den vorliegenden Versuchen mit einmal taeglichem Aufspruehen des Praeparates auf die Mundschleimhaut sowohl die Placebo - wie auch die Dexpanthenol-Behandlung die Inzidenz von Schleimhautulzerationen modifiziert hat; zwischen Placebo- und Dexpanthenol-Behandlung ergab sich jedoch kein signifikanter Unterschied. Lediglich eine geringe Verlaengerung der Latenzzeit durch Aloe vera war zu beobachten. Auf der Basis dieser experimentellen Ergebnisse muss der klinische Einsatz von Dexpanthenol im Rahmen der Supportivtherapie zur Prophylaxe der radiogenen Mucositis enoralis bei der Bestrahlung von Kopf-Hals-Tumoren kritisch ueberdacht werden. Regelmaessige, intensive Mundspuelungen sind jedoch ein probates Mittel zur Verminderung der Strahlenreaktion der Mundschleimhaut. (orig.)

  18. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    Science.gov (United States)

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  19. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen...

  20. Untersuchungen zur Beeinflussung der α-Amylase-Aktivität durch Pflanzenextrakte und polyphenolische Reinstoffe unter besonderer Berücksichtigung des Einflusses von Cynara cardunculus L. ssp. flavescens Wikl. und seiner Inhaltsstoffe

    OpenAIRE

    Funke, Ines

    2010-01-01

    The creation of a microplate-reader-based kinetic assay led to a rapid screening of plant extracts and pure compounds. Plant extracts were found to be able to inhibit the α-amylase activity. Cynara cardunculus L. ssp. flavescens Wikl., Melissa officinalis L., Pyrus communis L., Vaccinium myrtillus L., Malus domestica Borkh., Balanites aegyptiaca (L.) Del., Tamarindus indica L. were found to be active in the used in vitro test model. A performed bioguided extraction showed that the active...

  1. Methane production in simulated hybrid bioreactor landfill.

    Science.gov (United States)

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  2. Optimizing of Culture Conditionin Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionBioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world. 2 Rotating bioreactors2.1 Working principleThere are two kinds of horizontal rotating bioreactor: HARV(high aspect ratio vessel) and RCCS (rotary cell culture system). It is drived by step motor with horizontal rotation, the culture medium and cell is filled between ...

  3. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  4. Advanced methods for bioreactor characterization.

    Science.gov (United States)

    Lübbert, A

    1992-08-01

    Bioreactors are characterized by the transport capacities they provide to optimally supply the microorganisms during production process. The transport is performed by flows induced in their cultivation media. In order to understand the extremely complex mixing, mass and heat transfer phenomena encountered, and to perceive their influences on bioreactor performance, sophisticated measuring techniques are required. This review compiles the developments currently in progress to surmount today's shortage of reliable measuring techniques. Measuring techniques are distinguished which can be used on different scales and their application spectra are illustrated by recently obtained results. Several new measuring techniques, which can be employed to resolve the flow structures, are discussed in detail. Only those techniques are considered which can be used to advantage during real cultivations in industrial-scale reactors.

  5. Monolithic Continuous-Flow Bioreactors

    Science.gov (United States)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  6. Bioreactors for Plant Embryogenesis and Beyond.

    Science.gov (United States)

    Fei, Liwen; Weathers, Pamela

    2016-01-01

    A variety of different bioreactors have been developed for use in initiating and cultivating somatic embryos. The various designs for embryogenesis and culture are critically evaluated here. Bioreactor optimization and operation methods are also described along with recommendations for use based on desired outcome.

  7. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    Science.gov (United States)

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  8. Hydrodynamic characteristics of UASB bioreactors.

    Science.gov (United States)

    John, Siby; Tare, Vinod

    2011-10-01

    The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.

  9. Development of Fundamental Technologies for Micro Bioreactors

    Science.gov (United States)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  10. Spatial Experiment Technologies Suitable for Unreturnable Bioreactor

    Science.gov (United States)

    Zhang, Tao; Zheng, Weibo; Tong, Guanghui

    2016-07-01

    The system composition and main function of the bioreactor piggybacked on TZ cargo transport spacecraft are introduced briefly in the paper.The spatial experiment technologies which are suitable for unreturnable bioreactor are described in detail,including multi-channel liquid transportion and management,multi-type animal cells circuit testing,dynamic targets microscopic observation in situ etc..The feasibility and effectiveness of these technologies which will be used in space experiment in bioreactor are verified in tests and experiments on the ground.

  11. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR.

  12. In vivo bioreactors for mandibular reconstruction.

    Science.gov (United States)

    Tatara, A M; Wong, M E; Mikos, A G

    2014-12-01

    Large mandibular defects are difficult to reconstruct with good functional and aesthetic outcomes because of the complex geometry of craniofacial bone. While the current gold standard is free tissue flap transfer, this treatment is limited in fidelity by the shape of the harvested tissue and can result in significant donor site morbidity. To address these problems, in vivo bioreactors have been explored as an approach to generate autologous prefabricated tissue flaps. These bioreactors are implanted in an ectopic site in the body, where ossified tissue grows into the bioreactor in predefined geometries and local vessels are recruited to vascularize the developing construct. The prefabricated flap can then be harvested with vessels and transferred to a mandibular defect for optimal reconstruction. The objective of this review article is to introduce the concept of the in vivo bioreactor, describe important preclinical models in the field, summarize the human cases that have been reported through this strategy, and offer future directions for this exciting approach.

  13. Energy efficiency in membrane bioreactors.

    Science.gov (United States)

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.

  14. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  15. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  16. NASA Bioreactors Advance Disease Treatments

    Science.gov (United States)

    2009-01-01

    The International Space Station (ISS) is falling. This is no threat to the astronauts onboard, however, because falling is part of the ISS staying in orbit. The absence of gravity beyond the Earth s atmosphere is actually an illusion; at the ISS s orbital altitude of approximately 250 miles above the surface, the planet s gravitational pull is only 12-percent weaker than on the ground. Gravity is constantly pulling the ISS back to Earth, but the space station is also constantly traveling at nearly 18,000 miles per hour. This means that, even though the ISS is falling toward Earth, it is moving sideways fast enough to continually miss impacting the planet. The balance between the force of gravity and the ISS s motion creates a stable orbit, and the fact that the ISS and everything in it including the astronauts are falling at an equal rate creates the condition of weightlessness called microgravity. The constant falling of objects in orbit is not only an important principle in space, but it is also a key element of a revolutionary NASA technology here on Earth that may soon help cure medical ailments from heart disease to diabetes. In the mid-1980s, NASA researchers at Johnson Space Center were investigating the effects of long-term microgravity on human tissues. At the time, the Agency s shuttle fleet was grounded following the 1986 Space Shuttle Challenger disaster, and researchers had no access to the microgravity conditions of space. To provide a method for recreating such conditions on Earth, Johnson s David Wolf, Tinh Trinh, and Ray Schwarz developed that same year a horizontal, rotating device called a rotating wall bioreactor that allowed the growth of human cells in simulated weightlessness. Previously, cell cultures on Earth could only be grown two-dimensionally in Petri dishes, because gravity would cause the multiplying cells to sink within their growth medium. These cells do not look or function like real human cells, which grow three-dimensionally in

  17. Des tuiles, des toits et des couleurs

    OpenAIRE

    Bonnot, Thierry

    2007-01-01

    La Bourgogne est une des régions françaises dont l’image de marque est le plus imprégnée par la notion de tradition. Elle est présentée comme un terroir où il fait bon vivre, où la gastronomie demeure à travers les siècles une valeur de base, où les paysages sont majestueux et où la gloire passée est sans cesse rappelée par de somptueux monuments. Parmi quelques emblèmes, l’hôtel-Dieu de Beaune et ses toitures de tuiles colorées sont très souvent mobilisés pour représenter ces valeurs « tradi...

  18. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors.

    Science.gov (United States)

    Hsu, Wei-Ting; Aulakh, Rigzen P S; Traul, Donald L; Yuk, Inn H

    2012-12-01

    In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10-15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na(+), osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.

  19. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  20. Optimizing of Culture Condition in Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yan-Fang ZHANG; Huai-Qing CHEN; Hua HUANG

    2005-01-01

    @@ 1 Introduction Bioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world.

  1. Open source software to control Bioflo bioreactors.

    Science.gov (United States)

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  2. Open source software to control Bioflo bioreactors.

    Directory of Open Access Journals (Sweden)

    David A Burdge

    Full Text Available Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  3. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  4. Model studies and numerical simulations on nitrate reduction in a bioreactor; Modellbetrachtung und numerische Simulationen zur Nitrat-Reduktion in einem Bioreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Ghergut, I. [Inst. fuer angew. Math., Rumaenische Akad. d. Wiss. (Romania); Maloszewski, P.; Seiler, K.P. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie; Naumann, U.

    2001-11-01

    Naumann carried out denitrification studies on bacteria in a bioreactor providing a groundwater-like, anoxic environment which was so adjusted as to sustain a stable, denitrifying biocoenosis. This bioreactor consists of a column containing water from a karst spring and drill core material from the mass lime of the Franconian Jurassic. There is a flow of spring water through the bioreactor. This paper is an endeavour to formulate classical models on nutrient consumption and population dynamics in this bioreactor. The processes in the bioreactor are determined quantitatively by means of simple partial differential equations. This leads to a calibrated mathematical model which serves as a basis for discussing and specifying unresolved questions. [German] Naumann fuehrte Denitrifikationsuntersuchungen von Bakterien in einem unter grundwasseraehnlichen, sauerstoffreien Bedingungen funktionierenden Bioreaktor durch, in dem Voraussetzungen einer stabilen denitrifizierenden Organismengemeinschaft geschaffen wurden. Dieser Bioreaktor besteht aus einer Saeule mit Wasser aus einer Karstquelle und Bohrkernmaterial aus dem Massenkalk des fraenkischen Juras und wird vom Quellwasser durchstroemt. Im Folgenden wird versucht, klassische Modellansaetze zum Naehrstoffverbrauch und zur Populationsdynamik fuer das Geschehen in diesem Bioreaktor zu artikulieren; das Bioreaktorgeschehen wird durch einfache partielle Differential-Gleichungen (PDG) quantitativ erfasst. Das so kalibrierte mathematische Modell wird schliesslich dazu benutzt noch offene Fragen anzudiskutieren bzw. einzuengen. (orig.)

  5. Bioreactor and methods for producing synchronous cells

    Science.gov (United States)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  6. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  7. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  8. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  9. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  10. Bioreactor Studies and Computational Fluid Dynamics

    Science.gov (United States)

    Singh, H.; Hutmacher, D. W.

    The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  11. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  12. Vortex breakdown in a truncated conical bioreactor

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.;

    2015-01-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It ...... are of fundamental interest and can be relevant for aerial bioreactors....

  13. Establishing Liver Bioreactors for In Vitro Research.

    Science.gov (United States)

    Rebelo, Sofia P; Costa, Rita; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2015-01-01

    In vitro systems that can effectively model liver function for long periods of time are fundamental tools for preclinical research. Nevertheless, the adoption of in vitro research tools at the earliest stages of drug development has been hampered by the lack of culture systems that offer the robustness, scalability, and flexibility necessary to meet industry's demands. Bioreactor-based technologies, such as stirred tank bioreactors, constitute a feasible approach to aggregate hepatic cells and maintain long-term three-dimensional cultures. These three-dimensional cultures sustain the polarity, differentiated phenotype, and metabolic performance of human hepatocytes. Culture in computer-controlled stirred tank bioreactors allows the maintenance of physiological conditions, such as pH, dissolved oxygen, and temperature, with minimal fluctuations. Moreover, by operating in perfusion mode, gradients of soluble factors and metabolic by-products can be established, aiming at resembling the in vivo microenvironment. This chapter provides a protocol for the aggregation and culture of hepatocyte spheroids in stirred tank bioreactors by applying perfusion mode for the long-term culture of human hepatocytes. This in vitro culture system is compatible with feeding high-throughput screening platforms for the assessment of drug elimination pathways, being a useful tool for toxicology research and drug development in the preclinical phase.

  14. Continuous-Flow Gas-Phase Bioreactors

    Science.gov (United States)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  15. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  16. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  17. La metamorphose des cypris femelles des Rhizocephales

    NARCIS (Netherlands)

    Veillet, A.

    1964-01-01

    Depuis la découverte de la métamorphose des cypris de Sacculina carcini Thompson par Delage, peu de biologistes se sont intéressés au développement des Rhizocéphales. On admet aujourd'hui que tous les Cirripèdes parasites ont, comme Sacculina carcini, une forme kentrogone qui inocule le parasite au

  18. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  19. Die Thrombolysetherapie des ST-Streckenhebungsinfarktes 2002

    Directory of Open Access Journals (Sweden)

    Huber K

    2002-01-01

    der GUSTO-3-Studie (t-PA vs. r-PA und in der ASSENT-2-Studie (t-PA VS. TNK-tPA konnte eine gleich gute Effektivität von t-PA und seinen Mutanten nachgewiesen werden. Der Vorteil von r-PA und TNK-tPA lag in erster Linie in der einfacheren Applikationsweise. TNK-tPA wird körpergewichtsadaptiert verabreicht und weist bei Hochrisikopatienten (unter 75jährige, unter 67 kg schwere Frauen die verhältnismäßig geringste intrazerebrale Blutungsrate auf. In Pilotstudien konnte gezeigt werden, daß die Kombination einer halben Dosis eines Fibrinolytikums mit einer Volldosis eines GP IIb/IIIa-Blockers zu einer deutlich höheren TIMI-Grad 3-Flußrate (65 bis 78 % führt (TIMI-14-Studie: t-PA oder r-PA + Abciximab, SPEED-Studie: r-PA + Abciximab; INTRO-AMI-Studie: t-PA + Eptifibatid; INTEGRITI-Studie: TNK-tPA + Eptifibatid. Die beiden bisher durchgeführten prospektiven klinischen Vergleichsstudien haben diese Hoffnungen aber nicht erfüllt und zu keiner Verbesserung der harten klinischen Endpunkte geführt (GUSTO V-, ASSENT-3-Studie. Erfolge konnten aber für die Kombination Fibrinolyse + niedermolekulares Heparin (NMH anstelle des üblichen Standardheparins verbucht werden (ASSENT PLUS Studie: t-PA + Dalteparin; HART-2-Studie: t-PA + Enoxaparin; ASSENT-3-Studie: TNK-tPA + Enoxaparin: In der ASSENT-3-Studie konnten die 30-Tages-Endpunkte (kombiniert in der TNK-tPA + Enoxaparin vs. der TNK-tPA + Standardheparin-Gruppe signifikant gesenkt werden (11,4 vs. 15,4 %; p kleiner 0,001. Zukünftige Entwicklungen: Derzeit sind Untersuchungen im Gange (ADVANCE-MI, ASSENT-4-PCI, FINESSE, die feststellen sollen, ob eine fixe Kombinationstherpie bestehend aus rasch verfügbarer medikamentöser Behandlung (Fibrinolyse, GP IIb/IIIa-Blocker oder Kombination aus beiden und einer unmittelbar nachfolgenden Optimierung des Koronarflusses mittels Akut-PCI in der Lage ist, die Mortalitätsrate von Reperfusionsmaßnahmen bei akutem STEMI ohne negative Beeinflussung der Blutungskomplikationsrate

  20. Des racines et des ailes

    Directory of Open Access Journals (Sweden)

    Stéphanie Vincent-Geslin

    2012-05-01

    Full Text Available Les mobilités pendulaires semblent être en augmentation en Europe depuis une dizaine d’années. Cette croissance du temps passé à se déplacer amène à remettre en question la conjecture de Zahavi et apparaît relativement inexplicable en regard du paradigme classique de l’acteur rationnel traditionnellement utilisé dans le champ des transports. Si, dans la littérature, les temps de déplacements sont principalement expliqués par le contexte résidentiel, la forme urbaine et le travail, ce cadre explicatif ne dit rien des processus de décision eux-mêmes qui amènent aux pendularités intensives.À partir d’une enquête qualitative menée auprès de pendulaires français, suisses et belges, cette contribution propose d’analyser les arbitrages et les éléments déterminants des processus de la grande pendularité. Les mobilités quotidiennes pendulaires apparaissent comme le résultat de compromis entre activité professionnelle, attachement résidentiel et choix de vie et prennent ainsi la forme de stratégies de conciliation entre vie privée et vie professionnelle. Ces mobilités spatiales permettent alors paradoxalement la préservation des ancrages résidentiels, sociaux et familiaux.Roots and wings. Long-distance commuting patterns, or how to conciliate professional and personal lifeLong-distance commuting patterns appear to be increasing in Europe over the last ten years. These raising mobility patterns lead to reappraise the Zahavi conjecture and appear largely inexplicable by the classical rational actor paradigm traditionally used in transportation research. In literature, commuting is mainly explained by residential contexts, urban forms and job. Nevertheless this theoretical frame says little about the decision-making processes themselves. Based on a qualitative survey conducted in three European countries - France, Belgium and Switzerland – among a population of high commuters, this paper proposes an analysis of

  1. Bioreactor and process design for biohydrogen production.

    Science.gov (United States)

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.

  2. Bioreactor Yields Extracts for Skin Cream

    Science.gov (United States)

    2015-01-01

    Johnson Space Flight Center researchers created a unique rotating-wall bioreactor that simulates microgravity conditions, spurring innovations in drug development and medical research. Renuèll Int'l Inc., based in Aventure, Florida, licensed the technology and used it to produce a healing skin care product, RE`JUVEL. In a Food and Drug Administration test, RE`JUVEL substantially increased skin moisture and elasticity while reducing dark blotches and wrinkles.

  3. Oxygen transfer in a pressurized airlift bioreactor.

    Science.gov (United States)

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control.

  4. Nitrous oxides reduction pathways induced during nitrified leachate recirculation in bioreactor landfill; Voies de reduction des oxydes d'azote lors de leur injection dans un massif de dechets menagers et assimiles: contribution a l'etude de la recirculation de lixiviat nitrifie dans une installation de stockage de dechets menagers et assimiles bioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.

    2005-12-15

    Nitrified leachate recirculation in bioreactor landfill has been proposed to avoid ammonium accumulation. We worked on the identification of nitrous oxides reduction pathways induced when nitrified leachate is recirculated during waste degradation. Batch reactors (1.1 liter, 40 g of reconstituted Municipal Solid Waste, MSW) were operated at 35 deg C and saturated with leachate. Injections of 250 mg N-NO{sub x}.10{sup -1} were performed during different phases of waste biodegradation. Nitrate reduction during acido-genic and active methanogenic phases, with an easily available carbon source in leachate, was mainly attributed to heterotrophic denitrification. However, H{sub 2}S concentration up to 0.7 % in the biogas (corresponding to 0.5 mmol of free H{sub 2}S per liter of leachate) led to prevalent DNRA (Dissimilatory Nitrate Reduction to Ammonium) over denitrification. This reaction hindered the release of nitrogen outside of the system. This observation was confirmed with experiments performed with {sup 15}N enriched nitrate. During late methanogenic phase, without any available carbon source in leachate, nitrate was reduced by autotrophic denitrification with sulfide as an electron donor. No free metal was detected in the leachate. N{sub 2}O transient accumulation was detected during both DNRA and autotrophic denitrification. A second set of experiments was conducted in a MSW pilot scale column (0.2 m{sup 3}, 80 kg of reconstituted waste) in methanogenic phase. 113 % and 203 % of nitrate were converted into N{sub 2} when a synthetic KNO{sub 3} solution (280 mg N.day{sup -1} during 77 days) or nitrified leachate (61 mg N.day{sup -1} during 54 days) were respectively injected into the system. The downward movement of a denitrification front passing through the waste mass was followed using 3 redox probes inserted at different levels of the pilot. Even if N{sub 2}O was never detected, a small production of this gas could not be totally excluded. It was established

  5. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    I Slivac; V Gaurina Srček; K Radošević; I Kmetič; Z Kniewald

    2006-09-01

    A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring oxygen was evaluated for BHK 21 C13 cell line growth and Aujeszky’s disease virus (ADV) production. Growth kinetics of BHK 21 C13 cells in the wave bioreactor during 3-day period were determined. At the end of the 3-day culture period and cell density of 1.82 × 106 cells ml–1, the reactor was inoculated with 9 ml of gE- Bartha K-61 strain ADV suspension (105.9 TCID50) with multiplicity of infection (MOI) of 0.01. After a 144 h incubation period, 400 ml of ADV harvest was obtained with titre of 107.0 TCID50 ml–1, which corresponds to 40,000 doses of vaccine against AD. In conclusion, the results obtained with the wave bioreactor using BHK 21 C13 cells showed that this system can be considered as suitable for ADV or BHK 21 C13 cell biomass production.

  6. Degradation of Refuse in Hybrid Bioreactor Landfill

    Institute of Scientific and Technical Information of China (English)

    YAN LONG; Yu-YANG LONG; HAI-CHUN LIU; DONG-SHENG SHEN

    2009-01-01

    Objectivess To explore the process of refuse decomposition in hybrid bioreactor landfill. Methods The bioreactor landfill was operated in sequencing of facultative-anaerobic and aerobic conditions with leachate recireulation, pH, COD, and ammonia in the leachate and pH, biodegradable organic matter (BDM), and cation exchange capacity (CEC) in refuse were detected. Results CEC increased gradually with the degradation of refuse, which was negatively correlad, With BDM. COD and ammonia in the leachate was declined to 399.2 mg L-1 and 20.6 mg N L-1, respectively, during the 357-day operation. The respective concentrations of ammonia and COD were below the second and the third levels of current discharge standards in China. Conclusion The refuse is relatively stable at the end of hybrid bioreactor landfill operation. Most of the readily biodegradable organic matter is mineralized in the initial phase of refuse degradation, whereas the hard-biodegradable organic matter is mainly humidified in the maturity phase of refuse degradation.

  7. Denitrifying bioreactors for nitrate removal from tile drained cropland

    Science.gov (United States)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  8. Microbial community analysis of a full-scale DEMON bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  9. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  10. Sulfur formation and recovery in a thiosulfateoxidizing bioreactor

    NARCIS (Netherlands)

    Gonzalez-Sanchez, A.; Meulepas, R.J.W.; Revah, S.

    2008-01-01

    This work describes the design and Performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate a

  11. Evaluation of woodchip bioreactors for improved water quality

    Science.gov (United States)

    Woodchip bioreactors are gaining popularity with farmers because of their edge-of-field nitrate removal capabilities, which do not require changes in land management practices. However, limited research has been conducted to study the potential of these bioreactors to also reduce downstream transpor...

  12. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    Science.gov (United States)

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  13. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  14. Disposable bioreactors for inoculum production and protein expression.

    Science.gov (United States)

    Eibl, Regine; Löffelholz, Christian; Eibl, Dieter

    2014-01-01

    Disposable bioreactors have been increasingly implemented over the past ten years. This relates to both R & D and commercial manufacture, in particular, in animal cell-based processes. Among the numerous disposable bioreactors which are available today, wave-mixed bag bioreactors and stirred bioreactors are predominant. Whereas wave-mixed bag bioreactors represent the system of choice for inoculum production, stirred systems are often preferred for protein expression. For this reason, the authors present protocols instructing the reader how to use the wave-mixed BIOSTAT CultiBag RM 20 L for inoculum production and the stirred UniVessel SU 2 L for recombinant protein production at benchtop scale. All methods described are based on a Chinese hamster ovary (CHO) suspension cell line expressing the human placental secreted alkaline phosphatase (SEAP).

  15. Liste des intrants 2015

    OpenAIRE

    Speiser, Bernhard; Tamm, Lucius; Maurer, Veronika; Berner, Alfred; Schneider, Claudia; Chevillat, Véronique

    2015-01-01

    La liste des intrants contient tous les produits phytosanitaires, les engrais, les substrats du commerce, les produits de lutte contre les mouches des étables, les agents d'ensilage, les aliments minéraux et complémentaires, les produits pour la désinfection des stabulations et les produits contre les maladies des abeilles autorisés pour l'agriculture biologique. Cette liste est contraignante pour les producteurs de Bio Suisse. Sur les fermes Bio Suisse, seuls les produits mentionnés sont aut...

  16. Studies on the turnover and properties of dump groundwaters in brown coal mining areas and possibilities of influencing them. Final report; Untersuchungen zum Stoffumsatz und zur Beschaffenheit der Kippengrundwaesser in Braunkohlebergbaugebieten und Moeglichkeiten zu deren Beeinflussung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Katzur, J.; Liebner, F.; Liebner, C.; Welzel, H.P.; Hettrich, K.

    2001-07-01

    Only 6 days after the increase in pH with water saturation the concentration of iron in the pore water of the T1 sediment had dropped to a low value, 70% of which was accounted for by Fe(II). This is probably due to the almost complete precipitation of Fe(III) caused by the high pH values. Compared with the untreated variant the lowering of pH in the further course of the experiment led to a slight Fe(III) mobilisation and hence, through interaction with other reduction processes, to erratic changes in the share of Fe(II) in total Fe. Although this sediment showed a relatively low iron concentration a comparison showed that higher pH values and incubation temperatures have an influence on microbial iron reduction. [German] Im Porenwasser des Sedimentes T1 lag Eisen bereits 6 Tage nach pH-Erhoehung und Wassersaettigung nur noch in geringer Konzentration und zu ueber 70% als Fe(II) vor. Dies ist vermutlich in erster Linie auf die nahezu vollstaendige Ausfaellung von Fe(III) infolge der hohen pH-Werte zurueckzufuehren. Im weiteren Versuchsverlauf fuehrte das Absinken der pH-Werte zu einer im Vergleich zur unbehandelten Variante geringfuegigen Fe(III)-Mobilisierung und damit in Wechselwirkung mit ablaufenden Reduktionsprozessen zu unstetigen Veraenderungen in den Anteilen Fe(II) an Fe{sub ges}. Obwohl in diesem Sediment nur vergleichsweise niedrige Eisenkonzentrationen vorliegen, ergab ein Vergleich, dass hoehere pH-Werte und Inkubationtemperaturen die mikrobielle Eisenreduktion beeinflussen. (orig.)

  17. Gestion des risques

    CERN Document Server

    Louisot, Jean-Paul

    2009-01-01

    Depuis le début du lie siècle, la gestion des risques connaît une véritable révolution culturelle. Jusqu'alors fonction technique, centrée autour de l'achat de couverture d'assurances, elle est devenue une discipline managériale et transversale : une valise d'instruments que chaque manager doit connaître et appliquer quels que soient son domaine de compétence et ses missions au sein de l'organisation. En effet, la gestion des risques est une culture qui doit être assimilée par chacun des acteurs. C'est précisément l'ambition des 101 questions rassemblées dans cet ouvrage : apporter à chaque manager d'entreprise, de collectivité, d'établissement de santé..., des réponses claires au " pourquoi " et au " comment " : Comment identifier les risques ? Comment analyser les risques ? Quels sont les objectifs de la gestion des risques ? Une carte des risques pour quoi faire ? Pourquoi faut-il financer les risques ? Les entreprises ont-elles des responsabilités pénales ? En quoi consiste la gestion...

  18. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production.

    Science.gov (United States)

    Jain, Era; Kumar, Ashok

    2013-05-01

    Low cost and high efficiency make disposable bioreactors feasible for small-scale therapeutic development and initial clinical trials. We have developed a cryogel-based disposable bioreactor matrix, which has been used for production of protein therapeutics such as urokinase and monoclonal antibodies (mAbs). The protocol discusses the application of a cryogel bioreactor for mAb production. Cryogels composed of either polyacrylamide (PAAm) coupled to gelatin or semi-interpenetrating PAAm-chitosan are synthesized by free-radical polymerization at -12 °C. Hybridoma cells are immobilized over the cryogel bioreactor and incubated for 48 h. Medium is circulated thereafter at 0.2 ml min(-1) and bioreactors can be run continuously for 60 d. The cryogel-based packed-bed bioreactor can be formulated as a monolith or as beads; it also has an efficiency four times what can be obtained using a tissue-culture flask, a high surface-to-volume ratio and effective nutrient transport. After incubation, the bioreactor setup will take about 60 min using a pre-prepared sterilized cryogel.

  19. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  20. Dynamic global sensitivity analysis in bioreactor networks for bioethanol production.

    Science.gov (United States)

    Ochoa, M P; Estrada, V; Di Maggio, J; Hoch, P M

    2016-01-01

    Dynamic global sensitivity analysis (GSA) was performed for three different dynamic bioreactor models of increasing complexity: a fermenter for bioethanol production, a bioreactors network, where two types of bioreactors were considered: aerobic for biomass production and anaerobic for bioethanol production and a co-fermenter bioreactor, to identify the parameters that most contribute to uncertainty in model outputs. Sobol's method was used to calculate time profiles for sensitivity indices. Numerical results have shown the time-variant influence of uncertain parameters on model variables. Most influential model parameters have been determined. For the model of the bioethanol fermenter, μmax (maximum growth rate) and Ks (half-saturation constant) are the parameters with largest contribution to model variables uncertainty; in the bioreactors network, the most influential parameter is μmax,1 (maximum growth rate in bioreactor 1); whereas λ (glucose-to-total sugars concentration ratio in the feed) is the most influential parameter over all model variables in the co-fermentation bioreactor.

  1. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  2. LTCC based bioreactors for cell cultivation

    Science.gov (United States)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  3. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  4. Novel Hydrogen Bioreactor and Detection Apparatus.

    Science.gov (United States)

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C.

  5. Le dialogisme intertextuel des contes des Grimm

    OpenAIRE

    2012-01-01

    « Le caractère le plus important de l’énoncé, ou en tous cas le plus ignoré, est son dialogisme, c’est-à-dire sa dimension intertextuelle », constate Todorov en référence à la conception dialogique du langage proposée par Bakthine. Cet article introductif postule que ce constat s’applique aussi aux contes des Grimm. En partant des recherches déjà menées sur Apulée, Straporola, Basile, Perrault, La Fontaine et Lhéritier, il présente des concepts (réponse intertextuelle, reconfiguration génériq...

  6. Negative Effects of Sludge Bulking in Membrane Bio-Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; HUANG Zhi; REN Nanqi; MENG Qingjuan

    2006-01-01

    Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.

  7. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  8. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    A current problem in tissue culturing technology is the unavailability of an effective Bioreactor for the in vitro cultivation of cells and explants. It has, in fact, proved extremely difficult to promote the high-density three-dimensional in vitro growth of human tissues that have been removed from the body and deprived of their normal in vivo vascular sources of nutrients and gas exchange. A variety of tissue explants can be maintained for a short period of time on a supportive collagen matrix surrounded by culture medium. But this system provides only limited mass transfer of nutrients and wastes through the tissue, and gravity-induced sedimentation prevents complete three- dimensional cell-cell and cell-matrix interactions. Several devices presently on the market have been used with only limited success since each has limitations, which restrict usefulness and versatility. Further, no Bioreactor or culture vessel is known that will allow for unimpeded growth of three dimensional cellular aggregates or tissue. Extensive research on the effect of mechanical stimuli on cell metabolism suggests that tissues may respond to mechanical stimulation via loading-induced flow of the interstitial fluids. During the culture, cells are subject to a flow of culture medium. Flow properties such as flow field, flow regime (e.g. turbulent or laminar), flow pattern (e.g. circular), entity and distribution of the shear stress acting on the cells greatly influence fundamental aspects of cell function, such as regulation and gene expression. This has been demonstrated for endothelial cells and significant research efforts are underway to elucidate these mechanisms in various other biological systems. Local fluid dynamics is also responsible of the mass transfer of nutrients and catabolites as well as oxygenation through the tissue. Most of the attempts to culture tissue-engineered constructs in vitro have utilized either stationary cultures or systems generating relatively small

  9. Optimization of the welding process of high alloyed steels and improvement of corrosion behaviour of welded joints; Optimierung des Schweissprozesses hochlegierter Staehle und Verbesserung der Korrosionsbestaendigkeit der Schweissverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, K.; Goellner, J. [Otto-von-Guericke-Universitaet Magdeburg, IWW, PF 4120, D-39016 Magdeburg (Germany); Ryspaev, T.; Reiter, R.; Wesling, V. [Technische Universitaet Clausthal, Agricolastrasse 2, D-38678 Clausthal-Zellerfeld (Germany)

    2005-03-01

    The optimization of welding processes is necessary to obtain a good durability of the welded joints connected with a minimization of the corrosion performance. Welding processes represent a considerable influence of the material. The formation of precipitations, strong structure changes, increasing of the residual stress and not at all undefined surface layers are possible. All these changes have a great influence on the corrosion behaviour. Particularly tempering tarnish changes the passive layer which is decisive for the corrosion resistance. But also surface treatment methods can influence the corrosion behaviour. Therefore both the welding process and an ''after-care'' coordinated with the respective welding process had to be optimized. The optimization of the welding process was carried out by variation of the energy per unit length and the use of different protective gases. For a selection of a surface treatment method it has to be taken into account that an obvious remove of the tempering tarnish doesn't lead to an improvement in the corrosion behaviour. Traces of the working tool which can have a negative effect on the corrosion behaviour often remain on the surface. The influence of these different parameters on the corrosion property could be proved by electrochemical and surface analytical examinations. The investigations were carried out at specimens of two typical representatives of high alloyed austenitic steels and at welded joints, which had different surface treatments. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Die Optimierung von Schweissprozessen ist erforderlich, um eine gute Haltbarkeit der Schweissverbindungen und eine Minimierung der Korrosionsneigung zu erzielen. Schweissprozesse stellen eine erhebliche Beeinflussung fuer den Werkstoff dar. Es kann dabei zu Ausscheidungen bzw. zu starken Gefuegeveraenderungen, zur Erhoehung der Eigenspannungen und nicht zuletzt zu Schichtbildungen kommen. All

  10. Droit des organisations internationales

    CERN Document Server

    Sorel, Jean-Marc; Ndior, Valère

    2013-01-01

    Cet ouvrage collectif offre aux enseignants et chercheurs en droit international, aux praticiens et aux étudiants, une analyse actualisée du droit des organisations internationales. Il dresse en cinq parties un tableau, illustré par des exemples variés, des problématiques que soulève le phénomène polymorphe d institutionnalisation de la société internationale. La première partie est consacrée au phénomène des « organisations internationales », sous l angle à la fois de l institutionnalisation progressive des relations internationales et de la difficulté à cerner une catégorie unifiée. La deuxième partie rend compte de la création, de la disparition et des mutations des organisations internationales, ici envisagées comme systèmes institutionnels et ordres juridiques dérivés. La troisième partie analyse l autonomie que l acquisition de la personnalité juridique et de privilèges et immunités, un organe administratif intégré, un personnel ou un budget propres confèrent aux organi...

  11. Photonique des Morphos

    CERN Document Server

    Berthier, Serge

    2010-01-01

    La photonique est déjà présente dans notre vie quotidienne, et on attend maintenant que la manipulation des photons permette aussi le traitement logique des informations. Cependant, l’élément de base qui permet cette manipulation de la lumière, le cristal photonique, est d’une réalisation complexe et mal contrôlée. Dans la course à la maîtrise de la lumière, les structures photoniques naturelles ont beaucoup à nous apprendre. C’est ce que nous montre Serge Berthier qui étudie dans ce livre la structure des écailles des Morphos. Tenant compte de l’essor récent des approches biomimétiques, il présente de manière détaillée plus de dix-huit techniques expérimentales utilisées pour ses analyses, ainsi que les diverses approches théoriques développées pour la modélisation de structures multi-échelles complexes. Première étude quasi-exhaustive des structures fines d’un genre et des propriétés optiques ainsi que colorimétriques générées, ce livre fournit aux entomologiste...

  12. Bioreactors Drive Advances in Tissue Engineering

    Science.gov (United States)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  13. Des ballons pour demain

    Science.gov (United States)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  14. Hairy root culture: bioreactor design and process intensification.

    Science.gov (United States)

    Stiles, Amanda R; Liu, Chun-Zhao

    2013-01-01

    The cultivation of hairy roots for the production of secondary metabolites offers numerous advantages; hairy roots have a fast growth rate, are genetically stable, and are relatively simple to maintain in phytohormone free media. Hairy roots provide a continuous source of secondary metabolites, and are useful for the production of chemicals for pharmaceuticals, cosmetics, and food additives. In order for hairy roots to be utilized on a commercial scale, it is necessary to scale-up their production. Over the last several decades, significant research has been conducted on the cultivation of hairy roots in various types of bioreactor systems. In this review, we discuss the advantages and disadvantages of various bioreactor systems, the major factors related to large-scale bioreactor cultures, process intensification technologies and overview the mathematical models and computer-aided methods that have been utilized for bioreactor design and development.

  15. Upflow bioreactor with septum and pressure release mechanism

    Science.gov (United States)

    Hansen, Conly L.; Hansen, Carl S.; Pack, Kevin; Milligan, John; Benefiel, Bradley C.; Tolman, C. Wayne; Tolman, Kenneth W.

    2010-04-20

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes means for releasing pressure buildup in the lower chamber. In one configuration, the septum includes a releasable portion having an open position and a closed position. The releasable portion is configured to move to the open position in response to pressure buildup in the lower chamber. In the open position fluid communication between the lower chamber and the upper chamber is increased. Alternatively the lower chamber can include a pressure release line that is selectively actuated by pressure buildup. The pressure release mechanism can prevent the bioreactor from plugging and/or prevent catastrophic damage to the bioreactor caused by high pressures.

  16. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  17. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...... that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what...... are the limitations of different types of mod - els? This paper will provide examples of models that have been published in the literature for use across bioreactor scales, including computational fluid dynamics (CFD) and population balance models. Furthermore, the importance of good modeling practice...

  18. Modeling bioaugmentation with nitrifiers in membrane bioreactors.

    Science.gov (United States)

    Mannucci, Alberto; Munz, Giulio; Mori, Gualtiero; Makinia, Jacek; Lubello, Claudio; Oleszkiewicz, Jan A

    2015-01-01

    Bioaugmentation with nitrifiers was studied using two pilot-scale membrane bioreactors, with the purpose of assessing the suitability of state-of-the-art activated sludge models (ASMs) in predicting the efficiency of bioaugmentation as a function of operating conditions. It was demonstrated that the temperature difference between seeding and seeded reactors (ΔT) affects bioaugmentation efficiency. Experimental data were accurately predicted when ΔT was within a range of up to 10 °C at the higher range, and when the temperature was significantly lower in the seeded reactor compared to the seeding one, standard ASMs overestimated the efficiency of bioaugmentation. A modified ASM, capable of accurately representing the behavior of seeded nitrifying biomass in the presence of high ΔT, would require the inclusion of the effect of temperature time gradients on nitrifiers. A simple linear correlation between ΔT and the Arrhenius coefficient was proposed as a preliminary step.

  19. Vortex breakdown in a truncated conical bioreactor

    Science.gov (United States)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2015-12-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small Hw, the AMF effect dominates. As Hw increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

  20. Microbial Bioreactor Development in the ALS NSCORT

    Science.gov (United States)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  1. Start-up Strategy for Continuous Bioreactors

    Directory of Open Access Journals (Sweden)

    A.C. da Costa

    1997-06-01

    Full Text Available Abstract - The start-up of continuous bioreactors is solved as an optimal control problem. The choice of the dilution rate as the control variable reduces the dimension of the system by making the use of the global balance equation unnecessary for the solution of the optimization problem. Therefore, for systems described by four or less mass balance equations, it is always possible to obtain an analytical expression for the singular arc as a function of only the state variables. The steady state conditions are shown to satisfy the singular arc expression and, based on this knowledge, a feeding strategy is proposed which leads the reactor from an initial state to the steady state of maximum productivity

  2. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  3. Bioprocess kinetics in a horizontal rotating tubular bioreactor.

    Science.gov (United States)

    Ivancić, M; Santek, B; Novak, S; Horvat, P; Marić, V

    2004-04-01

    A horizontal rotating tubular bioreactor (HRTB) is a plug flow bioreactor whose interior is provided with O-ring-shaped partition walls that serve as carriers for microbial biomass. During this investigation, microbial biomass was grown in suspension and on the bioreactor inner surface as a microbial biofilm with average mass that was considerably higher than suspended biomass. The dynamics of bioprocess in HRTB was studied by different combinations of process parameters (bioreactor rotation speed and mean residence time) and it was monitored by withdrawing the samples from five positions along the bioreactor. During this investigation it was also observed that mean residence time had a more pronounced effect on the bioprocess dynamics than bioreactor rotation speed. For the description of bioprocess kinetics in HRTB an unstructured kinetic model was established that defines biomass growth, product formations and substrate consumption rate by using a modified Monod (Levenspiel) model. This kinetic model defines changes in suspension and in microbial biofilm, and it shows relatively good agreement with experimental data.

  4. Performance of a partially packed charcoal pellet bioreactor for acetic acid fermentation.

    Science.gov (United States)

    Horiuchi, J; Ando, K; Watanabe, S; Tada, K; Kobayashi, M; Kanno, T

    2001-01-01

    The performance of a partially packed charcoal pellet bioreactor was compared to that of a fully packed bioreactor for aerobic acetic acid production. In the fully packed charcoal pellet bioreactor, it was considered that the shortening of an actual retention time of the culture broth limited the bioreactor performance under high dilution rate and high aeration conditions. By reducing the filling ratio of charcoal pellets to 44%, which increased the actual retention time of the culture broth, the maximum productivity increased from 3.9 g/l/h in the fully packed bed bioreactor to 5.7 g/l/h in the partially packed bioreactor without affecting the operational stability.

  5. Table des illustrations

    OpenAIRE

    2016-01-01

    Tableaux Dates d’inauguration des grands hôtels japonais entre 1860 et 1945… 19 Histoire, tourisme et hôtellerie en Corée depuis les années 1870… 59-60 Dates d’inauguration des grands hôtels chinois depuis 1863… 84 Les hôtels de luxe et leurs capacités d’hébergement en Corée en 2000… 103 Les flux de personnes suscités par les hôtels « super luxe » de Séoul en 2000… 105 L’activité des grands hôtels à Séoul en 1999 (en wons)… 106 Propriété et gestion des grands hôtels à Séoul en 1999…. 110 La c...

  6. Dental Encounter System (DES)

    Data.gov (United States)

    Department of Veterans Affairs — Dental Encounter System (DES) is an automated health care application designed to capture critical data about the operations of VA Dental Services. Information on...

  7. Chimie des processus biologiques

    OpenAIRE

    Fontecave, Marc

    2010-01-01

    La chimie du vivant : enzymes et métalloenzymes, des biocatalyseurs fascinants La catalyse enzymatique, ce pouvoir que possèdent certaines protéines d’accélérer de façon extraordinaire et d’orienter avec une précision fascinante les réactions chimiques de la cellule, reste, encore aujourd’hui, l’un des grands mystères des systèmes vivants. Les réactions dont il est question vont de la simple hydrolyse de liaisons peptidiques à des processus poly-électroniques d’une très grande complexité, com...

  8. La revolution des savants

    CERN Document Server

    Chavanne, A

    1989-01-01

    Premiere cassette : - 1666 : impact de la creation de l'Academie des Sciences par Colbert, trente ans apres le proces de Galile, et au moment des disparitions de Pascal, Descartes et Fermat. Elle dirigee par le hollandais Huyggens jusqu'a sa fuite de France au moment de la revocation de l'Edit de Nantes. - 1750 : l'Encyclopedie (ou "Dictionnaire raisonne des Sciences, des Arts et des Metiers") de Diderot et d'Alembert, soutenus par Malherbes, Buffon, Condorcet et Rousseau. - 1789 : Revolution francaise. - 8 aout 1793 : l'Assemblee, par une declaration de Marat, dissout l'Academie des Sciences. Celle-ci continue cependant ses travaux pour les poids et mesures jusqu'en 1795. - la Terreur : la condamnation a mort, pas au nom d'une "Revolution qui n'a pas besoin de savants" mais pour d'autres raisons, de trois grands hommes de science : Lavoisier, Bailly et Condorcet. - 1793-1794 : Au printemps 93, le Comite de Salut Publique s'inquiete du demi-million de soldats etrangers de toutes les pays frontaliers qui essai...

  9. Le dialogisme intertextuel des contes des Grimm

    OpenAIRE

    2013-01-01

    Loin d'être « purement allemands », nombre de contes des Grimm réécrivent les contes français largement diffusés en Allemagne au XVIIIe siècle en les « reconfigurant » selon leurs propres paradigmes esthétiques et idéologiques. L'étude introductive de la comparatiste Ute Heidmann montre que ce dialogisme européen est resté peu exploré en raison d’une « scénographie en trompe-l’œil » qui les présente comme issus du « terroir » hessois. Toutefois, les notes des Grimm (constituées en volume auto...

  10. Maladie des vibrations

    Science.gov (United States)

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Résumé Objectif Permettre aux médecins de famille de comprendre l’épidémiologie, la pathogenèse, les symptômes, le diagnostic et la prise en charge de la maladie des vibrations, une maladie professionnelle importante et courante au Canada. Sources d’information Une recherche a été effectuée sur MEDLINE afin de relever les recherches et comptes rendus portant sur la maladie des vibrations. Une recherche a été effectuée sur Google dans le but d’obtenir la littérature grise qui convient au contexte canadien. D’autres références ont été tirées des articles relevés. Message principal La maladie des vibrations est une maladie professionnelle répandue touchant les travailleurs de diverses industries qui utilisent des outils vibrants. La maladie est cependant sous-diagnostiquée au Canada. Elle compte 3 éléments : vasculaire, sous la forme d’un phénomène de Raynaud secondaire; neurosensoriel; et musculosquelettique. Aux stades les plus avancés, la maladie des vibrations entraîne une invalidité importante et une piètre qualité de vie. Son diagnostic exige une anamnèse minutieuse, en particulier des antécédents professionnels, un examen physique, des analyses de laboratoire afin d’éliminer les autres diagnostics, et la recommandation en médecine du travail aux fins d’investigations plus poussées. La prise en charge consiste à réduire l’exposition aux vibrations, éviter les températures froides, abandonner le tabac et administrer des médicaments. Conclusion Pour assurer un diagnostic rapide de la maladie des vibrations et améliorer le pronostic et la qualité de vie, les médecins de famille devraient connaître cette maladie professionnelle courante, et pouvoir obtenir les détails pertinents durant l’anamnèse, recommander les patients aux cliniques de médecine du travail et débuter les demandes d’indemnisation de manière appropriée. PMID:28292812

  11. À propos des occasionnalismes

    Directory of Open Access Journals (Sweden)

    Dal Georgette

    2016-01-01

    Full Text Available Les occasionnalismes (nonce formations ou contextual formations dans la terminologie anglo-saxonne, qu’on définira provisoirement comme de “new complex word[s] created by a speaker/writer on the spur of the moment to cover some immediate need” (Bauer, 1983 : 45 ont, à notre connaissance, peu retenu l’attention des morphologues du domaine francophone. Pourtant, toutes les conditions sont désormais réunies pour que cet objet, invisible lorsqu’il s’agissait de décrire le système morphologique du français (ou d’autres langues à partir de ressources dictionnairiques, émerge en tant qu’observable dans une morphologie puisant ses données dans le réel langagier des locuteurs. Par définition en effet, on s’attend à ce qu’un occasionalisme soit absent des dictionnaires (nous verrons que, dans les faits, la situation est plus complexe que cela, et que ces contextual formations ne puissent pas être étudiées en dehors du contexte dans lequel elles ont été produites. À cet égard, la Toile et les produits qui en dérivent constituent des ressources de choix. C’est particulièrement vrai des forums, dans lesquels les internautes s’expriment librement, laissant libre cours à leur potentiel créatif (ou ce qu’ils pensent tel. Dans la présente communication, après avoir défini la notion d’occasionalisme, nous utiliserons un corpus constitué au fil d’autres recherches pour dégager des motifs récurrents propices à leur apparition, autrement dit pour établir une grammaire des occasionnalismes.

  12. Modular bioreactor for the remediation of liquid streams and methods for using the same

    Science.gov (United States)

    Noah, Karl S.; Sayer, Raymond L.; Thompson, David N.

    1998-01-01

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.

  13. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters: The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor, providi

  14. Des Vents et des Jets Astrophysiques

    Science.gov (United States)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  15. Operation of a fluidized-bed bioreactor for denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hancher, C W; Taylor, P A; Napier, J M

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m/sup 3/; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO/sub 3//sup -/)/day-m/sup 3/ using feed with a nitrate concentration of 1800 g/m/sup 3/. Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30/sup 0/C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors.

  16. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher high efficiency and stability because it held a large amount of biomass in the bioreactor.

  17. Bioreactor for acid mine drainage control

    Science.gov (United States)

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  18. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  19. Proteins causing membrane fouling in membrane bioreactors.

    Science.gov (United States)

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  20. Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor

    Science.gov (United States)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti

    2010-01-01

    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth.

  1. Table des illustrations

    OpenAIRE

    2015-01-01

    Intégrer les Tsiganes Hongrie, 1970 (photo DR) 34 Discuter entretient la fraternité. (photo M. Stewart) 35 La veille du mariage (photo M. Stewart) 36 Le « salon » (photo M. Stewart) 37 Les activités économiques des Tsiganes sont conçues comme des jeux. (photo M. Stewart) 39 Lev cheval (photo I. Nemeth) 41 Le cortège d’un mariage (photo M. Stewart) 43 Avant le mariage (photo M. Stewart) 43 C’est par le chant (photo M. Stewart) 45 Des « frères » boivent en harmonie (photo M. Stewart) 46 Les che...

  2. Geschichte des SIN

    CERN Document Server

    Pritzker, Andreas

    2013-01-01

    Dieses Buch erzählt die Geschichte des Schweizerischen Instituts für Nuklearforschung (SIN). Das Institut wurde 1968 gegründet und ging 1988 ins Paul Scherrer Institut (PSI) über. Die Gründung des SIN erfolgte in einer Zeit, als die Physik weitherum als Schlüsseldisziplin für die technologische und gesellschaftliche Entwicklung galt. Der Schritt war für ein kleines Land wie die Schweiz ungewöhnliche und zeugte von Mut und Weitsicht. Ungewöhnlich waren der Folge die Leistungen des SIN im weltweiten Vergleich sowie sein Einfluss auf die schweizerische, teils auf die internationale Wissenschaftspolitik.

  3. Les lueurs des sables

    CERN Multimedia

    Les lueurs des sables

    2013-01-01

    Two CERN ladies are getting ready for the “Trophée Roses des Sables” rally adventure: Julie and Laetitia are finalizing the last details before setting off on Monday 7th October 2013. Julie from EN-MEF group and Laetitia from DGS-SEE group, met at the CERN Rugby club. This year, they are participating in the 100 % female rally which will take place in Morocco from 10 to 20 October. They will be carrying along 100 kg of humanitarian donation for children such as some clothes, books and medical material. Do not hesitate to show your support at their farewell party to be held on Monday 7 October, from 4 to 6 pm in front of the St Genis-Pouilly Mairie (city Hall). Follow their exciting adventure on the blog leslueursdessables.trophee-roses-des-sables.org and on their association’s Facebook page Les Lueurs des Sables.

  4. Differentialdiagnose des Ulcus cruris

    Directory of Open Access Journals (Sweden)

    Binder B

    2010-01-01

    Full Text Available Das Ulcus cruris ist eine Erkrankung vor allem des höheren Lebensalters. Ungefähr 1 % der Bevölkerung leidet an einer chronischen Wunde. An die 90 % der Ulzera sind vaskulärer Genese, doch gibt es vielfältige weitere Ursachen. Die Kenntnis der relevanten Differentialdiagnosen ist insbesondere bei therapierefraktären Verläufen von Bedeutung. Dazu gehören Neuropathien, myeloproliferative Erkrankungen, Infektionen, Medikamente oder Hauttumore. Für eine erfolgreiche Behandlung des Ulcus cruris ist die Identifikation der Genese von entscheidender Bedeutung, um eine kausale, interdisziplinäre Therapie zu ermöglichen.

  5. Liste des Auteurs

    OpenAIRE

    2014-01-01

    Amor Hakima, Université Cadi Ayyad, Faculté des sciences Semlalia, Département de biologie, Laboratoire d’écologie humaine, Marrakech, Maroc. Angeli Aurora, Universita degli studi di Bologna, Dipartimento di scienze statiche “Paolo Fortunati”, Bologne, Italie. Baali Abdellatif, Université Cadi Ayyad, Faculté des sciences Semlalia, Département de biologie, Laboratoire d’écologie humaine, Marrakech, Maroc. Bachtarzi T., Hôpital Ibn Sina, CHU Annaba, Algérie. Baudot Patrick, Université de Proven...

  6. Theoretical and experimental investigations of on-board control of combustion air and/or fuel for emission reduction in internal combustion engines. Final report; Durchfuehrung theoretischer und experimenteller Untersuchungen zu den Moeglichkeiten der On-Board-Beeinflussung der Verbrennungsluftzusammensetzung und/oder des Kraftstoffs fuer Verbrennungsmotoren mit dem Ziel der Emissionsminderung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Velji, A.; Hofmann, U.

    2001-11-01

    Theoretical and experimental investigations were made in order to find the optimal composition of combustion air for simultaneous reduction of NOx and particulate emissions. The effect was found to be in the same order of magnitude as with exhaust recirculation. 'Optimized' air should have an oxygen content of more than 20 percent and a CO2 content of more than 10 percent, with nitrogen more or less accounting for the rest. [German] Ausgehend von der Abgasrueckfuehrung wurde in theoretischen und experimentellen Untersuchungen die optimale Zusammensetzung der Verbrennungsluft zur gleichzeitigen Reduktion der NO{sub x}- und Partikelemission ermittelt. Es konnte gezeigt werden, dass es mit dieser Verbrennungsluft moeglich ist, eine aehnlich hohe NO{sub x}-Reduktion wie bei der Abgasrueckfuehrung zu erzielen, ohne dass die Partikelemission drastisch ansteigt. Die 'optimale' Verbrennungsluft muss einen Sauerstoffgehalt groesser als 20% und einen CO{sub 2}-Gehalt groesser als 10% aufweisen. Der Rest besteht im Wesentlichen aus Stickstoff. (orig.)

  7. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  8. Bioreactor technology in marine microbiology: from design to future application.

    Science.gov (United States)

    Zhang, Yu; Arends, Jan B A; Van de Wiele, Tom; Boon, Nico

    2011-01-01

    Marine micro-organisms have been playing highly diverse roles over evolutionary time: they have defined the chemistry of the oceans and atmosphere. During the last decades, the bioreactors with novel designs have become an important tool to study marine microbiology and ecology in terms of: marine microorganism cultivation and deep-sea bioprocess characterization; unique bio-chemical product formation and intensification; marine waste treatment and clean energy generation. In this review we briefly summarize the current status of the bioreactor technology applied in marine microbiology and the critical parameters to take into account during the reactor design. Furthermore, when we look at the growing population, as well as, the pollution in the coastal areas of the world, it is urgent to find sustainable practices that beneficially stimulate both the economy and the natural environment. Here we outlook a few possibilities where innovative bioreactor technology can be applied to enhance energy generation and food production without harming the local marine ecosystem.

  9. Bioreactor activated graft material for early implant fixation in bone

    DEFF Research Database (Denmark)

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    Introduction The combined incubation of a composite scaffold with bone marrow stromal cells in a perfusion bioreactor could make up a novel hybrid graft material with optimal properties for early fixation of implant to bone. The aim of this study was to create a bioreactor activated graft (BAG......) material, which could induce early implant fixation similar to that of allograft. Two porous scaffold materials incubated with cells in a perfusion bioreactor were tested in this study. Methods and Materials Two groups of 8 skeletally mature female sheep were anaesthetized before aspiration of bone marrow...... Technological Institute, Denmark). The granules were coated with poly-lactic acid (PLA) 12%, in order to increase the mechanical strength of the material (Phusis, France). Scaffold granules (Ø~900-1400 µm, 80% porosity) in group 2 consisted of pure HA/β-TCP (FinCeramica, Italy). For both groups, cells were...

  10. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  11. Hosting the plant cells in vitro: recent trends in bioreactors.

    Science.gov (United States)

    Georgiev, Milen I; Eibl, Regine; Zhong, Jian-Jiang

    2013-05-01

    Biotechnological production of high-value metabolites and therapeutic proteins by plant in vitro systems has been considered as an attractive alternative of classical technologies. Numerous proof-of-concept studies have illustrated the feasibility of scaling up plant in vitro system-based processes while keeping their biosynthetic potential. Moreover, several commercial processes have been established so far. Though the progress on the field is still limited, in the recent years several bioreactor configurations has been developed (e.g., so-called single-use bioreactors) and successfully adapted for growing plant cells in vitro. This review highlights recent progress and limitations in the bioreactors for plant cells and outlines future perspectives for wider industrialization of plant in vitro systems as "green cell factories" for sustainable production of value-added molecules.

  12. Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Meir Israelowitz

    2012-01-01

    Full Text Available The purpose of this study is to improve the design of a bioreactor for growing bone and other three-dimensional tissues using a computational fluid dynamics (CFD software to simulate flow through a porous scaffold, and to recommend design changes based on the results. Basic requirements for CFD modeling were that the flow in the reactor should be laminar and any flow stagnation should be avoided in order to support cellular growth within the scaffold. We simulated three different designs with different permeability values of the scaffold and tissue. Model simulation addressed flow patterns in combination with pressure distribution within the bioreactor. Pressure build-up and turbulent flow within the reactor was solved by introduction of an integrated bypass system for pressure release. The use of CFD afforded direct feedback to optimize the bioreactor design.

  13. Bioreactor design for continuous dark fermentative hydrogen production.

    Science.gov (United States)

    Jung, Kyung-Won; Kim, Dong-Hoon; Kim, Sang-Hyoun; Shin, Hang-Sik

    2011-09-01

    Dark fermentative H2 production (DFHP) has received increasing attention in recent years due to its high H2 production rate (HPR) as well as the versatility of the substrates used in the process. For most studies in this field, batch reactors have been applied due to their simple operation and efficient control; however, continuous DFHP operation is necessary from economical and practical points of view. Continuous systems can be classified into two categories, suspended and immobilized bioreactors, according to the life forms of H2 producing bacteria (HPB) used in the reactor. This paper reviews operational parameters for bioreactor design including pH, temperature, hydraulic retention time (HRT), and H2 partial pressure. Also, in this review, various bioreactor configurations and performance parameters including H2 yield (HY), HPR, and specific H2 production rate (SHPR) are evaluated and presented.

  14. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  15. Computer control of a microgravity mammalian cell bioreactor

    Science.gov (United States)

    Hall, William A.

    1987-01-01

    The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.

  16. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  17. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  18. Over-pressurized bioreactors: application to microbial cell cultures.

    Science.gov (United States)

    Lopes, Marlene; Belo, Isabel; Mota, Manuel

    2014-01-01

    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.

  19. Enhancing inhibited fermentations through a dynamic electro-membrane bioreactor

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Garde, Arvid; Rype, Jens-Ulrik

    , it is interesting to reveal to which extend the REED module can facilitate the pH control in the fermenter. In this case, the membrane and reactor unit interactions are exploited to substantially increase the lactate productivity and substrate utilization compared to a conventional fermentation with a crude control...... of pH. Experiments using multiple stacks with asynchronical current reversal intervals for improved pH stability were carried out in a bioreactor connected to a REED system. The REED was used for control of the pH process parameter of the bioreactor through exchanging the lactate ions (from lactic acid...

  20. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    Science.gov (United States)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    A methodology for growing three-dimensional plant tissue models in a hydrodynamic focusing bioreactor (HFB) has been developed. The methodology is expected to be widely applicable, both on Earth and in outer space, as a means of growing plant cells and aggregates thereof under controlled conditions for diverse purposes, including research on effects of gravitation and other environmental factors upon plant growth and utilization of plant tissue cultures to produce drugs in quantities greater and at costs lower than those of conventional methodologies. The HFB was described in Hydro focus - ing Bioreactor for Three-Dimensional Cell Culture (MSC-22358), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 66. To recapitulate: The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear liquid culture environment simultaneously with the herding of suspended cells and tissue assemblies and removal of unwanted air bubbles. The HFB includes a rotating cell-culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can be made to rotate at the same speed and direction or different speeds and directions to tailor the flow field and the associated hydrodynamic forces in the vessel in order to obtain low-shear suspension of cells and control of the locations of cells and air bubbles. For research and pharmaceutical-production applications, the HFB offers two major benefits: low shear stress, which promotes the assembly of cells into tissue-like three-dimensional constructs; and randomization of gravitational vectors relative to cells, which affects production of medicinal compounds. Presumably, apposition of plant cells in the absence of shear forces promotes cell-cell contacts, cell aggregation, and cell differentiation. Only gentle mixing is necessary for distributing nutrients and oxygen. It has been postulated that inasmuch as cells in the simulated

  1. CHAINE DES ROTISSEUR @ HILTON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The annual gala dinner of Chaine des Rotisseurs was hosted by Hilton Beijing. The “Ballet Dinner” - a great creation for both art and fine dining lovers was taken place in varies places within the hotel, including hotel lobby, 3rd floor and lobby lounge.

  2. La physique des infinis

    CERN Document Server

    Bernardeau, Francis; Laplace, Sandrine; Spiro, Michel

    2013-01-01

    Écrire l'histoire de l'Univers, tel est l'objectif commun des physiciens des particules et des astrophysiciens. Pour y parvenir, deux approches s'épaulent : la voie de l'infiniment petit, que l'on emprunte via de gigantesques accélérateurs de particules, et celle de l'infiniment grand, dont le laboratoire est l'Univers. Un Univers qui est bien loin d'avoir livré tous ses secrets. On connaît à peine 4,8 % de la matière qui le constitue, le reste étant composé de matière noire (25,8 %) et d'énergie noire (69,4 %), toutes deux de nature inconnue. Et si la récente découverte du boson de Higgs valide le Modèle standard de la physique des particules, celui-ci est toujours incomplet et doit être étendu à ou dépassé. Est-on arrivé au bout du jeu de poupées russes de la matière ? Quelles sont les particules manquantes ? Faut-il revoir les lois fondamentales ? Quels instruments faut-il mettre en œuvre pour accéder à cette « nouvelle physique » ? Comment parler de Super Big Science aux citoye...

  3. Vom Ort des Philosophierens

    Directory of Open Access Journals (Sweden)

    Damir Barbaric

    2002-12-01

    Full Text Available Im Aufsatz wird versucht, den ursprünglichen Sinn der Platonischen Bestimmung vom Staunen als Anfang der Philosophie zu ermitteln, und zwar durch eine kritischen Abhebung von ihrer Umdeutung bei Aristoteles, und dann insbesondere in der Stoa wie auch bei Spinoza und Hegel. Dabei wird auf die frühgriechische Erfahrung vom Staunen als _______ aufmerksam gemacht, wo es vor allem die Grundstimmung des Dabeiseins des Göttlichen und der menschlichen Teilnahme am Göttlichen bedeutet. Dem entspricht die bei Platon stark hervorgehobene Rolle des “Pathetischen” am Staunen, das in der nachkommenden Tradition grundsätzlich verlorengegangen ist. Für Platon entspringt das Staunen einem nie zu überwindenden Zustand der wesentlichen philosophischen “Weglosigkeit” (_____, welche schon bei Aristoteles nur noch im Sinne eines unbedingt zu verlassenden Ausgangspunkts der methodisch sicher fortfahrenden philosophischen Wissenschaft verstanden wird. Durch ein Zurückgreifen auf die Diotimas Lehre im Dialog Symposion wird dementgegen die Sokratisch-Platonische “Weglosigkeit” als der einzig angemessene “Ort” des echten Philosophierens bestimmt, welchen es, als das “Zwischen” für das Weltspiel der Unsterblichen und Sterblichen, um jeden Preis zu bewahren und offen zu halten gilt.

  4. REPRISE DES COURS - Yoga

    CERN Multimedia

    Club de Yoga

    2015-01-01

    REPRISE DES COURS – Venez nombreux ! Yoga, Sophrologie, Tai Chi La liste des cours pour le semestre allant du 1er septembre 2015 au 31 janvier 2016 est disponible sur notre site web : http://club-yoga.web.cern.ch Lieu Les cours ont lieu dans la salle des clubs, à l’entresol du restaurant No 2, Bât. 504 (dans la salle no 3 pour la Sophrologie). Prix des cours Le prix pour le semestre (environ 18 leçons) est fixé à 220 CHF plus 10 CHF d’adhésion annuelle au Club. Couple : 200 CHF par personne. 2 cours par semaine : 400 CHF. Inscriptions Les inscriptions aux cours seront prises directement auprès du professeur, lors de la 1ère séance. Avant de s’inscrire pour le semestre, il est possible d’essayer une séance gratuitement. Informations : http://club-yoga.web.cern.ch ----------------------------------------- cern.ch/club-yoga/

  5. Die lebensvision des semonides

    Directory of Open Access Journals (Sweden)

    Milivoj Sironić

    1980-12-01

    Full Text Available Der Autor analysiert die Weibersatire des Semonides und andere seiner kurzen Fragmente. Dabei kommt er zu der Schlussfolgerung, dass sich die Verse der Satire durch eine gute Technik auszeich­ nen, dass aber auch eine unnötige Weitschweifigkeit nicht zu Ubersehen ist. Trotzdem kann man jedoch dem Dichter nicht die künstlerische Überzeugungskraft absprechen, wie auch die Ten­ denz nach Detailschilderungen und die Feinheit geistreicher Charakterisierungen. Die Aussage beinhaltet manchmal eine be­ stimmte innere Ironie in der Einfachheit der Wörter.In kurzen Fragmenten wird die Fähigkeit des Semonides sichtbar, sich sehr präzise auszudrücken. Seine ironisch-epische Sprache ist sehr reich  und verdient vom linguistischen Standpunkt aus Auf­ merksamkeit wegen ihres reichhaltigen lexischen und termino­ logischen Materials, insbesondere was die Bereiche der Tier­ welt und des Essens anbelangt.Die Weltanschauung des Dichters ist in dem ersten Fragment recht deutlich erkennbar. Da sieht man, dass er düster und pessimistisch auf das Leben blickt. Das Fehlen jeglicher positiven Einstellung hat dann den Sar­ kasmus zur Folge, mit dem der Dichter die Darstellung der Weiber einkleidet, ihn aber auch auf die Menschen schlechthin ausweitet.

  6. Beeinflussung der Schilddrüsenfunktion durch Medikamente

    Directory of Open Access Journals (Sweden)

    Wolf P

    2014-01-01

    Full Text Available Die Funktion der Schilddrüse unterliegt einem strengen Regelkreis, der zahlreiche Angriffspunkte für unerwünschte Wechselwirkungen mit verschiedenen Medikamenten und Wirkstoffklassen bietet, teilweise mit klinisch relevanten Folgen. In dieser Übersichtsarbeit sollen daher einerseits die häufigsten Medikamentenwirkungen auf die Schilddrüsenfunktion beschrieben sowie andererseits auch auf die Folgen einer gestörten Resorption bei bereits bestehender Schilddrüsenhormonsubstitutionstherapie hingewiesen werden. Während diese Wechselwirkungen beispielsweise für Amiodaron oder Lithium schon lange bekannt sind, kommt es vor allem durch die Entwicklung neuer immunmodulierender Wirkstoffklassen, wie Tyrosinkinaseinhibitoren und monoklonaler Autoantikörper, zu gehäuften Beobachtungen von Schilddrüsenfunktionsbeeinträchtigungen. Neben Lithium wird auch auf die Wechselwirkung anderer Psychopharmaka eingegangen sowie der Einfluss von Wirkstoffklassen wie Gallensäurebinder, Antazida und Phosphatbinder auf die Resorption von Levothyroxin bei bestehender Schilddrüsenhormonsubstitutionstherapie näher beschrieben. Das Ziel dieser Arbeit ist es daher, einen für den praktisch tätigen Arzt tauglichen Überblick über Medikamentenwirkungen auf die Schilddrüse zu schaffen.

  7. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.

    Science.gov (United States)

    Zhang, Zhi-Yong; Teoh, Swee Hin; Teo, Erin Yiling; Khoon Chong, Mark Seow; Shin, Chong Woon; Tien, Foo Toon; Choolani, Mahesh A; Chan, Jerry K Y

    2010-11-01

    Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.

  8. Injectabilite des coulis de ciment dans des milieux fissures

    Science.gov (United States)

    Mnif, Thameur

    Le travail presente ici est un bilan du travaux de recherche effectues sur l'injectabilite des coulis de ciment dans lu milieux fissures. Un certain nombre de coulis a base de ciment Portland et microfin ont ete selectionnes afin de caracteriser leur capacite a penetrer des milieux fissures. Une partie des essais a ete menee en laboratoire. L'etude rheologique des differents melanges a permis de tester l'influence de l'ajout de superplastifiant et/ou de fumee de silice sur la distribution granulometrique des coulis et par consequent sur leur capacite a injecter des colonnes de sable simulant un milieu fissure donne. La classe granulometrique d'un coulis, sa stabilite et sa fluidite sont apparus comme les trois facteurs principaux pour la reussite d'une injection. Un facteur de finesse a ete defini au cours de cette etude: base sur la classe granulometrique du ciment et sa stabilite, il peut entrer dans la formulation theorique du debit d'injection avant application sur chantier. La deuxieme et derniere partie de l'etude presente les resultats de deux projets de recherche sur l'injection realises sur chantier. L'injection de dalles de beton fissurees a permis le suivi de l'evolution des pressions avec la distance au point d'injection. L'injection de murs de maconnerie a caractere historique a montre l'importance de la definition de criteres de performance des coulis a utiliser pour traiter un milieu donne et pour un objectif donne. Plusieurs melanges peuvent ainsi etre predefinis et mis a disposition sur le chantier. La complementarite des ciments traditionnels et des ciments microfins devient alors un atout important. Le choix d'utilisation de ces melanges est fonction du terrain rencontre. En conclusion, cette recherche etablit une methodologie pour la selection des coulis a base de ciment et des pressions d'injection en fonction de l'ouverture des fissures ou joints de construction.

  9. Optimizing of Bioreactor Heat Supply and Material Feeding by Numerical Calculation

    Science.gov (United States)

    Zhou, Zhiwei; Song, Boyan; Zhu, Likuan; Li, Zuntao; Wang, Yang

    Cell culture at large scale normally uses stirred structure. And the situation of temperature field distribution is very important to the cell culture at large scale. Some cells are very sensitive to the circumstances. The local temperature is too high or too low all influences the cell survival and low the cell quantity at unit volume. This paper simulates the temperature field under three different heating conditions. Then analysis and contrast the simulation results. The mixed situation in bioreactor is extremely significant for nutrition transmit. Usually, use ways to measure the average mixture time in bioreactor, and improve the mixture circumstance in the bioreactor through stirred impeller and bioreactor structure change. This paper adopts numerical calculation method to investigate the flow field in bioreactor. It gets the mixture time of bioreactor through virtual tracer in simulate flow field and detects the tracer density time variation curve in the bioreactor.

  10. Dopage et protection des jeunes sportifs : Loin des affaires

    OpenAIRE

    Guy, Daniel

    2002-01-01

    National audience; Loin des affaires et des révélations polémiques de la presse, les jeunes plébiscitent massivement les activités sportives. Sport compétition, sport participation, sport détente... Pourtant, quand la pratique devient intense, que les entraînements et les compétitions s'enchaînent à un rythme soutenu, l'ombre des conduites dopantes vient déchirer la quiétude des uns et des autres. Or, que savons-nous réellement de la pratique des jeunes sportifs ? Comment préparent-ils les co...

  11. Thiosulphate conversion in a methane and acetate fed membrane bioreactor

    NARCIS (Netherlands)

    Suarez Zuluaga, D.A.; Timmers, P.H.A.; Plugge, C.M.; Stams, A.J.M.; Buisman, C.J.N.; Weijma, J.

    2016-01-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its li

  12. Performance of Submerged Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present research, a submerged membrane bioreactor was tested to treat domestic wastewater. Three experimental runs were conducted all with a hydraulic retention time of 5h and sludge retention times (SRTs) of 5, 10, and 20 d. The pollutant removal performance of the membrane bioreactor, the membrane effluent quality, and a kinetic model for sludge growth in the bioreactor were investigated. The combined process was capable of removing over 90% of both COD (chemical oxygen demand) and NH3-N on the average. The total removal for COD was almost independent of SRT, but that for NH3-N improved with increasing SRT. Membrane effluent quality meets the water quality standard for reuse issued by the Ministry of Construction of China. Increasing SRT causes the concentrations of suspended solids (SS) and volatile suspended solids (VSS) in the bioreactor to increase. However, the ratio of VSS/SS did not change much. Kinetic analysis showed that the sludge yield coefficient (kg-VSS·kg-COD-1) and the endogenous coefficient of microorganisms were 0.25 and 0.04d-1, which are similar to those of the conventional activated sludge process.

  13. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  14. NASA's Bioreactor: Growing Cells in a Microgravity Environment. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses growing cells in a microgravity environment for grades 9-12. Students are provided with plans for building a classroom bioreactor that can then be used with the included activity on seed growth in a microgravity environment. Additional experimental ideas are also suggested along with a history and background on microgravity…

  15. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Science.gov (United States)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  16. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  17. Simulating woodchip bioreactor performance using a dual-porosity model

    Science.gov (United States)

    Nitrate in the Nation's surface waters has been a persistent health and ecological problem. The major source of nitrate is tile drainage from agricultural row crops. Denitrification bioreactors have been shown to be effective in removing much of the nitrate from tile drains. While we understand i...

  18. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Science.gov (United States)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  19. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  20. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  1. Modelling and characterization of an airlift-loop bioreactor.

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and oxygen tra

  2. On adaptive optimal input design: A bioreactor case study

    NARCIS (Netherlands)

    Stigter, J.D.; Vries, D.; Keesman, K.J.

    2006-01-01

    The problem of optimal input design (OID) for a fed-batch bioreactor case study is solved recursively. Here an adaptive receding horizon optimal control problem, involving the so-called E-criterion, is solved on-line, using the current estimate of the parameter vector at each sample instant {tk, k =

  3. Reduced Order Dead-Beat Observers for a Bioreactor

    CERN Document Server

    Karafyllis, Iasson

    2010-01-01

    This paper studies the strong observability property and the reduced-order dead-beat observer design problem for a continuous bioreactor. New relationships between coexistence and strong observability, and checkable sufficient conditions for strong observability, are established for a chemostat with two competing microbial species. Furthermore, the dynamic output feedback stabilization problem is solved for the case of one species.

  4. Bioreactors for removing methyl bromide following contained fumigations

    Science.gov (United States)

    Miller, L.G.; Baesman, S.M.; Oremland, R.S.

    2003-01-01

    Use of methyl bromide (MeBr) as a quarantine, commodity, or structural fumigant is under scrutiny because its release to the atmosphere contributes to the depletion of stratospheric ozone. A closed-system bioreactor consisting of 0.5 L of a growing culture of a previously described bacterium, strain IMB-1, removed MeBr (> 110 ??mol L-1) from recirculating air. Strain IMB-1 grew slowly to high cell densities in the bioreactor using MeBr as its sole carbon and energy source. Bacterial oxidation of MeBr produced CO2 and hydrobromic acid (HBr), which required continuous neutralization with NaOH for the system to operate effectively. Strain IMB-1 was capable of sustained oxidation of large amounts of MeBr (170 mmol in 46 d). In an open-system bioreactor (10-L fermenter), strain IMB-1 oxidized a continuous supply of MeBr (220 ??mol L-1 in air). Growth was continuous, and 0.5 mol of MeBr was removed from the air supply in 14 d. The specific rate of MeBr oxidation was 7 ?? 10-16 mol cell-1 h-1. Bioreactors such as these can therefore be used to remove large quantities of contaminant MeBr, which opens the possibility of biodegradation as a practical means for its disposal.

  5. Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety

    Science.gov (United States)

    2014-01-01

    In order to cultivate healthy bacteria in bioreactors, Kennedy Space Center awarded SBIR funding to Needham Heights, Massachusetts-based Polestar Technologies Inc. to develop sensors that could monitor oxygen levels. The result is a sensor now widely used by pharmaceutical companies and medical research universities. Other sensors have also been developed, and in 2013 alone the company increased its workforce by 50 percent.

  6. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is k

  7. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  8. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  9. Optimising Microbial Growth with a Bench-Top Bioreactor

    Science.gov (United States)

    Baker, A. M. R.; Borin, S. L.; Chooi, K. P.; Huang, S. S.; Newgas, A. J. S.; Sodagar, D.; Ziegler, C. A.; Chan, G. H. T.; Walsh, K. A. P.

    2006-01-01

    The effects of impeller size, agitation and aeration on the rate of yeast growth were investigated using bench-top bioreactors. This exercise, carried out over a six-month period, served as an effective demonstration of the importance of different operating parameters on cell growth and provided a means of determining the optimisation conditions…

  10. Expression Systems and Species Used for Transgenic Animal Bioreactors

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2013-01-01

    Full Text Available Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon, the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  11. Biological hydrogen production using a membrane bioreactor.

    Science.gov (United States)

    Oh, Sang-Eun; Iyer, Prabha; Bruns, Mary Ann; Logan, Bruce E

    2004-07-01

    A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

  12. Reconstruction of liver organoid using a bioreactor

    Institute of Scientific and Technical Information of China (English)

    Masaya Saito; Tomokazu Matsuura; Takahiro Masaki; Haruka Maehashi; Keiko Shimizu; Yoshiaki Hataba; Tohru Iwahori; Tetsuro Suzuki; Filip Braet

    2006-01-01

    AIM: To develop the effective technology for reconstruction of a liver organ in vitro using a bio-artificial liver.METHODS: We previously reported that a radial-flow bioreactor (RFB) could provide a three-dimensional highdensity culture system. We presently reconstructed the liver organoid using a functional human hepatocellular carcinoma cell line (FLC-5) as hepatocytes together with mouse immortalized sinusoidal endothelial cell (SEC) line M1 and mouse immortalized hepatic stellate cell (HSC) line A7 as non parenchymal cells in the RFB. Two x 107 FLC-5 cells were incubated in the RFB. After 5 d, 2 x 107 A7 cells were added in a similar manner followed by another addition of 107 M1 cells 5 d later. After three days of perfusion, some cellulose beads with the adherent cells were harvested. The last incubation period included perfusion with 200 nmol/L swinholide A for 2 h and then the remaining cellulose beads along with adherent cells were harvested from the RFB. The cell morphology was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). To assess hepatocyte function, we compared mRNA expression for urea cycle enzymes as well as albumin synthesis by FLC-5 in monolayer cultures compared to those of single-type cultures and cocultures in the RFB.RESULTS: By transmission electron microscopy, FLC-5,M1, and A7 were arranged in relation to the perfusion side in a liver-like organization. Structures resembling bile canaliculi were seen between FCL-5 cells. Scanning electron microscopy demonstrated fenestrae on SEC surfaces. The number of vesiculo-vacuolar organelles (WO) and fenestrae increased when we introduced the actin-binding agent swinholide-A in the RFB for 2h. With respect to liver function, urea was found in the medium,and expression of mRNAs encoding arginosuccinate synthetase and arginase increased when the three cell types were cocultured in the RFB. However, albumin synthesis decreased.CONCLUSION: Co-culture in the RFB

  13. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  14. Typologie des Accidents Cyclistes

    OpenAIRE

    Amoros, Emmanuelle; BILLOT-GRASSET, Alice; Hours, Martine

    2015-01-01

    L'usage du vélo est en hausse en ville ; cette pratique est encouragée dans le cadre du développement durable et de la lutte contre la sédentarité. Pour accompagner cela, il faut réduire les risques d'accident, et pour ce faire, mieux les connaître. Nous utilisons le Registre des victimes de la circulation routière du Rhône, basé sur les services hospitaliers (dont les urgences) ; il est quasi-exhaustif : env. 1100 blessés à vélo/an versus 120 dans les données officielles. L'ensemble des cycl...

  15. Table des tableaux

    OpenAIRE

    2014-01-01

    Présentation schématique de la production et de la transformation de l’acier 16 Chronologie des nationalisations en France 33 Importations de coke de la France 48 Comparaison entre les prix de l’acier en Allemagne et en France, août 1949 99 Prix du marché intérieur et du marché mondial pour les laminés marchands (qualité Thomas) 101 Évolution de la production allemande et française d’acier brut 119 Comparaison des coûts de l’extraction de charbon en Allemagne et en France, 1949 138 Évolution ...

  16. BIOREACTOR ECONOMICS, SIZE AND TIME OF OPERATION (BEST) COMPUTER SIMULATOR FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    Science.gov (United States)

    BEST (bioreactor economics, size and time of operation) is an Excel™ spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...

  17. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2011-11-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.

  18. Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system.

    Science.gov (United States)

    Xia, Lei; Arooz, Talha; Zhang, Shufang; Tuo, Xiaoye; Xiao, Guangfa; Susanto, Thomas Adi Kurnia; Sundararajan, Janani; Cheng, Tianming; Kang, Yuzhan; Poh, Hee Joo; Leo, Hwa Liang; Yu, Hanry

    2012-11-01

    Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7 cm of height and 5.5 cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.

  19. Dictionnaire des risques psychosociaux

    CERN Document Server

    Zawieja, Philippe

    2014-01-01

    Stress, suicide, harcèlement, épuisement professionnel, workaholism... Au-delà de la souffrance qu'elles désignent, ces notions souvent récentes constituent une approche inédite, et demandent à mieux être comprises, dans leur ensemble et isolément. C'est tout l'enjeu de ce dictionnaire, pionnier en son genre. Le lecteur y trouvera représentés, avec les 314 entrées (rédigées par 251 contributeurs) qui le composent, tous les champs disciplinaires s'intéressant à la souffrance au travail : psychologie du travail et des organisations, psychologie sociale et psychosociologie, psychanalyse, psychopathologie et psychiatrie, ergonomie, sociologie du travail et des organisations, médecine du travail, droit du travail et de la sécurité sociale, sciences de gestion, philosophie... Y sont détaillés les principaux concepts, notions, approches, méthodes, théories, outils, études, etc., ayant cours dans l'étude des risques psychosociaux, mais aussi certaines professions emblématiques (infirmières,...

  20. Grundlagen des Tissue Engineering

    Science.gov (United States)

    Mayer, Jörg; Blum, Janaki; Wintermantel, Erich

    Die Organtransplantation stellt eine verbreitete Therapie dar, um bei krankheitsoder unfallbedingter Schädigung eines Organs die Gesamtheit seiner Funktionen wieder herzustellen, indem es durch ein Spenderorgan ersetzt wird. Organtransplantationen werden für die Leber, die Niere, die Lunge, das Herz oder bei schweren grossflächigen Verbrennungen der Haut vorgenommen. Der grosse apparative, personelle und logistische Aufwand und die Risiken der Transplantationschirurgie (Abstossungsreaktionen) sowie die mangelnde Verfügbarkeit von immunologisch kompatiblen Spenderorganen führen jedoch dazu, dass der Bedarf an Organtransplantaten nur zu einem sehr geringen Teil gedeckt werden kann. Sind Spenderorgane nicht verfügbar, können in einzelnen Fällen lebenswichtige Teilfunktionen, wie beispielsweise die Filtrationsfunktion der Niere durch die Blutreinigung mittels Dialyse ersetzt oder, bei mangelnder Funktion der Bauchspeicheldrüse (Diabetes), durch die Verabreichung von Insulin ein normaler Zustand des Gesamtorganismus auch über Jahre hinweg erhalten werden. Bei der notwendigen lebenslangen Anwendung apparativer oder medikamentöser Therapie können für den Patienten jedoch häufig schwerwiegende, möglicherweise lebensverkürzende Nebenwirkungen entstehen. Daher werden in der Forschung Alternativen gesucht, um die Funktionen des ausgefallenen Organs durch die Implantation von Zellen oder in vitro gezüchteten Geweben möglichst umfassend wieder herzustellen. Dies erfordert biologisch aktive Implantate, welche die für den Stoffwechsel des Organs wichtigen Zellen enthalten und einen organtypischen Stoffwechsel entfalten.

  1. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  2. Reticulation des fibres lignocellulosiques

    Science.gov (United States)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  3. Etude des cas: Gestion alternatîves des conflits

    OpenAIRE

    Lo, H.

    2006-01-01

    Metadata only record Pour mieux consolider les acquis consensuels pour la gestion alternative des conflits, il nous paraît essentiel de maîtriser un certain nombre de facteurs ayant trait au "partage" des gommeraies entre autres: Available in SANREM office, FS

  4. Development of a bioreactor based on magnetically stabilized fluidized bed for bioartificial liver.

    Science.gov (United States)

    Deng, Fei; Chen, Li; Zhang, Ying; Zhao, Shan; Wang, Yu; Li, Na; Li, Shen; Guo, Xin; Ma, Xiaojun

    2015-12-01

    Bioartificial liver (BAL) based on microcapsules has been proposed as a potential treatment for acute liver failure. The bioreactors used in such BAL are usually expected to achieve sufficient flow rate and minimized void volume for effective application. Due to the superiorities in bed pressure drop and operation velocity, magnetically stabilized fluidized beds (MSFBs) show the potential to serve as ideal microcapsule-based bioreactors. In the present study, we attempted to develop a microcapsule-based MSFB bioreactor for bioartificial liver device. Compared to conventional-fluidized bed bioreactors, the bioreactor presented here increased perfusion velocity and decreased void volume significantly. Meanwhile, the mechanical stability as well as the immunoisolation property of magnetite microcapsules were well maintained during the fluidization. Besides, the magnetite microcapsules were found no toxicity to cell survival. Therefore, our study might provide a novel approach for the design of microcapsule-based bioartificial liver bioreactors.

  5. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application.

  6. Characterization of organic membrane foulants in a forward osmosis membrane bioreactor treating anaerobic membrane bioreactor effluent.

    Science.gov (United States)

    Ding, Yi; Tian, Yu; Li, Zhipeng; Liu, Feng; You, Hong

    2014-09-01

    In this study, two aerobic forward osmosis (FO) membrane bioreactors (MBR) were utilized to treat the effluent of mesophilic (35°C) and atmospheric (25°C) anaerobic MBRs, respectively. The results showed that the FO membrane process could significantly improve the removal efficiencies of N and P. Meanwhile, the flux decline of the FOMBR treating effluent of mesophilic AnMBR (M-FOMBR) was higher than that treating effluent of atmospheric AnMBR (P-FOMBR). The organic membrane foulants in the two FOMBRs were analyzed to understand the membrane fouling behavior in FO processes. It was found that the slightly increased accumulation of protein-like substances into external foulants did not cause faster flux decline in P-FOMBR than that in M-FOMBR. However, the quantity of organic matter tended to deposit or adsorb into FO membrane pores in P-FOMBR was less than that in M-FOMBR, which was accordance with the tendency of membrane fouling indicated by flux decline.

  7. Fluidized-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  8. Fixed-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  9. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  10. Sludge Bulking Property of Membrane Bio-reactor in Albumen Wqastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Albumen wastewater was treated by Membrane Bio-reactor. Sludge bulking property of Membrane Bio-Reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in Membrane Bio-reactor increased slightly under the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures,the higher block rate of membrane pore and the great quantity of filamentous bacteria at the externalsurface pres...

  11. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture

    OpenAIRE

    Luni, Camilla; Feldman, Hope C.; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D.; Elvassore, Nicola

    2010-01-01

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100–300 μl). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for ste...

  12. Missile Aerodynamics (Aerodynamique des Missiles)

    Science.gov (United States)

    1998-11-01

    guerre froide la production des missiles a baisse’, avec pour consequence une diminution des budgets de d6veloppement. Les nouveaux types de conflits ...Roma) Directeur - Gestion de l’information LUXEMBOURG (Recherche et developpement) - DRDGI 3 Voir Belgique Ministbre de la Difense nationale NORVEGE

  13. Mécanique des fluides

    CERN Document Server

    Cengel, Y A

    2017-01-01

    La mécanique des fluides est un outil performant qui permet d'expliquer les phénomènes qui nous entourent de l'échelle microscopique à l'échelle macroscopique. Elle est aussi à la base du développement de nombreuses technologies. Cet ouvrage à destination des étudiants donne une vision complète de la mécanique des fluides. Bien que la mécanique des fluides puisse souvent paraître rébarbative aux yeux des étudiants, cet ouvrage valorise ce domaine d'enseignement en l'illustrant de nombreux exemples issus de l'ingénierie navale, l'aéronautique, la météorologie, etc.

  14. Therapie des Status epilepticus

    Directory of Open Access Journals (Sweden)

    Trinka E

    2009-01-01

    Full Text Available Der Status epilepticus (SE ist nach dem Schlaganfall der häufigste neurologische Notfall. Er stellt als generaliserter konvulsiver SE (GKSE die schwerste Ausprägung eines epileptischen Anfalls dar, der mit einer signifikanten Morbidität und einer ca. 20%igen Letalität verbunden ist. Nur bei der Hälfte der Patienten mit SE besteht zuvor eine Epilepsie; die meisten Fälle sind symptomatisch, wobei Schädel- Hirn-Traumata, zerebrovaskuläre Erkrankungen, ZNS-Infektionen und metabolische Ursachen führend sind. Bei Patienten mit vorbestehender Epilepsie lässt sich eine frühe Phase des GKSE erkennen, in der die Anfälle crescendoartig zunehmen, bis sie in kontinuierliche Anfallsaktivität münden (etablierte Phase. Das Management eines GKSE verlangt rasches und beherztes Vorgehen. Neben der sofort einzuleitenden Therapie muss gleichzeitig die artdiagnostische Zuordnung des SE und die Ursache erkannt und behandelt werden. Als Therapie der ersten Wahl sind Benzodiazepine etabliert, wobei intravenösem (i.v. Lorazepam gegenüber Diazepam der Vorzug zu geben ist. Versagt die Therapie mit Benzodiazepinen, muss rasch und konsequent nach einem Stufenschema vorgegangen werden. Phenytoin/Fosphenytoin, Valproinsäure, Levetiracetam und Lacosamid sind als i.v. Formulierung erhältliche Antiepileptika. Obwohl Vergleichsstudien hier fehlen, wird Phenytoin bevorzugt. Valproat und Levetiracetam sind nicht sedierend und kardiovaskulär gut verträglich, sodass hier Alternativen zu Phenytoin vorhanden sind. Lacosamid ist eine neue Therapieoption, deren Stellenwert erst bestimmt werden muss. Versagt auch die zweite Therapiestufe, so muss der Patient intubiert und in Allgemeinanästhesie intensivmedizinisch behandelt werden. Dafür stehen Thiopental, Propofol oder hoch dosiertes Midazolam zu Verfügung. Durch den eklatanten Mangel an randomisierten Studien bleibt die Therapie des GKSE empirisch und durch den Off-label-Einsatz gekennzeichnet.

  15. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development.

  16. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  17. Sanitary Sewage Treatment with Jet Inner-loop Bioreactor

    Institute of Scientific and Technical Information of China (English)

    Wen Qin-xue; Chen Zhi-qiang; Lu Bing-nan; Wen Yan

    2004-01-01

    A jet inncr-loop bioreactor (JIBR) was used to treat synthetic sanitary sewage with low, medium and high COD load. The experimental resuhs show that it could meet discharge standard at 20-30 min of HRT (hydraulic retention time) for low COD concentration and 60-120 min of HRT for medium and high COD concentration. The maximal COD volume loading and COD sludye loading of 27kg·m-3·d-1 and 5 kg/d per kg MLSS were achieved respectively, that were 10-20 times higher than those of traditional wastewater treatment processes. The BOD5 removal efficiency was more than 90 % and NH1-N more than 85 %. The study on the activity showed that the oxygen consumption rate of the activated times higher than that of the SBR(Sequencing Batch Reactor)and thc dominant bacteria in jet inner-loop bioreactor was Pseudomonas species.

  18. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    Science.gov (United States)

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  19. Bioreactor cultivation of anatomically shaped human bone grafts.

    Science.gov (United States)

    Temple, Joshua P; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L

    2014-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes.

  20. Hydrodynamic Characterization of a Column-type Prototype Bioreactor

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Morales-Contreras, Marcos; Robles-Martínez, Fabián; García-Nazariega, Melvin; Lobato-Calleros, Consuelo

    Agro-food industrial processes produce a large amount of residues, most of which are organic. One of the possible solutions for the treatment of these residues is anaerobic digestion in bioreactors. A novel 18-L bioreactor for treating waste water was designed based on pneumatic agitation and semispherical baffles. Flow patterns were visualized using the particle tracer technique. Circulation times were measured with the particle tracer and the thermal technique, while mixing times were measured using the thermal technique. Newtonian fluid and two non-Newtonian fluids were used to simulate the operational conditions. The results showed that the change from Newtonian to non-Newtonian properties reduces mixed zones and increases circulation and mixing times. Circulation time was similar when evaluated with the thermal and the tracer particle methods. It was possible to predict dimensionless mixing time (θm) using an equivalent Froude number (Fr eq).

  1. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.

  2. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  3. Utilization of additives to increase flocculation bioreactor performance

    OpenAIRE

    Lima, Nelson; Teixeira, J. A.; Mota, M.

    1990-01-01

    Publicado em “Biomass for energy and industry: 5th E.C. Conference: proceedings of the International Conference on Biomass for Energy and Industry, vol. 2: Conversion and utilisation of biomass, 1990 The capacity of severa! flocculating additives- BPA 1000, Polyoxyethylene bis-amine 20.000 and Magna Floc LT25- to increase the performance offlocculation bioreactors was evaluated. A membrane biorector was used to measure the maximum specific glucose consumption rate of a flocculatin...

  4. Bioreactor technology in marine microbiology: From design to future application

    OpenAIRE

    Zhang, Yu; Arends, Jan B.A.; van de Wiele, Tom; Boon, Nico

    2011-01-01

    Marine micro-organisms have been playing highly diverse roles over evolutionary time: they have defined the chemistry of the oceans and atmosphere. During the last decades, the bioreactors with novel designs have become an important tool to study marine microbiology and ecology in terms of: marine microorganism cultivation and deep-sea bioprocess characterization; unique bio-chemical product formation and intensification; marine waste treatment and clean energy generation. In this review we b...

  5. Ammonia release and conversion in bioreactor landfill simulators

    Energy Technology Data Exchange (ETDEWEB)

    Lubberding, H.; Valencia, R.; Salazar, R.; Lens, P.

    2009-07-01

    Bioreactor landfills are considered to be an improvements to normal sanitary landfills, because the Municipal Solid Waste is stabilised faster and the biogas is produced in a shorter period of time (Valencia et al 2008a, b). In spite of these advantages, it is still difficult to reach within 30 years a safe status of the landfill due to the elevated NH{sub 4}{sup +} levels (up to 3 g/L) in the leachate. (Author)

  6. A Novel Seeding and Conditioning Bioreactor for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Julia Schulte

    2014-07-01

    Full Text Available Multiple efforts have been made to develop small-diameter tissue engineered vascular grafts using a great variety of bioreactor systems at different steps of processing. Nevertheless, there is still an extensive need for a compact all-in-one system providing multiple and simultaneous processing. The aim of this project was to develop a new device to fulfill the major requirements of an ideal system that allows simultaneous seeding, conditioning, and perfusion. The newly developed system can be actuated in a common incubator and consists of six components: a rotating cylinder, a pump, a pulse generator, a control unit, a mixer, and a reservoir. Components that are in direct contact with cell media, cells, and/or tissue allow sterile processing. Proof-of-concept experiments were performed with polyurethane tubes and collagen tubes. The scaffolds were seeded with fibroblasts and endothelial cells that were isolated from human saphenous vein segments. Scanning electron microscopy and immunohistochemistry showed better seeding success of polyurethane scaffolds in comparison to collagen. Conditioning of polyurethane tubes with 100 dyn/cm2 resulted in cell detachments, whereas a moderate conditioning program with stepwise increase of shear stress from 10 to 40 dyn/cm2 induced a stable and confluent cell layer. The new bioreactor is a powerful tool for quick and easy testing of various scaffold materials for the development of tissue engineered vascular grafts. The combination of this bioreactor with native tissue allows testing of medical devices and medicinal substances under physiological conditions that is a good step towards reduction of animal testing. In the long run, the bioreactor could turn out to produce tissue engineered vascular grafts for human applications “at the bedside”.

  7. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    Science.gov (United States)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  8. An expert system based intelligent control scheme for space bioreactors

    Science.gov (United States)

    San, Ka-Yiu

    1988-01-01

    An expert system based intelligent control scheme is being developed for the effective control and full automation of bioreactor systems in space. The scheme developed will have the capability to capture information from various resources including heuristic information from process researchers and operators. The knowledge base of the expert system should contain enough expertise to perform on-line system identification and thus be able to adapt the controllers accordingly with minimal human supervision.

  9. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals

    OpenAIRE

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving incr...

  10. Molekulare Formen des PSA in der Diagnostik des Prostatakarzinoms

    Directory of Open Access Journals (Sweden)

    Lein M

    2003-01-01

    Full Text Available Das prostataspezifische Antigen ist die wichtigste Kenngröße in der Diagnostik und Therapieüberwachung des Prostatakarzinoms. Zur besseren Abgrenzung zwischen Männern mit und ohne Prostatakarzinom, aber auch zur Früherkennung, haben sich die molekularen Formen des PSA als wertvolle Entscheidungshilfen erwiesen. Es wird eine Übersicht über bisher vorliegende Informationen zur Aussagekraft des freien PSA, des an alpha 1-Antichymotrypsin gebundenen PSA und des komplexierten PSA (cPSA zusammen mit eigenen Resultaten gegeben. Der Quotient aus freiem und Gesamt-PSA hat sich als eine wichtige Entscheidungsgröße in der urologischen Praxis etabliert, mit der Sensitivität und Spezifität der Prostatakarzinomdiagnostik verbessert werden. Die Zahl von Prostatastanzbiopsien im Gesamt-PSA-Bereich von 4–10 ng/ml kann damit reduziert werden. Ein diagnostischer Vorteil der alleinigen Bestimmung des komplexierten PSA bzw. der entsprechenden Quotienten im Vergleich zum Gesamt-PSA und des Quotienten freies PSA zu Gesamt-PSA konnte bisher nicht sicher nachgewiesen werden.

  11. Biogas Production from Citrus Waste by Membrane Bioreactor

    Science.gov (United States)

    Wikandari, Rachma; Millati, Ria; Cahyanto, Muhammad Nur; Taherzadeh, Mohammad J.

    2014-01-01

    Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF) membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR), the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR) was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor. PMID:25167328

  12. Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor.

    Science.gov (United States)

    González-Sánchez, A; Meulepas, R; Revah, S

    2008-08-01

    This work describes the design and performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate aeration vessel. The reactor was equipped with an internal settler and packing material (structured corrugated PVC sheets) to facilitate both cell retention and the settling of the formed elemental sulfur. The supernatant from the reactor was continuously recirculated through the aerator. An inlet thiosulfate concentration of 100 mmol l(-1) was used. The reactor system was fed with 89 mmol l(-1) d(-1) thiosulfate reaching 98 to 100% thiosulfate conversion with an elemental sulfur yield of 77%. Ninety-three percent of the produced sulfur was harvested from the bottom of the reactor as sulfur sludge. The dry sulfur sludge contained 87% elemental sulfur. The inclusion of an internal settler and packing material in the reactor system resulted in an effective retention of sulfur and biomass inside the bioreactor, preventing the oxidation of thiosulfate and elemental sulfur to sulfate in the aerator and, therefore, improving the efficiency of elemental sulfur formation and recovery.

  13. Immunological analysis of aerobic bioreactor bovine theileriosis vaccine.

    Directory of Open Access Journals (Sweden)

    Gholamreza Habibi

    2014-09-01

    Full Text Available In this study, the pilot production of aerobic bioreactor tropical theileriosis vaccine was optimized with the aim of immunological assays for further mass production.We have shown earlier the delayed type hypersensitivity (DTH assay could be used for evaluating the immunity and memory cells against specific Theileria antigen in vaccinated animals. In addition, TNF-α is the principle cytokine in modulating the cytotoxic activity of cytotoxic T-lymphocytes (CTL. Immunological analysis of the vaccine was performed by using two cell mediated immunity (CMI in vitro and in vivo DTH test (Theilerin and TNF-α assay.The results of immune responses of susceptible immunized cattle by bioreactor vaccine in comparison with conventional flask vaccine revealed a significant stimulation of immune cells by transcription of high level of TNF-α and positive reaction against Theileria antigen in Theilerin skin test (DTH.The equal immunological results achieved in both above mentioned vaccines verified the satisfactory immunity for aerobic bioreactor theileriosis vaccine for advance mass vaccination in the field on a large-scale.

  14. CFD Simulation of Fouling by Biological materials in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Raziye, Ahmadi

    2016-06-01

    Full Text Available In recent years membrane bioreactors filtration is increasingly used in wastewater treatment to enhance the quality of wastewater. The main problem in preventing the widespread use of membrane bioreactor is its congestion which has a severe impact on output flux to time ratio. If solid suspensions with high concentrations exist in the wastewater, this influence will be even more severe. In addition to the suspended solids in the liquid mixture, Extracellular polymeric materials (EPS and soluble microbial products (SMP are also known as basic microbial products that cause membrane fouling. EPS can be calculated within and on the membrane which increases the viscosity of suspended solids in the liquid mixture and increases filtration resistance. SMPs cannot penetrate the pores of the ultra filtration membrane due to the limited size of the pores which would cause fouling in membrane processes. According to the above issues, providing a model that indicates the properties and conditions of formation and destruction of SMP and EPS at the same time seems necessary. In this paper, CFD simulation of biological fouling in membrane bioreactor is provided using Fluent software.

  15. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  16. Wastewater treatment in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Casu, Stefania; Crispino, Nedda A; Farina, Roberto; Mattioli, Davide; Ferraris, Marco; Spagni, Alessandro

    2012-01-01

    Although most membrane bioreactors are used under aerobic conditions, over the last few years there has been increased interest in their application for anaerobic processes. This paper presents the results obtained when a bench-scale submerged anaerobic membrane bioreactor was used for the treatment of wastewaters generated in the agro-food industry. The reactor was fed with synthetic wastewater consisting of cheese whey and sucrose, and volumetric organic loading rates (OLRs) ranging from 1.5 to 13 kgCOD/(m(3)*d) were applied. Under the operating conditions studied, the maximum applicable OLR was between 6 and 10 gCOD/(g*L), which fell within the ranges of the high-rate anaerobic wastewater treatment systems, while high concentrations of volatile fatty acids were produced at higher OLR rates. With an OLR of 1.5-10 gCOD/(g*L), the reactor showed 94% COD removal, whereas this value dropped to 33% with the highest applied OLR of 13 gCOD/(g*L). The study therefore confirms that membrane bioreactors can be used for anaerobic wastewater treatment.

  17. Bioreactors for tissue engineering--a new role for perfusionists?

    Science.gov (United States)

    Sistino, Joseph J

    2003-09-01

    Tissue engineering is an exciting new area of medicine with rapid growth and expansion over the last decade. It has the potential to have a profound impact on the practice of medicine and influence the economic development in the industry of biotechnology. In almost every specialty of medicine, the ability to generate replacement cells and develop tissues will change the focus from artificial organs and transplantation to growing replacement organs from the patient's own stem cells. Once these organs are at a size that requires perfusion to maintain oxygen and nutrient delivery, then automated perfusion systems termed "bioreactors" will be necessary to sustain the organ until harvesting. The design of these "bioreactors" will have a crucial role in the maintenance of cellular function throughout the growth period. The perfusion schemes necessary to determine the optimal conditions have not been well elucidated and will undergo extensive research over the next decade. The key to progress in this endeavor will development of long-term perfusion techniques and identifying the ideal pressures, flow rates, type of flow (pulsatile/nonpulsatile), and perfusate solution. Perfusionists are considered experts in the field of whole body perfusion, and it is possible that they can participate in the development and operation of these "bioreactors." Additional education of perfusionists in the area of tissue engineering is necessary in order for them to become integral parts of this exciting new area of medicine.

  18. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  19. Mécanique des sols et des roches

    CERN Document Server

    Vullier, Laurent; Zhao, Jian

    2016-01-01

    La mécanique des sols et la mécanique des roches sont des disciplines généralement traitées séparément dans la littérature. Pour la première fois, un traité réunit ces deux spécialités, en intégrant également les connaissances en lien avec les écoulements souterrains et les transferts thermiques. A la fois théorique et pratique, cet ouvrage propose tout d'abord une description détaillée de la nature et de la composition des sols et des roches, puis s'attache à la modélisation de problèmes aux conditions limites et présente les essais permettant de caractériser les sols et les roches, tant d'un point de vue mécanique qu'hydraulique et thermique. La problématique des sols non saturés et des écoulements multiphasiques est également abordée. Une attention particulière est portée aux lois de comportement mécanique et à la détermination de leurs paramètres par des essais in situ et en laboratoire, et l'ouvrage offre également une présentation détaillée des systèmes de classi...

  20. Le silence des agneaux

    Directory of Open Access Journals (Sweden)

    BERNARD ROY

    2012-01-01

    Full Text Available Ce texte est avant tout une réflexion sur la notion d'obéissance, initiée à partir de deux évènements impliquant étroitement des membres de la profession infirmière. L'auteur se réjouit de la prise de parole et de l'implication directe d'infirmières dans le contexte du printemps érable. Il estime que la posture de ces infirmières s'inscrit dans ce que l'éthicien Guy Durand, appelle une obéissance autonome qui peut, du coup, mener à la désobéissance civile, à l'objection de conscience. En prenant exemple sur le silence des infirmières dans le contexte de la fermeture de postes d'infirmières en Minganie, l'auteur estime que cette posture est marginale chez les infirmières qui, majoritairement, adoptent une position de soumission et d'obéissance hétéronome.

  1. La médicalisation des humeurs des enfants

    OpenAIRE

    Monzée, Joël

    2015-01-01

    Les enfants qui ont des comportements dérangeants ou qui souffrent de problèmes neurologiques, comme le trouble déficitaire de l’attention avec ou sans hyperactivité (TDAH), remettent en question nos moyens d’intervention pour les aider. Alors que le contexte européen tend à privilégier une intervention psychoéducative, les milieux nord-américains recourent davantage aux psychostimulants pour réduire les effets des problèmes comportementaux des enfants. Cet article aborde quelques problématiq...

  2. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering

    Institute of Scientific and Technical Information of China (English)

    WEI Xin; LI Dao-bing; XU Feng; WANG Yan; ZHU Yu-chun; LI Hong; WANG Kun-jie

    2011-01-01

    Background Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study.This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells.Methods We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition.Results The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90±1.22)% vs. (93.14±1.78)%, P >0.05) and bladder smooth muscle cells ((93.41±1.49)% vs.(92.61±1.34)%, P >0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane.Conclusions This bioreactor can effectively simulate the physiological and mechanical properties of the bladder.Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth

  3. Imaging glucose metabolism in perfluorocarbon-perfused hepatocyte bioreactors using positron emission tomography.

    Science.gov (United States)

    Nieuwoudt, Martin; Wiggett, Scholtz; Malfeld, Susan; van der Merwe, Schalk W

    2009-01-01

    In vitro hepatocyte bioreactor functionality depends particularly on maintaining appropriate oxygen levels and exposure to nonparenchymal cells. An attractive solution without immunological consequences to the patient is incorporating a perfluorocarbon oxygen carrier in the circulating medium and co-culturing hepatocytes with stellate cells. Since bioreactors are normally sealed sterile units, demonstrating metabolic functionality is hindered by limited access to the cells after their aggregation in the matrix. A novel possibility is to use positron emission tomography (PET) to image cellular radioactive glucose uptake under O(2)-limited conditions. In this study, primary cell isolation procedures were carried out on eight pigs. Pairs of cell-seeded and cell-free (control) bioreactors with and without perfluorocarbon were cultured under identical conditions and were oxygenated using hypoxic (5% O(2)) and ambient (20% O(2)) gas mixes. Sixteen PET scans were conducted 24 h after cell isolation, the same timescale as that involved in treating a liver failure patient with a primary-cell bioreactor. In all cases, cell-seeded bioreactors without perfluorocarbon were more radioactive, i.e., were more glycolytic, than those with perfluorocarbon. This difference was significant in the hypoxic pair of bioreactors but not in the ambient pair of bioreactors. Additionally, in the same hypoxic bioreactors, circulating extracellular steady-state glucose levels were significantly lower and lactate levels were higher than those in the ambient bioreactors. Similar findings have been made in other in vitro hepatocyte studies investigating the effects of perfluorocarbons. PET is attractive for studying in situ O(2)-dependent bioreactor metabolism because of its visual and numerically quantifiable outputs. Longer-term metabolic studies (e.g., 5-10 days) investigating the effect of perfluorocarbon on bioreactor longevity will complement these findings in the future.

  4. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    Science.gov (United States)

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.

  5. Des cartes dans la classe…

    Directory of Open Access Journals (Sweden)

    R. Gimeno

    1990-09-01

    Full Text Available La majorité des enseignants qui veulent faire des cartes — et les faire réaliser aux élèves — pour répondre aux exigences des instructions officielles, doivent surmonter leur manque de compétences en cartographie et en didactique ainsi que les difficultés propres aux logiciels de cartographie encore peu performants. Ces compétences et la réflexion qui les accompagne sont pourtant accessibles aux enfants de l’école élémentaire…

  6. Wider die Verherrlichung des Weiblichen : Kritik des Ökofeminismus

    OpenAIRE

    Attia, Iman

    1991-01-01

    Die Studie ist eine Kritik am Frauen- und Gesellschaftsbild des Ökofeminismus. Nach der Darstellung wesentlicher theoretischer Kategorien des Ökofeminismus, die sich zentrieren im Ideal der Hausarbeit als wichtigste Form von Subsistenzarbeit, stellt die Autorin zusammenfassend fest, daß der Ökofeminismus die gesellschaftlichen Unterschiede und historischen Veränderungen ignoriert, indem er den Weiblichkeitsbegriff aus der Gebärfähigkeit ableitet. Jede Ausbeutungsform wird reduziert auf biolog...

  7. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering

    NARCIS (Netherlands)

    dds., N.; Amoabediny, G.; Pouran, B.; Tabesh, H.; Shokrgozar, M.A.; Haghighipour, N.; Khatibi, N.; Anisi, F.; Mottaghy, K.; Zandieh-Doulabi, B.

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transf

  8. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become m

  9. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    Science.gov (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  10. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor.

    Science.gov (United States)

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5.

  11. Cultivation of mammalian cells using a single-use pneumatic bioreactor system.

    Science.gov (United States)

    Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel

    2014-10-10

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.

  12. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    Science.gov (United States)

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  13. A simple eccentric stirred tank mini-bioreactor: mixing characterization and mammalian cell culture experiments.

    Science.gov (United States)

    Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M

    2013-04-01

    In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor.

  14. Optimization of denitrifying bioreactor performance with agricultural residue-based filter media

    Science.gov (United States)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Columns were packed with wood chips...

  15. Biodegradation of toluene using Candida tropicalis immobilized on polymer matrices in fluidized bed bioreactors.

    Science.gov (United States)

    Song, JiHyeon; Namgung, HyeongKyu; Ahmed, Zubair

    2012-11-30

    A yeast strain, Candida tropicalis, was whole-cell-immobilized on polymer matrices of polyethylene glycol (PEG) and polyethylene glycol/activated carbon/alginate (PACA). The polymer matrices were used as fluidized materials in bubble-column bioreactors for the biodegradation of toluene. Simultaneously, another bubble-column bioreactor using granular activated carbon (GAC) and a conventional compost biofilter were operated for comparison. In the compost biofilter, the toluene removal efficiency gradually deteriorated due to the limitation of microbial activity. The toluene removal in the GAC bioreactor was relatively high because of an increase of toluene mass transfer. However, low toluene removal efficiencies were observed in the PEG bioreactor, presumably because the synthetic polymer alone was not suitable for yeast cell immobilization. In the PACA bioreactor, toluene removal was found to be greater than 95% overall. The CO(2) yield coefficient calculated at the highest toluene loading condition for the PACA bioreactor was found to be higher than those observed in the other bioreactors. Furthermore, almost complete elimination capacities were observed in the PACA bioreactor at short-term toluene loading up to 180 g/m(3)/h. In conclusion, the immobilization of C. tropicalis in the PACA matrix resulted in enhanced toluene biodegradation because of the increases of both mass transfer and microbial activity.

  16. Modeling and mitigation of denitrification 'woodchip' bioreactor phosphorus releases during treatment of aquaculture wastewater

    Science.gov (United States)

    Denitrification 'woodchip' bioreactors designed to remove nitrate from agricultural waters may either be phosphorus sources or sinks. A 24 d batch test showed woodchip leaching is an important source of phosphorus during bioreactor start-up with a leaching potential of approximately 20 -30 mg P per ...

  17. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    Science.gov (United States)

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  18. Treatment of contaminated drilling sludge in a bioreactor; Behandlung von Bohrspuelschlaemmen im Bioreaktorverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Noke, A.

    2003-07-01

    Fine-grained contaminated drilling mud from petroleum production processes was purified in an airlift bioreactor. The process regime of bioreactor treatment was optimized, elements of the process periphery were investigated (e.g. purification of reactor off-air in biofilters as well as mud dehydration), and the hazard of the resulting material was assessed.

  19. Milking microalga Dunaliella salina for Beta-carotene production in two-phase bioreactors

    NARCIS (Netherlands)

    Hejazi, M.; Holwerda, E.; Wijffels, R.H.

    2004-01-01

    A new method was developed for production of beta-carotene from Dunaliella salina. Cells were grown in low light intensity and then transferred to a production bioreactor illuminated at a higher light intensity. It was a two-phase bioreactor consisting of an aqueous and a biocompatible organic phase

  20. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming;

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  1. DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS USING THE BEST MODEL

    Science.gov (United States)

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with a public domain computer software package, PHREEQCI. BEST is intended to be used in the design process of sulfate-reducing bacteria (SRB)field bioreactors to pas...

  2. Bacterial Concentration and Diversity within Repetitive Aliquots Collected from Replicate Continuous-Flow Bioreactor Cultures.

    Science.gov (United States)

    Crippen, Tawni L; Sheffield, Cynthia L; Andrews, Kathleen; Bongaerts, Roy; Nisbet, David J

    2008-01-01

    The aim of this study was to determine the reproducibility of small volume repeat sampling from replicate bioreactors with stabilized continuous-flow chicken cecal bacterial communities. Bacterial concentration and diversity were analyzed by phenotypic, biochemical and ribotype analysis. Significant differences in concentrations and variations in diversity were found in replicate bioreactors.

  3. La fabrique des extraterrestres

    OpenAIRE

    Poulain, Sébastien

    2012-01-01

    Grâce à différentes stratégies discursives et médiatiques, Radio Ici et Maintenant joue un rôle dans la fabrication de la rumeur de l’existence des extraterrestres. Cette rumeur, teintée de complot, doit servir à légitimer l’utopie messianique et millénariste de cette radio New Age qui dispose de 5 000 auditeurs au quotidien. Cette radio prophétique et thérapeutique participe donc, jusqu’à un certain degré, au renouvellement de l’espace du politico-religieux. Thanks to various media and di...

  4. LA TRADUCTION DES PREPOSITIONS

    Directory of Open Access Journals (Sweden)

    Samira MOUTAKIL

    2013-05-01

    Full Text Available L’idée de cet article nous est venue d’un cours qu’on assure pour les futurs guides touristiques en Jordanie. En traduisant des textes - français-arabe ou arabe-français, les étudiants se heurtent à certains problèmes pour rendre le texte vers la langue cible et qui soit convenable syntaxiquement et sémantiquement. On a remarqué donc que la traduction des prépositions vers l’une ou l’autre langue présente un dilemme pour les apprenants. On a décidé de composer un corpus de phrases contenant les propositions en français, « à » avec toutes ses formes, « dans et sur » et de l'arabe "على", "في" . Dans un premier temps, on a constitué le corpus avec 25 phrases dans les deux langues et on les a soumises aux étudiants, la liste en français aux étudiants du niveau A2 et la liste ne arabe aux étudiants du niveau A1. Par la suite, on a dégagé ce qui ressort de leurs traductions ce qui nous a permis de faire une analyse sémantico-syntaxique assez détaillée. En conclusion de cet article, on présente les résultats de cette expérience très intéressante.

  5. Marais Des Cygnes Wildlife Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This brochure is for the Marais des Cygnes Wildlife Area, managed by Kansas Department of Wildlife, Parks and Tourism, and located in the floodplain of the Marais...

  6. Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor.

    Science.gov (United States)

    Tang, Bing; Qiu, Bing; Huang, Shaosong; Yang, Kanghua; Bin, Liying; Fu, Fenglian; Yang, Huiwen

    2015-04-01

    This work investigated the DO distribution and the factors influencing the mass transfer of DO in a multi-habitat membrane bioreactor. Through the continuous measurements of an on-line automatic system, the timely DO values at different zones in the bioreactor were obtained, which gave a detailed description to the distribution of oxygen within the bioreactor. The results indicated that the growth of biomass had an important influence on the distribution of oxygen. As the extension of operational time, the volumetric oxygen mass transfer coefficient (kLa) was generally decreased. With the difference in DO values, a complex environment combining anoxic and oxic state was produced within a single bioreactor, which provided a fundamental guarantee for the total removal of TN. Aeration rate, the concentration and apparent viscosity of MLSS have different influences on kLa, but adjusting the viscosity is a feasible method to improve the mass transfer of oxygen in the bioreactor.

  7. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    Science.gov (United States)

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.

  8. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    Science.gov (United States)

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment.

  9. Propagation and Dissolution of CO2 bubbles in Algae Photo-bioreactors

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    Research grade photo-bioreactors are used to study and cultivate different algal species for biofuel production. In an attempt to study the growth properties of a local algal species in rain water, a custom made bioreactor is designed and being tested. Bio-algae consumes dissolved CO2 in water and during its growth cycle, the consumed CO2 must be replenished. Conventional methods use supply of air or CO2 bubbles in the growth medium. The propagation and dissolution of the bubbles, however, are strongly dependent on the design parameters of the photo-bioreactor. In this paper, we discuss the numerical modeling of the air and CO2 bubble propagation and dissolution in the photo-bioreactor. Using the results the bioreactor design will be modified for maximum productivity.

  10. Production of Calcaride A by Calcarisporium sp. in Shaken Flasks and Stirred Bioreactors.

    Science.gov (United States)

    Tamminen, Anu; Wang, Yanming; Wiebe, Marilyn G

    2015-06-24

    Increased interest in marine resources has led to increased screening of marine fungi for novel bioactive compounds and considerable effort is being invested in discovering these metabolites. For compound discovery, small-scale cultures are adequate, but agitated bioreactors are desirable for larger-scale production. Calcarisporium sp. KF525 has recently been described to produce calcaride A, a cyclic polyester with antibiotic activity, in agitated flasks. Here, we describe improvements in the production of calcaride A in both flasks (13-fold improvement) and stirred bioreactors (200-fold improvement). Production of calcaride A in bioreactors was initially substantially lower than in shaken flasks. The cultivation pH (reduced from 6.8 to bioreactor, which was only slightly less than in shaken flasks (14 mg·g-1, 100 mg·L-1). The results demonstrate that a scalable process for calcaride A production could be developed using an iterative approach with flasks and bioreactors.

  11. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  12. Preliminary Study on Airlift Membran-Bioreactor%气升式膜-生物反应器的设计与应用

    Institute of Scientific and Technical Information of China (English)

    徐农; 邢卫红; 徐南平; 时钧

    2002-01-01

    A new type of membrane bioreactor named "airlift membrane-bioreactor" is discussed. For municipal wastewater reclamation, the preliminary study on airlift membrane-bioreactor shows its good performance such as higher flux and lower energy consumption. The airlift membrane-bioreactor is potentially applicable in bioengineering and environmental protection fields.

  13. Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae.

    Science.gov (United States)

    Yoo, Jae Jun; Choi, Seung Phill; Kim, Jaoon Y H; Chang, Won Seok; Sim, Sang Jun

    2013-06-01

    Photosynthetic microalgae have received much attention as a microbial source of diverse useful biomaterials through CO(2) fixation and various types of photo-bioreactors have been developed for efficient microalgal cultivation. Herein, we developed a novel thin-film photo-bioreactor, which was made of cast polypropylene film, considering outdoor mass cultivation. To develop optimal design of photo-bioreactor, we tested performance of three shapes of thin-film photo-bioreactors (flat, horizontal and vertical tubular shapes) and various parts in the bioreactor. Collectively, vertical tubular bioreactor with H/D ratio 6:1 and cylindrical stainless steel spargers showed the most outstanding performance. Furthermore, the photo-bioreactor was successfully applied to the cultivation of other microalgae such as Chlamydomonas reinhardtii and Chlorella vulgaris. The scalability of photo-bioreactor was confirmed by gradually increasing culture volume from 4 to 25 L and the biomass productivity of each reactor was quite consistent (0.05-0.07 g/L/day) during the cultivation of H. pluvialis under indoor and outdoor conditions. Especially, we also achieved dry cell weight of 4.64 g/L and astaxanthin yield of 218.16 mg/L through long-term cultivation (100 days) under outdoor condition in 15 L photo-bioreactor using Haematococcus pluvialis, which means that the astaxanthin yield from outdoor cultivation is equal or superior to that obtained from controlled indoor condition. Therefore, these results indicate that we can apply this approach to development of optimal photo-bioreactor for the large-scale culture of microalgae and production of useful biomaterials under outdoor condition.

  14. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer

    2015-04-01

    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  15. Trace Gas Emission from in-Situ Denitrifying Bioreactors

    Science.gov (United States)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2014-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication. A primary process for removing excess NO3- from water is denitrification, where denitrifying bacteria use NO3- for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas. A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs). DNBRs provide conditions ideal for denitrifiers: an anaerobic environment, sufficient organic matter, and excess NO3-. These conditions are also ideal for methanogens, which produce methane (CH4), another harmful trace gas. While initial results from bioreactor studies show that they can cost-effectively remove NO3-, trace gas emissions are an unintended consequence. This study's goal was to determine how bioreactor design promotes denitrification while limiting trace gas production. Reactor inflow and outflow water samples were tested for nutrients, including NO3-, and dissolved inflow and outflow gas samples were tested for N2O and CH4. NO3- reduction and trace gas production were evaluated at various residence times, pHs, and inflow NO3- concentrations in field and lab-scale reactors. Low NO3- reduction indicated conditions that stressed denitrifying bacteria while high reductions indicated designs that optimized pollutant treatment for water quality. Several factors influenced high N2O, suggesting non-ideal conditions for the final step of complete denitrification. High CH4 emissions pointed to reactor media choice for discouraging methanogens, which may remove competition with denitrifiers. It is critical to understand all of potential impacts that DNBRs may have, which means identifying processes and design specifications that may affect them.

  16. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  17. Production of succinic acid in basket and mobile bed bioreactors-Comparative analysis of substrate mass transfer aspects☆

    Institute of Scientific and Technical Information of China (English)

    Anca-Irina Galaction; Dan Cacaval; Ramona-Mihaela Matran; Alexandra Tucaliuc

    2016-01-01

    The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacil us succinogenes cel s has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. The process has been considered to occur under substrate and product inhibitory effects. The results indicated that the biore-actor with mobile bed is more efficient for biocatalyst particles with a diameter over 3 mm, while the basket bio-reactor is more efficient for smal er biocatalyst particles and basket bed thickness below 5 mm. The performances of both configurations of immobilized A. succinogenes cell beds were found to be superior to the column packed bed bioreactor.

  18. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  19. Transgenic rice endosperm as a bioreactor for molecular pharming.

    Science.gov (United States)

    Ou, Jiquan; Guo, Zhibin; Shi, Jingni; Wang, Xianghong; Liu, Jingru; Shi, Bo; Guo, Fengli; Zhang, Chufu; Yang, Daichnag

    2014-04-01

    Plants provide a promising expression platform for producing recombinant proteins with several advantages in terms of high expression level, lower production cost, scalability, and safety and environment-friendly. Molecular pharming has been recognized as an emerging industry with strategic importance that could play an important role in economic development and healthcare in China. Here, this review represents the significant advances using transgenic rice endosperm as bioreactor to produce various therapeutic recombinant proteins in transgenic rice endosperm and large-scale production of OsrHSA, and discusses the challenges to develop molecular pharming as an emerging industry with strategic importance in China.

  20. Sensor equipment for quantification of spatial heterogeneity in large bioreactor

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Formenti, Luca Riccardo; Stocks, Stuart M.

    of sensors and in order to apply more sensor equipment the bioreactor has to be modified which is both costly and results in production downtime. The presence of three phases (gas, liquid, and solid), and the opaque nature of the fermentation broth together with the necessity of heat sterilization further...... increases the requirements to the sensor equipment. In order to address these issues this study aims to make an investigation into freely floating, battery driven sensor particles that can follow the liquid movement in the reactor and make measurements while being distributed in the whole volume...

  1. Effect of Mixing on Microorganism Growth in Loop Bioreactors

    Directory of Open Access Journals (Sweden)

    A. M. Al Taweel

    2012-01-01

    Full Text Available The impact of mixing on the promotion of microorganism growth rate has been analyzed using a multiphase forced-circulation pipe-loop reactor model capable of identifying conditions under which it is possible to convert natural gas into Single-Cell Protein. The impact of mixing in the interphase mass transfer was found to exert a critical role in determining the overall productivity of the bioreactor, particularly at the high cell loadings needed to reduce the capital costs associated with the large-scale production needed for the production of relatively low-value SCP in a sustainable manner.

  2. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, Erik Eduard

    2007-01-01

    In this thesis the development of a microbioreactor array with integrated sensoss suitable for on-line screening of micro organisms is described. Therefore, an array of 2 micro bioreactors compatible with the 96-well microtiterplate format has been made and tested. The developed system was shown to 

  3. Transient Behavior of Ethanol Fermentation in Immobilized Cell Bioreactors*

    OpenAIRE

    Tohru, KANNO; Yoshinori, FUJISHIGE; Hiroyuki, Ito; koichi, yamazaki; Masayoshi, KOBAYASHI

    1990-01-01

    The dynamic behavior of ethanol fermentation catalysed by an immobilized cell has been studied in batch and continuous stirred tank bioreactors, changing the operating conditions in a stepwise fashion. The rate of ethanol fermentation in the flow reactor reaches a new steady state within 60 min for the stepwise change in temperature or flow rate at 15〜30℃ and the residence time t_R=40 hr. The rate of fermentation obeys the Lineweaven-Burk plot and the Michaelis constant is calculated

  4. Terre des hommes

    CERN Multimedia

    Staff Association

    2012-01-01

    Transformez votre téléphone portable en geste de solidarité ! Collecte du 12 au 23 novembre 2012   Faites un geste simple et utile en déposant vos téléphones portables inutilisés dans les urnes installées dans les trois restaurants du CERN. En Suisse, une personne change tous les 12 à 18 mois de téléphone portable. La plupart de nos vieux appareils sont simplement laissés à l’abandon avec comme seule fonction de parer une éventuelle panne à venir. On  estime ainsi que 8 millions de portables sont inutilisés, alors qu'entre 30 et 50% peuvent être réutilisés. L'action Solidarcomm leur offre une deuxième vie ! Terre des Hommes Suisse, dans le cadre de la campagne Solidarcomm, collecte et valorise vos téléphones inutilis&...

  5. Peste des petits ruminants.

    Science.gov (United States)

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.

  6. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    Science.gov (United States)

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation.

  7. [Research on ursolic acid production of Eriobotrya japonica cell suspension culture in WAVE bioreactor].

    Science.gov (United States)

    Li, Hui-hua; Yao, De-heng; Xu, Jian; Wang, Wei; Chang, Qiang; Su, Ming-hua

    2015-05-01

    Through scale-up cultivation of Eriobotrya japonica suspension cells using WAVE bioreactor, the cell growth and ursolic acid (UA) accumulation were studied. The comparison test was carried out in the flask and the reactor with cell dry weight (DW) and UA content as evaluation indexes. The culture medium, DW and UA content were compared in 1 L and 5 L working volumes of bioreactor. The orthogonal test with main actors of inoculation amount, speed and angle of rotation was developed to find the optimal combination, in 1 L working volume of bioreactor. DW of the cell growth and the UA content in bioreactor were higher than those of the shaker by 105.5% and 27.65% respectively. In bioreactor, the dynamic changes of elements in the fluid culture, the dry weight of the cell growth and the UA content in 1 L and 5 L working volumes were similar. Inoculation of 80 g, rotational speed of 26 r · min(-1), and angle of 6 ° was the optimal combination, and the cell biomass of 19.01 g · L(-1) and the UA content of 27.750 mg · g(-1) were achieved after 100 h cultivation in 1 L working volume of bioreactor. WAVE Bioreactor is more suitable than flasks for the E. japonica cell suspension culture, and culture parameters can be achieved from 1 L to 5 L amplification.

  8. Microbial acetate oxidation in horizontal rotating tubular bioreactor

    Indian Academy of Sciences (India)

    A Slavica; B Šantek; S Novak; V Marić

    2004-06-01

    The aim of this work was to investigate the possibility of conducting a continuous aerobic bioprocess in a horizontal rotating tubular bioreactor (HRTB). Aerobic oxidation of acetate by the action of a mixed microbial culture was chosen as a model process. The microbial culture was not only grown in a suspension but also in the form of a biofilm on the interior surface of HRTB. Efficiency of the bioprocess was monitored by determination of the acetate concentration and chemical oxygen demand (COD). While acetate inlet concentration and feeding rate influenced efficiency of acetate oxidation, the bioreactor rotation speed did not influence the bioprocess dynamics significantly. Gradients of acetate concentration and pH along HRTB were more pronounced at lower feeding rates. Volumetric load of acetate was proved to be the most significant parameter. High volumetric loads (above 2 g acetate l–1 h–1) gave poor acetate oxidation efficiency (only 17 to 50%). When the volumetric load was in the range of 0.60–1.75 g acetate l–1 h–1, acetate oxidation efficiency was 50–75%. At lower volumetric loads (0.14–0.58 g acetate l–1 h–1), complete acetate consumption was achieved. On the basis of the obtained results, it can be concluded that HRTB is suitable for conducting aerobic continuous bioprocesses.

  9. Mass transport in a microchannel bioreactor with a porous wall.

    Science.gov (United States)

    Chen, Xiao Bing; Sui, Yi; Lee, Heow Pueh; Bai, Hui Xing; Yu, Peng; Winoto, S H; Low, Hong Tong

    2010-06-01

    A two-dimensional flow model has been developed to simulate mass transport in a microchannel bioreactor with a porous wall. A two-domain approach, based on the finite volume method, was implemented. For the fluid part, the governing equation used was the Navier-Stokes equation; for the porous medium region, the generalized Darcy-Brinkman-Forchheimer extended model was used. For the porous-fluid interface, a stress jump condition was enforced with a continuity of normal stress, and the mass interfacial conditions were continuities of mass and mass flux. Two parameters were defined to characterize the mass transports in the fluid and porous regions. The porous Damkohler number is the ratio of consumption to diffusion of the substrates in the porous medium. The fluid Damkohler number is the ratio of the substrate consumption in the porous medium to the substrate convection in the fluid region. The concentration results were found to be well correlated by the use of a reaction-convection distance parameter, which incorporated the effects of axial distance, substrate consumption, and convection. The reactor efficiency reduced with reaction-convection distance parameter because of reduced reaction (or flux), and smaller local effectiveness factor due to the lower concentration in Michaelis-Menten type reactions. The reactor was more effective, and hence, more efficient with the smaller porous Damkohler number. The generalized results could find applications for the design of bioreactors with a porous wall.

  10. Biological conversion of synthesis gas. Topical report: Bioreactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of the proposed research is to develop a technically and economically feasible process for biologically producing H{sub 2} from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; mass transfer and kinetic studies in which equations necessary for process design are developed; bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; evaluation of biological synthesis gas conversion under limiting conditions in preparation for industrial demonstration studies; process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses. The purpose of this report is to present results from bioreactor studies involving H{sub 2} production by water gas shift and H{sub 2}S removal to produce elemental sulfur. Many of the results for H{sub 2} production by Rhodospirillum rubrum have been presented during earlier contracts. Thus, this report concentrates mainly on H{sub 2}S conversion to elemental sulfur by R. rubrum.

  11. Glyco-engineering for biopharmaceutical production in moss bioreactors

    Directory of Open Access Journals (Sweden)

    Eva L. Decker

    2014-07-01

    Full Text Available The production of recombinant biopharmaceuticals (pharmaceutical proteins is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely CHO cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production.The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety and efficacy of the products.The basal land plant Physcomitrella patens (moss has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin. Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken.Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.

  12. Immobilized yeast bioreactor systems for continuous beer fermentation

    Science.gov (United States)

    Tata; Bower; Bromberg; Duncombe; Fehring; Lau; Ryder; Stassi

    1999-01-01

    Two different types of immobilized yeast bioreactors were examined for continuous fermentation of high-gravity worts. One of these is a fluidized bed reactor (FBR) that employs porous glass beads for yeast immobilization. The second system is a loop reactor containing a porous silicon carbide cartridge (SCCR) for immobilizing the yeast cells. Although there was some residual fermentable sugar in the SCCR system product, nearly complete attenuation of the wort sugars was achieved in either of the systems when operated as a two-stage process. Fermentation could be completed in these systems in only half the time required for a conventional batch process. Both the systems showed similar kinetics of extract consumption, and therefore similar volumetric productivity. As compared to the batch fermentation, total fusel alcohols were lower; total esters, while variable, were generally higher. The yeast biomass production was similar to that in a conventional fermentation process. As would be expected in an accelerated fermentation system, the levels of vicinal diketones (VDKs) were higher. To remove the VDKs, the young beer was heat-treated to convert the VDK precursors and processed through a packed bed immobilized yeast bioreactor for VDK assimilation. The finished product from the FBR system was found to be quite acceptable from a flavor perspective, albeit different from the product from a conventional batch process. Significantly shortened fermentation times demonstrate the feasibility of this technology for beer production.

  13. Comparison between controlled landfill reactor and conditioned landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    LUO Feng; CHEN Wan-zhi; SONG Fu-zhong; LI Xiao-peng; ZHANG Guo-qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The results of laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature can used to decompose MSW. The results of waste biodegradation were compared with that of the simulators of the leachate-recirculated landfill and conservative sanitary landfill. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown, and heavy metals concentration was observed. An obvious enhancement of effective disposal from simulator of conservative sanitary landfill(CSL), to that of leachate-recirculated landfill(LRL) and to that of conditioned bioreactor landfill(CBL) would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.

  14. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    Science.gov (United States)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  15. Osmotic membrane bioreactor for phenol biodegradation under continuous operation.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-03-15

    Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600-2000mg/L, and also at spiked concentrations of 2500mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5-6 days at removal rates varying between 2000 and 5500mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2-7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4h. A washing cycle, comprising 1h osmotic backwashing using 0.5M NaCl and 2h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500cm(-1), 1450-1450cm(-1) and 1200-1000cm(-1), indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  16. Thiosulphate conversion in a methane and acetate fed membrane bioreactor.

    Science.gov (United States)

    Suarez-Zuluaga, Diego A; Timmers, Peer H A; Plugge, Caroline M; Stams, Alfons J M; Buisman, Cees J N; Weijma, Jan

    2016-02-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its liquid phase was removed and periodically replenished (days 77, 119, 166, 258, 312 and 385). Although the reactor was operated under conditions favourable to promote thiosulphate reduction coupled to methane oxidation, thiosulphate disproportionation was the dominant microbial process. Pyrosequencing analysis showed that the most abundant microorganisms in the bioreactor were phototrophic green sulphur bacteria (GSB) belonging to the family Chlorobiaceae and thiosulphate-disproportionating bacteria belonging to the genus Desulfocapsa. Even though the reactor system was surrounded with opaque plastic capable of filtering most of the light, the GSB used it to oxidize the hydrogen sulphide produced from thiosulphate disproportionation to elemental sulphur. Interrupting methane and acetate supply did not have any effect on the microbial processes taking place. The ultimate goal of our research was to develop a process that could be applied for thiosulphate and sulphate removal and biogenic sulphide formation for metal precipitation. Even though the system achieved in this study did not accomplish the targeted conversion using methane as electron donor, it does perform microbial conversions which allow to directly obtain elemental sulphur from thiosulphate.

  17. Characterization of Microbial Communities Found in Bioreactor Effluent

    Science.gov (United States)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  18. Two Devices for Removing Sludge From Bioreactor Wastewater

    Science.gov (United States)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  19. Applicability of dynamic membrane technology in anaerobic membrane bioreactors.

    Science.gov (United States)

    Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B

    2014-01-01

    This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters.

  20. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors.

    Science.gov (United States)

    Weerasekara, Nuwan A; Choo, Kwang-Ho; Lee, Chung-Hak

    2016-10-15

    Biofilm formation (biofouling) induced via cell-to-cell communication (quorum sensing) causes problems in membrane filtration processes. Chorine is one of the most common chemicals used to interfere with biofouling; however, biofouling control is challenging because it is a natural process. This study demonstrates biofouling control for submerged hollow fiber membranes in membrane bioreactors by means of bacterial quorum quenching (QQ) using Rhodococcus sp. BH4 with chemically enhanced backwashing. This is the first trial to bring QQ alongside chlorine injection into practice. A high chlorine dose (100 mg/L as Cl2) to the system is insufficient for preventing biofouling, but addition of the QQ bacterium is effective for disrupting biofouling that cannot be achieved by chlorination alone. QQ reduces the biologically induced metal precipitate and extracellular biopolymer levels in the biofilm, and biofouling is significantly delayed when QQ is applied in addition to chlorine dosing. QQ with chlorine injection gives synergistic effects on reducing physically and chemically reversible fouling resistances while saving substantial filtration energy. Manipulating microbial community functions with chemical treatment is an attractive tool for biofilm dispersal in membrane bioreactors.

  1. Sewage treatment by a low energy membrane bioreactor.

    Science.gov (United States)

    Zhang, Shaoyuan; van Houten, Renze; Eikelboom, Dick H; Doddema, Hans; Jiang, Zhaochun; Fan, Yaobo; Wang, Jusi

    2003-11-01

    A new membrane bioreactor (MBR) was developed for treatment of municipal wastewater. The MBR was mainly made up of an activated sludge reactor and a transverse flow membrane module, with an innovative configuration being in application between them. As a result, the transverse flow membrane module and low recirculation flow rate created advantages, such as lower energy consumption and more resistance to membrane fouling. The total energy consumption in the whole system was tested as 1.97+/-0.74 kWh/m(3) (permeate) while using periodical backwash with treated water and backflush with mixed liquor daily, being in the same level as a submerged membrane bioreactor, reported to be 2.4 kWh/m(3) (permeate). Energy consumption analysis in the system shows that the membrane module was more energy consuming than the other four parts listed as pump, aeration, pipe system and return sludge velocity lose, which consumed 37.66-52.20% of the total energy. The effluent from this system could be considered as qualified for greywater reuse in China, showing its potential application in the future.

  2. Bioremediation of heavy metals using biostimulation in laboratory bioreactor.

    Science.gov (United States)

    Fulekar, M H; Sharma, Jaya; Tendulkar, Akalpita

    2012-12-01

    The present research study investigates bioremediation potential of biostimulated microbial culture isolated from heavy metals waste disposal contaminated site located at Bhayander (east), Mumbai, India. The physicochemical and microbial characterization including heavy metal contaminants have been studied at waste disposal site. The microorganisms adapted at heavy metal-contaminated environment were isolated, cultured, and biostimulated in minimal salt medium under aerobic conditions in a designed and developed laboratory bioreactor. Heavy metals such as Fe, Cu, and Cd at a selected concentration of 25, 50, and 100 μg/ml were taken in bioreactor wherein biostimulated microbial culture was added for bioremediation of heavy metals under aerobic conditions. The remediation of heavy metals was studied at an interval of 24 h for a period of 21 days. The biostimulated microbial consortium has been found effective for remediation of Cd, Cu, and Fe at higher concentration, i.e., 100 mg/l up to 98.5%, 99.6%, and 100%, respectively. Fe being a micronutrient was remediated completely compared to Cu and Cd. During the bioaccumulation of heavy metals by microorganisms, environmental parameters such as pH, total alkalinity, electronic conductivity, biological oxygen demand, chemical oxygen demand, etc. were monitored and assessed. The pilot scale study would be applicable to remediate heavy metals from waste disposal contaminated site to clean up the environment.

  3. CCC/WPA study : Des Lacs NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the Civilian Conservation Corps (CCC) camp at Des Lacs National Wildlife Refuge from July 1935-May 1942 to carry on restoration and development of Des...

  4. La théorie des industries culturelles (et informationnelles, composante des SIC

    Directory of Open Access Journals (Sweden)

    Bernard Miège

    2012-09-01

    Full Text Available Inaugurer le Cahier central de la Revue des SIC est certes une forme de reconnaissance, mais cela comporte des obligations, au premier rang desquelles la nécessité d’intéresser des lecteurs a priori pas immédiatement concernés par la thématique.Si la théorie des industries culturelles est devenue progressivement une approche marquante des SIC, en France, en Europe et plus largement encore (avec des dénominations variables et des modalités spécifiques, ce n’est en effet ni en le proclamant ha...

  5. Current algebra; Algebre des courants

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( {delta}I = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [French] La premiere partie de ce cours (trois premiers chapitres), traite des generalites concernant l'algebre de courants. Apres une definition rapide des courants faibles et un rappel de leurs proprietes (hypothese V-A, conservation du courant vecteur, regles de selection, courant axial partiellement conserve,...), l'on introduit l'algebre de Gell-Mann SU (3) x SU (3), et discute les proprietes generales de l'Hamiltonien faible non leptonique. Les chapitres IV a IX sont consacres a des applications importantes de l'algebre des courants. En premier lieu l'on demontre la formule de Adler et Weisberger, par deux methodes differentes, celle dite du repere de moment infini et celle des singularites proches. Cette derniere est seule utilisee dans la suite. Puis, l'on traite successivement les problemes suivants: desintegrations semi-leptoniques des mesons K et des hyperons, theoreme de Kroll

  6. Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Gikas, P.; Livingston, A.G. (Imperial Coll., London (United Kingdom). Dept. of Chemical Engineering)

    1993-12-01

    This work describes investigations into the viability of cells growing on 3,4-dichloroaniline (34DCA). Two bio-reactors are employed for microbial growth, a continuous stirred tank (CST) bioreactor with a 2-L working volume, and a three-phase air lift (TPAL) bioreactor with a 3-L working volume. Experiments have been performed at several dilution rates between 0.027 and 0.115 h[sup [minus]1] in the CST bioreactor and between 0.111 and 0.500h[sup [minus]1] in the TPAL bioreactor. The specific ATP concentration was calculated at each dilution rate in the suspended biomass in both bioreactors as well as in the immobilized biomass in the TPAL bioreactor. The cultures were inspected under an electron microscope to monitor compositional changes. Results from the CST bioreactor showed that the biomass-specific ATP concentration increases from 0.44 to 1.86 mg ATP g[sup [minus]1] dry weight (dw) as dilution rate increases from 0.027 to 0.115 h[sup [minus]1]. At this upper dilution rate the cells were washed out. The specific ATP concentration reached a limiting average value of 1.73 mg ATP g[sup [minus]1] dw, which is assumed to be the quantity of ATP in 100% viable biomass, In the TPAL bioreactor, the ATP level increased with dilution rat in both the immobilized and suspended biomass. The specific ATP concentration in the immobilized biomass increased from approximately 0.051 mg ATP g[sup [minus]1] dw at dilution rates between 0.111 and 0.200 h[sup [minus]1] to approximately 0.119 mg ATP g[sup [minus]1] dw at dilution rates between 0.300 and 0.500 h[sup [minus]1].

  7. Neologismen des Lettischen anhand des schriftstellerischen Werkes von Zigmunds Skujins

    OpenAIRE

    Javojss, Skaidrite

    2010-01-01

    Untersuchung: Aus acht Werken des zeitgenössischen Schriftstellers Zigmunds Skujins wurden 500 lettische Wörter untersucht, die in den drei umfangreichsten lettischen Wörterbüchern nicht verzeichnet und somit möglicherweise Neologismen des Autors sind. Analysiert werden die Wortarten, die Komposita, die Herkunft der assimilierten Lehnwörter, orthographische und andere Varianten bereits lexikalisierter Wörter, die Arten der Diminutivbildung und der Präfigierung. Außerdem werden Aussagen über d...

  8. Development of a hybrid scaffold and a bioreactor for cartilage regeneration

    Institute of Scientific and Technical Information of China (English)

    LEE Seung-Jae; LEE In Hwan; PARK Jeong Hun; GWAK So-Jung; RHIE Jong-Won; CHO Dong-Woo; KO Tae Jo; KIM Dong Sung

    2009-01-01

    We developed a hybrid scaffold and a bioreactor for cartilage regeneration. The hybrid scaffold was developed as combination of two components: a biodegradable framework and hydrogel-containing chondrocytes. We performed the MTT cell proliferation assay to compare the proliferation and viability of chondrocytes on three types of scaffolds: an alginate gel, the hybrid scaffold, and an alginate sponge. Cells were encapsulated in 2% agarose gel. The bioreactor consisted of a circulation system and a compression system. We performed dynamic cell culture on these agarose gels in the bioreactor for 3 days.

  9. Integrated airlift bioreactor system for on-site small wastewater treatment.

    Science.gov (United States)

    Chen, S L; Li, F; Qiao, Y; Yang, H G; Ding, F X

    2005-01-01

    An integrated airlift bioreactor system was developed, which mainly consists of a multi-stage loop reactor and a gas-liquid-solid separation baffle and possesses dual functions as bioreactor and settler. This integrated system was used for on-site treatment of industrial glycol wastewater in lab-scale. The strategy of gradually increasing practical wastewater concentration while maintaining the co-substrate glucose wastewater concentration helped to accelerate the microbial acclimation process. Investigation of microbial acclimation, operation parameters evaluation and microbial observation has demonstrated the economical and technical feasibility of this integrated airlift bioreactor system for on-site small industrial wastewater treatment.

  10. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.

    Science.gov (United States)

    Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung

    2015-05-01

    Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types.

  11. Example study for granular bioreactor stratification: Three-dimensional evaluation of a sulfate-reducing granular bioreactor

    Science.gov (United States)

    Hao, Tian-wei; Luo, Jing-hai; Su, Kui-zu; Wei, Li; Mackey, Hamish R.; Chi, Kun; Chen, Guang-Hao

    2016-01-01

    Recently, sulfate-reducing granular sludge has been developed for application in sulfate-laden water and wastewater treatment. However, little is known about biomass stratification and its effects on the bioprocesses inside the granular bioreactor. A comprehensive investigation followed by a verification trial was therefore conducted in the present work. The investigation focused on the performance of each sludge layer, the internal hydrodynamics and microbial community structures along the height of the reactor. The reactor substratum (the section below baffle 1) was identified as the main acidification zone based on microbial analysis and reactor performance. Two baffle installations increased mixing intensity but at the same time introduced dead zones. Computational fluid dynamics simulation was employed to visualize the internal hydrodynamics. The 16S rRNA gene of the organisms further revealed that more diverse communities of sulfate-reducing bacteria (SRB) and acidogens were detected in the reactor substratum than in the superstratum (the section above baffle 1). The findings of this study shed light on biomass stratification in an SRB granular bioreactor to aid in the design and optimization of such reactors. PMID:27539264

  12. L’Internet des objets

    OpenAIRE

    Benghozi, Pierre-Jean; Bureau, Sylvain; Massit-Folléa, Françoise

    2012-01-01

    L’ « internet des objets » est une dimension majeure de l’internet du futur. Mais tout le monde ne s’accorde pas encore sur sa définition, ni sur la mesure de son importance économique ou des risques qu’il induit. L’étude de nombreux rapports prospectifs et l’observation des innovations d’ores et déjà engagées a permis de mettre en relief les incertitudes techniques, économiques et socio-politiques qui pèsent sur cette véritable mutation programmée de l’internet et de proposer une approche eu...

  13. Alimentation des tortues terrestres herbivores

    OpenAIRE

    Morin, Nicolas

    2015-01-01

    Chez les tortues, la plupart des affections rencontrées sont directement ou indirectement liées à un défaut dans les conditions d’entretien et notamment à une alimentation inadéquate. Les ouvrages de référence ne proposent généralement que des rations qualitatives déterminées empiriquement. Ce travail se veut une synthèse bibliographique des différents travaux qui ont été menés sur les tortues terrestres herbivores, dont le but est de dégager les paramètres physiologiques sous-jacents au ...

  14. Cardiotoxicité des psychotropes

    OpenAIRE

    TAHIRI, Abdallah

    2013-01-01

    Même à dose thérapeutique, les médicaments psychotropes sont susceptibles d'engendrer des troubles du rythme cardiaque graves avec risque létal concourant à expliquer la pré valence de la mort subite dans la population psychiatrique. Les situations cliniques à risque telles que poly médication (des psychotropes entre eux ou d'un psychotrope avec un non psychotrope allongeur de QTc), interactions médicamenteuses aussi bien pharmacodynamiques que pharmacocinétiques, traitement pa...

  15. Physique statistique des Fluides Classiques

    OpenAIRE

    Aslangul, Claude

    2006-01-01

    0 - Préambule.Préambule, table des matières1 - Rappels sur la description d'un système à l'équilibre thermodynamiqueQuelques propriétés des systèmes macroscopiques. Nature statistique de l'entropie. Grandeurs internes et grandeurs externes. Relations thermodynamiques fondamentales. Potentiels thermodynamiques. Ensembles microcanonique, canonique, grand-canonique et isotherme - isobare. Exemple: fonction de partition d'un fluide classique. Principe variationnel pour l'énergie libre.2 - Stabili...

  16. Géographie des cryptarchies

    Directory of Open Access Journals (Sweden)

    Gilles Fumey

    2002-06-01

    Full Text Available Si toute la surface du globe est appropriée, certains territoires sont encore revendiqués par des personnes ou petits groupes usurpateurs, conquérants ou aventuriers. Leur «conquête» porte sur des espaces physiques ou virtuels (internet. Elle traduit avec constance dans l'histoire le rôle considérable de l'ancrage territorial qui reste, pour l'homme, un antidote à toutes les formes d'organisation qui le dépassent.

  17. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    Science.gov (United States)

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  18. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  19. Greenhouse Gas Emission from In-situ Denitrifying Bioreactors

    Science.gov (United States)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2013-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication, which continues to be a serious and chronic problem. Two primary processes for removing excess NO3- from water are biological assimilation and denitrification. Denitrifying bacteria use NO3- as the electron acceptor for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas (GHG). A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs), though research has been limited to NO3- level reduction and omitted process mechanisms. DNBRs work by providing an anaerobic environment with plenty of organic matter (commonly woodchips) for denitrifying bacteria to flourish. While, initial results from bioreactor studies show that they can cost-effectively remove NO3-, GHG emission could be an unintended consequence. The study's goal is to determine how bioreactor design promotes microbial denitrification while limiting N2O production. It specifically focuses on expanding the body of knowledge concerning DNBRs in the areas of design implications and internal processes by measuring intermediate compounds and not solely NO3-. Nutrient samples are collected at inflow and outflow structures and tested for NO3- and nitrite (NO2-). Dissolved and headspace gas samples are collected and tested for N2O. Additional gas samples will be analyzed for naturally-occurring isotopic N2 to support proposed pathways. Designs will be analyzed both through the N2O/N2 production ratio and NO2- production caused by various residence times and inflow NO3- concentrations. High GHG ratios and NO2- production suggest non-ideal conditions or flow patterns for complete denitrification. NO3- reduction is used for comparison with previous studies. Few

  20. Toward the Standardization of Bioreactors for Space Research

    Science.gov (United States)

    Garcia, Michel; Nebuloni, Stefano; Dainesi, Paolo; Gass, Samuel

    Growing interest in long-term human space missions and exploration as well as future plans for extra-terrestrial human settlements, places increasing importance on understanding biological and chemical processes in space at cellular and molecular level. RUAG Space has been involved in the development of bioreactors for life-science experiments in space for the past 20 years. Throughout these developments, RUAG has acted as the link between scientists and the space industry, translating high-level scientific requirements into technical requirements, verifying their feasibility within the space context, and developing state-of-the-art experiment hardware which can interface with dedicated micro-gravity platform. Although this approach has brought forth promising developments in the field, it is associated to very long development phases as well as correspondingly high costs. Each new scientific experiment is often associated to an entirely new hardware development. This is, in large, due to the limited information available on the possibilities and constraints imposed by the particular context of space. Therefore, a considerable amount of time and development costs are invested in order to accommodate stringent scientific requirements and/or specific experiment design in space hardware. This does not only have an impact on funding opportunities for micro-gravity experiments in space, it also curbs the pace of scientific discoveries and limits the number of research opportunities. Therefore, in the following, we present an overview of already established possibilities for cellular research in space, with special emphasis on hardware developed by RUAG Space. This is intended to provide scientists with key technical information on already existing bioreactors, subsystems, and components, which may be used as a basis when designing scientific studies. By considering this information from the onset of the establishment of scientific requirements, technical solutions can

  1. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  2. Use of a gas-solid fluidized bed bioreactor for bioaugmentation

    Energy Technology Data Exchange (ETDEWEB)

    Behns, W.; Friedrich, K.; Haida, H. [Magdeburg Univ. (Germany). Inst. fuer Apparate- und Umwelttechnik

    1998-04-01

    Experimental research has shown that microbiological degradation in soils really contaminated with mineral oil hydrocarbons and hexachlorocyclohexane respectively can be accelerated and even intensified by a combined treatment in a fluidized bed bioreactor and subsequently in a remediation heap. (orig.)

  3. Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2013-01-01

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  4. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  5. Biodegradation of the water-soluble gasoline components in a novel hybrid bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De-Jesus, A.; Lara-Rodriguez, A.; Santoyo-Tepole, F.; Juarez-Ramirez, C.; Cristiani-Urbina, E.; Ruiz-Ordaz, N.; Galindez Mayer, J. [Escuela Nacional de Ciencias Biologicas, del Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, Carpio y Plan de Ayala, ' ' Centro Operativo Naranjo' ' , Mexico, D.F. (Mexico)

    2003-07-01

    A novel hybrid bioreactor was designed to remove volatile organic compounds from water contaminated with water-soluble gasoline components, and the performance of this new bioreactor was investigated. It was composed of two biotrickling filter sections and one biofilter section. The liquid phase pollutants were removed by a mixed culture in the biotrickling filter sections and the gas phase pollutants stripped by air injection in the biofilter section. The specific rates of chemical oxygen demand (COD) removal obtained in the reactor were directly proportional to the pollutant-loading rate. A stable operation of the hybrid bioreactor was attained for long periods of time. The bioreactor had the potential to simultaneously treat a complex mixture of volatile organic compounds, e.g., those present in the water-soluble fraction of gasoline, as well as the capacity to readily adapt to changing operational conditions, such as an increased contaminant loading, and variations in the airflow rate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. Efficacy of Aspergillus sp. for degradation of chlorpyrifos in batch and continuous aerated packed bed bioreactors.

    Science.gov (United States)

    Yadav, Maya; Srivastva, Navnita; Shukla, Awadhesh Kumar; Singh, Ram Sharan; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

    2015-01-01

    Aerobic biodegradation of chlorpyrifos (CP) by Aspergillus sp. was investigated in batch and continuous packed bed bioreactors. The optimal process parameters for achieving the maximum removal efficiency (RE), determined using a batch bioreactor packed with polyurethane foam pieces, were inoculum level: 2.5 mg (wet weight) mL(-1), pH 7.0, temperature 28 °C, DO 5.8 mg L(-1), and CP concentration 300 mg L(-1). The continuous packed bed bioreactor was operated at flow rates ranging from 10 to 40 mL h(-1) while keeping other parameters at their optimal level. Steady-state CP removal efficiencies greater than 85 % were obtained up to the inlet loading of 180 mg L(-1) d(-1). The continuous bioreactor behaved as a plug flow unit and was able to stabilize quickly after perturbation in the inlet loading.

  7. Characterizing protein modifications by reactive metabolites using magnetic bead bioreactors and LC-MS/MS.

    Science.gov (United States)

    Li, Dandan; Fu, You-Jun; Rusling, James F

    2015-03-18

    We report here label-free metabolite-protein adduct detection and identification employing magnetic beads coated with metabolic enzymes as bioreactors to generate metabolites and possible metabolite-protein adducts for analysis by liquid chromatography-tandem mass spectrometry.

  8. Numerical Simulation of Microcarrier Motion in a Rotating Wall Vessel Bioreactor

    Institute of Scientific and Technical Information of China (English)

    ZHI-HAO JU; TIAN-QING LIU; XUE-HU MA; ZHAN-FENG CUI

    2006-01-01

    Objective To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. Methods The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. Results The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. Conclusion The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  9. Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media

    Directory of Open Access Journals (Sweden)

    Birgit Weyand

    2015-01-01

    Full Text Available A three-dimensional computational fluid dynamics- (CFD- model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass system allowed continuation of culture. The specific shape of the bioreactor culture vessel supported a homogenous flow profile and mass flux at the scaffold level at various scaffold permeabilities. Experimental data showed an increase in oxygen concentration measured inside a collagen scaffold seeded with human mesenchymal stem cells when cultured in the perfusion bioreactor after 24 h compared to static culture in a Petri dish (dynamic: 11% O2 versus static: 3% O2. Computational fluid simulation can support design of bioreactor systems for tissue engineering application.

  10. Etude des erreurs d'estimation des populations par la méthode des captures successives (DeLURY, 2 captures et des captures-recaptures (PETERSEN

    Directory of Open Access Journals (Sweden)

    LAURENT M.

    1978-01-01

    Full Text Available L'estimation des populations naturelles par capture-recapture et par captures successives est souvent entachée d'erreur car, dans de nombreux cas, l'hypothèse fondamentale d'égalité des probabilités de captures pour tous les individus dans le temps et dans l'espace n'est pas respectée. Dans le cas des populations de poissons envisagés ici, les captures ont lieu par la pêche électrique. On a pu chiffrer l'ordre de grandeur des erreurs systématiques faites sur l'estimation des peuplements, en fonction des conditions particulières, biotiques et abiotiques, des différents milieux inventoriés.

  11. La compaction des sols forestiers en Wallonie

    OpenAIRE

    Destain, Marie-France

    2014-01-01

    Dans nos pays industrialisés, l’exploitation forestière fait appel à des machines de plus en plus lourdes pour assurer la vidange des coupes et le débardage des grumes. Lorsque des charges élevées sont appliquées sur des sols sensibles, une compaction du sol peut se produire entraînant une réduction de porosité, avec des conséquences néfastes sur la vitalité des peuplements. Au niveau environnemental, du fait de la compaction, l’infiltration de l’eau dans le sol est réduite, principalement...

  12. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  13. Fouling Characteristics and Prevention Techniques for Membrane Bioreactor

    Institute of Scientific and Technical Information of China (English)

    LU Hua; WANG Zhi-qiang; YANG Jin-ying

    2005-01-01

    Membrane fouling is the main problem of membrane bioreactors (MBR), which seriously influences its wastewater treatment effect and running. The characteristics of microbiology and hydrodynamics concerning membrane fouling were investigated and the measure was put forward for optimum operation of MBR. The measure is that 1) the parameters of activated sludge concentration (X) and membrane flux should be lower than the critical values of X and membrane flux respectively, and 2) the activated sludge should be discharged periodically. The experimental results show that the combination backwashing of gas and permeated effluent is better than single gas backwashing or single permeated effluent backwashing. This technique can remove the cake layer deposited on the membrane surface, decrease the membrane fouling, and recover the membrane flux effectively. So it is effective for prevention of membrane fouling.

  14. Hybrid modeling of xanthan gum bioproduction in batch bioreactor.

    Science.gov (United States)

    Zabot, Giovani L; Mecca, Jaqueline; Mesomo, Michele; Silva, Marceli F; Prá, Valéria Dal; de Oliveira, Débora; Oliveira, J Vladimir; Castilhos, Fernanda; Treichel, Helen; Mazutti, Marcio A

    2011-10-01

    This work is focused on hybrid modeling of xanthan gum bioproduction process by Xanthomonas campestris pv. mangiferaeindicae. Experiments were carried out to evaluate the effects of stirred speed and superficial gas velocity on the kinetics of cell growth, lactose consumption and xanthan gum production in a batch bioreactor using cheese whey as substrate. A hybrid model was employed to simulate the bio-process making use of an artificial neural network (ANN) as a kinetic parameter estimator for the phenomenological model. The hybrid modeling of the process provided a satisfactory fitting quality of the experimental data, since this approach makes possible the incorporation of the effects of operational variables on model parameters. The applicability of the validated model was investigated, using the model as a process simulator to evaluate the effects of initial cell and lactose concentration in the xanthan gum production.

  15. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    Science.gov (United States)

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  16. Membrane bioreactors and their uses in wastewater treatments.

    Science.gov (United States)

    Le-Clech, Pierre

    2010-12-01

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field.

  17. Detachment of multi species biofilm in circulating fluidized bed bioreactor.

    Science.gov (United States)

    Patel, Ajay; Nakhla, George; Zhu, Jingxu

    2005-11-20

    In this study, the detachment rates of various microbial species from the aerobic and anoxic biofilms in a circulating fluidized bed bioreactor (CFBB) with two entirely separate aerobic and anoxic beds were investigated. Overall detachment rate coefficients for biomass, determined on the basis of volatile suspended solids (VSS), glucose and protein as well as for specific microbial groups, i.e., for nitrifiers, denitrifiers, and phosphorous accumulating organisms (PAOs), were established. Biomass detachment rates were found to increase with biomass attachment on carrier media in both beds. The detachment rate coefficients based on VSS were significantly affected by shear stress, whereas for protein, glucose and specific microbial groups, no significant effect of shear stress was observed. High detachment rates were observed for the more porous biofilm structure. The presence of nitrifiers in the anoxic biofilm and denitrifiers in the aerobic biofilm was established by the specific activity measurements. Detachment rates of PAOs in aerobic and anoxic biofilms were evaluated.

  18. Ceramic Ultra Filtration Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.

  19. Ethanol production from whey in a membrane recycle bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tin, C.S.F.; Mawson, A.J. (Massey Univ., Palmerston North (New Zealand). Dept. of Biotechnology)

    1993-01-01

    Ethanol production from sulphuric acid whey permeate by Kluyveromyces marxianus Y-113 was examined in a membrane recycle bioreactor. The system was operated with 100% cell recycle and at a steady-state with 10 g litre [sup -1] biomass. At rate constant D=0.44h[sup -1] almost complete utilization of 53g litre [sup -1] lactose was achieved with an ethanol productivity of 8.6g litre [sup -1]h[sup -1]. Increasing the inlet lactose concentration or dilution rate increased the ethanol productivity but at the expense of lactose utilization. Elevated biomass or ethanol concentrations markedly decreased the specific growth rate and specific ethanol production rate. (author)

  20. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  1. Treatment of dairy wastewater with a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2013-12-01

    Full Text Available Among the food industries, the dairy industry is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. In this study, an aerobic membrane bioreactor (MBR was used for the treatment of wastewater from a large dairy industry and two hydraulic retention times (HRT, 6 and 8 hours, were evaluated. For both HRTs removal efficiencies of organic matter of 99% were obtained. Despite high permeate flux (27.5 L/h.m², the system operated fairly stablely. The molecular weight distribution of feed, permeate and mixed liquor showed that only the low molecular weight fraction is efficiently degraded by biomass and that the membrane has an essential role in producing a permeate of excellent quality.

  2. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Casu, Stefania; Grilli, Selene

    2012-08-01

    Azo dye decolourisation can be easily achieved by biological reduction under anaerobic conditions. The aim of this study was to evaluate the applicability of submerged anaerobic membrane bioreactors (SAMBRs) for the decolourisation of dyeing wastewater containing azo dyes. The reactive orange 16 was used as model of an azo dye. The results demonstrated that very high decolourisation (higher than 99%) can be achieved by SAMBRs. Although decolourisation was not significantly influenced by the azo dye concentrations up to 3.2 g L(-1), methane production was greatly inhibited (up to 80-85%). Since volatile fatty acids accumulated in the treatment system with the azo dye concentration increase, methanogenes seem to be the most sensitive microbial populations of the anaerobic ecological community. The results demonstrated that anaerobic process combined with membrane filtration can deal with highly concentrated wastewaters that result from stream separation of industrial discharges.

  3. Application of gain scheduling to the control of batch bioreactors

    Science.gov (United States)

    Cardello, Ralph; San, Ka-Yiu

    1987-01-01

    The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.

  4. Effects of superficial gas velocity on process dynamics in bioreactors

    Science.gov (United States)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  5. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...... flocs reduced membrane fouling, and more compact and strong flocs were formed if the concentration of divalent ions were high. Sludge was fractionated by centrifugation providing supernatant with soluble EPS and colloidal particles but without flocs. Filtration test on untreated sludge and supernatant...

  6. Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    SUI Pengzhe; WEN Xianghua; HUANG Xia

    2007-01-01

    In this study,ultrasound was used to control the membrane fouling online in an anaerobic membrane bioreactor (AMBR).Short-term running experiments were carried out under different operating conditions to explore feasible ultrasonic parameters.The experimental results indicated that when the crossflow velocity was more than 1.0 m/s,membrane fouling could be controlled effectively only by hydrodynamic methods without ultrasound.When ultrasound was applied,an ultrasonic power range of 60-150 W was suitable for the membrane fouling control in the experimental system.The experimental results showed that the membrane fouling was controlled so well that membrane filtration resistance(ΣR) could stay at 5×1011 m-1 for more than a week with the crossflow velocity of 0.75 m/s,which equaled the effect of crossflow velocity of more than 1.0 m/s without ultrasound.

  7. Fermentative hydrogen production in anaerobic membrane bioreactors: A review.

    Science.gov (United States)

    Bakonyi, P; Nemestóthy, N; Simon, V; Bélafi-Bakó, K

    2014-03-01

    Reactor design considerations are crucial aspects of dark fermentative hydrogen production. During the last decades, many types of reactors have been developed and used in order to drive biohydrogen technology towards practicality and economical-feasibility. In general, the ultimate aim is to improve the key features of the process, namely the H2 yields and generation rates. Among the various configurations, the traditional, completely stirred tank reactors (CSTRs) are still the most routinely employed ones. However, due to their limitations, there is a progress to develop more reliable alternatives. One of the research directions points to systems combining membranes, which are called as anaerobic membrane bioreactors (AnMBRs). The aim of this paper is to summarize and highlight the recent biohydrogen related work done on AnMBRs and moreover to evaluate their performances and potentials in comparison with their conventional CSTR counterparts.

  8. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section.

    Science.gov (United States)

    Christianson, Laura E; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box."

  9. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    Science.gov (United States)

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  10. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    Science.gov (United States)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  11. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    Science.gov (United States)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  12. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  13. Recherche des oscillations de Neutrinos $\

    CERN Document Server

    Gangler, E

    1997-01-01

    Le detecteur nomad, place sur le faisceau de neutrinos wide-band-beam du sps, de contamination en neutrino tau marginale, permet de rechercher des oscillations neutrino muon - tau dans la region de pertinence cosmologique et de distinguer statistiquement les courants charges des neutrinos tau essentiellement par leur mesure cinematique. Une large part du travail de these a donc ete consacree a la reconstruction des evenements dans les chambres a derive, cible instrumentee et cur de l'experience, dont la physique de detection est decrite. Une methode de recherche de traces fut developpee, utilisant certaines informations d'un autre sous-detecteur de nomad, le trd. Pour combler une perte d'efficacite de reconstruction, une methode de recherche de traces courtes s'appuyant sur des vertex deja constitues fut developpee en exploitant les potentialites du filtre de kalman, algorithme iteratif d'ajustement de traces. Ces methodes sont utilisees en production par la collaboration. Cette these porte sur la recherche d...

  14. Reduction des effectifs ou licenciements

    CERN Multimedia

    Maiani, Luciano

    2002-01-01

    "Vous faites un amalgame entre la reduction en cours des effectifs du CERN (organisation europeenne pour la recherche nucleaire) et les economies que le laboratoire doit realiser dans les cinq ans a venir pour financer le projet de grand collisionneur de hadrons (Le Monde du 4 septembre)" (1/2 page).

  15. Bangalore, ville des nouvelles technologies

    Directory of Open Access Journals (Sweden)

    Clarisse Didelon

    2003-06-01

    Full Text Available Bangalore est devenue la Silicon Valley de l’Inde. Une partie de ses habitants y vit à l’occidentale mais le reste de la population souffre de la croissance spectaculaire de la ville. Face à l’insuffisance des infrastructures, Bangalore devient de moins en moins attractive pour les entreprises internationales.

  16. Online monitoring of cartilage tissue in a novel bioreactor

    Science.gov (United States)

    von der Burg, E.; von Buttlar, M.; Grill, W.

    2011-04-01

    Standard techniques for the analysis of biological tissues like immunohistochemical staining are typically invasive and lead to mortification of cells. Non-invasive monitoring is an important element of regenerative medicine because implants and components of implants should be 100% quality-checked with non-invasive and therefore also marker-free methods. We report on a new bioreactor for the production of collagen scaffolds seeded with Mesenchymal Stem Cells (MSCs). It contains a computer controlled mechanical activation and ultrasonic online monitoring and has been constructed for the in situ determination of ultrasonic and rheological parameters. During the cultivation period of about two weeks the scaffold is periodically compressed by two movable pistons for improved differentiation of the MSCs. This periodic compression beneficially ensures the supply with nutrition even inside the sample. During the physiological stimuli, rheological properties are measured by means of highly sensitive load cells. In addition measurements of the speed of sound in the sample and in the culture medium, with frequencies up to 16 MHz, are performed continuously. Therefore piezoceramic transducers are attached to the pistons and emit and detect ultrasonic waves, travelling through the pistons, the sample and the culture medium. The time-of-flight (TOF) of the ultrasonic signals is determined in real time with the aid of chirped excitation and correlation procedures with a resolution of at least 10 ps. The implemented ultrasonic measurement scheme allows beside the speed of sound measurements the detection of the distance between the pistons with a resolution better than 100 nm. The developed monitoring delivers information on rigidity, fluid dynamics and velocity of sound in the sample and in the culture medium. The hermetically sealed bioreactor with its life support system provides a biocompatible environment for MSCs for long time cultivation.

  17. H2S removal from biogas using bioreactors: a review

    Directory of Open Access Journals (Sweden)

    E. Dumont

    2015-01-01

    Full Text Available This review aims to provide an overview of the bioprocesses used for the removal of H2S from biogas. The ability of aerobic and anoxic bioreactors (biotrickling filters, bioscrubbers, and a combination of chemical scrubbers and bioreactors to perform the degradation of H2S is considered. For each operating mode (aerobic and anoxic, the bioprocesses are presented, the operating conditions affecting performance are summarized, the state of the art of research studies is described and commercial applications are given. At laboratory-scale, whatever their operating mode, biological processes are effective for biogas cleaning and provide the same performance. The clogging of the packed bed due to the deposit of elemental sulfur S0 and biomass accumulation clearly represents the main drawback of bioprocesses. Although elimination capacities (EC determined at laboratory-scale can be very high, EC should not be higher than 90 g m-3 h-1 at industrial-scale in order to limit clogging effects. For aerobic processes, the need to control the oxygen mass transfer accurately remains a key issue for their development at full-scale. As a result, the aerobic processes alone are probably not the most suitable bioprocesses for the treatment of biogas highly loaded with H2S. For anaerobic bioprocesses using nitrate as an electron acceptor, the scale-up of the laboratory process to a full-size plant remains a challenge. However, the use of wastewater from treatment plants, which constitutes a cheap source of nitrates, represents an interesting opportunity for the development of innovative bioprocesses enabling the simultaneous removal of H2S and nitrates.

  18. Foaming in membrane bioreactors: identification of the causes.

    Science.gov (United States)

    Di Bella, Gaetano; Torregrossa, Michele

    2013-10-15

    Membrane bioreactors (MBRs) represent by now a well established alternative for wastewater treatment. Their increasing development is undoubtedly related to the several advantages that such technology is able to guarantee. Nevertheless, this technology is not exempt from operational problems; among them the foaming still represents an "open challenge" of the MBR field, due to the high complexity of phenomenon. Unfortunately, very little work has been done on the foaming in MBRs and further studies are required. Actually, there is not a distinct difference between conventional activated system and MBR: the main difference is that the MBR plants can retain most Extracellular Polymeric Substances (EPSs) in the bioreactor. For these reason, unlike conventional activated sludge systems, MBRs have experienced foaming in the absence of foam-forming micro-organisms. Nevertheless, the actual mechanisms of EPS production and the role of bacteria in producing foam in activated sludge in MBRs are still unclear. In this paper, the authors investigated the roles of EPS and foam-forming filamentous bacteria by analyzing samples from different pilot plants using MBRs. In particular, in order to define the macroscopic features and the role of EPS and filamentous bacteria, a Modified Scum Index (MSI) test was applied and proposed. Based on the MSI and the foam power test, the causes of biological foaming were identified in terms of the potential for foaming, the quality and the quantity of the foam. The results indicated that the MBR foaming was influenced significantly by the concentration of bound EPSs in the sludge. In addition, the quantity and stability of MBR scum increased when both bound EPSs and foam-forming filamentous bacteria were present in the activated sludge.

  19. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  20. RWPV bioreactor mass transport: earth-based and in microgravity

    Science.gov (United States)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels

  1. Biodegradation of High Concentrations of Benzene Vapors in a Two Phase Partition Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  2. Oxygen mass transfer and scale-up studies in baffled roller bioreactors.

    Science.gov (United States)

    Nikakhtari, H; Song, W; Nemati, M; Hill, G A

    2014-02-01

    Oxygen mass transfer was studied in conventional, bead mill and baffled roller bioreactors. Using central composite rotational design, impacts of size, rotation speed and working volume on the oxygen mass transfer were evaluated. Baffled roller bioreactor outperformed its conventional and bead mill counterparts, with the highest k(L)a obtained in these configurations being 0.58, 0.19, 0.41 min(-1), respectively. Performances of the bead mill and baffled roller bioreactor were only comparable when a high bead loading (40%) was applied. Regardless of configuration increase in rotation speed and decrease in working volume improved the oxygen mass transfer rate. Increase in size led to enhanced mass transfer and higher k(L)a in baffled roller bioreactor (0.49 min(-1) for 2.2 L and 1.31 min(-1) for 55 L bioreactors). Finally, the experimentally determined k(L)a in the baffled roller bioreactors of different sizes fit reasonably well to an empirical correlation describing the k(L)a in terms of dimensionless numbers.

  3. Application of wireless sensor network based on ZigBee technology in photo-bioreactors system

    Science.gov (United States)

    Liu, Bo; Chen, Ming; Chi, Tao

    2013-03-01

    A photo-bioreactor is a bioreactor that incorporates some types of light source to provide photonic energy input into the reactor[1][2]. In the situation of Large-scale industrialization production of micro-algae, hundreds of photo-bioreactors will be deployed in a factory, thus the design of entire system is based on the distribution theory and the remote monitoring must be deployed. So the communication in the entire photo-bioreactors system is very important. However, the recent solution of communication is based on RS-485 data bus, and the twisted-pair cable is used as the communication medium, so the flexibility and scalability of entire system reduce. In this paper, the wireless sensor network (WSN) based on ZigBee technology is applied to this photo-bioreactors system, and the related key problems include the architecture of entire system and the design of wireless sensor network nodes[3]~[6]. The application of this technology will also reduce the cost and effectively raise the intelligence level of the large-scale industrialization photo-bioreactors system.

  4. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    Directory of Open Access Journals (Sweden)

    Karimi Ali

    2013-01-01

    Full Text Available Abstract The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  5. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.

    Science.gov (United States)

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.

  6. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  7. Nitrogen removal through different pathways in an aged refuse bioreactor treating mature landfill leachate.

    Science.gov (United States)

    Xie, Bing; Lv, Zhuo; Hu, Chong; Yang, Xuezhi; Li, Xiangzhen

    2013-10-01

    In this study, an aged refuse bioreactor was constructed to remove nitrogen in a mature landfill leachate. The nitrogen removal efficiency and the microbial community composition in the bioreactor were investigated. The results showed that the aged refuse bioreactor removed more than 90 % of total nitrogen in the leachate under the nitrogen loading rate (NLR) of 0.74 g/kg (vs) day, and the total nitrogen removal rate decreased to 62.2 % when NLR increased up to 2.03 g/kg (vs) day. Quantitative polymerase chain reaction results showed that the average cell number of ammonia-oxidizing bacteria in the bioreactor was 1.58 × 10(8) cells/g, which accounted for 0.41 % of total bacteria. The number of anammox bacteria in the reactor was 1.09 × 10(8) cells/g, which accounted for 0.27 % of total bacteria. Isotopic (15)N tracing experiments showed that nearly 10 % of nitrogen was removed by anammox. High-throughout 454 pyrosequencing revealed that the predominant bacteria in the bioreactor were Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Gemmatimonadetes, including various nitrifiers and denitrifiers with diverse heterotrophic and autotrophic metabolic pathways, supporting that nitrogen was removed through different pathways in this aged refuse bioreactor.

  8. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors.

    Science.gov (United States)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac

    2015-07-01

    Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  9. Osteoporose und Genetik des Knochenstoffwechsels

    Directory of Open Access Journals (Sweden)

    Obermayer-Pietsch B

    2002-01-01

    Full Text Available Osteoporose ist in hohem Maß genetisch determiniert. Neue Wege der molekularbiologischen Forschung haben sich in den letzten Jahren auf diesem Gebiet etabliert. "Gene mapping" mit polymorphen genetischen Markern auf der Suche nach Phänotyp-assoziierten Genen ist ein aufwendiges, aber vielversprechendes Verfahren und wird durch die Erkenntnisse des Human Genome Projects beschleunigt. So wurde jüngst u. a. das Low-density Lipoprotein 5-Gen als wichtig für den Knochenstoffwechsel identifiziert. Kandidaten-gene wie Hormonrezeptor-, Cytokin- oder Kollagen-Gene werden hinsichtlich ihrer Gen-Gen- und Gen-Umwelt- Interaktionen untersucht und erlauben neue funktionelle Einsichten in Erkrankungen des Knochenstoffwechsels. Mutationen der Kollagen-Gene sind bei einigen seltenen Erkrankungen, wie dem Osteoporose-Pseudogliom-Syndrom oder der Osteogenesis imperfecta gefunden worden, könnten aber auch für häufige Varianten von Bindegewebsstörungen wie der congenitalen Hüftdysplasie verantwortlich sein, die etwa 10 % der weiblichen kaukasischen Bevölkerung in unterschiedlichem Ausmaß betrifft. Osteoporose am Schenkelhals und erhöhte Gelenkslaxizität sowie andere generalisierte Veränderungen des Knochen- und Kollagenstoffwechsels können hier möglicherweise ebenfalls durch Störungen des Kollagen I alpha 1-Gens erklärt werden. In Summe können wir zahlreiche neue Einsichten in die Pathophysiologie des Skelettsystems erwarten, die uns auch neue Zugangswege für Diagnostik und Therapie unserer Patienten ermöglichen werden.

  10. Vers une typologie des formes spatiales des limites de l’Europe

    OpenAIRE

    de Ruffray, Sophie

    2013-01-01

    Penser l’Europe et ses limites consiste souvent à rechercher une identité européenne, un projet ou des comportements communs dans l’espace. L’approche par les représentations mentales permet de compléter par des perspectives plus subjectives, la perception des frontières. Cet article, réalisé à partir des résultats de l’enquête du projet de recherches Eurobroadmap sur la vision de l’Europe dans le monde permet de mettre en évidence une typologie des formes spatiales des limites de l’Europe. D...

  11. Removal of pharmaceuticals from synthetic wastewater in an aerobic granular sludge membrane bioreactor and determination of the bioreactor microbial diversity.

    Science.gov (United States)

    Wang, Xiao-Chun; Shen, Ji-Min; Chen, Zhong-Lin; Zhao, Xia; Xu, Hao

    2016-09-01

    Five types of pharmaceuticals and personal care products (PPCPs) substances were selected as pollutants in this study. The effects of the removal of these pollutants and the microbial succession process in a granular sludge membrane bioreactor (GMBR) were investigated. Results showed that wastewater containing PPCPs influenced the performance of granular sludge. The removal of the five PPCPs from the GMBR had different effects. The removal rates of prednisolone, norfloxacin and naproxen reached 98.5, 87.8 and 84 %, respectively. The degradation effect in the GMBR system was relatively lower for sulphamethoxazole and ibuprofen, with removal efficiency rates of 79.8 and 63.3 %, respectively. Furthermore, the microbial community structure and diversity variation of the GMBR were analysed via high-throughput sequencing technology. The results indicated the structural and functional succession of the microbial community based on the GMBR process. The results indicate the key features of bacteria with an important role in drug degradation.

  12. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin M.; Koss, Lawrence L.; Hummerick, Mary E.; Spencer, Lachelle E.; Johnsey, Marissa N.; Richards, Jeffrey T.; Ellis, Ronald; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).

  13. Administration et gestion des contrats XL

    CERN Document Server

    Senouf, J

    2000-01-01

    Les grands contrats de travaux génèrent un grand nombre de commandes (OSVC) passées par un grand nombre de responsables techniques. Ils sont généralement basés sur des bordereaux de prix associés à un éventail de conditions économiques adaptées aux besoins complexes et variés des multiples utilisateurs du CERN nécessitant des calculs sophistiqués. L'administration des commandes, le suivi des travaux et de la facturation doivent répondre aux besoins de tous les acteurs. Les responsables techniques doivent jouir de la plus large indépendance administrative dans le respect des règlements CERN et des conditions contractuelles. Le contrôle des métrés et décomptes doit être rigoureux et d'une traçabilité complète. L'utilisation des bases de données Oracle a déjà permis l'intégration des données administratives et techniques. Le Web nous invite à une communication totale et transparente entre les utilisateurs, les services techniques et les contractants. De nouveaux types de contrat so...

  14. Enquête de satisfaction des restaurants

    CERN Document Server

    Staff Association

    2016-01-01

    Comité de surveillance des restaurants L’Association du personnel est représentée dans plusieurs comités dont le Comité de surveillance des restaurants (CSR) qui a pour mandat : de donner son avis sur toute question relative à la politique générale de l’Organisation en matière de restauration sur le site, y compris en ce qui concerne les termes et l’attribution des contrats d’exploitation des restaurants ; de définir dans le cadre des contrats d’exploitation des restaurants, les prestations correspondant aux besoins et, dans la mesure du possible, aux désirs du personnel ; de surveiller les prestations des restaurants, y compris en ce qui concerne la qualité et la préparation des produits ; de négocier avec les concessionnaires des restaurants au sujet des tarifs et de surveill...

  15. N₂O emission from a combined ex-situ nitrification and in-situ denitrification bioreactor landfill.

    Science.gov (United States)

    Wang, Ya-nan; Sun, Ying-jie; Wang, Lei; Sun, Xiao-jie; Wu, Hao; Bian, Rong-xing; Li, Jing-jing

    2014-11-01

    A combined process comprised of ex-situ nitrification in an aged refuse bioreactor (designated as A bioreactor) and in-situ denitrification in a fresh refuse bioreactor (designated as F bioreactor) was constructed for investigating N2O emission during the stabilization of municipal solid waste (MSW). The results showed that N2O concentration in the F bioreactor varied from undetectable to about 130 ppm, while it was much higher in the A bioreactor with the concentration varying from undetectable to about 900 ppm. The greatly differences of continuous monitoring of N2O emission after leachate cross recirculation in each period were primarily attributed to the stabilization degree of MSW. Moreover, the variation of N2O concentration was closely related to the leachate quality in both bioreactors and it was mainly affected by the COD and COD/TN ratio of leachate from the F bioreactor, as well as the DO, ORP, and NO3(-)-N of leachate from the A bioreactor.

  16. Hydrodynamic study to the bioreactor at the Granollers wastewater plant; Estudio hidrodinamico del reactor biologia de la EDAR Granollers

    Energy Technology Data Exchange (ETDEWEB)

    Olivet Santana, D.; Valls Puig, J.; Gordillo Bolasell, M. A.; Sanchez Ferrer, A.; Freixo Rey, A.

    2002-07-01

    One of the most important parameters affecting the operation of bioreactors used in the wastewater treatment is their hydrodynamic behaviour. Usually, bioreactors are designed according to ideal flow models, concretely stirred tank and plug flow models. However, actual bioreactors show a different behaviour from that predicted from ideal modelling. This fact is due to the presence of multiphase systems (e. g. biomass, liquid phase, air, etc.) and the yield obtained can significantly differ from theoretical design values. In the present work, residence-time distribution (RTD) is used to study a plug-flow bioreactor, which is currently working at the plant placed in Granollers (Barcelona). (Author) 5 refs.

  17. La territorialisation des politiques environnementales

    Directory of Open Access Journals (Sweden)

    Amédée Mollard

    2010-10-01

    Full Text Available Le point de départ de cet article est la grande variabilité de la pollution nitrique diffuse de l’eau due à l’agriculture. Celle-ci dépend en particulier du climat, des types de sol et des systèmes de production agricole. Nos recherches réalisées de façon interdisciplinaire à partir de deux sites différents en France, montrent que cette hétérogénéité spatio-temporelle conditionne les pratiques agricoles mises en œuvre pour réduire la pollution au niveau de la norme admise. De ce fait, les pratiques les plus « coût-efficaces » diffèrent d’un territoire à l’autre, en fonction des caractéristiques locales. Ces résultats mettent donc en évidence une efficacité potentielle d’une territorialisation des politiques publiques. En théorie, de telles politiques sont considérées comme optimales par les économistes, car elles incitent les agents à moduler leurs efforts en fonction de la sensibilité du milieu. Mais, selon les études empiriques, cet avantage serait annulé par un coût élevé de mise en œuvre, de contrôle et de surveillance. Pour maintenir leur avantage sur des politiques uniformes, les politiques territorialisées devraient être mises en œuvre à un niveau spatial optimal. Un tel niveau devrait au minimum atteindre un compromis entre l’économie réalisée grâce à une modulation adaptée aux conditions locales et les sur-coûts dus à la décentralisation des solutions mises en œuvre. Cet article analyse la pertinence d’une prise en compte de ces spécificités par des politiques territorialisées. L’efficacité d’une régulation différenciée de la pollution nitrique est étudiée ici en évaluant l’importance de la variabilité spatiale des paramètres physiques et des coûts de la territorialisation.The paper starts with the wide variability of nonpoint water nitrogenous pollution generated by agriculture. This variability depends especially on climate, soil types and farming

  18. Evaluation des systèmes existants pour le suivi à long terme des déformations des ponts

    OpenAIRE

    BURDET, Olivier; Muttoni, Aurelio

    2006-01-01

    Le projet de recherche Evaluation des systèmes existants pour le suivi à long terme des déformations des ponts a été initié dans le but de préparer sous forme condensée une présentation et une évaluation des systèmes de mesure existants pour le suivi à long terme des déformations de ponts ainsi que des recommandations en vue d’applications particulières. Ce sujet est d’actualité car d’une part il importe de gérer au mieux les ouvrages et les ressources et d’autre part parce que plusieurs cas ...

  19. Evaluation des performances des protocoles de routage Ad hoc

    OpenAIRE

    Boushaba, Abdelali; Oumsis, Mohammed; Benabbou, Rachid

    2010-01-01

    International audience; L'objectif de ce travail est d'une part, de confronter par la simulation, à l'aide de NS-2, les performances de quatre protocoles de routage Ad hoc: DSR, AODV, OLSR et DSDV et d'autre part, d'examiner l'impact de la charge du trafic, de la mobilité et de la densité des nœuds sur le comportement de ces protocoles. Les résultats montrent qu'il n'y a pas un protocole qui est favori pour tous les critères d'évaluation. En effet, chaque protocole a des comportements différe...

  20. Géographie des interfaces. Une nouvelle vision des territoires

    Directory of Open Access Journals (Sweden)

    Marie Redon

    2011-07-01

    Full Text Available Littéralement, une interface est une surface de séparation entre deux états distincts de la matière. Le terme, ayant cheminé de la physique à la biologie, et aussi désormais d’usage répandu en informatique. En géographie, l’usage du mot s’est développé dans les années 1980 et peut être défini comme un espace permettant la mise en relation de deux espaces/territoires différents, influencé par des échanges entre l’un et l’autre, et se distinguant par là-même des deux espaces contigus. Intégrant...

  1. Evaluation of a new mist-chamber bioreactor for biotechnological applications.

    Science.gov (United States)

    Tscheschke, Bernd; Dreimann, Janis; von der Ruhr, Jürgen W; Schmidt, Timo; Stahl, Frank; Just, Lothar; Scheper, Thomas

    2015-06-01

    In this article we describe the development, the characterization and the evaluation of a novel bioreactor type for the cultivation of different pro- and eukaryotic cell-systems: the mist-chamber bioreactor. This innovative bioreactor meets the demand of cultivation systems for shear stress sensitive cells with high requirements for gas supply. Within the mist-chamber bioreactor the cells are cultivated inside an aerosol of vaporized medium generated by ultrasonic vaporization. In contrast to many established bioreactor systems the mist-chamber bioreactor offers an environment with an excellent gas supply without any impeller or gas bubble induced shear stress. A mist-chamber bioreactor prototype has been manufactured and characterized during this work. In the technical and chemical characterization we evaluated the vaporization process, resulting in a vaporization performance of 32 mL/h at working conditions. On this basis we calculated a biomass of 1.4 g (S. cerevisiae, qs  = 3.45 × 10-3 mol/g/h) and 3.4 g (Aspergillus niger, qs  = 1.33 × 10-3 mol/g/h) where the growth rate becomes limited by transport processes. Additionally, we determined a homogenous cultivation area to a height of 3 cm giving a total volume of 0.45 L for the cultivation. Medium components were examined according to their stability during vaporization with the result that all components are stable for at least 5 days. After the technical characterization we demonstrated the feasibility to cultivate S. cerevisiae and F. velupites in the mist-chamber bioreactor. The results demonstrated that the mist-chamber bioreactor is able to transport a sufficient amount of nutrients consistently to the cell samples and offers an excellent oxygen supply without any shear stress inducing aeration. Furthermore we successfully cultivated F. velupites in a solid state cultivation in a long term experiment. The data indicate that the new bioreactor concept can contribute to

  2. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  3. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies.

    Science.gov (United States)

    Hoffmann, Stefan A; Müller-Vieira, Ursula; Biemel, Klaus; Knobeloch, Daniel; Heydel, Sandra; Lübberstedt, Marc; Nüssler, Andreas K; Andersson, Tommy B; Gerlach, Jörg C; Zeilinger, Katrin

    2012-12-01

    Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver.

  4. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems.

    Science.gov (United States)

    Lu, Juan; Zhang, Xiaoqian; Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.

  5. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shafa Mehdi

    2011-12-01

    Full Text Available Abstract Background Embryonic stem cells (ESCs can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs. However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC

  6. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems

    Science.gov (United States)

    Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases. PMID:26840840

  7. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems.

    Directory of Open Access Journals (Sweden)

    Juan Lu

    Full Text Available A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB. The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.

  8. La gestion des adoptions internationales

    OpenAIRE

    Boéchat, Hervé

    2011-01-01

    Après les rumeurs nées lors du tsunami et le désastre avéré de L’Arche de Zoé, l’adoption – et plus généralement le sort des enfants – est devenue une préoccupation majeure en cas de catastrophe naturelle ou de conflit. Haïti, pays depuis longtemps ouvert à l’adoption internationale, n’a pas échappé à la polémique. Hervé Boéchat nous livre l’appréciation de son institution sur cet épisode qui n’a sans doute pas contribué à apaiser le ressentiment des Haïtiens contre la « communauté internati...

  9. Le piratage des biens d'information

    OpenAIRE

    Paul Belleflamme

    2003-01-01

    Où se situe le juste milieu entre les propos alarmistes des uns (“le piratage tue la production musicale!”) et les appels libertaires des autres (“l'accès à toute information doit être libre!”) ? Une analyse économique simple nous permet de mieux comprendre les enjeux et de dégager des pistes de réflexion pour l'avenir.

  10. Catalogue ostéologique des oiseaux

    NARCIS (Netherlands)

    Oort, van E.D.

    1907-01-01

    Je le crois utile de faire précéder le présent Catalogue par quelques remarques. J’ai énuméré autant que possible les parties, qui font défaut aux squelettes. L’absence de plusieurs osselets, comme des doigts, des vertèbres caudales, des côtes etc. au même échantillon, est indiqué par „incomplet” ou

  11. Use of a Three-Dimensional Reactive Solute Transport Model for Evaluation of Bioreactor Placement in Stream Restoration.

    Science.gov (United States)

    Cui, Zhengtao; Welty, Claire; Gold, Arthur J; Groffman, Peter M; Kaushal, Sujay S; Miller, Andrew J

    2016-05-01

    A three-dimensional groundwater flow and multispecies reactive transport model was used to strategically design placement of bioreactors in the subsurface to achieve maximum removal of nitrate along restored stream reaches. Two hypothetical stream restoration scenarios were evaluated over stream reaches of 40 and 94 m: a step-pool scenario and a channel re-meandering scenario. For the step-pool scenario, bioreactors were placed at locations where mass fluxes of groundwater and nitrate were highest. Bioreactors installed over 50% of the total channel length of a step-pool scenario (located to intercept maximum groundwater and nitrate mass flux) removed nitrate-N entering the channel at a rate of 36.5 kg N yr (100 g N d), achieving about 65% of the removal of a whole-length bioreactor. Bioreactor placement for the re-meandering scenario was designed using a criterion of either highest nitrate mass flux or highest groundwater flux, but not both, because they did not occur together. Bioreactors installed at maximum nitrate flux locations (53% of the total channel length) on the western bank removed nitrate-N entering the channel at 62.0 kg N yr (170 g N d), achieving 85% of nitrate-N removal of whole-length bioreactors for the re-meandering scenario. Bioreactors installed at maximum groundwater flux locations on the western bank along approximately 40% of the re-meandering channel achieved about 65% of nitrate removal of whole-length bioreactors. Placing bioreactors at maximum nitrate flux locations improved denitrification efficiency. Due to low groundwater velocities, bioreactor nitrate-N removal was found to be nitrate limited for all scenarios.

  12. Présentation des textes

    OpenAIRE

    Freitag, Michel

    2015-01-01

    Les textes choisis n’ont pas pour but la reconstitution ou le survol d’une carrière, mais la mise en valeur des étapes saillantes d’une double éclosion, celle d’Elizabeth Cady Stanton comme féministe et avec elle celle du mouvement de défense des droits des femmes aux États-Unis. Un tel objectif implique donc des limites temporelles en amont et en aval de l’événement fondateur que fut la Convention de Seneca Falls en 1848, origine du texte non moins fondateur de la Déclaration de sentiments r...

  13. Vivre et survivre au bord des villes

    Directory of Open Access Journals (Sweden)

    Michel Péraldi

    1996-04-01

    Full Text Available De quels revenus vivent, ou plutôt survivent, les populations des quartiers dits défavorisés ? Telle est, malgré son apparente banalité, la question qui initie aujourd'hui une partie de nos recherches. Question banale en effet puisque les médias et le débat politique nous donnent une réponse sans appel, statistiquement fiable : dans ces univers sociaux où se croisent des communautés issues des plus récentes migrations et les fractions les plus fragiles économiquement des classes populaires fr...

  14. La compaction des sols agricoles en Wallonie

    OpenAIRE

    Destain, Marie-France

    2014-01-01

    Dans nos pays industrialisés, l’agriculture fait appel à des machines de plus en plus lourdes. Lorsque des charges élevées sont appliquées sur des sols sensibles, une compaction du sol peut se produire conduisant à des diminutions de rendements suite aux difficultés que rencontrent les racines pour prélever l’eau et les nutriments et à la perturbation de l’activité de la pédofaune. Au niveau environnemental, du fait de la compaction, l’infiltration de l’eau dans le sol est réduite, princip...

  15. EFFET DES TRAITEMENTS THERMIQUES SUR LA REACTION ENTRE DES COUCHES MINCES DE TITANE ET DES SUBSTRATS EN ACIER

    Directory of Open Access Journals (Sweden)

    D Slimani

    2015-06-01

    Full Text Available Des couches minces du titane pur ont été déposées avec la méthode de pulvérisation cathodique sur des substrats en acier, type FF80 K-1 contenants ~1% mass. en carbone. La réaction entre les deux parties du système substrat-couche mince est activée avec des traitements thermiques sous vide dans l’intervalle de températures de 400 à900°Cpendant 30 minutes. Les Spectres de diffraction de rayons x confirment l’inter- diffusion des éléments  chimiques du système résultants la formation et la croissance des nouvelles phases en particulier le carbure binaire TiC ayant des caractéristiques thermomécaniques importantes. L’analyse morphologique des échantillons traités  avec le microscope électronique à balayage (MEB montre l’augmentation du flux de diffusion atomique avec la température de recuit, notamment la diffusion du manganèse et du fer vers la surface libre des échantillons aux températures élevées provoquant la dégradation des propriétés mécaniques des revêtements contrairement au premiers stades d’interaction où on a obtenu des bonnes valeurs de la microdureté.

  16. Performance of tapered column packed-bed bioreactor for ethanol production.

    Science.gov (United States)

    Hamamci, H; Ryu, D D

    1987-06-01

    A tapered column type of bioreactor system packed with immobilized Saccharomyces cerevisiae was used to study the bioreactor performance as a function of design and operating variables. The performance of tapered column bioreactor system was found to be better than that of the conventional cylindrical column reactor system for the ethanol fermentation. The new bioreactor design alleviated problems associated with carbon dioxide evolution and provided a significantly better flow pattern for both liquid and gas phases in the bioreactor without local channelling. A mathematical simulation model, which takes into account of the axial convection and dispersion, interphase mass transfer, and apparent kinetic design parameters, was developed. The effect of radial concentration gradients on the bioreactor performance was found to be insignificant. For the reactor system studied, the maximum ethanol productivity obtained was 60 g ethanol/L gel/h, and the maximum glucose assimilation rate was 140 g glucose/L gel/h. One of the most important findings from this study was that the apparent kinetic parameters change at the glucose concentration of 2 g/L This change was found to be due to the changes in yeast physiology and metabolism. The values of V(m) (') and V(m) (') decreased from 0.8 to 0.39 g ethanol/g cell/h and from 97mM to 11mM, respectively. The substrate inhibition constant was estimated as 0.76M and the product inhibition constant was determined as 113 g ethanol/L The degree of product inhibition showed practically a linear relationship with an increasing ethanol concentration. Based on the hydro-dynamic analysis of the bioreactor system, it was found that the Peclet number, N(Pe) was not a strong function of the flow velocity at low flow rates through the bioreactor system, but its value decreased somewhat at an interstitial velocity greater than 0.03 cm/s. The tapered column bioreactor system showed a much better flow pattern of gas and liquid phases within the

  17. Transport quantique dans des nanostructures

    Science.gov (United States)

    Naud, C.

    2002-09-01

    structure des oscillations de conductance en fonction du flux du champ magnétique de période h/e dont l'amplitude est beaucoup plus importante que celle mesurée sur un réseau carré de même dimension. Cette différence constitue une signature d'un effet de localisation induit par le champ magnétique sur la topologie mathcal{T}3. Pour des valeurs spécifiques du champ magnétique, du fait des interférences destructives Aharonov-Bohm, la propagation des fonctions d'ondes est limitée à un ensemble fini de cellule du réseau appelé cage. De la dépendance en température des oscillations de période h/e mesurées sur le réseau mathcal{T}3 nous avons tiré une longueur caractéristique qui peut être rattachée au périmètre des cages. Un phénomène inattendu fut l'observation, pour des champs magnétiques plus importants, d'un doublement de fréquence des oscillations. Ces oscillations de période h/2e pouvant avoir une amplitude supérieure aux oscillations de période h/e, une interprétation en terme d'harmonique n'est pas possible. Enfin, l'influence de la largeur électrique des fils constituant le réseau et donc celle du nombre de canaux par brin a été étudiée en réalisant des grilles électrostatique. Les variations de l'amplitude des signaux en h/e et h/2e en fonction de la tension de grille ont été mesurés.

  18. A pulsing device for packed-bed bioreactors. Pt. 2; Application to alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sanroman, A. (Chemical Engineering Dept., Univ. of Santiago de Compostela (Spain)); Roca, E. (Chemical Engineering Dept., Univ. of Santiago de Compostela (Spain)); Nunez, M.J. (Chemical Engineering Dept., Univ. of Santiago de Compostela (Spain)); Lema, J.M. (Chemical Engineering Dept., Univ. of Santiago de Compostela (Spain))

    1994-02-01

    When the immobilized cells are employed in packed-bed bioreactors several problems appear. To overcome these drawbacks, a new bioreactor based on the use of pulsed systems was developed. In this work, we study the glucose fermentation by immobilized Saccharomyces cerevisiae in a packed-bed bioreactor. A comparative study was then carried out for continuous fermentation in two packed-bed bioreactors, one of them with pulsed flow. The determination of the axial dispersion coefficients indicates that by introducing the pulsation, the hydraulic behaviour is closer to the plug flow model. In both cases, the residence time tested varied from 0.8 to 2.6 h. A higher ethanol concentration and productivity (increases up to 16%) were achieved with the pulsated reactors. The volumes occupied by the CO[sub 2] were 5.22% and 9.45% for fermentation with/without pulsation respectively. An activity test of the particles from the different sections revealed that the concentration and viability of bioparticles from the two bioreactors are similar. From the results we conclude that the improvements of the process are attributable to a mechanical effect rather than to physiological changes of microorganisms. (orig.)

  19. Production of Calcaride A by Calcarisporium sp. in Shaken Flasks and Stirred Bioreactors

    Directory of Open Access Journals (Sweden)

    Anu Tamminen

    2015-06-01

    Full Text Available Increased interest in marine resources has led to increased screening of marine fungi for novel bioactive compounds and considerable effort is being invested in discovering these metabolites. For compound discovery, small-scale cultures are adequate, but agitated bioreactors are desirable for larger-scale production. Calcarisporium sp. KF525 has recently been described to produce calcaride A, a cyclic polyester with antibiotic activity, in agitated flasks. Here, we describe improvements in the production of calcaride A in both flasks (13-fold improvement and stirred bioreactors (200-fold improvement. Production of calcaride A in bioreactors was initially substantially lower than in shaken flasks. The cultivation pH (reduced from 6.8 to <5.4, carbon source (sucrose replacing glucose, C/N ratio and nature of mycelial growth (pellets or filaments were important in improving calcaride A production. Up to 4.5 mg·g−1 biomass (85 mg·L−1 calcaride A were produced in the bioreactor, which was only slightly less than in shaken flasks (14 mg·g−1, 100 mg·L−1. The results demonstrate that a scalable process for calcaride A production could be developed using an iterative approach with flasks and bioreactors.

  20. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds.

    Science.gov (United States)

    Yeatts, Andrew B; Both, Sanne K; Yang, Wanxun; Alghamdi, Hamdan S; Yang, Fang; Fisher, John P; Jansen, John A

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ε-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23 ± 0.35 mm(2) at 21 days compared to 0.99 ± 0.43 mm(2) and 0.50 ± 0.29 mm(2) in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (pbioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering.

  1. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues.

    Science.gov (United States)

    Appel, Alyssa A; Larson, Jeffery C; Garson, Alfred B; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc B; Fisher, John P; Anastasio, Mark A; Brey, Eric M

    2015-03-01

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  2. Novel disposable flexible bioreactor for Escherichia coli culture in orbital shaking incubator.

    Science.gov (United States)

    Yang, Ting; Huang, Yue; Han, Zhiqiang; Liu, Huitao; Zhang, Rui; Xu, Yuming

    2013-10-01

    Erlenmeyer flask or conical flask, usually made of glass, is widely used for laboratory scale suspension culture of microorganism, such as Escherichia Coli and yeast. Due to being non-disposable culture vessel, it has to be cleaned, packaged and sterilized prior to use, which are time, labor and energy consuming work, and has the potential risk of cross-contamination. Despite the rigid plastic conical flasks are possible for single use, they are not economically effective and produce more waste. To overcome these drawbacks, here we successfully developed a novel disposable flexible bioreactor with a plastic film through a thermo-fusion technique. With a triangular pyramid shape, the bioreactor enabled itself to keep a three-dimensional internal space without needing air inflation and well adapted to the commercial available orbital shaker. Unlike the conventional rigid conical flasks and other reported flexible flasks, which had to be fixed in the shaker, the flexible bioreactor could keep sitting on the silicone pad-carpeted platform of the orbital shaker steadily without any fixation needed at the shaking speeds below 250 rpm, thus making it simple to handle. Compared with the traditional conical glass flasks, the innovative flexible bioreactors achieved a significant higher efficiency in bacteria growth and oxygen transfer rates. In conclusion, the novel flexible bioreactor is an ideal disposable culture vessel for microorganism suspension culture at laboratory scale and holds a promising potential to replace the glass flask and rigid plastic flask in the future.

  3. [Technological characteristics of bioreactor landfill with aeration in the upper layer].

    Science.gov (United States)

    Tian, Ying; Wang, Shen; Xu, Qi-Yong

    2014-11-01

    In order to study the effects of upper-layer aerobic pretreatment in bioreactors on refuse degradation, leachate condition and methane production, two simulated columns were constructed, including traditional anaerobic bioreactor A1 and hybrid bioreactor C1 with aeration pretreatment in the upper layer. Results indicated that A1 was seriously inhibited by the accumulation of volatile fatty acids (VFA) with nearly no methane production and slower settlements. At the end of operations, refuse in A1 only deposited 5.4 cm which was less than half of that in C1. And up to 70 000 mg x L(-1) COD and 30 000 mg x L(-1) VFA could be monitored in the leachate. On the contrary, aerobic pretreatment effectively improved the removal of high VFA concentrations and remarkably accelerated the degradation rate. In bioreactor C1, COD and VFA concentrations were reduced to less than 14000 mg x L(-1) and 8900 mg x L(-1) at the end of the experiment, respectively. And about 61 976 mL methane gases were produced since aeration ceased on day 60 with its methane recovery efficiency rising to over 95%. However, the performance of hybrid bioreactors was still closely related to its operation conditions, such as aeration supply and leachate recirculation. Therefore, in order to guarantee better performance, appropriate aeration and leachate operations need to be provided.

  4. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Michael J Osiecki

    Full Text Available Large numbers of Mesenchymal stem/stromal cells (MSCs are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2 with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  5. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016.

  6. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  7. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.

    Science.gov (United States)

    Salazar, Betsy H; Cashion, Avery T; Dennis, Robert G; Birla, Ravi K

    2015-12-01

    The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.

  8. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Alyssa A. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Larson, Jeffery C. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Garson, III, Alfred B. [George Washington Univ., Washington, DC (United States); Guan, Huifeng [George Washington Univ., Washington, DC (United States); Zhong, Zhong [Brookhaven National Lab. (BNL), Upton, NY (United States); Nguyen, Bao-Ngoc [Univ. of Maryland, College Park, MD (United States); Fisher, John P. [Univ. of Maryland, College Park, MD (United States); Anastasio, Mark A. [George Washington Univ., Washington, DC (United States); Brey, Eric M. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States)

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  9. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished.

  10. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    Science.gov (United States)

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  11. 40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?

    Science.gov (United States)

    2010-07-01

    ... subpart if I own or operate a bioreactor? 63.1947 Section 63.1947 Protection of Environment ENVIRONMENTAL... or operate a bioreactor? You must comply with this subpart by the dates specified in § 63.1945(a) or (b) of this subpart. If you own or operate a bioreactor located at a landfill that is not...

  12. Transient maintenance in bioreactor improves health of neuronal cells.

    Science.gov (United States)

    Di Loreto, Silvia; Sebastiani, Pierluigi; Benedetti, Elisabetta; Zimmitti, Vincenzo; Caracciolo, Valentina; Amicarelli, Fernanda; Cimini, Annamaria; Adorno, Domenico

    2006-01-01

    To examine whether a neuronal cell suspension can be held in vitro for a relatively short period without compromising survival rates and functionality, we have set up an experimental protocol planning 24 h of suspension culture in a rotary wall vessel (RWV) bioreactor before plating in a conventional adherent system. Apoptosis measurement and activated caspase-8, -9, and -3 detection have demonstrated that survey of the cells was not affected. The activity of major antioxidant enzymes (AOE), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was significantly decreased in RWV-maintained cells. A significant decrease of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) is coupled with a level of activated nuclear factor-kappaB (NF-kappaB) protein significantly lower in RVW cells than in the control. On the contrary, the level of IL-6 expression did not change between the test and the control. A significant up-regulation of growth-associated protein-43 (GAP-43), peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta), and acyl-CoA synthetase 2 (ACS2) in RWV cells has been detected. We provide the evidence that primary neuronal cells, at an early stage of development, can be maintained in a suspension condition before adherent plating. This experimental environment does not induce detrimental effects but may have an activator role, leading cells to development and maturation in a tridimensional state.

  13. Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery.

    Science.gov (United States)

    Huang, Li-Ying; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    A forward osmosis membrane bioreactor (OMBR) with a thin film composite membrane was seeded with flocculated sludge and aerobic granules to treat a synthetic wastewater with 1M NaCl as draw solution. The tested OMBR showed 96%, 43% and 100% removal of PO4(3-)-P, NH4(+)-N, and total organic carbon. Salinity was accumulated in OMBR principally owing to membrane rejection and salt leakage from draw solution. At high salinity level membrane fouling could be induced. Intermittent withdrawal and replenishment of supernatant from OMBR maintained its operation stability, while phosphorus in withdrawn supernatant was recovered by pH adjustment. The OMBR enriched phosphorus concentration from 156 mg/L in feed solution to 890-990 mg/L. At pH 8.5 with 2.65-2.71 g 3 M NaOH/g-P, 814-817 mg-P/L was recovered in the form of sodium hydrogen phosphite hydrate. The OMBR is a volatile wastewater treatment unit with capability for enrichment and recovery of phosphorus at reduced chemical costs.

  14. Sulfide oxidation in fluidized bed bioreactor using nylon support material

    Institute of Scientific and Technical Information of China (English)

    Varsha Midha; M K Jha; Apurba Dey

    2012-01-01

    A continuous fluidized bed bioreactor(FBBR)with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25,50 and 75 min and upflow velocity of 14,17 and 20 m/hr.The effects of upflow velocity,hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model.Mixed culture obtained from the activated sludge,taken from tannery effluent treatment plant,was used as a source for microorganisms.The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3,respectively.Experiments were carried out in the reactor at a temperature of(30± 2)℃,at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles.Biofilm thickness reached(42±3)μm after 15 days from reactor start-up.The sulfide oxidation,sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities.The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times.Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate.The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  15. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    Science.gov (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  16. The efficiency of a membrane bioreactor in drinking water denitrification

    Directory of Open Access Journals (Sweden)

    Petrovič Aleksandra

    2015-01-01

    Full Text Available The membrane bioreactor (MBR system was investigated regarding its nitrate removal capacity from drinking water. The performance of a pilot-scale MBR was tested, depending on the operational parameters, using sucrose as a carbon source. Drinking water from the source was introduced into the reactor in order to study the influence of flow-rate on the nitrate removal and denitrification efficiency of drinking water. The content of the nitrate was around 70 mg/L and the C/N ratio was 3:1. Nitrate removal efficiencies above 90% were obtained by flow-rates lower than 4.8 L/h. The specific denitrification rates varied between 0.02 and 0.16 g/L NO3/ (g/L MLSS•d. The efficiencies and nitrate removal were noticeably affected by the flow-rate and hydraulic retention times. At the maximum flow-rate of 10.2 L/h still 68% of the nitrate had been removed, whilst the highest specific denitrification rate was achieved at 0.2738 g/L NO3/ (g/L MLSS•d. The maximum reactor removal capacity was calculated at 8.75 g NO3/m3•h.

  17. Comparison of textile dye treatment by biosorption and membrane bioreactor.

    Science.gov (United States)

    Chamam, B; Heran, M; Amar, R Ben; Grasmick, A

    2007-12-01

    The Cassulfon CMR is a sulphuric textile dye mainly used to colour "jeans". It has a dark black-blue colour, with high intensity of colour and high mineral compounds (71% of dry matter). Direct filtration experiments were carried out to quantity the capacity of macro porous membranes (1.2, 0.2 or 0.1 microm) to separate organic matter and colour from the effluent. The results show that no direct membrane filtration was efficient. To evaluate the capacity of a biological way for the elimination of this dye, batch experiments were performed to quantify the dye sorption capacity on activated sludge. Results show the high capacity of the biomass to adsorb colour (more than 4gCOD gMLVSS(-1)) while 15% of COD remain in the soluble fraction. To evaluate the biodegradability potential of the sludge, continuous operations were carried out in a membrane bioreactor (MBR). Results confirm the very high MBR potential to treat such dye effluents. During operations, the organic load was progressively increased from 0.33 to 1.33 kg m(-3) d(-1) and the permeate quality was always free of suspended solids or turbidity. Moreover, the permeate COD values were always lower than 60 mg l(-1) and small permeate coloration only appeared during malfunctioning periods.

  18. Modelling wastewater treatment in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Ferraris, Marco; Casu, Stefania

    2015-01-01

    Mathematical modelling has been widely applied to membrane bioreactor (MBRs) processes. However, to date, very few studies have reported on the application of the anaerobic digestion model N.1 (ADM1) to anaerobic membrane processes. The aim of this study was to evaluate the applicability of the ADM1 to a submerged anaerobic MBR (SAMBR) treating simulated industrial wastewater composed of cheese whey and sucrose. This study demonstrated that the biological processes involved in SAMBRs can be modelled by using the ADM1. Moreover, the results showed that very few modifications of the parameters describing the ADM1 were required to reasonably fit the experimental data. In particular, adaptation to the specific conditions of the coefficients describing the wastewater characterisation and the reduction of the hydrolysis rate of particulate carbohydrate (khyd,ch) from 0.25 d(-1) (as suggested by the ADM1 for high-rate mesophilic reactors) to 0.13 d(-1) were required to fit the experimental data.

  19. Fiber Treatment Effects on Bioreactor Bulk Fluid Trends

    Science.gov (United States)

    Ellis, Ronald II

    2013-01-01

    In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.

  20. Clofibric acid and gemfibrozil removal in membrane bioreactors.

    Science.gov (United States)

    Gutierrez-Macias, Tania; Nacheva, Petia Mijaylova

    2015-01-01

    The removal of two blood lipid regulators, clofibric acid (CLA) and gemfibrozil (GFZ), was evaluated using two identical aerobic membrane bioreactors with 6.5 L effective volume each. Polysulfone ultrafiltration hollow fiber membranes were submerged in the reactors. Different operating conditions were tested varying the organic load (F/M), hydraulic residence time (HRT), biomass concentration measured as total suspended solids in the mixed liquor (MLTSS) and the sludge retention time (SRT). Complete GFZ removal was obtained with F/M of 0.21-0.48 kg COD kgTSS⁻¹ d⁻¹, HRT of 4-10 hours, SRT of 10-32 d and MLTSS of 6-10 g L⁻¹. The GFZ removal can be attributed to biodegradation and there was no accumulation of the compound in the biomass. The CLA removals improved with the SRT and HRT increase and F/M decrease. Average removals of 78-79% were obtained with SRT 16-32 d, F/M of 0.21-0.34 kgCOD kgTSS⁻¹ d⁻¹, HRT of 7-10 hours and MLTSS of 6-10 g L⁻¹. Biodegradation was found to be the main removal pathway.

  1. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  2. Novel filtration mode for fouling limitation in membrane bioreactors.

    Science.gov (United States)

    Wu, Jinling; Le-Clech, Pierre; Stuetz, Richard M; Fane, Anthony G; Chen, Vicki

    2008-08-01

    A novel filtration mode is presented to reduce fouling propensity in membrane bioreactors (MBR). During this mode, an elevated high instantaneous flux (60Lm(-2)h(-1)) is initially applied for a short time (120s), followed by a longer filtration (290s) at lower flux (10.3Lm(-2)h(-1)) and a backwash in each filtration cycle. The mixed mode is expected to limit irreversible fouling as the reversible fouling created during the initial stage appears to protect the membrane. Hydraulic performance and the components of foulants were analyzed and compared with conventional continuous and backwash modes. It was found that the mixed mode featured lower trans-membrane pressure (TMP) after 24h of filtration when compared to other modes. The mixed mode was effective in preventing soluble microbial products (SMP) attaching directly onto the membrane surface, keeping the cake layer weakly compressed, and reducing the mixed liquor suspended solids (MLSS) accumulation on the membrane. This strategy reduced the resistances of both the cake layer and the gel layer. A factorial experimental design was carried out for eight runs with different conditions to identify the major operational parameters affecting the hydraulic performances. The results showed that the value of the flux in the initial high-flux period had the most effect on the performance of the mixed mode: high initial flux (60Lm(-2)h(-1)) led to improved performance.

  3. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hanmin; XIA Jie; YANG Yang; WANG Zixing; YANG Fenglin

    2009-01-01

    Two parallel membrane bioreactors (MBRs) were operated under different calcium dosages (168.5, 27 mg/L) to gain a better understanding of the mechanism of retarding membrane fouling by the addition of calcium.The results showed that the particle size of sludge flocs increased and the particle size distribution tended to be narrow at the optimum dosage (168.5 mg/L).Calcium was effective in decreasing loosely bound extracellular polymeric substances (LB-EPS) in microbial flocs and soluble microbial products (SMP) in the supernatant at the dosage of 168.5 mg/L by strengthening the neutralization and bridging of EPS with flocs.Furthermore, the amount of CODS and CODC decreased in both the mixed liquor and the fouling cake layer on the membrane surface.In order to compare the filtration characteristics of cake layers from the MBRs with the two calcium dosages, the specific cake resistance and the compressibility coefficient were measured.The specific cake resistance from the MBR with optimum dosage (168.5 mg/L) was distinctly lower than that with low dosage (27 mg/L).The compressibility coefficient of the cake layers under different dosages were respectively attained as 0.65, 0.91.Scanning electron microscopy (SEM) and three-dimensional confocal scanning laser microscope analysis (CLSM) images were utilized to observe the gel layer directly.

  4. Sensors for bioreactor monitoring and control - a perspective

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D.J.; Blake-Coleman, B.C.; Calder, M.R.; Moody, S.C.

    1984-01-01

    Despite convincing and extensive progress in the development of a wide range of chemical and biochemical sensors, particularly in recent years, their application to the monitoring of complex biological processes is fraught with problems. Significantly more development effort to apply sensors in clinical practice has been forthcoming. Nonetheless, even if one was to include ion-selective electrodes, relatively few devices have been applied reliably and widely. However, with appropriate instrumentation configurations, the applicability of some of these sensors can be improved significantly. Biosensors per se appear to be the most difficult devices to apply in bioreactor monitoring and although some configurations are showing promise as reliable fermentation sensors, it is clear that attention needs to be devoted to the development of more direct biosensing principles using stable biosensitisation layers. A number of physical and spectroscopic monitoring techniques appear to show both suitability and promise in the analysis of microbial processes, and it is likely that these, as already becoming evidenced, will find earliest, more widespread application.

  5. Removal of trace organics by anaerobic membrane bioreactors.

    Science.gov (United States)

    Monsalvo, Victor M; McDonald, James A; Khan, Stuart J; Le-Clech, Pierre

    2014-02-01

    The biological removal of 38 trace organics (pharmaceuticals, endocrine disruptors, personal care products and pesticides) was studied in an anaerobic membrane bioreactor (AnMBR). This work presents complete information on the different removal mechanisms involved in the removal of trace organics in this process. In particular, it is focused on advanced characterization of the relative amount of TO accumulated within the fouling layers formed on the membranes. The results show that only 9 out of 38 compounds were removed by more than 90% while 23 compounds were removed by less than 50%. These compounds are therefore removed in an AnMBR biologically and partially adsorbed and retained by flocs and the deposition developed on the membranes, respectively. A total amount of 288 mg of trace organics was retained per m(2) of membrane, which were distributed along the different fouling layers. Among the trace organics analyzed, 17α-ethynylestradiol, estrone, octylphenol and bisphenol A were the most retained by the fouling layers. Among the fouling layers deposited on the membranes, the non-readily detachable layer has been identified as the main barrier for trace organics.

  6. Bioreactor Transient Exposure Activates Specific Neurotrophic Pathway in Cortical Neurons

    Science.gov (United States)

    Zimmitti, V.; Benedetti, E.; Caracciolo, V.; Sebastiani, P.; Di Loreto, S.

    2010-02-01

    Altered gravity forces might influence neuroplasticity and can provoke changes in biochemical mechanisms. In this contest, neurotrophins have a pivotal role, particularly nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). A suspension of dissociated cortical cells from rat embryos was exposed to 24 h of microgravity before plating in normal adherent culture system. Expression and transductional signalling pathways of NGF and BDNF were assessed at the end of maturational process (8-10 days in vitro). Rotating wall vessel bioreactor (RWV) pre-exposition did not induce changes in NGF expression and its high affinity receptor TrkA. On the contrary both BDNF expression and its high affinity receptor TrkB were strongly up-regulated, inducing Erk-5, but not Erk-1/2 activation and, in turn, MEF2C over-expression and activation. According to our previous and present results, we postulate that relatively short microgravitational stimuli, applied to neural cells during the developmental stage, exert a long time activation of specific neurotrophic pathways.

  7. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  8. Impact de la preparation des anodes crues et des conditions de cuisson sur la fissuration dans des anodes denses

    Science.gov (United States)

    Amrani, Salah

    La fabrication de l'aluminium est realisee dans une cellule d'electrolyse, et cette operation utilise des anodes en carbone. L'evaluation de la qualite de ces anodes reste indispensable avant leur utilisation. La presence des fissures dans les anodes provoque une perturbation du procede l'electrolyse et une diminution de sa performance. Ce projet a ete entrepris pour determiner l'impact des differents parametres de procedes de fabrication des anodes sur la fissuration des anodes denses. Ces parametres incluent ceux de la fabrication des anodes crues, des proprietes des matieres premieres et de la cuisson. Une recherche bibliographique a ete effectuee sur tous les aspects de la fissuration des anodes en carbone pour compiler les travaux anterieurs. Une methodologie detaillee a ete mise au point pour faciliter le deroulement des travaux et atteindre les objectifs vises. La majorite de ce document est reservee pour la discussion des resultats obtenus au laboratoire de l'UQAC et au niveau industriel. Concernant les etudes realisees a l'UQAC, une partie des travaux experimentaux est reservee a la recherche des differents mecanismes de fissuration dans les anodes denses utilisees dans l'industrie d'aluminium. L'approche etait d'abord basee sur la caracterisation qualitative du mecanisme de la fissuration en surface et en profondeur. Puis, une caracterisation quantitative a ete realisee pour la determination de la distribution de la largeur de la fissure sur toute sa longueur, ainsi que le pourcentage de sa surface par rapport a la surface totale de l'echantillon. Cette etude a ete realisee par le biais de la technique d'analyse d'image utilisee pour caracteriser la fissuration d'un echantillon d'anode cuite. L'analyse surfacique et en profondeur de cet echantillon a permis de voir clairement la formation des fissures sur une grande partie de la surface analysee. L'autre partie des travaux est basee sur la caracterisation des defauts dans des echantillons d'anodes crues

  9. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  10. Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up.

    Science.gov (United States)

    Löffelholz, Christian; Kaiser, Stephan C; Kraume, Matthias; Eibl, Regine; Eibl, Dieter

    2014-01-01

    During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

  11. Alleviating liver failure conditions using an integrated hybrid cryogel based cellular bioreactor as a bioartificial liver support

    Science.gov (United States)

    Damania, Apeksha; Hassan, Mohsin; Shirakigawa, Nana; Mizumoto, Hiroshi; Kumar, Anupam; Sarin, Shiv K.; Ijima, Hiroyuki; Kamihira, Masamichi; Kumar, Ashok

    2017-01-01

    Conventionally, some bioartificial liver devices are used with separate plasmapheresis unit to separate out plasma from whole blood and adsorbent column to detoxify plasma before it passes through a hepatocytes-laden bioreactor. We aim to develop a hybrid bioreactor that integrates the separate modules in one compact design improving the efficacy of the cryogel based bioreactor as a bioartificial liver support. A plasma separation membrane and an activated carbon cloth are placed over a HepG2-loaded cryogel scaffold in a three-chambered bioreactor design. This bioreactor is consequently connected extracorporeally to a rat model of acute liver failure for 3 h and major biochemical parameters studied. Bilirubin and aspartate transaminase showed a percentage decrease of 20–60% in the integrated bioreactor as opposed to 5–15% in the conventional setup. Urea and ammonia levels which showed negligible change in the conventional setup increase (40%) and decrease (18%), respectively in the integrated system. Also, an overall increase of 5% in human albumin in rat plasma indicated bioreactor functionality in terms of synthetic functions. These results were corroborated by offline evaluation of patient plasma. Hence, integrating the plasmapheresis and adsorbent units with the bioreactor module in one compact design improves the efficacy of the bioartificial liver device. PMID:28079174

  12. A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors

    DEFF Research Database (Denmark)

    Brognaux, Alison; Han, Shanshan; Sørensen, Søren Johannes;

    2013-01-01

    in order to study the dynamics of segregation directly in bioreactors. In this context, specific interfaces have been developed in order to connect a flow cytometer directly to a bioreactor for automated analyses. In this work, we propose a simplified version of such an interface and demonstrate its...

  13. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes a

  14. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    Science.gov (United States)

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control.

  15. Anaerobic waste water purification and biogas production in a pulsed bioreactor. Anaerobe Abwasserreinigung mit Biogasgewinnung in einem gepulsten Bioreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, K.Y.

    1986-12-18

    The author's experiments were carried out in a novel type of bioreactor. In view of the advantages in the anaerobic process (high concentrations of biomass), the microorganisms were retained inside the bioreactor by fixation on a carrier. To avoid the problems otherwise encountered in bioreactors with fixed bacteria, in the pulsed bioreactor the block of foamed polymer carrying the bacteria is moved upwards and downwards in a single period at longer intervals of time. The reactor geometry and the pulsed movement assure a uniform and strong flow through the carrier material; gas bubbles are quickly removed from the bacterial surfaces and led out of the bioreactor, thus ensuring uniform bacterial supply and discharge. The biochemical conversion rate was determined using a highly burdened liquid filtrate waste. The conversion rate and gas productivity were found to be a function of the time of residue and room burden.

  16. The influence of zeolite (clinoptilolite) on the performance of a hybrid membrane bioreactor.

    Science.gov (United States)

    Rezaei, M; Mehrnia, M R

    2014-04-01

    This work aims to investigate the effect of clinoptilolite on the performance of membrane bioreactor (MBR). The control membrane bioreactor without clinoptilolite (CMBR) and the hybrid membrane bioreactor with clinoptilolite (HMBR), in two parallel simultaneous MBRs within long and short term filtration experiments, were studied. Sludge properties, transmembrane pressure (TMP) rise as an index for membrane fouling and nutrient removal from synthetic wastewater in the CMBR and HMBR were compared. In HMBR, sludge properties improvement such as 22.5% rise in MLSS, 7% more accumulation of large particles, reduction of soluble microbial products (SMP) to half of this value in CMBR, no increase in sludge volume index (SVI) and 66% TMP reduced. The results of short term filtration showed that the trend of TMP increase in terms of flux will be slower in HMBR. Improvement of biological wastewater treatment quality and ease of membrane operation are concluded from this study.

  17. Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study

    CERN Document Server

    Okkels, Fridolin; Bruus, Henrik

    2009-01-01

    To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.

  18. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    Science.gov (United States)

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed.

  19. Polymer microfluidic bioreactor fabrication by means of gray scale lithography technique

    Science.gov (United States)

    Sierakowski, Andrzej; Prokaryn, Piotr; Dobrowolski, Rafał; Malinowska, Anna; Szmigiel, Dariusz; Grabiec, Piotr; Trojanowski, Damian; Jakimowicz, Dagmara; Zakrzewska-Czerwinska, Jolanta

    2016-11-01

    In this paper we present a new method of polymer microfluidic bioreactor fabrication by means of a gray scale lithography technique. As a result of the gray scale lithography process the 3D model of the bioreactor is defined in photoresist. The obtained model serves as a sacrificial layer for the subsequent transfer of the 3D shape into the polymer material. The proposed method allows simultaneous definition of both the overall bioreactor geometry and the multi steps cell traps in a single photolithography step. Such microfluidic structure can be used for sorting cells based on their size. The developed solution significantly simplifies the production technology and reduces its costs in comparison to standard photolithography techniques.

  20. Kinetic evaluation of nitrification performance in an immobilized cell membrane bioreactor.

    Science.gov (United States)

    Güven, D; Ubay Çokgör, E; Sözen, S; Orhon, D

    2016-01-01

    High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification-denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration.

  1. An Experimental Study on the Treating River Sewage with New Bioreactor

    Institute of Scientific and Technical Information of China (English)

    Jiang Fan; Chen Weiping; Zhang Tao

    2007-01-01

    A new bioreactor on the basis of a dynamic fluidized bed was designed, which combines advantages of the fluidized bed and a biological contactor. The experiments of start-up, normal operation and parameter adjustment are carried out. The results show that the bioreactor can be quickly started up in the condition that the fill is 50%, the hydraulic retention time is 72 min, aerate speed is 2.5 m3/h, rotation-cage rotated speed is 1.5 r/min, and the removal rates of chemical oxygen demand (CODCr)and Ammonia nitrogen (NH3-N) are 75.34% and 80.98% respectively. The influence of the operation parameter on removal rates of the bioreactor is analyzed, and an appropriate operation parameter is provided.

  2. Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor.

    Science.gov (United States)

    McDonald, Karen A; Hong, Lo Ming; Trombly, David M; Xie, Qing; Jackman, Alan P

    2005-01-01

    Transgenic plant cell cultures offer a number of advantages over alternative host expression systems, but so far relatively low product concentrations have been achieved. In this study, transgenic rice cells are used in a two-compartment membrane bioreactor (CELLine 350, Integra Biosciences) for the production of recombinant alpha-1-antitrypsin (rAAT). Expression of rAAT is controlled by the rice alpha-amylase (RAmy3D) promoter, which is induced in the absence of sugar. The extracellular product is retained in the bioreactor's relatively small cell compartment, thereby increasing product concentration. Due to the packed nature of the cell aggregates in the cell compartment, a clarified product solution can be withdrawn from the bioreactor. Active rAAT reached levels of 100-247 mg/L (4-10% of the total extracellular protein) in the cell compartment at 5-6 days postinduction, and multiple inductions of the RAmy3D promoter were demonstrated.

  3. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F;

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  4. Engineering cellulosic bioreactors by template assisted DNA shuffling and in vitro recombination (TADSir).

    Science.gov (United States)

    Davis, Leroy K

    2014-10-01

    The current study focuses on development of a bioreactor engineering strategy based on exploitation of the Arabidopsis thaliana genome. Chimeric A. thaliana glycosyl hydrolase (GH) gene libraries were assembled using a novel directed evolution strategy (TADSir: template assisted DNA shuffling and in vitro recombination) that promotes DNA recombination by reassembly of DNA fragments on unique gene templates. TADSir was modeled using a set of algorithms designed to simulate DNA interactions based on nearest neighbor base stacking interactions and Gibb's free energy differences between helical coil and folded DNA states. The algorithms allow for target gene prediction and for in silica analysis of chimeric gene library composition. Further, the study investigated utilization of A. thaliana GH sequence space for bioreactor design by evolving 20 A. thaliana genes representing the GH1, GH3, GH5, GH9 and GH10 gene families. Notably, TADSir achieved streamlined engineering of Saccharomyces cerevisiae and spinach mesophyll protoplast bioreactors capable of processing CM cellulose, Avicel and xylan.

  5. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    Science.gov (United States)

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition.

  6. Partial Control of a Continuous Bioreactor: Application to an Anaerobic System for Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    M. I. Neria-González

    2016-01-01

    Full Text Available This work presents a control strategy for a continuous bioreactor for heavy metal removal. For this aim, regulation of the sulfate concentration, which is considered the measured and controlled state variable, allowed diminishing the cadmium concentration in the bioreactor, where the corresponding controller was designed via nonlinear bounded function. Furthermore, a nonlinear controllability analysis was done, which proved the closed-loop instability of the inner or uncontrolled dynamics of the bioreactor. A mathematical model, experimentally corroborated for cadmium removal, was employed as a benchmark for the proposed controller. Numerical experiments clearly illustrated the successful implementation of this methodology; therefore, cadmium removal amounted to more than 99%, when the initial cadmium concentration was up to 170 mg/L in continuous operating mode.

  7. GENOMIQUE ET LIPIDES Génomique et métabolisme des lipides des plantes

    Directory of Open Access Journals (Sweden)

    Delseny Michel

    2002-03-01

    Full Text Available Il existe dans les bases de données publiques une énorme quantité de séquences d’ADN dérivées de plantes, et notamment la séquence complète du génome d’Arabidopsis thaliana, une plante modèle pour les oléagineux, proche parente du colza. Ces données constituent une ressource importante non seulement pour la compréhension de métabolisme lipidique et de sa régulation, mais aussi pour la sélection et le développement de variétés nouvelles d’oléagineux produisant davantage d’huiles ou des huiles de composition nouvelle. Cette abondance de séquences peut être exploitée, en utilisant les recherches d’homologies, pour identifier les gènes, pour obtenir des informations sur leur fonction, comme pour repérer des gènes candidats codant des fonctions nouvelles. L’analyse de ces bases de données a révélé que la majeure partie des gènes codant des enzymes impliquées dans le métabolisme lipidique appartient à des petites familles multigéniques, reflétant la diversification des fonctions des isoformes. Une analyse du catalogue des ADNc séquencés en aveugle reflète les niveaux d’expression des différents gènes et fournit un aperçu des régulations des flux au travers des voies métaboliques conduisant à la biosynthèse des lipides de réserve. La disponibilité de mutants et de lignées transgéniques d’Arabidopsis et le développement de puces à ADN qui permettent l’analyse simultanée de plusieurs milliers de gènes conduiront à une meilleure compréhension des facteurs qui régulent le métabolisme des huiles dans les graines. Une telle connaissance facilitera la manipulation de la composition des huiles et des quantités produites dans les graines.

  8. Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles (Technologies des systemes a commandes actives pour l’amelioration des performances operationnelles des aeronefs militaires, des vehicules terrestres et des vehicules maritimes)

    Science.gov (United States)

    2001-06-01

    d’améliorer le comportement global des systèmes et des sous- systèmes. Il s’agit de matériaux intelligents, de technologies informatiques, de capteurs ...des servocommandes rapides et fiables, ainsi que des capteurs de fonctionnement fiable même dans des environnements défavorables, et en particulier...R.J. Kind and E.S. Hanff Contrôle actif de l’écoulement autour d’une pointe avant à grande incidence 23 by C. François Paper 24 withdrawn viii

  9. Supply Chain et Gestion des ressources humaines

    OpenAIRE

    Nondonfaz, Robert

    2010-01-01

    Rappels de quelques exigences de la Supply Chain en matière de gestion des ressources humaines; spécificités de certains métiers : chauffeur, magasinier, acheteur, gestionnaire de stock, gestion des imprévus

  10. Scale-up impacts on mass transfer and bioremediation of suspended naphthalene particles in bead mill bioreactors.

    Science.gov (United States)

    Wang, Yuching; Riess, Ryan; Nemati, Mehdi; Hill, Gordon; Headley, John

    2008-11-01

    Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.

  11. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels.

    Science.gov (United States)

    Huang, Angela Hai; Lee, Yong-Ung; Calle, Elizabeth A; Boyle, Michael; Starcher, Barry C; Humphrey, Jay D; Niklason, Laura E

    2015-08-01

    Conventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading. Therefore, to better simulate the physiological stresses acting on native arteries, we built a novel bioreactor system to enable biaxial stretching of engineered arteries during culture. This new bioreactor system allows for independent control of circumferential and axial stretching parameters, such as displacement and beat rate. The assembly and setup processes for this biaxial bioreactor system are reliable with a success rate greater than 75% for completion of long-term sterile culture. This bioreactor also supports side-by-side assessments of TEVs that are cultured under three types of mechanical conditions (static, uniaxial, and biaxial), all within the same biochemical environment. Using this bioreactor, we examined the impact of biaxial stretching on arterial wall remodeling of TEVs. Biaxial TEVs developed the greatest wall thickness compared with static and uniaxial TEVs. Unlike uniaxial loading, biaxial loading led to undulated collagen fibers that are commonly found in native arteries. More importantly, the biaxial TEVs developed the most mature elastin in the ECM, both qualitatively and quantitatively. The presence of mature extracellular elastin along with the undulated collagen fibers may contribute to the observed vascular compliance in the biaxial TEVs. The current work shows that biaxial stretching is a novel and promising means to improve TEV generation. Furthermore, this novel system allows us to optimize biomechanical conditioning by unraveling the interrelationships among the

  12. A multi-paradigm modeling framework to simulate dynamic reciprocity in a bioreactor.

    Directory of Open Access Journals (Sweden)

    Himanshu Kaul

    Full Text Available Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications.

  13. Mathematical modeling of ultrasound in tissue engineering: From bioreactors to the cellular scale

    Science.gov (United States)

    Louw, Tobias M.

    Tissue engineering seeks to provide a means to treat injuries that are beyond the body's natural ability to repair without the issues associated with allografts. Autologous cells are cultured in a bioreactor which controls the cellular environment (including mechanical stimulation) for optimal tissue growth. We investigate ultrasound as an effective means of mechanical stimulation by predicting the ultrasonic field in a bioreactor, as well as ultrasonic bioeffects at the cellular level. The Transfer Matrix Angular Spectrum Approach was found to be the most accurate and computationally efficient bioreactor model. Three critical factors influence experimental results: (1) the diameter of the tissue engineering scaffold greatly affects the ultrasonic field; (2) the position of the ultrasonic transducer and liquid level in the tissue culture well determines the maximum pressure amplitude in the bioreactor, but the pressure can be controlled by measuring the transducer input electrical impedance and manipulating the applied voltage; and (3) the position of pressure nodes are influenced by ultrasonic frequency and liquid level; this will affect the response of cells to applied ultrasound. On the cellular level, it was shown that chondrocytes respond to ultrasound with frequency dependence. A predicted resonance frequency near 5MHz matched experimental results showing maximum expression of load inducible genes at 5MHz. Mechanical stresses are concentrated near the nucleus at resonance, alluding to the possibility that the nucleus may directly sense ultrasonic stimulation. We postulate that ultrasound influences the transport of p-ERK to the nucleus or causes minor chromatin reorganization, leading to the observed frequency dependent gene expression. We linked in vitro ultrasonic stimulation to in vivo mechanical stimulation generated by natural movement. The chondrocyte's response to impact is under-damped, and the cell oscillates with a frequency close to the model

  14. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture.

    Science.gov (United States)

    Luni, Camilla; Feldman, Hope C; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D; Elvassore, Nicola

    2010-08-11

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100-300 mul). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells of a standard 96-well plate is provided by buoyancy-driven thermoconvection. The temperature and velocity fields within the culture volume are determined with numerical simulations. The numerical results are verified with experimental velocity measurements using microparticle image velocimetry (muPIV) and are used to define feasible experimental conditions for stem cell cultures. To test the bioreactor array's functionality, human umbilical cord blood-derived CD34(+) cells were cultured for 7 days at five different stirring conditions (0.24-0.58 mums) in six repeated experiments. Cells were characterized in terms of proliferation, and flow cytometry measurements of viability and CD34 expression. The microliter-bioreactor array demonstrates its ability to support HSC cultures under stirred conditions without adversely affecting the cell behavior. Because of the highly controlled operative conditions, it can be used to explore culture conditions where the mass transport of endogenous and exogenous growth factors is selectively enhanced, and cell suspension provided. While the bioreactor array was developed for culturing HSCs, its application can be extended to other cell types.

  15. Effects of bioreactor retention time on aerobic microbial decomposition of CELSS crop residues

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO_2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  16. Improved Mask Protected DES using RSA Algorithm

    Directory of Open Access Journals (Sweden)

    Asha Latha S.

    2016-01-01

    Full Text Available The data encryption standard is a pioneering and farsighted standard which helped to set a new paradigm for encryption standards. But now DES is considered to be insecure for some application. Asymmetric mask protected DES is an advanced encryption method for effectively protecting the advanced DES. There are still probabilities to improve its security. This paper propose a method, which introduce a RSA key generation scheme in mask protected DES instead of plain key, which result in enhancement in the security of present asymmetric mask protected DES. We further propose a Vedic mathematical method of RSA implementation which reduce the complexity of computation in RSA block thereby resulting in reduced delay (four timesthat improves the performance of overall system. The software implementation was performed using Xilinx 13.2 and Model-Sim was used for the simulation environment.

  17. Schopenhauer und die Paradoxien des Erhabenen

    Directory of Open Access Journals (Sweden)

    François Arnaud

    2012-08-01

    Full Text Available http://dx.doi.org/10.5007/1677-2954.2012v11nesp1p145Die Hauptunterscheidung zwischen den Schopenhauerschen und Kantschen Auffassungen des Erhabenen liegt nach diesem Artikel darin, dass der Zuschauer im letzten Fall zu einer nur möglichen Gefahr muss unterworfen werden, während er im Ersten wirklich erschreckt sein muss. Die Haupttriebfeder des Gefühls des Erhabenen ist nämlich bei Schopenhauer der Einsatz des Willens, der also wirklich bedroht werden muss. Daraus folgen einige Paradoxien und Originalitäten der Schopenhauerschen Lehre des Erhabenen, hauptsächlich aus dem ethischen Aussichtspunkt, deren Spuren ich zu folgen versuche.

  18. La tuberculose des amygdales palatines

    Directory of Open Access Journals (Sweden)

    Oudidi Abdelatif

    2010-01-01

    Full Text Available INTRODUCTION:La localisation tuberculeuse des amygdales palatines est très rare même dans un pays d’endémie tuberculeuse. Le diagnostic peut être suspecté cliniquement dans un contexte évocateur, mais il ne peut être certifié qu’au stade histologique. PATIENTS ET METHODES:Cinq cas de tuberculose des amygdales palatine ont été diagnostiqués sur une période de 5 ans et inclus dans une étude rétrospective. Nous avons recensé trois hommes et deux femmes (âge moyen de 28 ans. La dysphagie haute était le maître symptôme. L’examen a objectivé une hypertrophie amygdalienne chez tous les patients avec des ulcérations chez trois d’entre eux. Une biopsie a été effectuée chez trois patients et une amygdalectomie a été réalisée chez les deux autres. L’étude anatomopathologique a posé le diagnostic chez tous les patients. Un traitement médical antituberculeux selon un régime court allant de 6 à 9 mois a été instauré. Dans tous les cas, l’évolution à long terme a été favorable avec un recul moyen de 13 mois. CONCLUSION: La tuberculose amygdalienne est rare. Son diagnostic repose essentiellement sur le résultat anatomopathologique de la biopsie où de l’amygdalectomie. L’évolution sous traitement anti-bacillaire est souvent favorable, la récidive est exceptionnelle.

  19. Des fantômes

    Directory of Open Access Journals (Sweden)

    Sjef Houppermans

    2012-12-01

    Full Text Available La première pièce de théâtre de Laurent Mauvignier, Tout mon amour, est créée en 2012 par la compagnie Les Possédés. La thématique habituelle de Mauvignier (secrets des familles, solitude, violence sociale s’y retrouve, mais tout en utilisant pleinement les moyens de la scène (distanciation, présence physique, espace théâtral, discours rythmés.

  20. Des pauvres de la politique à la politique des pauvres

    Directory of Open Access Journals (Sweden)

    Ratiba Hadj-Moussa

    2012-01-01

    Full Text Available S’attachant aux nouvelles modalités de production du politique issues des études subalternes, l’article situe dans un premier temps ces travaux et, dans un deuxième temps, en fait une présentation en s’appuyant sur les éléments qui y sont privilégiés et qui font le lien entre « les pauvres et la production du politique ». Cette présentation s’appuie essentiellement sur les travaux portant sur les pays du Sud, en particulier l’Inde et quelques pays du Moyen Orient (l’Égypte et l’Iran. Elle réfère aussi au Maghreb qui est le terrain principal de l’analyse. La présentation tient compte en particulier des travaux qui s’appuient sur des recherches empiriques substantielles mais dont la portée théorique est très peu discutée. Enfin, si le renvoi aux études subalternes ou postcoloniales est dans ce texte non négligeable, il est aussi fait recours à des travaux produits dans des contextes pluralistes, comme la France.Poor Policy to the Policy of the PoorThis article has its origins in the new methods of production of policy based on subaltern studies. Firstly, it will locate these studies and then it will present its main arguments as well as the relationship between “the poor and policy production”. This presentation is based essentially on the works on countries of the south, particularly India, and few other countries from the Middle East (Egypt and Iran. It also refers to North Africa, which is the major fieldwork of this analysis. This presentation takes into account the works that rely upon substantial empirical research but for which the theoretical range is very little. Finally, if the referral to subaltern or postcolonial studies is significant in this article, it also refers to works produced in pluralistic contexts such as France.De los pobres de la política a la política de los pobresBasándose en estudios subalternos, el artículo se sitúa dentro del marco de los nuevos modos de producci

  1. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lee, S.

    2009-07-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  2. EXPERIMENTAL STUDY ON THE GAS-LIQUID FLOW IN THE MEMBRANE MICROPORE AERATION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    DONG LIU

    2008-12-01

    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  3. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures

    DEFF Research Database (Denmark)

    Harper, W.F.; Terada, Akihiko; Poly, F.;

    2009-01-01

    Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically...... accelerated by a factor of 1.4-13. NH2OH addition caused a 20-40% decrease in the median aggregate size, broadened the shape of the aggregate size distribution by up to 230%, and caused some of the microcolonies to appear slightly more dispersed. Longer term NH2OH addition in fed batch bioreactors decreased...

  4. Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor.

    Science.gov (United States)

    Roberts, Iwan; Baila, Stefano; Rice, R Brent; Janssens, Michiel Etienne; Nguyen, Kim; Moens, Nathalie; Ruban, Ludmila; Hernandez, Diana; Coffey, Pete; Mason, Chris

    2012-12-01

    The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.

  5. NUMERICAL SIMULATION BY COMPUTATIONAL FLUID DYNAMICS AND EXPERIMENTAL STUDY ON STIRRED BIOREACTOR WITH PUNCHED IMPELLER

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; HE Pingting; YE Hong; XIN Zhihong

    2007-01-01

    Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.

  6. Preparation of [11C]formaldehyde using a hollow fiber membrane bioreactor.

    Science.gov (United States)

    Hughes, J A; Jay, M

    1995-01-01

    A bioreactor consisting of the enzymes alcohol oxidase and catalase immobilized onto a hollow fiber membrane was used to convert [11C]methanol to [11C]formaldehyde. Using an alcohol oxidase:catalase ratio of 1:500 U, conversion yields of 90-95% were obtained allowing the production of up to 7400 MBq (200 mCi) of [11C]formaldehyde in 5 min. The hollow fiber bioreactor allowed for a convenient, rapid synthesis with yields significantly higher than the standard chemical procedures, has demonstrable advantages over glass bead immobilized systems (primarily due to convective flow), and was amenable to hot cell conditions.

  7. Production of diosgenin from Dioscorea zingiberensis with mixed culture in a new tray bioreactor

    Directory of Open Access Journals (Sweden)

    Yutong Cheng

    2016-01-01

    Full Text Available A new tray bioreactor was developed for the production of diosgenin from Dioscorea zingiberensis with Trichoderma reesei and Aspergillus fumigatus. The influence of initial moisture content, temperature, tray bed depth and mixing times was investigated. The best fermentation condition is initial moisture content of 75%, bioreactor temperature of 35°C, solid bed depth of 1.5 cm and three mixings carrying out on the first, third and fifth day. Under the optimized fermentation conditions, after 144 h incubation, maximum diogenin concentration of 68.2 μmol/g was detected.

  8. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    Science.gov (United States)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  9. Phenanthrene Contaminated Soil Biotreatment Using Slurry Phase Bioreactor

    Directory of Open Access Journals (Sweden)

    M. Arbabi

    2009-01-01

    Full Text Available Problem Statement: Polycyclic Aromatic Hydrocarbons (PAHs are suspected toxins that accumulate in soils and sediments due to their insolubility in water and lack of volatility. Slurry-phase biological treatment is one of the innovative technologies that involve the controlled treatment of excavated soil in a bioreactor. Due to highly soil contamination from petroleum compounds in crude oil extraction and also oil refinery sites in Iran, this research was designed based on slurry phase biotreatment to find out a solution to decontamination of oil compounds polluted sites. Approach: Soil samples were collected from Tehran oil refinery site and Bushehr oil zones. Two compositions of soils (clay and silt were selected for slurry biotreatment experiment. Soil samples were contaminated with three rates of phenanthrene (a 3 ring PAH, 100, 500 and 1000 mg kg-1 and mixed with distilled water in solid concentration of 30% by weight after washing out with strong solvent (hexane and putting in to the oven. Bacterial consortium was revived in culture medium which consisted of Mineral Salt Medium (MSM based on phenanthrene concentrations and ratio of C/N/P in the range of 100/10/2. Prepared soil samples were mixed with distilled water, nutrient and bacterial consortium together in the 250 mL glass Erlenmeyer and putted in the shaker incubator with 200 rpm revolutions and 25°C for 7 weeks (45 days. Samples were analyzed for residual phenanthrene, bacterial population every week. For statistical analysis, general linear model with repeated measures (type III analysis was applied. Results: The concentration of 100 mg Ll of phenanthrene in clayey and silty soils reached to non detectable limit after 5 and 6 weeks, respectively. While concentration of 500 mg L-1 of phenanthrene both in clayey and silty soils reached to non detectable limit after 6 weeks. But concentration of 1000 mg L-1both in clayey and silty soil samples has not met this limitation after 7

  10. TCE degradation in a methanotrophic attached-film bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, D.; Nelson, Y.M.; Underhill, S.E.; White, T.E.; Jewell, W.J. (Cornell Univ., Ithaca, NY (United States). Dept. of Agricultural and Biological Engineering)

    1993-09-20

    Trichloroethene was degraded in expanded-bed bioreactors operated with mixed-culture methanotrophic attached films. Biomass concentrations of 8 to 75 g volatile solids (VS) per liter static bed (L[sub sb]) were observed. Batch TCE degradation rates at 35C followed the Michaelis-Menten model, and a maximum TCE degradation rate (q[sub max]) of 10.6 mg TCE/gVS [center dot] day and a half velocity coefficient (K[sub s]) of 2.8 mg TCE/L were predicted. Continuous-flow kinetics also followed the Michaelis-Menten model, but other parameters may be limiting, such as dissolved copper and dissolved methane-q[sub max] and K[sub s] were 2.9 mg TCE/gVS [center dot] day and 1.5 mg TCE/L, respectively, at low copper concentrations (0.003 to 0.006 mg Cu/L). The maximum rates decreased substantially with small increases in dissolved copper. Methane consumption during continuous-flow operation varied from 23 to 1,200 g CH[sub 4]/g TCE degraded. Increasing the influent dissolved methane concentration from 0.01 mg/L to 5.4 mg/L reduced the TCE degradation rate by nearly an order of magnitude at 21C. Exposure of biofilms to 1.4 mg/L tetrachloroethene (PCE) at 35C resulted in the loss of methane utilization ability. Tests with methanotrophs grown on granular activated carbon indicated that lower effluent TCE concentrations could be obtained. The low efficiencies of TCE removal and low degradation rates obtained at 35C suggest that additional improvements will be necessary to make methanotrophic TCE treatment attractive.

  11. Design of a biaxial mechanical loading bioreactor for tissue engineering.

    Science.gov (United States)

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K

    2013-04-25

    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  12. Design of a Biaxial Mechanical Loading Bioreactor for Tissue Engineering

    Science.gov (United States)

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K.

    2013-01-01

    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  13. Stirred bioreactors for the expansion of adult pancreatic stem cells.

    Science.gov (United States)

    Serra, Margarida; Brito, Catarina; Leite, Sofia B; Gorjup, Erwin; von Briesen, Hagen; Carrondo, Manuel J T; Alves, Paula M

    2009-01-01

    Adult pluripotent stem cells are a cellular resource representing unprecedented potential for cell therapy and tissue engineering. Complementary to this promise, there is a need for efficient bioprocesses for their large scale expansion and/or differentiation. With this goal in mind, our work focused on the development of three-dimensional (3-D) culture systems for controlled expansion of adult pancreatic stem cells (PSCs). For this purpose, two different culturing strategies were evaluated, using spinner vessels: cell aggregated cultures versus microcarrier technology. The use of microcarrier supports (Cytodex 1 and Cytodex 3) rendered expanded cell populations which retained their self-renewal ability, cell marker, and the potential to differentiate into adipocytes. This strategy surmounted the drawbacks of aggregates in culture which were demonstrably unfeasible as cells clumped together did not proliferate and lost PSC marker expression. Furthermore, the results obtained showed that although both microcarriers tested here were suitable for sustaining cell expansion, Cytodex 3 provided a better substrate for the promotion of cell adherence and growth. For the latter approach, the potential of bioreactor technology was combined with the efficient Cytodex 3 strategy under controlled environmental conditions (pH-7.2, pO2-30% and temperature-37 degrees C); cell growth was more efficient, as shown by faster doubling time, higher growth rate and higher fold increase in cell concentration, when compared to spinner cultures. This study describes a robust bioprocess for the controlled expansion of adult PSC, representing an efficient starting point for the development of novel technologies for cell therapy.

  14. In-stream bioreactor for agricultural nitrate treatment.

    Science.gov (United States)

    Robertson, W D; Merkley, L C

    2009-01-01

    Nitrate from agricultural activity contributes to nutrient loading in surface water bodies such as the Mississippi River. This study demonstrates a novel in-stream bioreactor that uses carbonaceous solids (woodchips) to promote denitrification of agricultural drainage. The reactor (40 m3) was trenched into the bottom of an existing agricultural drainage ditch in southern Ontario (Avon site), and flow was induced through the reactor by construction of a gravel riffle in the streambed. Over the first 1.5 yr of operation, mean influent NO3-N of 4.8 mg L(-1) was attenuated to 1.04 mg L(-1) at a mean reactor flow rate of 24 L min(-1). A series of flow-step tests, facilitated by an adjustable height outlet pipe, demonstrated that nitrate mass removal generally increased with increasing flow rate. When removal rates were not nitrate-limited, areal mass removal ranged from 11 mg N m(-2) h(-1) at 3 degrees C to 220 mg N m(-2) h(-1) at 14 degrees C (n = 27), exceeding rates reported for some surface-flow constructed wetlands in this climatic region by a factor of about 40. Over the course of the field trial, reactor flow rates decreased as a result of silt accumulation on top of the gravel infiltration gallery. Design modifications are currently being implemented to mitigate the effects of siltation. In-stream reactors have the potential to be scaled larger and could be more manageable than attempting to address nitrate loading from individual tile drains. They could also work well in combination with other nitrate control techniques.

  15. Évaluation des émissions de gaz à effet de serre des filières de traitement et de valorisation des boues issues du traitement des eaux usées

    OpenAIRE

    Reverdy, A.L.; Pradel, M.

    2011-01-01

    / Ce rapport présente l'inventaire des différentes consommations énergétiques, en consommables et des GES pour chaque poste de traitement et de valorisation des boues issues du traitement des eaux usées.

  16. Isomers chart; Table des isomeres

    Energy Technology Data Exchange (ETDEWEB)

    Dupont-Gautier, P.; Chantelot, S.; Moisson, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)

  17. Etude des effets du martelage repetitif sur les contraintes residuelles

    Science.gov (United States)

    Hacini, Lyes

    L'assemblage par soudage peut engendrer des contraintes residuelles. Ces contraintes provoquent des fissurations prematurees et un raccourcissement de la duree de vie des composants. Dans ce contexte, le martelage robotise est utilise pour relaxer ces contraintes residuelles. Trois volets sont presentes: le premier est l'evaluation des effets des impacts unitaires repetes sur le champ de contraintes developpe dans des plaques d'acier inoxydable austenitique 304L vierges ou contenant des contraintes residuelles initiales. Dans la deuxieme partie de ce projet, le martelage est applique grace au robot SCOMPI. Les contraintes residuelles induites et relaxees par martelage sont ensuite mesurees par la methode des contours, qui a ete adaptee a cet effet. Dans la troisieme partie, le martelage est modelise par la methode des elements finis. Un modele axisymetrique developpe grace au logiciel ANSYS permet de simuler des impacts repetes d'un marteau elastique sur une plaque ayant un comportement elastoplastique.

  18. L'espace mondial des grandes manifestations sportives internationales

    Directory of Open Access Journals (Sweden)

    Daniel MATHIEU

    1989-06-01

    Full Text Available La carte des grandes manifestations sportives mondiales montre une forte concentration des épreuves dans un petit nombre de pays développés, en particulier l'Europe occidentale. L'examen des nations concernées par les tournois majeurs du tennis et par le cyclisme professionnel soulignent, avec les nuances propres à chacun des sports, l'étroitesse des espaces intéressés.

  19. Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors.

    Science.gov (United States)

    Anastassiadis, Savas; Rehm, Hans-Jürgen

    2006-12-01

    The application of a new developed process for the continuous production of gluconic acid using a cascade of two bioreactors in a continuous process is shown reaching the highest concentration of gluconic acid described in the literature for continuous culture fermentation. Very high gluconic acid concentrations of 272-308 g/l have been achieved under continuous cultivation of free-growing cells of Aureobasidium pullulans in the first bioreactor at residence times (RT) between 19.5 and 24 h with formation rates for the generic product between 12.7 and 13.9 g/(l h). Gluconic acid, 350-370 g/l, was continuously reached in the second bioreactor at a total RT of 30.8-37 h with R (j) of 9.2-12 g/(l h). The highest specific gluconic acid production (m (p)) of 3.6 g/(g h) was found in the first bioreactor at the lowest RT of 19.5 h. The highest selectivity of 93.6% was determined in the first bioreactor as well. Complete glucose consumption was obtained at 37 h total residence time in the second bioreactor. Gluconic acid, 433 g/l, was continuously produced in the second bioreactor at a total RT of 37 h.

  20. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures.

    Science.gov (United States)

    Kwon, Jun-Young; Yang, Yong-Suk; Cheon, Su-Hwan; Nam, Hyung-Jin; Jin, Gi-Hong; Kim, Dong-Il

    2013-09-01

    Two kinds of disposable bioreactors, air-lift disposable bioreactors (ADB) and wave disposable bioreactors (WDB) were compared with stirred-tank reactors (5-L STR). These bioreactors were successfully applied to transgenic rice cell cultures for the production of recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig). In both systems, a fed-batch culture method was used to produce hCTLA4Ig efficiently by feeding concentrated amino acids and production levels were enhanced when dissolved oxygen (DO) level was regulated at 30% using pure oxygen sparging. Agitation and aeration rate during cultivation in ADB and WDB were determined by the same mixing time. The results in both disposable bioreactors showed similar values in maximum cell density (11.9 gDCW/L and 12.6 gDCW/L), doubling time (4.8- and 5.0-day), and maximum hCTLA4Ig concentration (43.7 and 43.3 mg/L). Relatively higher cell viability was sustained in the ADB whereas hCTLA4Ig productivity was 1.2-fold higher than that in WDB. The productivity was improved by increasing aeration rate (0.2 vvm). Overall, our experiments demonstrate pneumatically driven disposable bioreactors are applicable for the production of recombinant proteins in plant cell cultures. These results will be useful for development and scale-up studies of disposable bioreactor systems for transgenic plant cell cultures.

  1. De la manipulation des images 3D

    Directory of Open Access Journals (Sweden)

    Geneviève Pinçon

    2012-04-01

    Full Text Available Si les technologies 3D livrent un enregistrement précis et pertinent des graphismes pariétaux, elles offrent également des applications particulièrement intéressantes pour leur analyse. À travers des traitements sur nuage de points et des simulations, elles autorisent un large éventail de manipulations touchant autant à l’observation qu’à l’étude des œuvres pariétales. Elles permettent notamment une perception affinée de leur volumétrie, et deviennent des outils de comparaison de formes très utiles dans la reconstruction des chronologies pariétales et dans l’appréhension des analogies entre différents sites. Ces outils analytiques sont ici illustrés par les travaux originaux menés sur les sculptures pariétales des abris du Roc-aux-Sorciers (Angles-sur-l’Anglin, Vienne et de la Chaire-à-Calvin (Mouthiers-sur-Boëme, Charente.If 3D technologies allow an accurate and relevant recording of rock art, they also offer several interesting applications for its analysis. Through spots clouds treatments and simulations, they permit a wide range of manipulations concerning figurations observation and study. Especially, they allow a fine perception of their volumetry. They become efficient tools for forms comparisons, very useful in the reconstruction of graphic ensemble chronologies and for inter-sites analogies. These analytical tools are illustrated by the original works done on the sculptures of Roc-aux-Sorciers (Angles-sur-l’Anglin, Vienne and Chaire-à-Calvin (Mouthiers-sur-Boëme, Charente rock-shelters.

  2. Use of a passive bioreactor to reduce water-borne plant pathogens, nitrate, and sulfate in greenhouse effluent.

    Science.gov (United States)

    Gruyer, Nicolas; Dorais, Martine; Alsanius, Beatrix W; Zagury, Gérald J

    2013-01-01

    The goal of this study was to evaluate the use of passive bioreactors to reduce water-borne plant pathogens (Pythium ultimum and Fusarium oxysporum) and nutrient load (NO(-) 3 and SO(2-) 4) in greenhouse effluent. Sterilized and unsterilized passive bioreactors filled with a reactive mixture of organic carbon material were used in three replicates. After a startup period of 2 (sterilized) or 5 (unsterilized) weeks, the bioreactor units received for 14 weeks a reconstituted commercial greenhouse effluent composed of 500 mg L(-1) SO(2-) 4 and 300 mg L(-1) NO(-) 3 and were inoculated three times with P. ultimum and F. oxysporum (10(6) CFU mL(-1)). Efficacy in removing water-borne plant pathogens and nitrate reached 99.9% for both the sterilized and unsterilized bioreactors. However, efficacy in reducing the SO(2-) 4 load sharply decreased from 89% to 29% after 2 weeks of NO(-) 3-supply treatment for the unsterilized bioreactors. Although SO(2-) 4 removal efficacy for the sterilized bioreactors did not recover after 4 weeks of NO(-) 3-supply treatment, the unsterilized bioreactor nearly reached a similar level of SO(2-) 4 removal after 4 weeks of NO(-) 3-supply treatment compared with affluent loaded only with SO(2-) 4, where no competition for the carbohydrate source occurred between the denitrification process and sulfate-reducing bacteria activity. Performance differences between the sterilized and unsterilized bioreactors clearly show the predominant importance of sulfate-reducing bacteria. Consequently, when sulfate-reducing bacteria reach their optimal activity, passive bioreactors may constitute a cheap, low-maintenance method of treating greenhouse effluent to recycle wastewater and eliminate nutrient runoff, which has important environmental impacts.

  3. MESURE DE LA PERFORMANCE GLOBALE DES ENTREPRISES

    OpenAIRE

    Renaud, Angèle; Berland, Nicolas

    2007-01-01

    International audience; L'engagement des entreprises dans le développement durable consiste à conjuguer performance et responsabilité. La performance financière ne suffit plus à apprécier la performance d'une entreprise. Dès lors, les entreprises doivent mesurer leurs progrès à partir d'une performance plus globale incluant, en dehors de la dimension économique, des dimensions sociale et environnementale. A présent, comment mesurer cette performance globale ? Existe-il des outils de mesure gl...

  4. Mécanique des fluides fondamentale

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    Ce cours de mecanique des fluides est avant tout un cours theorique qui repond aux questions fondamentales de ce sujet de recherche. Les quatre premiers chapitres presentent les equations propres a determiner l'ecoulement de fluide considere et diverses solutions. Les chapitres 5 et 6sont consacres aux problemes lies la stabilite, aux bifurcations et aux comportements chaotiques. Le livre donne un vision globale des questions traitees en mecanique des fluides qui sont a la base de toute la recherche, de la modelisation et de toutes les applications dans ce domaine.

  5. A l'écoute des professionnels

    CERN Document Server

    Lebre-Peytard, Monique

    1994-01-01

    Cet ouvrage s'adresse aux étudiants de niveau moyen ou avancé en français. Il propose un travail d'écoute, de réflexion et d'expression autour d'interview authentiques. Des professionnels parlent de leur métier, des entreprises où ils travaillent, des fonctions qu'ils occupent... Ils appartiennent à divers secteurs de l'économie : banque, mode, tourisme, agriculture, télécommunications, etc.

  6. Expansion of activated lymphocytes obtained from renal cell carcinoma in an automated hollow fiber bioreactor.

    Science.gov (United States)

    Hillman, G G; Wolf, M L; Montecillo, E; Younes, E; Ali, E; Pontes, J E; Haas, G P

    1994-01-01

    Immunotherapy using IL-2 alone or combined with activated lymphocytes has been promising for metastatic renal cell carcinoma. Cytotoxic lymphocytes can be isolated from tumors, expanded in vitro with IL-2, and adoptively transferred back into the tumor-bearing host. These cells can also be transduced with the genes coding for cytokines for local delivery to tumor sites. A major drawback in adoptive immunotherapy is the cumbersome and expensive culture technology associated with the growth of large numbers of cells required for their therapeutic effect. To reduce the cost, resources, and manpower, we have developed the methodology for lymphocyte activation and expansion in the automated hollow fiber bioreactor IMMUNO*STAR Cell Expander (ACT BIOMEDICAL, INC). Tumor Infiltrating Lymphocytes (TIL) isolated from human renal cell carcinoma tumor specimens were inoculated at a number of 10(8) cells in a small bioreactor of 30 ml extracapillary space volume. We have determined the medium flow rates and culture conditions to obtain a significant and repeated expansion of TIL at weekly intervals. The lymphocytes cultured in the bioreactor demonstrated the same phenotype and cytotoxic activity as those expanded in parallel in tissue culture plates. Lymphocyte expansion in the hollow fiber bioreactor required lower volumes of medium, human serum, IL-2 and minimal labor. This technology may facilitate the use of adoptive immunotherapy for the treatment of refractory malignancies.

  7. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors

    NARCIS (Netherlands)

    Tatara, A.M.; Shah, S.R.; Demian, N.; Ho, T.; Shum, J.; Beucken, J.J.J.P van den; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2016-01-01

    Reconstruction of large mandibular defects is clinically challenging due to the need for donor tissue of appropriate shape and volume to facilitate high fidelity repair. In order to generate large vascularized tissues of custom geometry, bioreactors were implanted against the rib periosteum of 3-4ye

  8. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters

    NARCIS (Netherlands)

    Houten, van B.H.G.W.

    2006-01-01

    The use of synthesis gas fed sulfate-reducing bioreactors to simultaneously remove both oxidized sulfur compounds and metals shows great potential to treat wastewaters generated as a result of flue gas scrubbing, mining activities and galvanic processes. Detailed information about the phylogenetic a

  9. Woodchip denitrification bioreactors: Impact of temperature and hydraulic retention time on nitrate removal

    Science.gov (United States)

    Woodchip denitrification bioreactors, a relatively new technology for edge-of-field treatment of subsurface agricultural drainage water, have shown potential for nitrate removal. However, very few studies have evaluated the performance of these reactors under controlled conditions similar to the fie...

  10. Uniform step-by-step observer for aerobic bioreactor based on super-twisting algorithm.

    Science.gov (United States)

    Martínez-Fonseca, N; Chairez, I; Poznyak, A

    2014-12-01

    This paper describes a fixed-time convergent step-by-step high order sliding mode observer for a certain type of aerobic bioreactor system. The observer was developed using a hierarchical structure based on a modified super-twisting algorithm. The modification included nonlinear gains of the output error that were used to prove uniform convergence of the estimation error. An energetic function similar to a Lyapunov one was used for proving the convergence between the observer and the bioreactor variables. A nonsmooth analysis was proposed to prove the fixed-time convergence of the observer states to the bioreactor variables. The observer was tested to solve the state estimation problem of an aerobic bioreactor described by the time evolution of biomass, substrate and dissolved oxygen. This last variable was used as the output information because it is feasible to measure it online by regular sensors. Numerical simulations showed the superior behavior of this observer compared to the one having linear output error injection terms (high-gain type) and one having an output injection obtaining first-order sliding mode structure. A set of numerical simulations was developed to demonstrate how the proposed observer served to estimate real information obtained from a real aerobic process with substrate inhibition.

  11. A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.

    Science.gov (United States)

    Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F

    2009-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed.

  12. Galvanotactic migration of EA.Hy926 endothelial cells in a novel designed electric field bioreactor.

    Science.gov (United States)

    Long, Haiyan; Yang, Gang; Wang, Zhengrong

    2011-12-01

    Endogenous direct current electric fields (dcEFs) play a significant role in major biological processes such as embryogenesis, wound healing, and tissue regeneration. In this study, the galvanotaxis of human umbilical vein endothelial cell line EA.Hy926 was investigated by using a novel designed bioreactor. The physical features of the bioreactor were discussed and analyzed by both numerical simulation method and equivalent circuit model method. EA.Hy926 cells were cultured in the bioreactor for 10-24 h under 50-250 mV/mm dcEFs. Cell migration direction, distance, and velocity were recorded under an online time-lapse microscope. The effects of serum and growth factor on cell galvanotatic migration were investigated. To further explore the role of dcEFs in regulating endothelial cells, we analyzed the endothelial cell proliferation and secretion of nitric oxide (NO), endothelin-1 (ET-1) in response to dcEFs of physiological strength. Our results showed that EA.Hy926 cells had an obvious directional migration to the cathode, and the EF-directed migration was voltage dependent. The results also showed dcEFs did not affect cell proliferation, but affected the productions of NO and ET-1. Our study also showed the novel bioreactor, with a compact and planar style, makes it more convenient and more reasonable for EF stimulation experiments than earlier chamber designs.

  13. Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience

    NARCIS (Netherlands)

    Lousada-Ferreira, M.; Krzeminski, P.; Geilvoet, S.; Moreau, A.; Gil, J.A.; Evenblij, H.; Van Lier, J.B.; Van der Graaf, J.H.J.M.

    2014-01-01

    Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization

  14. Continuous, packed-bed, enzymatic bioreactor production and stability of feruloyl soy glycerides

    Science.gov (United States)

    The synthesis of feruloyl soy glycerides was demonstrated on a pilot-scale (1 metric ton/year) in a continuous, four-column series, packed-bed, enzymatic bioreactor. Ethyl ferulate and soybean oil were combined and converted at 3.5 kg/d over Candida antartica lipase B immobilized on an acrylic rein ...

  15. Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor.

    Science.gov (United States)

    Wang, Chao; Zhao, Youcai; Xie, Bing; Peng, Qing; Hassan, Muhammad; Wang, Xiaoyuan

    2014-05-01

    The nitrogen removal pathways and nitrogen-related functional genes in on-site three-stage aged refuse bioreactor (ARB) treating landfill leachate were investigated. It was found that on average 90.0% of CODCr, 97.6% of BOD5, 99.3% of NH4(+)-N, and 81.0% of TN were removed with initial CODCr, BOD5, NH4(+)-N, and TN concentrations ranging from 2323 to 2754, 277 to 362, 1237 to 1506, and 1251 to 1580 mg/L, respectively. Meanwhile, the functional genes amoA, nirS and anammox 16S rRNA gene were found to coexist in every bioreactor, and their relative proportions in each bioreactor were closely related to the pollutant removal performance of the corresponding bioreactor, which indicated the coexistence of multiple nitrogen removal pathways in the ARB. Detection of anammox expression proved the presence of the anammox nitrogen removal pathway during the process of recirculating mature leachate to the on-site ARB, which provides important information for nitrogen management in landfills.

  16. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: I. LEACHATE HYDROLOGY AND WASTE SETTLEMENT

    Science.gov (United States)

    An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practi...

  17. Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactors System

    Science.gov (United States)

    The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena, MT. The system consists of a wetland pretreatment fo...

  18. Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactor System (Presentation)

    Science.gov (United States)

    The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena MT. The system consists of a wetland pretreatment fol...

  19. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    Science.gov (United States)

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  20. Permitting of Landfill Bioreactor Operations: Ten Years after the RD&D Rule

    Science.gov (United States)

    Prior to promulgation of the Rule, there were approximately 20 full-scale bioreactor projects in North America, including one in Canada. Of these, six were permitted by EPA (four Project XL sites and two projects listed separately under a cooperative research agreement at the Ou...