WorldWideScience

Sample records for bioreactors beeinflussung des

  1. Messsysteme zur Untersuchung einer möglichen Beeinflussung des Menschen durch elektromagnetische Felder

    OpenAIRE

    Waldmann, Jan

    2003-01-01

    Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Charakterisierung von Mess-systemen zur Bestimmung einer möglichen Beeinflussung des menschlichen Körpers durch elektromagnetische Felder. Exemplarisch werden anhand von drei Beispielen Messsysteme vorgestellt, mit deren Hilfe diese mögliche Beeinflussung untersucht werden kann. Dabei werden neben thermischen Wirkungen elektromagnetischer Wellen, also der Erwärmung des Gewebes auf Grund absorbierter Feldenergie, auch nicht-th...

  2. Beeinflussung der Propriozeption des oberen Sprunggelenkes durch Orthesen

    OpenAIRE

    Becker, Björn-Wiclif

    2006-01-01

    Ziel der vorliegenden Studie war die Untersuchung des Einflusses von Orthesen auf die neuromuskuläre Stabilisierung des oberen Sprunggelenks. Über ein alternatives Studiendesign wurden die mechanischen und neuromuskulären Eigenschaften einer Orthese getrennt und durch Auslösung des H-Reflexes an der Peroneusmuskulatur die Reflexschleife eines Dehnungsreflexes im Rahmen einer akuten Supination simuliert. Mittels EMG wurde das resultierende Reflex-Summenaktionspotential bei 20 Probanden erfasst...

  3. Beeinflussung des CPAP-Druckes bei obstruktivem Schlaf-Apnoe-Syndrom durch Gabe von Theophyllin

    OpenAIRE

    Grootoonk, Sandra

    2003-01-01

    Problem: Theophyllingabe bei obstruktivem Schlafapnoe-Syndroms (OSAS) ist umstritten. Diese Studie untersucht, ob zur CPAP(continuous positive airway pressure)-Therapie appliziertes Theophyllin bei OSAS-Patienten zu Veränderungen von Ventilation und Schlafarchitektur sowie Reduktion des CPAP-Druckes führt. Methode: In randomisiertem, doppelblinden, placebo-kontrollierten Design erhielten 16 OSAS-Patienten mit CPAP-Therapie oral 900 mg Retard-Theophyllin(T)/Placebo(P) in dreitägige...

  4. Untersuchung der efferenten Beeinflussung der Innenohrfunktion durch Messung otoakustischer Emissionen

    OpenAIRE

    Wittekindt, Anna

    2009-01-01

    Die Haarzellen des Innenohrs setzen durch Schallreize ausgelöste Schwingungen der Basilarmembran in elektrische Impulse um, die über Nerven an das Gehirn geleitet werden und dort nach komplexer neuronaler Verarbeitung die Hörwahrnehmung auslösen. Gleichzeitig erhalten die äußeren Haarzellen über absteigende Nervenverbindungen, die olivo-cochleären Neurone, auch Informationen vom Gehirn, durch die ihre Empfindlichkeit verändert werden kann. Über die Mechanismen dieser efferenten Beeinflussung ...

  5. Bioreactor

    Science.gov (United States)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  6. Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jamaleddine, E. [McGill Univ., Montreal, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Composting is once again gaining interest among ecological engineers in view of greener industrial and residential activities. Uniform composting is needed to ensure decomposition and to keep the whole system at the same composting stage. A homogeneous temperature must be maintained throughout the media. A bioreactor design consisting of a heater core made of copper tubing was designed and tested. Two four-inch holes were made at the top and bottom of the barrel to allow air to flow through the system and promote aerobic composting. Once composting began and temperature increased, the water began to flow through the copper piping and the core heat was distributed throughout the medium. Three thermocouples were inserted at different heights on a 200 litre plastic barrel fitted with the aforementioned apparatus. Temperature variations were found to be considerably lower when the apparatus was operated with the heat redistribution system, enabling uniform composting, accelerating the process and reducing the risks of pathogenic or other contaminants remaining active in the barrels.

  7. Gegenseitige Beeinflussung von Mizellaren Strukturen und Photodimerisierung von Cumarinderivaten

    OpenAIRE

    Yu, Xiuling

    2004-01-01

    In dieser Arbeit wurde die gegenseitige Beeinflussung von mizellaren Strukturen und Photodimerisierung von Cumarinderivaten untersucht. Als Mizellbildner wurden das kationische Cetyltrimethylammoniumbromid (CTAB) und das nicht-ionische Triton X-100, als Solubilisate Cumarinderivaten verwendet. Es wurden rheologische, thermodynamische und photochemische Untersuchungen durchgeführt. Die Viskosität der beiden Tensidsysteme steigt mit zunehmender Solubilisatkonzentration je nach Cumarinderivat un...

  8. Perioperative Veränderungen der Sauerstoffsättigungskurve anhand des p50-Wertes sowie Beeinflussung über die Hämoglobin-bezogene 2,3-Diphosphoglycerat-Konzentration durch postoperative Gabe von Kaliumphosphat bei herzchirurgischen Patienten

    OpenAIRE

    Sehlleier, Simone

    2002-01-01

    Das Thema dieser Studie behandelt die perioperativen Veränderungen der Sauerstoffsättigungskurve bei herzchirurgischen Patienten, dargestellt anhand des p50-Wertes. Darüberhinaus wird versucht, durch postoperative Gabe von anorganischem Phosphat in Form von Kaliumphosphat den 2,3-DPG-Metabolismus zu stimulieren und somit den p50-Wert anzuheben. Im Mittelpunkt steht die 'Phosphat-Gruppe', deren Patienten postoperativ Kaliumphosphat erhalten haben. Die p50- und 2,3-DPG-Werte wurden mit den W...

  9. Effekte der gegenseitigen Beeinflussung bei mehreren rotationsymmetrischen Körpern mit vertikaler Achse in harmonischen Schwerewellen

    OpenAIRE

    Zibell, Hans Georg

    1990-01-01

    Effekte der gegenseitigen Beeinflussung bei mehreren rotationsymmetrischen Körpern mit vertikaler Achse in harmonischen Schwerewellen In der vorliegenden Arbeit wurden einige Effekte der gegenseitigen hydrodynamischen Beeinflussung an Strukturen unter der Wirkung von harmonischen Schwerewellen am Beispiel rotationssymmetrischer Körper mit vertikaler Achse aufgezeigt. Zunächst wurden die allgemeinen Grundlagen der potentialtheoretischen Behandlung von Strukturen, die auf dem Meeresboden...

  10. Emotionale Differenzierung zur Beeinflussung von Kaufentscheidungen in Industriegütermärkten

    OpenAIRE

    Sechtin, Robert

    2012-01-01

    Die Ausgangshypothese dieser Arbeit lautet, dass ein Anbieter in einem Industriegütermarkt Kaufentscheidungen von Unternehmen zu seinen Gunsten beeinflussen kann, indem er positive Emotionen bei Kaufentscheidern erzeugt. Die geplante Beeinflussung der Kaufentscheidung durch Emotionen wird in dieser Untersuchung als Emotionale Differenzierung bezeichnet und in die Logik der Wettbewerbsstrategien nach Porter eingeordnet. Im Zuge dieser Einordnung wird argumentiert, dass die Emotionale Differenz...

  11. MDMA ("Ecstasy") in Tiermodellen des Morbus Parkinson

    OpenAIRE

    Lebsanft, Heike Birgit

    2004-01-01

    Die gute symptomatische Anti-Parkinson-Wirkung von MDMA wurde in Tiermodellen bei der Ratte nachgewiesen. Die Derivate und Enantiomere von MDMA unterscheiden sich in ihrer Wirksamkeit. Im Rotationsverhalten sind die Substanzen effektiver, die stärker auf das dopaminerge System wirken, wie MDA oder das S(+)-Enantiomer von MDMA. Da die Beeinflussung das serotonergen Systems und des Opioid-Systems die gute Wirksamkeit von MDMA behinderte, sind diese Systeme am Wirkmechanismus beteiligt. Das sero...

  12. NASA Bioreactor

    Science.gov (United States)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  16. Heart tissue grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  17. Bioreactors Addressing Diabetes Mellitus

    OpenAIRE

    Minteer, Danielle M.; Gerlach, Jorg C; Marra, Kacey G.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor develop...

  18. Denitrification in Membrane Bioreactors

    OpenAIRE

    Fonseca, Anabela Duarte

    1999-01-01

    Three membrane bioreactors, a low flux filter (LFF), a diafilter (DF), and an ion-exchange (IE) membrane bioreactor were used to treat water polluted with 50 ppm-N nitrate. The three systems were compared in terms of removal efficiency of nitrate, operational complexity, and overall quality of the treated water. In the low flux filter (LFF) membrane bioreactor an hemo-dialysis hollow fiber module was used and operated continuously for 29 days with a constant flux of permeate. The perform...

  19. Untersuchungen zur Beeinflussung des durch Störlichtbögen verursachten Überdrucks in elektrischen Anlagen

    OpenAIRE

    Schmale, Michael

    2006-01-01

    Fault arcs in electrical installations occur extremely seldom. However, they can not be avoided totally. Insulation failure, flashover, malfunction or maloperation by service personnel can lead to powerful fault arcs. As a result switchgear installations and even substation buildings may be endangered by thermal and mechanical stress. Metal enclosed switchgears can withstand some hundred mbar overpressure, substation buildings e. g. constructed of bricks may be damaged by overpressures exceed...

  20. Beeinflussung der Funktion des pro-inflammatorischen Cytokins Makrophagen Migrations-Inhibitions Faktor durch das ribosomale Protein S19

    OpenAIRE

    Lacher, Philipp

    2014-01-01

    Der Makrophagen Migrations Inhibitions Faktor (MIF) ist ein pleiotroper Immunmodulator, der unter verschiedenen inflammatorischen Bedingungen, wie Infektionen, Sepsis und Autoimmunerkrankungen eine kritische Rolle übernimmt. MIF bindet an eine Reihe von Molekülen wobei sich die Funktionen von MIF und Interaktor gegenseitig beeinflussen können. Die genauen molekularen Mechanismen blieben dabei bis heute oftmals ungeklärt. Zum besseren Verständnis der biologischen Rolle von MIF wurde nach we...

  1. Die Beeinflussung des europäischen Gesetzgebungsprozesses durch Lobbying - Eine empirische Analyse am Beispiel der Unternehmensteuerharmonisierung

    OpenAIRE

    Zeiner, Judith

    2015-01-01

    Aufgrund der gestiegenen Komplexität der Umwelt ist es für den Gesetzgeber unerlässlich, Experten in die Entscheidungsfindungsphase einzubeziehen, um funktionsfähige Regelwerke zu erstellen. Diese Spezialisten sind in der Theorie in Informationslieferanten und Interessensvertreter zu differenzieren. Die Vorgehensweisen "echter" Lobbyisten haben sich im Laufe der Zeit auf eine äußerst diskrete Ebene verschoben, sodass ein Sichtbarmachen nicht legitimierter Handlungen sich als ein äußerst schwi...

  2. NASA Bioreactor Demonstration System

    Science.gov (United States)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  3. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  4. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  5. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  6. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. Membrane bioreactor for waste gas treatment.

    OpenAIRE

    Reij, M W

    1997-01-01

    SummaryThis thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of bioreactors for waste gas treatment, such as compost biofilters and bioscrubbers. Propene was used as a model pollutant to study the membrane bioreactor.A membrane bioreactor for waste gas treatment consists of a gas...

  9. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  10. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  11. Microfluidic conductimetric bioreactor.

    Science.gov (United States)

    Limbut, Warakorn; Loyprasert, Suchera; Thammakhet, Chongdee; Thavarungkul, Panote; Tuantranont, Adisorn; Asawatreratanakul, Punnee; Limsakul, Chusak; Wongkittisuksa, Booncharoen; Kanatharana, Proespichaya

    2007-06-15

    A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea-urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1-10 mM (r=0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P<0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused. PMID:17289366

  12. Cells growing in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. Spiral vane bioreactor

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  14. Biofilm development in membrane bioreactors

    OpenAIRE

    Savnik, Veronika

    2010-01-01

    Prevention of biofilm development and its removal has crucial meaning in membrane reactor. Biofilm causes pore blocking on membranes, which causes a drop in efficiency of mixed liquor filtration and consequently deteriorates the efficiency of whole membrane bioreactor. This thesis deals with factors that affect biofilm development in membrane bioreactors. Structure and growth of biofilm are presented from its initial attachment of individual particles, their parameters of adhesion, hydrodynam...

  15. Membrane Bioreactor With Pressure Cycle

    Science.gov (United States)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  16. Bioreactor Mass Transport Studies

    Science.gov (United States)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  17. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  18. Die technische Beeinflussung des Verhaltens von Sauen am Beispiel der Aufruffütterung und einer aktiven Erdrückungsverhinderung

    OpenAIRE

    Manteuffel, Christian

    2015-01-01

    Under intensive husbandry conditions, the natural behaviour repertoire of livestock is often contrary to an optimal productivity and also animal welfare. This problem can be reduced by technically manipulating the animal behaviour in terms of precision livestock farming, so that husbandry conditions and animal behaviour adjust mutually to one another. The current work exemplifies this approach for appetitive stimulations at the example of call feeding gestating sows and for aversive stimulati...

  19. Hämodynamische Beeinflussung des hyperdynamischen septischen Schocks im Großtiermodel - Noradrenalin und ein selektiver V1a-Agonist

    OpenAIRE

    Klotz, Matthias

    2011-01-01

    Introduction: Septic shock is one of the most common diseases on intensive care units. The recent Surviving Sepsis Campaign international guidelines for management of septic shock suggest norepinephrine or dopamine as first line vasopressor and vasopressin as an alternative. Vasopressin is an effective vasoactive drug due to activating the V1a- receptor. Disadvantages of vasopressin like antidiuresis, hypercoagulation and selective vasodilatation are mediated by the V2- receptor. Material and...

  20. Platelet bioreactor-on-a-chip

    OpenAIRE

    Thon, Jonathan N.; Mazutis, Linas; Wu, Stephen; Sylman, Joanna L.; Ehrlicher, Allen; Machlus, Kellie R.; Feng, Qiang; Lu, Shijiang; Lanza, Robert; Neeves, Keith B.; Weitz, David A; Italiano, Joseph E.

    2014-01-01

    We have developed a biomimetic microfluidic platelet bioreactor that recapitulates bone marrow and blood vessel microenvironments.Application of shear stress in this bioreactor triggers physiological proplatelet production, and platelet release.

  1. Open Source Software to Control Bioflo Bioreactors

    OpenAIRE

    Burdge, David A.; Libourel, Igor G. L.

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed...

  2. Progress in bioreactors of bioartiifcial livers

    Institute of Scientific and Technical Information of China (English)

    Cheng-Bo Yu; Xiao-Ping Pan; Lan-Juan Li

    2009-01-01

    BACKGROUND: Bioartiifcial liver support systems are becoming an effective therapy for hepatic failure. Bioreactors, as key devices in these systems, can provide a favorable growth and metabolic environment, mass exchange, and immunological isolation as a platform. Currently, stagnancy in bioreactor research is the main factor restricting the development of bioartiifcial liver support systems. DATA SOURCES: A PubMed database search of English-language literature was performed to identify relevant articles using the keywords "bioreactor", "bioartiifcial liver", "hepatocyte", and "liver failure". More than 40 articles related to the bioreactors of bioartiifcial livers were reviewed. RESULTS: Some progress has been made in the improvement of structures, functions, and modiifed macromolecular materials related to bioreactors in recent years. The current data on the improvement of bioreactor conifgurations for bioartiifcial livers or on the potential of the use of certain scaffold materials in bioreactors, combined with the clinical efifcacy and safety evaluation of cultured hepatocytesin vitro, indicate that the AMC (Academic Medical Center) BAL bioreactor and MELS (modular extracorporeal liver support) BAL bioreactor system can partly replace the synthetic and metabolic functions of the liver in phaseⅠ clinical studies. In addition, it has been indicated that the microlfuidic PDMS (polydimethylsiloxane) bioreactor, or SlideBioreactor, and the microfabricated grooved bioreactor are appropriate for hepatocyte culture, which is also promising for bioartiifcial livers. Similarly, modiifed scaffolds can promote the adhesion, growth, and function of hepatocytes, and provide reliable materials for bioreactors.CONCLUSIONS: Bioreactors, as key devices in bioartiifcial livers, play an important role in the therapy for liver failure both now and in the future. Bioreactor conifgurations are indispensable for the development of bioartiifcial livers used for liver

  3. Tissue grown in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  4. Bioreactor technology for herbal plants

    International Nuclear Information System (INIS)

    Plants have been an important source of medicine for thousands of years and herbs are hot currency in the world today. During the last decade, popularity of alternative medicine increased significantly worldwide with noticeable trend. This in turn accelerated the global trade of herbal raw materials and herbal products and created greater scope for Asian countries that possess the major supply of herbal raw materials within their highly diversified tropical rain forest. As such, advanced bioreactor culture system possesses a great potential for large scale production than the traditional tissue culture system. Bioreactor cultures have many advantages over conventional cultures. Plant cells in bioreactors can grow fast and vigorously in shorter period as the culture conditions in bioreactor such as temperature, pH, concentrations of dissolved oxygen, carbon dioxide and nutrients can be optimised by on-line manipulation. Nutrient uptake can also be enhanced by continuous medium circulation, which ultimately increased cell proliferation rate. Consequently, production period and cost are substantially reduced, product quality is controlled and standardized as well as free of pesticide contamination and production of raw material can be conducted all year round. Taking all these into consideration, current research efforts were focused on varying several parameters such as inoculation density, air flow, medium formulation, PGRs etc. for increased production of cell and organ cultures of high market demand herbal and medicinal plants, particularly Eurycoma longifolia, Panax ginseng and Labisia pumila. At present, the production of cell and organ culture of these medicinal plants have also been applied in airlift bioreactor with different working volumes. It is hope that the investment of research efforts into this advanced bioreactor technology will open up a bright future for the modernization of agriculture and commercialisation of natural product. (author)

  5. Anaerobic membrane bioreactor under extreme conditions (poster)

    OpenAIRE

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; van Lier, J B

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewaters from different industries such as coke, textile, food, and chemical. However, few research has been found into the use of membrane bioreactors for anaerobic treatment of wastewater under extreme ...

  6. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  7. Optimizing of Culture Conditionin Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionBioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world. 2 Rotating bioreactors2.1 Working principleThere are two kinds of horizontal rotating bioreactor: HARV(high aspect ratio vessel) and RCCS (rotary cell culture system). It is drived by step motor with horizontal rotation, the culture medium and cell is filled between ...

  8. Prostate tumor grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  9. Filtration characteristics in membrane bioreactors

    OpenAIRE

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and quantification of the filterability of an activated sludge and b) carrying out short term experiments at labscale to determine foulants and/or fouling propensity determining factors. The installation w...

  10. Image Analysis and Multiphase Bioreactors

    OpenAIRE

    Ferreira, E. C.; Mota, M.; Pons, M.N.

    2001-01-01

    The applications of visualisation and image analysis to bioreactors can be found in two main areas: the characterisation of biomass (fungi, bacteria, yeasts, animal and plant cells, etc), in terms of size, morphology and physiology, that is the far most developed, and the characterisation of the multiphase behaviour of the reactors (flow patterns, velocity fields, bubble size and shape distribution, foaming), that may require sophisticated visualisation techniques.

  11. Denitrification using immersed membrane bioreactors

    OpenAIRE

    McAdam, Ewan J.

    2008-01-01

    Nitrate is practically ubiquitous in waters abstracted for municipal potable water production in Europe due to decades of intensive agricultural practice. Ion exchange is principally selected to target abstracted waters with elevated nitrate concentrations. However, the cost associated with disposal of the waste stream has re-ignited interest in destructive rather concentrative technologies. This thesis explores the potential of membrane bioreactor (MBR) technology for the remo...

  12. Analyse des besoins des usagers

    OpenAIRE

    KHOUDOUR,L; LANGLAIS,A; Charpentier, C.; MOTTE,C; PIAN,C

    2002-01-01

    Il s'agit d'étendre la surveillance vidéo de l'enceinte du métro vers l'intérieur des rames. Les images captées constituent des prises de vue des événements qui se déroulent à l'intérieur des véhicules afin notamment d'améliorer la sécurité des usagers transportes. Il est possible de mémoriser les images des quelques instants précédant un incident usager, d'analyser ces images en temps différé et de mieux appréhender en temps réel le comportement des usagers face à des événements ou des consi...

  13. Latinismen des Italienischen in DELI und LEI

    Directory of Open Access Journals (Sweden)

    Gerhard Ernst

    2015-10-01

    Full Text Available Als "Latinismen" sollen im folgenden diejenigen Wörter verstanden werden, deren Existenz, Form oder Bedeutung in einer der romanischen Sprachen auf Lehnbeziehungen während der lateinischen Diglossie oder auf die weiterbestehenden kulturellen Kontakte zum Lateinischen zurückgehen. Die Spendersprache bzw. beeinflussende Sprache kann dabei das Latein der Vergangenheit sein – insbesondere der Zeit, in der von romanischen Sprachen noch keine Rede sein konnte -, aber auch dasjenige, das neben den romanischen Sprachen als Mittellatein, Humanistenlatein, Kirchenlatein, Gelehrtenlatein weiterexistierte. Trotz verschiedener Terminologien ("gelehrte Wörter", "Buchwörter", "voci dotte", "mots savants", "cultismos" bestehen in der Abgrenzung dieses Teilbereichs des Lexikons der romanischen Sprachen keine gravierenden Unterschiede in neuerer einschlägiger Literatur. Allerdings laßt sich zwischen solchen Latinismen unterscheiden, die als sprachliches Zeichen (mit Form und Bedeutung aus dem Latein in die jeweilige romanische Sprache übernommen wurden (mehr oder weniger an das jeweilige Sprachsystem adaptiert, und solchen, die - bei ununterbrochener Überlieferung - nur eine Beeinflussung durch ein entsprechendes lateinisches Wort erfuhren ("voci semidotte", "rriots demi-sevants", "semicultismos". "El latín, en este caso, no presta términos, sino que ayuda - únicamente - a mantener fonemas y morfemas: siglo, virgen" (Alvar/Mariner 1967, 6. Alvar/Mariner (1967, 7 haben daneben auch eine weitere Untergruppe der "semicultismos": Latinismen, die phonetisch adaptiert wurden; wie respeto, afición. Diese beiden Typen von "semicultismos" verhalten sich ihrem Ursprung nach komplementär: a Erbwörter mit Beibehaltung lautlicher Elemente (evtl. auch der Bedeutung durch den Kontakt mit dem Lateinischen3 ; b Latinismen mit starker volkssprachlicher Adaptierung.

  14. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.;

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed-batch...... reactor for biomass production is studied using a differential geometry approach. The maximization problem is solved by handling both the optimal filling policy and substrate concentration in the inlet stream. In order to follow the OBBOM, a master–slave synchronization is used. The OBBOM is considered as...... the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor is...

  15. Measuring Water in Bioreactor Landfills

    Science.gov (United States)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water

  16. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Development of Fundamental Technologies for Micro Bioreactors

    Science.gov (United States)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  18. Spatial Experiment Technologies Suitable for Unreturnable Bioreactor

    Science.gov (United States)

    Zhang, Tao; Zheng, Weibo; Tong, Guanghui

    2016-07-01

    The system composition and main function of the bioreactor piggybacked on TZ cargo transport spacecraft are introduced briefly in the paper.The spatial experiment technologies which are suitable for unreturnable bioreactor are described in detail,including multi-channel liquid transportion and management,multi-type animal cells circuit testing,dynamic targets microscopic observation in situ etc..The feasibility and effectiveness of these technologies which will be used in space experiment in bioreactor are verified in tests and experiments on the ground.

  19. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  20. Aeration and hydrodynamics in submerged membrane bioreactors

    OpenAIRE

    Braak, Etienne; Alliet-Gaubert, Marion; Schetrite, Sylvie; Albasi, Claire

    2011-01-01

    Membrane bioreactor (MBR) is already a well-developed wastewater treatment process for both municipal and industrial applications. Nonetheless, membrane fouling remains a significant problem for its wider development. In the case of submerged membrane bioreactors (SMBRs), one of the most efficient strategies to limit fouling is the use of a gas/liquid two-phase flow to enhance the mass transfer. However, the effect of aeration still remains incompletely understood. The complexity ...

  1. New bioreactors systems for pharmacological screening

    OpenAIRE

    Vozzi, Federico

    2007-01-01

    Bioreactors, biotechnological devices for in vitro cell cultures with dynamic conditions, have the potential to provide information on local cell behavior and function. The development of bioreactors could lead to a multitude of applications from drug testing and development, tissue engineering and basic research to the identification of new and alternative therapies for many disorders. High quality, reliable, in vitro data also provide a shift in focus from large scale animal testing to the ...

  2. Simplified Bioreactor For Growing Mammalian Cells

    Science.gov (United States)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  3. Colon tumor cells grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  4. Optimizing of Culture Condition in Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yan-Fang ZHANG; Huai-Qing CHEN; Hua HUANG

    2005-01-01

    @@ 1 Introduction Bioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world.

  5. Contamination of a high-cell-density continuous bioreactor

    OpenAIRE

    Domingues, Lucília; Lima, Nelson; Teixeira, J. A.

    2000-01-01

    Continuous fermentations were carried out with a recombinant flocculent Saccharomyces cerevisiae strain in an airlift bioreactor. Once operating under steady state at a dilution rate of 0.45 h−1, the bioreactor was contaminated with Escherichia coli cells. The faster growing E. coli strain was washed out of the bioreactor and the recombinant, slower growing flocculating S. cerevisiae strain remained as the only species detected in the bioreactor. Flocculation, besides ...

  6. Bioreactor design and optimization – a future perspective

    OpenAIRE

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen that technologies including mechanistic models, process simulation and advanced model analysis will play an increasingly important role.

  7. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen that...

  8. Evolution of Bioreactors for Extracorporeal Liver Support

    Directory of Open Access Journals (Sweden)

    Vilkova Е.V.

    2014-03-01

    Full Text Available The development of effective extracorporeal liver support systems in acute and chronic hepatic failure for transplantology purposes and in toxic injuries is a promising direction in modern biomedical studies. Widely used techniques are based on physicochemical interactions of biological molecules, and able to perform a detoxification function only (hemodialysis, hemofiltration, hemodiafiltration, sorption, albumin dialysis, plasmapheresis. However, support systems combining both blood/plasma perfusion and cellular technologies to maintain metabolic, synthetic and regulatory hepatic functions — “artificial liver” systems — are being extensively developed in recent decades. The review describes the main types of cell lines cultured to occupy bioreactors, various technological concepts for bioreactor design (dynamic, static, scaffold-carriers as part of bioreactors (structure, biochemical composition. The study gives metabolic characteristics of a cellular component of “bioartificial liver”: nourishment, oxygen saturation. Various types of existing extracorporeal support systems, their evolution, and preclinical and clinical test results are presented.

  9. Bioreactor and methods for producing synchronous cells

    Science.gov (United States)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  10. Measures to influence nitric oxide formation and alkali release in coal dust combustion under pressure; Massnahmen zur Beeinflussung der Stickoxidbildung und Alkalienfreisetzung bei der Kohlenstaubdruckverbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, W.; Niepel, H. [Steinmueller (L.u.C.) GmbH, Gummersbach (Germany)

    1999-09-01

    Messrs. Steinmueller are making the following contributions to the Dorsten experimental plant: Development of pressure burner and combustion chamber, fuel supply and flue gas analysis, especially the development of a high-temperature flue gas tapping unit at the end of the hot reaction zone. Burner development should always aim at complete converstion of the fuel and minimal pollutant emissions, as well as stable combustion over a wide range of operating conditons and maximum reliability in case of disturbances. Tools for development and experiment analysis are flow measurements in isothermal models, numerical flow and radiation excchange calculation programs, and reference data from the hot operation under pressure of the small-scale Dorsten pilot plant. The contribution presents the results of the burner experiments with a view to nitric oxide and alkali emissions; finally, the effects of different influencing parameters on combustion control and on the still unresolved fields of investigation are indicated. [Deutsch] Die Druckkohlenstaubfeuerung erschliesst fuer den Brennstoff Kohle durch Nutzung des Gas- und Dampfturbinenprozesses Kraftwerkswirkungsgrade im Bereich von 50 % und mehr. Dabei soll das unter Druck verbrannte Rauchgas nach Abscheidung aller schaedlichen Bestandteile, insbesondere der Asche, die in diesem Temperaturbereich durchweg schmelzfluessig vorliegt, direkt auf die Gasturbine geleitet werden. Mit Foerderung des Bundes (seinerzeit BMFT) wurde unter Beteiligung der GHS Essen, mehrerer Industriepartner und Energieversorger am Zechenstandort Dorsten eine Kleinpilotanlage mit einer thermischen Leistung von ca 1 MW errichtet und seither betrieben. Der Forschungsschwerpunkt der L. und C. Steinmueller GmbH richtete sich darin auf die Thematik Kohleumwandlung. Die Aktivitaeten umfssten die Bereiche Druckbrenner- und Brennkammerentwicklung, die Brennstoffversorgung und die Rauchgasanalytik, hier insbesondere die Entwicklung einer Hochtemperatur

  11. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  12. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  13. Establishing Liver Bioreactors for In Vitro Research.

    Science.gov (United States)

    Rebelo, Sofia P; Costa, Rita; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2015-01-01

    In vitro systems that can effectively model liver function for long periods of time are fundamental tools for preclinical research. Nevertheless, the adoption of in vitro research tools at the earliest stages of drug development has been hampered by the lack of culture systems that offer the robustness, scalability, and flexibility necessary to meet industry's demands. Bioreactor-based technologies, such as stirred tank bioreactors, constitute a feasible approach to aggregate hepatic cells and maintain long-term three-dimensional cultures. These three-dimensional cultures sustain the polarity, differentiated phenotype, and metabolic performance of human hepatocytes. Culture in computer-controlled stirred tank bioreactors allows the maintenance of physiological conditions, such as pH, dissolved oxygen, and temperature, with minimal fluctuations. Moreover, by operating in perfusion mode, gradients of soluble factors and metabolic by-products can be established, aiming at resembling the in vivo microenvironment. This chapter provides a protocol for the aggregation and culture of hepatocyte spheroids in stirred tank bioreactors by applying perfusion mode for the long-term culture of human hepatocytes. This in vitro culture system is compatible with feeding high-throughput screening platforms for the assessment of drug elimination pathways, being a useful tool for toxicology research and drug development in the preclinical phase. PMID:26272143

  14. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  15. Computational fluid dynamics simulation of bioreactors

    Directory of Open Access Journals (Sweden)

    Bjørn H. Hjertager

    1995-10-01

    Full Text Available Multi-dimensional models of flow processes in bioreactors are presented. Particular emphasis is given to models that use the two-fluid technique. The models use a two-equation turbuluence model and a Monod type kinetic reaction model. Predictions are given for both bubble column and mechanically stirred reactors.

  16. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  17. Critical Review of Membrane Bioreactor Models

    DEFF Research Database (Denmark)

    Naessens, W.; Maere, T.; Ratkovich, Nicolas Rios;

    2012-01-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical...

  18. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  19. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  20. Des guides et des cartes

    OpenAIRE

    Mathieu, Patricia; Maryvonne LE BERRE; Jean-Marc ROCHE

    1987-01-01

    Consultés pour leurs références régionales ou locales, les guides touristiques donnent aussi une vision globale de la France qui est rarement perçue par l'utilisateur. Différents types de représentations cartographiques ont été choisis pour montrer, à partir d'informations simples, découpage en «régions» touristiques, étoilement des sites et des espaces touristiques, cette image de la France.

  1. Des guides et des cartes

    Directory of Open Access Journals (Sweden)

    Patricia MATHIEU

    1987-12-01

    Full Text Available Consultés pour leurs références régionales ou locales, les guides touristiques donnent aussi une vision globale de la France qui est rarement perçue par l'utilisateur. Différents types de représentations cartographiques ont été choisis pour montrer, à partir d'informations simples, découpage en «régions» touristiques, étoilement des sites et des espaces touristiques, cette image de la France.

  2. Use of dexpanthenol and aloe vera to influence the irradiation response of the oral mucous membrane (mouse); Beeinflussung der Strahlenreaktion der Mundschleimhaut (Maus) durch Dexpanthenol {+-} Aloe vera

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, S. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Dresden Univ. (Germany); Spekl, K.; Doerr, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Dresden Univ. (Germany)]|[Experimentelles Zentrum, Medizinische Fakultaet Carl Gustav Carus, Dresden Univ. (Germany)

    2004-07-01

    In summarising the outcome of the present study it can be said spraying the agent on the oral mucous membrane once a day had an effect on the incidence of mucous membrane ulceration in the case of both placebo and dexpanthenol treatment. However, there was no significant difference between placebo and dexpanthenol treatment, the only finding being a slight prolongation of latency time through aloe vera. These experimental findings give good reason to critically reconsider the clinical use of dexpanthenol as a supportive treatment for the prevention of radiogenic mucositis enoralis following irradiation of tumours in the head and neck region. However thorough oral lavage is an effective means of moderating the irradiation response of the oral mucous membrane. [German] Zusammenfassend ist festzustellen, dass in den vorliegenden Versuchen mit einmal taeglichem Aufspruehen des Praeparates auf die Mundschleimhaut sowohl die Placebo - wie auch die Dexpanthenol-Behandlung die Inzidenz von Schleimhautulzerationen modifiziert hat; zwischen Placebo- und Dexpanthenol-Behandlung ergab sich jedoch kein signifikanter Unterschied. Lediglich eine geringe Verlaengerung der Latenzzeit durch Aloe vera war zu beobachten. Auf der Basis dieser experimentellen Ergebnisse muss der klinische Einsatz von Dexpanthenol im Rahmen der Supportivtherapie zur Prophylaxe der radiogenen Mucositis enoralis bei der Bestrahlung von Kopf-Hals-Tumoren kritisch ueberdacht werden. Regelmaessige, intensive Mundspuelungen sind jedoch ein probates Mittel zur Verminderung der Strahlenreaktion der Mundschleimhaut. (orig.)

  3. Bioreactors as a low cost option for tissue culture

    International Nuclear Information System (INIS)

    Bioreactors are vessels designed for large-scale cell, tissue or organ culture in liquid media. Functionally, plant culture bioreactors can be divided into two broad types: those in which the cultures are immersed partially or temporarily in the medium, and those in which the cultures are continuously submerged. Bioreactors provide more precise control of the plant growth gaseous exchange, illumination, medium agitation, temperature and pH than the conventional culture vessels. Bioreactor-based propagation of plants can increase rate of multiplication and growth of cultures and reduce space, energy and labour requirements in commercial micropropagation. They can therefore be attractive to developing countries as regards new or expanding plant culture facilities, in combination with a conventional laboratory. However, to be cost- effective, use of bioreactors requires indexed plant cultures, and attention to aseptic procedures during handling of plant material. Hence, the integration of bioreactors into production systems should only be attempted by facilities with skilled and experienced propagators. (author)

  4. Modification of combustion characteristics by means of input variations and perspectives of thermal utilisation of pretreated domestic waste fractions; Beeinflussung des Verbrennungsverhaltens durch Inputvariationen sowie Perspektiven der thermischen Nutzung von Stoffstroemen aus der Vorbehandlung von Siedlungsabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Zahlten, M.J. [JOMA Umwelt-Beratungsgesellschaft mbH, Hamburg (Germany)

    2003-07-01

    Increasing attempts at sorting and separation of waste fractions result in a need for incinerators to cope with different materials characteristics. This applies both to classic incinerators and to cocombustion systems. The contribution discusses the potential qualitative effects of combustion and cocombustion of different types of waste materials. Examples are presented. (orig.) [German] Bestehende Anlagen muessen aufgrund der zunehmenden Sortier- und Separieraktivitaeten zunehmend unterschiedliche Stoffqualitaeten verarbeiten koennen. Dieses gilt fuer thermische Beseitigungsanlagen - MVA - gleichermassen wie fuer Anlagen zur energetischen Verwertung durch Mitverbrennung, wenn diese zukuenftig neben aufbereiteten Ersatzbrennstoffen aus Siedlungsabfaellen und Produktionsabfaellen sowie Sortierresten auch Monoersatzbrennstoffe wie z.B. Tiermehl, Klaerschlamm usw. einsetzen. Nachfolgend sollen moegliche qualitativen Auswirkungen der Verbrennung bzw. Mitverbrennung - nachfolgend thermische Nutzung - derartiger Einsatzstoffe beispielhaft erlaeutert werden. (orig.)

  5. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  6. Investigations concerning the use of membrane bioreactor systems

    International Nuclear Information System (INIS)

    Membrane bioreactor systems are increasingly being used to clean leachates from landfills. Besides being compact they can, especially, be easily combined with further cleaning techniques. The paper first of all gives an overview on landfill leachate cleaning standards in Austria. A combination of processes is applied where the membrane bioreactor forms a preferred element. Finally, results are presented which should help with the dimensioning of membrane bioreactors. (orig.)

  7. Simulation of Temperature Control in Fermentation Bioreactor for Ethanol Production

    OpenAIRE

    MARGINEAN Calin; MARGINEAN Ana-Maria; TRIFA Viorel

    2012-01-01

    Present paper deals with aspects regardingthe simulation of fermentation bioreactor process andfermentation bioreactor control for ethanolproduction. The bioreactor model was implemented inMatlab Simulink and the results of simulation usingdifferent control strategies are presentedcomparatively. Three types of control strategy are usedrespectively, PID, Neural Network Model PredictiveController (NN-MPC) and Nonlinear Auto RegressiveMoving Average(NARMA-L2) control strategy.

  8. Sulfate-reducing bacteria in anaerobic bioreactors.

    OpenAIRE

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate reduction is optimized for the removal of sulfur compounds from waste streams. In...

  9. Control of Dissolved Oxygen in Stirred Bioreactors

    OpenAIRE

    Åkesson, Mats; Hagander, Per

    1998-01-01

    This report discusses control of dissolved oxygen in a bioreactor where the oxygen supply is manipulated using the stirrer speed. In batch and fed-batch cultivations the operating conditions change significantly which may cause tuning problems. Analysis using a linearized process model shows that the process dynamics is mainly affected by changes in the volumetric oxygen transfer coefficient $K_La$. % To account for the process variations, a control strategy based on PID control and gain sche...

  10. Membrane Bioreactors: Past, Present and Future?

    OpenAIRE

    Hermanowicz, Slav W

    2011-01-01

    A brief description of membrane bioreactor (MBR) historical evolution has been presented with emphasis on continual decline of treatment costs and energy requirements. Although MBR can operate at biomass (MLSS) concentrations 5 to 10 times higher than activated sludge these concentrations are limited in practice by increasing biomass suspension viscosity that in turn increases “reversible” membrane fouling and decreases oxygen transfer rates. “Irreversible” fouling is a major operational chal...

  11. Anaerobic membrane bioreactors for municipal wastewater treatment

    OpenAIRE

    Fawehinmi, Folasade

    2006-01-01

    Anaerobic treatment has historically been considered unsuitable for the treatment of domestic wastewaters. The work presented in this thesis focuses on the incorporation of membranes into the anaerobic bioreactor to uncouple solid retention time and hydraulic retention time. This in turn prevents biomass washout and allows sufficient acclimatisation periods for anaerobes. However, the exposure of membranes to anaerobic biomass comes with its own inherent problems namely fouling. Fouling w...

  12. Oxygen transfer in a pressurized airlift bioreactor.

    Science.gov (United States)

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control. PMID:25903476

  13. Immersed Membrane Bioreactors for Produced Water Treatment

    OpenAIRE

    Brookes, Adam

    2005-01-01

    The performance of a submerged membrane bioreactor for the duty of gas field produced water treatment was appraised. The system was operated under steady state conditions at a range of mixed liquor suspended solids (MLSS) concentrations and treatment and membrane performance examined. Organics removal (COD and TOC) display removal rates between 90 and 97%. Removal of specific target compounds Benzene, Toulene, Ethylbenzene and Xylene were removed to above 99% in liquid phase...

  14. Engineering stem cell niches in bioreactors

    OpenAIRE

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  15. Bioreactor Yields Extracts for Skin Cream

    Science.gov (United States)

    2015-01-01

    Johnson Space Flight Center researchers created a unique rotating-wall bioreactor that simulates microgravity conditions, spurring innovations in drug development and medical research. Renuèll Int'l Inc., based in Aventure, Florida, licensed the technology and used it to produce a healing skin care product, RE`JUVEL. In a Food and Drug Administration test, RE`JUVEL substantially increased skin moisture and elasticity while reducing dark blotches and wrinkles.

  16. Filterability and Sludge Concentration in Membrane Bioreactors

    OpenAIRE

    Lousada-Ferreira, M

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of the sludge to be filtrated through a membrane, in a wastewater treatment system designated as Membrane Bioreactor (MBR). An MBR is a wastewater treatment system that combines an activated sludge proc...

  17. Anaerobic membrane bioreactors: Are membranes really necessary?

    OpenAIRE

    Davila, M.; Kassab, G.; Klapwijk, A.; Van, Lier, G

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A self-forming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the applicat...

  18. Des tuiles, des toits et des couleurs

    OpenAIRE

    Bonnot, Thierry

    2007-01-01

    La Bourgogne est une des régions françaises dont l’image de marque est le plus imprégnée par la notion de tradition. Elle est présentée comme un terroir où il fait bon vivre, où la gastronomie demeure à travers les siècles une valeur de base, où les paysages sont majestueux et où la gloire passée est sans cesse rappelée par de somptueux monuments. Parmi quelques emblèmes, l’hôtel-Dieu de Beaune et ses toitures de tuiles colorées sont très souvent mobilisés pour représenter ces valeurs « tradi...

  19. Replaceable Sensor System for Bioreactor Monitoring

    Science.gov (United States)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  20. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    I Slivac; V Gaurina Srček; K Radošević; I Kmetič; Z Kniewald

    2006-09-01

    A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring oxygen was evaluated for BHK 21 C13 cell line growth and Aujeszky’s disease virus (ADV) production. Growth kinetics of BHK 21 C13 cells in the wave bioreactor during 3-day period were determined. At the end of the 3-day culture period and cell density of 1.82 × 106 cells ml–1, the reactor was inoculated with 9 ml of gE- Bartha K-61 strain ADV suspension (105.9 TCID50) with multiplicity of infection (MOI) of 0.01. After a 144 h incubation period, 400 ml of ADV harvest was obtained with titre of 107.0 TCID50 ml–1, which corresponds to 40,000 doses of vaccine against AD. In conclusion, the results obtained with the wave bioreactor using BHK 21 C13 cells showed that this system can be considered as suitable for ADV or BHK 21 C13 cell biomass production.

  1. Degradation of Refuse in Hybrid Bioreactor Landfill

    Institute of Scientific and Technical Information of China (English)

    YAN LONG; Yu-YANG LONG; HAI-CHUN LIU; DONG-SHENG SHEN

    2009-01-01

    Objectivess To explore the process of refuse decomposition in hybrid bioreactor landfill. Methods The bioreactor landfill was operated in sequencing of facultative-anaerobic and aerobic conditions with leachate recireulation, pH, COD, and ammonia in the leachate and pH, biodegradable organic matter (BDM), and cation exchange capacity (CEC) in refuse were detected. Results CEC increased gradually with the degradation of refuse, which was negatively correlad, With BDM. COD and ammonia in the leachate was declined to 399.2 mg L-1 and 20.6 mg N L-1, respectively, during the 357-day operation. The respective concentrations of ammonia and COD were below the second and the third levels of current discharge standards in China. Conclusion The refuse is relatively stable at the end of hybrid bioreactor landfill operation. Most of the readily biodegradable organic matter is mineralized in the initial phase of refuse degradation, whereas the hard-biodegradable organic matter is mainly humidified in the maturity phase of refuse degradation.

  2. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    Science.gov (United States)

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  3. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  4. Nitrous oxides reduction pathways induced during nitrified leachate recirculation in bioreactor landfill; Voies de reduction des oxydes d'azote lors de leur injection dans un massif de dechets menagers et assimiles: contribution a l'etude de la recirculation de lixiviat nitrifie dans une installation de stockage de dechets menagers et assimiles bioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.

    2005-12-15

    Nitrified leachate recirculation in bioreactor landfill has been proposed to avoid ammonium accumulation. We worked on the identification of nitrous oxides reduction pathways induced when nitrified leachate is recirculated during waste degradation. Batch reactors (1.1 liter, 40 g of reconstituted Municipal Solid Waste, MSW) were operated at 35 deg C and saturated with leachate. Injections of 250 mg N-NO{sub x}.10{sup -1} were performed during different phases of waste biodegradation. Nitrate reduction during acido-genic and active methanogenic phases, with an easily available carbon source in leachate, was mainly attributed to heterotrophic denitrification. However, H{sub 2}S concentration up to 0.7 % in the biogas (corresponding to 0.5 mmol of free H{sub 2}S per liter of leachate) led to prevalent DNRA (Dissimilatory Nitrate Reduction to Ammonium) over denitrification. This reaction hindered the release of nitrogen outside of the system. This observation was confirmed with experiments performed with {sup 15}N enriched nitrate. During late methanogenic phase, without any available carbon source in leachate, nitrate was reduced by autotrophic denitrification with sulfide as an electron donor. No free metal was detected in the leachate. N{sub 2}O transient accumulation was detected during both DNRA and autotrophic denitrification. A second set of experiments was conducted in a MSW pilot scale column (0.2 m{sup 3}, 80 kg of reconstituted waste) in methanogenic phase. 113 % and 203 % of nitrate were converted into N{sub 2} when a synthetic KNO{sub 3} solution (280 mg N.day{sup -1} during 77 days) or nitrified leachate (61 mg N.day{sup -1} during 54 days) were respectively injected into the system. The downward movement of a denitrification front passing through the waste mass was followed using 3 redox probes inserted at different levels of the pilot. Even if N{sub 2}O was never detected, a small production of this gas could not be totally excluded. It was established

  5. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  6. Membrane bioreactor for drinking water denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, A.M. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa (Portugal)]|[Escola Superior de Tecnologia, Instituto Politecnico de Setubal, Rua do Vale de Chaves, Estefanilha, 2900 Setubal (Portugal); Rodrigues, C.M.; Crespo, J.P.S.G.; Reis, M.A.M. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa (Portugal)

    1998-04-01

    The aim of this study is to evaluate the performance of a membrane bioreactor with cell recycle to be used for drinking water denitrification, when operated with a high nitrate load (up to 7.68 kgNO{sub 3}{sup -}/m{sup 3} day) and low hydraulic retention time (down to 0.625 h). Nitrate and nitrite were always completely removed for all the operational conditions used. The effluent`s nitrite concentration kept below 0.1 mg NO{sub 2}{sup -}/l with exception of a short period, during the reactor start-up, when it accumulates. The performance of the membrane bioreactor was also evaluated using a groundwater containing 148 mg NO{sub 3}{sup -}/l. Nitrate and nitrite concentration in the effluent were below the recommended values for drinking water when the reactor was controlled at pH 7.0. The membrane flux decreases during operation as a consequence of membrane fouling. The flux decrease was more severe during operation with synthetic medium than with contaminated groundwater due to the existence of molecular complexes in the synthetic broth. A backshock technique was used to reduce the surface fouling of the membrane. Combining this technique with the use of a reserve asymmetric structured membrane it was found that the membrane flux remains nearly unchanged. (orig.) With 7 figs., 14 refs.

  7. LTCC based bioreactors for cell cultivation

    Science.gov (United States)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  8. Novel Hydrogen Bioreactor and Detection Apparatus.

    Science.gov (United States)

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C. PMID:25022362

  9. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  10. Landfill leachate treatment in assisted landfill bioreactor.

    Science.gov (United States)

    He, Pin-Jing; Qu, Xian; Shao, Li-Ming; Lee, Duu-Jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste (MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95% (61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas. PMID:20050569

  11. High retention membrane bioreactors: challenges and opportunities.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2014-09-01

    Extensive research has focussed on the development of novel high retention membrane bioreactor (HR-MBR) systems for wastewater reclamation in recent years. HR-MBR integrates high rejection membrane separation with conventional biological treatment in a single step. High rejection membrane separation processes currently used in HR-MBR applications include nanofiltration, forward osmosis, and membrane distillation. In these HR-MBR systems, organic contaminants can be effectively retained, prolonging their retention time in the bioreactor and thus enhancing their biodegradation. Therefore, HR-MBR can offer a reliable and elegant solution to produce high quality effluent. However, there are several technological challenges associated with the development of HR-MBR, including salinity build-up, low permeate flux, and membrane degradation. This paper provides a critical review on these challenges and potential opportunities of HR-MBR for wastewater treatment and water reclamation, and aims to guide and inform future research on HR-MBR for fast commercialisation of this innovative technology. PMID:24996563

  12. Performance of pulsed plate bioreactor for biodegradation of phenol

    International Nuclear Information System (INIS)

    Biodegradation of phenol was carried out using Nocardia hydrocarbonoxydans immobilised on glass beads, in a pulsed plate bioreactor. The effect of operating parameters like frequency of pulsation and amplitude of pulsation on the performance of pulsed plate bioreactor for biodegradation of phenol in a synthetic wastewater containing 500 ppm phenol was studied. Axial concentration profile measurements revealed that the pulsed plate bioreactor shows continuous stirred tank behaviour. As the amplitude was increased, percentage degradation increased, reaching 100% at amplitude of 4.7 cm and higher. Introduction of pulsation is found to increase the percentage degradation. Percentage degradation has increased with increase in frequency and 100% degradation was achieved at 0.5 s-1 and above. Biofilms developed in a non-pulsed bioreactor were thicker than those in the pulsed plate bioreactor. But biofilm thickness remained almost constant with increasing frequency. Biofilm density was found to be influenced by pulsation. The time required to reach steady state was more for pulsed reactor than the non-pulsed reactor and this start-up time had increased with increase in frequency of pulsation. The performance studies reveal that the pulsed plate bioreactor with immobilized cells has the potential to be an efficient bioreactor for wastewater treatment

  13. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    A current problem in tissue culturing technology is the unavailability of an effective Bioreactor for the in vitro cultivation of cells and explants. It has, in fact, proved extremely difficult to promote the high-density three-dimensional in vitro growth of human tissues that have been removed from the body and deprived of their normal in vivo vascular sources of nutrients and gas exchange. A variety of tissue explants can be maintained for a short period of time on a supportive collagen matrix surrounded by culture medium. But this system provides only limited mass transfer of nutrients and wastes through the tissue, and gravity-induced sedimentation prevents complete three- dimensional cell-cell and cell-matrix interactions. Several devices presently on the market have been used with only limited success since each has limitations, which restrict usefulness and versatility. Further, no Bioreactor or culture vessel is known that will allow for unimpeded growth of three dimensional cellular aggregates or tissue. Extensive research on the effect of mechanical stimuli on cell metabolism suggests that tissues may respond to mechanical stimulation via loading-induced flow of the interstitial fluids. During the culture, cells are subject to a flow of culture medium. Flow properties such as flow field, flow regime (e.g. turbulent or laminar), flow pattern (e.g. circular), entity and distribution of the shear stress acting on the cells greatly influence fundamental aspects of cell function, such as regulation and gene expression. This has been demonstrated for endothelial cells and significant research efforts are underway to elucidate these mechanisms in various other biological systems. Local fluid dynamics is also responsible of the mass transfer of nutrients and catabolites as well as oxygenation through the tissue. Most of the attempts to culture tissue-engineered constructs in vitro have utilized either stationary cultures or systems generating relatively small

  14. Production of monoclonal antibody with Celline-350 bioreactor

    International Nuclear Information System (INIS)

    Monoclonal antibodies are protein that are highly specific and sensitive in their reaction with specific sites on target molecules that they have become reagents of central importance in the diagnostic and treatment of human diseases. This paper reports the use of CELLine-350 bioreactor to produce continuous supply of serum-free breast cancer monoclonal antibody. Initial volume of 5ml (1.5 x 106 viable cells/ml) is inoculated into the bioreactor and harvesting is done every 5 days to obtain high yield monoclonal antibody. The serum-free supernatant is precipitated with 50% saturated ammonia sulfate and the antibody is purified by protein-G affinity chromatography. The concentration of monoclonal antibody successfully produced by the bioreactor is 0.91mg/ml respectively and it is measured by the Lowry method. This result shows that bioreactor Celline-350 is easy to handle and cost effective for the continuous production of serum free monoclonal antibody. (Author)

  15. EMERGING TECHNOLOGY BULLETIN - METHANOTROPHIC BIOREACTOR SYSTEM - BIOTROL, INC.

    Science.gov (United States)

    BioTrol's Methanotrophic Bioreactor is an above-ground remedial system for water contaminated with halogenated volatile organic compounds, including trichloroethylene (ICE) and related chemicals. Its design features circumvent problems peculiar to treatment of this unique class o...

  16. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals.

    Science.gov (United States)

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals. PMID:27322258

  17. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  18. Salmonella Typhimurium grown in a rotating wall bioreactor

    Science.gov (United States)

    2003-01-01

    Salmonella typhimurium appears green in on human intestinal tissue (stained red) cultured in a NASA rotating wall bioreactor. Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  19. Hairy root culture: bioreactor design and process intensification.

    Science.gov (United States)

    Stiles, Amanda R; Liu, Chun-Zhao

    2013-01-01

    The cultivation of hairy roots for the production of secondary metabolites offers numerous advantages; hairy roots have a fast growth rate, are genetically stable, and are relatively simple to maintain in phytohormone free media. Hairy roots provide a continuous source of secondary metabolites, and are useful for the production of chemicals for pharmaceuticals, cosmetics, and food additives. In order for hairy roots to be utilized on a commercial scale, it is necessary to scale-up their production. Over the last several decades, significant research has been conducted on the cultivation of hairy roots in various types of bioreactor systems. In this review, we discuss the advantages and disadvantages of various bioreactor systems, the major factors related to large-scale bioreactor cultures, process intensification technologies and overview the mathematical models and computer-aided methods that have been utilized for bioreactor design and development. PMID:23604206

  20. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...... that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly...... estimated? And what are the limitations of different types of mod - els? This paper will provide examples of models that have been published in the literature for use across bioreactor scales, including computational fluid dynamics (CFD) and population balance models. Furthermore, the importance of good...

  1. Upflow bioreactor with septum and pressure release mechanism

    Science.gov (United States)

    Hansen, Conly L.; Hansen, Carl S.; Pack, Kevin; Milligan, John; Benefiel, Bradley C.; Tolman, C. Wayne; Tolman, Kenneth W.

    2010-04-20

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes means for releasing pressure buildup in the lower chamber. In one configuration, the septum includes a releasable portion having an open position and a closed position. The releasable portion is configured to move to the open position in response to pressure buildup in the lower chamber. In the open position fluid communication between the lower chamber and the upper chamber is increased. Alternatively the lower chamber can include a pressure release line that is selectively actuated by pressure buildup. The pressure release mechanism can prevent the bioreactor from plugging and/or prevent catastrophic damage to the bioreactor caused by high pressures.

  2. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals

    Science.gov (United States)

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals. PMID:27322258

  3. Water reuse by membrane bioreactors (MBR)

    International Nuclear Information System (INIS)

    This paper shows an up-to date overview of the use of membrane bioreactor (MBR) to obtain water treated for reusing it. Considering the existing rules. it has been presented a summary of published studies in which the quality of the effluent is analyzed in terms on physico-chemical and biological parameters. Furthermore, MBR results are compared with the conventional treatment ones. Due to the suitability of MBR technology for removing pathogens, particular attention has been paid to disinfection process and the mechanism that govern it. Results from reviewed studies of MBR have showed equal or better quality of water treated than conventional treatments (activated sludge plus disinfection tertiary treatment by the addition of antibacterial agents). (Author) 32 refs.

  4. Rotating bio-reactor cell culture apparatus

    Science.gov (United States)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  5. Robust Control Methods for a Recycle Bioreactor

    Directory of Open Access Journals (Sweden)

    Cosmin IONETE

    2001-12-01

    Full Text Available The paper presents a robust control design strategy for bioprocesses, which are characterized by strongly nonlinear dynamics. More precisely, we present the H2 methodology in order to compute the controller for a recycle Continuous Stirred Tank Bioreactor (CSTB. We consider a general method of formulating control problem, which makes use of linear fractional transformation as introduced by Doyle (1978. The formulation makes use of the general two-port configuration of the generalized plant with a generalized controller. The H2 norm is the quadratic criterion used in optimal control as LQG. The overall control objective is to minimize the H2 norm of the transfer matrix function from the weighted exogenous inputs to the weighted controlled outputs. The advantage of H2 control technique, which uses the linearized model of the CSTB, is that it is completely automated and very flexible. Finally, we prove that the closed loop control structure has very good inner robustness.

  6. Microbial Bioreactor Development in the ALS NSCORT

    Science.gov (United States)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  7. Start-up Strategy for Continuous Bioreactors

    Directory of Open Access Journals (Sweden)

    A.C. da Costa

    1997-06-01

    Full Text Available Abstract - The start-up of continuous bioreactors is solved as an optimal control problem. The choice of the dilution rate as the control variable reduces the dimension of the system by making the use of the global balance equation unnecessary for the solution of the optimization problem. Therefore, for systems described by four or less mass balance equations, it is always possible to obtain an analytical expression for the singular arc as a function of only the state variables. The steady state conditions are shown to satisfy the singular arc expression and, based on this knowledge, a feeding strategy is proposed which leads the reactor from an initial state to the steady state of maximum productivity

  8. Vortex breakdown in a truncated conical bioreactor

    Science.gov (United States)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2015-12-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small Hw, the AMF effect dominates. As Hw increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

  9. Radiotracer investigation in a rotary fluidized bioreactor

    International Nuclear Information System (INIS)

    A rotary fluidized bioreactor (RFBR) designed for treatment of wastewater was required to be investigated for its hydrodynamic behaviour and validation of design. A radiotracer investigation was carried out to measure residence time distribution (RTD) of wastewater in the RFBR using 82Br as a radiotracer. The radiotracer was instantaneously injected into the inlet feed line and monitored at the inlet and outlet of the reactor using collimated scintillation detectors connected to a data acquisition system. The measured RTD data was treated and simulated using a tanks-in-series model and model parameters i.e. number of tanks describing the degree of mixing was obtained. The results of the investigation showed no flow abnormalities and the reactor behaved as an ideal continuously stirred-tank reactor at all the operating conditions. Based on the results, the design of the reactor was validated. (author)

  10. Strukturmerkmale des chinesischen Kapitalismus

    OpenAIRE

    Brink, Tobias ten

    2010-01-01

    Für ein Verständnis der chinesischen Wirtschaft ist es hilfreich, das theoretische Instrumentarium der Kapitalismusforschung nutzbar zu machen. Es ermöglicht eine fundierte Charakterisierung des chinesischen Systems als einer eigentümlichen Spielart des Kapitalismus – eines marktliberalen, wettbewerbsgetriebenen Staatskapitalismus. Zu den Eigentümlichkeiten des chinesischen Kapitalismus gehören ein dynamischer Staatsdirigismus, eine besondere Form des Wettbewerbs und der privat-öffentlichen U...

  11. The Role of Bioreactors in Tissue Engineering for Musculoskeletal Applications

    OpenAIRE

    Oragui, Emeka; Nannaparaju, Madhusudhan; Khan, Wasim S.

    2011-01-01

    Tissue engineering involves using the principles of biology, chemistry and engineering to design a ‘neotissue’ that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a biocompatible scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. We discuss the role of bioreactors in tissue engineering and eva...

  12. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kermanshahi Pour, A.; Karamanev, D.; Margaritis, A. [Universityn of Western Ontario, London (Canada). Dept. of Chemical and Biochemical Engineering

    2005-09-01

    An ''immobilized cell airlift bioreactor'', was used for the aerobic bioremediation of simulated diesel fuel contaminated groundwater and tested with p-xylene and naphthalene in batch and continuous regimes. The innovative design of the experiments consists of two stages. At the first stage ''immobilized soil bioreactor'' (ISBR) was used to develop an efficient microbial consortium from the indigenous microorganisms, which exist in diesel fuel contaminated soil. The concept of ISBR relies on the entrapment of the soil particles into the pores of a semi-permeable membrane, which divides the bioreactor into two aerated and non-aerated portions. The second stage involves inoculating the ''immobilized cell air lift bioreactor'' with the cultivated microbial consortia of the first stage. Immobilized cell airlift bioreactor has the same configuration as ISBR except that in this bioreactor instead of soil, microorganisms were immobilized on the fibers of the membrane. The performance of a 0.83 L immobilized cell airlift bioreactor was investigated at various retention time (0.5-6 h) and concentrations of p-xylene (15, 40 and 77 mg/L) and naphthalene (8, 15 and 22 mg/L) in the continuous operation. In the batch regime, 0.9 L bioreactor was operated at various biodegradation times (15-135 min) and concentrations of p-xylene (13.6, 44.9 and 67.5 mg/L) and naphthalene (1.5 and 3.8 mg/L). Under the conditions of the complete biodegradation of p-xylene and naphthalene, the obtained volumetric biodegradation rates at biomass density of 720 mg/L were 15 and 16 mg/L h, respectively. (author)

  13. Optimisation of a hollow fibre membrane bioreactor for water refuse

    OpenAIRE

    Verrecht, Bart

    2010-01-01

    Over the last two decades, implementation of membrane bioreactors (MBRs) has increased due to their superior effluent quality and low plant footprint. However, they are still viewed as a high-cost option, both with regards to capital and operating expenditure (capex and opex). The present thesis extends the understanding of the impact of design and operational parameters of membrane bioreactors on energy demand, and ultimately whole life cost. A simple heuristic aeration model ...

  14. Integrated operation of membrane bioreactors: simulation and experimental studies

    OpenAIRE

    Dalmau Figueras, Montserrat

    2014-01-01

    Membrane bioreactors (MBR) are a combination of common bioreactors and membrane filtration units for biomass retention, presenting unique advantages like high effluent quality and a smaller footprint than the one by conventional wastewater treatment plants. However, fouling and its associated costs are the main drawbacks related to this technology. This thesis presents a step towards the integrated operation of MBRs through experimental and model-based studies. Interactions between the biolog...

  15. Studies on a Novel Bioreactor Design for Chondrocyte Culture

    OpenAIRE

    Patil, Harshad; Chandel, Ishan Saurav; Rastogi, Amit K.; Srivastava, Pradeep

    2013-01-01

    A bioreactor system plays an important role in tissue engineering and enables reproduction and controlled changes in the environmental factor. The bioreactor provides technical means to perform controlled processes in safe and reduced reproducible generation of time. Cartilage cells were grown in vitro by mimicking the in vivo condition. The basic unit of cartilage, that is, chondrocyte, requires sufficient shear, strain, and hydrodynamic pressure for regular growth as it is nonvascular tissu...

  16. Landsberger Gemenge: Artspezifische Konkurrenz und deren Beeinflussung

    OpenAIRE

    Haas, Guido

    2003-01-01

    Der organisch wirtschaftende Landwirt ist systemkonform bestrebt einen möglichst geringen Zukauf an Betriebsmitteln zu tätigen. Die Zufuhr von Stickstoff (N) wird über den Anbau von Leguminosen gewährleistet. Der Winterzwischenfruchtbau von Leguminosen stellt eine bislang wenig untersuchte Form der N-Zufuhr in den organisch wirtschaftenden Betrieb dar. Der Zeitraum Frühling gefolgt von Zweitfrüchten wird alternativ zum Hauptfrucht-Ackerfutterleguminosenbau für die N-Zufuhr genutzt. Günstig si...

  17. Civili, langue des Baloango

    DEFF Research Database (Denmark)

    Mavoungou, Paul Achille; Ndinga-Koumba-Binza, Hugues Steve

    , Congo, Angola, etc.) issus de la décolonisation. Il présente de façon succincte quelques phénomènes historiques, phonologiques, morphosyntaxiques, homonymiques et analogiques de la langue. Des faits sémantiques des emprunts linguistiques y sont également décrits dans le cadre des changements...

  18. Remittances | Transferts des migrants

    OpenAIRE

    2012-01-01

    Major Recipients of Remittances (in Million USD, 2008) Principaux pays bénéficiaires des transferts des migrants (en millions USD, 2008) ­ Migrants’ Remittances per Capita (in USD, 2008) Transferts des migrants par habitant (en USD, 2008) Source: World Bank, migration and remittances data.

  19. Liste des contributeurs

    OpenAIRE

    2014-01-01

    Abouhani Abdelghani, Inau, Rabat. Blili Leïla, Université de La Manouba, Faculté des lettres, des arts et des humanités, La Manouba. Boubrik Rahal, Ihcc, Aix-en-Provence. Boujarra Hussein, Université de Tunis, Faculté des sciences humaines et sociales, Tunis/Diraset. Études maghrébines. Cattedra Raffaele, Université de Montpellier III. Catusse Myriam, Cnrs-Iremam, Aix-en-Provence. Cheraï Ahmed, École nationale d’administration, Rabat. Ettayeb Mahmoud, Université de Tunis, Faculté des sciences...

  20. Appropriation des Tic et performance des entreprises

    OpenAIRE

    Lethiais, Virginie; Smati, Wided

    2009-01-01

    L'utilisation des TIC (Technologies de l'information et de la Communication) se développe dans les entreprises pour assurer des tâches de plus en plus nombreuses : la communication, la recherche d'informations, la commercialisation des produits et services, le travail en groupe, la gestion de l'entreprise, la prospection, etc. Les équipements en TIC ainsi que l'usage qui en est fait diffèrent d'une entreprise à une autre selon de nombreux critères. L'objet de ce quatre pages est de déterminer...

  1. Celle des riches et celle des pauvres

    OpenAIRE

    Roussel, Bernard; Woldeyes, Feleke

    2013-01-01

    Les graines de la fausse cardamome kororima, Aframomum corrorima (Braun) Jansen, maniguette endémique d’Éthiopie, constituent une épice indispensable, emblématique du pays tout entier, aux usages multiples et quasi quotidiens. Plante spontanée des sous-bois des forêts humides du Kafa, c’est aussi une plante cultivée dans les jardins de diverses régions de l’Éthiopie méridionale.Cet article, à partir de l’analyse de la production et des filières de commercialisation de la kororima, se propose ...

  2. Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor

    OpenAIRE

    Mohamed Abdel-Monaem Zytoon; Abdulraheem Ahmad AlZahrani; Madbuli Hamed Noweir; Fadia Ahmed El-Marakby

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combinat...

  3. Selective elimination of persistent pollutants with membrane-bioreactors; Selektive Eliminierung von schwer abbaubaren Stoffen mit Membran-Bioreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.; Schierenbeck, A. [Bremen Univ. (Germany). Inst. fuer Umweltverfahrenstechnik

    1997-12-31

    Topic of this article is the biodegradation of chlorinated hydrocarbons (as an example 3-chlorine benzoic acid) in a membrane bioreactor. The membrane enhances the residence time for the polymolecular compounds for a better degradation. The degradation of the chlorine benzoic acid is investigated and a mathematical model is developed. (SR) [Deutsch] In dem vorgestellten Suspensions-Membranreaktor ist es durch die integrierte Anwendung der Nanofiltration moeglich, selektiv die Verweilzeit der hoehermolekularen und damit schwer abbaubaren Stoffe zu erhoehen. Untersuchungen zum biologischen Abbau von 3-Chlorbenzoesaeure im Suspensions-Membranreaktor weisen eine deutlichere Leistungssteigerung im Vergleich zu einem konventionellen Airlift-Schlaufenreaktor insbesondere bei geringen hydrodynamischen Verweilzeiten nach. Ein produktionsintegrierter Einsatz von kleinen, modularen Anlagen vom Typ des Suspensions-Membranreaktors ist somit moeglich. (orig.)

  4. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m3; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO3-)/day-m3 using feed with a nitrate concentration of 1800 g/m3. Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 300C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  5. Bioreactor technology for production of valuable algal products

    Science.gov (United States)

    Liu, Guo-Cai; Cao, Ying

    1998-03-01

    Bioreactor technology has long been employed for the production of various (mostly cheap) food and pharmaceutical products. More recently, research has been mainly focused on the development of novel bioreactor technology for the production of high—value products. This paper reports the employment of novel bioreactor technology for the production of high-value biomass and metabolites by microalgae. These high-value products include microalgal biomass as health foods, pigments including phycocyanin and carotenoids, and polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. The processes involved include heterotrophic and mixotrophic cultures using organic substrates as the carbon source. We have demonstrated that these bioreactor cultivation systems are particularly suitable for the production of high-value products from various microalgae. These cultivation systems can be further modified to improve cell densities and productivities by using high cell density techniques such as fed-batch and membrane cell recycle systems. For most of the microalgae investigated, the maximum cell concentrations obtained using these bioreactor systems in our laboratories are much higher than any so far reported in the literature.

  6. Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor

    Science.gov (United States)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti

    2010-01-01

    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth.

  7. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  8. Bioreactor for acid mine drainage control

    Science.gov (United States)

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  9. Performance of anaerobic membrane bioreactor during digestion and thickening of aerobic membrane bioreactor excess sludge.

    Science.gov (United States)

    Hafuka, Akira; Mimura, Kazuhisa; Ding, Qing; Yamamura, Hiroshi; Satoh, Hisashi; Watanabe, Yoshimasa

    2016-10-01

    In this study, we evaluated the performance of an anaerobic membrane bioreactor in terms of digestion and thickening of excess sludge from an aerobic membrane bioreactor. A digestion reactor equipped with an external polytetrafluoroethylene tubular microfiltration membrane module was operated in semi-batch mode. Solids were concentrated by repeated membrane filtration and sludge feeding, and their concentration reached 25,400mg/L after 92d. A high chemical oxygen demand (COD) removal efficiency, i.e., 98%, was achieved during operation. A hydraulic retention time of 34d and a pulse organic loading rate of 2200mg-COD/(L-reactor) gave a biogas production rate and biogas yield of 1.33L/(reactor d) and 0.08L/g-CODinput, respectively. The external membrane unit worked well without membrane cleaning for 90d. The transmembrane pressure reached 25kPa and the filtration flux decreased by 80% because of membrane fouling after operation for 90d. PMID:27394993

  10. Evolution des Geistes

    OpenAIRE

    Roth, Gerhard

    2004-01-01

    Evolution des Geistes Vortrag am 9. Februar 2003 im Rahmen der Reihe "Evolution – Entstehung der Erde bis zur Entfaltung des Geistes" des Zoologischen Museums Nach traditioneller Auffassung besitzt nur der Mensch Geist und Bewusstsein, und hierin besteht seine Einzigartigkeit. Aus Sicht der Hirnforschung und der Verhaltensbiologie haben sich jedoch während der tierischen Evolution Geist und Bewusstsein über viele Stufen entwickelt. Eine Reihe nichtmenschlicher Tiere, vor allem Säugetiere und ...

  11. Anatomie et identification des bois

    OpenAIRE

    Jourez, Benoît

    2010-01-01

    Anatomie des bois Structure anatomique des résineux et des feuillus Structure de la membrane cellulaire structure submicroscopique Anatomie du bois des essences feuillues tropicales Caractères anatomiques servant à l'identification des essences Reconnaissance microscopique du bois des essences résineuses et feuillues Duramen et duraminisation Formations anormales ( bois de compression et bois de tension) Chimie du bois Composition générale Cellulose, hé...

  12. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  13. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  14. Groupement des faits

    OpenAIRE

    Langlois, Charles-Victor; Seignobos, Charles

    2014-01-01

    I. La première nécessité qui s’impose à l’historien mis en présence du chaos des faits historiques, c’est de limiter son champ de recherches. Dans l’océan de l’histoire universelle quels faits choisira-t-il pour les recueillir ? – Puis, dans la masse des faits ainsi choisis, il lui faudra distinguer des groupes et faire des sections. – Enfin dans chacune de ces sections il aura à ranger les faits un à un. Ainsi toute construction historique doit commencer par trouver un principe pour trier, e...

  15. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-01-01

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines. PMID:27232665

  16. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO3- and as large as 2000 m3/d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 gN(NO3-)/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  17. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  18. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  19. Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems.

    Science.gov (United States)

    Schumann, Anika; Berkov, Strahil; Claus, Diana; Gerth, André; Bastida, Jaume; Codina, Carles

    2012-08-01

    The production of galanthamine by shoots of Leucojum aestivum grown in different bioreactor systems (shaking and nonshaking batch culture, temporary immersion system, bubble bioreactor, continuous and discontinuous gassing bioreactor) under different culture conditions was studied. The influence of the nutrient medium, weight of inoculum, and size of bioreactor on both growth and galanthamine production was studied. The maximal yield of galanthamine (19.416 mg) was achieved by cultivating the L. aestivum shoots (10 g of fresh inoculum) in a temporary immersion system in a 1-L bioreactor vessel which was used as an airlift culture vessel, gassing 12 times per day (5 min). PMID:22639366

  20. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    Science.gov (United States)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    A methodology for growing three-dimensional plant tissue models in a hydrodynamic focusing bioreactor (HFB) has been developed. The methodology is expected to be widely applicable, both on Earth and in outer space, as a means of growing plant cells and aggregates thereof under controlled conditions for diverse purposes, including research on effects of gravitation and other environmental factors upon plant growth and utilization of plant tissue cultures to produce drugs in quantities greater and at costs lower than those of conventional methodologies. The HFB was described in Hydro focus - ing Bioreactor for Three-Dimensional Cell Culture (MSC-22358), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 66. To recapitulate: The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear liquid culture environment simultaneously with the herding of suspended cells and tissue assemblies and removal of unwanted air bubbles. The HFB includes a rotating cell-culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can be made to rotate at the same speed and direction or different speeds and directions to tailor the flow field and the associated hydrodynamic forces in the vessel in order to obtain low-shear suspension of cells and control of the locations of cells and air bubbles. For research and pharmaceutical-production applications, the HFB offers two major benefits: low shear stress, which promotes the assembly of cells into tissue-like three-dimensional constructs; and randomization of gravitational vectors relative to cells, which affects production of medicinal compounds. Presumably, apposition of plant cells in the absence of shear forces promotes cell-cell contacts, cell aggregation, and cell differentiation. Only gentle mixing is necessary for distributing nutrients and oxygen. It has been postulated that inasmuch as cells in the simulated

  1. Optimizing of Bioreactor Heat Supply and Material Feeding by Numerical Calculation

    Science.gov (United States)

    Zhou, Zhiwei; Song, Boyan; Zhu, Likuan; Li, Zuntao; Wang, Yang

    Cell culture at large scale normally uses stirred structure. And the situation of temperature field distribution is very important to the cell culture at large scale. Some cells are very sensitive to the circumstances. The local temperature is too high or too low all influences the cell survival and low the cell quantity at unit volume. This paper simulates the temperature field under three different heating conditions. Then analysis and contrast the simulation results. The mixed situation in bioreactor is extremely significant for nutrition transmit. Usually, use ways to measure the average mixture time in bioreactor, and improve the mixture circumstance in the bioreactor through stirred impeller and bioreactor structure change. This paper adopts numerical calculation method to investigate the flow field in bioreactor. It gets the mixture time of bioreactor through virtual tracer in simulate flow field and detects the tracer density time variation curve in the bioreactor.

  2. Productivity Studies Utilizing Recombinant CHO Cells In Stirred-Tank Bioreactors: A Comparative Study Between The Pitch-Blade And The Packed-Bed Bioreactor Systems

    OpenAIRE

    Hatton, Taylor Stephen

    2012-01-01

    A recombinat Chinese Hamster Ovary (rCHO) cell line designated as CHO SEAP was utilized in this investigation to optimize protein production. Two bench top stirred-tank bioreactors, namely a pitched-blade and a packed-bed basket bioreactor, were utilized for a comparative study to determine which bioreactor would produce the best results in terms of protein production. The objective of this research project was to provide basic data that shows cells cultured in a packed-bed basket bioreactor ...

  3. Gestion des risques

    CERN Document Server

    Louisot, Jean-Paul

    2009-01-01

    Depuis le début du lie siècle, la gestion des risques connaît une véritable révolution culturelle. Jusqu'alors fonction technique, centrée autour de l'achat de couverture d'assurances, elle est devenue une discipline managériale et transversale : une valise d'instruments que chaque manager doit connaître et appliquer quels que soient son domaine de compétence et ses missions au sein de l'organisation. En effet, la gestion des risques est une culture qui doit être assimilée par chacun des acteurs. C'est précisément l'ambition des 101 questions rassemblées dans cet ouvrage : apporter à chaque manager d'entreprise, de collectivité, d'établissement de santé..., des réponses claires au " pourquoi " et au " comment " : Comment identifier les risques ? Comment analyser les risques ? Quels sont les objectifs de la gestion des risques ? Une carte des risques pour quoi faire ? Pourquoi faut-il financer les risques ? Les entreprises ont-elles des responsabilités pénales ? En quoi consiste la gestion...

  4. Des Chiffres et des Lettres : distraction, variations, habitudes

    OpenAIRE

    Barbara Laborde

    2011-01-01

    Cet article envisage une des émissions les plus anciennes du Paysage Audiovisuel Français : Des Chiffres et des Lettres. La sérialité que l’émission met en œuvre au cours de son histoire est faite de variations qui témoignent à la fois des évolutions des techniques audiovisuelles, des logiques de programmations, des attentes spectatorielles. Ce jeu télévisé, toujours le même et pourtant toujours différent, permet à la fois la reconnaissance immédiate et la perception d'un changement, double a...

  5. Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety

    Science.gov (United States)

    2014-01-01

    In order to cultivate healthy bacteria in bioreactors, Kennedy Space Center awarded SBIR funding to Needham Heights, Massachusetts-based Polestar Technologies Inc. to develop sensors that could monitor oxygen levels. The result is a sensor now widely used by pharmaceutical companies and medical research universities. Other sensors have also been developed, and in 2013 alone the company increased its workforce by 50 percent.

  6. NASA's Bioreactor: Growing Cells in a Microgravity Environment. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses growing cells in a microgravity environment for grades 9-12. Students are provided with plans for building a classroom bioreactor that can then be used with the included activity on seed growth in a microgravity environment. Additional experimental ideas are also suggested along with a history and background on microgravity…

  7. Modelling and characterization of an airlift-loop bioreactor.

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and oxygen tra

  8. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  9. Scale-up of bioreactors: physiological approach contra geometrical similarity

    Czech Academy of Sciences Publication Activity Database

    Prell, Aleš; Sobotka, Miroslav; Kujan, Petr; Votruba, Jaroslav; Flieger, Miroslav

    Brooklyn, NY : Verlag, 2006, s. 15-15. [Natural Products Discovery and Production: New Challenges; New Opportunities. Santa Fe (US), 04.06.2006-08.06.2006] Grant ostatní: XE(XE) COOP-CT-2003-508169 BIOFERM Institutional research plan: CEZ:AV0Z50200510 Keywords : scale-up * bioreactors Subject RIV: EE - Microbiology, Virology

  10. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  11. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Science.gov (United States)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  12. Optimising Microbial Growth with a Bench-Top Bioreactor

    Science.gov (United States)

    Baker, A. M. R.; Borin, S. L.; Chooi, K. P.; Huang, S. S.; Newgas, A. J. S.; Sodagar, D.; Ziegler, C. A.; Chan, G. H. T.; Walsh, K. A. P.

    2006-01-01

    The effects of impeller size, agitation and aeration on the rate of yeast growth were investigated using bench-top bioreactors. This exercise, carried out over a six-month period, served as an effective demonstration of the importance of different operating parameters on cell growth and provided a means of determining the optimisation conditions…

  13. Performance of Submerged Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present research, a submerged membrane bioreactor was tested to treat domestic wastewater. Three experimental runs were conducted all with a hydraulic retention time of 5h and sludge retention times (SRTs) of 5, 10, and 20 d. The pollutant removal performance of the membrane bioreactor, the membrane effluent quality, and a kinetic model for sludge growth in the bioreactor were investigated. The combined process was capable of removing over 90% of both COD (chemical oxygen demand) and NH3-N on the average. The total removal for COD was almost independent of SRT, but that for NH3-N improved with increasing SRT. Membrane effluent quality meets the water quality standard for reuse issued by the Ministry of Construction of China. Increasing SRT causes the concentrations of suspended solids (SS) and volatile suspended solids (VSS) in the bioreactor to increase. However, the ratio of VSS/SS did not change much. Kinetic analysis showed that the sludge yield coefficient (kg-VSS·kg-COD-1) and the endogenous coefficient of microorganisms were 0.25 and 0.04d-1, which are similar to those of the conventional activated sludge process.

  14. Bioreactor landfill technology in municipal solid waste treatment: an overview.

    Science.gov (United States)

    Kumar, Sunil; Chiemchaisri, Chart; Mudhoo, Ackmez

    2011-03-01

    In recent years, due to an advance in knowledge of landfill behaviour and decomposition processes of municipal solid waste, there has been a strong thrust to upgrade existing landfill technologies for optimizing these degradation processes and thereafter harness a maximum of the useful bioavailable matter in the form of higher landfill gas generation rates. Operating landfills as bioreactors for enhancing the stabilization of wastes is one such technology option that has been recently investigated and has already been in use in many countries. A few full-scale implementations of this novel technology are gaining momentum in landfill research and development activities. The publication of bioreactor landfill research has resulted in a wide pool of knowledge and useful engineering data. This review covers leachate recirculation and stabilization, nitrogen transformation and corresponding extensive laboratory- and pilot-scale research, the bioreactor landfill concept, the benefits to be derived from this bioreactor landfill technology, and the design and operational issues and research trends that form the basis of applied landfill research. PMID:20578971

  15. Numerical study of fluid motion in bioreactor with two mixers

    International Nuclear Information System (INIS)

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented

  16. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Science.gov (United States)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  17. Numerical study of fluid motion in bioreactor with two mixers

    Science.gov (United States)

    Zheleva, I.; Lecheva, A.

    2015-10-01

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  18. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  19. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    OpenAIRE

    Fey, S J; Wrzesinski, Krzysztof

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.

  20. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  1. Reduced Order Dead-Beat Observers for a Bioreactor

    CERN Document Server

    Karafyllis, Iasson

    2010-01-01

    This paper studies the strong observability property and the reduced-order dead-beat observer design problem for a continuous bioreactor. New relationships between coexistence and strong observability, and checkable sufficient conditions for strong observability, are established for a chemostat with two competing microbial species. Furthermore, the dynamic output feedback stabilization problem is solved for the case of one species.

  2. Simulating woodchip bioreactor performance using a dual-porosity model

    Science.gov (United States)

    Nitrate in the Nation's surface waters has been a persistent health and ecological problem. The major source of nitrate is tile drainage from agricultural row crops. Denitrification bioreactors have been shown to be effective in removing much of the nitrate from tile drains. While we understand i...

  3. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  4. Droit des organisations internationales

    CERN Document Server

    Sorel, Jean-Marc; Ndior, Valère

    2013-01-01

    Cet ouvrage collectif offre aux enseignants et chercheurs en droit international, aux praticiens et aux étudiants, une analyse actualisée du droit des organisations internationales. Il dresse en cinq parties un tableau, illustré par des exemples variés, des problématiques que soulève le phénomène polymorphe d institutionnalisation de la société internationale. La première partie est consacrée au phénomène des « organisations internationales », sous l angle à la fois de l institutionnalisation progressive des relations internationales et de la difficulté à cerner une catégorie unifiée. La deuxième partie rend compte de la création, de la disparition et des mutations des organisations internationales, ici envisagées comme systèmes institutionnels et ordres juridiques dérivés. La troisième partie analyse l autonomie que l acquisition de la personnalité juridique et de privilèges et immunités, un organe administratif intégré, un personnel ou un budget propres confèrent aux organi...

  5. Photonique des Morphos

    CERN Document Server

    Berthier, Serge

    2010-01-01

    La photonique est déjà présente dans notre vie quotidienne, et on attend maintenant que la manipulation des photons permette aussi le traitement logique des informations. Cependant, l’élément de base qui permet cette manipulation de la lumière, le cristal photonique, est d’une réalisation complexe et mal contrôlée. Dans la course à la maîtrise de la lumière, les structures photoniques naturelles ont beaucoup à nous apprendre. C’est ce que nous montre Serge Berthier qui étudie dans ce livre la structure des écailles des Morphos. Tenant compte de l’essor récent des approches biomimétiques, il présente de manière détaillée plus de dix-huit techniques expérimentales utilisées pour ses analyses, ainsi que les diverses approches théoriques développées pour la modélisation de structures multi-échelles complexes. Première étude quasi-exhaustive des structures fines d’un genre et des propriétés optiques ainsi que colorimétriques générées, ce livre fournit aux entomologiste...

  6. Les savoirs des autres

    OpenAIRE

    Bromberger, Christian

    2007-01-01

    En ethnologie, comme dans bien d'autres domaines scientifiques, le renouvellement des problématiques est souvent venu des confins territoriaux, de points marginaux de rencontre entre disciplines voisines. Chacun de ces rendez-vous marque une étape importante dans l'histoire de la démarche ethnologique ; le dialogue qui s'est noué avec la technologie, la linguistique et la sémiologie, les sciences naturelles, la médecine... a permis non seulement une extension du champ et un affinement des mét...

  7. Des femmes au tribunal

    OpenAIRE

    Le Pape, Marc

    2010-01-01

    Les archives judiciaires constituent une source essentielle pour les études des sociabilités africaines en situation coloniale. Cet article prend appui sur l’analyse des procès tenus, entre 1923 et 1939, au tribunal du premier degré d’Abidjan, il vise à décrire les argumentations contradictoires par lesquelles femmes et hommes expliquent leurs différends dans l’espace du prétoire. Les registres issus des « juridictions indigènes » permettent également d’apprécier sur quels repères se fondent ...

  8. Liste des auteurs

    OpenAIRE

    2014-01-01

    Abdoul Razack Adjibi-Oualiou, agronome forestierdirection des Forêts et des Ressources naturellesBP 393, Cotonou, république du Béninmailto: Aristide Cossi Adomou, botanisteuniversité d’Abomey-Calavi, faculté des Sciences et Techniques département de Biologie végétaleHerbier national du Bénin, 01 BP 4521, Cotonou, république du Béninmailto: Pierre Onodjè Agbani, botaniste systématicien, écologuelaboratoire d'Écologie appliquée, Cotonou, république du B...

  9. Abhängigkeit von Addukten tabakspezifischer Nitrosamine in der Mundschleimhaut des Menschen von verschiedenen Genussformen des Tabaks, ihre Beeinflussung durch Ernährung, Alkohol und Chemopräventiva und die Überprüfung der Effekte an der Ratte

    OpenAIRE

    Heling, Anne-Kathrin

    2009-01-01

    Das Oropharynxkarzinom steht in Deutschland mit einem Anteil von 3,3% an allen bösartigen Neubil¬dungen bei Männern an der siebten Stelle der Krebsneuerkrankungen. Der jahrelange Gebrauch von Tabakwaren ist ein wichtiger Risikofaktor, der durch gleichzeitige Anwendung hochprozentiger Alko¬holika multipliziert wird. In vielen westeuropäischen Industrieländern konnte eine Zunahme von Inzi¬denz und Mortalität festgestellt werden, dagegen weist Schweden die niedrigste Inzidenzrate auf. Eine mögli...

  10. Architecture des contemplatifs

    OpenAIRE

    2005-01-01

    Architecture des contemplatifs. — Il serait nécessaire de comprendre un jour, et probablement ce jour est-il proche, ce qui manque avant tout à nos grandes villes : des lieux de silence, spacieux et forts étendus, destinés à la méditation, pourvus de hautes et de longues galeries pour les intempéries ou le trop ardent soleil, où ne pénètre nulle rumeur de voitures ni de crieurs, et où une bienséance plus subtile interdirait même au prêtre l’oraison à voix haute : des édifices et des jardins q...

  11. Dental Encounter System (DES)

    Data.gov (United States)

    Department of Veterans Affairs — Dental Encounter System (DES) is an automated health care application designed to capture critical data about the operations of VA Dental Services. Information on...

  12. Diethylstilbestrol (DES) and Cancer

    Science.gov (United States)

    ... been recommended that DES daughters have a yearly Pap test and pelvic exam to check for abnormal ... thorough examination may include the following: Pelvic examination Pap test and colposcopy —A routine cervical Pap test ...

  13. La descente des certitudes

    Directory of Open Access Journals (Sweden)

    Frédéric Lesemann

    2010-12-01

    Full Text Available Je rédige ce texte de discussion de la thèse de l’ouvrage de Robert Castel, La Montée des incertitudes, à Montréal, en août 2010. Ces précisions initiales ont pour but de situer d’où je parle : un pays nord-américain francophone où les travaux et la personne de Robert Castel sont connus et très appréciés dans le domaine des sciences sociales, et à un moment où la crise économique découlant des crises financières internationales des deux dernières années amène les gouvernements québécois et ca...

  14. Chimie des processus biologiques

    OpenAIRE

    Fontecave, Marc

    2010-01-01

    La chimie du vivant : enzymes et métalloenzymes, des biocatalyseurs fascinants La catalyse enzymatique, ce pouvoir que possèdent certaines protéines d’accélérer de façon extraordinaire et d’orienter avec une précision fascinante les réactions chimiques de la cellule, reste, encore aujourd’hui, l’un des grands mystères des systèmes vivants. Les réactions dont il est question vont de la simple hydrolyse de liaisons peptidiques à des processus poly-électroniques d’une très grande complexité, com...

  15. Organisation et pilotage des services sur le trajet des urgences

    OpenAIRE

    Wang, Tao

    2008-01-01

    L'exigence des soins à apporter aux patients accueillis aux urgences combinée au contexte économique impose aux établissements hospitaliers, surtout aux SAU, des décisions rapides ainsi que l'optimisation de l'emploi des ressources matérielles et humaines pour maintenir la fluidité des patients sans pour autant compromettre la qualité de soins. Nous proposons à travers ce mémoire de thèse des solutions appropriées aux services d'urgence permettant d'améliorer la prise en charge des urgences d...

  16. Die Raumfahrtpolitik des Bundesforschungsministeriums

    OpenAIRE

    Weyer, Johannes

    2005-01-01

    Der vorliegende Beitrag befasst sich mit der Raumfahrtpolitik des Bundesforschungsministeriums. Zunächst wird auf die Raketenforschung der Nachkriegszeit 1945-1955 eingegangen. Im Anschluss wird der Aufbau einer forschungspolitischen Identität des Bundes auf dem Wege über die Weltraumforschung (1955-1969) nachgezeichnet. Im vierten Kapitel werden die Probleme und Herausforderungen der Raumfahrtpolitik (1969-1982) beleuchtet. Danach widmet sich der Autor der bemannten Raumfahrt und dem Aufbruc...

  17. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    Directory of Open Access Journals (Sweden)

    Somerville Robert PT

    2012-04-01

    Full Text Available Abstract Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols.

  18. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application. PMID:25823854

  19. La revolution des savants

    CERN Document Server

    Chavanne, A

    1989-01-01

    Premiere cassette : - 1666 : impact de la creation de l'Academie des Sciences par Colbert, trente ans apres le proces de Galile, et au moment des disparitions de Pascal, Descartes et Fermat. Elle dirigee par le hollandais Huyggens jusqu'a sa fuite de France au moment de la revocation de l'Edit de Nantes. - 1750 : l'Encyclopedie (ou "Dictionnaire raisonne des Sciences, des Arts et des Metiers") de Diderot et d'Alembert, soutenus par Malherbes, Buffon, Condorcet et Rousseau. - 1789 : Revolution francaise. - 8 aout 1793 : l'Assemblee, par une declaration de Marat, dissout l'Academie des Sciences. Celle-ci continue cependant ses travaux pour les poids et mesures jusqu'en 1795. - la Terreur : la condamnation a mort, pas au nom d'une "Revolution qui n'a pas besoin de savants" mais pour d'autres raisons, de trois grands hommes de science : Lavoisier, Bailly et Condorcet. - 1793-1794 : Au printemps 93, le Comite de Salut Publique s'inquiete du demi-million de soldats etrangers de toutes les pays frontaliers qui essai...

  20. Characterization of organic membrane foulants in a forward osmosis membrane bioreactor treating anaerobic membrane bioreactor effluent.

    Science.gov (United States)

    Ding, Yi; Tian, Yu; Li, Zhipeng; Liu, Feng; You, Hong

    2014-09-01

    In this study, two aerobic forward osmosis (FO) membrane bioreactors (MBR) were utilized to treat the effluent of mesophilic (35°C) and atmospheric (25°C) anaerobic MBRs, respectively. The results showed that the FO membrane process could significantly improve the removal efficiencies of N and P. Meanwhile, the flux decline of the FOMBR treating effluent of mesophilic AnMBR (M-FOMBR) was higher than that treating effluent of atmospheric AnMBR (P-FOMBR). The organic membrane foulants in the two FOMBRs were analyzed to understand the membrane fouling behavior in FO processes. It was found that the slightly increased accumulation of protein-like substances into external foulants did not cause faster flux decline in P-FOMBR than that in M-FOMBR. However, the quantity of organic matter tended to deposit or adsorb into FO membrane pores in P-FOMBR was less than that in M-FOMBR, which was accordance with the tendency of membrane fouling indicated by flux decline. PMID:24976492

  1. Sludge Bulking Property of Membrane Bio-reactor in Albumen Wqastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Albumen wastewater was treated by Membrane Bio-reactor. Sludge bulking property of Membrane Bio-Reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in Membrane Bio-reactor increased slightly under the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures,the higher block rate of membrane pore and the great quantity of filamentous bacteria at the externalsurface pres...

  2. Rheological characterization of mixed liquor in a submerged membrane bioreactor: Interest for process management

    OpenAIRE

    Van Kaam, Romuald; Anne-Archard, Dominique; Alliet-Gaubert, Marion; Albasi, Claire

    2008-01-01

    Rheological analyses of a submerged membrane bioreactor mixed liquor were performed in the aim of characterizing the mixed liquor present in the bioreactor and thus proposing a process management. These analyses pointed out that the mixed liquor was characterized by its viscoplastic property, which leads to a possible restructuring ability when a shear stress lower than the yield stress is applied. As the shear stress in the bioreactor is essentially generated by coarse bubbles, specific expe...

  3. Biodegradation of Trichloroethylene in Continuous-Recycle Expanded-Bed Bioreactors

    OpenAIRE

    Phelps, T. J.; Niedzielski, J. J.; Schram, R M; Herbes, S. E.; White, D. C.

    1990-01-01

    Experimental bioreactors operated as recirculated closed systems were inoculated with bacterial cultures that utilized methane, propane, and tryptone-yeast extract as aerobic carbon and energy sources and degraded trichloroethylene (TCE). Up to 95% removal of TCE was observed after 5 days of incubation. Uninoculated bioreactors inhibited with 0.5% Formalin and 0.2% sodium azide retained greater than 95% of their TCE after 20 days. Each bioreactor consisted of an expanded-bed column through wh...

  4. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    OpenAIRE

    Abolfazl Barzegari; Amir Ata Saei

    2012-01-01

    Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV) bioreactors initially developed by NASA. Methods: In this review article, we intend to hig...

  5. [Adaptation of coimmobilized Rhodococcus cells to oil hydrocarbons in a column bioreactor].

    Science.gov (United States)

    Serebrennikova, M K; Kuiukina, M S; Krivoruchko, A V; Ivshina, I B

    2014-01-01

    The possible adaptation of the association of Rhodococcus ruber and Rhodococcus opacus strains immobilized on modified sawdust to oil hydrocarbons in a column bioreactor was investigated. In the bioreactor, the bacterial population showed higher hydrocarbon and antibiotic resistance accompanied by the changes in cell surface properties (hydrophobicity, electrokinetic potential) and in the content of cellular lipids and biosurfactants. The possibility of using adapted Rhodococcus strains for the purification of oil-polluted water in the bioreactor was demonstrated. PMID:25757338

  6. Imaging Analysis of the In vivo Bioreactor: A Preliminary Study

    OpenAIRE

    Holt, Ginger E.; Halpern, Jennifer L.; Lynch, Conor C.; Devin, Clinton J; Schwartz, Herbert S.

    2008-01-01

    The in vivo bioreactor is a hermetically sealed, acellular hydroxyapatite scaffold coated with growth factors that has a pulsating vascular pedicle leash threaded through its center. Tissue-engineered bone is created in weeks while the bioreactor remains embedded under the skin of an animal. The bioreactor also provides a model to study osteogenesis and pathologic scenarios such as tumor progression and metastasis by creating a controlled microenvironment that makes skeletogenesis amenable to...

  7. Mathematical modeling and experimental testing of three bioreactor configurations based on windkessel models

    OpenAIRE

    Genevieve Lachance; Jean Ruel

    2010-01-01

    This paper presents an experimental study of three bioreactor configurations. The bioreactor is intended to be used for the development of tissue-engineered heart valve substitutes. Therefore it must be able to reproduce physiological flow and pressure waveforms accurately. A detailed analysis of three bioreactor arrangements is presented using mathematical models based on the windkessel (WK) approach. First, a review of the many applications of this approach in medical studies enhances its f...

  8. High cell density and productivity culture of Chinese hamster ovary cells in a fluidized bed bioreactor

    OpenAIRE

    Kong, D.; Cardak, S.; Chen, M.; Gentz, R; Zhang, J.

    1999-01-01

    A recombinant Chinese hamster ovary clone was cultivated in a 2L Cytopilot Mini fluidized bed bioreactor using Cytoline 1 microcarriers and a 10L B. Braun stirred tank bioreactor with Cytodex 1 microcarriers. Cytoline 1 is a macroporous polyethylene microcarrier and Cytodex 1 is a solid DEAE-dextran microcarrier. Cytoline 1 microcarriers in the fluidized bed bioreactor were gently mixed by an uplifting flow. Circulation and sparging in Cytopilot Mini were separated from the fluidized microcar...

  9. Agroforesterie, des arbres et des cultures

    OpenAIRE

    dupraz, Christian; Liagre, Fabien

    2008-01-01

    Des arbres dans nos parcelles cultivées ? Pourquoi pas ! Depuis un siècle, ils ont été systématiquement retirés des parcelles agricoles. Pourtant, de plus en plus, on étudie leur valeur ajoutée en matière : de sols et pour les différentes productions végétales, de biodiversité, de protection de l'environnement, de qualité de l'eau (bilan hydrique). Les auteurs, dans une première partie, exposent les données pour comprendre le fonctionnement d'une parcelle agroforestière. Ils donnent, dans une...

  10. Rachid Santaki, Des chiffres et des litres

    OpenAIRE

    Harzoune, Mustapha

    2013-01-01

    Avec Des chiffres et des litres, Rachid Santaki signe un roman qui s’inscrit dans la pure tradition du néo-polar. Nous sommes en 1998, la Coupe du monde de football mobilise l’attention du pays. Hachim, un jeune de Saint-Denis intelligent et sensible, doué pour les études souhaite faire carrière dans le journalisme mais s’embarque dans une galère qui n’est pas faite pour lui : le deal de shit. Il faut savoir pourtant rester à sa place, ne pas jouer les gros durs quand on a une “gueule de prem...

  11. Bacterial study of the anaerobic bioreactor for distillery effluent

    International Nuclear Information System (INIS)

    This study relates with anaerobic bioreactors of Habib Sugar Mills, Nawabshah. Bacterial growth was studied through microscope along with its effect on the production of methane gas (Biogas) at all HRTs (Hydraulic Retention Times) between 15 and 28 days. The bacterium has the efficiency to convert 12% glucose within 24 hours to final product and cell mass. The acetogenic organisms also show their maximum growth on glucose in BGP-1 and BPG-2 at both the corks, where as Methanogenic organisms have shown their zero shown their zero growth on glucose. The efforts have been taken to determine the methanogenic, acetogenic and syntrophomonas sp. data of anaerobic bioreactors of BGP (Biogas Plant) I and II, when these samples were cultured on acetate, methanol, formate, butyrate, propionate and glucose. (author)

  12. [Performance of internal-loop air-lift nitrifying bioreactor].

    Science.gov (United States)

    Lin, Feng-Mei; Zheng, Ping; Zhao, Yang-Yang; Hu, Bao-Lan; Chen, Jian-Song

    2002-07-01

    The performance of internal-loop air-lift nitrifying bioreactor was good with strong tolerance to influent ammonia concentration (78.49 mmol/L), high volume converting rate (163.18 mmol/L.d) and obvious working stability (ammonia removal > 94.42%). During operation of internal-loop air-lift bioreactor, the nitrifying activated sludge was granulated. The nitrifying granular activated sludge began to appear on day 45. Its average diameter was 0.83 mm, settling velocity was 55.53 m/h and specific ammonia removal rate was 0.95 mmol (NH4(+)-N)/g (VS).d. The nitrifying granular activated sludge had the activity for anaerobic ammonia oxidation with ammonia oxidation rate of 0.23 mmol (NH4(+)-N)/g(VS).d and nitrite reduction rate of 0.24 mmol (NO2(-)-N)/g(VS).d. PMID:12385250

  13. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. PMID:26776150

  14. Sensor equipment for quantification of spatial heterogeneity in large bioreactor

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Formenti, Luca Riccardo; Stocks, Stuart M.;

    cannot be directly compared to laboratory scale experiments due to these reasons, and thus, in order to understand the large scale processes, experimental data has to be collected at large scale. The cost of acquiring data at large scale is high. The bioreactors are usually run with a limited array of...... sensors and in order to apply more sensor equipment the bioreactor has to be modified which is both costly and results in production downtime. The presence of three phases (gas, liquid, and solid), and the opaque nature of the fermentation broth together with the necessity of heat sterilization further...... increases the requirements to the sensor equipment. In order to address these issues this study aims to make an investigation into freely floating, battery driven sensor particles that can follow the liquid movement in the reactor and make measurements while being distributed in the whole volume of the...

  15. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    Directory of Open Access Journals (Sweden)

    Awad Abdelgadir

    2014-01-01

    Full Text Available The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB, namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT, Organic Loading Rate (OLR, and sludge retention time (SRT were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive.

  16. Hydrodynamic characterization of a column-type prototype bioreactor.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Morales-Contreras, Marcos; Robles-Martínez, Fabián; García-Nazariega, Melvin; Lobato-Calleros, Consuelo

    2008-03-01

    Agro-food industrial processes produce a large amount of residues, most of which are organic. One of the possible solutions for the treatment of these residues is anaerobic digestion in bioreactors. A novel 18-L bioreactor for treating waste water was designed based on pneumatic agitation and semispherical baffles. Flow patterns were visualized using the particle tracer technique. Circulation times were measured with the particle tracer and the thermal technique, while mixing times were measured using the thermal technique. Newtonian fluid and two non-Newtonian fluids were used to simulate the operational conditions. The results showed that the change from Newtonian to non-Newtonian properties reduces mixed zones and increases circulation and mixing times. Circulation time was similar when evaluated with the thermal and the tracer particle methods. It was possible to predict dimensionless mixing time (theta (m)) using an equivalent Froude number (Fr (eq)). PMID:18401759

  17. Enhancing inhibited fermentations through a dynamic electro-membrane bioreactor

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Garde, Arvid; Rype, Jens-Ulrik;

    challenging operation is associated with different dynamic behaviors of the individual units plus their interaction. The purpose of this contribution is to show the results of experimental and model based efforts done in order to investigate the operation of a membrane bioreactor. From modeling point of view...... technology ensures long operation time by reversing periodically the polarity of the imposed electrical field to significantly reduce the influence of membrane fouling. The periodic nature of the electrically driven membrane separation process makes the membrane bioreactor operation non trivial. This......, it is interesting to reveal to which extend the REED module can facilitate the pH control in the fermenter. In this case, the membrane and reactor unit interactions are exploited to substantially increase the lactate productivity and substrate utilization compared to a conventional fermentation with...

  18. Biological nitrogen removal using a submerged membrane bioreactor system

    International Nuclear Information System (INIS)

    A pilot-scale study was conducted using ZenoGem hollow-fiber microfiltration membrane bioreactor system to investigate the performance of membrane bioreactor process to remove nitrogen from primary effluent at a municipal wastewater treatment plant. Different operating conditions were examined by varying hydraulic retention time (HRT) and sludge retention time (SRT) between 5-8 h and 20-50 days, respectively. In addition, a series of laboratory batch tests were performed to measure the biodegradation kinetic and stoichiometric parameters under the conditions consistent with the pilot testing. The results showed that the process achieved removal efficiencies of 80-98% for COD, 93%-99% for BOD5, and 70-93% for nitrogen. The efficiency and kinetics of COD and nitrogen removal would change greatly from one operating condition to another. However, the measured kinetic parameters still fell within the typical range of those reported in the literature using Activated Sludge Models (ASM)

  19. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals

    OpenAIRE

    Na Yan; Chengming Fan; Yuhong Chen; Zanmin Hu

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving incr...

  20. Gel layer formation on membranes in Membrane Bioreactors

    OpenAIRE

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is known to be caused by several membrane fouling mechanisms. Extracellular polymeric substances (EPS) play a major role during fouling development. However, EPS concentration in the bulk solution can ...

  1. Mammalian cell retention devices for stirred perfusion bioreactors

    OpenAIRE

    Woodside, Steven M.; Bowen, Bruce D.; Piret, James M.

    1998-01-01

    Within the spectrum of current applications for cell culture technologies, efficient large-scale mammalian cell production processes are typically carried out in stirred fed-batch or perfusion bioreactors. The specific aspects of each individual process that can be considered when determining the method of choice are presented. A major challenge for perfusion reactor design and operation is the reliability of the cell retention device. Current retention systems include cross-flow membrane fil...

  2. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    OpenAIRE

    Luisa Vera; Ignacio Ruigómez; Enrique González; Paula Bodelón; Juan Rodríguez-Sevilla

    2014-01-01

    The operation of submerged anaerobic membrane bioreactors (SAnMBRs) for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of o...

  3. Bacteriorhodopsin as a Possible Element of Membrane Bioreactors

    Science.gov (United States)

    Maksimychev, A. V.; Chamorovskii, S. K.

    1988-06-01

    Certain approaches to the creation of membrane bioreactors, representing an example of integrated membrane systems, are examined. The characteristic features of the use of organised molecular assemblies in such systems as sensor and regulatory elements are discussed. The properties of the retinal-protein complex of bacteriorhodopsin as a promising component of integrated membrane systems, capable of carrying out regulatory functions, are examined. The bibliography includes 139 references.

  4. Membrane life estimation in full-scale immersed membrane bioreactors

    OpenAIRE

    Ayala, D. F.; Ferre, V; Judd, Simon J.

    2011-01-01

    Limited quantitative available information exists regarding the robustness of membranes used in immersed membrane bioreactor (iMBR) applications, and no information on the relative contribution of the two main membrane failure modes of permeability and integrity loss. Such information is crucial given the significance of membrane replacement costs to the viability and sustainability of iMBRs. Measurements of membrane permeability and integrity have been made on flat sheet (F...

  5. Automated HPLC monitoring of broth components on bioreactors

    OpenAIRE

    Favre, Eric; Pugeaud, Patrick; Raboud, Jean Philippe; Péringer, Paul

    1989-01-01

    Under proper operating conditions, a low dead volume continuous filtration module operated on biological broths (yeast and bacteria suspensions in stirred reactors) still fulfills the flow-rate requirements of an analytical apparatus (for example HPLC or FIA) without membrane regeneration. The filtrate stream has been successfully connected to a bioreactor in order to perform the automated HPLC analysis of broth components. The monitoring of the carbon source (lactose), and minor products (gl...

  6. Computational Model for Microbubble Enhanced Performance of Airlift Bioreactor (ALB)

    OpenAIRE

    Ng, W C; Brittle, S.; Howell, R; W. B. Zimmerman

    2014-01-01

    This paper presents a computational model for microbubble enhanced performance of an airlift bioreactor (ALB). Five different bubble diameters were defined in the model under the same conditions (440 µm to 1 mm bubble diameter). The computational model parameters and the size of the ALB were defined by referring to experimental work done previously. The main objective of the model is to study the effect of bubble size on the rising velocity and the liquid flow velocity in the airlift reactor...

  7. Mathematical interpretation of mass transfer process in anaerobic bioreactors

    OpenAIRE

    Ружинская, Людмила Ивановна; Фоменкова, Анастасия Алексеевна

    2013-01-01

    The article considers the methanogenesis in bioreactors with immobilized microflora on fixed media. The processes of decomposition of organic pollution of the wastewater and the formation of metabolic products are analyzed. At the same time, the decomposition of organic pollution is considered from the standpoint of a two-stage process. As the first stage, the hydrolysis and acid production is considered, as the second - methanogenesis. On the basis of this process the spatial distribution of...

  8. A Novel Seeding and Conditioning Bioreactor for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Julia Schulte

    2014-07-01

    Full Text Available Multiple efforts have been made to develop small-diameter tissue engineered vascular grafts using a great variety of bioreactor systems at different steps of processing. Nevertheless, there is still an extensive need for a compact all-in-one system providing multiple and simultaneous processing. The aim of this project was to develop a new device to fulfill the major requirements of an ideal system that allows simultaneous seeding, conditioning, and perfusion. The newly developed system can be actuated in a common incubator and consists of six components: a rotating cylinder, a pump, a pulse generator, a control unit, a mixer, and a reservoir. Components that are in direct contact with cell media, cells, and/or tissue allow sterile processing. Proof-of-concept experiments were performed with polyurethane tubes and collagen tubes. The scaffolds were seeded with fibroblasts and endothelial cells that were isolated from human saphenous vein segments. Scanning electron microscopy and immunohistochemistry showed better seeding success of polyurethane scaffolds in comparison to collagen. Conditioning of polyurethane tubes with 100 dyn/cm2 resulted in cell detachments, whereas a moderate conditioning program with stepwise increase of shear stress from 10 to 40 dyn/cm2 induced a stable and confluent cell layer. The new bioreactor is a powerful tool for quick and easy testing of various scaffold materials for the development of tissue engineered vascular grafts. The combination of this bioreactor with native tissue allows testing of medical devices and medicinal substances under physiological conditions that is a good step towards reduction of animal testing. In the long run, the bioreactor could turn out to produce tissue engineered vascular grafts for human applications “at the bedside”.

  9. Transport Advances in Disposable Bioreactors for Liver Tissue Engineering

    Science.gov (United States)

    Catapano, Gerardo; Patzer, John F.; Gerlach, Jörg Christian

    Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.

  10. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    Science.gov (United States)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  11. The determination and origin of fibre clogging in membrane bioreactors

    OpenAIRE

    Stefanski, M.; Kennedy, S.; Judd, Simon J.

    2011-01-01

    Membrane channel clogging in membrane bioreactors (MBRs) has been largely unexplored by the research community, despite it being widely recognised as the main impediment to sustainable MBR operation by practitioners, and reflects the difficulty of examining clogging with the same scientific rigour as membrane fouling. The incidence of clogging/“ragging” has been assessed across 10–12 full-scale flat sheet immersed MBRs, equipped with inlet screens of similar rating, and ...

  12. Biological treatment and thickening with a hollow fibre membrane bioreactor

    OpenAIRE

    Zsirai, T.; Wang, Z-Z.; Gabarrón, S.; Connery, K.; Fabiyi, M.; Larrea, A.; Judd, Simon J.

    2014-01-01

    Aerobic operation of an immersed hollow fibre membrane bioreactor, treating municipal wastewater supplemented with molasses solution, has been studied across mixed liquor suspended solids (MLSS) concentrations between 8 and 32 g L-1, the higher concentrations being normally associated with thickening operations. Only a marginal loss in membrane permeability was noted between 8 and 18 g L-1 when operation was conducted without clogging. The sustainable operational flux attainable above 18 g L-...

  13. Bubble Bed Bioreactor Malfunctions Revealed by Computational Flow Simulation Analysis

    Czech Academy of Sciences Publication Activity Database

    Fialová, Marie; Staykov, P.; Vlaev, S. D.

    Bratislava: Slovak University of Technology, 2009 - (Markoš, J.), s. 351 ISBN 978-80-227-3072-3. [International Conference of Slovak Society of Chemical Engineering /36./. Tatranské Matliare (SK), 25.05.2009-29.05.2009] R&D Projects: GA ČR GA104/07/1110 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble column bioreactor * gas holdup * CFD Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Analysis and control of an anaerobic upflow Fixed bed bioreactor

    International Nuclear Information System (INIS)

    This paper presents the bifurcation analysis in an anaerobic upflow fixed bed bioreactor, which is an anaerobic digestion system useful for wastewater treatment. In the dynamic analysis part, the equilibrium points, linear stability and bifurcation curves are studied, focusing in the washout condition. For the self tuning regulator the parameter estimation and control law are designed, and an integral action is introduced in order to address the disturbances. The simulation studies show the improvement of the performance when a disturbance appears.

  15. Video of Tissue Grown in Space in NASA Bioreactor

    Science.gov (United States)

    2003-01-01

    Principal investigator Leland Chung grew prostate cancer and bone stromal cells aboard the Space Shuttle Columbia during the STS-107 mission. Although the experiment samples were lost along with the ill-fated spacecraft and crew, he did obtain downlinked video of the experiment that indicates the enormous potential of growing tissues in microgravity. Cells grown aboard Columbia had grown far larger tissue aggregates at day 5 than did the cells grown in a NASA bioreactor on the ground.

  16. Micropollutants removal and tecnological development of membrane bioreactors

    OpenAIRE

    Santos, Ana

    2010-01-01

    The increasing worldwide contamination of aquatic environment with pollutants introduced by anthropogenic sources has become of great concern. Although present at low concentration, many of these pollutants have considerable long-term impacts on the ecosystem, such that extremely challenging legislative limits on their concentration in effluents are being proposed. This has led to the examination of membrane bioreactor (MBR) technology for wastewater treatment, since it offers ...

  17. Startup and stabilization of anaerobic membrane bioreactors at ambient temperature

    OpenAIRE

    Benito Peña, Carlos

    2015-01-01

    There has been an increasing interest in wastewater treatment in last decades to reduce human footprint. Primarily, anaerobic technology focused on treatment and stabilization of sludge, but now the tendency is to give it a major role in low cost treatment of high/low strength wastewaters, since anaerobic digestion offers energy generation through gas production. Anaerobic membrane bioreactors (AnMBR) combine anaerobic digestion with membrane filtration. They are becoming a feasible opti...

  18. Cytotoxicity micropollutant removal in a crossflow membrane bioreactor

    OpenAIRE

    Delgado, Luis Fernando; Faucet-Marquis, Virginie; Pfohl-Leszkowicz, Annie; Dorandeu, Christophe; Marion, Bénédicte; Schetrite, Sylvie; Albasi, Claire

    2011-01-01

    The application of membrane bioreactor (MBR) technology was investigated with the aim of evaluating its potential for cytostatic drug and cytotoxicity bioremoval. The toxicity removal was assessed from biomarker test. CP removal of up to 80% was achieved under the operating conditions studied (HRT of 48 h and a SRT of 50 days). The increase of TMP was associated with an increase of supernatant toxicity as if fouling led to retention of the toxicity. Peaks of supernatant cytotoxicity were corr...

  19. Analysis of fouling mechanisms in anaerobic membrane bioreactors

    OpenAIRE

    Charfi, Amine; Ben Amar, Nihel; Harmand, Jérôme

    2012-01-01

    In this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play. Short-term ...

  20. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    OpenAIRE

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading rates. Membrane filtration represents an alternative way to achieve biomass retention. In membrane bioreactors, complete biomass retention can be achieved, irrespective of cells capacity to form bi...

  1. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  2. Denitrifying Bioreactors for Nitrate Removal: A Meta-Analysis.

    Science.gov (United States)

    Addy, Kelly; Gold, Arthur J; Christianson, Laura E; David, Mark B; Schipper, Louis A; Ratigan, Nicole A

    2016-05-01

    Meta-analysis approaches were used in this first quantitative synthesis of denitrifying woodchip bioreactors. Nitrate removal across environmental and design conditions was assessed from 26 published studies, representing 57 separate bioreactor units (i.e., walls, beds, and laboratory columns). Effect size calculations weighted the data based on variance and number of measurements for each bioreactor unit. Nitrate removal rates in bed and column studies were not significantly different, but both were significantly higher than wall studies. In denitrifying beds, wood source did not significantly affect nitrate removal rates. Nitrate removal (mass per volume) was significantly lower in beds with effects with bed temperature; a of 2.15 was quite similar to other studies. Lessons from this meta-analysis can be incorporated into bed designs, especially extending hydraulic retention times to increase nitrate removal under low temperature and high flow conditions. Additional column studies are warranted for comparative assessments, as are field-based studies for assessing in situ conditions, especially in aging beds, with careful collection and reporting of design and environmental data. Future assessment of these systems might take a holistic view, reviewing nitrate removal in conjunction with other processes, including greenhouse gas and other unfavorable by-product production. PMID:27136153

  3. Growing Three-Dimensional Corneal Tissue in a Bioreactor

    Science.gov (United States)

    Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.

    2003-01-01

    Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.

  4. Immunological analysis of aerobic bioreactor bovine theileriosis vaccine.

    Directory of Open Access Journals (Sweden)

    Gholamreza Habibi

    2014-09-01

    Full Text Available In this study, the pilot production of aerobic bioreactor tropical theileriosis vaccine was optimized with the aim of immunological assays for further mass production.We have shown earlier the delayed type hypersensitivity (DTH assay could be used for evaluating the immunity and memory cells against specific Theileria antigen in vaccinated animals. In addition, TNF-α is the principle cytokine in modulating the cytotoxic activity of cytotoxic T-lymphocytes (CTL. Immunological analysis of the vaccine was performed by using two cell mediated immunity (CMI in vitro and in vivo DTH test (Theilerin and TNF-α assay.The results of immune responses of susceptible immunized cattle by bioreactor vaccine in comparison with conventional flask vaccine revealed a significant stimulation of immune cells by transcription of high level of TNF-α and positive reaction against Theileria antigen in Theilerin skin test (DTH.The equal immunological results achieved in both above mentioned vaccines verified the satisfactory immunity for aerobic bioreactor theileriosis vaccine for advance mass vaccination in the field on a large-scale.

  5. Simulation of three-phase fluidized bioreactors for denitrification

    International Nuclear Information System (INIS)

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO3-/K/sub s/ + NO3-) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m3-min (% biomass) and a K/sub s/ of 163 g/m3 for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued

  6. Bioreactors for tissue engineering--a new role for perfusionists?

    Science.gov (United States)

    Sistino, Joseph J

    2003-09-01

    Tissue engineering is an exciting new area of medicine with rapid growth and expansion over the last decade. It has the potential to have a profound impact on the practice of medicine and influence the economic development in the industry of biotechnology. In almost every specialty of medicine, the ability to generate replacement cells and develop tissues will change the focus from artificial organs and transplantation to growing replacement organs from the patient's own stem cells. Once these organs are at a size that requires perfusion to maintain oxygen and nutrient delivery, then automated perfusion systems termed "bioreactors" will be necessary to sustain the organ until harvesting. The design of these "bioreactors" will have a crucial role in the maintenance of cellular function throughout the growth period. The perfusion schemes necessary to determine the optimal conditions have not been well elucidated and will undergo extensive research over the next decade. The key to progress in this endeavor will development of long-term perfusion techniques and identifying the ideal pressures, flow rates, type of flow (pulsatile/nonpulsatile), and perfusate solution. Perfusionists are considered experts in the field of whole body perfusion, and it is possible that they can participate in the development and operation of these "bioreactors." Additional education of perfusionists in the area of tissue engineering is necessary in order for them to become integral parts of this exciting new area of medicine. PMID:14653420

  7. Application of high cell density airlift bioreactors to bio-ethanol production – study on optimal bioreactor operation

    OpenAIRE

    Klein, Jaroslav; Vicente, A.A.; Maia, J. M.; Domingues, Lucília; Teixeira, J.A.

    2004-01-01

    In this paper a hydrodynamic and rheological analysis of a continuous airlift bioreactor with high cell density system is presented. A highly flocculating recombinant strain of Sacharomyces cerevisae containing genes for lactose transport (lactose permease) and hydrolysis (β-galactosidase) was exploited to ferment lactose from cheese whey to ethanol. The magnetic particle-tracer method was used to assess the effect of operational conditions (air flow rate, biomass concentration) o...

  8. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    Science.gov (United States)

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass. PMID:26606088

  9. Histoire intellectuelle des droits humains

    OpenAIRE

    Zuber, Valentine

    2014-01-01

    Sous le titre générique « Histoire intellectuelle des droits humains », le séminaire de l’année 2012-2013 a été tout spécialement consacré aux origines spécifiquement religieuses des grands textes des droits de l’homme contemporains.

  10. Containerized Wetland Bioreactor Evaluated for Perchlorate and Nitrate Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dibley, V R; Krauter, P W

    2004-12-02

    The U.S. Department of Energy (DOE) and Lawrence Livermore Laboratory (LLNL) designed and constructed an innovative containerized wetlands (bioreactor) system that began operation in November 2000 to biologically degrade perchlorate and nitrate under relatively low-flow conditions at a remote location at Site 300 known as Building 854. Since initial start-up, the system has processed over 3,463,000 liters of ground water and treated over 38 grams of perchlorate and 148 kilograms of nitrate. Site 300 is operated by the University of California as a high-explosives and materials testing facility supporting nuclear weapons research. The 11-square mile site located in northern California was added to the NPL in 1990 primarily due to the presence of elevated concentrations of volatile organic compounds (VOCs) in ground water. At the urging of the regulatory agencies, perchlorate was looked for and detected in the ground water in 1999. VOCs, nitrate and perchlorate were released into the soil and ground water in the Building 854 area as the result of accidental leaks during stability testing of weapons or from waste discharge practices that are no longer permitted at Site 300. Design of the wetland bioreactors was based on earlier studies showing that indigenous chlorate-respiring bacteria could effectively degrade perchlorate into nontoxic concentrations of chlorate, chlorite, oxygen, and chloride. Studies also showed that the addition of organic carbon would enhance microbial denitrification. Early onsite testing showed acetic acid to be a more effective carbon source than dried leaf matter, dried algae, or milk replacement starter; a nutrient and carbon source used in a Department of Defense phytoremediation demonstration. No inocula were added to the system. Groundwater was allowed to circulate through the bioreactor for three weeks to acclimate the wetland plants and to build a biofilm from indigenous flora. Using solar energy, ground water is pumped into granular

  11. Le statut vitaminique des individus et des populations…

    Directory of Open Access Journals (Sweden)

    Icart Jean-Claude

    2000-05-01

    Full Text Available Comme le souligne un récent rapport du Haut comité de santé publique, le statut vitaminique des individus et des populations demeure une question d’actualité. Si les études ne révèlent plus de signes évocateurs de carence, au plus des problèmes de déficiences pour certains groupes à risque, des interrogations, demeurent malgré le contexte d’abondance, concernant la couverture des besoins, laquelle pourrait s’avérer inférieure aux valeurs considérées comme satisfaisantes.

  12. Table des documents

    OpenAIRE

    2015-01-01

    Tableaux Sommes octroyées en don par le roi à la ville de Poitiers (1418-1429) 56 Sommes octroyées en don par le roi à la ville de Tours (1421-1422) 56 Sommes octroyées en don par le roi à la ville de Tours (1422-1432) pour le payement des délégations communales 57 Répartition chronologique des ambassades urbaines de Tours et Poitiers vers le roi (1438-1461) 76 Les groupes d'opinions à Bourges le 26 avril 1474 93 Rapport des octrois royaux à la ville de Bourges entre 1487 et 1535 (en moyennes...

  13. Table des figures

    OpenAIRE

    2015-01-01

    Figure n° 1 : Nombre de traités sur la culture des arbres fruitiers publiés en français à l’époque moderne 30 Figure n° 2 : Un exemple de plagiat, la vraie fausse nouvelle instruction pour la culture des figuiers 33 Figure n° 3 : Nombre d’espèces fruitières sélectionnées dans les traités horticoles parisiens (xviie-xviiie siècles) 65 Figure n° 4 : Nombre d’espèces fruitières proposées à la vente dans les catalogues des pépiniéristes parisiens (xviiie-début xixe s.) 65 Figure n° 5 : Les ustens...

  14. Table des illustrations

    OpenAIRE

    2015-01-01

    Intégrer les Tsiganes Hongrie, 1970 (photo DR) 34 Discuter entretient la fraternité. (photo M. Stewart) 35 La veille du mariage (photo M. Stewart) 36 Le « salon » (photo M. Stewart) 37 Les activités économiques des Tsiganes sont conçues comme des jeux. (photo M. Stewart) 39 Lev cheval (photo I. Nemeth) 41 Le cortège d’un mariage (photo M. Stewart) 43 Avant le mariage (photo M. Stewart) 43 C’est par le chant (photo M. Stewart) 45 Des « frères » boivent en harmonie (photo M. Stewart) 46 Les che...

  15. Les lueurs des sables

    CERN Multimedia

    Les lueurs des sables

    2013-01-01

    Two CERN ladies are getting ready for the “Trophée Roses des Sables” rally adventure: Julie and Laetitia are finalizing the last details before setting off on Monday 7th October 2013. Julie from EN-MEF group and Laetitia from DGS-SEE group, met at the CERN Rugby club. This year, they are participating in the 100 % female rally which will take place in Morocco from 10 to 20 October. They will be carrying along 100 kg of humanitarian donation for children such as some clothes, books and medical material. Do not hesitate to show your support at their farewell party to be held on Monday 7 October, from 4 to 6 pm in front of the St Genis-Pouilly Mairie (city Hall). Follow their exciting adventure on the blog leslueursdessables.trophee-roses-des-sables.org and on their association’s Facebook page Les Lueurs des Sables.

  16. La fin des certitudes ?

    OpenAIRE

    Renard, Philippe

    2008-01-01

    2006 fut l’année anniversaire des 150 ans de la naissance de l’hydrogéologie quantitative. La théorie des variables régionalisées, ou géostatistique, est beaucoup plus jeune mais a eu un impact majeur. Aujourd’hui, tout étudiant manie avec brio le krigeage que ce soit pour cartographier une contamination, un champ de transmissivité, ou le toit d’une nappe. Mais la géostatistique n’est pas seulement cela. Son intérêt majeur réside non pas dans l’interpolation des paramètres mais dans la possib...

  17. Geschichte des SIN

    CERN Document Server

    Pritzker, Andreas

    2013-01-01

    Dieses Buch erzählt die Geschichte des Schweizerischen Instituts für Nuklearforschung (SIN). Das Institut wurde 1968 gegründet und ging 1988 ins Paul Scherrer Institut (PSI) über. Die Gründung des SIN erfolgte in einer Zeit, als die Physik weitherum als Schlüsseldisziplin für die technologische und gesellschaftliche Entwicklung galt. Der Schritt war für ein kleines Land wie die Schweiz ungewöhnliche und zeugte von Mut und Weitsicht. Ungewöhnlich waren der Folge die Leistungen des SIN im weltweiten Vergleich sowie sein Einfluss auf die schweizerische, teils auf die internationale Wissenschaftspolitik.

  18. Chimie des processus biologiques

    OpenAIRE

    Fontecave, Marc

    2016-01-01

    Enseignement Cours : Du CO2 aux carburants, un renversement salutaire Le développement des nouvelles technologies de l’énergie pour l’exploitation des énergies renouvelables, comme l’énergie solaire ou l’énergie éolienne diluées et intermittentes, nécessite celui des procédés de stockage de l’énergie. Une façon de stocker ces énergies est de les transformer en énergie chimique. L’exemple le plus classique est l’électrolyse de l’eau en hydrogène, ce dernier pouvant être en effet ensuite utilis...

  19. Des millets aux nations

    OpenAIRE

    Pitsos, Nicolas

    2012-01-01

    L’auteur de ce roman construit son intrigue sur l’histoire de plusieurs familles d’une part au moment de l’effondrement d’un monde, celui des millets de l’Empire ottoman fondé sur le principe de l’identification des individus en fonction de leurs croyances religieuses et, d’autre part, lors de la mise en place d’une nouvelle organisation politique, celle des États-nations obsédés par l’idée de la définition de l’individu sur la base de critères nationaux. L'exemple narratif dominant est celui...

  20. La foi des charbonniers

    OpenAIRE

    Desbois, Evelyne; Jeanneau, Yves; Mattéi, Bruno

    2014-01-01

    Entre 1945 et 1947, deux années lourdes d'effets historiques et sociaux : la corporation minière atteint son apogée et commence son déclin. Trois regards croisés, complémentaires, portés sur un même objet, cette bataille du charbon dont on ne sait plus grand-chose, même du côté des terrils du Nord. Face au trou noir laissé dans les mémoires par cet épisode productiviste - amnésie collective remarquable - cette recherche soulève des questions iconoclastes, convoque des témoins, acteurs ou spe...

  1. Les archives des bagnes

    Directory of Open Access Journals (Sweden)

    Archives Nationales d’Outre-Mer

    2008-01-01

    Full Text Available Les établissements pénitentiaires coloniaux étaient administrés par le ministère de la Marine et des Colonies, puis par le ministère des Colonies (1881, en liaison avec les ministères de la Justice et de l’Intérieur. Les archives ont par conséquent été versées aux Archives nationales d’outre-mer avec le fonds du ministère des Colonies.Le fonds représente environ 760 ml (5358 articles. Il concerne presque exclusivement les bagnes de Guyane et de Nouvelle-Calédonie et couvre la période 1852-1...

  2. Bildwerke des Meisters HW

    OpenAIRE

    Schellenberger, Simona

    2007-01-01

    Etwa 20 skulpturale Arbeiten des frühen 16. Jahrhunderts werden auf der Basis stilkritischer Untersuchungen dem so genannten Meister HW zugeschrieben. Die Bildwerke gruppieren sich um drei mit den Buchstaben HW monogrammierte und datierte Bildwerke: die Figur der Hl. Helena von der Hl.-Kreuz-Kapelle des Rathauses in Halle/Saale (1501/1502), das Altarretabel in der Bornaer Marienkirche (1511) und die Schöne Tür von der Franziskanerklosterkirche in Annaberg (1512). Neben zwei Arbeiten in Goslar...

  3. Fokale Therapie des Prostatakarzinoms

    Directory of Open Access Journals (Sweden)

    Roosen A

    2013-01-01

    Full Text Available Die EAU bezeichnet die fokale Therapie des Prostatakarzinoms als die therapeutische Option mit dem größten Zukunftspotenzial, auch wenn es sich dabei derzeit nicht um ein Standardverfahren handelt. Sie vermag bei Patienten mit einem niedrigmalignen, fokal begrenzten Prostatakarzinom die Lücke zu schließen zwischen potenzieller Übertherapie durch die radikalen Standardverfahren und der onkologischen Unsicherheit einer ,,Active surveillance“. Dieser Überblick gibt den derzeitigen Kenntnisstand bei der fokalen Therapie des Prostatakarzinoms wieder.

  4. Classification des rongeurs

    OpenAIRE

    Mignon, Jacques; Hardouin, Jacques

    2003-01-01

    Les lecteurs du Bulletin BEDIM semblent parfois avoir des difficultés avec la classification scientifique des animaux connus comme "rongeurs" dans le langage courant. Vu les querelles existant encore aujourd'hui dans la mise en place de cette classification, nous ne nous en étonnerons guère. La brève synthèse qui suit concerne les animaux faisant ou susceptibles de faire partie du mini-élevage. The note aims at providing the main characteristics of the principal families of rodents relevan...

  5. Optimization of denitrifying bioreactor performance with agricultural residue-based filter media

    Science.gov (United States)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Columns were packed with wood chips...

  6. Treatment of contaminated drilling sludge in a bioreactor; Behandlung von Bohrspuelschlaemmen im Bioreaktorverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Noke, A.

    2003-07-01

    Fine-grained contaminated drilling mud from petroleum production processes was purified in an airlift bioreactor. The process regime of bioreactor treatment was optimized, elements of the process periphery were investigated (e.g. purification of reactor off-air in biofilters as well as mud dehydration), and the hazard of the resulting material was assessed.

  7. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    Science.gov (United States)

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  8. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming; Wendt, David; Jespersen, Stig; Juhl, Maria Vinther; Theilgaard, Naseem; Martin, Ivan; Overgaard, Søren

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  9. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    Science.gov (United States)

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  10. Fluid bed porosity equation for an inverse fluidized bed bioreactor with particles growing biofilm

    International Nuclear Information System (INIS)

    Fluid Bed Bioreactor performance is strongly affected by bed void fraction or bed porosity fluctuations. Particle size enlargement due to biofilm growth is an important factor that is involved in these variations and until now there are no mathematical equations that consider biofilm growth. In this work a mathematical equation is proposed to calculate bed void fraction in an inverse fluid bed bioreactor. (Author)

  11. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    Science.gov (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  12. Figures mythiques des mondes musulmans

    OpenAIRE

    Aigle, Denise; Arnaud, Jean-Luc; Bacqué-Grammont, Jean-Louis; Balaÿ, Christophe; Bohas, Georges; Claudot-Hawad, Hélène; Copeaux, Etienne; Deheuvels, Luc-Willy; Démians d'Archimbaud, Gabrielle; Denoix, Sylvie; DeWeese, Devin; Farès-Drappeau, Saba; Forbes Manz, Beatrice; Frank, Allen J.; Guichard, Pierre

    2004-01-01

    En rapportant des récits extraordinaires mettant en scène des ancêtres fondateurs, l'historiographie islamique remplit une fonction mythique. Dans la mémoire des peuples, l'histoire est dominée par une longue succession de figures glorieuses comme Iskandar, l'Alexandre le Grand des musulmans, le Prophète et ses Compagnons, Saladin, Baybars, Gengis Khan, Tamerlan qui fondent, défendent et rénovent au fil des siècles une tradition immémoriale. Ces grands ancêtres sont pris pour modèles, se char...

  13. Dans la Trajectoire des Choses

    OpenAIRE

    Coupaye, Ludovic; Douny, Laurence

    2010-01-01

    Dans la trajectoire des choses. Comparaison des approches francophones et anglophones contemporaines en anthropologie des techniques. Dans cette introduction, les auteurs exposent les approches francophones et anglophones de l’étude des techniques et suggèrent que ces deux traditions ont traité d’enjeux comparables. Ils les resituent dans l’histoire des Sciences humaines et analysent leur place dans le champ anthropologique. Ils retracent les débats et les échanges qui les ont enrichies, part...

  14. Studies on the turnover and properties of dump groundwaters in brown coal mining areas and possibilities of influencing them. Final report; Untersuchungen zum Stoffumsatz und zur Beschaffenheit der Kippengrundwaesser in Braunkohlebergbaugebieten und Moeglichkeiten zu deren Beeinflussung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Katzur, J.; Liebner, F.; Liebner, C.; Welzel, H.P.; Hettrich, K.

    2001-07-01

    Only 6 days after the increase in pH with water saturation the concentration of iron in the pore water of the T1 sediment had dropped to a low value, 70% of which was accounted for by Fe(II). This is probably due to the almost complete precipitation of Fe(III) caused by the high pH values. Compared with the untreated variant the lowering of pH in the further course of the experiment led to a slight Fe(III) mobilisation and hence, through interaction with other reduction processes, to erratic changes in the share of Fe(II) in total Fe. Although this sediment showed a relatively low iron concentration a comparison showed that higher pH values and incubation temperatures have an influence on microbial iron reduction. [German] Im Porenwasser des Sedimentes T1 lag Eisen bereits 6 Tage nach pH-Erhoehung und Wassersaettigung nur noch in geringer Konzentration und zu ueber 70% als Fe(II) vor. Dies ist vermutlich in erster Linie auf die nahezu vollstaendige Ausfaellung von Fe(III) infolge der hohen pH-Werte zurueckzufuehren. Im weiteren Versuchsverlauf fuehrte das Absinken der pH-Werte zu einer im Vergleich zur unbehandelten Variante geringfuegigen Fe(III)-Mobilisierung und damit in Wechselwirkung mit ablaufenden Reduktionsprozessen zu unstetigen Veraenderungen in den Anteilen Fe(II) an Fe{sub ges}. Obwohl in diesem Sediment nur vergleichsweise niedrige Eisenkonzentrationen vorliegen, ergab ein Vergleich, dass hoehere pH-Werte und Inkubationtemperaturen die mikrobielle Eisenreduktion beeinflussen. (orig.)

  15. Propagation and Dissolution of CO2 bubbles in Algae Photo-bioreactors

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    Research grade photo-bioreactors are used to study and cultivate different algal species for biofuel production. In an attempt to study the growth properties of a local algal species in rain water, a custom made bioreactor is designed and being tested. Bio-algae consumes dissolved CO2 in water and during its growth cycle, the consumed CO2 must be replenished. Conventional methods use supply of air or CO2 bubbles in the growth medium. The propagation and dissolution of the bubbles, however, are strongly dependent on the design parameters of the photo-bioreactor. In this paper, we discuss the numerical modeling of the air and CO2 bubble propagation and dissolution in the photo-bioreactor. Using the results the bioreactor design will be modified for maximum productivity.

  16. Membrane bioreactors for enzymatic hydrolysis of lactose; Idrolisi enzimatica del lattosio con bioreattori a membrana

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M.; Pilloton, R. [ENEA, Casaccia (Italy). Area Energia e Innovazione; Pontecorvo, M.; Mignogna, G.; Fortunato, A.; Beone, F.

    1993-03-01

    Bioreactor systems obtained by cell or enzyme immobilization offer many advantages compared with native enzyme, intact cell systems or other biocatalysts. Thus, many attempts have been made to design and use new types of bioreactor systems in order to improve performance, enhance productivity and reduce environmental impacts. Membrane bioreactors, obtained by physical immobilization of biocatalysts, in polymeric membrane support, offer such practical advantages as: a continuous separation and transformation process with low product inhibition and suitable hydraulic configuration (backflushing recycling, ultrafiltrating). Specific membrane modules (Amicon VitaFiber), for bioreactor applications are being commercialized. Beta-galctosidase enzyme has successfully been immobilized in a hollow fiber and in ceramic modules to hydrolyze lactose in waste whey. This technical report presents the general properties and performances (permeability, washing procedures, hydraulic configurations, physical and chemical properties) of both, polymeric and ceramic supports, enzyme kinetics, physical and covalent immobilization, mathematical model of the bioreactor and on-line process monitoring.

  17. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  18. Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae.

    Science.gov (United States)

    Yoo, Jae Jun; Choi, Seung Phill; Kim, Jaoon Y H; Chang, Won Seok; Sim, Sang Jun

    2013-06-01

    Photosynthetic microalgae have received much attention as a microbial source of diverse useful biomaterials through CO(2) fixation and various types of photo-bioreactors have been developed for efficient microalgal cultivation. Herein, we developed a novel thin-film photo-bioreactor, which was made of cast polypropylene film, considering outdoor mass cultivation. To develop optimal design of photo-bioreactor, we tested performance of three shapes of thin-film photo-bioreactors (flat, horizontal and vertical tubular shapes) and various parts in the bioreactor. Collectively, vertical tubular bioreactor with H/D ratio 6:1 and cylindrical stainless steel spargers showed the most outstanding performance. Furthermore, the photo-bioreactor was successfully applied to the cultivation of other microalgae such as Chlamydomonas reinhardtii and Chlorella vulgaris. The scalability of photo-bioreactor was confirmed by gradually increasing culture volume from 4 to 25 L and the biomass productivity of each reactor was quite consistent (0.05-0.07 g/L/day) during the cultivation of H. pluvialis under indoor and outdoor conditions. Especially, we also achieved dry cell weight of 4.64 g/L and astaxanthin yield of 218.16 mg/L through long-term cultivation (100 days) under outdoor condition in 15 L photo-bioreactor using Haematococcus pluvialis, which means that the astaxanthin yield from outdoor cultivation is equal or superior to that obtained from controlled indoor condition. Therefore, these results indicate that we can apply this approach to development of optimal photo-bioreactor for the large-scale culture of microalgae and production of useful biomaterials under outdoor condition. PMID:23361185

  19. Preliminary Study on Airlift Membran-Bioreactor%气升式膜-生物反应器的设计与应用

    Institute of Scientific and Technical Information of China (English)

    徐农; 邢卫红; 徐南平; 时钧

    2002-01-01

    A new type of membrane bioreactor named "airlift membrane-bioreactor" is discussed. For municipal wastewater reclamation, the preliminary study on airlift membrane-bioreactor shows its good performance such as higher flux and lower energy consumption. The airlift membrane-bioreactor is potentially applicable in bioengineering and environmental protection fields.

  20. REPRISE DES COURS - Yoga

    CERN Document Server

    Club de Yoga

    2015-01-01

    REPRISE DES COURS – Venez nombreux ! Yoga, Sophrologie, Tai Chi La liste des cours pour le semestre allant du 1er septembre 2015 au 31 janvier 2016 est disponible sur notre site web : http://club-yoga.web.cern.ch Lieu Les cours ont lieu dans la salle des clubs, à l’entresol du restaurant No 2, Bât. 504 (dans la salle no 3 pour la Sophrologie). Prix des cours Le prix pour le semestre (environ 18 leçons) est fixé à 220 CHF plus 10 CHF d’adhésion annuelle au Club. Couple : 200 CHF par personne. 2 cours par semaine : 400 CHF. Inscriptions Les inscriptions aux cours seront prises directement auprès du professeur, lors de la 1ère séance. Avant de s’inscrire pour le semestre, il est possible d’essayer une séance gratuitement. Informations : http://club-yoga.web.cern.ch ----------------------------------------- cern.ch/club-yoga/

  1. Vom Ort des Philosophierens

    Directory of Open Access Journals (Sweden)

    Damir Barbaric

    2002-12-01

    Full Text Available Im Aufsatz wird versucht, den ursprünglichen Sinn der Platonischen Bestimmung vom Staunen als Anfang der Philosophie zu ermitteln, und zwar durch eine kritischen Abhebung von ihrer Umdeutung bei Aristoteles, und dann insbesondere in der Stoa wie auch bei Spinoza und Hegel. Dabei wird auf die frühgriechische Erfahrung vom Staunen als _______ aufmerksam gemacht, wo es vor allem die Grundstimmung des Dabeiseins des Göttlichen und der menschlichen Teilnahme am Göttlichen bedeutet. Dem entspricht die bei Platon stark hervorgehobene Rolle des “Pathetischen” am Staunen, das in der nachkommenden Tradition grundsätzlich verlorengegangen ist. Für Platon entspringt das Staunen einem nie zu überwindenden Zustand der wesentlichen philosophischen “Weglosigkeit” (_____, welche schon bei Aristoteles nur noch im Sinne eines unbedingt zu verlassenden Ausgangspunkts der methodisch sicher fortfahrenden philosophischen Wissenschaft verstanden wird. Durch ein Zurückgreifen auf die Diotimas Lehre im Dialog Symposion wird dementgegen die Sokratisch-Platonische “Weglosigkeit” als der einzig angemessene “Ort” des echten Philosophierens bestimmt, welchen es, als das “Zwischen” für das Weltspiel der Unsterblichen und Sterblichen, um jeden Preis zu bewahren und offen zu halten gilt.

  2. La physique des infinis

    CERN Document Server

    Bernardeau, Francis

    2013-01-01

    Écrire l'histoire de l'Univers, tel est l'objectif commun des physiciens des particules et des astrophysiciens. Pour y parvenir, deux approches s'épaulent : la voie de l'infiniment petit, que l'on emprunte via de gigantesques accélérateurs de particules, et celle de l'infiniment grand, dont le laboratoire est l'Univers. Un Univers qui est bien loin d'avoir livré tous ses secrets. On connaît à peine 4,8 % de la matière qui le constitue, le reste étant composé de matière noire (25,8 %) et d'énergie noire (69,4 %), toutes deux de nature inconnue. Et si la récente découverte du boson de Higgs valide le Modèle standard de la physique des particules, celui-ci est toujours incomplet et doit être étendu à ou dépassé. Est-on arrivé au bout du jeu de poupées russes de la matière ? Quelles sont les particules manquantes ? Faut-il revoir les lois fondamentales ? Quels instruments faut-il mettre en œuvre pour accéder à cette « nouvelle physique » ? Comment parler de Super Big Science aux citoye...

  3. CHAINE DES ROTISSEUR @ HILTON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The annual gala dinner of Chaine des Rotisseurs was hosted by Hilton Beijing. The “Ballet Dinner” - a great creation for both art and fine dining lovers was taken place in varies places within the hotel, including hotel lobby, 3rd floor and lobby lounge.

  4. Trace Gas Emission from in-Situ Denitrifying Bioreactors

    Science.gov (United States)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2014-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication. A primary process for removing excess NO3- from water is denitrification, where denitrifying bacteria use NO3- for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas. A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs). DNBRs provide conditions ideal for denitrifiers: an anaerobic environment, sufficient organic matter, and excess NO3-. These conditions are also ideal for methanogens, which produce methane (CH4), another harmful trace gas. While initial results from bioreactor studies show that they can cost-effectively remove NO3-, trace gas emissions are an unintended consequence. This study's goal was to determine how bioreactor design promotes denitrification while limiting trace gas production. Reactor inflow and outflow water samples were tested for nutrients, including NO3-, and dissolved inflow and outflow gas samples were tested for N2O and CH4. NO3- reduction and trace gas production were evaluated at various residence times, pHs, and inflow NO3- concentrations in field and lab-scale reactors. Low NO3- reduction indicated conditions that stressed denitrifying bacteria while high reductions indicated designs that optimized pollutant treatment for water quality. Several factors influenced high N2O, suggesting non-ideal conditions for the final step of complete denitrification. High CH4 emissions pointed to reactor media choice for discouraging methanogens, which may remove competition with denitrifiers. It is critical to understand all of potential impacts that DNBRs may have, which means identifying processes and design specifications that may affect them.

  5. Production of biopesticides in an in situ cell retention bioreactor.

    Science.gov (United States)

    Prakash, Gunjan; Srivastava, Ashok K

    2008-12-01

    The seeds of Azadirachta indica contain azadirachtin and other limonoids, which can be used as a biopesticide for crop protection. Significant variability and availability of seed only in arid zones has triggered biotechnological production of biopesticides to cope up with its huge requirement. Batch cultivation of A. indica suspension culture was carried out in statistically optimized media (25.0 g/l glucose, 5.7 g/l nitrate, 0.094 g/l phosphate and 5 g/l inoculum) in 3 l stirred tank bioreactor. This resulted in 15.5 g/l biomass and 0.05 g/l azadirachtin production in 10 days leading to productivity of 5 mg l(-1) day(-1). Possible inhibition by the limiting substrates (C, N, P) were also studied and maximum inhibitory concentrations identified. The batch kinetic/inhibitory data were then used to develop and identify an unstructured mathematical model. The batch model was extrapolated to simulate continuous cultivation with and without cell retention in the bioreactor. Several offline computer simulations were done to identify right nutrient feeding strategies (with respect to key limiting substrates; carbon, nitrate and phosphate) to maintain non-limiting and non-inhibitory substrate concentrations in bioreactor. One such continuous culture (with cell retention) simulation was experimentally implemented. In this cultivation, the cells were propagated batch-wise for 8 days. It was then converted to continuous cultivation by feeding MS salts with glucose (75 g/l), nitrate (10 g/l), and phosphate (0.5 g/l) at a feed rate of 500 ml/day and withdrawing the spent medium at the same rate. The above continuous cultivation (with cell retention) demonstrated an improvement in cell growth to 95.8 g/l and intracellular accumulation of 0.38 g/l azadirachtin in 40 days leading to an overall productivity of 9.5 mg l(-1) day(-1). PMID:18392561

  6. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  7. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer

    2015-04-01

    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  8. Modelling and characterization of an airlift-loop bioreactor.

    OpenAIRE

    Verlaan, P

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and oxygen transfer is combined with a controlled liquid flow in the absence of mechanical agitators.Liquid velocities and gas hold-ups in an external-loop airlift reactor (ALR) on different scales were modelled...

  9. Mixing and In situ product removal in micro-bioreactors

    OpenAIRE

    Li, X

    2009-01-01

    Summary Of the thesis :’ Mixing and In-situ product removal in micro bioreactors’ by Xiaonan Li The work presented in this thesis is a part of a large cluster project, which was formed between DSM, Organon, Applikon and two university groups (TU Delft and University of Twente), under the ACTS and IBOS program. The aim of this cluster project was to develop a system consisting of parallel bioreactors of 30 to 200 microliter working volume for the cultivation of micro-organisms under well contr...

  10. Estimation of Volumetric Mass Transfer Coefficient in Bioreactor

    OpenAIRE

    Zainab Yaquob Atiya

    2012-01-01

    This study is concentrated to investigate the effects of aeration and stirring speed on the volumetric mass transfer coefficient (KLa). A dynamic technique was used in estimating KLa values in order to achieve the aim of this study.This study was done in 10L bioreactor by using two medias:-1. Dionized water2. Xanthan solution (1 g /L)Moreover, the research covered a comparison between the obtained values of KLa.The Xanthan solution was used because of its higher viscosity in comparison with w...

  11. Biomass effects on oxygen transfer in membrane bioreactors.

    OpenAIRE

    Germain, Eve; Nelles, F.; Drews, A.; Pearce, P; Kraume, M.; Reid, E; Judd, Simon J.; Stephenson, Tom

    2007-01-01

    Ten biomass samples from both municipal and industrial pilot and full scale submerged membrane bioreactors (MBRs) with mixed liquor suspended solids concentrations (MLSS) ranging from 7.2 to 30.2 g L−1 were studied at six air-flow rates (0.7, 1.3, 2.3, 3, 4.4 and 6 m3 m−3 h−1). Statistical analyses were applied to identify the relative impacts of the various bulk biomass characteristics on oxygen transfer. Of the biomass characteristics studied, only solids concentration (correlated with visc...

  12. Enrichment of carbon monoxide utilising microorganisms from methanogenic bioreactor sludge

    OpenAIRE

    Pereira, Ana Luísa; Stams, A.J.M.; Alves, M. M.; Sousa, D.Z.

    2015-01-01

    Conversion of CO is the rate limiting step during anaerobic conversion of syngas (a gaseous mixture mainly composed of CO, CO2 and H2). In this work we study the microbial diversity in anaerobic sludge submitted to extended contact to syngas in a multi-orifice baffled bioreactor (MOBB). Methane was the main product resulting from syngas conversion in the MOBB. Enrichment cultures started with this sludge produced methane as final product, but also acetate. 16S rRNA gene analysis revealed a pr...

  13. Orbitally Shaken Bioreactors - Viscosity effects on flow characteristics

    OpenAIRE

    Ducci, A.; Weheliye, W. H.

    2014-01-01

    Phase resolved PIV measurements were carried out to assess the flow dynamics occurring in orbitally shaken bioreactors of cylindrical geometry when working fluids of increasing viscosity are considered. Study of the phase-resolved flow characteristics allowed to built a Re-Fr map, where four quadrants associated to di fferent flow regimes are identifi ed: in-phase toroidal vortex (low Fr, high Re), out-of-phase precessional vortex (high Fr, high Re), in-phase single vortex (low Fr, low Re), o...

  14. Bioreactor activated graft material for early implant fixation in bone

    DEFF Research Database (Denmark)

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish...... Technological Institute, Denmark). The granules were coated with poly-lactic acid (PLA) 12%, in order to increase the mechanical strength of the material (Phusis, France). Scaffold granules (Ø~900-1400 µm, 80% porosity) in group 2 consisted of pure HA/β-TCP (FinCeramica, Italy). For both groups, cells were...

  15. Performance of bioreactor landfill with waste mined from a dumpsite.

    Science.gov (United States)

    Karthikeyan, Obuli P; Swati, M; Nagendran, R; Joseph, Kurian

    2007-12-01

    Emissions from landfills via leachate and gas are influenced by state and stability of the organic matter in the solid waste and the environmental conditions within the landfill. This paper describes a modified, ecologically sound waste treatment technique, where municipal solid waste is anaerobically treated in a lysimeter-scale landfill bioreactor with leachate recirculation to enhance organic degradation. The results demonstrate a substantial decrease in organic matter (BOD 99%, COD 88% and TOC 81%) and a clear decrease in nutrient concentrations especially ammonia (85%) over a period of 1 year with leachate recirculation. PMID:17457683

  16. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  17. Des Chiffres et des Lettres : distraction, variations, habitudes

    Directory of Open Access Journals (Sweden)

    Barbara Laborde

    2011-04-01

    Full Text Available Cet article envisage une des émissions les plus anciennes du Paysage Audiovisuel Français : Des Chiffres et des Lettres. La sérialité que l’émission met en œuvre au cours de son histoire est faite de variations qui témoignent à la fois des évolutions des techniques audiovisuelles, des logiques de programmations, des attentes spectatorielles. Ce jeu télévisé, toujours le même et pourtant toujours différent, permet à la fois la reconnaissance immédiate et la perception d'un changement, double adresse qui explique sans doute sa longévité et fait de ce programme un parangon de la sérialité télévisuelle.This article considers one of the oldest programs in the French media landscape: « Des Chiffres et des Lettres ». Seriality that implements the program in its history is made changes that reflect both the evolution of audiovisual techniques, of logic programming and expectations spectatorial. This TV show, always the same and yet still different, allows both the immediate recognition and perception of a change which probably explains its longevity and made this program a paragon of seriality in television.

  18. Estimation of Volumetric Mass Transfer Coefficient in Bioreactor

    Directory of Open Access Journals (Sweden)

    Zainab Yaquob Atiya

    2012-01-01

    Full Text Available This study is concentrated to investigate the effects of aeration and stirring speed on the volumetric mass transfer coefficient (KLa. A dynamic technique was used in estimating KLa values in order to achieve the aim of this study.This study was done in 10L bioreactor by using two medias:-1. Dionized water2. Xanthan solution (1 g /LMoreover, the research covered a comparison between the obtained values of KLa.The Xanthan solution was used because of its higher viscosity in comparison with water. It behaves similarly to the cultivation medium when organisms are cultivated in a bioreactor. Growth of organisms in the reactor leads to a change in the viscosity of the medium which affects the mass transfer.Two variables, the effect of air flow rate (3-20 L/min and the effect of stirring speed (250-700rpm on KLa value were studied. Other parameters such as temperature, liquid volume, and stirrer shape and stirrer position were held constant; the results demonstrated an increase in KLa – value and mass transfer with increasing stirrer speed. Thus at higher speed, better dispersion of the bubbles was obtained. Therefore, that increased the surface / volume ratio which increased the mass transfer area i.e. KLa value.

  19. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration

    Directory of Open Access Journals (Sweden)

    Daniel W. Youngstrom

    2016-01-01

    Full Text Available Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

  20. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.

    Science.gov (United States)

    Youngstrom, Daniel W; Barrett, Jennifer G

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems. PMID:26839559

  1. Glyco-engineering for biopharmaceutical production in moss bioreactors

    Directory of Open Access Journals (Sweden)

    Eva L. Decker

    2014-07-01

    Full Text Available The production of recombinant biopharmaceuticals (pharmaceutical proteins is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely CHO cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production.The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety and efficacy of the products.The basal land plant Physcomitrella patens (moss has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin. Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken.Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.

  2. A fault diagnosis prototype for a bioreactor for bioinsecticide production

    International Nuclear Information System (INIS)

    The objective of this work is to develop an algorithm for fault diagnosis in a process of animal cell cultivation, for bioinsecticide production. Generally, these processes are batch processes. It is a fact that the diagnosis for a batch process involves a division of the process evolution (time horizon) into partial processes, which are defined as pseudocontinuous blocks. Therefore, a PCB represents the evolution of the system in a time interval where it has a qualitative behavior similar to a continuous one. Thus, each PCB, in which the process is divided, can be handled in a conventional way (like continuous processes). The process model, for each PCB, is a Signed Directed Graph (SDG). To achieve generality and to allow the computational implementation, the modular approach was used in the synthesis of the bioreactor digraph. After that, the SDGs were used to carry out qualitative simulations of faults. The achieved results are the fault patterns. A special fault symptom dictionary - SM - has been adopted as data base organization for fault patterns storage. An effective algorithm is presented for the searching process of fault patterns. The system studied, as a particular application, is a bioreactor for cell cultivation for bioinsecticide production. During this work, we concentrate on the SDG construction, and 3btaining real fault patterns by the elimination of spurious patterns. The algorithm has proved to be effective in both senses, resolution and accuracy, to diagnose different kinds of simulated faults

  3. Thiosulphate conversion in a methane and acetate fed membrane bioreactor.

    Science.gov (United States)

    Suarez-Zuluaga, Diego A; Timmers, Peer H A; Plugge, Caroline M; Stams, Alfons J M; Buisman, Cees J N; Weijma, Jan

    2016-02-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its liquid phase was removed and periodically replenished (days 77, 119, 166, 258, 312 and 385). Although the reactor was operated under conditions favourable to promote thiosulphate reduction coupled to methane oxidation, thiosulphate disproportionation was the dominant microbial process. Pyrosequencing analysis showed that the most abundant microorganisms in the bioreactor were phototrophic green sulphur bacteria (GSB) belonging to the family Chlorobiaceae and thiosulphate-disproportionating bacteria belonging to the genus Desulfocapsa. Even though the reactor system was surrounded with opaque plastic capable of filtering most of the light, the GSB used it to oxidize the hydrogen sulphide produced from thiosulphate disproportionation to elemental sulphur. Interrupting methane and acetate supply did not have any effect on the microbial processes taking place. The ultimate goal of our research was to develop a process that could be applied for thiosulphate and sulphate removal and biogenic sulphide formation for metal precipitation. Even though the system achieved in this study did not accomplish the targeted conversion using methane as electron donor, it does perform microbial conversions which allow to directly obtain elemental sulphur from thiosulphate. PMID:26423279

  4. Microbial acetate oxidation in horizontal rotating tubular bioreactor

    Indian Academy of Sciences (India)

    A Slavica; B Šantek; S Novak; V Marić

    2004-06-01

    The aim of this work was to investigate the possibility of conducting a continuous aerobic bioprocess in a horizontal rotating tubular bioreactor (HRTB). Aerobic oxidation of acetate by the action of a mixed microbial culture was chosen as a model process. The microbial culture was not only grown in a suspension but also in the form of a biofilm on the interior surface of HRTB. Efficiency of the bioprocess was monitored by determination of the acetate concentration and chemical oxygen demand (COD). While acetate inlet concentration and feeding rate influenced efficiency of acetate oxidation, the bioreactor rotation speed did not influence the bioprocess dynamics significantly. Gradients of acetate concentration and pH along HRTB were more pronounced at lower feeding rates. Volumetric load of acetate was proved to be the most significant parameter. High volumetric loads (above 2 g acetate l–1 h–1) gave poor acetate oxidation efficiency (only 17 to 50%). When the volumetric load was in the range of 0.60–1.75 g acetate l–1 h–1, acetate oxidation efficiency was 50–75%. At lower volumetric loads (0.14–0.58 g acetate l–1 h–1), complete acetate consumption was achieved. On the basis of the obtained results, it can be concluded that HRTB is suitable for conducting aerobic continuous bioprocesses.

  5. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    Science.gov (United States)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  6. Modeling of leachate recirculation using vertical wells in bioreactor landfills.

    Science.gov (United States)

    Feng, Shi-Jin; Cao, Ben-Yi; Zhang, Xu; Xie, Hai-Jian

    2015-06-01

    Leachate recirculation (LR) in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. The subsurface application method of vertical wells is one of the most common LR techniques. The objective of this study was to develop a novel two-dimensional model of leachate recirculation using vertical wells. This novel method can describe leachate flow considering the effects of MSW settlement while also accounting separately for leachate flow in saturated and unsaturated zones. In this paper, a settlement model for MSW when considering the effects of compression and biodegradation on the MSW porosity was adopted. A numerical model was proposed using new governing equations for the saturated and unsaturated zones of a landfill. The following design parameters were evaluated by simulating the recirculated leachate volume and the influence zones of waste under steady-state flow conditions: (1) the effect of MSW settlement, (2) the effect of the initial void ratio, (3) the effect of the injected head, (4) the effect of the unit weight, (5) the effect of the biodegradation rate, and (6) the effect of the compression coefficient. The influence zones of LR when considering the effect of MSW settlement are smaller than those when neglecting the effect. The influence zones and LR volume increased with an increase in the injection pressure head and initial void ratio of MSW. The proposed method and the calculation results can provide important insight into the hydrological behavior of bioreactor landfills. PMID:25874416

  7. Characterization of Microbial Communities Found in Bioreactor Effluent

    Science.gov (United States)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  8. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    Science.gov (United States)

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa. PMID:26038930

  9. Biological conversion of synthesis gas. Topical report: Bioreactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of the proposed research is to develop a technically and economically feasible process for biologically producing H{sub 2} from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; mass transfer and kinetic studies in which equations necessary for process design are developed; bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; evaluation of biological synthesis gas conversion under limiting conditions in preparation for industrial demonstration studies; process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses. The purpose of this report is to present results from bioreactor studies involving H{sub 2} production by water gas shift and H{sub 2}S removal to produce elemental sulfur. Many of the results for H{sub 2} production by Rhodospirillum rubrum have been presented during earlier contracts. Thus, this report concentrates mainly on H{sub 2}S conversion to elemental sulfur by R. rubrum.

  10. Comparison between controlled landfill reactor and conditioned landfill bioreactor.

    Science.gov (United States)

    Luo, Feng; Chen, Wan-Zhi; Song, Fu-Zhong; Li, Xiao-Peng; Zhang, Guo-Qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste (MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill (CSL) simulator, to the leachate-recirculated landfill (LRL) simulator and to the conditioned bioreactor landfill (CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio. PMID:15559832

  11. Two Devices for Removing Sludge From Bioreactor Wastewater

    Science.gov (United States)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  12. Comparison between controlled landfill reactor and conditioned landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    LUO Feng; CHEN Wan-zhi; SONG Fu-zhong; LI Xiao-peng; ZHANG Guo-qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The results of laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature can used to decompose MSW. The results of waste biodegradation were compared with that of the simulators of the leachate-recirculated landfill and conservative sanitary landfill. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown, and heavy metals concentration was observed. An obvious enhancement of effective disposal from simulator of conservative sanitary landfill(CSL), to that of leachate-recirculated landfill(LRL) and to that of conditioned bioreactor landfill(CBL) would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.

  13. Pulse shear stress for anaerobic membrane bioreactor fouling control.

    Science.gov (United States)

    Yang, Jixiang; Spanjers, Henri; van Lier, Jules B

    2011-01-01

    Increase of shear stress at membrane surfaces is a generally applied strategy to minimize membrane fouling. It has been reported that a two-phase flow, better known as slug flow, is an effective way to increase shear stress. Hence, slug flow was introduced into an anaerobic membrane bioreactor for membrane fouling control. Anaerobic suspended sludge was cultured in an anaerobic membrane bioreactor (AMBR) operated with a side stream inside-out tubular membrane unit applying sustainable flux flow regimes. The averaged particle diameter decreased from 20 to 5 microm during operation of the AMBR. However, the COD removal efficiency did not show any significant deterioration, whereas the specific methanogenic activity (SMA) increased from 0.16 to 0.41 gCOD/g VSS/day. Nevertheless, the imposed gas slug appeared to be insufficient for adequate fouling control, resulting in rapidly increasing trans membrane pressures (TMP) operating at a flux exceeding 16 L/m2/h. Addition of powdered activated carbon (PAC) enhanced the effect of slug flow on membrane fouling. However, the combined effect was still considered as not being significant. The tubular membrane was subsequently equipped with inert inserts for creating a locally increased shear stress for enhanced fouling control. Results show an increase in the membrane flux from 16 L/m2/h to 34 L/m2/h after the inserts were mounted in the membrane tube. PMID:22097007

  14. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    Science.gov (United States)

    Kim, Youn-Kyu; Park, Seul-Hyun; Lee, Joo-Hee; Choi, Gi-Hyuk

    2015-03-01

    In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  15. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor.

    Science.gov (United States)

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO 500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5. PMID:25147857

  16. Le territoire des tarifs

    OpenAIRE

    2014-01-01

    Société pour la défense du commerce et de l’industrie de Marseille, Rapport présenté à la séance de la Chambre syndicale du 15 novembre 1921, par M. Camille Dufay, Marseille, 1922, p. 164-168. … D’une façon générale, commerçants et industriels se plaignent de l’élévation des tarifs, qui, en fait, excède souvent exagérément la majoration légale de 140 %, et de la suppression de certaines facilités qu’ils estiment indispensables à l’essor des affaires. Ils demandent, entre autres réformes, le r...

  17. La barricade des femmes

    OpenAIRE

    Dalotel, Alain

    2016-01-01

    L’histoire de la Commune est riche en eaux-fortes. L’une d’elles nous prend littéralement à la gorge : en pleine agonie du pouvoir révolutionnaire, 120 femmes se retranchent, fusil en main, derrière une barricade, aux pieds de Montmartre, pour s’opposer à l’armée de l’Ordre. Elles sont exterminées. Cet épisode de la guerre civile de 1871 s’est imposé à la mémoire, indiscutablement. Des barricades, lors de cette bataille tragique, on en a compté par centaines. Pourquoi pas une « barricade des ...

  18. Zur Biographie des Thomas Finck

    OpenAIRE

    Graf, Klaus

    2009-01-01

    Aus der Überlieferung der Werke des Mönchs Thomas Finck ergeben sich die Jahre 1489 und 1507 als Eckdaten seiner derzeit bekannten Lebenszeugnisse. Nach Ausweis des Cgm 6940 beendete Thomas Finck, der sich als Bruder des Benediktinerordens bezeichnet, am 8. Juli 1489 im Benediktinerkloster Elchingen die Übertragung der pseudothomasischen Schrift 'De beatitudine'. Der nur in der Karlsruher Handschrift St. Georgen 84 (möglicherweise ein Konzeptautograph) überlieferten Vorrede und Datierung sein...

  19. Des Ogle's old stump

    International Nuclear Information System (INIS)

    On 17 October 1997 Sylvia Bryan of RD4 Kaitaia wrote to 'Dear Somebody-Everybody' at the Anthropology Department, University of Auckland, urging further examination of an adzed stump found by Des Ogle during planting out of the Te Aupouri forest. The authors have since sought out relevant information and present it here for the interests of our readers. (author). 7 refs., 1 fig

  20. Ontologie des Kunstwerks

    OpenAIRE

    Hubig, Christoph

    1984-01-01

    Die Ontologie beansprucht, die Wissenschaft vom Sein der Dinge oder - nimmt man die Zeitkomponente hinzu - der Ereignisse zu sein. Als eine solche philosophische Disziplin grenzt sie sich einerseits ab von den Einzelwissenschaften, die das Dasein der Dinge zu erfassen suchen, also die Dinge in ihrer jeweiligen uns zugänglichen Tatsächlichkeit; andererseits ist die Ontologie jedoch auch nicht eine Wissenschaft vom Wesen der Dinge: Wesensbestimmungen nämlich sind Bestimmungen des Seins als Geda...

  1. Plus que des engrais

    OpenAIRE

    Fuchs, Jacques G.

    2008-01-01

    COMPOSTS ET RÉSIDUS DE MÉTHANISATION Compte tenu de l'augmentation du prix des engrais minéraux, il se manifeste un intérêt croissant pour les composts et les résidus de méthanisation. En plus de leur effet nutritif, ces produits de substitution stimulent l'activité biologique dans le sol et peuvent exercer une action favorable sur le pH.

  2. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    International Nuclear Information System (INIS)

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  3. Some process control/design considerations in the development of a microgravity mammalian cell bioreactor

    Science.gov (United States)

    Goochee, Charles F.

    1987-01-01

    The purpose is to review some of the physical/metabolic factors which must be considered in the development of an operating strategy for a mammalian cell bioreactor. Emphasis is placed on the dissolved oxygen and carbon dioxide requirements of growing mammalian epithelial cells. Literature reviews concerning oxygen and carbon dioxide requirements are discussed. A preliminary, dynamic model which encompasses the current features of the NASA bioreactor is presented. The implications of the literature survey and modeling effort on the design and operation of the NASA bioreactor are discussed.

  4. Commissioning of Research Bioreactor made in Korea with Malaysian Environment Adaptation

    International Nuclear Information System (INIS)

    Bioreactor is equipment used by researcher in Agrotechnology and Biosciences department (BAB) as a scientific approach to get a scale up of product. Headed by one of the senior researcher in the department, an effort has been made to upscale the project by using MTDC fund. The technology platform has been acquired from South Korea. Some modification has to be made to cater for the need of a research bioreactor to be established for Nuclear Malaysia Agency. This research bioreactor is to emulate a tissue culture product in a bigger scale bio processing, pharmaceutical biotechnology and industrial production. (author)

  5. A la recherche des hybrides

    OpenAIRE

    DUPONT, Ariane

    2013-01-01

    Mon programme de recherche se développe autour de deux axes : 1/ l’analyse de la demande de transport des voyageurs et de ses impacts environnementaux pour permettre la définition et l’évaluation des politiques de transport durable, et 2/ une analyse des méthodes et des outils économétriques, notamment ceux définis et développés par Ragnar Frisch. Ces deux champs semblent si disjoints que l’on pourrait croire à une schizophrénie développée suite à un basculement de parcou...

  6. Dictionnaire des risques psychosociaux

    CERN Document Server

    Zawieja, Philippe

    2014-01-01

    Stress, suicide, harcèlement, épuisement professionnel, workaholism... Au-delà de la souffrance qu'elles désignent, ces notions souvent récentes constituent une approche inédite, et demandent à mieux être comprises, dans leur ensemble et isolément. C'est tout l'enjeu de ce dictionnaire, pionnier en son genre. Le lecteur y trouvera représentés, avec les 314 entrées (rédigées par 251 contributeurs) qui le composent, tous les champs disciplinaires s'intéressant à la souffrance au travail : psychologie du travail et des organisations, psychologie sociale et psychosociologie, psychanalyse, psychopathologie et psychiatrie, ergonomie, sociologie du travail et des organisations, médecine du travail, droit du travail et de la sécurité sociale, sciences de gestion, philosophie... Y sont détaillés les principaux concepts, notions, approches, méthodes, théories, outils, études, etc., ayant cours dans l'étude des risques psychosociaux, mais aussi certaines professions emblématiques (infirmières,...

  7. Example study for granular bioreactor stratification: Three-dimensional evaluation of a sulfate-reducing granular bioreactor

    Science.gov (United States)

    Hao, Tian-wei; Luo, Jing-hai; Su, Kui-zu; Wei, Li; Mackey, Hamish R.; Chi, Kun; Chen, Guang-Hao

    2016-01-01

    Recently, sulfate-reducing granular sludge has been developed for application in sulfate-laden water and wastewater treatment. However, little is known about biomass stratification and its effects on the bioprocesses inside the granular bioreactor. A comprehensive investigation followed by a verification trial was therefore conducted in the present work. The investigation focused on the performance of each sludge layer, the internal hydrodynamics and microbial community structures along the height of the reactor. The reactor substratum (the section below baffle 1) was identified as the main acidification zone based on microbial analysis and reactor performance. Two baffle installations increased mixing intensity but at the same time introduced dead zones. Computational fluid dynamics simulation was employed to visualize the internal hydrodynamics. The 16S rRNA gene of the organisms further revealed that more diverse communities of sulfate-reducing bacteria (SRB) and acidogens were detected in the reactor substratum than in the superstratum (the section above baffle 1). The findings of this study shed light on biomass stratification in an SRB granular bioreactor to aid in the design and optimization of such reactors. PMID:27539264

  8. Die Klassifizierung des Blutdrucks

    Directory of Open Access Journals (Sweden)

    Skrabal F

    2004-01-01

    Full Text Available Während der systolische Blutdruck in der Bevölkerung mit zunehmendem Lebensalter in jedem Dezennium weiter ansteigt, beginnt der diastolische Blutdruck ab dem 50. Lebensjahr für jede systolische Blutdruckstratifizierung als Ausdruck einer zunehmenden Gefäßschädigung wieder zu sinken. Deswegen muß der Blutdruck ausschließlich nach dem systolischen Blutdruck klassifiziert werden. Die Häufigkeitsverteilung des systolischen und diastolischen Blutdrucks innerhalb der Bevölkerung entspricht einer Gauss'schen Glockenkurve. Jede Unterteilung in normotensiv und hypertensiv entspricht deshalb einer völlig willkürlichen Dichotomisierung. Je niedriger der Blutdruck, desto geringer die mechanische Belastung der Blutgefäße und desto geringer auch die mechanisch induzierten Gefäßschäden. Das war der Grund für die zuletzt vom "7th JNC on Prevention, Detection and Treatment of Hypertension" des NIH, USA, vorgenommene Klassifizierung des Blutdrucks in normal (kleiner als 120 mmHg systolisch, prähypertensiv (120-140 mmHg und Hypertonie-Stadium I (140-160 mmHg systolisch und Hypertonie-Stadium II ( 160 mmHg systolisch. Damit muß leider die nahezu gesamte gesunde österreichische Bevölkerung, die nach bisheriger Klassifikation noch keinen Hochdruck aufweist, als prähypertensiv klassifiziert werden. Ein wirklicher Informationsgewinn (der ja mit der Klassifikation bezweckt wird ist meiner Meinung nach damit nicht mehr gegeben. Die Österreichische Hochdruckliga schlägt eine zusätzliche Klassifikation des Blutdrucks nach dem „Pressure Load“ vor, welches aus einer statistisch aussagekräftigen Zahl von Selbstmessungen leicht zu errechnen ist. Jedes Pressure Load von mehr als 20 % (mehr als 20 % der selbst gemessenen Blutdruckwerte 135/85 mmHg entspricht einer Hypertonie, die je nach Höhe der Blutdruckwerte entweder mit Änderungen des Lebensstils oder mit antihypertensiver Medikation zu bekämpfen ist.

  9. Submerged membrane bioreactor for domestic wastewater treatment and reuse

    International Nuclear Information System (INIS)

    The Mediterranean basin (and particularly North African countries) is one of the poorest regions in the world in terms of water resources. In Tunisia, treated municipal wastewater is becoming one of the main alternative sources of water. Indeed, in 2007, 99 municipal wastewater treatment plants (WWTP) has treated a quantity of 215 millions of m3 from which more than 30 pour cent are reused. The treated volume in 2011 is expected to be 266 millions m3, whereas the reused wastewaters should reach more than 50 pour cent. However, especially in the eastern and northern Mediterranean regions, wastewaters are inefficiently treated and re-used for irrigation or sanitary purposes, serving as a carrier for diseases or causing water pollution when discharged to water bodies. In the last decade, several water treatment technologies have been used in the region with little success in pathogen removal. Membrane bioreactor (MBR) technology is a very promising alternative to those conventional water treatments as membranes act as a barrier against bacteria and viruses achieving a high degree of water purification. However, most membrane bioreactors currently in use have very high running costs because of the high pressure drop and high air-flushing rate required for their operation. The objective of this PURATREAT FP 6 EU project was to study a new approach to the operation of membrane bioreactors. This study was included a comparison of three leading membrane technologies. The operating procedure to be studied is expected to yield very low energy consumption and reduced maintenance costs. After the start up period, the MBR3 was operated with a MLSS concentration of 4.5 and 9 g/L, respectively. Different fluxes as 16, 18, 20 and 22 Lh-1m-2 were tested. When the flux increase from 16 to 22 Lh-1m-2, the treatment energy consumption decreased from 7 to 5 kWh/m3. However the increases of MLSS concentration from 4.5 and 9 g/L raise the membrane fouling frequency from 1 time every 3

  10. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  11. Toward the Standardization of Bioreactors for Space Research

    Science.gov (United States)

    Garcia, Michel; Nebuloni, Stefano; Dainesi, Paolo; Gass, Samuel

    Growing interest in long-term human space missions and exploration as well as future plans for extra-terrestrial human settlements, places increasing importance on understanding biological and chemical processes in space at cellular and molecular level. RUAG Space has been involved in the development of bioreactors for life-science experiments in space for the past 20 years. Throughout these developments, RUAG has acted as the link between scientists and the space industry, translating high-level scientific requirements into technical requirements, verifying their feasibility within the space context, and developing state-of-the-art experiment hardware which can interface with dedicated micro-gravity platform. Although this approach has brought forth promising developments in the field, it is associated to very long development phases as well as correspondingly high costs. Each new scientific experiment is often associated to an entirely new hardware development. This is, in large, due to the limited information available on the possibilities and constraints imposed by the particular context of space. Therefore, a considerable amount of time and development costs are invested in order to accommodate stringent scientific requirements and/or specific experiment design in space hardware. This does not only have an impact on funding opportunities for micro-gravity experiments in space, it also curbs the pace of scientific discoveries and limits the number of research opportunities. Therefore, in the following, we present an overview of already established possibilities for cellular research in space, with special emphasis on hardware developed by RUAG Space. This is intended to provide scientists with key technical information on already existing bioreactors, subsystems, and components, which may be used as a basis when designing scientific studies. By considering this information from the onset of the establishment of scientific requirements, technical solutions can

  12. Greenhouse Gas Emission from In-situ Denitrifying Bioreactors

    Science.gov (United States)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2013-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication, which continues to be a serious and chronic problem. Two primary processes for removing excess NO3- from water are biological assimilation and denitrification. Denitrifying bacteria use NO3- as the electron acceptor for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas (GHG). A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs), though research has been limited to NO3- level reduction and omitted process mechanisms. DNBRs work by providing an anaerobic environment with plenty of organic matter (commonly woodchips) for denitrifying bacteria to flourish. While, initial results from bioreactor studies show that they can cost-effectively remove NO3-, GHG emission could be an unintended consequence. The study's goal is to determine how bioreactor design promotes microbial denitrification while limiting N2O production. It specifically focuses on expanding the body of knowledge concerning DNBRs in the areas of design implications and internal processes by measuring intermediate compounds and not solely NO3-. Nutrient samples are collected at inflow and outflow structures and tested for NO3- and nitrite (NO2-). Dissolved and headspace gas samples are collected and tested for N2O. Additional gas samples will be analyzed for naturally-occurring isotopic N2 to support proposed pathways. Designs will be analyzed both through the N2O/N2 production ratio and NO2- production caused by various residence times and inflow NO3- concentrations. High GHG ratios and NO2- production suggest non-ideal conditions or flow patterns for complete denitrification. NO3- reduction is used for comparison with previous studies. Few

  13. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    International Nuclear Information System (INIS)

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As5+) (0.5–20 mg/L), ferrous iron (Fe2+) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe2+ increased arsenic removal efficiency to 63%. Further increase of influent Fe2+ concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe2+ and As5+ concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO3/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As2S3 (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS2) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms

  14. Des insectes et des hommes (Nord du Cameroun)

    OpenAIRE

    Seignobos, Christian

    2015-01-01

    Cet article est le prolongement de celui publié par le JATBA 38 de 1996 : « Les Mofu et leurs insectes », de C. Seignobos, J.-Ph. Deguine et P.H. Aberlenc. Il répond à une interrogation : la focalisation de la société mofu sur son entomofaune se retrouve-t-elle chez ses voisines des monts Mandara ? Et qu’en est-il du regard sur les insectes des populations des plaines ?Le biais des insectes dans l’étude des sociétés est toujours révélateur de leur histoire et de leur organisation sociale et p...

  15. Pyramide des âges et gestion des ressources humaines

    OpenAIRE

    Godelier, Eric

    2007-01-01

    L'utilisation de la pyramide des âges dans les discours des directeurs de ressources humaines s'est développée au cours des années 1980. Elle renvoie au choix d'un critère de sélection de salariés jugés en sureffectif. Derrière l'âge et ses représentations, c'est bien la question de la capacité des salariés à s'adapter au changement de l'entreprise qui est posée. En définitive, il s'agit de savoir s'il existe des conditions démographiques au changement organisationnel.

  16. Numerical Simulation of Microcarrier Motion in a Rotating Wall Vessel Bioreactor

    Institute of Scientific and Technical Information of China (English)

    ZHI-HAO JU; TIAN-QING LIU; XUE-HU MA; ZHAN-FENG CUI

    2006-01-01

    Objective To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. Methods The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. Results The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. Conclusion The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  17. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  18. NOVEL CERAMIC MEMBRANE BIOREACTOR FOR LOW-FLOW SYSTEMS - PHASE I

    Science.gov (United States)

    Improved low-flow (50,000 gallons per day) sanitary wastewater treatment systems are needed. CeraMem Corporation's proposed approach includes a membrane bioreactor (MBR) using fully proven biological processes for biological oxygen demand oxidation and (optionally) fo...

  19. Biodegradation of the water-soluble gasoline components in a novel hybrid bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De-Jesus, A.; Lara-Rodriguez, A.; Santoyo-Tepole, F.; Juarez-Ramirez, C.; Cristiani-Urbina, E.; Ruiz-Ordaz, N.; Galindez Mayer, J. [Escuela Nacional de Ciencias Biologicas, del Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, Carpio y Plan de Ayala, ' ' Centro Operativo Naranjo' ' , Mexico, D.F. (Mexico)

    2003-07-01

    A novel hybrid bioreactor was designed to remove volatile organic compounds from water contaminated with water-soluble gasoline components, and the performance of this new bioreactor was investigated. It was composed of two biotrickling filter sections and one biofilter section. The liquid phase pollutants were removed by a mixed culture in the biotrickling filter sections and the gas phase pollutants stripped by air injection in the biofilter section. The specific rates of chemical oxygen demand (COD) removal obtained in the reactor were directly proportional to the pollutant-loading rate. A stable operation of the hybrid bioreactor was attained for long periods of time. The bioreactor had the potential to simultaneously treat a complex mixture of volatile organic compounds, e.g., those present in the water-soluble fraction of gasoline, as well as the capacity to readily adapt to changing operational conditions, such as an increased contaminant loading, and variations in the airflow rate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved by...... introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and...... tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  1. Influence of phosphorus precipitation on permeability and soluble microbial product concentration in a membrane bioreactor

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Wanner, J.; Holba, Marek; Sýkorová, E.

    2013-01-01

    Roč. 129, Feb 2013 (2013), s. 164-169. ISSN 0960-8524 Institutional support: RVO:67985939 Keywords : membrane bioreactor * coagulant adition * soluble microbial products Subject RIV: EF - Botanics Impact factor: 5.039, year: 2013

  2. Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media

    Directory of Open Access Journals (Sweden)

    Birgit Weyand

    2015-01-01

    Full Text Available A three-dimensional computational fluid dynamics- (CFD- model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass system allowed continuation of culture. The specific shape of the bioreactor culture vessel supported a homogenous flow profile and mass flux at the scaffold level at various scaffold permeabilities. Experimental data showed an increase in oxygen concentration measured inside a collagen scaffold seeded with human mesenchymal stem cells when cultured in the perfusion bioreactor after 24 h compared to static culture in a Petri dish (dynamic: 11% O2 versus static: 3% O2. Computational fluid simulation can support design of bioreactor systems for tissue engineering application.

  3. Digitalisierung des Kulturellen Erbes (Europas)

    OpenAIRE

    Gruber, Marion

    2011-01-01

    Gruber, M. R. (2011, 13 December). Digitalisierung des Kulturellen Erbes (Europas). Guest lecture at the IPMZ - Institute of Mass Communication and Media Research, Devision Media Change & Innovation, University of Zurich, Switzerland. (http://www.slideshare.net/em3rg3/digitalisierung-des-kulturellen-erbes-europa)

  4. Digitalisierung des Kulturellen Erbes (Europas)

    NARCIS (Netherlands)

    Gruber, Marion

    2011-01-01

    Gruber, M. R. (2011, 13 December). Digitalisierung des Kulturellen Erbes (Europas). Guest lecture at the IPMZ - Institute of Mass Communication and Media Research, Devision Media Change & Innovation, University of Zurich, Switzerland. (http://www.slideshare.net/em3rg3/digitalisierung-des-kulturelle

  5. Plasmid maintenance and protein overproduction in selective recycle bioreactors.

    Science.gov (United States)

    Ogden, K L; Davis, R H

    1991-02-20

    A new plasmid construct has been used in conjunction with selective recycle to successfully maintain otherwise unstable plasmid-bearing E. coli cells in a continuous bioreactor and to produce significant amounts of the plasmid-encoded protein beta-lactamase. The plasmid is constructed so that pilin expression, which leads to bacterial flocculation, is under control of the tac operon. The plasmid-bearing cells are induced to flocculate in the separator, whereas cell growth and product synthesis occur in the main fermentation vessel without the inhibiting effects of pilin production. Selective recycle allows for the maintenance of the plasmid-bearing cells by separating flocculent, plasmid-bearing cells from nonflocculent, segregant cells in an inclined settler, and recycling only the plasmid-bearing cells to the reactor. As a result, product expression levels are maintained that are more than ten times the level achieved without selective recycle. All experimental data agree well with theoretical predictions. PMID:18597374

  6. Phase separated membrane bioreactor - Results from model system studies

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.

  7. Model system studies with a phase separated membrane bioreactor

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  8. Optimal feedback control of a bioreactor with a remote sensor

    Science.gov (United States)

    Niranjan, S. C.; San, K. Y.

    1988-01-01

    Sensors used to monitor bioreactor conditions directly often perform poorly in the face of adverse nonphysiological conditions. One way to circumvent this is to use a remote sensor block. However, such a configuration usually causes a significant time lag between measurements and the actual state values. Here, the problem of implementing feedback control strategies for such systems, described by nonlinear equations, is addressed. The problem is posed as an optimal control problem with a linear quadratic performance index. The linear control law so obtained is used to implement feedback. A global linearization technique as well as an expansion using Taylor series is used to linearize the nonlinear system, and the feedback is subsequently implemented.

  9. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  10. Fouling Characteristics and Prevention Techniques for Membrane Bioreactor

    Institute of Scientific and Technical Information of China (English)

    LU Hua; WANG Zhi-qiang; YANG Jin-ying

    2005-01-01

    Membrane fouling is the main problem of membrane bioreactors (MBR), which seriously influences its wastewater treatment effect and running. The characteristics of microbiology and hydrodynamics concerning membrane fouling were investigated and the measure was put forward for optimum operation of MBR. The measure is that 1) the parameters of activated sludge concentration (X) and membrane flux should be lower than the critical values of X and membrane flux respectively, and 2) the activated sludge should be discharged periodically. The experimental results show that the combination backwashing of gas and permeated effluent is better than single gas backwashing or single permeated effluent backwashing. This technique can remove the cake layer deposited on the membrane surface, decrease the membrane fouling, and recover the membrane flux effectively. So it is effective for prevention of membrane fouling.

  11. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l-1, but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  12. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    Science.gov (United States)

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances. PMID:25635702

  13. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota;

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through a...... sandwiched membrane. The culture chamber and perfusion chamber are separated by a sandwiched membrane and each chamber has separate inlet/outlets for easy loading/unloading of cells and perfusion of the media. The perfusion of media and exchange of nutrients occur through the sandwiched membrane, which was...... of CFSE staining and subsequent counting in a flow cytometer. To conclude on the applicability of μBR for genetic diagnostics, we prepare chromosome spreads on glass slides from the cultured samples, which is the primary step for metaphase FISH analysis....

  14. The application of membrane Bio-Reactor for East Java Domestic waste water treatment

    OpenAIRE

    Aisyah E. Palupi; Ali Altway; Arief Widjaja

    2008-01-01

    Membrane bioreactors for wastewater treatment research have been carried out. In this system, membrane replaces the function of the sedimentation tank. Until recent time, fouling was still the main problem for membrane processes. This research has investigated the effect of MLSS concentration and back flushing on external membrane bioreactor performances such as COD and BOD reduction, and the back flushing effect for domestic wastewater treatment. Polyacrylonitril hollow fiber membrane with p...

  15. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters: The AMBROSIUS project

    OpenAIRE

    van Lier, J B; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor, providing optimal conditions for organic matter degradation. AnMBRs offer high quality effluents free of solids and complete retention of biomass, regardless its settling and/or granulation properties. Th...

  16. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances

    OpenAIRE

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2015-01-01

    Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition ...

  17. Hydrodynamic performance of a three-phase airlift bioreactor with an enlarged degassing zone

    OpenAIRE

    Vicente, A.A.; Teixeira, J.A.

    1995-01-01

    The hydrodynamics of biotechnological processes is complex. So far, few studies were made with bioreactors of the airlift type with an enlarged degassing zone. In this work, the influence of solids loading, solids specific gravity and draught tube dimensions on mixing and circulation times and critical air flow rate for an internal loop airlift bioreactor with an enlarged sedimentation/degassing zone is studied. The results indicate that the critical air flow rate as well as the mixing ...

  18. Performance of Sand Channel as Pre-Treatment for Anaerobic Landfill Bioreactor Leachate and Biogas Generation

    OpenAIRE

    Emmanuel Olisa; Nasiman Sapari; Amirhossein Malakahmad; Ezerie Henry Ezechi; Ali Riahi; Kalu Uka Orji; Oseihioria Alex- Ohunyon; Salihi Umar Ibrahim

    2016-01-01

    The performance of a laboratory scale landfill bioreactor with two compartments (simulated landfill reactor and a sand channel) was investigated in this study. Solid waste components similar to the typical Malaysian waste were collected from the cafeterias in University Teknologi PETRONAS (UTP), Perak, Malaysia and used to generate leachate in the simulated landfill bioreactor. Leachate produced were slowly and systematically introduced into the bottom sand channel where methanogenesis rapidl...

  19. Flexible Community Structure Correlates with Stable Community Function in Methanogenic Bioreactor Communities Perturbed by Glucose

    OpenAIRE

    Fernandez, Ana S.; Hashsham, Syed A.; Dollhopf, Sherry L.; Raskin, Lutgarde; Glagoleva, Olga; Dazzo, Frank B.; Hickey, Robert F.; Criddle, Craig S.; Tiedje, James M.

    2000-01-01

    Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDR...

  20. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section.

    Science.gov (United States)

    Christianson, Laura E; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box." PMID:27136139

  1. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    International Nuclear Information System (INIS)

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kgvs and 113.2 L/kgvs. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kgvs and 113.2 L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens

  2. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  3. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses

    OpenAIRE

    Reis, N; C. N. Gonçalves; Vicente, A.A.; Teixeira, J.A.

    2006-01-01

    The experimental performance of a novel micro-bioreactor envisaged for parallel screening and development of industrial bioprocesses has been tested in this work. The micro-bioreactor with an internal volume of 4.5mL is operated under oscillatory flow mixing (OFM), where a controllable mixing and mass transfer rates are achieved under batch or continuous laminar flow conditions. Several batch fermentations with a flocculent Saccharomyces cerevisiae strain were carried out at initi...

  4. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    OpenAIRE

    Somerville Robert PT; Devillier Laura; Parkhurst Maria R; Rosenberg Steven A; Dudley Mark E

    2012-01-01

    Abstract Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scale...

  5. Cultivation of Mammalian Cells Using a Single-use Pneumatic Bioreactor System

    OpenAIRE

    Kristina M. Obom; Cummings, Patrick J.; Ciafardoni, Janelle A.; Hashimura, Yasunori; Giroux, Daniel

    2014-01-01

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishi...

  6. Use of a Rotating Bioreactor toward Tissue Engineering the Temporomandibular Joint Disc

    OpenAIRE

    DETAMORE, MICHAEL S.; Athanasiou, Kyriacos A

    2005-01-01

    This objective of this study was to determine the effects of a rotating bioreactor in temporomandibular joint (TMJ) disc tissue engineering. Porcine TMJ disc cells were seeded at a density of 20 million cells/mL onto nonwoven poly(glycolic acid) (PGA) scaffolds in spinner flasks for 1 week and then cultured either under static conditions or in a rotating bioreactor for a period of 6 weeks. A series of analyses was performed, including mechanical testing, measurement of cellularity, quantifica...

  7. Osmotic stress on nitrification in an airlift bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rencun [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Mahmood, Qaisar [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)]. E-mail: blhu@zju.edu.cn

    2007-07-19

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L{sup -1} and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10{sup 5} Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10{sup 5} Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10{sup 5} Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization.

  8. Foaming in membrane bioreactors: identification of the causes.

    Science.gov (United States)

    Di Bella, Gaetano; Torregrossa, Michele

    2013-10-15

    Membrane bioreactors (MBRs) represent by now a well established alternative for wastewater treatment. Their increasing development is undoubtedly related to the several advantages that such technology is able to guarantee. Nevertheless, this technology is not exempt from operational problems; among them the foaming still represents an "open challenge" of the MBR field, due to the high complexity of phenomenon. Unfortunately, very little work has been done on the foaming in MBRs and further studies are required. Actually, there is not a distinct difference between conventional activated system and MBR: the main difference is that the MBR plants can retain most Extracellular Polymeric Substances (EPSs) in the bioreactor. For these reason, unlike conventional activated sludge systems, MBRs have experienced foaming in the absence of foam-forming micro-organisms. Nevertheless, the actual mechanisms of EPS production and the role of bacteria in producing foam in activated sludge in MBRs are still unclear. In this paper, the authors investigated the roles of EPS and foam-forming filamentous bacteria by analyzing samples from different pilot plants using MBRs. In particular, in order to define the macroscopic features and the role of EPS and filamentous bacteria, a Modified Scum Index (MSI) test was applied and proposed. Based on the MSI and the foam power test, the causes of biological foaming were identified in terms of the potential for foaming, the quality and the quantity of the foam. The results indicated that the MBR foaming was influenced significantly by the concentration of bound EPSs in the sludge. In addition, the quantity and stability of MBR scum increased when both bound EPSs and foam-forming filamentous bacteria were present in the activated sludge. PMID:23792916

  9. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L-1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 105 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 105 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 105 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  10. NASA's Bioreactor: Growing Cells in a Simulated Microgravity Environment

    Science.gov (United States)

    Richardson, Denise

    2003-01-01

    National Science Education Standards (NSES), Science for All Americans, the Secretary's Commission on Achieving Necessary Skills (SCANS) as well as the National Aeronautics and Space Administration (NASA) are all making an effort to promote scientific literacy in America. Unfortunately, major evaluation programs such as the National Assessment of Educational Progress (NAEP) and the Third International Mathematics and Science Study (TIMSS) have provided information that suggested our students are not able to compete with peers from comparable countries. Although results indicated that American students are recalling memorized, factual knowledge well enough, the real problem is the ability to apply what they know. Concerned with these reports, the National Science Teacher's Association (NSTA) has developed a mission to support innovation and high quality in science teaching and learning for every student. NSTA recommends less emphasis on factual knowledge (memorization) and information and more understanding of the concepts. Science process skills are considered imperative to prepare America's students for the 21st century. The National Aeronautics and Space Administration (NASA) supports this mission and adds that NASA strives to help prepare and encourage the next generation of researchers and explorers. One method that NASA supports educators and its mission is to publish educational briefs. NASA describes a brief as a publication that ranges from one-to-thirty pages. The focus is on mission discoveries and results. The brief provides curriculum to educators that supports their objectives and NASA's interest. Educational Briefs are specific to the grade level and course so that educators may have choices that fit their methods and students level. Sometimes, the brief includes lessons and activities teachers may use. For example, NASA's Microgravity Division has designed a student bioreactor. Consequently, an Educational Brief is being written that focuses on how

  11. H2S removal from biogas using bioreactors: a review

    Directory of Open Access Journals (Sweden)

    E. Dumont

    2015-01-01

    Full Text Available This review aims to provide an overview of the bioprocesses used for the removal of H2S from biogas. The ability of aerobic and anoxic bioreactors (biotrickling filters, bioscrubbers, and a combination of chemical scrubbers and bioreactors to perform the degradation of H2S is considered. For each operating mode (aerobic and anoxic, the bioprocesses are presented, the operating conditions affecting performance are summarized, the state of the art of research studies is described and commercial applications are given. At laboratory-scale, whatever their operating mode, biological processes are effective for biogas cleaning and provide the same performance. The clogging of the packed bed due to the deposit of elemental sulfur S0 and biomass accumulation clearly represents the main drawback of bioprocesses. Although elimination capacities (EC determined at laboratory-scale can be very high, EC should not be higher than 90 g m-3 h-1 at industrial-scale in order to limit clogging effects. For aerobic processes, the need to control the oxygen mass transfer accurately remains a key issue for their development at full-scale. As a result, the aerobic processes alone are probably not the most suitable bioprocesses for the treatment of biogas highly loaded with H2S. For anaerobic bioprocesses using nitrate as an electron acceptor, the scale-up of the laboratory process to a full-size plant remains a challenge. However, the use of wastewater from treatment plants, which constitutes a cheap source of nitrates, represents an interesting opportunity for the development of innovative bioprocesses enabling the simultaneous removal of H2S and nitrates.

  12. RWPV bioreactor mass transport: earth-based and in microgravity

    Science.gov (United States)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels

  13. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  14. Mécanique des fluides

    CERN Document Server

    Cengel, Y A

    2016-01-01

    La mécanique des fluides est un outil performant qui permet d'expliquer les phénomènes qui nous entourent de l'échelle microscopique à l'échelle macroscopique. Elle est aussi à la base du développement de nombreuses technologies. Cet ouvrage à destination des étudiants donne une vision complète de la mécanique des fluides. Bien que la mécanique des fluides puisse souvent paraître rébarbative aux yeux des étudiants, cet ouvrage valorise ce domaine d'enseignement en l'illustrant de nombreux exemples issus de l'ingénierie navale, l'aéronautique, la météorologie, etc.

  15. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    Science.gov (United States)

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content. PMID:25910602

  16. Application of wireless sensor network based on ZigBee technology in photo-bioreactors system

    Science.gov (United States)

    Liu, Bo; Chen, Ming; Chi, Tao

    2013-03-01

    A photo-bioreactor is a bioreactor that incorporates some types of light source to provide photonic energy input into the reactor[1][2]. In the situation of Large-scale industrialization production of micro-algae, hundreds of photo-bioreactors will be deployed in a factory, thus the design of entire system is based on the distribution theory and the remote monitoring must be deployed. So the communication in the entire photo-bioreactors system is very important. However, the recent solution of communication is based on RS-485 data bus, and the twisted-pair cable is used as the communication medium, so the flexibility and scalability of entire system reduce. In this paper, the wireless sensor network (WSN) based on ZigBee technology is applied to this photo-bioreactors system, and the related key problems include the architecture of entire system and the design of wireless sensor network nodes[3]~[6]. The application of this technology will also reduce the cost and effectively raise the intelligence level of the large-scale industrialization photo-bioreactors system.

  17. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    Directory of Open Access Journals (Sweden)

    Karimi Ali

    2013-01-01

    Full Text Available Abstract The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  18. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  19. Biodegradation of High Concentrations of Benzene Vapors in a Two Phase Partition Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  20. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors.

    Science.gov (United States)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac

    2015-07-01

    Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens. PMID:25857421

  1. Assessment of packed bed bioreactor systems in the production of viral vaccines.

    Science.gov (United States)

    Rajendran, Ramya; Lingala, Rajendra; Vuppu, Siva Kumar; Bandi, Bala Obulapathi; Manickam, Elaiyaraja; Macherla, Sankar Rao; Dubois, Stéphanie; Havelange, Nicolas; Maithal, Kapil

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines. PMID:24949260

  2. Dechlorination of polychlorinated methanes by a sequential methanogenic-denitrifying bioreactor system.

    Science.gov (United States)

    Yu, Z; Smith, G B

    2000-04-01

    A two-stage bioreactor has been developed to link dechlorination of halogenated methane compounds to the anaerobic processes of methanogenesis and denitrification. A digester methanogenic consortium was shown to dechlorinate chloroform (CF) and carbon tetrachloride (CT) to dichloromethane (DCM), and DCM was then mineralized by an acclimated denitrifying biological activated carbon consortium. Combining these two processes, a sequential methanogenic-denitrifying bioreactor (SMDB) system that completely degraded polychlorinated methanes including CT, CF, and DCM was developed. More than 95% of the added CT and CF was dechlorinated in the methanogenic bioreactor with methanol as the primary substrate, and the resultant DCM was biodegraded in the denitrifying bioreactor with nitrate as the electron acceptor. In the denitrifying bioreactor, the residual CF was completely removed, and the DCM removal efficiency was more than 95%. This novel bioreactor system eliminates the need for aeration and so avoids the air contamination associated with aerobic biotreatment of volatile chlorinated pollutants. This SMDB system provides an alternative to conventional biotreatment of wastewaters and other matrices contaminated with polychlorinated methanes and is, to our knowledge, the first report on such a sequential anoxic system. PMID:10803908

  3. Liste des auteurs

    OpenAIRE

    2015-01-01

    Yves Tanguy, Université de Nantes, France Jacques Verger, Université Paris Sorbonne, Paris, France Jéremy duQuesnay Adams, Dept of History, SMU, USA Étienne Wolff, Université de Paris X­Nanterre, France Claire Nouvet, Emory University, USA François Lejeune, Université de Nantes, France Wim Verbaal, Université de Gand, Belgique Thomas N. Bisson, Harvard University, USA Jean Jolivet, École Pratique des Hautes Études, Paris, France Guy Lobrichon, Collège de France, France Constant J. Mews, Sc...

  4. Table des tableaux

    OpenAIRE

    2013-01-01

    1. Ordonnances à caractère financier adoptées sous Charles VIII 22 2. Personnel de la Chambre en 1492 85 3. Personnel de la Chambre en 1498 86 4. Personnel de la Chambre en 1514 86 5. Personnel de la Chambre en 1515 87 6. Personnel de la Chambre en 1524 88 7. Personnel de la Chambre en 1540 89 8. Personnel de la Chambre en 1547 90 9. Revenu de la Bretagne 108 10. Prélèvement directs 109 11. Parties ordinaires prélevées sur le revenu de Bretagne en 1535 110 12. Revenants-bons des recettes ordi...

  5. Manifeste des digital humanities

    OpenAIRE

    2012-01-01

    Introduction au manifeste L’utilisation de l’informatique en sciences humaines et sociales est pratiquée depuis maintenant plus de quarante ans. Plusieurs voies ont été explorées au cours de cette déjà assez longue histoire. La plus récente, qui prend le nom de digital humanities, désigne une intégration intense et à plu­sieurs niveaux des technologies numériques dans tous les processus de recherche, depuis la collecte de données jusqu’à la publication. Dans ce nouveau contexte d’un travail n...

  6. Liste des figures

    OpenAIRE

    2013-01-01

    Illustrations dans le texte Villes italiennes 1. Plan de Naples en 1560. Source : Bibliothèque nationale de France, cliché BNF …………………… 8 2. Plan du nouveau tracé des rioni de Rome (1744). Source : Bernardino Bernardini, Descrizione del nuovo ripartimento de’ Rioni di Roma fatto pet ordine di N.S. Papa Benedetto XIV. Con la Notizia di quanto in essi si contiene, Rome, per Generoso Salomone, 1744, p. 225. Bibliothèque nationale de France, cliché BNF ……. 26 3. Détail du plan du quartiere de S. ...

  7. Des ignames au riz

    OpenAIRE

    Ivanoff, Jacques

    2003-01-01

    L'igname a toujours été une nourriture importante pour les populations littorales et nomades du monde insulindien. Cependant, avec l'installation du héros civilisateur Gaman le Malais chez le peuple de la reine Sibian, le riz va devenir la composante essentielle des repas moken. En intégrant Gaman en son sein, la société moken va devoir répondre au double défi posé par la menace de la riziculture et de l'islam. En donnant femme à Gaman, en adoptant le nomadisme pour échapper à l'islam ...

  8. Universos (Des) conocidos

    OpenAIRE

    Gutiérrez Vásquez, Martín Kanek

    2014-01-01

    Universos (Des) conocidos es un proyecto de creación plástica. Tiene como objetivo la construcción de imágenes poéticas sobre el universo, las estrellas y nuestra relación como humanos con ellas. El proceso consintió en conformar durante 2 años un archivo de objetos recolectados de la calle, para después construir esculturas que fueron quemadas en un acto ritual. Al final se presentó los restos quemados de las esculturas, a la par se presentaban videos del registro junto con 4 afiches q...

  9. Der Preis des Reiches

    OpenAIRE

    Wilker, Julia

    2015-01-01

    Wie schon die meisten hellenistischen Könige zeichneten sich auch die römischen Klientelherrscher in der Zeit des frühen Prinzipat durch Stitungen und Spenden an Städte, Gemeinden und Heiligtümer außerhalb ihrer eigenen Herrschatsgebiete aus. Jedoch zeigt eine genauere Analyse der Stitungsempfänger, der Verteilung und Art ihrer Gaben, dass es bei der euergetischen Praxis der Klientelherrscher nicht um eine einfach Imitation oder Fortsetzung überlebter monarchischer Traditionen ging, sond...

  10. Chauffage solaire des gaz

    OpenAIRE

    Genneviève, F.; Olalde, G.; Daguenet, M.

    1980-01-01

    Les auteurs calculent numériquement les répartitions de température d'un gaz circulant en convection forcée à travers une cavité poreuse soumise à un rayonnement solaire concentré. Ils étudient l'influence des divers paramètres du système et comparent ses performances énergétiques à celles obtenues par le dispositif étudié par G. Olalde, M. Daguenet et J. L. Peube.

  11. Bibliographie des expositions

    Directory of Open Access Journals (Sweden)

    Eléonore Fournié

    2009-09-01

    Full Text Available Autun, 1985Le Livre au siècle des Rolin, sous la dir. de Marie-Josette Perrat, Autun, Bibliothèque municipale, 8 juin-28 septembre 1985. Baltimore, 2002The Book of Kings: Art, War and the Morgan Library's Medieval Picture Bible, Baltimore, Walter Art Museum, 27 octobre-29 décembre 2002, Baltimore, Third Millennium Publishing, 2002. Bruxelles, 1937Les manuscrits à miniatures, du viiie siècle à 1350, Bruxelles, Bibliothèque royale de Belgique, 1937. Bruxelles, 1940La Bibliothèque de Marguerite ...

  12. The influence of microbial activities on the radionuclide migration of technetium and selenium. Comparison of sterilisation techniques for sediments and microbial survey of sorption experiments. Final report; Untersuchung zur Methodik von Sterilisationsverfahren sowie mikrobielle Ueberwachung von Sorptionsexperimenten. Sorptionsexperimente zur Beeinflussung der Radionuklidmigration durch mikrobielle Aktivitaeten am Beispiel des Technetiums und Selen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stroetmann, I. [Technische Univ. Berlin (Germany). Fachgebiet Hygiene; Kaempfer, P. [Technische Univ. Berlin (Germany). Fachgebiet Hygiene; Schuele, J. [Freie Univ. Berlin (Germany). Fachrichtung Rohstoff- und Umweltgeologie; Sokotnejad, R. [Freie Univ. Berlin (Germany). Fachrichtung Rohstoff- und Umweltgeologie; Merz, C. [Freie Univ. Berlin (Germany). Fachrichtung Rohstoff- und Umweltgeologie; Winkler, A. [Freie Univ. Berlin (Germany). Fachrichtung Rohstoff- und Umweltgeologie

    1993-12-31

    The knowledge about the influence of microbial activities on the radionuclide migration is not very extended up to now. The sorption behaviour of the redox sensitive radionuclides {sup 95m}Tc and {sup 75}Se was investigated under consideration of microbial metabolism and the development of bacterial populations in loose sediments. Recirculation column experiments (aerobe) were carried out as well as batch experiments (aerobe and anaerobe). Sterile experiments were compared with non sterile experiments. The investigation of sterilising methods with low impact on the physico chemical properties of sediments proved gamma irradiation to be the best choice. The addition of nutrients in batch experiments showed an immobilisation of Tc and Se combined with a decreasing redox value (Eh). Non sterile recirculation experiments showed a reproducible fixation of Tc and Se without any observed decrease of the redox value. The immobilisation occurred without any measurable alteration of the marco environment. These results are not understandable taking thermodynamic data into consideration. There was no fixation of Tc and Se within 95 days in sterile column experiments. The addition of micro-organisms isolated from the non sterile columns led to a decreasing redox values. The addition of biocide (5000 ppm NaN{sub 3}) to the non sterile columns resulted in a remobilisation of Tc but not of Se. To a great extend the micro-orgnisms identified within the non sterile columns were allochthonous. The immobilisation of Tc by living cells is much bigger than by autoclaved (dead) cells. A microbial population in the cap rock aquifers is highly probables as well as in the disposal site (after the excavation and filling period). The assessment of the cap rock aquifer`s retardation capacity for the radionuclide migration may be overestimated not knowing the impact of the autochthonous microflora on those radionuclides interacting with micro-orgnisms. (orig.)

  13. Characterization of algal and microbial community growth in a wastewater treating batch photo-bioreactor inoculated with lake water

    OpenAIRE

    Krustok, Ivo; Odlare, Monica; M.A., Shabiimam; Truu, Jaak; Truu, Marika; Ligi, Teele; Nehrenheim, Emma

    2015-01-01

    Microalgae grown in photo-bioreactors can be a valuable source of biomass, especially when combined with wastewater treatment. While most published research has studied pure cultures, the consortia of algae and bacteria from wastewater have more complex community dynamics which affect both the biomass production and pollutant removal. In this paper we investigate the dynamics of algal and bacterial growth in wastewater treating batch photo-bioreactors. The photo-bioreactors were inoculated wi...

  14. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    OpenAIRE

    Mariana Manzoni Maroneze; Juliano Smanioto Barin; Cristiano Ragagnin de Menezes; Maria Isabel Queiroz; Leila Queiroz Zepka; Eduardo Jacob-Lopes

    2014-01-01

    Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae ...

  15. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors : differences in yeast metabolism and morphology

    OpenAIRE

    Braga, Adelaide; Mesquita, D. P.; Amaral, A.L.; Ferreira, E. C.; Belo, Isabel

    2015-01-01

    The production of γ-decalactone from castor oil in batch cultures of Yarrowia lipolytica W29 was compared in stirred tank (STR) and airlift bioreactors. Oxygen mass transfer from air to biphasic medium was characterized in both bioreactors trough correlations for kLa with power input and superficial gas velocity. Different conditions of oxygen transfer rate (OTR) were selected to perform biotransformations and for both bioreactors improvement of γ-decalactone productivity was obtained with OT...

  16. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin M.; Koss, Lawrence L.; Hummerick, Mary E.; Spencer, Lachelle E.; Johnsey, Marissa N.; Richards, Jeffrey T.; Ellis, Ronald; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).

  17. Evaluation of the Growth Environment of a Hydrostatic Force Bioreactor for Preconditioning of Tissue-Engineered Constructs

    OpenAIRE

    Reinwald, Yvonne; Leonard, Katherine H.L.; Henstock, James R.; Whiteley, Jonathan P.; Osborne, James M.; Waters, Sarah L.; Levesque, Philippe; El Haj, Alicia J.

    2014-01-01

    Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stim...

  18. Novel Sensor-Enabled Ex Vivo Bioreactor: A New Approach towards Physiological Parameters and Porcine Artery Viability

    OpenAIRE

    Raghavendra Mundargi; Divya Venkataraman; Saranya Kumar; Vishal Mogal; Raphael Ortiz; Joachim Loo; Subbu Venkatraman; Terry Steele

    2015-01-01

    The aim of the present work is to design and construct an ex vivo bioreactor system to assess the real time viability of vascular tissue. Porcine carotid artery as a model tissue was used in the ex vivo bioreactor setup to monitor its viability under physiological conditions such as oxygen, pressure, temperature, and flow. The real time tissue viability was evaluated by monitoring tissue metabolism through a fluorescent indicator “resorufin.” Our ex vivo bioreactor allows real time monitoring...

  19. STIRRED BIOREACTOR FOR THE ROBUSTNESS PRODUCTION OF RECOMBINANT GST.VP28 IN FED-BATCH CULTIVATION OF ESCHERICHIA COLI

    OpenAIRE

    MUHAMAD ALI; ISMAINI; Sulaiman N. Depamede; BAGUS D. H. SETYONO; ALIS MUKHLIS; MUHAMAD AMIN; MOHAMMAD ASHARI

    2015-01-01

    Escherichia coli is the most popular platform for the production of recombinant proteins as vaccine candidates. One important factor that may influence the quantity and quality of the expressed proteins using the bacterial host is a bioreactor. Thus, this study was aimed at comparing the influence of two different bioreactors, conventional (Sakaguchi flask) and stirred bioreactors on the growth of E. coli BL21 as a host cell and production of GST.VP28 recombinant protein in the host. The resu...

  20. Therapie des abdominellen Aortenaneurysmas

    Directory of Open Access Journals (Sweden)

    Rieß HC

    2014-01-01

    Full Text Available Zur invasiven elektiven und notfallmäßigen Therapie des abdominellen Aortenaneurysmas steht vor allem das offen-chirurgische und das endovaskuläre Verfahren zur Verfügung. Aufgrund einer deutlich erhöhten Mortalitätsrate im rupturierten Stadium sollte dabei stets ein elektives Vorgehen angestrebt werden. Die rechtzeitige Identifizierung erkrankter Patienten im asymptomatischen Stadium, beispielsweise im Rahmen eines Aortenscreenings für Risikogruppen, ist aus diesem Grund von größter Wichtigkeit. Trotz mehrerer randomisierter Studien zu den genannten Therapieoptionen kann bis heute keine vereinfachende Therapieempfehlung für eines der beiden konkurrierenden Verfahren ausgesprochen werden. Die Indikationsstellung erfordert stets eine sehr differenzierte Berücksichtigung aller eingehenden Faktoren. Auch ohne eine klare Empfehlung hat die endovaskuläre Versorgung des Aortenaneurysmas in vielen Ländern, so auch in Deutschland, bereits einen Anteil von über 50 % erlangt. Die kontinuierliche Verbesserung von Verfahren und Material spiegelt sich in einer signifikant kürzeren Krankenhausverweildauer und in einer niedrigeren Letalität der EVAR bei hohen technischen Erfolgsraten wider. Im Hinblick auf Langzeitergebnisse profitieren heute überwiegend ältere Personen von einer endovaskulären Aneurysma-Ausschaltung, für die aufgrund eines hohen OP-Risikos eine offen-chirurgische Versorgung nicht in Frage kommt. Zukünftig werden, bei einem vergleichbaren Outcome beider Verfahren, auch gesundheitsökonomische Aspekte eine Rolle spielen und in die Empfehlungen eingehen.

  1. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system

    International Nuclear Information System (INIS)

    The compost bioreactor ('anaerobic cell') components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  2. Effects of the addition of rape oil methyl ester (RME) on the lubrication performance of low-sulphur diesel fuel as specified in DIN EN 590 (new). Final report; Auswirkungen des Zusatzes von Rapsoelmethylester (RME) auf die Schmierfaehigkeit von schwefelarmem Dieselkraftstoff nach DIN EN 590 (neu). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Prescher, K.; Wichmann, V.

    2001-06-01

    Pflanzenoelmethylester (PME), insbesondere Rapsoelmethylester (RME), gutes Eigenschmierverhalten besitzen und die Dauerstandfestigkeit von Dieselmotoren beim Betrieb mit RME gemaess Spezifikation als gesichert gilt, liegt es nahe, mit Zumischungen zum mineraloelbasierten Dieselkraftstoff synthetisch hergestellte und damit teure Additive oder Teile von ihnen zu ersetzen. An die Zuschlagstoffe (Additive) oder Zumischungen fuer Dieselkraftstoffe, die die guenstige Beeinflussung des Reibungs- und Verschleissverhaltens anstelle der Schwefelverbindungen uebernehmen muessen, werden hohe Anforderungen gestellt. Ziel der Untersuchungen ist es, die Eignung von RME und Sonnenblumenmethylester als Schmierstoffzusatz zum Dieselkraftstoff nachzuweisen. (orig.)

  3. Les effets environnementaux des particules

    OpenAIRE

    Brignon, Jean-Marc

    2003-01-01

    En dehors de leur effet sur la santé humaine, les particules interviennent dans de nombreuses problématiques environnementales, dont le changement climatique, la formation d'ozone troposphérique, la réduction de la visibilité, et les régimes hydrologiques. L'effet des particules en termes de changement climatique est complexe et emprunte plusieurs voies. Il se traduit par des effets opposés de réchauffement ou de refroidissement de l'atmosphère, notamment selon la composition chimique des par...

  4. Médecine des voyages

    Science.gov (United States)

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  5. Tableau des chaires depuis 1800

    OpenAIRE

    2016-01-01

    TABLEAU DES CHAIRES DEPUIS 1800 Chaire ancienne Chaire nouvelle 1800 Physique mathématique Jacques-Antoine Cousin (1769-1800) Physique mathématique Jean-Baptiste Biot (1801-1862) Histoire naturelle Louis Daubenton (1778-1799) Histoire naturelle Georges Cuvier (1800-1832) 1801 Chimie Jean Darcet (1774-1801) Chimie Nicolas Vauquelin (1801-1804) 1804 Droit de la nature et des gens Mathieu-Antoine Bouchaud (1773-1804) Droit de la nature et des gens Pierre de Pastoret (1804-1821) Chimie Nicolas Va...

  6. Comparative analysis of ethanolic fermentation in two continuous flocculation bioreactors and effect of flocculation additive

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M. (Dept. de Engenharia Quimica, Faculdade de Engenharia, Univ. do Porto (Portugal)); Teixeira, J.A. (Dept. de Engenharia Quimica, Faculdade de Engenharia, Univ. do Porto (Portugal)); Mota, M. (Dept. de Engenharia Quimica, Faculdade de Engenharia, Univ. do Porto (Portugal))

    1994-08-01

    Two types of bioreactor using a flocculating strain of Saccharomyces cerevisiae and continuous ethanolic fermentation as model were compared in terms of start-up evolution, overall performance and power costs. Also, the effect of adding to the medium a polymer - Magna Floc LT[sub 25] - that increases floc porosity was studied. The main difference between the reactors lies on the system that is used to recycle the flocculated cells - one presents an external loop with mechanically forced recycling and the other has an airlift configuration with an internal loop. During start-up of both bioreactors, no significant differences between the fermentation kinetics were established, either with or without Magna Floc. In the airlift bioreactor no positive effect of the dilution rate on substrate uptake was observed. Concerning ethanol productivity, both systems behave in a similar way. The best ethanol productivity, 12,9 kg/kg/h, was obtained for the airlift system. This value is 7 times higher than in conventional systems and justifies the interest devoted to flocculation bioreactors. The results also indicate that the activity of the cells that are kept inside the airlift bioreactor is higher and compensates its lower cell retention capacity at higher diluation rates. The addition of Magna Floc to the medium causes a reduction on the ethanol yield on glucose for the external loop system, but allows for an increase in the maximal dilution rate for total glucose consumption. Such a behavior is not observed for the airlift system. The analysis of the power cost associated with the operation of the two bioreactors indicates that the differences between them are only relevant at laboratory and pilot scales. However, from an industrial scale point of view the airlift bioreactor is advantageous because no mechanical parts are involved in recycling. (orig.)

  7. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow

    International Nuclear Information System (INIS)

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications. (paper)

  8. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  9. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shafa Mehdi

    2011-12-01

    Full Text Available Abstract Background Embryonic stem cells (ESCs can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs. However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC

  10. Table des illustrations

    OpenAIRE

    2014-01-01

    COULEURS CICERI. Aladin, n° 2 (couverture) CICERI. Aladin, n° 1 CICERI. Ali-Baba, n° 2 ISABEY. Armide, n° 1 LORMIER. La Gipsy, n° 1 LORMIER. La Reine de Chypre, n° 5 LORMIER. La Tarentule, n° 2 CHASSELAT. Guillaume Tell, n° 6 LORMIER. Le Lac des fées, n° 1 CAMBON. Gustave III, n° 3 CICERI. Gustave III, n° 1 CHAPERON. Les Huguenots, n° 17 PERCIER, THIBAULT, FONTAINE. Paul et Virginie, n° 3 CHAPERON. Pierre de Médicis, n° 1 CHAPERON. Le Prophète, n° 18 CAMBON. La Reine de Chypre, n° 4 MÉNAGEO...

  11. Liste des auteurs

    OpenAIRE

    2016-01-01

    C. Alba Département de science politique et d’administration, Faculté de droit, Université autonome de Madrid, Espagne. D. Čermák Académie tchèque des sciences, Institut de sociologie, République tchèque. M. Charron Groupe de recherche sur l’innovation municipale Villes Régions Monde, INRS-Urbanisation, Culture et Société, Montréal, Canada. J.-P. Collin Groupe de recherche sur l’innovation municipale Villes Régions Monde, INRS-Urbanisation, Culture et Société, Montréal, Canada. A. Hazan Dire...

  12. Pourquoi des monocristaux ?

    OpenAIRE

    Velázquez, Matias

    2010-01-01

    D'une façon générale, les monocristaux permettent d'étudier les caractères intrinsèque et anisotrope (tensoriel) de leurs propriétés physiques, statiques ou dynamiques. Ils constituent, dans l'industrie, le maillon indispensable de la chaîne de valeur allant des matières premières aux systèmes - matières premières->monocristal->composant->systèmes -. Leur perfection à l'échelle atomique et l'anisotropie de leur(s) réponse(s) à un paramètre de contrôle (champ magnétique, champ électrique, cont...

  13. La confusion des langues

    OpenAIRE

    Descombes, Vincent

    1998-01-01

    La notion de “ description épaisse ” demande à être éclaircie. S'agit-il d'une authentique description ? Non, selon ceux qui l'entendent plutôt dans l'acception de Clifford Geertz. Elle serait plutôt une interprétation de matériaux eux-mêmes de nature interprétative, à la manière de l'explication de texte. Oui, pourtant selon le philosophe (Gilbert Ryle) auquel Geertz a emprunté le concept : la description épaisse est seulement une description mince compliquée par des précisions de type adver...

  14. La confusion des langues

    OpenAIRE

    Descombes, Vincent

    2013-01-01

    La notion de « description épaisse » demande à être éclaircie. S’agit-il d’une authentique description ? Non, selon ceux qui l’entendent dans l’acception de C. Geertz. Elle serait plutôt une interprétation de matériaux eux-mêmes de nature interprétative, à la manière de l’explication de texte. Oui, pourtant, selon le philosophe (G. Ryle) auquel Geertz a emprunté le concept : la description épaisse est seulement une description mince compliquée par des précisions de type adverbial. L’usage con...

  15. Charakterisierung des Burkholderia cenocepacia Aquaglyceroporins

    OpenAIRE

    Wree, Dorothea

    2010-01-01

    In der vorliegenden Arbeit wurde ein Aquaglyceroporin des Krankenhausproblemkeims Burkholderia cenocepacia, BccGlpF, charakterisiert. Unter besonderer Beobachtung stand die Struktur-Funktionsbeziehung der eigentlich kochkonservierten NPA-Motive.

  16. Marais Des Cygnes Wildlife Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This brochure is for the Marais des Cygnes Wildlife Area, managed by Kansas Department of Wildlife, Parks and Tourism, and located in the floodplain of the Marais...

  17. Des changements attendus en Libye

    OpenAIRE

    Martinez, Luis

    2004-01-01

    Depuis la suspension de l'embargo en avril 1999, la Libye du colonel Kadhafi cherche à retrouver sa place dans le concert des nations. Mise au ban des nations durant une décennie, en raison des accusations portées contre sa responsabilité dans l'attentat de la PanAm à Lockerbie, la Libye a fait un retour remarqué sur la scène internationale. La Libye d'après l'embargo souhaite résolument mettre un terme à la politique révolutionnaire des années 1970 et 1980. Depuis quatre ans, Kadhafi cher...

  18. La recherche des documents (heuristique)

    OpenAIRE

    Langlois, Charles-Victor; Seignobos, Charles

    2014-01-01

    L’histoire se fait avec des documents. Les documents sont les traces qu’ont laissées les pensées et les actes des hommes d’autrefois. Parmi les pensées et les actes des hommes, il en est très peu qui laissent des traces visibles, et ces traces, lorsqu’il s’en produit, sont rarement durables : il suffit d’un accident pour les effacer. Or, toute pensée et tout acte qui n’a pas laissé de traces, directes ou indirectes, ou dont les traces visibles ont disparu, est perdu pour l’histoire : c’est co...

  19. Forschung des DLR zum Verkehrsmanagement

    OpenAIRE

    Brockfeld, Elmar

    2011-01-01

    Vortrag zu aktuellen Forschungsthemen des DLR-Instituts für Verkehrssystemtechnik. Schwerpunkt Verkerhsdatenerfassung mit FCD, Taxi-FCD-System Berlin und stationäre sowie dynamische Erfassung mit Bluetooth und Wifi.

  20. Eine erste Analyse des 'Bildungsgutscheins'

    OpenAIRE

    Bruttel, Oliver

    2003-01-01

    Durch die Einführung des Systems des so genannten „Bildungsgutscheins“ hat sich die Leistungserbringung der budgetmäßig wichtigsten Maßnahme der aktiven Arbeitsmarktpolitik seit dem 1. Januar 2003 grundlegend verändert. Wie ist das neue Instrument der Arbeitsmarktpolitik ausgestaltet und wie aus theoretischer und aus praktischer Sicht zu beurteilen? Welche Probleme ergeben sich und welche Alternativen bestehen?

  1. Beeinflussung von Osteoblasten und Endothelzellen durch Zoledronat in vitro

    OpenAIRE

    Beckmann, E

    2014-01-01

    Zielsetzung: Um Hinweise zur Pathogenese der Bisphosphonat-assoziierten Osteonekrose im Kiefer (BP-ONJ) zu sammeln, wurden bovine Osteoblasten-ähnliche Zellen (OBs) und Endothelzellen aus humaner Vena umbilica (HUVECs) in vitro untersucht. Methode: OBs und HUVECs wurden über 14 Tage bei 0,01, 0,1, 1 und 10 µM Zometa® (Zoledronsäure) kultiviert. An 6 Zeitpunkten wurden Stoffwechselaktivität (MTT-Assay) und Proliferationsrate (Cell-Count auf Fotos) ermittelt. Immunhistologische Färbungen zeigte...

  2. Beeinflussung der Schilddrüsenfunktion durch Medikamente

    Directory of Open Access Journals (Sweden)

    Wolf P

    2014-01-01

    Full Text Available Die Funktion der Schilddrüse unterliegt einem strengen Regelkreis, der zahlreiche Angriffspunkte für unerwünschte Wechselwirkungen mit verschiedenen Medikamenten und Wirkstoffklassen bietet, teilweise mit klinisch relevanten Folgen. In dieser Übersichtsarbeit sollen daher einerseits die häufigsten Medikamentenwirkungen auf die Schilddrüsenfunktion beschrieben sowie andererseits auch auf die Folgen einer gestörten Resorption bei bereits bestehender Schilddrüsenhormonsubstitutionstherapie hingewiesen werden. Während diese Wechselwirkungen beispielsweise für Amiodaron oder Lithium schon lange bekannt sind, kommt es vor allem durch die Entwicklung neuer immunmodulierender Wirkstoffklassen, wie Tyrosinkinaseinhibitoren und monoklonaler Autoantikörper, zu gehäuften Beobachtungen von Schilddrüsenfunktionsbeeinträchtigungen. Neben Lithium wird auch auf die Wechselwirkung anderer Psychopharmaka eingegangen sowie der Einfluss von Wirkstoffklassen wie Gallensäurebinder, Antazida und Phosphatbinder auf die Resorption von Levothyroxin bei bestehender Schilddrüsenhormonsubstitutionstherapie näher beschrieben. Das Ziel dieser Arbeit ist es daher, einen für den praktisch tätigen Arzt tauglichen Überblick über Medikamentenwirkungen auf die Schilddrüse zu schaffen.

  3. Beeinflussung der Schilddrüsenfunktion durch Medikamente

    OpenAIRE

    Wolf P.; Winhofer Y; Krebs M

    2014-01-01

    Die Funktion der Schilddrüse unterliegt einem strengen Regelkreis, der zahlreiche Angriffspunkte für unerwünschte Wechselwirkungen mit verschiedenen Medikamenten und Wirkstoffklassen bietet, teilweise mit klinisch relevanten Folgen. In dieser Übersichtsarbeit sollen daher einerseits die häufigsten Medikamentenwirkungen auf die Schilddrüsenfunktion beschrieben sowie andererseits auch auf die Folgen einer gestörten Resorption bei bereits bestehender Schilddrüsenhormonsubstitutionstherapie hinge...

  4. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO3- and as large as 2000 m3/day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 g N(NO3-) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  5. Bag Bioreactor Based on Wave-Induced Motion: Characteristics and Applications

    Science.gov (United States)

    Eibl, Regine; Werner, Sören; Eibl, Dieter

    Today wave-mixed bag bioreactors are common devices in modern biotechnological processes where simple, safe and flexible production has top priority. Numerous studies that have been published on ex vivo generation of cells, viruses and therapeutic agents during the last 10 years have confirmed their suitability and even superiority to stirred bioreactors made from glass or stainless steel for animal as well as plant cell cultivations. In these studies the wave-mixed bag bioreactors enabled middle to high cell density and adequate productivity in laboratory and pilot scale. This mainly results from low-shear conditions and highly efficient oxygen transfer for cell cultures, as demonstrated for the widely used BioWave®.Starting with an overview of wave-mixed bag bioreactors and their common operation strategies, this chapter delineates engineering aspects of BioWave®, which like Wave Reactor™ and BIOSTAT®CultiBag RM originates from the prototype of a wave-mixed bag bioreactor introduced in 1998. Subsequently, the second part of the chapter focuses on reported BioWave® applications. Conditions and results from cultivations with animal cells, plant cells, microbial cells and nematodes are presented and discussed.

  6. Production of Calcaride A by Calcarisporium sp. in Shaken Flasks and Stirred Bioreactors

    Science.gov (United States)

    Tamminen, Anu; Wang, Yanming; Wiebe, Marilyn G.

    2015-01-01

    Increased interest in marine resources has led to increased screening of marine fungi for novel bioactive compounds and considerable effort is being invested in discovering these metabolites. For compound discovery, small-scale cultures are adequate, but agitated bioreactors are desirable for larger-scale production. Calcarisporium sp. KF525 has recently been described to produce calcaride A, a cyclic polyester with antibiotic activity, in agitated flasks. Here, we describe improvements in the production of calcaride A in both flasks (13-fold improvement) and stirred bioreactors (200-fold improvement). Production of calcaride A in bioreactors was initially substantially lower than in shaken flasks. The cultivation pH (reduced from 6.8 to <5.4), carbon source (sucrose replacing glucose), C/N ratio and nature of mycelial growth (pellets or filaments) were important in improving calcaride A production. Up to 4.5 mg·g−1 biomass (85 mg·L−1) calcaride A were produced in the bioreactor, which was only slightly less than in shaken flasks (14 mg·g−1, 100 mg·L−1). The results demonstrate that a scalable process for calcaride A production could be developed using an iterative approach with flasks and bioreactors. PMID:26114617

  7. Production of Calcaride A by Calcarisporium sp. in Shaken Flasks and Stirred Bioreactors

    Directory of Open Access Journals (Sweden)

    Anu Tamminen

    2015-06-01

    Full Text Available Increased interest in marine resources has led to increased screening of marine fungi for novel bioactive compounds and considerable effort is being invested in discovering these metabolites. For compound discovery, small-scale cultures are adequate, but agitated bioreactors are desirable for larger-scale production. Calcarisporium sp. KF525 has recently been described to produce calcaride A, a cyclic polyester with antibiotic activity, in agitated flasks. Here, we describe improvements in the production of calcaride A in both flasks (13-fold improvement and stirred bioreactors (200-fold improvement. Production of calcaride A in bioreactors was initially substantially lower than in shaken flasks. The cultivation pH (reduced from 6.8 to <5.4, carbon source (sucrose replacing glucose, C/N ratio and nature of mycelial growth (pellets or filaments were important in improving calcaride A production. Up to 4.5 mg·g−1 biomass (85 mg·L−1 calcaride A were produced in the bioreactor, which was only slightly less than in shaken flasks (14 mg·g−1, 100 mg·L−1. The results demonstrate that a scalable process for calcaride A production could be developed using an iterative approach with flasks and bioreactors.

  8. Development of a wastewater treatment system based on a fixed-film, anaerobic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Genung, R.K.; Pitt, W.W. Jr.; Davis, G.M.; Koon, J.H.

    1980-01-01

    An energy-conserving wastewater treatment system based on a fixed-film anaerobic bioreactor is being developed. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration, and biological decomposition. A 2-year pilot plant project using a bioreactor designed to treat 5000 gpd has beed conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. It is estimated that hydraulic loading rates of 0.2 gpm/ft/sup 2/ and hydraulic residence times of 10 h could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to 1.0 million gallons of wastewater per day (mgd of wastewater) were developed based on the performance of the pilot-plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. The economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated-sludge treatment systems. Methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production term as wastewater flow rates approached 1.0 mgd.

  9. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    Science.gov (United States)

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  10. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Alyssa A. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Larson, Jeffery C. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Garson, III, Alfred B. [George Washington Univ., Washington, DC (United States); Guan, Huifeng [George Washington Univ., Washington, DC (United States); Zhong, Zhong [Brookhaven National Lab. (BNL), Upton, NY (United States); Nguyen, Bao-Ngoc [Univ. of Maryland, College Park, MD (United States); Fisher, John P. [Univ. of Maryland, College Park, MD (United States); Anastasio, Mark A. [George Washington Univ., Washington, DC (United States); Brey, Eric M. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States)

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  11. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  12. Hydrodynamics in external-loop airlift bioreactors with static mixers

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilescu, M. [Chemical Pharmaceutical Research Inst., Research Center for Antibiotics, Iasi (Romania); Roman, R.V. [Chemical Pharmaceutical Research Inst., Research Center for Antibiotics, Iasi (Romania); Tudose, R.Z. [Dept. of Transfer Phenomena and Chemical Engineering, Technical Univ. of Iasi (Romania)

    1997-01-01

    Liquid circulation superficial velocity and gas holdup behaviours were investigated in an external-loop airlift bioreactor of 0.170 m{sup 3} liquid volume in gas-induced and forced-circulation-loop operation modes, in the presence of static mixers made of corrugated stainless steel pieces, resulting in packets with the height-to-diameter ratio equal to unity and using non-Newtonian starch solutions as liquid phase. The static mixers were disposed in the riser in three blocks, each with three mixing packets, successively turned 90 to the adjacent mixing element. It was found that in the presence of static mixers and forced-loop operation mode, liquid circulation superficial velocity in the riser section was significantly diminished, while gas holdup increased in a great measure. It was considered that static mixers split the fluid into individual streams and break up the bubbles, resulting in small bubble sizes with a relative homogeneous bubble distribution over riser cross section. They act as supplementary resistances in liquid flow, reducing riser cross sectional area, equivalent with A{sub D}/A{sub R} area ratio diminishing. (orig.). With 8 figs., 4 tabs.

  13. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Continuous H2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H2-producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H2 production rate increased but the H2 production yield to glucose decreased gradually. The H2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH4 was detected during the operation. The maximal volumetric H2 production rate and H2 yield to glucose were 1714 mmol H2/L.d and 1.1 mol H2/mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H2 production. (authors)

  14. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  15. Characterization of effluent water qualities from satellite membrane bioreactor facilities.

    Science.gov (United States)

    Hirani, Zakir M; Bukhari, Zia; Oppenheimer, Joan; Jjemba, Patrick; LeChevallier, Mark W; Jacangelo, Joseph G

    2013-09-15

    Membrane bioreactors (MBRs) are often a preferred treatment technology for satellite water recycling facilities since they produce consistent effluent water quality with a small footprint and require little or no supervision. While the water quality produced from centralized MBRs has been widely reported, there is no study in the literature addressing the effluent quality from a broad range of satellite facilities. Thus, a study was conducted to characterize effluent water qualities produced by satellite MBRs with respect to organic, inorganic, physical and microbial parameters. Results from sampling 38 satellite MBR facilities across the U.S. demonstrated that 90% of these facilities produced nitrified (NH4-N <0.4 mg/L-N) effluents that have low organic carbon (TOC <8.1 mg/L), turbidities of <0.7 NTU, total coliform bacterial concentrations <100 CFU/100 mL and indigenous MS-2 bacteriophage concentrations <21 PFU/100 mL. Multiple sampling events from selected satellite facilities demonstrated process capability to consistently produce effluent with low concentrations of ammonia, TOC and turbidity. UV-254 transmittance values varied substantially during multiple sampling events indicating a need for attention in designing downstream UV disinfection systems. Although enteroviruses, rotaviruses and hepatitis A viruses (HAV) were absent in all samples, adenoviruses were detected in effluents of all nine MBR facilities sampled. The presence of Giardia cysts in filtrate samples of two of nine MBR facilities sampled demonstrated the need for an appropriate disinfection process at these facilities. PMID:23871258

  16. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    Science.gov (United States)

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  17. Clofibric acid and gemfibrozil removal in membrane bioreactors.

    Science.gov (United States)

    Gutierrez-Macias, Tania; Nacheva, Petia Mijaylova

    2015-01-01

    The removal of two blood lipid regulators, clofibric acid (CLA) and gemfibrozil (GFZ), was evaluated using two identical aerobic membrane bioreactors with 6.5 L effective volume each. Polysulfone ultrafiltration hollow fiber membranes were submerged in the reactors. Different operating conditions were tested varying the organic load (F/M), hydraulic residence time (HRT), biomass concentration measured as total suspended solids in the mixed liquor (MLTSS) and the sludge retention time (SRT). Complete GFZ removal was obtained with F/M of 0.21-0.48 kg COD kgTSS⁻¹ d⁻¹, HRT of 4-10 hours, SRT of 10-32 d and MLTSS of 6-10 g L⁻¹. The GFZ removal can be attributed to biodegradation and there was no accumulation of the compound in the biomass. The CLA removals improved with the SRT and HRT increase and F/M decrease. Average removals of 78-79% were obtained with SRT 16-32 d, F/M of 0.21-0.34 kgCOD kgTSS⁻¹ d⁻¹, HRT of 7-10 hours and MLTSS of 6-10 g L⁻¹. Biodegradation was found to be the main removal pathway. PMID:25909723

  18. One-stage partial nitritation and anammox in membrane bioreactor.

    Science.gov (United States)

    Huang, Xiaowu; Sun, Kaihang; Wei, Qiaoyan; Urata, Kohei; Yamashita, Yuki; Hong, Nian; Hama, Takehide; Kawagoshi, Yasunori

    2016-06-01

    Partial nitritation and anammox (PN/A) was applied in a lab-scale membrane bioreactor (MBR) to investigate its technical feasibility for treating ammonium-rich wastewater with low C/N ratio. The bacterial community was analyzed by molecular cloning and 16S rRNA sequence analysis. Partial nitritation (PN) was first realized in MBR by seeding aerobic activated sludge. With dissolved oxygen control, a steady effluent mixture with NO2 (-)-N/NH4 (+)-N ratio of 1.13 ± 0.08 was generated from the PN process. Subsequently, the MBR was seeded with anammox biomass on day 59. After running 300 days, the one-stage PN/A achieved a maximum nitrogen removal rate of 1.45 kg N/m(3)/day at the nitrogen removal efficiency of 89.5 %. Microbial community analysis revealed that Nitrosomonas sp. HKU and Nitrosospira sp. YKU corresponded to nitritation; meanwhile, Candidatus Brocadia TKU sp. accounted for nitrogen removal of the PN/A system. Specifically, Nitrosomonas sp. were enriched in the reactor at the PN/A phase and then conquered Nitrosospira sp. to be the predominant ammonia oxidizers. Nitrite oxidizers and denitrifiers were detected in symbiosis with aforementioned microbes. Denitrification promised potential plus nitrogen depletion. The present one-stage PN/A process allows a significant decrease in operational costs compared with classical nitrification/denitrification. PMID:26916267

  19. Development of Autonomous Control in a Closed Microbial Bioreactor

    Science.gov (United States)

    Smernoff, D. T.; Mancinelli, R. L.

    1999-01-01

    Space-based life support systems which include ecological components will rely on sophisticated hardware and software to monitor and control key system parameters. Autonomous closed artificial ecosystems are useful for research in numerous fields. We are developing a bioreactor designed to study both microbe-environment interactions and autonomous control systems. Currently we are investigating N-cycling and N-mass balance in closed microbial systems. The design features of the system involve real-time monitoring of physical parameters (e.g. temperature, light), growth solution composition (e.g. pH, NOX, CO2), cell density and the status of important hardware components. Control of key system parameters is achieved by incorporation of artificial intelligence software tools that permit autonomous decision-making by the instrument. These developments provide a valuable research tool for terrestrial microbial ecology, as well as a testbed for implementation of artificial intelligence concepts. Autonomous instrumentation will be necessary for robust operation of space-based life support systems, and for use on robotic spacecraft. Sample data acquired from the system, important features of software components, and potential applications for terrestrial and space research will be presented.

  20. Removal of naphthalene and phenanthrene using aerobic membrane bioreactor.

    Science.gov (United States)

    Mijaylova Nacheva, Petia; Esquivel Sotelo, Alberto

    2016-06-01

    The removal of polycyclic aromatic hydrocarbons by membrane bioreactor (MBR) under aerobic conditions had been studied using naphthalene (NAP) and phenanthrene (PHE) as model compounds. Three MBRs with submerged ultra-filtration hollow fiber membranes were operated applying different operational conditions during 6.5 months. Complete NAP and PHE removal was obtained applying loads of 7 gNAP kgTSS(-1) day(-1) and 0.5 gPHE kgTSS(-1) day(-1), while the organic loading rate was adjusted to 0.26 kgCOD kgTSS(-1) day(-1), with the biomass concentration being 6000 mgTSS L(-1), the hydraulic retention time (HRT) 8 h and the solids retention time (SRT) 30 days. Load increases, as well as HRT and SRT reductions, affected the NAP and PHE removals. Biodegradation was found to be the major NAP and PHE removal mechanism. There was no NAP accumulation in the biomass. Low PHE quantities remain sorbed in the biomass and the contribution of the sorption in the removal of this compound was estimated to be less than 0.01 %. The volatilization does not contribute to the PHE removal in MBRs, but the contribution of NAP volatilization can reach up to 0.6 % when HRT of 8 h is applied. PMID:26895256

  1. Fiber Treatment Effects on Bioreactor Bulk Fluid Trends

    Science.gov (United States)

    Ellis, Ronald II

    2013-01-01

    In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.

  2. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  3. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hanmin; XIA Jie; YANG Yang; WANG Zixing; YANG Fenglin

    2009-01-01

    Two parallel membrane bioreactors (MBRs) were operated under different calcium dosages (168.5, 27 mg/L) to gain a better understanding of the mechanism of retarding membrane fouling by the addition of calcium.The results showed that the particle size of sludge flocs increased and the particle size distribution tended to be narrow at the optimum dosage (168.5 mg/L).Calcium was effective in decreasing loosely bound extracellular polymeric substances (LB-EPS) in microbial flocs and soluble microbial products (SMP) in the supernatant at the dosage of 168.5 mg/L by strengthening the neutralization and bridging of EPS with flocs.Furthermore, the amount of CODS and CODC decreased in both the mixed liquor and the fouling cake layer on the membrane surface.In order to compare the filtration characteristics of cake layers from the MBRs with the two calcium dosages, the specific cake resistance and the compressibility coefficient were measured.The specific cake resistance from the MBR with optimum dosage (168.5 mg/L) was distinctly lower than that with low dosage (27 mg/L).The compressibility coefficient of the cake layers under different dosages were respectively attained as 0.65, 0.91.Scanning electron microscopy (SEM) and three-dimensional confocal scanning laser microscope analysis (CLSM) images were utilized to observe the gel layer directly.

  4. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors.

    Science.gov (United States)

    Zhang, Hanmin; Xia, Jie; Yang, Yang; Wang, Zixing; Yang, Fenglin

    2009-01-01

    Two parallel membrane bioreactors (MBRs) were operated under different calcium dosages (168.5, 27 mg/L) to gain a better understanding of the mechanism of retarding membrane fouling by adding calcium. The results showed that the particle size of sludge flocs increased and the particle size distribution tended to be narrow at the optimum dosage (168.5 mg/L). Calcium was effective in decreasing loosely bound extracellular polymeric substances (LB-EPS) in microbial flocs and soluble microbial products (SMP) in the supernatant at the dosage of 168.5 mg/L by strengthening the neutralization and bridging of EPS with flocs. Furthermore, the amount of CODs and CODc decreased in both the mixed liquor and the fouling cake layer on the membrane surface. In order to compare the filtration characteristics of cake layers from the MBRs with the two calcium dosages, the specific cake resistance and the compressibility coefficient were measured. The specific cake resistance from the MBR with optimum dosage (168.5 mg/L) was distinctly lower than that with low dosage (27 mg/L). The compressibility coefficient of the cake layers under two dosages were respectively attained as 0.65, 0.91. Scanning electron microscopy (SEM) and three-dimensional confocal scanning laser microscope analysis (CLSM) images were utilized to observe the gel layer directly. PMID:19862919

  5. A risk analysis for production processes with disposable bioreactors.

    Science.gov (United States)

    Merseburger, Tobias; Pahl, Ina; Müller, Daniel; Tanner, Markus

    2014-01-01

    : Quality management systems are, as a rule, tightly defined systems that conserve existing processes and therefore guarantee compliance with quality standards. But maintaining quality also includes introducing new enhanced production methods and making use of the latest findings of bioscience. The advances in biotechnology and single-use manufacturing methods for producing new drugs especially impose new challenges on quality management, as quality standards have not yet been set. New methods to ensure patient safety have to be established, as it is insufficient to rely only on current rules. A concept of qualification, validation, and manufacturing procedures based on risk management needs to be established and realized in pharmaceutical production. The chapter starts with an introduction to the regulatory background of the manufacture of medicinal products. It then continues with key methods of risk management. Hazards associated with the production of medicinal products with single-use equipment are described with a focus on bioreactors, storage containers, and connecting devices. The hazards are subsequently evaluated and criteria for risk evaluation are presented. This chapter concludes with aspects of industrial application of quality risk management. PMID:24013583

  6. Periodically operated bioreactors for the treatment of soils and leachates

    International Nuclear Information System (INIS)

    Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rate and renders solid-phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. Periodic aeration during solid-phase bioremediation has the potential to lower treatment costs relative to continuous aeration. A biological treatment system consisting of slurrying followed by periodic aeration in solid-phase sequencing batch reactors (SP-SBRs) was developed and tested in the laboratory using a silty loam contaminated predominantly with the plasticizer bis(2-ethylhexyl)phthalate (BEHP) or (DEHP) and a silty clay loam contaminated with diesel fuel. The first experiment evaluated the effect of water content and mixing time during slurrying on subsequent treatment in continuously aerated solid-phase bioreactors. The second experiment compared treatment of slurried soil in SP-SBRs using three different periodic aeration strategies with continuous aeration

  7. The efficiency of a membrane bioreactor in drinking water denitrification

    Directory of Open Access Journals (Sweden)

    Petrovič Aleksandra

    2015-01-01

    Full Text Available The membrane bioreactor (MBR system was investigated regarding its nitrate removal capacity from drinking water. The performance of a pilot-scale MBR was tested, depending on the operational parameters, using sucrose as a carbon source. Drinking water from the source was introduced into the reactor in order to study the influence of flow-rate on the nitrate removal and denitrification efficiency of drinking water. The content of the nitrate was around 70 mg/L and the C/N ratio was 3:1. Nitrate removal efficiencies above 90% were obtained by flow-rates lower than 4.8 L/h. The specific denitrification rates varied between 0.02 and 0.16 g/L NO3/ (g/L MLSS•d. The efficiencies and nitrate removal were noticeably affected by the flow-rate and hydraulic retention times. At the maximum flow-rate of 10.2 L/h still 68% of the nitrate had been removed, whilst the highest specific denitrification rate was achieved at 0.2738 g/L NO3/ (g/L MLSS•d. The maximum reactor removal capacity was calculated at 8.75 g NO3/m3•h.

  8. Control of aromatic-waste air streams by soil bioreactors

    International Nuclear Information System (INIS)

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency

  9. Behavior of dibutyl phthalate in a simulated landfill bioreactor

    International Nuclear Information System (INIS)

    In this study, the behavior of dibutyl phthalate (DBP) from municipal solid waste (MSW) in the leachate and refuse of two simulated landfill bioreactors was compared. In one reactor, the leachate was circulated between a landfill and a methanogenic reactor, while the other reactor was operated using direct recirculation of the leachate. The results revealed that the original concentration of DBP in the refuse was approximately 18.5 μg/g, and that this concentration decreased greatly during decomposition of the waste for both reactors. Furthermore, the major loss of DBP from the landfill occurred in an active methanogenic environment in the later period, while the environment was acidic due to a high concentration of volatile fatty acids (VFA) and contained a large volume of biologically degradable material (BDM) during the early stage. Circulating the leachate between the landfill and a methanogenic reactor resulted in an increase in the biodegradability of MSW and a high degree of waste stabilization. Furthermore, DBP degraded more rapidly in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill in which there was direct leachate recirculation.

  10. Biodegradation of liquid coal tar in an aqueous bioreactor

    International Nuclear Information System (INIS)

    Coal tar is a by-product of the coal gasification process used between 1820 and 1950 to produce a gasified fuel. This material contains numerous monoaromatic and polynuclear aromatic hydrocarbons (PAH) some of which are considered to be carcinogenic. Environmentally disposed coal tar can migrate downward through the soil leaving a light fraction floating on the groundwater, referred to here as liquid coal tar. This research was carried out to determine whether liquid coal tar recovered during site clean-up operations could be cost-effectively biodegraded. Preliminary aqueous microcosm experiments demonstrated that the liquid tar was not toxic to site bacteria in concentrations up to 220,000 ppm. Liquid tar was treated in a 15 liter laboratory bioreactor operated in a batch mode with gas phase oxygen as the oxygen source. Thirty-nine major constituents were followed during treatment. In the first 63 days of operation 87% of these compounds were biodegraded or transformed. 2-, 3-, and 4-ring PAH were degraded 89%, 90%, and 70% respectively. Of the volatile compounds 89% were degraded and only 0.7% were trapped on carbon during reactor off-gassing

  11. Analysis of fouling mechanisms in anaerobic membrane bioreactors.

    Science.gov (United States)

    Charfi, Amine; Ben Amar, Nihel; Harmand, Jérôme

    2012-05-15

    In this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play. Short-term as well as long-term experiments are considered and discussed. It was found that short-term experiments are usually characterized by two fouling phases during which the same fouling mechanism or two different mechanisms affect the process. In contrast, in long-term experiments involving cleaning cycles, membrane fouling appears to be better ascribed to one phase only. The impact of abiotic parameters on membrane fouling mechanisms is reviewed and discussed in the light of these results. Finally, it is shown that the mechanism most responsible for membrane fouling in an AnMBR is cake formation. This main result will be useful for the future development of simple integrated models for optimization and control. PMID:22397816

  12. Autotrophic ammonia removal from landfill leachate in anaerobic membrane bioreactor.

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2013-01-01

    Anaerobic ammonium oxidation (ANAMMOX) process, an advanced biological nitrogen removal, removes ammonia using nitrite as the electron acceptor without oxygen. In this paper, ANAMMOX process was adopted for removing NH4+-N from landfill leachate having low COD using anaerobic membrane bioreactor (AnMBR). The AnMBR was optimized for nitrogen loading rate (NLR) varying from 0.025 to 5 kg NH4+-N/m3/d with hydraulic retention time (HRT) ranging from 1 to 3d. NH4+-N removal efficacy of 85.13 +/- 9.67% with the mean nitrogen removal rate of 5.54 +/- 0.63 kg NH4+-N/m3/d was achieved with NLR of 6.51 +/- 0.20kg NH4+-N/m3/d at 1.5 d HRT. The nitrogen transformation intermediates in the form of hydrazine (N2H4) and hydroxylamine (NH2OH) were 0.008 +/- 0.005 and 0.006 +/- 0.001 mg/l, respectively, indicating co-existence of aerobic ammonia oxidizers and ANAMMOX. The free ammonia (NH3) and free nitrous acid (HNO2) concentrations were 26.61 +/- 16.54 mg/l and (1.66 +/- 0.95) x 10(-5) mg/l, preventing NO2(-)-N oxidation to NO3(-)-N enabling sustained NH4+-N removal. PMID:24617075

  13. Removal of trace organics by anaerobic membrane bioreactors.

    Science.gov (United States)

    Monsalvo, Victor M; McDonald, James A; Khan, Stuart J; Le-Clech, Pierre

    2014-02-01

    The biological removal of 38 trace organics (pharmaceuticals, endocrine disruptors, personal care products and pesticides) was studied in an anaerobic membrane bioreactor (AnMBR). This work presents complete information on the different removal mechanisms involved in the removal of trace organics in this process. In particular, it is focused on advanced characterization of the relative amount of TO accumulated within the fouling layers formed on the membranes. The results show that only 9 out of 38 compounds were removed by more than 90% while 23 compounds were removed by less than 50%. These compounds are therefore removed in an AnMBR biologically and partially adsorbed and retained by flocs and the deposition developed on the membranes, respectively. A total amount of 288 mg of trace organics was retained per m(2) of membrane, which were distributed along the different fouling layers. Among the trace organics analyzed, 17α-ethynylestradiol, estrone, octylphenol and bisphenol A were the most retained by the fouling layers. Among the fouling layers deposited on the membranes, the non-readily detachable layer has been identified as the main barrier for trace organics. PMID:24321247

  14. Des cartographies de connaissances pour un pilotage des ressources humaines et des processus RH

    OpenAIRE

    Sellin, Kelly; Dudezert, Aurélie

    2010-01-01

    La gestion des ressources humaines s'inscrit dans la stratégie des organisations, désireuses de se démarquer d'une concurrence forte et de développer un avantage concurrentiel durable, au travers des connaissances et compétences dont elles disposent. Or, les fonctions RH sont confrontées à une dichotomie court terme/long terme, répondant à la fois aux exigences de l'opérationnel et à une nécessaire gestion anticipée des hommes et de leurs compétences pour répondre aux besoins présents et futu...

  15. Chronique des Archives 2010-2011

    OpenAIRE

    Eichenlaub, Jean-Luc

    2012-01-01

    La Chronique des Archives rendant compte des activités 2009 est parue dans la Revue d’Alsace no136, 2010, p. 391‑397. Le lecteur a pu avoir un aperçu des activités des Archives départementales (Bas‑Rhin, Haut‑Rhin, Territoire de Belfort) et des archives municipales de Belfort, Colmar, Erstein, Guebwiller, Illkirch, Illzach, Ingersheim, Mulhouse, Munster, Saint-Louis, Turckheim, Strasbourg. Il n’y a pas eu de Chronique des Archives complète dans la Revue d’Alsace no137, 2011, mais une page con...

  16. Denitrification Activity, Wood Loss, and N2O Emissions Over 9 Years From a Wood Chip Bioreactor

    Science.gov (United States)

    Loss of nitrate from agricultural fields in subsurface drainage water is an important problem in the Midwestern United States and elsewhere. One possible strategy for reducing nitrate export is the use of denitrification bioreactors. A variety of experimental bioreactor designs have been shown to re...

  17. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes a

  18. Application des polymeres a la protection des surfaces metalliques et a la retention des colorants.

    OpenAIRE

    MEDJAHED, Kouider

    2014-01-01

    Après une brevet présentation des travaux envisagés le premier objectif est consacré à la synthèse et la caractérisation des copolymères à bas de poli(4-vinylpyridine) 5P4VP)cette partie de synthèse se compose de trois Étapes

  19. Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics.

    Science.gov (United States)

    Xu, Ling; Liu, Rui; Wang, Feng; Liu, Chun-Zhao

    2012-09-01

    The key parameters of the inner structure of a cylindrical airlift bioreactor, including the ratio of the cross-section area of the downcomer to the cross-section area of the riser, clearance from the upper edge of the draft tube to the water level, and clearance from the low edge of the draft tube to the bottom of the reactor, significantly affected the biomass production of Botryococcus braunii. In order to achieve high algal cultivation performance, the optimal structural parameters of the bioreactor were determined using computational fluid dynamics (CFD) simulation. The simulated results were validated by experimental data collected from the microalgal cultures in both 2 and 40-L airlift bioreactors. The CFD model developed in this study provides a powerful means for optimizing bioreactor design and scale-up without the need to perform numerous time-consuming bioreactor experiments. PMID:22750496

  20. Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation.

    Science.gov (United States)

    Zhao, Yan; Sun, Wei; Wang, Ying; Saxena, Praveen K; Liu, Chun-Zhao

    2012-03-01

    A temporary immersion bioreactor system was found to be suitable for mass shoot proliferation of Rhodiola crenulata. The shoot multiplication ratio and hyperhydration rate reached 46.8 and 35.4%, respectively, at a temporary immersion cycle of 3-min immersion every 300 min. Forced ventilation was employed in the temporary immersion bioreactor culture in order to decrease the hyperhydration rate, improve shoot quality and enhance the multiplication ratio. The highest multiplication ratio of 55.7 was obtained under a temporary immersion cycle of 3-min immersion every 180 min with the forced ventilation at an air flow rate of 40 l/h, and the hyperhydration rate was reduced to 26.1%. Forced ventilation also improved the subsequent elongation and rooting rate of these proliferated shoots, and the shoot cultures from the temporary immersion bioreactor formed complete plantlets when subcultured onto a rooting medium containing 5 μmol/l indole-3-acetic acid. PMID:22238017

  1. Photosynthetic bacteria production from food processing wastewater in sequencing batch and membrane photo-bioreactors.

    Science.gov (United States)

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2012-01-01

    Application of photosynthetic process could be highly efficient and surpass anaerobic treatment in releasing less greenhouse gas and odor while the biomass produced can be utilized. The combination of photosynthetic process with membrane separation is possibly effective for water reclamation and biomass production. In this study, cultivation of mixed culture photosynthetic bacteria from food processing wastewater was investigated in a sequencing batch reactor (SBR) and a membrane bioreactor (MBR) supplied with infrared light. Both photo-bioreactors were operated at a hydraulic retention time (HRT) of 10 days. Higher MLSS concentration achieved in the MBR through complete retention of biomass resulted in a slightly improved performance. When the system was operated with MLSS controlled by occasional sludge withdrawal, total biomass production of MBR and SBR photo-bioreactor was almost equal. However, 64.5% of total biomass production was washed out with the effluent in SBR system. Consequently, the higher biomass could be recovered for utilization in MBR. PMID:22258682

  2. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    Science.gov (United States)

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. PMID:25262945

  3. Kinetic evaluation of nitrification performance in an immobilized cell membrane bioreactor.

    Science.gov (United States)

    Güven, D; Ubay Çokgör, E; Sözen, S; Orhon, D

    2016-01-01

    High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification-denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration. PMID:27332835

  4. Suspension cell culture in microgravity and development of a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  5. Operation of landfill bioreactors, or leachate recirculation landfills in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    Hettiaratchi, J.P.A.; Stein, V.B.; Pokhrel, D.; Chandrakanthi, M. [Calgary Univ., AB (Canada)

    2003-07-01

    The major difference between conventional landfills and bioreactor landfills is that the latter are designed, constructed, and operated to promote rapid waste degradation. This paper presents a critical review of the current design and operation practices of landfill bioreactors in relation to leachate management and gas management. The features of the two concepts were also compared. A variety of methods of mixing leachate with waste are required in leachate recirculation, some of which cannot be applied in cold climates. It is imperative to possess an excellent understanding of leachate hydrology within the waste matrix to avoid generating problems associated with leachate ponding, leachate leakage from side-walls or landfill instability during leachate recirculation. The authors pointed out that gas recovery systems in bioreactors should be designed and installed by carefully considering settlement issues and time-dependent changes to gas permeability from changes to waste density and moisture content. 17 refs., 1 tab.

  6. A re-usable wave bioreactor for protein production in insect cells.

    Science.gov (United States)

    Scholz, J; Suppmann, S

    2016-01-01

    Wave-mixed bioreactors have increasingly replaced stainless steel stirred tank reactors in seed inoculum productions and mammalian cell-based process developments. Pre-sterilized, single-use plastic bags are used for cultivation, eliminating the risk of cross-contamination and cleaning procedures. However, these advantages come with high consumable costs which is the main barrier to more uptakes of the technology by academic institutions. As an academic Core Facility that faces high demand in protein production from insect cells, we have therefore developed a cost-effective alternative to disposable wave bags. In our study we identified: •A re-usable wave shaken polycarbonate bioreactor for protein production in insect cells achieves protein yields comparable to disposable bags.•The advantages of this re-usable bioreactor are low costs, long life cycle, flexible configuration of accessories and convenient handling due to its rigid shape. PMID:27556015

  7. Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors.

    Science.gov (United States)

    Khan, M A; Ngo, H H; Guo, W S; Liu, Y W; Zhou, J L; Zhang, J; Liang, S; Ni, B J; Zhang, X B; Wang, J

    2016-08-01

    The anaerobic digestion process in anaerobic membrane bioreactors is an effective way for waste management, energy sustainability and pollution control in the environment. This digestion process basically involves the production of volatile fatty acids and biohydrogen as intermediate products and methane as a final product. This paper compares the value of bioproducts from different stages of anaerobic membrane bioreactors through a thorough assessment. The value was assessed in terms of technical feasibility, economic assessment, environmental impact and impact on society. Even though the current research objective is more inclined to optimize the production of methane, the intermediate products could also be considered as economically attractive and environment friendly options. Hence, this is the first review study to correlate the idea into an anaerobic membrane bioreactor which is expected to guide future research pathways regarding anaerobic process and its bioproducts. PMID:27233838

  8. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    Science.gov (United States)

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition. PMID:25261128

  9. Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study

    CERN Document Server

    Okkels, Fridolin; Bruus, Henrik

    2009-01-01

    To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.

  10. Materials, geometry, and net energy ratio of tubular photo bioreactors for micro-algal hydrogen production

    International Nuclear Information System (INIS)

    We estimate the energy content, the operational energy inputs, and the net energy ratio (NER) of an industrial tubular photo bioreactor used for the photosynthetic production of H2 by micro-algae. The calculated H2 output of the photo bioreactor is based on a range of algal photosynthetic H2 generation efficiencies, and on the application of standard theory for tubular solar collectors. Small diameter reactors have a low NER as the mixing energy becomes large. For a tubular photo bioreactor, low density polyethylene (LDPE) film and glass have significantly higher NERs than rigid polymers such as poly-methyl methyl-acrylate (acrylic). Using a hypothetical improved micro-algal H2 generation efficiency of 5 %, a NER ∼ 6 can be obtained for LDPE film and for glass. For mechanical and assembly reasons LDPE film is the material of choice. These results show that photo bio-hydrogen could be a viable H2 generation technology. (authors)

  11. Performance of biological hydrogen production process from synthesis gas, mass transfer in batch and continuous bioreactors

    International Nuclear Information System (INIS)

    Biological hydrogen production by anaerobic bacterium, rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas(Co) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the continuous reactor, new correlation was generated. The results showed that the agitation. gas flow rate and dilution rate were greatly influenced the hydrogen production as well as on KLa. It was found that the KLa of continuous bioreactor was 180 times higher than the mass transfer coefficient reported in batch reactor. It can be considered that the estimation of KLa for the continuous bioreactor may be successful for the large-scale biological hydrogen production

  12. Biosorption of metal ions by attached bacterial cells in a packed-bed bioreactor

    International Nuclear Information System (INIS)

    This work describes a simple method for the immobilization of a biosorbent. An adherent Bacillus sp. strain has been grown attached to an inert support material. This strain had the capacity to bind uranium, copper, cadmium and zinc. The desorption of these metals was quantitative at pH-values lower than 2. To study the attachment of the bacterial biomass, a laboratory-scale packed-bed bioreactor with an appropriate aeration system was developed. The colonization of the support was fast and efficient. In batch culture conditions, the biomass accumulation reached a cuasi-stationary phase after 12 h. Under optimal conditions, the attached biomass comprised around 80% of the total biomass present in the bioreactor. After the colonization phase, the packed-bed bioreactor was continuously operated to remove heavy metals from aqueous solutions. The biosorption capacity of the attached biomass was similar to that of the free bacterial suspension

  13. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia.

    Science.gov (United States)

    Zayen, Amal; Mnif, Sami; Aloui, Fathi; Fki, Firas; Loukil, Slim; Bouaziz, Mohamed; Sayadi, Sami

    2010-05-15

    Landfill leachate (LFL) collected from the controlled discharge of Jebel Chakir in Tunisia was treated without any physical or chemical pretreatment in an anaerobic membrane bioreactor (AnMBR). The organic loading rate (OLR) in the AnMBR was gradually increased from 1 g COD l(-1)d(-1) to an average of 6.27 g COD l(-1)d(-1). At the highest OLR, the biogas production was more than 3 volumes of biogas per volume of the bioreactor. The volatile suspended solids (VSSs) reached a value of approximately 3 g l(-1) in the bioreactor. At stable conditions, the treatment efficiency was high with an average COD reduction of 90% and biogas yield of 0.46 l biogas per g COD removed. PMID:20096996

  14. An evaluation of different bioreactor configurations for continuous bio-ethanol production

    International Nuclear Information System (INIS)

    Highlights: • Two bioreactor configurations were constructed and compared. • Continuous bioethanol production was performed in both bioreactors. • Plate heat exchanger bioreactor was the best for solid mash fermentation. • Operational power costs of both bioreactors were different in small scale levels. • Further study needed for both bioreactors with optimized parameters. - Abstract: In this preliminary investigation, a so-called Blenke cascade and plate heat exchanger bioreactor configuration were compared in terms of mixing characteristics, contamination free process, operational power costs and overall performance. At room temperature, fermentation was initially started as batch run and switched to continuous operation, when the residual sugars within the reactor were detected to be C ⩽ 1% (g/L). Samples from both configurations were taken and analyzed for ethanol and residual sugar content, as well as for any infection of the fermentation and lactic acid content, respectively. Mixing characteristics were studied by the residence time distribution method. Both geometries behaved as a finite number n of continuous stirred tanks in series, behaving as a plug flow with superimposed axial dispersion. The number of tanks in series n obtained in the plate heat exchanger configuration was 1.5–3 times larger than those in the Blenke cascade. The average ethanol productivity was Qp = 3.07 (g/L h) and Qp = 2.31 (g/L h) for cascade and plate exchanger configuration, respectively. The analysis of operational power costs indicates relevant differences between the two reactors at laboratory scale; however, systems with different types of pumps and viscosities are compared. From an industrial scale point of view, specific operational costs decrease with scale-up, as no mechanical mixing is needed in the fermenters

  15. CCC/WPA study : Des Lacs NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the Civilian Conservation Corps (CCC) camp at Des Lacs National Wildlife Refuge from July 1935-May 1942 to carry on restoration and development of Des...

  16. Gestion des connaissances des firmes globales : entre pratiques de codification et pratiques de diffusion

    OpenAIRE

    Paraponaris, Claude; Simoni, Gilda

    2004-01-01

    Le management des connaissances suscite beaucoup d'interrogations au sujet des méthodes mises en œuvre. Cet article propose une étude des pratiques de management des connaissances au sein de firmes multinationales. Deux résultats principaux sont dégagés. Nous montrons d'une part que plusieurs méthodes assez différentes du point de vue des objectifs et des usages peuvent être articulées au sein d'une même entreprise. Nous proposons également une typologie de pratiques de gestion des connaissan...

  17. Terre des hommes

    CERN Multimedia

    Staff Association

    2012-01-01

    Transformez votre téléphone portable en geste de solidarité ! Collecte du 12 au 23 novembre 2012   Faites un geste simple et utile en déposant vos téléphones portables inutilisés dans les urnes installées dans les trois restaurants du CERN. En Suisse, une personne change tous les 12 à 18 mois de téléphone portable. La plupart de nos vieux appareils sont simplement laissés à l’abandon avec comme seule fonction de parer une éventuelle panne à venir. On  estime ainsi que 8 millions de portables sont inutilisés, alors qu'entre 30 et 50% peuvent être réutilisés. L'action Solidarcomm leur offre une deuxième vie ! Terre des Hommes Suisse, dans le cadre de la campagne Solidarcomm, collecte et valorise vos téléphones inutilis&...

  18. Onlinespieler abseits des Mainstreams

    Directory of Open Access Journals (Sweden)

    Harald Baumgartlinger

    2012-12-01

    Full Text Available MMO(RPGs „Massively Multiplayer Online (Role-Playing Games“ nehmen einen Sonderstatus unter den Onlinespielen ein, welcher durch den wachsenden wirtschaftlichen Erfolg, insbesondere durch den „breakthrough hit“ (Duchenaut et al. 2006: 407 World of Warcraft (WoW, auch an Bedeutung für die Medien- und Kommunikationswissenschaft gewinnt (vgl. Inderst 2009: 15; vgl. Seifert/Jöckel 2008: 297. Der Primus des Genres, WoW, repräsentiert gemeinsam mit einigen nahezu identen Titeln insgesamt 85 Prozent der gespielten MMOGs (vgl. Williams et al. 2008: 999. Daher befasst sich auch die Mehrheit der vorliegenden Studien mit eben diesen Spielen. Neue Formen von MMO(Gs können jedoch zu ebenso neuartigen Spielerfahrungen führen und damit unterschiedliche Nutzungsmotive befriedigen (vgl. Seifert/Jöckel 2008: 309 und folglich zu einem gänzlich anderen Spielerleben führen. Während im Mainstream die kooperativen Spielerbeziehungen überwiegen, dominiert in Darkfall Online der soziale Wettbewerb. Der von Williams et al. 2008 verwendete Fragebogen diente als Rohling für die Kreation eines für die speziellen Anforderungen adaptierten Erhebungstools zur Erforschung der Spielertypologie und der Motive der Darkfall-Online-SpielerInnen. Die in der Onlinebefragung (N = 506 gesammelten Daten belegen, dass sich sowohl die Spielerdemographie, als auch die Motive der Spieler von den Mainstream MMOs unterscheiden. Zudem konnten realweltliche Eigenschaften der Spieler als signifikante Einflussfaktoren für die Spielzuwendung identifiziert werden.

  19. Des plants de merisiers issus des vergers à graines disponibles !

    OpenAIRE

    Dufour, Jean; Santi, Frédérique; Migeot, Jonathan; Rondouin, Michel; Le Bouler, Hervé

    2012-01-01

    Les composants des vergers à graines Cabrerets et Avessac sont de bonne qualité génétique. Cependant, il faut les planter à 300-400 plants/ha en forêt, et 100 plants/ha en agroforesterie, pour faire face aux aléas des recombinaisons génétiques et aux problèmes environnementaux. Un suivi en taille de formation et élagage régulier permettra d’en tirer un bénéfice financier intéressant. La valeur locale des produits issus de ces vergers sera évaluée grâce à la « sélection participative »....

  20. Exploration et gestion des connaissances des ressources en IHM

    OpenAIRE

    André, Fabien; Artignan, Guillaume; Cordeil, Maxime; Hoarau, Raphaël; Vo, Dong-Bach

    2010-01-01

    Nous présentons dans l' article le résultat d'un travail réalisé à l'école de Printemps 2010 de l'AFIHM. L'analyse des activités liées à la réalisation d' un état de l'art nous montre qu'une des tâches les plus compliquées est la familiarisation avec un nouveau domaine. Pour outiller cette activité, nous présentons des pistes de réflexion basées sur une analogie avec la mémoire humaine.

  1. La mousson, pluie des agriculteurs et vent des marins

    OpenAIRE

    Aubaile-Sallenave, Françoise

    2014-01-01

    La mousson, c’est un mot arabe ayant une origine et une histoire propre. Ce sont aussi des vents et des courants marins qui vont de l’océan Indien aux mers de Chine et du Japon. C’est une zone de mouvements intenses mettant en contact des populations très diverses.La mousson a facilité depuis fort longtemps les voyages est - ouest (Chine vers Asie du sud-est et Inde) et ouest-est (Arabie vers Inde, Asie du sud-est et Chine), voyages qui donnent accès aux îles et presqu’îles de l’Asie du sud-e...

  2. Des arbres et des herbes aux marges du Sahara

    OpenAIRE

    Bernus, Edmond

    1992-01-01

    Le Sahara possède une végétation qui est d'autant plus précieuse pour ses habitants qu'elle est rare. Les herbes, prairies d'"éphémères" dans les zones aux pluies les plus aléatoires, ou vivaces et annuelles plus régulières, fournissent un fourrage très recherché. Dans les marges méridionales des herbes permettent des ramassages de graines qui donnent aux nomades des nourritures appréciées. Mil, sorgho et riz poussent à l'état spontané : les deux premiers ont été domestiqués dans cette région...

  3. Evolution des nages et théorie des jeux

    OpenAIRE

    Collard, Luc

    2011-01-01

    Nous nous servons de la Théorie des jeux pour formaliser une situation problématique observée en natation sportive lors de Championnats d’Europe espacés de trente ans. Dans les épreuves de 100 m de Dos, Papillon et Nage libre, les nageurs de haut niveau nagent plus vite en immersion qu’en émersion. En petits bassins (25m), la règle des 15m permet aux nageurs de rester sous l'eau sur des distances supérieures aux distances nagées en surface. Pourtant, les experts n'utilisent pas cette option e...

  4. Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis.

    Science.gov (United States)

    Yoo, Jae Jun; Choi, Seung Phill; Kim, Byung Woo; Sim, Sang Jun

    2012-01-01

    The unicellular green microalgae, Haematococcus pluvialis, has been examined as a microbial source for the production of astaxanthin, which has been suggested as a food supplement for humans and is also prescribed as an ingredient in eye drops because of its powerful anti-oxidant properties. In this study, we estimated the effects of the slope of a V-shaped bottom design, the volumetric flow rate of air, height/diameter (H/D) ratio, and diameter of an air sparger on the performance of a photo-bioreactor. These parameters were selected because they are recognized as important factors effecting the mixing that produces increased cell density in the reactor. The mixing effect can be measured by changes in optical density in the bioreactor over a period of time. A 6 L indoor photo-bioreactor was prepared in a short time period of 24 h for the performance study. A bioreactor designed with a V-shaped bottom with a slope of 60° showed an optical density change of 0.052 at 680 nm, which was sixfold less than the change in a photo-bioreactor designed with a flat bottom. Studies exploring the effects of bioreactor configuration and a porous metal sparger with a 10 μm pore size showed the best performance at an H/D ratio of 6:1 and a sparger diameter of 1.3 cm, respectively. The optimal rate of air flow was 0.2 vvm. The indoor culture of microalgae in the photo-bioreactor was subsequently carried for an application study using the optimal values established for the important factors. The indoor culture system was composed of a light source controlled according to cell phase, a carbon dioxide feeder, a bag-type reactor with an H/D ratio of 6:1, and a temperature controller. Results demonstrated the efficient production of microalgal cells and astaxanthin in the amounts of 2.62 g/L and 78.37 mg/L, respectively, when using adequate hydrodynamic mixing. Furthermore, the optimal design of a photo-bioreactor can be applied for the phototropic culturing of other microalgae for

  5. Preparation of [11C]formaldehyde using a hollow fiber membrane bioreactor

    International Nuclear Information System (INIS)

    A bioreactor consisting of the enzymes alcohol oxidase and catalase immobilized onto a hollow fiber membrane was used to convert [11C]methanol to [11C]formaldehyde. Using an alcohol oxidase:catalase ratio of 1:500 U, conversion yields of 90-95% were obtained allowing the production of up to 7400 MBq (200 mCi) of [11C]formaldehyde in 5 min. The hollow fiber bioreactor allowed for a convenient, rapid synthesis with yields significantly higher than the standard chemical procedures, has demonstrable advantages over glass bead immobilized systems (primarily due to convective flow), and was amenable to hot cell conditions

  6. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Li, Si-Yu; Chiang, Chung-Jen; Tseng, I-Ting; He, Chi-Ruei; Chao, Yun-Peng

    2016-07-01

    The microbial fermentation process is one of the sustainable and environment-friendly ways to produce 1-butanol and other bio-based chemicals. The success of the fermentation process greatly relies on the choice of bioreactors and the separation methods. In this review, the history and the performance of bioreactors for the acetone-butanol-ethanol (ABE) fermentation is discussed. The subject is then focused on in situ product recovery (ISPR) techniques, particularly for the integrated extraction-gas stripping. The usefulness of this promising hybrid ISPR device is acknowledged by its incorporation with batch, fed-batch and continuous processes to improve the performance of ABE fermentation. PMID:27190167

  7. NUMERICAL SIMULATION BY COMPUTATIONAL FLUID DYNAMICS AND EXPERIMENTAL STUDY ON STIRRED BIOREACTOR WITH PUNCHED IMPELLER

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; HE Pingting; YE Hong; XIN Zhihong

    2007-01-01

    Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.

  8. Corn forage biological pretreatment by Trametes versicolor in a tray bioreactor.

    Science.gov (United States)

    Planinić, Mirela; Zelić, Bruno; Čubel, Ivan; Bucić-Kojić, Ana; Tišma, Marina

    2016-08-01

    Trametes versicolor is a white-rot fungus known to be efficient in lignin removal due to its complex extracellular lignocellulolytic enzymatic system. Therefore, it can be used in the treatment of lignocellulose waste from agro, food, and wood industries. In a first experiment, corn forage treatment with T. versicolor was investigated in laboratory jars. In a second experiment, the process was scaled up to a tray bioreactor. In the tray bioreactor, the process of lignin degradation was improved, resulting in an increase in lignin conversion of up to 71% during seven days' treatment. PMID:27401159

  9. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  10. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – A comparative study

    Science.gov (United States)

    Mujib, A.; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-01-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  11. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) - A comparative study.

    Science.gov (United States)

    Mujib, A; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-11-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  12. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lee, S.

    2009-07-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  13. Current algebra; Algebre des courants

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( {delta}I = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [French] La premiere partie de ce cours (trois premiers chapitres), traite des generalites concernant l'algebre de courants. Apres une definition rapide des courants faibles et un rappel de leurs proprietes (hypothese V-A, conservation du courant vecteur, regles de selection, courant axial partiellement conserve,...), l'on introduit l'algebre de Gell-Mann SU (3) x SU (3), et discute les proprietes generales de l'Hamiltonien faible non leptonique. Les chapitres IV a IX sont consacres a des applications importantes de l'algebre des courants. En premier lieu l'on demontre la formule de Adler et Weisberger, par deux methodes differentes, celle dite du repere de moment infini et celle des singularites proches. Cette derniere est seule utilisee dans la suite. Puis, l'on traite successivement les problemes suivants: desintegrations semi-leptoniques des mesons K et des hyperons, theoreme de Kroll

  14. Phenanthrene Contaminated Soil Biotreatment Using Slurry Phase Bioreactor

    Directory of Open Access Journals (Sweden)

    M. Arbabi

    2009-01-01

    Full Text Available Problem Statement: Polycyclic Aromatic Hydrocarbons (PAHs are suspected toxins that accumulate in soils and sediments due to their insolubility in water and lack of volatility. Slurry-phase biological treatment is one of the innovative technologies that involve the controlled treatment of excavated soil in a bioreactor. Due to highly soil contamination from petroleum compounds in crude oil extraction and also oil refinery sites in Iran, this research was designed based on slurry phase biotreatment to find out a solution to decontamination of oil compounds polluted sites. Approach: Soil samples were collected from Tehran oil refinery site and Bushehr oil zones. Two compositions of soils (clay and silt were selected for slurry biotreatment experiment. Soil samples were contaminated with three rates of phenanthrene (a 3 ring PAH, 100, 500 and 1000 mg kg-1 and mixed with distilled water in solid concentration of 30% by weight after washing out with strong solvent (hexane and putting in to the oven. Bacterial consortium was revived in culture medium which consisted of Mineral Salt Medium (MSM based on phenanthrene concentrations and ratio of C/N/P in the range of 100/10/2. Prepared soil samples were mixed with distilled water, nutrient and bacterial consortium together in the 250 mL glass Erlenmeyer and putted in the shaker incubator with 200 rpm revolutions and 25°C for 7 weeks (45 days. Samples were analyzed for residual phenanthrene, bacterial population every week. For statistical analysis, general linear model with repeated measures (type III analysis was applied. Results: The concentration of 100 mg Ll of phenanthrene in clayey and silty soils reached to non detectable limit after 5 and 6 weeks, respectively. While concentration of 500 mg L-1 of phenanthrene both in clayey and silty soils reached to non detectable limit after 6 weeks. But concentration of 1000 mg L-1both in clayey and silty soil samples has not met this limitation after 7

  15. Banque de Brevets : petits exercices avec résultats : théorie des poutres (résistance des matériaux), dynamique des structures, incertitudes, mathématiques, mécanique des solides déformables, modélisation des solides, mécanique des fluides, pédagogie par CRAIES et ceintures

    OpenAIRE

    Génevaux, Jean-Michel

    2015-01-01

    Petits exercices avec résultats : théorie des poutres (résistance des matériaux), dynamique des structures, incertitudes, mathématiques, mécanique des solides déformables, modélisation des solides, mécanique des fluides, pédagogie par CRAIES et ceintures

  16. Membrane Bioreactors design and operation improvements: The Spanish Experience

    International Nuclear Information System (INIS)

    A Membrane Bioreactor (MBR) is a modification of a conventional activated sludge (CAS) plant where the secondary settling ins replaced by a low pressure ultrafiltration (UF) or micro filtration (MF) membranes separation process in order to obtain an effluent almost free of suspended solids and microorganisms. since the first MBR installation in 2002, the number and capacity of these systems have exponentially increased in spain, driven by the high quality of the effluent which allows direct reuse and discharge into environmentally sensitive areas, the compactness and automation of these plants and the possibility of upgrading existing wastewater treatment plants (WWTP) which no longer reach the required effluent quality levels. There were 45 operating MBR systems in 2011 and the total municipal wastewater treatment capacity by this type of plants will be about 90 hm3 in 204 when the current projects have been implemented. Today, Spain public and private wastewater management agencies consider MBR plants as an alternative of treatment but first they had to face a complex learning period to operate and design this kind of system. A significant progress has been made over the last years, but especially energy efficiency responds to the challenge of continuous improvement. Membrane fouling control consumes most of the energy involved in the process therefore, anti fouling materials and better membrane air-scour systems that allow the frequency and intensity of air flow to be controlled in realtime, are being investigated. This brings MBR closer to the CAS process in terms of energy efficiency. Breakthroughs in the design and operation of MBR plants are being collected in a guide for the implementation of MBR led by CEDEX, in which the main managers and operators are involved. This paper presents some of these improvements. (Author) 9 refs.

  17. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2013-03-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet microfiltration membranes was operated at psychrophilic temperature (15 °C) treating simulated and actual domestic wastewater (DWW). Chemical oxygen demand (COD) removal during simulated DWW operation averaged 92 ± 5% corresponding to an average permeate COD of 36 ± 21 mg/L. Dissolved methane in the permeate stream represented a substantial fraction (40-50%) of the total methane generated by the system due to methane solubility at psychrophilic temperatures and oversaturation relative to Henry's law. During actual DWW operation, COD removal averaged 69 ± 10%. The permeate COD and 5-day biochemical oxygen demand (BOD(5)) averaged 76 ± 10 mg/L and 24 ± 3 mg/L, respectively, indicating compliance with the U.S. EPA's standard for secondary effluent (30 mg/L BOD(5)). Membrane fouling was managed using biogas sparging and permeate backflushing and a flux greater than 7 LMH was maintained for 30 days. Comparative fouling experiments suggested that the combination of the two fouling control measures was more effective than either fouling prevention method alone. A UniFrac based comparison of bacterial and archaeal microbial communities in the AnMBR and three different inocula using pyrosequencing targeting 16S rRNA genes suggested that mesophilic inocula are suitable for seeding psychrophilic AnMBRs treating low strength wastewater. Overall, the research described relatively stable COD removal, acceptable flux, and the ability to seed a psychrophilic AnMBR with mesophilic inocula, indicating future potential for the technology in practice, particularly in cold and temperate climates where DWW temperatures are low during part of the year. PMID:23295067

  18. Pilot-scale experiment on anaerobic bioreactor landfills in China

    International Nuclear Information System (INIS)

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m3 leachate and 0.1 m3 tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended

  19. Biotechnologie des archées

    OpenAIRE

    Querellou, Joel

    2010-01-01

    La majorité des enzymes utilisées dans l’industrie provient des bactéries et des levures. Mais les conditions extrêmes dans lesquelles se développent de nombreuses espèces d’archées font que leurs constituants cellulaires possèdent des propriétés et une stabilité propices à leur utilisation en biotechnologie.

  20. Neologismen des Lettischen anhand des schriftstellerischen Werkes von Zigmunds Skujins

    OpenAIRE

    Javojss, Skaidrite

    2010-01-01

    Untersuchung: Aus acht Werken des zeitgenössischen Schriftstellers Zigmunds Skujins wurden 500 lettische Wörter untersucht, die in den drei umfangreichsten lettischen Wörterbüchern nicht verzeichnet und somit möglicherweise Neologismen des Autors sind. Analysiert werden die Wortarten, die Komposita, die Herkunft der assimilierten Lehnwörter, orthographische und andere Varianten bereits lexikalisierter Wörter, die Arten der Diminutivbildung und der Präfigierung. Außerdem werden Aussagen über d...