WorldWideScience

Sample records for biopolymers

  1. Biopolymer organization upon confinement

    Energy Technology Data Exchange (ETDEWEB)

    Marenduzzo, D [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Micheletti, C [SISSA, International School for Advanced Studies, CNR-INFM Democritos and Italian Institute of Technology, SISSA Unit via Bonomea, 265, Trieste (Italy); Orlandini, E [Dipartimento di Fisica, Universita di Padova and Sezione INFN Padova, Via Marzolo 8, 35131, Padova (Italy)

    2010-07-21

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered. (topical review)

  2. Radiation chemistry of biopolymers

    International Nuclear Information System (INIS)

    Studies have been made on biopolymers in the solid state (direct effect) and in dilute aqueous solution (indirect effect). In vivo the state of biopolymers lies somewhere between fluid and solid, and to understand the radiation effects, one must interpolate between the two extremes. Evidence is quite strong that hydroxyl radicals are involved in mammalian and bacterial cell killing. The structure of DNA and many proteins is now clearly defined. With this knowledge and with the development of fast reaction techniques, the sites of reaction of the primary aqueous radicals and the reaction mechanisms in these biopolymers are well understood. The identification of the radiation products has been hampered by lack of sensitive analytical methodologies. Recent developments in analytical techniques, such as capillary gas chromatography (GC), mass spectrometry (MS), and high-performance liquid chromatography (HPLC), have provided means of monitoring small changes in amino acids and DNA bases, and of detecting radiation products formed in low yields. The focus of this chapter is indirect effects of the primary aqueous radicals in forming organic radicals in biopolymers and on the mechanisms of termination of these radicals to produce damage and radiation products

  3. Production of novel microbial biopolymers

    Science.gov (United States)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  4. Abiotic origin of biopolymers

    Science.gov (United States)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  5. Processes for xanthomonas biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Engelskirchen, K.; Stein, W.; Bahn, M.; Schieferstein, L.; Schindler, J.

    1984-03-27

    A process is described for producing xanthan gum in which the use of a stable, water-in-oil emulsion in the fermentation medium markedly lowers the viscosity of the medium, resulting in lower energy requirements for the process, and also resulting in enhanced yields of the biopolymer. In such an emulsion, the aqueous fermentation phase, with its microbial growth and metabolic processes, takes place in a finely dispersed homogeneous oil phase. The viscosity increase in each droplet of the aqueous nutrient solution will not noticeably affect this mixture in the fermenter because the viscosity of the reaction mixture in the fermenter is determined primarily by the viscosity of the oil phase. 45 claims

  6. Microwave dielectric properties of biopolymers

    Science.gov (United States)

    Bartsch, Carrie M.; Subramanyam, Guru; Grote, James G.; Hopkins, F. Kenneth; Brott, Lawrence L.; Naik, Rajesh R.

    2006-09-01

    A new capacitive test structure is used to characterize biopolymers at microwave frequencies. The new test structure is comprised of a parallel plate capacitor, combined with coplanar waveguide-based input and output feed lines. This allows microwave measurements to be taken easily under an applied DC electric field. The microwave dielectric properties are characterized for two biopolymer thin films: a deoxyribonucleic acid (DNA)-based film and a bovine serum albumin (BSA)-based film. These bio-dielectric thin-films are compared with a standard commercial polymer thin film, poly[Bisphenol A carbonate-co-4,4'(3,3,5-trimethyl cyclohexylidene) diphenol], or amorphous polycarbonate (APC).

  7. Semiflexible Biopolymers in Bundled Arrangements

    Directory of Open Access Journals (Sweden)

    Jörg Schnauß

    2016-07-01

    Full Text Available Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.

  8. Dynamics of forced biopolymer translocation

    CERN Document Server

    Lehtola, V V; Kaski, K; 10.1209/0295-5075/85/58006

    2009-01-01

    We present results from our simulations of biopolymer translocation in a solvent which explain the main experimental findings. The forced translocation can be described by simple force balance arguments for the relevant range of pore potentials in experiments and biological systems. Scaling of translocation time with polymer length varies with pore force and friction. Hydrodynamics affects this scaling and significantly reduces translocation times.

  9. Crosslinking biopolymers for biomedical applications.

    Science.gov (United States)

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications.

  10. BIOPOLYMERS FOR APPLICATION IN PHOTONICS

    OpenAIRE

    Rau, Ileana; Kajzar, Francois

    2014-01-01

    The possibilities of utilization of biopolymers, the deoxyribonucleic acid (DNA) in particular, are reviewed and discussed. The ways of their functionalization with photoresponsive molecules to get desired properties are described and illustrated on several examples as well as the processing of materials into thin films. Their roomand photo-thermal stability, studied by spectroscopic techniques is reported, together with optical damage thresholds. Physical properties, and more particularly li...

  11. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  12. Biopolymers as a flexible resource for nanochemistry.

    Science.gov (United States)

    Schnepp, Zoe

    2013-01-21

    Biomass is an abundant source of chemically diverse macromolecules, including polysaccharides, polypeptides, and polyaromatics. Many of these biological polymers (biopolymers) are highly evolved for specific functions through optimized chain length, functionalization, and monomer sequence. As biopolymers are a chemical resource, much current effort is focused on the breakdown of these molecules into fuels or platform chemicals. However there is growing interest in using biopolymers directly to create functional materials. This Minireview uses recent examples to show how biopolymers are providing new directions in the synthesis of nanostructured materials.

  13. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    Science.gov (United States)

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  14. Preparation of Biopolymer Aerogels Using Green Solvents

    Science.gov (United States)

    Subrahmanyam, Raman; Gurikov, Pavel; Meissner, Imke; Smirnova, Irina

    2016-01-01

    Although the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm). PMID:27403649

  15. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie;

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  16. Topology and geometry of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Janse Van Rensburg, E.J. [York Univ., Downsview, Ontario (Canada); Orlandini, E.; Tesi, M.C. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-12-31

    This paper is concerned with some simple lattice models of the entanglement complexity of polymers in dilute solution, with special reference to biopolymers such as DNA. We review a number of rigorous results about the asymptotic behavior of the knot probability, the entanglement complexity and the writhe of a lattice polygon (as a model of a ring polymer) and discuss Monte Carlo results for intermediate length polygons. In addition we discuss how this model can be augmented to include the effect of solvent quality and ionic strength. We also describe a lattice ribbon model which is able to capture the main properties of an oriented ribbon-like molecule (such as duplex DNA). 47 refs., 1 fig.

  17. Mixed Biopolymer Systems Based on Starch

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-01-01

    Full Text Available A binary mixture of starch–starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch–based foods and minimize the need to resort to chemically modified starch.

  18. Mixed Biopolymer Systems Based on Starch

    OpenAIRE

    Takahiro Noda; Karim, Alias A.; Md. Jahurul Haque Akanda; Amid Mehrnoush; Sahena Ferdosh; M. Abd Elgadir; Md. Zaidul Islam Sarker

    2012-01-01

    A binary mixture of starch–starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influenc...

  19. System for measuring radioactivity of labelled biopolymers

    International Nuclear Information System (INIS)

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs

  20. Cell patterning with mucin biopolymers

    Science.gov (United States)

    Crouzier, T.; Jang, H.; Ahn, J.; Stocker, R.; Ribbeck, K.

    2014-01-01

    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces. PMID:23980712

  1. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Binbin; XIONG Jinshui; YAN Jingchun

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension,formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100 ℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows:pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  2. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension, formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows: pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  3. Molecular entanglement and electrospinnability of biopolymers.

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R

    2014-01-01

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level.

  4. Fabrication of biopolymer cantilevers using nanoimprint lithography

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis;

    2011-01-01

    The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...... challenge was the high adhesion between PLLA and silicon stamp. Optimized stamp fabrication and the deposition of a 125 nm thick fluorocarbon anti-stiction coating on the PLLA allowed the fabrication of biopolymer cantilevers. Resonance frequency measurements were used to estimate the Young’s modulus...

  5. How the first biopolymers could have evolved.

    Science.gov (United States)

    Abkevich, V I; Gutin, A M; Shakhnovich, E I

    1996-01-01

    In this work, we discuss a possible origin of the first biopolymers with stable unique structures. We suggest that at the prebiotic stage of evolution, long organic polymers had to be compact to avoid hydrolysis and had to be soluble and thus must not be exceedingly hydrophobic. We present an algorithm that generates such sequences for model proteins. The evolved sequences turn out to have a stable unique structure, into which they quickly fold. This result illustrates the idea that the unique three-dimensional native structures of first biopolymers could have evolved as a side effect of nonspecific physicochemical factors acting at the prebiotic stage of evolution. PMID:8570645

  6. Microrheology of Biopolymer-Membrane Complexes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2000-07-01

    We create tailored microstructures, consisting of complexes of lipid membranes with self-assembled biopolymer shells, to study the fundamental properties and interactions of these basic components of living cells. We measure the mechanical response of these artificial structures at the micrometer scale, using optical tweezers and single-particle tracking. These systems exhibit rich dynamics that illustrate the viscoelastic character of the quasi-two-dimensional biopolymer network. We present a theoretical model relating the rheological properties of these membranes to the observed dynamics.

  7. Biopolymer colloids for controlling and templating inorganic synthesis

    Directory of Open Access Journals (Sweden)

    Laura C. Preiss

    2014-11-01

    Full Text Available Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core–shell structures; and (iii so-called “soft templates”, which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers.

  8. Dielectric and electrical transport properties of biopolymers

    Science.gov (United States)

    Bartsch, Carrie M.; Subramanyam, Guru; Grote, James G.; Hopkins, F. Kenneth; Brott, Lawrence L.; Naik, Rajesh R.

    2007-02-01

    A new capacitive test structure is used to characterize biopolymers at microwave frequencies. The new test structure is comprised of a parallel plate capacitor, combined with coplanar waveguide-based input and output feed lines. This allows electrical measurements to be taken easily under an applied DC electric field and at various temperatures. The dielectric properties are characterized for two biopolymer thin films: a deoxyribonucleic acid (DNA)-based film and a bovine serum albumin (BSA)-based film. These bio-dielectric thin films are compared with a standard commercial polymer thin film, poly[Bisphenol A carbonate-co-4,4'(3,3,5-trimethyl cyclohexylidene) diphenol], also known as amorphous polycarbonate (APC).

  9. The glass transition process in humid biopolymers. DSC study

    Energy Technology Data Exchange (ETDEWEB)

    Grunina, N A; Belopolskaya, T V; Tsereteli, G I [V.A. Fock Research Institute for Physics of Saint-Petersburg State University, 198504, Petrodvorets (Russian Federation)

    2006-05-15

    Thermal properties of native and denatured biopolymers with quite different chemical and steric structure (globular and fibrillar proteins, DNA, starches) were studied by means of differential scanning calorimetry in a wide range of temperatures and concentrations of water. It was shown that both native and denatured humid biopolymers are glassy systems. The glass transition temperature of these systems strongly depends on percentage of water, with water being simultaneously an intrinsic element of systems' ordered structure and a plasticizer of its amorphous state. On the base of the absolute values of heat capacities for biopolymer-water systems as a whole, heat capacities for biopolymers themselves were calculated as functions on water concentration at fixed temperatures. The S-shaped change of heat capacity observed on diagrams of state both for native and denatured biopolymers is the manifestation of biopolymers' passing through the vitrification region, as it occurs for denatured samples at heating.

  10. Binding capacity: cooperativity and buffering in biopolymers.

    Science.gov (United States)

    Di Cera, E; Gill, S J; Wyman, J

    1988-01-01

    The group of linkage potentials resulting from the energy of a physicochemical system expressed per mol of a reference component, say a polyfunctional macromolecule, leads to the concept of binding capacity. This concept applies equally to both chemical and physical ligands and opens the way to consideration of higher-order linkage relationships. It provides a means of exploring the consequences of thermodynamic stability on generalized binding phenomena in biopolymers. PMID:3422436

  11. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  12. Biopolymer Green Lubricant for Sustainable Manufacturing

    OpenAIRE

    Shih-Chen Shi; Fu-I Lu

    2016-01-01

    We report on the preparation of a biopolymer thin film by hydroxypropyl methylcellulose (HPMC), which can be used as a dry green lubricant in sustainable manufacturing. The thin films were characterized through scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy; the films showed desirable levels of thickness, controllability, and uniformity. Tribology tests also showed desirable tribological and antiwear behaviors, caused by the formation of transfer layers. ...

  13. Compression tests of castor oil biopolymer

    OpenAIRE

    Amauri Bravo Ferneda; Romeu Rony Cavalcante da Costa; Volnei Tita; Sérgio Persival Baroncini Proença; Jonas de Carvalho; Benedito de Moraes Purquerio

    2006-01-01

    Many methods have been developed to test and evaluate the mechanical properties of the biopolymer from castor oil employed in implants and osteo-repositions, among other things. Most of the methods are performed under quasi-static and cyclic loads (creep and relaxation tests) and under high strain rate, uniaxial compression conditions. This paper presents and discusses the development and applicability of a simple load-application apparatus, devised to reduce shear and barrelling effects on s...

  14. Long-range charge transfer in biopolymers

    Science.gov (United States)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  15. Biopolymer hairpin loops sustained by polarons

    Science.gov (United States)

    Chakrabarti, B.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2012-08-01

    We show that polarons can sustain looplike configurations in flexible biopolymers and that the size of the loops depend on both the flexural rigidity of the polymer and the electron-phonon coupling constant. In particular we show that for single stranded DNA (ssDNA) and polyacetylene such loops can have as few as seven monomers. We also show that these configurations are very stable under thermal fluctuations and so could facilitate the formation of hairpin loops of ssDNA.

  16. Molecular Entanglement and Electrospinnability of Biopolymers

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R.

    2014-01-01

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level. PMID:25226274

  17. BIODEGRADABILITY AND MECHANICAL BEHAVIOUR OF SUGAR PALM STARCH BASED BIOPOLYMER

    OpenAIRE

    J. Sahari; S. M. Sapuan; Zainudin, E. S.; Maleque, M A

    2014-01-01

    A new Sugar Palm Starch (SPS) based biopolymer was successfully developed using glycerol as plasticizer. The effect of glycerol concentration (viz., 15, 20, 30 and 40 by weight percent) to the mechanical properties of plasticized SPS biopolymer was investigated. From this investigation, it was found that the 30% glycerol concentrated biopolymer showed the highest flexural strength and impact with the value of 0.13 MPa and 6.13 kJ/m2 respectively. Later, the above 30% gl...

  18. Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications

    Science.gov (United States)

    Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer st...

  19. Significance of collective motions in biopolymers and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Go, Nobuhiro [Kyoto Univ. (Japan)

    1996-05-01

    Importance of collective variable description of conformational dynamics of biopolymers and the vital role that neutron inelastic scattering phenomena would play in its experimental determination are discussed. (author)

  20. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  1. Sugar and polyol solutions as effective solvent for biopolymers

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2016-01-01

    Ternary mixtures of biopolymers, sugars or polyols and water can be treated as a pseudo binary system with respect to melting of the biopolymer. Sugar and polyol solutions can be treated as an effective solvent, characterized by the density of hydroxyl groups available for intermolecular hydrogen

  2. Formulation of indomethacin emulsion using biopolymer of Prunus avium

    Directory of Open Access Journals (Sweden)

    Shivangi Verma

    2012-01-01

    Full Text Available The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  3. Formulation of indomethacin emulsion using biopolymer of Prunus avium

    OpenAIRE

    Shivangi Verma; Prashant Dabral; Vinod Rana; Kumud Upadhaya; Bhardwaj

    2012-01-01

    The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  4. Ideal-Chain Collapse in Biopolymers

    CERN Document Server

    Neumann, R M

    2000-01-01

    A conceptual difficulty in the Hooke's-law description of ideal Gaussian polymer-chain elasticity is sometimes apparent in analyses of experimental data or in physical models designed to simulate the behavior of biopolymers. The problem, the tendency of a chain to collapse in the absence of external forces, is examined in the following examples: DNA-stretching experiments, gel electrophoresis, and protein folding. We demonstrate that the application of a statistical-mechanically derived repulsive force, acting between the chain ends, whose magnitude is proportional to the absolute temperature and inversely proportional to the scalar end separation removes this difficulty.

  5. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jin Jung [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Jung, Seunho [Department of Bioscience and Biotechnology and UBITA, Konkuk University, Seoul 143-701 (Korea, Republic of); Kwon, Chanho [Naraebio Research Laboratories, 177 Dangha-ri, Bongdam-eup, Hawseong-si 445-892 (Korea, Republic of)

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  6. Biopolymer based nanocomposites reinforced with graphene nanoplatelets

    Science.gov (United States)

    Botta, L.; Scaffaro, R.; Mistretta, M. C.; La Mantia, F. P.

    2016-05-01

    In this work, biopolymer based nanocomposites filled with graphene nanoplatelets (GnP) were prepared by melt compounding in a batch mixer. The polymer used as matrix was a commercial biodegradable polymer-blend of PLA and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), rheological and mechanical measurements. Moreover, the effect of the GnP amount on the investigated properties was evaluated. The results indicated that the incorporation of GnP increased the stiffness of the biopolymeric matrix.

  7. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  8. Biopolymer-Based Delivery Systems: Challenges and Opportunities.

    Science.gov (United States)

    Joye, Iris J; McClements, D Julian

    2016-01-01

    Biopolymer-based nanostructures or microstructures can be fabricated with different compositions, structures, and properties so that colloidal delivery systems can be tailored for specific applications. These structures can be assembled using various approaches, including electrospinning, coacervation, nanoprecipitation, injection, layer-by-layer deposition, and/or gelation. A major application of biopolymer-based particles is to encapsulate, protect, and release active molecules in the agricultural, food, supplements, personal care, and pharmaceutical sectors. The inherent variability and complexity of biopolymers (proteins and polysaccharides) often makes it challenging to produce particles with well-defined physicochemical and functional attributes. In this review, we discuss the properties of biopolymers, common particle fabrication methods, and some of the major challenges and opportunities associated with developing biopolymer-based particles for application as food-grade delivery systems.

  9. How new biopolymers can improve muds

    Energy Technology Data Exchange (ETDEWEB)

    Dino, D.; Lindblad, D.E.; Moorhouse, R. (Rhoene-Poulenc Inc. (France))

    1993-11-01

    Xantham gum was introduced as a drilling-fluid component in the mid-1960s, but its use has risen noticeably since 1970, as prevalence of inhibitive polymeric drilling fluids has increased. Xanthan is known for its ability to build viscosity in both fresh water and salt solutions, its exceptional shear-thinning properties, and its tolerance to pH, all without environmental problems. Although biopolymers like xanthan typically represent only 0.25--1.5 lb/bbl of a drilling fluid, they are critical in building rheology, from spudding to the special demands of angled drilling and well completion. They add properties to muds which expand their use across a variety of formations and over a wide temperature range. Beyond xanthan, another useful class of biopolymers are the guar gums. Just as muds incorporating xanthan have been in the mainstay in rheology building over the years for many muds, fluids incorporating guar have long been the backbone of fracturing fluids. Guar and its derivatives are extremely versatile as rheology modifiers, particularly when used in conjunction with xanthans. In fact, xanthan/guar combinations have already been enhancing the effectiveness of muds at drill sites in the US. This paper reviews the performance of mixed xantham/guar additives to obtain an even better mud control system.

  10. An experimental investigation of electrical conductivities in biopolymers

    Indian Academy of Sciences (India)

    H Mallick; A Sarkar

    2000-08-01

    Gum arabica obtained from acacia plant is a conducting biopolymer. Experiments are carried out on this natural gum arabica. In the present study TGA, ion transference number, transient ionic current, thermal analysis, frequency and temperature variation of a.c. conductivity, Arrhenius plot and volt–ampere characteristics of specimens are carried out. The total electrical conductivity of these biopolymers are comparable to that of synthetic polymers doped with inorganic salts. The ion transference number of these biopolymers show their superionic nature of electrical conduction. The overall conduction mechanism seems to be protonic in nature rather than electronic one.

  11. Dual production of biopolymers from bacteria.

    Science.gov (United States)

    Sukan, Artun; Roy, Ipsita; Keshavarz, Tajalli

    2015-08-01

    Rapid depletion of natural resources with continued demands of an increasing population and high consumption rates of today's world will cause serious problems in the future. This, along with environmental concerns, has directed research towards finding alternatives in variety of sectors including sustainable and environmentally friendly consumer goods. Biopolymers of bacterial origin, with their vast range of applications, biodegradability and eco-friendly manufacturing processes, are one of the alternatives for a more sustainable future. However, the cost of their production is a drawback. Simultaneous production processes have always been an option for researchers in order to reduce cost, but the variable requirements of microorganisms to produce both different and valuable products are a hindering factor. This review will look at some examples and identify ideas towards developing a successful strategy for simultaneous production of bio-products.

  12. Manipulating Biopolymer Dynamics by Anisotropic Nanoconfinement

    CERN Document Server

    Zhang, Shao-Qing

    2007-01-01

    How the geometry of nano-sized confinement affects dynamics of biomaterials is interesting yet poorly understood. An elucidation of structural details upon nano-sized confinement may benefit manufacturing pharmaceuticals in biomaterial sciences and medicine. The behavior of biopolymers in nano-sized confinement is investigated using coarse-grained models and molecular simulations. Particularly, we address the effects of shapes of a confinement on protein folding dynamics by measuring folding rates and dissecting structural properties of the transition states in nano-sized spheres and ellipsoids. We find that when the form of a confinement resembles the geometrical properties of the transition states, the rates of folding kinetics are most enhanced. This knowledge of shape selectivity in identifying optimal conditions for reactions will have a broad impact in nanotechnology and pharmaceutical sciences.

  13. Fermentable sugars from biopolymers of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, K.; Das, K.; Sharma, D.K.

    1987-11-01

    Ethanol can replace oil as a fuel and its use would help in the conservation of the meagre oil reserves in India. The article indicates some convenient and cost-effective processes for the production of ethanol from biopolymers available in bagasse, an agricultural residue. A two-stage acid hydrolysis process produced a maximum of fermentable sugars at 35%. Calcium chloride used as a promoter enhanced production by 3.5%. Other promoters are under investigation. Agitation had a significant effect on production, complete hydrolysis being possible between 10-45 minutes depending on temperature. The fermentable sugars obtained, xylose and glucose, can then be fermented to ethanol in an integrated three-stage process. 11 refs., 3 figs., 3 tabs.

  14. High-performance liquid chromatography of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, F.E.

    1983-10-21

    The ability to separate biological macromolecules with good resolution on liquid chromatographic columns has depended on the development of suitable packing materials. In size exclusion chromatography, molecules are separated by size on the basis of differential permeation of the packing. Ion exchange, hydrophobic interaction (or reversed-phase), and affinity chromatography are all surface-mediated separation methods, although they depend on different retention mechanisms. High-performance liquid chromatographic columns designed for biopolymers offer major advantages over conventional columns in both speed and resolving power. The exponential growth of literature on the high-performance separation of peptides and proteins in particular indicates that the techniques will become the dominant form of column liquid chromatography. 92 refs., 4 figs.

  15. Dual production of biopolymers from bacteria.

    Science.gov (United States)

    Sukan, Artun; Roy, Ipsita; Keshavarz, Tajalli

    2015-08-01

    Rapid depletion of natural resources with continued demands of an increasing population and high consumption rates of today's world will cause serious problems in the future. This, along with environmental concerns, has directed research towards finding alternatives in variety of sectors including sustainable and environmentally friendly consumer goods. Biopolymers of bacterial origin, with their vast range of applications, biodegradability and eco-friendly manufacturing processes, are one of the alternatives for a more sustainable future. However, the cost of their production is a drawback. Simultaneous production processes have always been an option for researchers in order to reduce cost, but the variable requirements of microorganisms to produce both different and valuable products are a hindering factor. This review will look at some examples and identify ideas towards developing a successful strategy for simultaneous production of bio-products. PMID:25933521

  16. Terrestiral plant biopolymers in marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gough, M.A.; Fauzi, R.; Mantoura, C. (Plymouth Marine Lab. (United Kingdom)); Preston, M. (Univ. of Liverpool (United Kingdom))

    1993-03-01

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterized terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary ligin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognizable land plant biopolymers occurs in shelf seas. 74 refs., 7 figs., 5 tabs.

  17. End-of-life of starch-polyvinyl alcohol biopolymers.

    Science.gov (United States)

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model.

  18. Sequence-Dependent Effects on the Properties of Semiflexible Biopolymers

    CERN Document Server

    Zicong, Bela

    2008-01-01

    Using path integral technique, we show exactly that for a semiflexible biopolymer in constant extension ensemble, no matter how long the polymer and how large the external force, the effects of short range correlations in the sequence-dependent spontaneous curvatures and torsions can be incorporated into a model with well-defined mean spontaneous curvature and torsion as well as a renormalized persistence length. Moreover, for a long biopolymer with large mean persistence length, the sequence-dependent persistence lengths can be replaced by their mean. However, for a short biopolymer or for a biopolymer with small persistence lengths, inhomogeneity in persistence lengths tends to make physical observables very sensitive to details and therefore less predictable.

  19. Laser-induced periodic surface structuring of biopolymers

    Science.gov (United States)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  20. End-of-life of starch-polyvinyl alcohol biopolymers.

    Science.gov (United States)

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model. PMID:23131650

  1. Using biopolymers to remove heavy metals from soil and water

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  2. Micromechanical sensors for the measurement of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Gammelgaard, Lene; Jensen, M P;

    2011-01-01

    We present microcantilever-based sensors for the characterization of biopolymer degradation by enzymes. Thin films of Poly(L-lactide) (PLLA) were spray-coated onto SU-8 cantilevers with well-known material properties and dimensions. The micromechanical sensors were immersed in solutions of protei...... of proteinase K to investigate enzymatic degradation of PLLA. A decrease of the resonance frequency after immersion indicated degradation of the biopolymer coating and allowed the estimation of the degradation rate at a specific enzyme concentration....

  3. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    Science.gov (United States)

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance.

  4. Importance of structural makeup of biopolymers for organic contaminant sorption.

    Science.gov (United States)

    Wang, Xilong; Xing, Baoshan

    2007-05-15

    Sorption of pyrene, phenanthrene, naphthalene, and 1-naphthol by original (lignin, chitin, and cellulose) and coated biopolymers was examined. Organic carbon normalized distribution coefficients (Koc) of all compounds by the original biopolymers followed the order lignin > chitin > cellulose, in line with the order of their hydrophobicity. Hydrophobicity of structurally similar organic compounds is the main factor determining their ability to occupy sorption sites in biopolymers. Specific interactions (e.g., H-bonding) between 1-naphthol and chitin or cellulose increased its ability to occupy sorption sites. Lignin coating resulted in an increased Koc for phenanthrene (13.6 times for chitin and 6.9 times for cellulose) and 1-naphthol (6.0 times for chitin and 3.7 times for cellulose) relative to the acetone-treated chitin and cellulose. Also, these coated biopolymers had increased isotherm nonlinearity, due to the newly formed condensed domains. An increase in phenanthrene and 1-naphthol sorption by lignin-coated biopolymers as compared to chitin and cellulose was contributed by the newly created high-energy sites in condensed domains and coated lignin. Results of this study highlight the importance of the structural makeup of biopolymers in controlling the sorption of hydrophobic organic compounds.

  5. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    Science.gov (United States)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  6. Customizable Biopolymers for Heavy Metal Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred [University of California, Department of Chemical and Environmental Engineering (United States)], E-mail: wilfred@engr.ucr.edu

    2005-10-15

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  7. Formatting and ligating biopolymers using adjustable nanoconfinement

    Science.gov (United States)

    Berard, Daniel J.; Shayegan, Marjan; Michaud, Francois; Henkin, Gil; Scott, Shane; Leslie, Sabrina

    2016-07-01

    Sensitive visualization and conformational control of long, delicate biopolymers present critical challenges to emerging biotechnologies and biophysical studies. Next-generation nanofluidic manipulation platforms strive to maintain the structural integrity of genomic DNA prior to analysis but can face challenges in device clogging, molecular breakage, and single-label detection. We address these challenges by integrating the Convex Lens-induced Confinement (CLiC) technique with a suite of nanotopographies embedded within thin-glass nanofluidic chambers. We gently load DNA polymers into open-face nanogrooves in linear, concentric circular, and ring array formats and perform imaging with single-fluorophore sensitivity. We use ring-shaped nanogrooves to access and visualize confinement-enhanced self-ligation of long DNA polymers. We use concentric circular nanogrooves to enable hour-long observations of polymers at constant confinement in a geometry which eliminates the confinement gradient which causes drift and can alter molecular conformations and interactions. Taken together, this work opens doors to myriad biophysical studies and biotechnologies which operate on the nanoscale.

  8. Force spectroscopy of complex biopolymers with heterogeneous elasticity

    Science.gov (United States)

    Valdman, David; Lopez, Benjamin J.

    2013-01-01

    Cellular biopolymers can exhibit significant compositional heterogeneities as a result of the non-uniform binding of associated proteins, the formation of microstructural defects during filament assembly, or the imperfect bundling of filaments into composite structures of variable diameter. These can lead to significant variations in the local mechanical properties of biopolymers along their length. Existing spectral analysis methods assume filament homogeneity and therefore report only a single average stiffness for the entire filament. However, understanding how local effects modulate biopolymer mechanics in a spatially resolved manner is essential to understanding how binding and bundling proteins regulate biopolymer stiffness and function in cellular contexts. Here, we present a new method to determine the spatially varying material properties of individual complex biopolymers from the observation of passive thermal fluctuations of the filament conformation. We develop new statistical mechanics-based approaches for heterogeneous filaments that estimate local bending elasticities as a function of the filament arc-length. We validate this methodology using simulated polymers with known stiffness distributions, and find excellent agreement between derived and expected values. We then determine the bending elasticity of microtubule filaments of variable composition generated by repeated rounds of tubulin polymerization using either GTP or GMPCPP, a nonhydrolyzable GTP analog. Again, we find excellent agreement between mechanical and compositional heterogeneities. PMID:24049545

  9. Quantitative analysis of biopolymers by matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K.; Allman, S.L.; Jones, R.B.; Chen, C.H. (Oak Ridge National Lab., TN (United States))

    1993-08-01

    During the past few years, major efforts have been made to use mass spectrometry to measure biopolymers because of the great potential benefit to biological and medical research. Although the theoretical details of laser desorption and ionization mechanisms of MALDI are not yet fully understood, several models have been presented to explain the production of large biopolymer ions. In brief, it is very difficult to obtain reliable measurements of the absolute quantity of analytes by MALDI. If MALDI is going to become a routine analytical tool, it is obvious that quantitative measurement capability must be pursued. Oligonucleotides and protein samples used in this work were purchased from commercial sources. Nicotinic acid was used as matrix for both types of biopolymers. From this experiment, it is seen that it is difficult to obtain absolute quantitative measurements of biopolymers using MALDI. However, internal calibration with molecules having similar chemical properties can be used to resolve these difficulties. Chemical reactions between biopolymers must be avoided to prevent the destruction of the analyte materials. 10 refs., 8 figs.

  10. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    Science.gov (United States)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  11. Effect of sugarcane biopolymer gel injected in rabbit vocal fold

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto de Souza Leão

    2014-06-01

    Full Text Available INTRODUCTION: Alterations in the vocal folds that involve volume reduction and glottal closure failure result in exaggerated air escape during speech. For such situations, the use of implants or grafts of different materials has been proposed. OBJECTIVE: To define the effect of sugarcane biopolymer gel when implanted in the vocal folds of rabbits. METHODS: This was an experimental study. The vocal folds of rabbits injected with sugarcane biopolymer and saline solution were histologically evaluated after 21 and 90 days. RESULTS: Mild to moderate inflammation and increased volume were observed in all vocal folds injected with biopolymer, when compared to controls. There were no cases of necrosis or calcification. DISCUSSION: This study showed higher inflammatory reaction in cases than in controls and biopolymer biointegration to the vocal fold. This fibrogenic response with absence of epithelial repercussions suggests that the biopolymer in its gel form can be bioactive and preserve the normal vibratory function of the epithelium. CONCLUSION: We show that in spite of producing an inflammatory reaction in vocal fold tissues, the material remained in vocal fold throughout the study period.

  12. Force spectroscopy of complex biopolymers with heterogeneous elasticity.

    Science.gov (United States)

    Valdman, David; Lopez, Benjamin J; Valentine, Megan T; Atzberger, Paul J

    2013-01-21

    Cellular biopolymers can exhibit significant compositional heterogeneities as a result of the non-uniform binding of associated proteins, the formation of microstructural defects during filament assembly, or the imperfect bundling of filaments into composite structures of variable diameter. These can lead to significant variations in the local mechanical properties of biopolymers along their length. Existing spectral analysis methods assume filament homogeneity and therefore report only a single average stiffness for the entire filament. However, understanding how local effects modulate biopolymer mechanics in a spatially resolved manner is essential to understanding how binding and bundling proteins regulate biopolymer stiffness and function in cellular contexts. Here, we present a new method to determine the spatially varying material properties of individual complex biopolymers from the observation of passive thermal fluctuations of the filament conformation. We develop new statistical mechanics-based approaches for heterogeneous filaments that estimate local bending elasticities as a function of the filament arc-length. We validate this methodology using simulated polymers with known stiffness distributions, and find excellent agreement between derived and expected values. We then determine the bending elasticity of microtubule filaments of variable composition generated by repeated rounds of tubulin polymerization using either GTP or GMPCPP, a nonhydrolyzable GTP analog. Again, we find excellent agreement between mechanical and compositional heterogeneities. PMID:24049545

  13. Obtention of gelatin biopolymers by ionizing radiation

    International Nuclear Information System (INIS)

    The gelatin (Gel) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the Gel has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, Gel-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with 60Co, electron beam (EB) and/or pulsed EB. The Gel based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with 60Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels. (author)

  14. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  15. Nonlinearities of biopolymer gels increase the range of force transmission

    Science.gov (United States)

    Xu, Xinpeng; Safran, Samuel A.

    2015-09-01

    We present a model of biopolymer gels that includes two types of elastic nonlinearities, stiffening under extension and softening (due to buckling) under compression, to predict the elastic anisotropy induced by both external as well as internal (e.g., due to cell contractility) stresses in biopolymer gels. We show how the stretch-induced anisotropy and the strain-stiffening nonlinearity increase both the amplitude and power-law range of transmission of internal, contractile, cellular forces, and relate this to recent experiments.

  16. Precision biopolymers from protein precursors for biomedical applications.

    Science.gov (United States)

    Kuan, Seah Ling; Wu, Yuzhou; Weil, Tanja

    2013-03-12

    The synthesis of biohybrid materials with tailored functional properties represents a topic of emerging interest. Combining proteins as natural, macromolecular building blocks, and synthetic polymers opens access to giant brush-like biopolymers of high structural definition. The properties of these precision polypeptide copolymers can be tailored through various chemical modifications along their polypeptide backbone, which expands the repertoire of known protein-based materials to address biomedical applications. In this article, the synthetic strategies for the design of precision biopolymers from proteins through amino acid specific conjugation reagents are highlighted and the different functionalization strategies, their characterization, and applications are discussed.

  17. Flash co-pyrolysis of biomass: The influence of biopolymers

    OpenAIRE

    Cornelissen, Tom; Jans, M.; STALS, Mark; KUPPENS, Tom; Thewys, Theo; JANSSENS, Gerrit; Pastijn, H.; Yperman, Jan; REGGERS, Guy; SCHREURS, Sonja; Carleer, Robert

    2009-01-01

    A high water content is one of the major drawbacks for the utilisation of bio-oil. One technology which shows the potential to satisfy the demand for bio-oil with a reduced water content is the flash co-pyrolysis of biomass with biopolymers. The influence of biopolymers on the pyrolysis yield of a biomass waste stream is investigated with a semi-continuous home-built pyrolysis reactor. Polylactic acid (PLA), corn starch, polyhydroxybutyrate (PHB), Biopearls, Eastar, Solanyl and potato starch ...

  18. Solid state NMR of biopolymers and synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jelinski, Lynn W. [Cornell Univ., Geneva, NY (United States)

    1995-12-31

    Solid state NMR has been invaluable in evaluating the structure, phase separation, and dynamics of polymers. Because polymers are generally used in the solid state, solid state NMR is especially powerful because it provides information about the materials in their native state. This review gives a general overview of solid state NMR, concentrating on solid state {sup 13} C and {sup 2} H NMR. It then focuses on two examples: the biopolymer spider silka and the engineering material polyurethane. It illustrates how solid state NMR can provide new information about synthetic and bio-polymers. (author) 11 refs., 5 figs., 3 tabs.

  19. Nonlinearities of biopolymer gels increase the range of force transmission.

    Science.gov (United States)

    Xu, Xinpeng; Safran, Samuel A

    2015-09-01

    We present a model of biopolymer gels that includes two types of elastic nonlinearities, stiffening under extension and softening (due to buckling) under compression, to predict the elastic anisotropy induced by both external as well as internal (e.g., due to cell contractility) stresses in biopolymer gels. We show how the stretch-induced anisotropy and the strain-stiffening nonlinearity increase both the amplitude and power-law range of transmission of internal, contractile, cellular forces, and relate this to recent experiments. PMID:26465519

  20. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2012-10-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  1. Liquid crystalline biopolymers: A new arena for liquid crystal research

    International Nuclear Information System (INIS)

    This paper gives a brief introduction to liquid crystals on the basis of biopolymers and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science. Knowledge in the field of biological liquid crystals is crucial for understanding complex phenomena at supramolecular level which will give information about processes involved in biological organization and function. The understanding of the interaction of theses crystals with electric, magnetic, optical and thermal fields will uncover mechanisms of near quantum-energy detection capabilities of biosystems

  2. Models of the solvent-accessible surface of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  3. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers

    Indian Academy of Sciences (India)

    S Muthulakshmi; S Iyyapushpam; D Pathinettam Padiyan

    2014-12-01

    The influence of temperature on the electrical behaviour of protein biopolymer papain and carbohydrate biopolymers like gum acacia, gum tragacanth and guar gum has been investigated using AC impedance technique. The observed semi-circles represent the material’s bulk electrical property that indicate the single relaxation process in the biopolymers. An increase in bulk electrical conductivity in the biopolymers with temperature is due to the hopping of charge carriers between the trapped sites. The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model, gum acacia and gum guar obey ion or electron tunnelling model, and gum tragacanth obeys the correlated barrier hopping model of conduction mechanisms.

  4. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects

    NARCIS (Netherlands)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-01-01

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule s

  5. Thermal Degradation and Damping Characteristic of UV Irradiated Biopolymer

    Directory of Open Access Journals (Sweden)

    Anika Zafiah M. Rus

    2015-01-01

    Full Text Available Biopolymer made from renewable material is one of the most important groups of polymer because of its versatility in application. In this study, biopolymers based on waste vegetable oil were synthesized and cross-link with commercial polymethane polyphenyl isocyanate (known as BF. The BF was compressed by using hot compression moulding technique at 90°C based on the evaporation of volatile matter, known as compress biopolymer (CB. Treatment with titanium dioxide (TiO2 was found to affect the physical property of compressed biopolymer composite (CBC. The characterization of thermal degradation, activation energy, morphology structure, density, vibration, and damping of CB were determined after UV irradiation exposure. This is to evaluate the photo- and thermal stability of the treated CB or CBC. The vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness, and percentages of TiO2 loading at the frequency range of 15–25 Hz due to the potential of the sample to dissipate energy during the oscillation harmonic system. The damping property of CBC was improved markedly upon prolonged exposure to UV irradiation.

  6. Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers

    Directory of Open Access Journals (Sweden)

    Tatiana Aguirre Calvo

    2016-01-01

    Full Text Available Alginate hydrogels are suitable for the encapsulation of a great variety of biomolecules. Several alternatives to the conventional alginate formulation are being studied for a broad range of biotechnological applications; among them the addition of sugars and biopolymers arises as a good and economic strategy. Sugars (trehalose and β-cyclodextrin, a cationic biopolymer (chitosan, an anionic biopolymer (pectin, and neutral gums (Arabic, guar, espina corona, and vinal gums provided different characteristics to the beads. Here we discuss the influence of beads composition on several physicochemical properties, such as size and shape, analyzed through digital image analysis besides both water content and activity. The results showed that the addition of a second biopolymer, β-CD, or trehalose provoked more compact beads, but the fact that they were compact not necessarily implies a concomitant increase in their circularity. Espina corona beads showed the highest circularity value, being useful for applications which require a controlled and high circularity, assuring quality control. Beads with trehalose showed lower water content than the rest of the system, followed by those containing galactomannans (espina corona, vinal, and guar gums, revealing polymer structure effects. A complete characterization of the beads was performed by FT-IR, assigning the characteristics bands to each individual component.

  7. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    Science.gov (United States)

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy me...

  8. Biopolymers in controlled release devices for agricultural applications.

    Science.gov (United States)

    The use of biopolymers such as starch for agricultural applications including controlled release devices is growing due the environmental benefits. Recently, concerns have grown about the worldwide spread of parasitic mites (Varroa destructor) that infect colonies of honey bees (Apis mellifera L.). ...

  9. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Science.gov (United States)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  10. Production and certain properties of biopolymers used in drilling

    Energy Technology Data Exchange (ETDEWEB)

    Dedusenko, G.Y.; Gvozdyak, R.I.; Kolodkova, N.M.; Matyshevskaya, M.S.; Mayko, I.I.

    1977-01-01

    Biopolymers, belonging to modified polysaccharides, obtained by the action of Xanthomonas campestris bacteria on glucose and containing its substances, are used as the main component in clayless polymer muds. As a result of research performed at the laboratory of phytopathogenic bacteria in the IMV AN USSR, the producent strain of polysaccharide has been revealed and the nutritive medium chosen. Results are given of an analysis of the best Soviet samples of biopolymers created in the IMV AN USSR, produced using various strains of Xanthomonas bacteria. Rheological properties of aqueous dispersions of the biopolymer Keltsan are studied. The flow curves are recorded on the Fann rotation viscosimeter. The research performed enables determination that for fermentation can be used the bacteria Xanthomonas campestris, X. begonia, and X. molvacearum; and bacteria belonging to X. Campestris used to produce a sample batch of biopolymer, yielding the greatest amount of polysaccharide. The work results in development of a nutritive medium based on available Soviet materials, promoting formation of polysaccharide.

  11. Production of a Biopolymer at Reactor Scale: A Laboratory Experience

    Science.gov (United States)

    Genc, Rukan; Rodriguez-Couto, Susana

    2011-01-01

    Undergraduate students of biotechnology became familiar with several aspects of bioreactor operation via the production of xanthan gum, an industrially relevant biopolymer, by "Xanthomonas campestris" bacteria. The xanthan gum was extracted from the fermentation broth and the yield coefficient and productivity were calculated. (Contains 2 figures.)

  12. Advancing Analytical Methods for Characterization of Anionic Carbohydrate Biopolymers

    OpenAIRE

    Langeslay, Derek Joseph

    2013-01-01

    The focus of this dissertation is on the development of improved analytical methods for the characterization of anionic carbohydrate biopolymers. Our goal is to extract important information from complex mixtures of heterogeneous polysaccharides by characterizing their substituent oligosaccharides in terms of monosaccharide composition and primary and secondary structure. This work focuses on the application of two major analytical platforms: spectroscopy and chromatography. The development ...

  13. Segregative phase separation in aqueous mixtures of polydisperse biopolymers

    NARCIS (Netherlands)

    Edelman, M.W.

    2003-01-01

    Keywords: biopolymer, gelatine, dextran, PEO, phase separation, polydispersity, molar mass distribution, SEC-MALLS, CSLM The temperature-composition phase diagram of aqueous solutions of gelatine and dextran, which show liquid/liquid phase segregation, were explored at temperatures above the gelatio

  14. Film forming microbial biopolymers for commercial applications--a review.

    Science.gov (United States)

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  15. Film forming microbial biopolymers for commercial applications--a review.

    Science.gov (United States)

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  16. Production of biopolymers by Pseudomonas aeruginosa isolated from marine source

    Directory of Open Access Journals (Sweden)

    Nazia Jamil

    2008-06-01

    Full Text Available Two bacterial strains, Pseudomonas aeruginosa CMG607w and CMG1421 produce commercially important biopolymers. CMG607w isolated from the sediments of Lyari outfall to Arabian Sea synthesize the mcl-polyhydroxyalkanoates from various carbon sources. The production of PHAs was directly proportional to the incubation periods. Other strain CMG1421, a dry soil isolate, produced high viscous water absorbing extracellular acidic polysaccharide when it was grown aerobically in the minimal medium containing glucose or fructose or sucrose as sole source of carbon. The biopolymer had the ability to absorb water 400 times more than its dry weight. This property was superior to that of currently used non-degradable synthetic water absorbents. It acted as salt filter and had rheological and stabilizing activity as well.

  17. Mucin biopolymers as broad-spectrum antiviral agents

    Science.gov (United States)

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  18. Field experience with floodwater diversion by complexed biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, M.K.; Chung, M.S.; Klaric, T.M.; Phelps, C.H.

    1984-04-01

    Due to preferential flow of the injected water through the most permeable zones, waterflooding of stratified reservoirs is generally inefficient. A process for improving the performance of waterfloods in such reservoirs has been developed; it is based on complexing biopolymers with multivalent cations to form gels for selective blocking of water-thief zones, thereby diverting the trailing floodwater to previously under-invaded reservoir regions to recover by-passed oil. This polymeric modification of stratification and of water injection profile leads to increased volumetric sweep of the reservoir by the floodwater and, in turn, to improved oil production. This paper summarizes Mobil's experience in its first seven field projects in Oklahoma using this process. A total of two hundred and five injection wells were treated with complexed biopolymers, resulting in substantial alteration of water flow patterns and in significant incremental oil recovery.

  19. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  20. Interaction between polymer constituents and the structure of biopolymers

    Science.gov (United States)

    Rein, R.

    1974-01-01

    The paper reviews the current status of methods for calculating intermolecular interactions between biopolymer units. The nature of forces contributing to the various domains of intermolecular separations is investigated, and various approximations applicable in the respective regions are examined. The predictive value of current theory is tested by establishing a connection with macroscopic properties and comparing the theoretical predicted values with those derived from experimental data. This has led to the introduction of a statistical model describing DNA.

  1. Quantum effective potential, electron transport and conformons in biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Dandoloff, Rossen [Laboratoire de Physique Theorique et Modelisation, Universite de Cergy-Pontoise, F-95302 Cergy-Pontoise (France); Balakrishnan, Radha [The Institute of Mathematical Sciences, Chennai 600113 (India)

    2005-07-08

    In the Kirchhoff model of a biopolymer, conformation dynamics can be described in terms of solitary waves, for certain special cross-section asymmetries. Applying this to the problem of electron transport, we show that the quantum effective potential arising due to the bends and twists of the polymer enables us to formalize and quantify the concept of a conformon that has been hypothesized in biology. Its connection to the soliton solution of the cubic nonlinear Schroedinger equation emerges in a natural fashion.

  2. Light-activated ionic gelation of common biopolymers.

    Science.gov (United States)

    Javvaji, Vishal; Baradwaj, Aditya G; Payne, Gregory F; Raghavan, Srinivasa R

    2011-10-18

    Biopolymers such as alginate and pectin are well known for their ability to undergo gelation upon addition of multivalent cations such as calcium (Ca(2+)). Here, we report a simple way to activate such ionic gelation by UV irradiation. Our approach involves combining an insoluble salt of the cation (e.g., calcium carbonate, CaCO(3)) with an aqueous solution of the polymer (e.g., alginate) along with a third component, a photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H(+) ions, which react with the CaCO(3) to generate free Ca(2+). In turn, the Ca(2+) ions cross-link the alginate chains into a physical network, thereby resulting in a hydrogel. Dynamic rheological experiments confirm the elastic character of the alginate gel, and the gel modulus is shown to be tunable via the irradiation time as well as the PAG and alginate concentrations. The above approach is easily extended to other biopolymers such as pectin. Using this approach, a photoresponse can be imparted to conventional biopolymers without the need for any chemical modification of the molecules. Photoresponsive alginate gels may be useful in creating biomaterials or tissue mimics. As a step toward potential applications, we demonstrate the ability to photopattern a thin film of alginate gel onto a glass substrate under mild conditions.

  3. Characterization of functional biopolymers under various external stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Atoosa

    2008-07-01

    Polymers are large molecules composed of repeating structural units connected by covalent chemical bonds. Biopolymers are a class of polymers produced by living organisms, which exhibit both biocompatible and biodegradable properties. The behavior of a biopolymer in solution is strongly dependent on the chemical and physical structure of the polymer chain, as well as external environmental conditions. To improve biopolymers in the direction of higher performance and better functionality, understanding of their physicochemical behavior and their response to external stimuli are of great importance. Rheology, rheo-small angle light scattering, dynamic light scattering, small angle neutron scattering, and asymmetric flow field-flow fractionation were utilized in this thesis to investigate the properties of hydroxyethyl cellulose and its hydrophobically modified analogue, as well as dextran, hyaluronan, and mucin under different conditions such as temperature, solvent, mechanical stress and strain, and radiation. Different novel hydrogels were prepared by using various chemical cross-linking agents. Specific features of these macromolecules provide them to be used as 'functional' materials, e.g., sensors, actuators, personal care products, enhanced oil recovery, and controlled drug delivery systems (author)

  4. Disordered, stretched, and semiflexible biopolymers in two dimensions.

    Science.gov (United States)

    Zhou, Zicong; Joós, Béla

    2009-12-01

    We study the effects of intrinsic sequence-dependent curvature for a two-dimensional semiflexible biopolymer with short-range correlation in intrinsic curvatures. We show exactly that when not subjected to any external force, such a system is equivalent to a system with a well-defined intrinsic curvature and a proper renormalized persistence length. We find the exact expression for the distribution function of the equivalent system. However, we show that such an equivalent system does not always exist for the polymer subjected to an external force. We find that under an external force, the effect of sequence disorder depends upon the averaging order, the degree of disorder, and the experimental conditions, such as the boundary conditions. Furthermore, a short to moderate length biopolymer may be much softer or has a smaller apparent persistent length than what would be expected from the "equivalent system." Moreover, under a strong stretching force and for a long biopolymer, the sequence disorder is immaterial for elasticity. Finally, the effect of sequence disorder may depend upon the quantity considered. PMID:20365194

  5. A Novel Approach for Entrapment of Biopolymers in Silica Matrix by Sol-gel Technique

    Institute of Scientific and Technical Information of China (English)

    Yu.Shchipunov

    2007-01-01

    1 Results The entrapment of biopolymers into silica by the sol-gel technique meets with incompatibility of inorganic and bioorganic components. The aim was to develop a compatible procedure biomimicking the biomineralization processes in the living nature. A suggested solution in Ref.[1-2] for the biopolymer entrapment into silica matrix is based on a novel silica precursor. The developed approach is distinguished from the common technique for fabrication of hybrid biopolymer-silica nanocomposite materi...

  6. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications

    OpenAIRE

    Robert C. Spiro; Fang Yan; Lin Shu Liu; Joseph Kost

    2012-01-01

    Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer strengthens the stability of resultant hydrogels and enriches its functionalities by bringing in new functional groups or optimizing the micro-environmental conditions for certain biological and bioc...

  7. Fabrication and characterization of an inkjet-printed DNA biopolymer-based UV photodetector

    Science.gov (United States)

    Lombardi, J. P.; Aga, Roberto S.; Heckman, Emily M.; Bartsch, Carrie M.

    2015-10-01

    An ultraviolet (UV) photodetector utilizing an inkjet printable , UV photoconducting biopolymer was fabricated and the performance of the photodetector was characterized for varying thickness layers of the biopolymer. The biopolymer was formed of deoxyribonucleic acid (DNA), the Clevios P formulation of poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) (PEDOT:PSS), and hexadecyltrimethyl-ammonium chloride (CTMA); this was then combined with phenyl-C61-butyric acid methyl (PCBM) to form the printable, UV photoconducting biopolymer. Using a 260-nm source, the highest measured responsivity of the photodetectors is 1.2 mA/W at 20 V bias.

  8. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Science.gov (United States)

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  9. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    Science.gov (United States)

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  10. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  11. Patterning surface by site selective capture of biopolymer hydrogel beads.

    Science.gov (United States)

    Guyomard-Lack, Aurélie; Moreau, Céline; Delorme, Nicolas; Marquis, Mélanie; Fang, Aiping; Bardeau, Jean-François; Cathala, Bernard

    2012-06-01

    This communication describes the fabrication of microstructured biopolymer surfaces by the site-selective capture of pectin hydrogel beads. A positively charged surface consisting of poly-L-lysine (PLL) was subjected to site-selective enzymatic degradation using patterned polydimethylsiloxane (PDMS) stamps covalently modified with trypsin, according to the recently described method. The patterned surface was used to capture ionically cross-linked pectin beads. The desired patterning of the hydrogel surfaces was generated by site-selective immobilization of these pectin beads. The ability of the hydrogels to be dried and swollen in water was assessed.

  12. Quantized biopolymer translocation through nanopores: departure from simple scaling

    CERN Document Server

    Melchionna, Simone; Fyta, Maria; Kaxiras, Efthimios; Succi, Sauro

    2009-01-01

    We discuss multiscale simulations of long biopolymer translocation through wide nanopores that can accommodate multiple polymer strands. The simulations provide clear evidence of folding quantization, namely, the translocation proceeds through multi-folded configurations characterized by a well-defined integer number of folds. As a consequence, the translocation time acquires a dependence on the average folding number, which results in a deviation from the single-exponent power-law characterizing single-file translocation through narrow pores. The mechanism of folding quantization allows polymers above a threshold length (approximately $1,000$ persistence lengths for double-stranded DNA) to exhibit cooperative behavior and as a result to translocate noticeably faster.

  13. Peptide-based Biopolymers in Biomedicine and Biotechnology

    Science.gov (United States)

    Chow, Dominic; Nunalee, Michelle L.; Lim, Dong Woo; Simnick, Andrew J.; Chilkoti, Ashutosh

    2008-01-01

    Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed. PMID:19122836

  14. Enhanced brightness from all solution processable biopolymer LED

    Science.gov (United States)

    Pradeep, C.; Namboothiry, M. A. G.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Biopolymer light emitting diodes were fabricated by using all solution processable polymers incorporating biomaterials such as deoxyribonucleic acid lipid complex as an electron blocking layer. Light emission is from a blend of fluorene based copolymers. The devices with electron blocking layer exhibited higher brightness and luminous efficiency. The increased luminance of the multilayer polymer LED is attributed to the contribution from DNA:CTMA as electron blocking layer and PFN, a derivative of polyfluorene, as electron injection layer. Our results show four fold increase in luminance values when DNA is used as electron blocking layer.

  15. Bio-Polymer Hairpin Loops Sustained by Polarons

    CERN Document Server

    Chakrabarti, B; Zakrzewski, W J

    2012-01-01

    We show that polarons can sustain loop-like configurations in flexible bio-polymers and that the size of the loops depend on both the flexural rigidity of the polymer and the electron-phonon coupling constant. In particular we show that for single stranded DNA (ssDNA) such loops can have as little as 10 base pairs. For polyacetylene the shortest loop must have at least 12 nodes. We also show that these configurations are very stable under thermal fluctuations and can facilitate the formation of hairpin-loops of ssDNA.

  16. Bio-Polymer Hairpin Loops Sustained by Polarons

    OpenAIRE

    Chakrabarti, B.; Piette, B.; Zakrzewski, W.J.Z.

    2012-01-01

    We show that polarons can sustain loop-like configurations in flexible bio-polymers and that the size of the loops depend on both the flexural rigidity of the polymer and the electron-phonon coupling constant. In particular we show that for single stranded DNA (ssDNA) such loops can have as little as 10 base pairs. For polyacetylene the shortest loop must have at least 12 nodes. We also show that these configurations are very stable under thermal fluctuations and can facilitate the formation ...

  17. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  18. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roe, F.L.; Lewandowski, Z.; Funk, T. [Montana State Univ., Bozeman, MT (United States). Center for Biofilm Engineering

    1996-10-01

    Electrochemical properties of corroding mild steel (MS) surfaces were measured in real time using three closely spaced microelectrodes. Dissolved oxygen, pH, and ion currents were mapped simultaneously and noninvasively above a MS coupon partially coated with biopolymer gels. Calcium alginate (Ca-Alg [an extracellular biopolymer containing carboxylate functional groups]) and agarose (one without carboxylate functional groups) were tested. Corrosion occurred at approximately the same rate under the two biopolymer spots on the same coupon. Corrosion rates under these biopolymers were {approx} 4 mpy in a weak saline solution. Results suggested corrosion was not influenced by chemical properties of the biopolymer but possibly was controlled by oxygen reduction in noncoated regions of the coupon (i.e., a differential aeration cell).

  19. Synthesis of 9-oxononanoic acid, a precursor for biopolymers.

    Science.gov (United States)

    Otte, Konrad B; Kirtz, Marko; Nestl, Bettina M; Hauer, Bernhard

    2013-11-01

    Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high-performance materials. Unfortunately, interesting building blocks of medium-chain length are difficult to obtain by traditional chemical means. Herein, a biotechnological pathway is established that could provide an environmentally suitable and sustainable alternative. A multiple enzyme two-step one-pot process efficiently catalyzed by a coupled 9S-lipoxygenase (St-LOX1, Solanum tuberosum) and 9/13-hydroperoxide lyase (Cm-9/13HPL, Cucumis melo) cascade reaction is proposed as a potential route for the conversion of linoleic acid into 9-oxononanoic acid, which is a precursor for biopolymers. Lipoxygenase catalyzes the insertion of oxygen into linoleic acid through a radical mechanism to give 9S-hydroperoxy-octadecadienoic acid (9S-HPODE) as a cascade intermediate, which is subsequently cleaved by the action of Cm-9/13HPL. This one-pot process afforded a yield of 73 % combined with high selectivity. The best reaction performance was achieved when lipoxygenase and hydroperoxide lyase were applied in a successive rather than a simultaneous manner. Green leaf volatiles, which are desired flavor and fragrance products, are formed as by-products in this reaction cascade. Furthermore, we have investigated the enantioselectivity of 9/13-HPLs, which exhibited a strong preference for 9S-HPODE over 9R-HPODE.

  20. Assessment of respiration activity and ecotoxicity of composts containing biopolymers.

    Science.gov (United States)

    Kopeć, Michał; Gondek, Krzysztof; Baran, Agnieszka

    2013-03-01

    The research was conducted to determine if introducing biodegradable polymer materials to the composting process would affect selected biological properties of mature compost. Determination of biological properties of composts composed of testing their respiration activity and toxicity. Respiration activity was measured in material from the composting process by means of OxiTop Control measuring system. The ecotoxicity of composts was estimated by means of a set of biotests composed of three microbiotests using five test organisms. Introduction of polymer materials caused a decrease in respiration activity of mature compost. Similar dependencies as in the case of mass loss were registered. Compost to which a biodegradable polymer with the highest content of starch was added revealed the smallest difference in comparison with organic material composted without polymers. Lower content of starch in a polymer caused lower respiration activity of composts, whereas microorganism vaccine might have accelerated maturing of composts, thus contributing to the smallest respiration of compost. In composts containing biopolymers the following were observed: an increase in germination inhibition--2.5 times, roots growth inhibition--1.8 times, growth inhibition of Heterocypris incongruens--four times and luminescence inhibition of Vibrio fischeri--1.6 times in comparison with the control (compost K1). Composts containing biopolymers were classified as toxicity class III, whereas the compost without polymer addition as class II.

  1. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  2. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2016-03-01

    Full Text Available Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives. Findings from this study demonstrate that biopolymers have strong potential to replace cement as a soil treatment material within the context of environment-friendly construction and development. Moreover, continuing research is suggested to ensure performance in terms of practical implementation, reliability, and durability of in situ biopolymer applications for geotechnical engineering purposes.

  3. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  4. A differential vapor-pressure equipment for investigations of biopolymer interactions

    DEFF Research Database (Denmark)

    Andersen, Kim B; Koga, Y.; Westh, Peter

    2002-01-01

    , particularly a "gas-phase titration" routine for changing the cell composition, makes it effective for the investigations of several types of biopolymer interactions. These include isothermal studies of net affinities such as the adsorption of water to proteins or membranes, the preferential interaction...... of biopolymers with the components of a mixed solvent. the partitioning of solutes between a membrane and the aqueous bulk and the weak. specific binding of ligands to macromolecules. Furthermore, a temperature-scanning mode allows real-time elucidation of such interactions at thermally induced conformational...... changes in biopolymers. Selected examples of these applications are presented and discussed....

  5. Topologically ordered magnesium-biopolymer hybrid composite structures.

    Science.gov (United States)

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices. PMID:24659540

  6. Quercetin as natural stabilizing agent for bio-polymer

    Energy Technology Data Exchange (ETDEWEB)

    Morici, Elisabetta [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, 90128 Palermo (Italy); Arrigo, Rossella; Dintcheva, Nadka Tzankova [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, 90128 Palermo (Italy)

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  7. Conjugates of a photoactivated rhodamine with biopolymers for cell staining.

    Science.gov (United States)

    Zaitsev, Sergei Yu; Shaposhnikov, Mikhail N; Solovyeva, Daria O; Solovyeva, Valeria V; Rizvanov, Albert A

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan ("Chitosan-PFD") and histone H1 ("Histone H1.3-PFD"). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes ("caged" dyes) for microscopic probing of biological objects. Thus, the synthesized "Chitosan-PFD" and "Histone H1-PFD" have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

  8. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    Science.gov (United States)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  9. Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers.

    Science.gov (United States)

    Han, Xu; Zheng, Yeting; Munro, Catherine J; Ji, Yiwen; Braunschweig, Adam B

    2015-08-01

    Despite their central role in directing some of the most complex biological processes, carbohydrates--nature's other information carrying biopolymer--have been largely ignored as building blocks for synthetic hierarchical assemblies. The non-stoichiometric binding and astronomical diversity characteristic of carbohydrates could lead to tantalizingly complex assembly algorithms, but these attributes simultaneously increase the difficulty of preparing carbohydrate assemblies and anticipating their behavior. Convergences in biotechnology, nanotechnology, polymer chemistry, surface science, and supramolecular chemistry have led to many recent important breakthroughs in glycan microarrays and synthetic carbohydrate receptors, where the idiosyncrasies of carbohydrate structure and binding are increasingly considered. We hope to inspire more researchers to consider carbohydrate structure, diversity, and binding as attractive tools for constructing synthetic hierarchical assemblies.

  10. Evolutionary optimization of biopolymers and sequence structure maps

    Energy Technology Data Exchange (ETDEWEB)

    Reidys, C.M.; Kopp, S.; Schuster, P. [Institut fuer Molekulare Biotechnologie, Jena (Germany)

    1996-06-01

    Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is dense and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.

  11. Stiffening of semiflexible biopolymers and cross-linked networks

    CERN Document Server

    Van Dillen, T; Van der Giessen, E

    2006-01-01

    We study the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear. Filamental constituents immersed in a fluid undergo thermally excited bending motions. Pulling out these undulations results in an increase in the axial stiffness. We analyze this stiffening behavior of 2D semiflexible filaments in detail: we first investigate the average, {static} force-extension relation by considering the initially present undulated configuration that is pulled straight under a tensile force, and compare this result with the average response in which undulation dynamics is allowed during pulling, as derived earlier by MacKintosh and coworkers. We will show that the resulting mechanical behavior is rather similar, but with the axial stiffness being a factor 2 to 4 larger in the dynamic model. Furthermore, we study the stretching contribution in case of extensible filaments and show that, for 2D filaments, the mechanical response is dominated by {...

  12. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    Science.gov (United States)

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  13. Parallel multiscale modeling of biopolymer dynamics with hydrodynamic correlations

    CERN Document Server

    Fyta, Maria; Kaxiras, Efthimios; Melchionna, Simone; Bernaschi, Massimo; Succi, Sauro

    2007-01-01

    We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Molecular Dynamics (MD) with a mesoscopic Lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. We describe an efficient parallel implementation of the method which exhibits excellent scalability on the Blue Gene platform. We investigate both dynamical and statistical aspects of the translocation process by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimenta...

  14. LassoProt: server to analyze biopolymers with lassos.

    Science.gov (United States)

    Dabrowski-Tumanski, Pawel; Niemyska, Wanda; Pasznik, Pawel; Sulkowska, Joanna I

    2016-07-01

    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes.

  15. The Force-Velocity Relation for Growing Biopolymers

    CERN Document Server

    Carlsson, A E

    2000-01-01

    The process of force generation by the growth of biopolymers is simulated via a Langevin-dynamics approach. The interaction forces are taken to have simple forms that favor the growth of straight fibers from solution. The force-velocity relation is obtained from the simulations for two versions of the monomer-monomer force field. It is found that the growth rate drops off more rapidly with applied force than expected from the simplest theories based on thermal motion of the obstacle. The discrepancies amount to a factor of three or more when the applied force exceeds 2.5kT/a, where a is the step size for the polymer growth. These results are explained on the basis of restricted diffusion of monomers near the fiber tip. It is also found that the mobility of the obstacle has little effect on the growth rate, over a broad range.

  16. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    Science.gov (United States)

    Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365

  17. Multiscale modeling of biopolymer translocation through a nanopore

    CERN Document Server

    Fyta, M G; Kaxiras, E; Succi, S; Fyta, Maria; Melchionna, Simone; Kaxiras, Efthimios; Succi, Sauro

    2007-01-01

    We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Langevin molecular dynamics (MD) with a mesoscopic lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. Both dynamical and statistical aspects of the translocation process were investigated, by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimental results are available.

  18. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    Directory of Open Access Journals (Sweden)

    Sergei Yu. Zaitsev

    2014-01-01

    Full Text Available Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD” and histone H1 (“Histone H1.3-PFD”. The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK. Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

  19. Biopolymer nanostructures induced by plasma irradiation and metal sputtering

    International Nuclear Information System (INIS)

    Modification based on polymer surface exposure to plasma treatment exhibits an easy and cheap technique for polymer surface nanostructuring. The influence of argon plasma treatment on biopolymer poly(L-lactide acid (PLLA) will be presented in this paper. The combination of Ar+ ion irradiation, consequent sputter metallization (platinum) and thermal annealing of polymer surface will be summarized. The surface morphology was studied using atomic force microscopy. The Rutherford Backscattering Spectroscopy and X-ray Photoelectron Spectroscopy were used as analytical methods. The combination of plasma treatment with consequent thermal annealing and/or metal sputtering led to the change of surface morphology and its elemental ratio. The surface roughness and composition has been strongly influenced by the modification parameters and metal layer thickness. By plasma treatment of polymer surface combined with consequent annealing or metal deposition can be prepared materials applicable both in tissue engineering as cell carriers, but also in integrated circuit manufacturing

  20. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution.

    Science.gov (United States)

    Wijeratne, Sithara S; Penev, Evgeni S; Lu, Wei; Li, Jingqiang; Duque, Amanda L; Yakobson, Boris I; Tour, James M; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  1. Reconstruction of cellular forces in fibrous biopolymer network

    CERN Document Server

    Zhang, Yunsong; Heizler, Shay; Levine, Herbert

    2016-01-01

    How cells move through 3d extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on 2d surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. Here, we use a lattice-based mechanical model of ECM to study the cellular force reconstruction issue. We conceptually propose an efficient computational scheme to reconstruct cellular forces from the deformation and explore the performance of our scheme in presence of noise, varying marker bead distribution, varying bond stiffnesses and changing cell morphology. Our results show that micromechanical information, rather than merely the bulk rheology of the biopolymer networks, is essential for a precise recovery of cellular forces.

  2. Quercetin as natural stabilizing agent for bio-polymer

    Science.gov (United States)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  3. Nanocomposite Apatite-biopolymer Materials and Coatings for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    L.F. Sukhodub

    2014-04-01

    Full Text Available The microoverview paper describes synthesis and characterization of novel third generation composite biomaterials and coatings which correspond to the second structural level of human bone tissue (HBT organization obtained at Sumy state university “Bionanocomposite” laboratory. To obtain such composites an animal collagen is usually used, which is not potentially safe for medical applications. That is why investigations were started using some other biopolymers to obtain composites close to the second level in the structural hierarchy of HBT. Proposed natural polymers (Na alginate, chitosan are the most perspective because they have bacteriostatic properties for a vast number of aerobic and anaerobic bacteria, high biocompatibility towards the connective tissue, low toxicity, an ability to improve regenerative processes during wounds healing, degradation ability with the creation of chemotaxic activity towards fibroblasts and osteoblasts. The formation of nanosized (25-75 nm calcium deficient hydroxyapatite (cdHA particles in the polymer scaffold approaches the derived material to the biogenic bone tissue, which can provide its more effective implantation. The influence of the imposition of static magnetic field on brushite (CaHPO4·2H2O crystallization was also investigated. It was shown that changing the magnetic field configuration could greatly affect crystallinity and texture of the derived particles. To increase the biocompatibility of existing medical implants (Ti–6Al 4V, Ti Ni, Mg the technology for obtaining bioactive coatings with corresponding mechanical, structural and morphology characteristics is developed in our laboratory. In this direction coatings based on cdHA in combination with biopolymer matrices (Na alginate, chitosan, are obtained in “soft” conditions using a thermal substrate technology. This technology was proposed by Japan scientists [1] and was sufficiently improved by us [2] in order to obtain coatings in

  4. Load sharing in the growth of bundled biopolymers

    Science.gov (United States)

    Wang, Ruizhe; Carlsson, A. E.

    2014-01-01

    To elucidate the nature of load sharing in the growth of multiple biopolymers, we perform stochastic simulations of the growth of biopolymer bundles against obstacles under a broad range of conditions and varying assumptions. The obstacle motion due to thermal fluctuations is treated explicitly. We assume the “Perfect Brownian Ratchet” (PBR) model, in which the polymerization rate equals the free-filament rate as soon as the filament-obstacle distance exceeds the monomer size. Accurate closed-form formulas are obtained for the case of a rapidly moving obstacle. We find the following: (1) load sharing is usually sub-perfect in the sense that polymerization is slower than for a single filament carrying the same average force; (2) the sub-perfect behavior becomes significant at a total force proportional to the logarithm or the square root of the number of filaments, depending on the alignment of the filaments; (3) for the special case of slow barrier diffusion and low opposing force, an enhanced obstacle velocity for an increasing number of filaments is possible; (4) the obstacle velocity is very sensitive to the alignment of the filaments in the bundle, with a staggered alignment being an order of magnitude faster than an unstaggered one at forces of only 0.5 pN per filament for 20 filaments; (5) for large numbers of filaments, the power is maximized at a force well below 1 pN per filament; (6) for intermediate values of the obstacle diffusion coefficient, the shape of the force velocity relation is very similar to that for rapid obstacle diffusion. PMID:25489273

  5. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  6. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications

    Directory of Open Access Journals (Sweden)

    Robert C. Spiro

    2012-04-01

    Full Text Available Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer strengthens the stability of resultant hydrogels and enriches its functionalities by bringing in new functional groups or optimizing the micro-environmental conditions for certain biological and biochemical processes. This article presents approaches that have been used by our groups to synthesize biopolymer hybrid hydrogels for effective uses for immunotherapy, tissue regeneration, food and functional food applications. The research has achieved some challenging results, such as stabilizing physical structure, increasing mucoadhesiveness, and the creation of an artificial extracellular matrix to aid in guiding tissue differentiation.

  7. Agarose- and alginate-based biopolymers for sample preparation: Excellent green extraction tools for this century.

    Science.gov (United States)

    Sanagi, Mohd Marsin; Loh, Saw Hong; Wan Ibrahim, Wan Nazihah; Pourmand, Neda; Salisu, Ahmed; Wan Ibrahim, Wan Aini; Ali, Imran

    2016-03-01

    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.

  8. Numerical simulation of conformational variability in biopolymer translocation through wide nanopores

    CERN Document Server

    Fyta, Maria; Bernaschi, Massimo; Kaxiras, Efthimios; Succi, Sauro

    2009-01-01

    Numerical results on the translocation of long biopolymers through mid-sized and wide pores are presented. The simulations are based on a novel methodology which couples molecular motion to a mesoscopic fluid solvent. Thousands of events of long polymers (up to 8000 monomers) are monitored as they pass through nanopores. Comparison between the different pore sizes shows that wide pores can host a larger number of multiple biopolymer segments, as compared to smaller pores. The simulations provide clear evidence of folding quantization in the translocation process as the biopolymers undertake multi-folded configurations, characterized by a well-defined integer number of folds. Accordingly, the translocation time is no longer represented by a single-exponent power law dependence on the length, as it is the case for single-file translocation through narrow pores. The folding quantization increases with the biopolymer length, while the rate of translocated beads at each time step is linearly correlated to the numb...

  9. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  10. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

    Science.gov (United States)

    Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

    2016-08-01

    Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

  11. Quantized current blockade and hydrodynamic correlations in biopolymer translocation through nanopores: evidence from multiscale simulations

    CERN Document Server

    Bernaschi, Massimo; Succi, Sauro; Fyta, Maria; Kaxiras, Efthimios

    2008-01-01

    We present a detailed description of biopolymer translocation through a nanopore in the presence of a solvent, using an innovative multi-scale methodology which treats the biopolymer at the microscopic scale as combined with a self-consistent mesoscopic description for the solvent fluid dynamics. We report evidence for quantized current blockade depending on the folding configuration and offer detailed information on the role of hydrodynamic correlations in speeding-up the translocation process.

  12. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Berven, C.A.; Clarke, L.; Wybourne, M.N. [Dartmouth Coll., Hanover, NH (United States). Dept. of Physics and Astronomy; Mooster, J.L.; Hutchison, J.E. [Oregon Univ., Eugene, OR (United States). Dept. of Chemistry

    2001-01-16

    Gold nanoparticles assembled on a biopolymer template between metal electrodes on an insulating substrate are shown to exhibit unambiguous single electron charging effects that are found to depend on the nanoparticle properties and the geometrical contraints imposed by the biopolymer. The results support the idea of using nanoparticles in conjunction with biomolecular organization to produce nanoscale systems with defect-tolerant current-voltage behavior. (orig.)

  13. The estimation of harmfulness for environment of moulding sand with biopolymer binder based on polylactide

    Directory of Open Access Journals (Sweden)

    K. Major-Gabryś

    2011-01-01

    Full Text Available The article takes into consideration technological and ecological aspects of IV generation moulding sands. Investigations concerning anapplication of biopolymer materials as binders for moulding sands are presented in the paper. These investigations are the continuation ofexaminations related to applications of various biopolymers as binding agents and to the properties of the moulding sands with biopolymerbinders. In the paper there are the researches concerning analyzing gases emitted from moulding sands during heating.

  14. The estimation of harmfulness for environment of moulding sand with biopolymer binder based on polylactide

    OpenAIRE

    K. Major-Gabryś; St.M. Dobosz; J. Jakubski

    2011-01-01

    The article takes into consideration technological and ecological aspects of IV generation moulding sands. Investigations concerning anapplication of biopolymer materials as binders for moulding sands are presented in the paper. These investigations are the continuation ofexaminations related to applications of various biopolymers as binding agents and to the properties of the moulding sands with biopolymerbinders. In the paper there are the researches concerning analyzing gases emitted from ...

  15. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    OpenAIRE

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analy...

  16. Biopolymer chitosan: Properties, interactions and its use in the treatment of textiles

    OpenAIRE

    Jocić Dragan; Topalović Tatjana

    2004-01-01

    The biopolymer chitosan is obtained by the deacetylation of chitin, the second most abundant polysaccharide in nature, after cellulose. It is becoming an increasingly important biopolymer because it offers unique physico-chemical and biological properties. Due to its solubility, chitosan allows processing from aqueous solutions. This review provides information on important chitosan properties, as well as on some interactions that are of special interest for chitosan application. It summarize...

  17. Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques

    International Nuclear Information System (INIS)

    A novel approach combining the atomic force microscopy probing of nacre biopolymer strand and the inverse finite element analysis has been used to directly measure the elastic modulus of nacre biopolymer matrix. An elastic modulus of 11 ± 3 GPa was determined for the first time from the direct measurement of the nacre biopolymer matrix. This property is essential for a fundamental understanding of the roles that the biopolymer matrix plays in nacre's strengthening and toughening, and provides guidelines in selecting engineering polymers for biomimetic materials design and fabrication. Such coupled experimental and modeling techniques should find more applications in studying the mechanical behavior of biological materials. Highlights: → Modulus of nacre biopolymer was directly measured using AFM and inverse FEM. → An elastic modulus of 10.57 ± 2.56 GPa was determined for nacre biopolymer matrix. → New approach developed in this study is useful for testing of biological materials.

  18. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  19. Clay nanotube-biopolymer composite scaffolds for tissue engineering

    Science.gov (United States)

    Naumenko, Ekaterina A.; Guryanov, Ivan D.; Yendluri, Raghuvara; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2016-03-01

    Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur without changes in viability and cytoskeleton formation. In vivo biocompatibility and biodegradability evaluation in rats has confirmed that the scaffolds promote the formation of novel blood vessels around the implantation sites. The scaffolds show excellent resorption within six weeks after implantation in rats. Neo-vascularization observed in newly formed connective tissue placed near the scaffold allows for the complete restoration of blood flow. These phenomena indicate that the halloysite-doped scaffolds are biocompatible as demonstrated both in vitro and in vivo. The chitosan-gelatine-agarose doped clay nanotube nanocomposite scaffolds fabricated in this work are promising candidates for tissue engineering applications.Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur

  20. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elliott; Schnepp, Zoe [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Hall, Simon R. [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)], E-mail: simon.hall@bristol.ac.uk

    2008-11-15

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  1. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Science.gov (United States)

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  2. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    Science.gov (United States)

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.

  3. Elasticity of cross-linked semiflexible biopolymers under tension.

    Science.gov (United States)

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  4. Processing parameters matching effects upon Rhizobium tropici biopolymers' rheological properties.

    Science.gov (United States)

    Pimenta, Flávia Duta; Lopes, Léa Maria de Almeida; de França, Francisca Pessôa

    2008-07-01

    The combined effects of the processing parameters upon rheological properties of biopolymers produced by Rhizobium tropici were studied as a function of the Ca(+2) ions' concentration variation, yeast extract concentration added to the medium, aeration, and agitation, maintaining the mannitol concentration in 10 g/L. The experiments were carried out using a fermenter with 20-L capacity as a reactor. All processing parameters were monitored online. The temperature [(30 +/- 1) degrees C] and pH values (7.0) were kept constant throughout the experimental time. As a statistical tool, a complete 2(3) factorial design with central point and response surface was used to investigate the interactions between relevant variables of the fermentation process: calcium carbonate concentration, yeast extract concentration, aeration, and agitation. The processing parameter setup for reaching the maximum response for rheological propriety production was obtained when applying mannitol concentration of 10.0 g/L, calcium carbonate concentration 1.0 g/L, yeast extract concentration 1.0 g/L, aeration 1.30 vvm, and agitation 800 rpm. The viscosimetric investigation of polysaccharide solutions exposed their shear-thinning behavior and polyelectrolytic feature. PMID:18437296

  5. Phase Segregation in Individually Dried Particles Composed of Biopolymers.

    Science.gov (United States)

    Nuzzo, Marine; Sloth, Jakob; Bergenstahl, Björn; Millqvist-Fureby, Anna

    2015-10-13

    Mixing of two biopolymers can results in phase separation due to their thermodynamically incompatibility under certain conditions. This phenomenon was first reported when the solution was allowed to equilibrate, but it has later been observed also as a consequence of drying. The challenges of this study were to observe phase segregation by confocal Raman microscopy and LV-SEM on dried film, individually dried particles, and spray dried particles. The influence of the solid content and the phase ratio (composition) of a HPMC/maltodextrin mixture on the localization of the ingredients in the individually dried particles was investigated. We observed that phase segregation of HPMC and maltodextrin is induced by solvent evaporation in film drying, single particle drying, as well as spray drying. The phase ratio is an important parameter that influences the localization of the HPMC-enriched phase and maltodextrin-enriched phase, i.e., to the particle surface, to the core, or in a more or less bicontinuous pattern. The drying time, affected by the solids content, was found to control the level of advancement of the phase segregation.

  6. Refolding dynamics of stretched biopolymers upon force quench

    CERN Document Server

    Hyeon, Changbong; Pincus, David L; Thirumalai, D

    2009-01-01

    Single molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench, using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, $\\tau_F$, depends asymmetrically on $\\delta f_S = f_S - f_m$ and $\\delta f_Q = f_m - f_Q$ where $f_S$ ($f_Q$) is the stretch (quench) force, and $f_m$ is the transition mid-force of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, $R(t)$, occurs in three stages: a rapid initial decrease in the extension is followed by a plateau, and finally an abrupt reduction in $R(t)$ that occurs as the native state is approached. The duration of the plateau increases as $\\lambda =\\tau_Q/\\tau_F$ decreases (where $\\tau_Q$ is the time in which the force is reduced from $f_S$ to $f_Q$). ...

  7. Elasticity of cross-linked semiflexible biopolymers under tension

    CERN Document Server

    von der Heydt, Alice; Benetatos, Panayotis; Zippelius, Annette

    2013-01-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor four. The increase in differential stiffness can ...

  8. Dynamic light scattering of xanthan gum biopolymer in colloidal dispersion.

    Science.gov (United States)

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2016-09-01

    The dynamical properties of nanogels of xanthan gum (XG) with hydrodynamic radius controlled in a size range from 5 nm to 35 nm, were studied at the different XG concentrations in water/sodium bis-2-ethylhexyl-sulfosuccinate (AOT)/decane reverse micelles (RMs) vs. mass fraction of nano-droplet (MFD) at W = 40, using dynamic light scattering (DLS). The diffusion study of nanometer-sized droplets by DLS technique indicated that enhancing concentration of the XG polysaccharide resulted in exchanging the attractive interaction between nano-gels to repulsive interaction, as the mass fraction of nano-droplets increased. The reorientation time (τr ) of water nanodroplets decreased with MFD for water-in-oil AOT micro-emulsion comprising high concentration (0.0000625) of XG. On the other hand, decreasing concentration of biopolymer led to increasing the rotational correlation time of water nanodroplets with MFD. In conclusion, a single relaxation curve was observed for AOT inverse microemulsions containing different XG concentrations. Furthermore, the interaction between nanogels was changed from attractive to repulsive versus concentration of XG in the AOT RMs. PMID:27489730

  9. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  10. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  11. Injectable biopolymer based hydrogels for drug delivery applications.

    Science.gov (United States)

    Atta, Sadia; Khaliq, Shaista; Islam, Atif; Javeria, Irtaza; Jamil, Tahir; Athar, Muhammad Makshoof; Shafiq, Muhammad Imtiaz; Ghaffar, Abdul

    2015-09-01

    Biopolymer based pH-sensitive hydrogels were prepared using chitosan (CS) with polyethylene glycol (PEG) of different molecular weights in the presence of silane crosslinker. The incorporated components remain undissolved in different swelling media as they are connected by siloxane linkage which was confirmed by Fourier transform infrared spectroscopy. The swelling in water was enhanced by the addition of higher molecular weight PEG. The swelling behaviour of the hydrogels against pH showed high swelling in acidic and basic pH, whereas, low swelling was examined at pH 6 and 7. This characteristic pH responsive behaviour at neutral pH made them suitable for injectable controlled drug delivery. The controlled release analysis of Cefixime (CFX) (model drug) loaded CS/PEG hydrogel exhibited that the entire drug was released in 30 min in simulated gastric fluid (SGF) while in simulated intestinal fluid (SIF), 85% of drug was released in controlled manner within 80 min. This inferred that the developed hydrogels can be an attractive biomaterial for injectable drug delivery with physiological pH and other biomedical applications.

  12. Influence of different treatment condition on biopolymer yield production for coagulation-flocculation process

    Science.gov (United States)

    Aisyah, I. S.; Murshed, M. F.; Norli, I.

    2016-06-01

    Two different agro wastes (banana pseudostem and rice straw) were utilized in order to extract biopolymer (pectin) known as coagulant aid in water and wastewater treatment. Factors such as pH, temperature and time were chosen due to the critical role in hot acid extraction process. The yield of biopolymer extraction from banana pseudostem was found to be higher at 28% meanwhile only 18% from rice straw was manage to produce from the dry weight 10 g, respectively. It was found that extraction temperature and extraction time were the most important factors influencing the biopolymer yield which increased with temperature and time or decreasing pH. Based on two level factorial design, the same condition of pH 1.5, temperature 90 oC and 4 hours extraction time can produce high amount of extracted biopolymer. Fourier Transform Infrared Spectroscopy (FTIR) was used to detect the existence of functional group which helps in the coagulation-flocculation process. Result indicates a similar functional group of biopolymer were detected for both difference agro wastes.

  13. Interactions between Chitosan and Alginate Dialdehyde Biopolymers and Their Layer-by-Layer Assemblies.

    Science.gov (United States)

    Aston, Robyn; Wimalaratne, Medini; Brock, Aidan; Lawrie, Gwendolyn; Grøndahl, Lisbeth

    2015-06-01

    Biopolymers are researched extensively for their applications in biomaterials science and drug delivery including structures and complexes of more than one polymer. Chemical characterization of complexes formed between chitosan (CHI) and alginate dialdehyde (ADA) biopolymers established that while electrostatic interactions dominate (as determined from X-ray photoelectron spectroscopy (XPS)) covalent cross-linking between these biopolymers also contribute to their stability (evidenced from immersion in salt solution). It was furthermore found that imine bond formation could not be directly detected by any of the techniques XPS, FTIR, (1)H NMR, or fluorescence. The layer-by-layer assemblies of the biopolymers formed on silica colloids, glass slides, and alginate hydrogel beads were evaluated using XPS, as well as zeta potential measurements for the silica colloids and changes to hydration properties for the hydrogels. It was found that the degree of oxidation of ADA affected the LbL assemblies in terms of a greater degree of CHI penetration observed when using the more conformationally flexible biopolymer ADA (higher degree of oxidation).

  14. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    Energy Technology Data Exchange (ETDEWEB)

    Vila, M.; Sanchez-Salcedo, S.; Cicuendez, M.; Izquierdo-Barba, I. [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Vallet-Regi, Maria, E-mail: vallet@farm.ucm.es [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2011-08-15

    Highlights: {yields} 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. {yields} HA stable foams coated with biopolymers. {yields} Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 {mu}mol/g in the case of Pb{sup 2+}, 378 {mu}mol/g of Cu{sup 2+} and 316 {mu}mol/g of Cd{sup 2+}. These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  15. Spectral Analysis Methods for the Robust Measurement of the Flexural Rigidity of Biopolymers

    Science.gov (United States)

    Valdman, David; Atzberger, Paul J.; Yu, Dezhi; Kuei, Steve; Valentine, Megan T.

    2012-01-01

    The mechanical properties of biopolymers can be determined from a statistical analysis of the ensemble of shapes they exhibit when subjected to thermal forces. In practice, extracting information from fluorescence microscopy images can be challenging due to low signal/noise ratios and other artifacts. To address these issues, we develop a suite of tools for image processing and spectral data analysis that is based on a biopolymer contour representation expressed in a spectral basis of orthogonal polynomials. We determine biopolymer shape and stiffness using global fitting routines that optimize a utility function measuring the amount of fluorescence intensity overlapped by such contours. This approach allows for filtering of high-frequency noise and interpolation over sporadic gaps in fluorescence. We use benchmarking to demonstrate the validity of our methods, by analyzing an ensemble of simulated images generated using a simulated biopolymer with known stiffness and subjected to various types of image noise. We then use these methods to determine the persistence lengths of taxol-stabilized microtubules. We find that single microtubules are well described by the wormlike chain polymer model, and that ensembles of chemically identical microtubules show significant heterogeneity in bending stiffness, which cannot be attributed to sampling or fitting errors. We expect these approaches to be useful in the study of biopolymer mechanics and the effects of associated regulatory molecules. PMID:22404937

  16. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Science.gov (United States)

    Pu, Jian; Fukushi, Kensuke

    2013-01-01

    In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA) and biopolymer solution extracted from cultivated activated sludge (ASBP). The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE) method (R2 = 0.989 for BSA, 0.985 for ASBP). PMID:24194678

  17. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  18. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  19. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2015-02-01

    Full Text Available This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  20. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  1. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems

    International Nuclear Information System (INIS)

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability

  2. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  3. Carbohydrate Biopolymers Enhance Antibody Responses to Mucosally Delivered Vaccine Antigens

    Science.gov (United States)

    Bacon, A.; Makin, J.; Sizer, P. J.; Jabbal-Gill, I.; Hinchcliffe, M.; Illum, L.; Chatfield, S.; Roberts, M.

    2000-01-01

    We have evaluated the ability of two carbohydrate biopolymers, chitosan and gellan, to enhance antibody responses to subunit influenza virus vaccines delivered to the respiratory tracts of mice. Groups of mice were vaccinated three times intranasally (i.n.) with 10 μg of purified influenza B/Panama virus surface antigens (PSAs), which consist of hemagglutinin (HA) and neuraminidase (NA), either alone or admixed with chitosan or gellan solutions. Separate groups were vaccinated subcutaneously (s.c.) with PSAs adsorbed to Alhydrogel or chitosan or gellan alone i.n. Serum antibody responses were determined by enzyme-linked immunosorbent assay (ELISA) for influenza virus-specific immunoglobulin G (IgG) and by HA inhibition (HAI) and NA inhibition (NAI) assays. The local respiratory immune response was measured by assaying for influenza virus-specific IgA antibody in nasal secretions and by enumerating nasal and pulmonary lymphocytes secreting IgA, IgG, and IgM anti-influenza virus-specific antibodies by enzyme-linked immunospotting (ELISPOT). When administered alone i.n., B/Panama PSA was poorly immunogenic. Parenteral immunization with B/Panama PSA with Alhydrogel elicited high titers of anti-B/Panama antibodies in serum but a very poor respiratory anti-B/Panama IgA response. In contrast, i.n. immunization with PSA plus chitosan stimulated very strong local and systemic anti-B/Panama responses. Gellan also enhanced the local and serum antibody responses to i.n. PSA but not to the same extent as chitosan. The ability of chitosan to augment the immunogenicity of influenza vaccines given i.n. was confirmed using PSA prepared from an influenza A virus (A/Texas H1N1). PMID:10992483

  4. Molecular field theory of reversible unfolding of biopolymers

    Science.gov (United States)

    Cerf, Roger

    1978-01-01

    A simple and general model of reversible conformational changes in biopolymers that lends itself to accounting for cooperativity without resort to a detailed description of the elementary steps is presented. It is suggested that the model permits the description of transitions in specific instances in which long-range effects are present and no simplifying feature allows for a more detailed theory in a straightforward way. The proposed phenomenological approach is based on the concept of molecular field which led to the first theory of ferromagnetism. Equations are given for the temperature dependence of optical properties and of the specific heat, from which the cooperativity parameter introduced by the theory can be obtained when the reaction enthalpy of the elementary step or the number of concerted elements is known. In the limit of a strong molecular field, heterogeneity in composition of a melting sequence does not affect the sharpness of the corresponding transition. Accounting for long-range effects allows for all-or-none transitions that are sharper than those derived from the two-state model. The feasibility of applying the molecular field concept is illustrated by comparing the results for poly(A)·2 poly(U) triple helices (which exhibit hysteresis) and those for poly(A)·poly(U) double helices (which separate reversibly). Tertiary structure is considered, among the sources of cooperativity that possibly may be represented in terms of a molecular field. On the basis of recent results for tRNA1val, it is suggested that the proposed approach may be applicable, in particular, to transfer ribonucleic acids. PMID:275844

  5. pH-induced contrast in viscoelasticity imaging of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Yapp, R D; Insana, M F [Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL 61801 (United States)], E-mail: ryapp2@illinois.edu

    2009-03-07

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  6. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  7. pH induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  8. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  9. Refolding dynamics of stretched biopolymers upon force quench

    Science.gov (United States)

    Hyeon, Changbong; Morrison, Greg; Pincus, David L.; Thirumalai, D.

    2009-01-01

    Single-molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench by using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, τF, depends asymmetrically on δfS = f S − f m and δf Q = f m − f Q where f S (f Q) is the stretch (quench) force and f m is the transition midforce of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, R(t), occurs in three stages: A rapid initial decrease in the extension is followed by a plateau and finally, an abrupt reduction in R(t) occurs as the native state is approached. The duration of the plateau increases as λ = τ Q/τ F decreases (where τ Q is the time in which the force is reduced from f S to f Q). Variations in the mechanisms of force-quench relaxation as λ is altered are reflected in the experimentally measurable time-dependent entropy, which is computed directly from the folding trajectories. An analytical solution of the de Gennes model under tension reproduces the multistage stage kinetics in R(t). The prediction that the initial stages of collapse should also be a generic feature of polymers is validated by simulation of the kinetics of toroid (globule) formation in semiflexible (flexible) homopolymers in poor solvents upon quenching the force from a fully stretched state. Our findings give a unified explanation for multiple disparate experimental observations of protein folding. PMID:19915145

  10. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  11. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation.

    Science.gov (United States)

    Çelebi, Betül; Cloutier, Maxime; Rabelo, Rodrigo B; Balloni, Rodrigo; Mantovani, Diego; Bandiera, Antonella

    2012-11-01

    Elastin-based polypeptides are a class of smart biopolymers representing an important model in the design of biomaterials. The combination of biomimetic materials with cells that have great plasticity provides a promising strategy for the realization of highly engineered cell-based constructs for regenerative medicine and tissue repair applications. Two recombinant biopolymers inspired by human elastin are assessed as coating agents to prepare biomimetic surfaces for cell culture. These substrates are assayed for hBM MSC culture. The coated surfaces are also characterized with AFM to evaluate the topographical features of the deposited biopolymers. The results suggest that the elastin-derived biomimetic surfaces play a stimulatory role on osteogenic differentiation of MSCs.

  12. Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing.

    Science.gov (United States)

    Fan, Ming; Yan, Jingxuan; Tan, Huaping; Ben, Dandan; He, Qiuling; Huang, Zhongwei; Hu, Xiaohong

    2014-11-01

    Biopolymer-based gel scaffolds have great potential in the field of tissue regenerative medicine. In this work, a nanostructured biopolymer gel scaffold via specific pairing of functionalized nucleobases was developed for specifically targeted drug delivery and in vitro osteogenesis. The biopolymer gel system was established by the Watson-Crick base pairing between thymine and adenine via the hydrogen bonding. As gel scaffold precursors, opposite charged polysaccharide derivatives, e.g. quaternized cellulose and heparin, could be additionally crosslinked by extra electrostatic interactions. The potential application of this gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. In combination with cell growth factor, e.g. bone morphogenetic protein, the nanostructured gel scaffold exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss.

  13. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  14. The cross-linking influence of electromagnetic radiation on water-soluble polyacrylan compositions with biopolymers

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2009-01-01

    Full Text Available The results of examinations of the cross-linking influence of electromagnetic radiation - in a microwave range – on polyacrylancompositions with biopolymers, are presented in the hereby paper. The cross-linking process of the tested compositions was determined on the basis of the FT-IR spectroscopic methods. It was shown that microwave operations can lead to the formation of new cross-linkedstructures with strong covalent bonds. The adsorption process and formation of active centres in polymer molecules as well as in highsilica sand were found due to microwave radiations. In this process hydroxyl groups (-OH - present in a polymer - and silane groups (Si- O-H - present in a matrix - are mainly taking part. Spectroscopic and strength tests performed for the system: biopolymer binding agent – matrix indicate that the microwave radiation can be applied for hardening moulding sands with biopolymer binders.

  15. Influence of Temperature on Mechanical Properties of Jute/Biopolymer Composites

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Laursen, Louise Løcke; Løgstrup Andersen, Tom;

    2013-01-01

    properties of two biomass-based polymers, polylactic acid (PLA) and cellulose acetate (CA), as a function of ambient temperature in the range from 5 to 80C. Tests were done for neat polymers and for jute fiber/biopolymer composites. Micromechanical models were applied to back-calculate the reinforcement....... For the jute fiber composites, both the elastic modulus and maximum stress are reduced when the temperature is increased. For the elastic modulus, this is shown to be due to a reduction in the reinforcement efficiency of the jute fibers; i.e., a reduction in the back-calculated effective elastic modulus......Biopolymers and natural fibers are receiving wide attention for the potential to have good performance composites with low environmental impact. A current limitation of most biopolymers is however their change in mechanical properties at elevated temperatures. This study investigates the mechanical...

  16. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    Science.gov (United States)

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition.

  17. Biopolymer nanocomposites: processing, properties, and applications (wiley series on polymer engineering and technology)

    CERN Document Server

    2013-01-01

    Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources.Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of b...

  18. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    OpenAIRE

    Ghasem Rezanejade Bardajee; Zari Hooshyar

    2013-01-01

    This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs) by using poly(acrylic acid) grafted onto salep (salep-g-PAA) as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR) spectrum, thermogravimetric (TG) analysis, and transmission electron microscopy (TEM). The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical propertie...

  19. Translocation of Biopolymer Chain Through a Nanopore: Coil-Helix Transition

    Institute of Scientific and Technical Information of China (English)

    GU Fang; WANG Hai-Jun; HONG Xiao-Zhong; BA Xin-Wu

    2008-01-01

    @@ The translocation dynamics of a single biopolymer chain through a nanopore in a membrane is investigated by taking the coil-helix transition into account. Based on the changing of the free energy due to the coil-helix transition, the mean first passage time τ is obtained, and then the corresponding numerical simulations are presented under different conditions. It is shown that the coil helix transition can significantly shorten the translocation time of the biopolymer chain. In addition, we also discuss the scaling behaviour for τ with the chain length N and some related problems.

  20. The Influence of Biopolym FTZ on the Content of Nitrogen Compounds in Rumen

    Directory of Open Access Journals (Sweden)

    Eva Petrášková

    2010-05-01

    Full Text Available The aim of this study was to verify the effect of Biopolym FZT on the crude protein in the ruminal content. The experiment was conducted in laboratory conditions. Rumen content was removed from the Holstein breed cow fitted with ruminal fistula. The hydrolyzed brown seaweed was added to the samples of the ruminal content. After incubation of the samples the crude protein content was determined. In experiments with solid ruminal contents positive effects of Biopolym on the crude protein content was shown. The best results were achieved at the dilution of 1:2000.

  1. Effect of Permeability on Aqueous Biopolymer Interfaces in Spinning Drop Experiments

    NARCIS (Netherlands)

    Scholten, E.; Sagis, L.M.C.; Linden, van der E.

    2006-01-01

    In this paper we show that interfaces in aqueous phase-separated biopolymer mixtures are permeable for all components present in the system. In spinning drop experiments, droplets of the low-density phase decreased up to 90% in volume over a time span of days to weeks, when inserted in a matrix of t

  2. A novel method of providing a library of n-mers or biopolymers

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method of providing a library of n-mer sequences, wherein the library is composed of an n-mer sequence. Also the invention concerns a method of providing a library of biopolymer sequences having one or more n-mers in common. Further provided are specific primers...

  3. Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles.

    Science.gov (United States)

    Francesko, Antonio; Blandón, Lucas; Vázquez, Mario; Petkova, Petya; Morató, Jordi; Pfeifer, Annett; Heinze, Thomas; Mendoza, Ernest; Tzanov, Tzanko

    2015-05-13

    Laccase-assisted assembling of hybrid biopolymer-silver nanoparticles and cork matrices into an antimicrobial material with potential for water remediation is herein described. Amino-functional biopolymers were first used as doping agents to stabilize concentrated colloidal dispersions of silver nanoparticles (AgNP), additionally providing the particles with functionalities for covalent immobilization onto cork to impart a durable antibacterial effect. The solvent-free AgNP synthesis by chemical reduction was carried out in the presence of chitosan (CS) or 6-deoxy-6-(ω-aminoethyl) aminocellulose (AC), leading to simultaneous AgNP biofunctionalization. This approach resulted in concentrated hybrid NP dispersion stable to aggregation and with hydrodynamic radius of particles of about 250 nm. Moreover, laccase enabled coupling between the phenolic groups in cork and amino moieties in the biopolymer-doped AgNP for permanent modification of the material. The antibacterial efficiency of the functionalized cork matrices, aimed as adsorbents for wastewater treatment, was evaluated against Escherichia coli and Staphylococcus aureus during 5 days in conditions mimicking those in constructed wetlands. Both intrinsically antimicrobial CS and AC contributed to the bactericidal effect of the enzymatically grafted on cork AgNP. In contrast, unmodified AgNP were easily washed off from the material, confirming that the biopolymers potentiated a durable antibacterial functionalization of the cork matrices.

  4. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  5. Dihedral-based segment identification and classification of biopolymers I: proteins.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail.

  6. Biopolymer gel swelling analysed with scaling laws and Flory-Rehner theory

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2015-01-01

    The swelling of biopolymer gels is analysed with scaling laws from polymer physics, as an alternative for the classical Flory-Rehner theory. With these scaling laws, holding for polymer concentrations in the semi-dilute regime, experimental data on deswelling of gels can be collapsed to a single

  7. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    Directory of Open Access Journals (Sweden)

    Palaniyandi Velusamy

    Full Text Available In the current study, facile synthesis of carboxymethyl cellulose (CMC and sodium alginate capped silver nanoparticles (AgNPs was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%, volumes of reducing agent (50, 100, 150 μL, and duration of heat treatment (30 s to 240 s. The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  8. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone

    DEFF Research Database (Denmark)

    Henriksen, S S; Ding, M; Vinther Juhl, M;

    2011-01-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture...

  9. Dihedral-Based Segment Identification and Classification of Biopolymers I: Proteins

    Science.gov (United States)

    2013-01-01

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail. PMID:24364820

  10. Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations.

    Science.gov (United States)

    Sharma, Anil Kumar; Arya, Amit; Sahoo, Pravat Kumar; Majumdar, Dipak Kanti

    2016-10-01

    Inflammation of the eye is a usual clinical condition that can implicate any part of the eye. The nomenclature of variety of such inflammations is based on the ocular part involved. These diseases may jeopardize normal functioning of the eye on progression. In general, corticosteroids, antihistamines, mast cell stabilizers and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammatory diseases/disorders of the eye. There have been several attempts via different approaches of drug delivery to overcome the low ocular bioavailability resulting from shorter ocular residence time. The features like safety, ease of elimination and ability to sustain drug release have led to application of biopolymers in ocular therapeutics. Numerous polymers of natural origin such as gelatin, collagen, chitosan, albumin, hyaluronic acid, alginates etc. have been successfully employed for preparation of different ocular dosage forms. Chitosan is the most explored biopolymer amongst natural biopolymers because of its inherent characteristics. The emergence of synthetic biopolymers (like PVP, PACA, PCL, POE, polyanhydrides, PLA, PGA and PLGA) has also added new dimensions to the drug delivery strategies meant for treatment of ophthalmic inflammations. The current review is an endeavor to describe the utility of a variety of biomaterials/polymers based drug delivery systems as carrier for anti-inflammatory drugs in ophthalmic therapeutics.

  11. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    Science.gov (United States)

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  12. Phase Diagram and Effective Shape of Semiflexible Colloidal Rods and Biopolymers

    NARCIS (Netherlands)

    Dennison, M; Dijkstra, M.; van Roij, R.H.H.G.

    2011-01-01

    We study suspensions of semiflexible colloidal rods and biopolymers using an Onsager-type second-virial functional for a segmented-chain model. For mixtures of thin and thick fd virus particles, we calculate full phase diagrams, finding quantitative agreement with experimental observations. We show

  13. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2013-01-01

    Full Text Available There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin, protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin. The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.

  14. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    Science.gov (United States)

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  15. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  16. Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations.

    Science.gov (United States)

    Sharma, Anil Kumar; Arya, Amit; Sahoo, Pravat Kumar; Majumdar, Dipak Kanti

    2016-10-01

    Inflammation of the eye is a usual clinical condition that can implicate any part of the eye. The nomenclature of variety of such inflammations is based on the ocular part involved. These diseases may jeopardize normal functioning of the eye on progression. In general, corticosteroids, antihistamines, mast cell stabilizers and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammatory diseases/disorders of the eye. There have been several attempts via different approaches of drug delivery to overcome the low ocular bioavailability resulting from shorter ocular residence time. The features like safety, ease of elimination and ability to sustain drug release have led to application of biopolymers in ocular therapeutics. Numerous polymers of natural origin such as gelatin, collagen, chitosan, albumin, hyaluronic acid, alginates etc. have been successfully employed for preparation of different ocular dosage forms. Chitosan is the most explored biopolymer amongst natural biopolymers because of its inherent characteristics. The emergence of synthetic biopolymers (like PVP, PACA, PCL, POE, polyanhydrides, PLA, PGA and PLGA) has also added new dimensions to the drug delivery strategies meant for treatment of ophthalmic inflammations. The current review is an endeavor to describe the utility of a variety of biomaterials/polymers based drug delivery systems as carrier for anti-inflammatory drugs in ophthalmic therapeutics. PMID:27287177

  17. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites

    Science.gov (United States)

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). One of the reasons for unique properties of bio-nanocomposites is the differ...

  18. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  19. Shape-memory biopolymers based on β-sheet structures of polyalanine segments inspired by spider silks.

    Science.gov (United States)

    Huang, Huahua; Hu, Jinlian; Zhu, Yong

    2013-02-01

    The molecular structural design learned from natural materials enables synthetic polymers with desirable and unique features to be fabricated. Inspired by spider silks, short-chain polyalanine (PA) is introduced into multiblock biopolymers with poly(ε-caprolactone) segments via a coupling reaction. As a result, PA segments in biopolymers form similar β-sheet crystals to that of natural spidroins. These new biopolymers are found to exhibit nearly complete shape recovery and high shape fixity, along with significantly improved thermal stability due to the strong β-sheet structures as netpoints. This work provides new insight for the design of novel shape-memory polymers with potential use in biomedical applications.

  20. Use of irradiation technique for obtaining and modification of biopolymers; Zastosowanie techniki radiacyjnej do otrzymywania i modyfikacji biopolimerow. Praca pogladowa

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Szumiel, M. [Akademia Medyczna, Warsaw (Poland); Kaluska, I. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1994-12-31

    A review of papers concerning application of radiation techniques to the biopolymers production is presented. The nature of electron and gamma irradiation influence on polymers is outlined. Advantages of the method from the point of view of biocompatibility and biofunctionality of biopolymers are underlined. Among them the most important are the following: chemical purity of products, high efficiency of the method, expanded influence on polymers` structure, usefulness in the graft copolymerization, ability of avoiding enhanced temperature during polymerization and sterility of products. Examples of biopolymers obtained or modified by means of irradiation techniques are gathered. (author). 35 refs.

  1. Study of Sorption Equilibrium of Biopolymers Alginic Acid and Xanthan with C.I. Disperse Yellow 54

    OpenAIRE

    Juan Antonio Lozano-Álvarez; Juan Jáuregui-Rincón; Guillermo Mendoza-Díaz; Refugio Rodríguez-Vázquez; Claudio Frausto-Reyes

    2009-01-01

    Disperse yellow 54 (DY54) was adsorbed onto two biopolymers, alginic acid and xanthan. The adsorption isotherms for the biopolymer-DY54 system showed that the adsorption mechanism can best be described by Zimm-Bragg theory. UV-Visible, FT-IR and MicroRaman studies suggest that DY54 is bounded to both biopolymers alginic acid and xanthan through hydrogen bonding. Keto group of dye and hydroxyl groups of sugar residues from two polysaccharides were the principal functional groups involved in so...

  2. Rheological and Tribological Properties of Complex Biopolymer Solutions

    Science.gov (United States)

    Klossner, Rebecca Reese

    2011-12-01

    little impact on the actual aggregation process. Additionally, the relationship between the rheology and tribology of the SFM was studied through a series of nanoscratch tests using a Hysitron nanoindenter. The nanoindenter has the ability to measure both normal and lateral forces simultaneously, which gives an indication of the lubricity of the solution. The coefficient of friction values for solutions of varying protein concentrations were determined by dividing the lateral force by the normal force. Tribological testing of the synovial fluid model and modified solutions were carried out on spin-cast polyethylene and ultra high molecular weight polyethylene sheets. At lower molecular weight substrates, the film thickness limited the validity of the generated data, and with higher molecular weight surfaces, surface roughness effects were found to dominate the tribological response. Finally, the addition of HCQ does not have a large impact on the tribological data, indicating that the anti-inflammatory drug does not significantly impact the lubrication properties within the synovial fluid model. Finally, additional rheological studies of biopolymer solutions were conducted in which solutions containing chitosan, a natural, bioactive polymer, were characterized to determine their fitness for the electropsinning process. Chitosan fibers are difficult to electrospin, and through these studies, the entanglement concentration, a critical parameter for electrospinning, was determined. The generated rheological data provided a means to predict the morphology of the resulting nanofibers, and aspects of the difficulty in electrospinning chitosan were revealed.

  3. A CRADLE TO GATE LIFE CYCLE ANALYSIS OF THE BIOPOLYMER POLYLACTIC ACID: LOOKING BEYOND GLOBAL WARMING AND FOSSIL FUEL USE

    Science.gov (United States)

    Derived from corn, the biopolymer polylactic acid (PLA) has recently emerged in the marketplace and is advertised as a sustainable alternative to petroleum-based polymers. Research into the environmental implications of biobased production has focused primarily on global warming...

  4. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus) Seed

    OpenAIRE

    Hamed Mirhosseini; Bahareh Tabatabaee Amid

    2012-01-01

    Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes), therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharid...

  5. Thermal degradation of biopolymer binders: the example of starch-poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2010-01-01

    Full Text Available To characterise a polymer, it is of fundamental importance to determine its parameters, like the temperatures of destruction, vitrification, melting point, specific mass losses or polymorphic transformations, which frequently determine the quality of the product and its applications. Thermal analyses were conducted of samples of a biopolymer binder: a starch-poly(acrylic acid composition and a moulding sand with a biopolymer binder previously hardened with microwaves. In order to determine the thermal stability of the examined samples by determining the destruction temperature and the thermal effects of transformations taking place during heating, FTIR spectroscopy and thermal analysis (DSC, DTG, TG methods were used. In addition, volatile products of degradation were analysed using the thermogravimetry (TG method coupled online with mass spectrometry (MS. These examinations were also aimed at identifying the changes that can take place in the moulding sand when it comes into contact with liquid metal.

  6. The Effect of Biopolym FZT on the Degradation of Feed in the Rumen

    Directory of Open Access Journals (Sweden)

    Eva Petrášková

    2012-05-01

    Full Text Available Cows with the canulla were divided into two groups - experimental and control. The cows from the experimental group were added to biostimulating substance Biopolym FZT. The samples of rumen fluid were analyzed to amount of Protozoa. The growth of microorganisms in the rumen fluid of experimental animals means the possibility of a positive impact of Biopolym on the degradation of feeding in the rumen. A total of 26 samples of feed (samples of meadow hay were used for estimation of in sacco digestibility. All samples were incubated for 48h. The results of the organic matter digestibility (OMD were compared. The samples were analyzed for NDF, ADF. The results indicated no significant difference between experimental and control group.

  7. Effect of disorder on the contact probability of elongated conformations of biopolymers.

    Science.gov (United States)

    Tiana, Guido

    2015-07-01

    Biopolymers are characterized by heterogeneous interactions, and usually perform their biological tasks forming contacts within domains of limited size. Combining polymer theory with a replica approach, we study the scaling properties of the probability of contact formation in random heteropolymers as a function of their linear distance. It is found that, close to or above the θ point, it is possible to define a contact probability which is typical (i.e., "self-averaging") for different realizations of the heterogeneous interactions, and which displays an exponential cutoff, dependent on temperature and on the interaction range. In many cases this cutoff is comparable with the typical sizes of domains in biopolymers. While it is well known that disorder causes interesting effects at low temperature, the behavior elucidated in the present study is an example of a nontrivial effect at high temperature.

  8. Stretching instability of intrinsically curved semiflexible biopolymers:A lattice model approach

    Institute of Scientific and Technical Information of China (English)

    周子聪; 林方庭; 陈柏翰

    2015-01-01

    We apply Monte Carlo simulation method to lattice systems to study the effect of an intrinsic curvature on the me-chanical property of a semifl exible biopolymer. We find that when the intrinsic curvature is sufficient large, the extension of a semifl exible biopolymer can undergo a first-order transition at finite temperature. The critical force increases with in-creasing intrinsic curvature. But the relationship between the critical force and the bending rigidity is structure-dependent. In triangle lattice system, when the intrinsic curvature is smaller than a critical value, the critical force increases with the increasing bending rigidity first, and then decreases with the increasing bending rigidity. But in square lattice system, the critical force always decreases with the increasing bending rigidity. In contrast, when the intrinsic curvature is greater than the critical value, the larger bending rigidity always results in a larger critical force in both lattice systems.

  9. The estimation of ability to reclame of moduling sands with biopolymer binders

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-04-01

    Full Text Available Applied up till now organic binding materials, on the basis of synthetic resins are characterised by good technological properties, but cause high emission of harmful substances. That’s why contemporary scientific researches are leading to progressive replacing the binders obtained from petrochemical materials with polymer biocomposites coming from renewable resources. Increasing concern of aliphatic polyesters such as polylactide, polycaprolactone, poly(hydroxyalkanoates and aliphatic-aromatic polyesters is caused by the possibility of using them for producing many biodegradable products. In that context it is important to expand the researches connected to using biopolymers as moulding sands binders. Contemporary authors’ papers were focused on technological properties and harmfulness for the environment of this ecological moulding sands. TThis article takes into consideration the ability to reclamation of moulding sands with biopolymer binders.

  10. Long-Lived Conformation Changes Induced by Electric Impulses in Biopolymers

    Science.gov (United States)

    Neumann, Eberhard; Katchalsky, Aharon

    1972-01-01

    Electric impulses are capable of inducing long-lived conformational changes in (metastable) biopolymers. Results of experiments with poly(A)·2 poly(U) and ribosomal RNA, which are known to develop metastabilities, are reported. A polarization mechanism is proposed to explain the structural transitions observed in the biopolymers exposed to the impulses. In accordance with this idea, the applied electric field (of about 20 kV/cm and decaying exponentially, with a decay time of about 10 μsec) induces large dipole moments by shifting the ionic atmosphere of multistranded polynucleotide helices. This shift, in turn, causes strand repulsion and partial unwinding. The fields used in our experiments are of the same order of magnitude as those in nerve impulses. The significance of the impulse experiments with regard to the question of biological memory recording is briefly discussed. PMID:4502948

  11. Keratin Protein-Catalyzed Nitroaldol (Henry Reaction and Comparison with Other Biopolymers

    Directory of Open Access Journals (Sweden)

    Marleen Häring

    2016-08-01

    Full Text Available Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding β-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB as a phase transfer catalyst. Negligible background reactions (i.e., negative control experiment in the absence of keratin protein were observed in these solvent systems. Aromatic aldehydes bearing electron-donating groups and aliphatic aldehydes showed poor or no conversion, respectively. In general, the reactions in water/TBAB required twice the amount of time than in DMSO to achieve similar conversions. Moreover, comparison of the kinetics of the keratin-mediated nitroaldol (Henry reaction with other biopolymers revealed slower rates for the former and the possibility of fine-tuning the kinetics by appropriate selection of the biopolymer and solvent.

  12. Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers.

    Science.gov (United States)

    Häring, Marleen; Pettignano, Asja; Quignard, Françoise; Tanchoux, Nathalie; Díaz Díaz, David

    2016-08-25

    Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry) reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding β-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB) as a phase transfer catalyst. Negligible background reactions (i.e., negative control experiment in the absence of keratin protein) were observed in these solvent systems. Aromatic aldehydes bearing electron-donating groups and aliphatic aldehydes showed poor or no conversion, respectively. In general, the reactions in water/TBAB required twice the amount of time than in DMSO to achieve similar conversions. Moreover, comparison of the kinetics of the keratin-mediated nitroaldol (Henry) reaction with other biopolymers revealed slower rates for the former and the possibility of fine-tuning the kinetics by appropriate selection of the biopolymer and solvent.

  13. Nanofoaming in the surface of biopolymers by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gaspard, S.; Oujja, M.; Nalda, R. de [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain); Abrusci, C.; Catalina, F. [Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Banares, L. [Department of Physical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid (Spain); Lazare, S. [Institut des Sciences Moleculaires UMR 5255, Universite de Bordeaux 1, Talence (France); Castillejo, M. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain)], E-mail: marta.castillejo@iqfr.csic.es

    2007-12-15

    In this work, the nanostructuring induced in femtosecond (fs) laser irradiation of biopolymers is examined in self-standing films of collagen and gelatine. Irradiation by single 90 fs pulses at 800, 400 and 266 nm is shown to result in the formation of a modified layer with submicrometric size structures. The size and uniformity of the observed features are strongly dependent on irradiation wavelength and on the characteristics of the biopolymer (water content and mechanical strength). Examination of the films by laser induced fluorescence serves to assess the chemical modifications induced by laser irradiation, revealing changes in the emission bands assigned to the aromatic amino acid tyrosine and its degradation products. The results are discussed in the framework of a mechanism involving the generation of large free-electron densities, through multiphoton and avalanche ionization, which determine the temperature and stress distribution in the irradiated volume.

  14. Stereolithographic models of the solvent-accessible surface of biopolymers. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, J. [Olathe South High School, KS (United States); Noel, P. [Center High School, Kansas City, MO (United States); Emery, J.D. [and others

    1996-11-01

    The solvent-accessible surfaces of several biopolymers were calculated. As part of the DOE education outreach activity, two high school students participated in this project. Computer files containing sets of triangles were produced. These files are called stl files and are the ISO 9001 standard. They have been written onto CD-ROMs for distribution to American companies. Stereolithographic models were made of some of them to ensure that the computer calculations were done correctly. Stereolithographic models were made of interleukin 1{beta} (IL-1{beta}), three antibodies (an anti-p-azobenzene arsonate, an anti-Brucella A cell wall polysaccharide, and an HIV neutralizing antibody), a triple stranded coiled coil, and an engrailed homeodomain. Also, the biopolymers and their files are described.

  15. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  16. Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers.

    Science.gov (United States)

    Häring, Marleen; Pettignano, Asja; Quignard, Françoise; Tanchoux, Nathalie; Díaz Díaz, David

    2016-01-01

    Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry) reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding β-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB) as a phase transfer catalyst. Negligible background reactions (i.e., negative control experiment in the absence of keratin protein) were observed in these solvent systems. Aromatic aldehydes bearing electron-donating groups and aliphatic aldehydes showed poor or no conversion, respectively. In general, the reactions in water/TBAB required twice the amount of time than in DMSO to achieve similar conversions. Moreover, comparison of the kinetics of the keratin-mediated nitroaldol (Henry) reaction with other biopolymers revealed slower rates for the former and the possibility of fine-tuning the kinetics by appropriate selection of the biopolymer and solvent. PMID:27571051

  17. Biopolymer Doped with Titanium Dioxide Superhydrophobic Photocatalysis as Self-Clean Coating for Lightweight Composite

    OpenAIRE

    Anika Zafiah M. Rus; S. R. Mohid; Nurulsaidatulsyida, S.; N. Marsi

    2013-01-01

    The development of a lightweight composite (LC) based on Portland cement concrete with waste lightweight aggregate (WLA) additive was carried out to improve the sustainability and environmental impact and to offer potential cost savings without sacrificing strength. Treatment of the surface of the LC exposed to environmental attack by coating with biopolymer based on waste cooking oil doped with titanium dioxide photocatalysis (TOP) with superhydrophilic property was found to affect the mecha...

  18. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials

    OpenAIRE

    Silvia Tabasso; Silvia Berto; Roberta Rosato; Janeth Alicia Tafur Marinos; Marco Ginepro; Vincenzo Zelano; Pier Giuseppe Daniele; Enzo Montoneri

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the b...

  19. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    OpenAIRE

    Michele Greque de Morais; Bruna da Silva Vaz; Etiele Greque de Morais; Jorge Alberto Vieira Costa

    2014-01-01

    Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-i...

  20. Its preferential interactions with biopolymers account for diverse observed effects of trehalose.

    Science.gov (United States)

    Hong, Jiang; Gierasch, Lila M; Liu, Zhicheng

    2015-07-01

    Biopolymer homeostasis underlies the health of organisms, and protective osmolytes have emerged as one strategy used by Nature to preserve biopolymer homeostasis. However, a great deal remains unknown about the mechanism of action of osmolytes. Trehalose, as a prominent example, stabilizes proteins against denaturation by extreme temperature and denaturants, preserves membrane integrity upon freezing or in dry conditions, inhibits polyQ-mediated protein aggregation, and suppresses the aggregation of denatured proteins. The underlying thermodynamic mechanisms of such diverse effects of trehalose remain unclear or controversial. In this study, we applied the surface-additive method developed in the Record laboratory to attack this issue. We characterized the key features of trehalose-biopolymer preferential interactions and found that trehalose has strong unfavorable interactions with aliphatic carbon and significant favorable interactions with amide/anionic oxygen. This dissection has allowed us to elucidate the diverse effects of trehalose and to identify the crucial functional group(s) responsible for its effects. With (semi)quantitative thermodynamic analysis, we discovered that 1) the unfavorable interaction of trehalose with hydrophobic surfaces is the dominant factor in its effect on protein stability, 2) the favorable interaction of trehalose with polar amides enables it to inhibit polyQ-mediated protein aggregation and the aggregation of denatured protein in general, and 3) the favorable interaction of trehalose with phosphate oxygens, together with its unfavorable interaction with aliphatic carbons, enables trehalose to preserve membrane integrity in aqueous solution. These results provide a basis for a full understanding of the role of trehalose in biopolymer homeostasis and the reason behind its evolutionary selection as an osmolyte, as well as for a better application of trehalose as a chemical chaperone.

  1. Synthesis and physicochemical characterization of novel biocompatible ionic liquids for the solubilization of biopolymers

    OpenAIRE

    Mühlbauer, Andrea

    2016-01-01

    During the last fifteen years, green chemistry became a central topic of academic and industrial research which is still progressively growing. In this context, many researchers are interested in alternative solvents which are environmentally friendly. Among them, there are ionic liquids (ILs) and deep eutectic solvents (DESs). The aim of the thesis was to development of new biocompatible ILs and DESs for the solubilization of biopolymers, such as cellulose. Short-chain two- and three-tailed ...

  2. Continuous supercritical emulsion extraction: process characterization and optimization of operative conditions to produce biopolymer microspheres

    OpenAIRE

    Falco, Nunzia

    2012-01-01

    2010 - 2011 Controlled release systems for therapeutic drugs have received extensive attention in recent years, due to their great clinical potential. Biodegradable microspheres are well-recognized systems to control the release rate of a drug out of a pharmaceutical dosage form; they are able to protect these agents against rapid degradation and clearance and release them in the body with a desired controlled rate and amount. Particularly, biopolymer microspheres are attracting increasing...

  3. Its Preferential Interactions with Biopolymers Account for Diverse Observed Effects of Trehalose

    Science.gov (United States)

    Hong, Jiang; Gierasch, Lila M.; Liu, Zhicheng

    2015-01-01

    Biopolymer homeostasis underlies the health of organisms, and protective osmolytes have emerged as one strategy used by Nature to preserve biopolymer homeostasis. However, a great deal remains unknown about the mechanism of action of osmolytes. Trehalose, as a prominent example, stabilizes proteins against denaturation by extreme temperature and denaturants, preserves membrane integrity upon freezing or in dry conditions, inhibits polyQ-mediated protein aggregation, and suppresses the aggregation of denatured proteins. The underlying thermodynamic mechanisms of such diverse effects of trehalose remain unclear or controversial. In this study, we applied the surface-additive method developed in the Record laboratory to attack this issue. We characterized the key features of trehalose-biopolymer preferential interactions and found that trehalose has strong unfavorable interactions with aliphatic carbon and significant favorable interactions with amide/anionic oxygen. This dissection has allowed us to elucidate the diverse effects of trehalose and to identify the crucial functional group(s) responsible for its effects. With (semi)quantitative thermodynamic analysis, we discovered that 1) the unfavorable interaction of trehalose with hydrophobic surfaces is the dominant factor in its effect on protein stability, 2) the favorable interaction of trehalose with polar amides enables it to inhibit polyQ-mediated protein aggregation and the aggregation of denatured protein in general, and 3) the favorable interaction of trehalose with phosphate oxygens, together with its unfavorable interaction with aliphatic carbons, enables trehalose to preserve membrane integrity in aqueous solution. These results provide a basis for a full understanding of the role of trehalose in biopolymer homeostasis and the reason behind its evolutionary selection as an osmolyte, as well as for a better application of trehalose as a chemical chaperone. PMID:26153711

  4. Biopolymers production with carbon source from the wastes of a beer brewery industry

    Science.gov (United States)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  5. Controlling Secondary Structures of Bio-Polymers with Hydrogen-Like Bonding

    OpenAIRE

    J. Krawczyk; Owczarek, A. L.; Prellberg, T.; Rechnitzer, A.

    2007-01-01

    We present results for a lattice model of bio-polymers where the type of $\\beta$-sheet formation can be controlled by different types of hydrogen bonds depending on the relative orientation of close segments of the polymer. Tuning these different interaction strengths leads to low-temperature structures with different types of orientational order. We perform simulations of this model and so present the phase diagram, ascertaining the nature of the phases and the order of the transitions betwe...

  6. Biological effects of Spirulina (Arthrospira) biopolymers and biomass in the development of nanostructured scaffolds.

    Science.gov (United States)

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs), biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds) for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection.

  7. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations

    International Nuclear Information System (INIS)

    Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. One of the approaches considered for application involves biosorption either to biomass or to isolated biopolymers. Many bacterial polysaccharides have been shown to bind heavy metals with varying degrees of specificity and affinity. While various approaches have been adopted to generate polysaccharide variants altered in both structure and activity, metal biosorption has not been examined. Polymer engineering has included structural modification through the introduction of heterologous genes of the biosynthetic pathway into specific mutants, leading either to alterations in polysaccharide backbone or side chains, or to sugar modification. In addition, novel formulations can be designed which enlarge the family of available bacterial biopolymers for metal-binding and subsequent recovery. An example discussed here is the use of amphipathic bioemulsifiers such as emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1, that forms stable, concentrated (70%), oil-in-water emulsions (emulsanosols). In this system metal ions bind primarily at the oil/water interface, enabling their recovery and concentration from relatively dilute solutions. In addition to the genetic modifications described above, a new approach to the generation of amphipathic bioemulsifying formulations is based on the interaction of native or recombinant esterase and its derivatives with emulsan and other water-soluble biopolymers. Cation-binding emulsions are generated from a variety of hydrophobic substrates. The features of these and other systems will be discussed, together with a brief consideratiton of possible applications. (orig.)

  8. Biopolymers coated superparamagnetic Nickel Ferrites: Enhanced biocompatibility and MR imaging probe for breast cancer

    Science.gov (United States)

    Bano, Shazia; Zafar, Tayyaba; Akhtar, Shahnaz; Buzdar, Saeed Ahmed; Waraich, Mustansar Mahmood; Afzal, Muhammad

    2016-11-01

    We report evidence for the promising application of bovine serum albumin (BSA), chitosan (CS) or carboxymethyl cellulose (CMC) coated NiFe2O4 cores for improved biocompatibility and enhanced T2 relaxivity, through a single combinatorial approach. Pure nickel-ferrite nano cores (NFs) successfully synthesized by thermolysis, were immobilize with BSA, CS or CMC layer employing a simple cross linking procedure to avoid any significant influence of these biopolymers on the morphology and crystal structure of the cores. Phase, morphology, magnetic hysteresis and surface chemistry were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and Fourier transform infrared (FTIR) spectroscopy. The preliminary haemolysis and cell viability experiments show that biopolymers conjugation mitigates the haemolytic effect of the NFs on erythrocytes as the haemolytic index is less than 2% and cell viability is up to 100%, when normalized with the nontreated cells. The relaxivity value of coated NFs is 351±2.6 when compared to 84±0.22 of NFs without biopolymer conjugation. The results demonstrate that BSA, CS or CMC covering on NFs provide a single combinatorial approach to improve the biocompatibility and enhance the relaxivity value. Thus addressing the current challenge of the same with very good contrast for targeting MCF-7 without any further vectorization.

  9. The physicochemical properties of a spray dried glutinous rice starch biopolymer.

    Science.gov (United States)

    Laovachirasuwan, Pornpun; Peerapattana, Jomjai; Srijesdaruk, Voranuch; Chitropas, Padungkwan; Otsuka, Makoto

    2010-06-15

    Glutinous rice starch (GRS) is a biopolymer used widely in the food industry but not at all in the pharmaceutical industry. There are several ways to modify this biopolymer. Physical modification is simple and cheap because it requires no chemicals or biological agents. The aim of this study was to characterize the physicochemical properties of a spray dried glutinous rice starch (SGRS) produced from pregelatinized GRS. The surface morphology changed from an irregular to concave spherical shape as revealed by Scanning Electron Microscopy (SEM). SGRS was almost amorphous as determined by X-ray Diffraction (XRD) spectroscopy. The water molecules became linked through hydrogen bonds to the exposed hydroxyl group of amorphous SGRS as determined by Near Infrared (NIR) spectroscopy. Then, SGRS formed a colloid gel matrix with water and developed a highly viscous gelatinous form as determined using Differential Scanning Calorimetry (DSC) and a stress control type rheometer. In addition, SGRS can swell and produce a gelatinous surface barrier like a hydrophilic matrix biopolymer which controls drug release. Therefore, a novel application of SGRS is as a sustained release modifier for direct compression tablets in the pharmaceutical industry. PMID:20307959

  10. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Rojas Cortés

    2010-04-01

    Full Text Available Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, es-pecially when a pharmaceutical substance must be incorporated into a polymer matrix. A new generation of alterna-tives for human health has thus been generated by designing pharmaceutical therapeutic systems in line with the concept of “integrated custom-made product design”. This document reviews the trends concerning using biopoly-mers for designing products having pharmaceutical and biomedical applications. The paper also introduces the elements which should be mastered by engineers for obtaining material which can be used in the health field and tries to provide a reference point regarding the state of the art in this specific field of knowledge.

  11. STUDY OF THE STRUCTURE OF WOOD-RELATED BIOPOLYMERS BY SORPTION METHODS

    Directory of Open Access Journals (Sweden)

    Jelena Chirkova

    2009-08-01

    Full Text Available The potentialities of different vapour sorption methods are analized for the investigation of the microstructure of wood sorbents (wood, cellulose and lignin as a particular case of biopolymers. There are two important distinctions in the sorption behaviour of biopolymers from traditional rigid sorbents, namely, the dependence of the characteristics of the porous structure on the thermodynamic properties of the sorbate, and the manifestation of the sorption hysteresis over the whole region of the sorption–desorption isotherm. The reason for these distinctions is the low rigidity (low values of modulus of elasticity of biopolymers, hence, their considerable deformability under the action of sorption forces, resulting in the cleavage of interstructural bonds. This process, manifesting itself phenomenologically as swelling, depends on the activity of the sorbate and results in the appearance of porosity and a new surface. The criterion for the activity of the sorbate is close values of the solubility parameters of the polymer and the sorbate. Inert substances are adsorbed on the surface of large morphological formations and characterise the intact structure of the sorbent, while active sorbates cause the swelling of these formations and penetrate them, which enables a study of the microstructure of sorbents. In the desorption process, the cleaved bonds are restored, blocking a part of the sorbate in the polymer’s structure, which results in the appearance of sorption hysteresis, not connected directly with the porous structure of the sorbent.

  12. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D.L.; Bach, H. [Tel-Aviv Univ. (Israel). Dept. of Molecular Microbiology and Biotechnology

    2000-07-01

    Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. One of the approaches considered for application involves biosorption either to biomass or to isolated biopolymers. Many bacterial polysaccharides have been shown to bind heavy metals with varying degrees of specificity and affinity. While various approaches have been adopted to generate polysaccharide variants altered in both structure and activity, metal biosorption has not been examined. Polymer engineering has included structural modification through the introduction of heterologous genes of the biosynthetic pathway into specific mutants, leading either to alterations in polysaccharide backbone or side chains, or to sugar modification. In addition, novel formulations can be designed which enlarge the family of available bacterial biopolymers for metal-binding and subsequent recovery. An example discussed here is the use of amphipathic bioemulsifiers such as emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1, that forms stable, concentrated (70%), oil-in-water emulsions (emulsanosols). In this system metal ions bind primarily at the oil/water interface, enabling their recovery and concentration from relatively dilute solutions. In addition to the genetic modifications described above, a new approach to the generation of amphipathic bioemulsifying formulations is based on the interaction of native or recombinant esterase and its derivatives with emulsan and other water-soluble biopolymers. Cation-binding emulsions are generated from a variety of hydrophobic substrates. The features of these and other systems will be discussed, together with a brief consideratiton of possible applications. (orig.)

  13. Biological Effects of Spirulina (Arthrospira Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2014-01-01

    Full Text Available Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs, biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection.

  14. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed.

  15. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    Science.gov (United States)

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs), biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds) for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection. PMID:25157367

  16. Production of biopolymers from carbon dioxide. Tansan gas kara no bio polymer no seisan

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, A. (Kyushu University, Fukuoka (Japan). Faculty of Agriculture)

    1993-11-01

    This paper describes biopolymers made from CO2 that contribute to global preservation. PHB that is generated in the processes of CO2 fermentation and protein production from microorganisms draws attention as a useful biopolymer. Biological synthesis requires energy to synthesize the composing materials therein. Organisms are divided into the independent type and the subordinate type depending on how the energy is acquired. The independent type organism is of CO2 self-reducing type, so to speak, and produces organic matters. When hydrogen oxidizing bacteria, A. eutrophus, is cultured under an independent nutrient condition, energy derived from the hydrogen oxidation proliferates the bacteria and produces PHB. However, this fermentation method has a substantially different difficulty. It requires a huge reactor with a large gas migration capacity coefficient, on which the PHB production depends entirely. Other CO2 biopolymer production methods under study include effective utilization of biomass during photosynthetic processes by using plants incorporated with PHB biosynthesized genes, and production of polylactic acid, a biodegradable polymer. 9 refs., 3 figs.

  17. Milliscale Self-Integration of Megamolecule Biopolymers on a Drying Gas-Aqueous Liquid Crystalline Interface.

    Science.gov (United States)

    Okeyoshi, Kosuke; Okajima, Maiko K; Kaneko, Tatsuo

    2016-06-13

    A drying environment is always a proposition faced by dynamic living organisms using water, which are driven by biopolymer-based micro- and macrostructures. Here, we introduce a drying process for aqueous liquid crystalline (LC) solutions composed of biopolymer with extremely high molecular weight components such as polysaccharides, cytoskeletal proteins, and DNA. On controlling the mobility of the LC microdomain, the solutions showed milliscale self-integration starting from the unstable gas-LC interface during drying. In particular, we first identified giant rod-like microdomains (∼1 μm diameter and more than 20 μm length) of the mega-molecular polysaccharide, sacran, which is remarkably larger than other polysaccharides. These microdomains led to the formation of a single milliscale macrodomain on the interface. In addition, the dried polymer films on a solid substrate also revealed that such integration depends on the size of the microdomain. We envision that this simple drying method will be useful not only for understanding the biopolymer hierarchization at the macroscale level but also for preparation of surfaces with direction controllability, as seen in living organisms, for use in various fields such as diffusion, mechanics, and photonics.

  18. Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration

    International Nuclear Information System (INIS)

    Highlights: ► UV laser-induced superficial foaming in biopolymer films with fs, ps and ns pulses. ► Reduction of photochemical and structural modifications by ultrashort fs irradiation. ► Successful cell culture on laser-induced foam structure generated in chitosan. - Abstract: Ultraviolet laser irradiation using pulses with duration from the nanosecond to the femtosecond range was investigated aiming at the generation of a foam layer on films of the biopolymers chitosan, starch and their blend. We report on the morphological characteristics of the foams obtained upon irradiation and on the accompanying laser induced photochemistry, assessed by on line monitoring of the laser induced fluorescence. We identify the laser conditions (pulse duration) at which foaming is produced and discuss the obtained results in reference to the material properties, particularly extinction coefficient and thermal parameters. This article also reports on successful cell culture on the laser induced foam structure generated in chitosan, as an illustrative example of the possibility of broader use of laser induced biopolymer foaming structures in biology.

  19. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2015-01-01

    Full Text Available Earth buildings are still a common type of residence for one-third of the world’s population. However, these buildings are not durable or resistant against earthquakes and floods, and this amplifies their potential harm to humans. Earthen construction without soil binders (e.g., cement is known to result in poor strength and durability performance of earth buildings. Failure to use construction binders is related to the imbalance in binder prices in different countries. In particular, the price of cement in Africa, Middle East, and Southwest Asia countries is extremely high relative to the global trend of consumer goods and accounts for the limited usage of cement in those regions. Moreover, environmental concerns regarding cement usage have recently risen due to high CO2 emissions. Meanwhile, biopolymers have been introduced as an alternative binder for soil strengthening. Previous studies and feasibility attempts in this area show that the mechanical properties (i.e., compressive strength of biopolymer mixed soil blocks (i.e, both 1% xanthan gum and 1% gellan gum satisfied the international criteria for binders used in earthen structures. Economic and market analyses have demonstrated that the biopolymer binder has high potential as a self-sufficient local construction binder for earth buildings where the usage of ordinary cement is restricted.

  20. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    Science.gov (United States)

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible. PMID:27427998

  1. A differential vapor-pressure equipment for investigations of biopolymer interactions.

    Science.gov (United States)

    Andersen, Kim B; Koga, Yoshikata; Westh, Peter

    2002-01-01

    The design and performance of an equipment for the measurement of vapor pressures over liquid or solid samples is presented. The equilibrium pressure difference, DeltaP, between a sample and a reference of known vapor pressure is recorded as a function of composition and/or temperature. Through the use of high-accuracy capacitance manometers and a leak-tight system of stainless steel pipes, below-sealed valves and metal-gasket fittings, DeltaP can be measured with a resolution of about 0.5 micro bar (0.05 Pa) in some applications. This sensitivity level, along with other features of the equipment, particularly a "gas-phase titration" routine for changing the cell composition, makes it effective for the investigations of several types of biopolymer interactions. These include isothermal studies of net affinities such as the adsorption of water to proteins or membranes, the preferential interaction of biopolymers with the components of a mixed solvent, the partitioning of solutes between a membrane and the aqueous bulk and the weak, specific binding of ligands to macromolecules. Furthermore, a temperature-scanning mode allows real-time elucidation of such interactions at thermally induced conformational changes in biopolymers. Selected examples of these applications are presented and discussed. PMID:11741714

  2. Biopolymer from microbial assisted in situ hydrolysis of triglycerides and dimerization of fatty acids.

    Science.gov (United States)

    Kavitha, V; Radhakrishnan, N; Madhavacharyulu, E; Sailakshmi, G; Sekaran, G; Reddy, B S R; Rajkumar, G Suseela; Gnanamani, Arumugam

    2010-01-01

    The present study demonstrates biopolymer production by in situ bio-based dimerization of fatty acids by microorganism isolated from marine sediments. Microbial isolate grown in Zobell medium in the presence of triglycerides for the period of 24-240 h at 37 degrees C, hydrolyze the applied triglycerides and sequentially dimerized the hydrolyzed products and subsequently polymerized and transformed to a biopolymer having appreciable adhesive properties. Physical (nature, odour, stickyness and tensile strength), chemical (instrumentation) and biochemical (cell free broth) methods of analyses carried out provided the hypotheses involved in the formation of the product as well as the nature of the product formed. Results revealed, lipolytic enzymes released during initial period of growth and the biosurfactant production during later period, respectively, hydrolyze the applied triglycerides and initiate the dimerization and further accelerated when the incubation period extended. The existence and the non-existence of in situ hydrolysis of various triglycerides followed by dimerization and polymerization and the mechanism of transformation of triglycerides to biopolymer are discussed in detail.

  3. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.

    Science.gov (United States)

    Cheng, Chong Sage; Deng, Jie; Lei, Bei; He, Ai; Zhang, Xiang; Ma, Lang; Li, Shuang; Zhao, Changsheng

    2013-12-15

    Recent studies showed that graphene oxide (GO) presented high adsorption capacities to various water contaminants. However, the needed centrifugation after adsorption and the potential biological toxicity of GO restricted its applications in wastewater treatment. In this study, a facile method is provided by using biopolymers to mediate and synthesize 3D GO based gels. The obtained hybrid gels present well-defined and interconnected 3D porous network, which allows the adsorbate molecules to diffuse easily into the adsorbent. The adsorption experiments indicate that the obtained porous GO-biopolymer gels can efficiently remove cationic dyes and heavy metal ions from wastewater. Methylene blue (MB) and methyl violet (MV), two cationic dyes, are chosen as model adsorbates to investigate the adsorption capability and desorption ratio; meanwhile, the influence of contacting time, initial concentration, and pH value on the adsorption capacity of the prepared GO-biopolymer gels are also studied. The GO-biopolymer gels displayed an adsorption capacity as high as 1100 mg/g for MB dye and 1350 mg/g for MV dye, respectively. Furthermore, the adsorption kinetics and isotherms of the MB were studied in details. The experimental data of MB adsorption fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, and the results indicated that the adsorption process was controlled by the intraparticle diffusion. Moreover, the adsorption data revealed that the porous GO-biopolymer gels showed good selective adsorbability to cationic dyes and metal ions.

  4. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Brian H.; Kuritz, Tanya

    2000-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  5. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Brian H.; Kurtiz,Tanya

    1999-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  6. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Brian H.

    2002-04-30

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  7. Monitoramento tecnológico e mercadológico de biopolímeros Biopolymers' technology and market monitoring

    Directory of Open Access Journals (Sweden)

    Suzana Borschiver

    2008-09-01

    Full Text Available Este artigo aborda um estudo de monitoramento tecnológico em biopolímeros aplicados em diversas áreas, usando como fontes de informações artigos científicos e patentes. Para tanto, foram utilizados, respectivamente, o programa Scifinder Scholar, que emprega as bases de dados CAPLUS e MEDLINE, e a base de dados americana de patentes, a USPTO. Os dados foram obtidos utilizando-se como palavras-chaves "biopolymers" e "biomaterials". Foram realizadas análises "macro", "meso" e "micro" em relação às principais universidades/centros de pesquisa, países de publicação, tipos de aplicações, principais biopolímeros mencionados, principais matérias-primas utilizadas e principais métodos de produção.This paper reports a survey on the technology of biopolymers for various sector, using information extracted from scientific articles and patents. The Scifinder Scholar program based on the CAPLUS and MEDLINE databases and the USPTO databases were used as inputs, respectively. All the data were mined using biopolymers and biomaterials as keywords. The output of this research is a map of biopolymers' university/research centers, origin countries, types of biopolymers and its applications, major raw materials and production methods.

  8. Biopolymer-induced calcium phosphate scaling in membrane-based water treatment systems: Langmuir model films studies.

    Science.gov (United States)

    Dahdal, Yara N; Oren, Yoram; Schwahn, Dietmar; Pipich, Vitaliy; Herzberg, Moshe; Ying, Wang; Kasher, Roni; Rapaport, Hanna

    2016-07-01

    Biofouling and scaling on reverse osmosis (RO) or nanofiltration (NF) membranes during desalination of secondary and tertiary effluents pose an obstacle that limits the reuse of wastewater. In this study we explored the mineral scaling induced by biopolymers originated from bacterial biofilms: bovine serum albumin (BSA), fibrinogen, lysozyme and alginic acid, as well as an extracts of extracellular polymeric substances (EPS) from bio-fouled RO membranes from wastewater treatment facility. Mineralization studies were performed on Langmuir films of the biopolymers deposited at the interface of a solution simulating RO desalination of secondary-treated wastewater effluents. All studied biopolymers and EPS induced heterogeneous mineralization of mainly calcium phosphate. Using IR spectroscopy coupled with systematic quantitative analysis of the surface pressure versus molecular-area isotherms, we determined the mineralization tendencies of the biopolymers to be in the order of: fibrinogen>lysozyme>BSA>alginic acid. The biopolymers and EPS studied here were found to be accelerators of calcium-phosphate mineralization. This study demonstrates the utilization of Langmuir surface-pressure area isotherms and a model solution in quantitatively assessing the mineralization tendencies of various molecular components of EPS in context of membrane-based water treatment systems. PMID:27015648

  9. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    Science.gov (United States)

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  10. Facile route of biopolymer mediated ferrocene (FO) nanoparticles in aqueous dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Kaus, Noor Haida Mohd., E-mail: noorhaida@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia and Centre for Organized Matter Chemistry, School of Chemistry, Cantock' s Close, BS8 1TS, Bristol (United Kingdom); Collins, A. M.; Mann, S. [Centre for Organized Matter Chemistry, School of Chemistry, Cantock' s Close, BS8 1TS, Bristol (United Kingdom)

    2014-10-24

    In this paper, we present a facile method for production stable aqueous dispersion of ferrocene (FO) nanoparticles. Ferrocene compounds were employed to achieve stable nanodispersions, stabilized with three different biopolymers namely, alginate, CM-dextran and chitosan. The nanoparticles produce are spherical, less than 10 nm in mean diameter and highly stable without any sedimentation. Fourier infrared transform (FTIR) and X-ray diffraction (XRD) studies confirmed the purity of ferrocene nanoparticles there is no modifications occur during the preparation route. FTIR spectra results were consistent with the presence of absorption band of cyclopentadienyl ring (C{sub 5}H{sub 5}{sup −} ion) which assigned to ν(C-C) vibrations (1409 cm-1), δ(C-H) stretching at 1001 cm{sup −1} and π(C-H) vibrations at 812 cm{sup −1}. Furthermore, all functional group for biopolymers such as CO from carboxyl group of CM-dextran and sodium alginate appears at 1712 cm{sup −1} and 1709 cm{sup −1} respectively, indicating there are steric repulsion interactions for particles stabilization. Powder X-ray diffraction patterns of sedimented samples of the biopolymers-stabilized ferrocene (FO) showed all reflections which were indexed respectively to the (−110), (001), (−201), (−111), (200), (−211), (210), (120) and (111) according to the monoclinic phase ferrocene. This confirmed that the products obtained were of high purity of Fe and EDAX analysis also suggests that the presence of the Fe element in the colloidal dispersion.

  11. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad A.; Ullah, Aman, E-mail: amanullah@ualberta.ca

    2014-08-15

    Graphical abstract: - Highlights: • In-situ chemical modification of keratin based material was carried out. • Characterization techniques such as SEM, FTIR, XRD, and DSC were employed. • TGA data was elaborated for its complete thermal and kinetic study. • Sorption of As(III) using modified material was experimentally studied. • Thermodynamics and Isotherm study was made for elucidation of adsorption data. - Abstract: Chemical modification of chicken feathers (CF) and their subsequent role in arsenic removal from water is presented in this paper. The ground CF were chemically treated with four selective dopants such as poly (ethylene glycol) (PEG) diglycidyl ether, poly (N-isopropylacrylamide) (PNIPAM), allyl alcohol (AA) and TrisilanolCyclohexyl POSS. After modification, the solubilized keratin was regenerated by precipitation at acidic pH. The structural changes and properties of modified biopolymer were compared with untreated CF and confirmed by different characterization techniques such as SEM, FTIR, XRD, and DSC. The TGA data was used to discuss thermal decomposition and kinetic behavior of modified biopolymer exhaustively. The modified biopolymers were further investigated as biosorbents for their application in As(III) removal from water. The AA and POSS supported biosorbents executed high removal capacity for As(III) up to 11.5 × 10{sup −2}and 11.0 × 10{sup −2} mg/g from 100 ml arsenic polluted water solution respectively. Thermodynamic parameters such as ΔG{sup 0}, ΔH{sup 0}, ΔS{sup 0} were also evaluated with the finding that overall sorption process was endothermic and spontaneous in nature. Based on linear and non-linear regression analysis, Freundlich Isotherm model showed good fit for obtained sorption data apart from high linear regression values supporting Langmuir isotherm model in sorption of As(III)

  12. "Density equilibrium" method for the quantitative and rapid in situ determination of lipid, hydrocarbon, or biopolymer content in microorganisms.

    Science.gov (United States)

    Eroglu, Ela; Melis, Anastasios

    2009-04-01

    The work provides a simple method, based on a direct density equilibrium measurement, for the rapid in situ estimation of total lipid, hydrocarbon or biopolymer content in a variety of prokaryotic and eukaryotic samples. The method can be readily applied to live microalgae and photosynthetic bacteria, single-celled or colonial microorganisms, as well as cellular fractions and isolated subcellular compartments or components. In this approach, the absolute lipid, hydrocarbon, or biopolymer content of the cells can be readily calculated. This method is especially useful for tracking the oil or polymer content of strains of microalgae and other microorganisms, whose lipid, hydrocarbon or biopolymer content may change with cultivation conditions and/or time, as the case would be in microorganism lipid-induction industrial processes. The method is also useful for the direct in situ measurement of storage polymer accumulation in live cells, such as starch in microalgae and polyhydroxybutyrate, or other polyhydroxyalkanoates, in photosynthetic and non-photosynthetic bacteria. PMID:19031427

  13. Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration.

    Science.gov (United States)

    Niu, Fuge; Su, Yujie; Liu, Yuntao; Wang, Guanchao; Zhang, Yang; Yang, Yanjun

    2014-01-01

    The formation of soluble and insoluble complexes between ovalbumin (OVA) and gum arabic (GA) polysaccharide was investigated under specific conditions (pH 1.0-7.0; temperature 4-55 °C; NaCl concentration 0-60mM; total biopolymer concentration 0.05-3.0 wt%) by turbidimetric analysis. For the 2:1 OVA:GA ratio and in the absence of NaCl, soluble and insoluble complexes were observed at pH 4.61 (pHφ1) and 4.18 (pHφ2), respectively, with optimal biopolymer interactions occurring at pH 3.79 (pHopt). Under the same conditions, OVA alone gave only a weak turbidity intensity (turbidity biopolymer concentration increased until reaching a critical value (2.0%), afterwards becoming a constant value.

  14. Structurally colored biopolymer thin films for detection of dissolved metal ions in aqueous solution

    Science.gov (United States)

    Cathell, Matthew David

    Natural polymers, such as the polysaccharides alginate and chitosan, are noted sorbents of heavy metals. Their polymer backbone structures are rich in ligands that can interact with metal ions through chelation, electrostatics, ion exchange and nonspecific mechanisms. These water-soluble biopolymer materials can be processed into hydrogel thin films, creating high surface area interfaces ideal for binding and sequestering metal ions from solution. By virtue of their uniform nanoscale dimensions (with thicknesses smaller than wavelengths of visible light) polymer thin films exhibit structure-based coloration. This phenomenon, frequently observed in nature, causes the transparent and essentially colorless films to reflect light in a wide array of colors. The lamellar film structures act as one-dimensional photonic crystals, allowing selective reflection of certain wavelengths of light while minimizing other wavelengths by out-of-phase interference. The combination of metal-binding and reflective properties make alginate and chitosan thin films attractive candidates for analyte sensing. Interactions with metal ions can induce changes in film thicknesses and refractive indices, thus altering the path of light reflected through the film. Small changes in dimensional or optical properties can lead to shifts in film color that are perceivable by the unaided eye. These thin films offer the potential for optical sensing of toxic dissolved materials without the need for instrumentation, external power or scientific expertise. With the use of a spectroscopic ellipsometer and a fiber optic reflectance spectrometer, the physical and optical characteristics of biopolymer thin films have been characterized in response to 50 ppm metal ion solutions. It has been determined that metal interactions can lead to measurable changes in both film thicknesses and effective refractive indices. The intrinsic response behaviors of alginate and chitosan, as well as the responses of modified

  15. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    Science.gov (United States)

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  16. Soft Tissue Regeneration under the Effect of Wound Coating Based on Chitosan (Natural Biopolymer).

    Science.gov (United States)

    Gladkova, E V; Babushkina, I V; Norkin, I A; Mamonova, I A; Puchin'yan, D M; Konyuchenko, E A

    2016-03-01

    We developed wound coating based on natural biopolymer chitosan with additional components (ceruloplasmin, L-asparaginic acid, and glycerol). Experiments on albino male rats demonstrated its regeneratory, antioxidant, and antibacterial effects on wounds involving all layers of the skin. Due to chemical composition and buffer component, the biodegraded wound coating optimizes all phases of the wound process, accelerates by 22-28% the reparative regeneration, and leads to anatomic and functional restoration of injured sites. High absorption capacity recommends its use in the treatment of wounds with profuse exudation.

  17. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    Science.gov (United States)

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  18. Biopolymer deuteration for neutron scattering and other isotope-sensitive techniques.

    Science.gov (United States)

    Russell, Robert A; Garvey, Christopher J; Darwish, Tamim A; Foster, L John R; Holden, Peter J

    2015-01-01

    The use of microbial biosynthesis to produced deuterated recombinant proteins is a well-established practice in investigations of the relationship between molecular structure and function using neutron scattering and nuclear magnetic resonance spectroscopy. However, there have been few reports of using microbial synthetic capacity to produce labeled native biopolymers. Here, we describe methods for the production of deuterated polyhydroxyalkanoate biopolyesters in bacteria, the polysaccharide chitosan in the yeast Pichia pastoris, and cellulose in the bacterium Gluconacetobacter xylinus. The resulting molecules offer not only multiple options in creating structural contrast in polymer blends and composites in structural studies but also insight into the biosynthetic pathways themselves. PMID:26577729

  19. The Influence of Biopolym-Granulate on Performance of Fattening Cattle

    Directory of Open Access Journals (Sweden)

    Bohuslav Čermák

    2012-05-01

    Full Text Available On the two farms were conducted operational trials with application preparation Biopolym-granulate in fattening cattle. The experimental groups were injected preparation by adding the mixed ration. Bulls were weighed regularly and after the experiments were collected and analyzed samples of meat. Experimental groups were killed in 520 days of age after control over 600 days. In experimental groups were found value higher protein, lower fat value, significantly higher binding capacity of added water. Hence I better sensory value of meat of slaughtered animals, even when the net value weight was compared with the control group lower.

  20. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer

    Indian Academy of Sciences (India)

    Sangita Rajvaidya; R Bajpai; A K Bajpai

    2005-10-01

    The present paper reports the preparation of full IPNs of gelatin and polyacrylonitrile. Various compositions of gluteraldehyde crosslinked gelatin and N,N′-methylene-bis-acrylamide crosslinked PAN were characterized by SEM and DSC techniques. The IPNs were also thermally pretreated by the annealing process. The effects of annealing temperature on the microhardness of IPNs were studied using the Vickers method. SEM indicates the homogeneous morphological features for IPN. The role of gelatin, AN and crosslinker on the developed hard biopolymer has been described with the help of DSC thermograms and microhardness measurements of annealed specimens and good correlation is observed.

  1. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, H.D. [Univ. of Oxford (United Kingdom); Miller, A. [Stirling Univ., Stirling (United Kingdom)

    1994-12-31

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers.

  2. Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.

    Science.gov (United States)

    Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L

    2016-07-01

    In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. PMID:26997238

  3. High Jc in a biopolymer-mediated synthesis of YBa2Cu3O7−δ

    International Nuclear Information System (INIS)

    Templated syntheses of YBCO phases have become ever more popular, owing to their fine control over phase purity and/or crystal morphology. Biological materials have recently been successfully used as templates owing to their ease of use. Here we show that the high temperature superconducting material YBa2Cu3O7−δ can be synthesized successfully using the biopolymer xylan, leading to a greatly improved critical current density in the final product. This pronounced increase is due to the control of crystallization by the biopolymer in the early stages of the synthesis, leading eventually to well-connected, plate-like crystallites of the superconducting phase. (paper)

  4. Ricinus communis-based biopolymer and epidermal growth factor regulations on bone defect repair: A rat tibia model

    Science.gov (United States)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.

    2003-01-01

    We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.

  5. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.

    Science.gov (United States)

    Chimphango, Annie F A; Görgens, J F; van Zyl, W H

    2016-06-01

    The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment. PMID:27083357

  6. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    Science.gov (United States)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  7. Sequential production of two biopolymers-levan and poly-ε-lysine by microbial fermentation.

    Science.gov (United States)

    Shih, Ing-Lung; Wang, Tsaur-Chin; Chou, Shou-Zoo; Lee, Gen-Der

    2011-02-01

    Sequential fermentation for the production of two invaluable biopolymers, levan and poly-ε-lysine (ε-PL), has been successfully developed. It involves fermentation of Bacillus subtilis (natto) Takahashi in sucrose medium to produce levan, separation of levan product from small remaining sugar molecules by ultrafiltration and fermentation of the remnant from levan production by Streptomyces albulus to produce ε-PL. In the process, 50-60 g/L of levan was produced (100% recovery after precipitation by ethanol). The remnant from levan production with glucose adjusted to 30 g/L and with combined use of yeast extract (10 g/L), (NH(4))(2)SO(4) (2g/L) and basal salts was proven to be suitable for ε-PL production. 4.37 g/L of ε-PL accumulation (85% recovery after purification) was reached in 72 h using two-stage fermentation with control of pH. The process of using remnant (waste) from levan fermentation for the second biopolymer (ε-PL) production is unprecedented and the products obtained are environmental-friendly. PMID:21183337

  8. The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying.

    Science.gov (United States)

    Tian, Guifang; Li, Yuan; Yuan, Qipeng; Cheng, Li; Kuang, Pengqun; Tang, Pingwah

    2015-05-20

    Sulforaphene (SFE) was extracted from the radish seeds and the purity of SFE extracted by our laboratory was 95%. It is well known that SFE can prevent cancers. It is also known that SFE is unstable to heat. To overcome the problem, SFE microcapsules using natural biopolymers were prepared by spray drying. The results indicated that SFE microcapsules using hydroxypropyl-β-cyclodextrin (HP-β-CD), maltodextrin (MD) and isolated soybean protein (SPI) as wall materials could effectively improve its stability against heat, especially SFE-loaded HP-β-CD and MD microcapsules. The amount of SFE in the microcapsules was found 20% higher than that of the non-encapsulated SFE under 90 °C in 168 h. Our finding suggested that the rate of degradation of the non-encapsulated and encapsulated SFE with HP-β-CD, MD and SPI followed the first-order kinetics. The speed of the degradation of the encapsulated SFE in biopolymers increased from SFE with HP-β-CD, to SFE with MD, and to SFE-SPI. The non-encapsulated SFE degrades fastest.

  9. Production of extracellular biopolymers and identification of intracellular proteins and Rhizobium tropici.

    Science.gov (United States)

    Oliveira, José; Figueiredo, Marcia; Silva, Marcia; Malta, Marília; Vendruscolo, Claire; Almeida, Hélio

    2012-12-01

    The objective of this study was to identify species of rhizobia (from the IPA 403 and IPA 49 isolates), to assess the physico-chemical characteristics of the biopolymers produced by these rhizobia and to determine the soluble intracellular proteins that are present in these rhizobia. The polysaccharides containing acetyl and pyruvic acid groups that were produced by different strains that had been cultivated in yeast extract mannitol (YEM) medium for 132, 144, and 168 h were evaluated for yield, viscosity, and concentration. Based on the analysis of their partial 16S rDNA sequences, both isolates were identified as Rhizobium tropici. The polymers produced in liquid YEM medium were recovered, dried and weighed to determine culture yield. Soluble intracellular proteins were identified through the techniques of 2D-PAGE and mass spectrometry for cultures that were cultivated for 168 h. The largest biopolymer yield and the highest viscosity and concentration of acetyl and pyruvic acids were obtained from the IPA 403 isolate after 168 h of culture. The proteins that were identified for the CIAT 899 isolate included elongation factor TU, a chaperone; GroE/GroEs and a putative glycosyltransferase, all of which catalyze the production of polysaccharides. For the IPA 403 strain, dinitrogenase and nitrogenase iron proteins were found. In the IPA 49 strain, glyceraldehyde-3-phosphate dehydrogenase was found along with two other proteins, the beta subunit of an electron-transferring flavoprotein and a dehydrogenase.

  10. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food.

  11. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  12. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials.

    Science.gov (United States)

    Wang, Xiaojing; Zhao, Jing

    2013-04-24

    Microcapsules of the herbicide picloram (PLR) were formulated by a layer-by-layer (LbL) self-assembly method using the polyelectrolyte biopolymers of biocompatible chitosan (CS) and the UV-absorbent sodium lignosulfonate (SL) as shell materials. The herbicide PLR was recrystallized and characterized using XRD analysis. The obtained PLR-loaded microcapsules were characterized by using SEM, FTIR, CLSM, and ζ-potential measurements. The herbicide loading and encapsulation efficiency were also analyzed for the PLR-loaded microcapsules. The influence of LbL layer numbers on herbicide release and photodegradation rates was investigated in vitro. The results showed that the release rates and photodegradation rates of PLR in microcapsules decreased with increasing number of CS/SL self-assembly layers. The results demonstrated that polyelectrolyte biopolymer-based LbL multilayer microcapsules can be a promising approach for the controlled release of PLR as well as other pesticides with poor photostability or short half-release time.

  13. MECHANICAL AND THERMAL PROPERTIES OF WASTE BIO-POLYMER COMPOUND BY HOT COMPRESSION MOLDING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Khairul Zaimy A. G.

    2013-12-01

    Full Text Available The demand for bio-polymer compound (BPC has attracted attention in various applications from industrial to medical. Therefore, the mechanical and thermal stability properties of recycling industrial waste BPC are very important to investigate. The waste BPC for this study is based on a mixture of hydroxylated waste cooking oil with hardeners to produce waste bio-polymer foam (WBF. The granulate of WBF was cast into the mold until all spaces were evenly filled and compacted into a homogeneous shape and thickness at 30–45 bar for 2 hours using hot compression molding. This method of BPC fabrication results in a tensile and flexural strength of 4.89 MPa and 18.08 MPa respectively. Meanwhile, the thermal stability of laminated BPC was conducted using a thermal gravimetric analyzer (TGA, and the first degradation of the soft segment occurred at 263°C, then subsequently the second degradation occurred at 351°C and the last at 416°C.

  14. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.

    Science.gov (United States)

    Chimphango, Annie F A; Görgens, J F; van Zyl, W H

    2016-06-01

    The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment.

  15. Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal

    Directory of Open Access Journals (Sweden)

    Omar Alberto Hernández-Aguirre

    2016-01-01

    Full Text Available This work aims to present the modification of polypropylene (PP membranes using three different biopolymers, chitosan (CHI, potato starch (PS, and cellulose (CEL, in order to obtain three new materials. The modified membranes may be degraded easier than polypropylene ones and could be used as selective membranes for metal ions removal, among other applications. For this purpose, the UV energy induced graft copolymerization reaction among polypropylene membrane, acrylic acid, benzophenone (as photoinitiator, and the biopolymer (CHI, PS, or CEL was conducted. The results of FT-IR-ATR, XRD, TGA, DSC, SEM, BET, and AFM analyses and mechanical properties clearly indicate the successful modification of the membrane surface. The change of surface wettability was monitored by contact angle. The grafting reaction depends on natural polymer, reaction time, and concentration. In order to prove the potential application of the modified membranes, a preliminary study of sorption of metal ion was carried out. For this purpose, the PP-CHI membrane was chosen because of the high hydrophilicity, proportionate to -OH and NH2; these groups could act as ligands of metal ions, provoking the interaction between PP-CHI and M+ (PP-CHI-M+ and therefore the metal ion removal from water.

  16. The properties of lectins and cells surface biopolymers of non-pathogenic corynebacteria

    Directory of Open Access Journals (Sweden)

    Sashschuk E. V.

    2011-02-01

    Full Text Available Aim. To study lectin properties of non-pathogenic corynebacteria cells and preparations of their surface biopolymers (SBP, extracted by SDS. Methods. SBP were extracted from intact cells by 0.15 M solution of NaCl contains 1 % SDS. Protein content was determined using Lowry method, carbohydrates – with anthrone method. Electrophoresis was performed in SDS-PAGE according to Lemmli. Hemagglutinating activity (HAA was studied using rabbit erythrocytes. The lectin carbohydrate specificity was determined by reaction of inhibition of hemagglutination. Results. Electrophoretic set of SBP preparations contained the proteins and carbohydrates biopolymers with molecular mass of 10.0–120.0 kDa which did not possess HAA. After extraction of SBP the corynebacteria cells remained viable and have HAA higher than intact cells (64–2048 units. The hemagglutinins of the majority of corynebacteria strains after treatment of cells with SDS exhibited the highest affinity to the bovine submandibular gland mucin and N-acetylneuraminic acid. Conclusions. The examined non-pathogenic strains of corynebacteria were found to contain the lectins, associated with internal layers of a cell wall, which showed a predominant specificity to sialic acids.

  17. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite.

    Science.gov (United States)

    Sharma, Anshu; Prakash, Prem; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-09-01

    In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains.

  18. Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer.

    Science.gov (United States)

    McBride, John W; Massey, Ashley S; McCaffrey, J; McCrudden, Cian M; Coulter, Jonathan A; Dunne, Nicholas J; Robson, Tracy; McCarthy, Helen O

    2016-03-16

    Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles <100 nm and were capable of transfecting PC-3 metastatic prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine(®) 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor.

  19. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Thomas Chun-Yiu; Wong, Chung Kai [Program of Nano Science and Technology, Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xie Yong, E-mail: boyxie@ust.hk [Program of Nano Science and Technology, Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-06-01

    There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 deg. C, led to the formation of silver nanoparticles in the range of 40-80 nm in dimensions. The silver nanoparticles were formed readily within 10-15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.

  20. Bending Dynamics of Fluctuating Biopolymers Probed by Automated High-Resolution Filament Tracking

    Science.gov (United States)

    Brangwynne, Clifford P.; Koenderink, Gijsje H.; Barry, Ed; Dogic, Zvonimir; MacKintosh, Frederick C.; Weitz, David A.

    2007-01-01

    Microscope images of fluctuating biopolymers contain a wealth of information about their underlying mechanics and dynamics. However, successful extraction of this information requires precise localization of filament position and shape from thousands of noisy images. Here, we present careful measurements of the bending dynamics of filamentous (F-)actin and microtubules at thermal equilibrium with high spatial and temporal resolution using a new, simple but robust, automated image analysis algorithm with subpixel accuracy. We find that slender actin filaments have a persistence length of ∼17 μm, and display a q−4-dependent relaxation spectrum, as expected from viscous drag. Microtubules have a persistence length of several millimeters; interestingly, there is a small correlation between total microtubule length and rigidity, with shorter filaments appearing softer. However, we show that this correlation can arise, in principle, from intrinsic measurement noise that must be carefully considered. The dynamic behavior of the bending of microtubules also appears more complex than that of F-actin, reflecting their higher-order structure. These results emphasize both the power and limitations of light microscopy techniques for studying the mechanics and dynamics of biopolymers. PMID:17416612

  1. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  2. THE EXCHANGE OF CONNECTIVE TISSUE BIOPOLYMERS IN THE LIVER OF ALLOXAN DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    S. V. Lomaeva

    2013-01-01

    Full Text Available Aim. Study of the exchange of liver and blood plasma biopolymers of alloxan diabetic rats.Materials and Methods. Diabetes mellitus was modeled in rats by single subcutaneous injection of alloxan tetrahydrate (170 mg per100 gbody weight. Blood glucose, glycosylated hemoglobin were controlled and morphometric study of the pancreas was carried out for the verification of the model. A month later, concentration of glycosaminoglycans, free hydroxyproline and the level of hyaluronidase and collagenolytic activity in plasma were determined. The total concentration of collagen, glycosaminoglycans, and their fractions, the level of hyaluronidase and collagenolytic activity in rat liver homogenate were measured.Results. The level of all the parameters of interest in the liver and blood plasma increased on 30 day after alloxan injection, the accumulation of glycosaminoglycans in the liver occurred mainly due to unsulfonated fraction.Conclusion. The development of experimental diabetes in rats is accompanied by activation of both decay processes and synthesis of biopolymers studied. Accumulation of total collagen and glycosaminoglycans was observed in rats’ liver, which probably lead to the fibrosis changes in it.

  3. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension

    Science.gov (United States)

    Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung

    2012-01-01

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises. PMID:22908254

  4. On the Road to Biopolymer Aerogels—Dealing with the Solvent

    Directory of Open Access Journals (Sweden)

    Raman Subrahmanyam

    2015-12-01

    Full Text Available Aerogels are three-dimensional ultra-light porous structures whose characteristics make them exciting candidates for research, development and commercialization leading to a broad scope of applications ranging from insulation and catalysis to regenerative medicine and pharmaceuticals. Biopolymers have recently entered the aerogel foray. In order to fully realize their potential, progressive strategies dealing with production times and costs reduction must be put in place to facilitate the scale up of aerogel production from lab to commercial scale. The necessity of studying solvent/matrix interactions during solvent exchange and supercritical CO2 drying is presented in this study using calcium alginate as a model system. Four frameworks, namely (a solvent selection methodology based on solvent/polymer interaction; (b concentration gradient influence during solvent exchange; (c solvent exchange kinetics based on pseudo second order model; and (d minimum solvent concentration requirements for supercritical CO2 drying, are suggested that could help assess the role of the solvent in biopolymer aerogel production.

  5. Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks.

    Science.gov (United States)

    Lang, Nadine R; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E; Fabry, Ben

    2015-02-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a three-dimensional (3-D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3-D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3-D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes >5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3-D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in two dimensions, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3-D invasion models in cancer research.

  6. Biopolymer production using fungus Mucor racemosus Fresenius and glycerol as substrate

    Directory of Open Access Journals (Sweden)

    Thaíssa Rodrigues Araújo

    2016-01-01

    Full Text Available Abstract This study evaluated extracellular production of biopolymer using fungus Mucor racemosus Fresenius and glycerol as a carbon source. Initially employing conical flasks of 500 mL containing 100 mL of cultive medium with 0.18 ± 0.03 g.L–1 of microorganisms, the results showed that the best conditions of the variables studied were: initial concentration of glycerol 50 g.L–1, fermentation time of 96 h, inoculum cultivation time of 120 h, and aeration in two stages–the first 24 hours without aeration and 72 hours fermentation with aeration of 2 vvm and 2 g.L–1 of yeast extract. The experiments conducted in a Biostat B fermenter with a 2.0 L capacity that contained 1.0 L of medium showed production of 16.35 g.L–1 gum formed and 75% glycerol consumption. These conditions produced a biopolymer with the molecular weight and total sugar content of 4.607×106 g.mol–1 (Da and 89.5%, respectively.

  7. Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides.

    Science.gov (United States)

    Agostini de Moraes, Mariana; Cocenza, Daniela Sgarbi; da Cruz Vasconcellos, Fernando; Fraceto, Leonardo Fernandes; Beppu, Marisa Masumi

    2013-12-15

    This study investigated the adsorption behavior of the herbicides diquat, difenzoquat and clomazone on biopolymer membranes prepared with alginate and chitosan (pristine and multi-layer model) for contaminated water remediation applications. Herbicides, at concentrations ranging from 5 μM to 200 μM, were adsorbed in either pure alginate, pure chitosan or a bilayer membrane composed of chitosan/alginate. No adsorption of clomazone was observed on any of the membranes, probably due to lack of electrostatic interactions between the herbicide and the membranes. Diquat and difenzoquat were only adsorbed on the alginate and chitosan/alginate membranes, indicating that this adsorption takes place in the alginate layer. At a concentration of 50 μM, diquat adsorption reaches ca. 95% after 120 min on both the alginate and chitosan/alginate membranes. The adsorption of difenzoquat, at the same concentration, reaches ca. 62% after 120 min on pure alginate membranes and ca. 12% on chitosan/alginate bilayer membranes. The adsorption isotherms for diquat and difenzoquat were further evaluated using the isotherm models proposed by Langmuir and by Freundlich, where the latter represented the best-fit model. Results indicate that adsorption occurs via coulombic interactions between the herbicides and alginate and is strongly related to the electrostatic charge, partition coefficients and dissociation constants of the herbicides. Biopolymer based membranes present novel systems for the removal of herbicides from contaminated water sources and hold great promise in the field of environmental science and engineering.

  8. Preparation of a Novel Chitosan Based Biopolymer Dye and Application in Wood Dyeing

    Directory of Open Access Journals (Sweden)

    Xiaoqian Wang

    2016-09-01

    Full Text Available A novel chitosan-based biopolymer dye possessing antibacterial properties was synthesized by reaction of O-carboxymethyl chitosan and Acid Red GR. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR, degree of substitution (DS, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TG, X-ray diffraction (XRD, water solubility test, antibacterial property test, and dyeing performance, including dye uptake, color difference, and fastness. Results showed that the synthesized dye was combined by –NH3+ of O-carboxymethyl chitosan and the sulfonic group of Acid Red GR. According to the comprehensive analysis of XRD and water solubility, the introduction of the carboxymethyl group and acid dye molecule changed the structure of the chitosan from compact to loose, which improved the synthesized dye’s water solubility. However, the thermal stability of the synthesized dye was decreased. The antibacterial property of the poplar wood dyed with the synthesized dye was enhanced and its antibacterial rate, specifically against Staphylococcus aureus and Escherichia coli, also increased to a rate of more than 99%. However, the dye uptake of the synthesized dye was lower than that of the original dye. Despite this, though, the dyeing effect of the synthesized dye demonstrated better water-fastness, and light-fastness than the original dye. Therefore, the novel chitosan-based biopolymer dye can be a promising product for wood dyeing.

  9. Estimating the 3D pore size distribution of biopolymer networks from directionally biased data.

    Science.gov (United States)

    Lang, Nadine R; Münster, Stefan; Metzner, Claus; Krauss, Patrick; Schürmann, Sebastian; Lange, Janina; Aifantis, Katerina E; Friedrich, Oliver; Fabry, Ben

    2013-11-01

    The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is fully described by a single parameter--the characteristic pore size of the network. The bias of the pore size estimate due to the missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which represents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consistent with a total fiber length that scales linearly with concentration. PMID:24209841

  10. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  11. Environmentally Friendly Preparation of Gold and Silver Nanoparticles for Sers Applications Using Biopolymer Pectin

    Science.gov (United States)

    Balachandran, Y. L.; Panarin, A. Y.; Khodasevich, I. A.; Terekhov, S. N.; Gutleb, A. C.; Girijaa, S.

    2015-01-01

    A facile, one-step, and environmentally friendly fabrication of anisotropic gold nanostructures and size-controlled spherical silver nanoparticles (NP) using biopolymer pectin is reported. The reduction of Au and Ag ions was carried out at room temperature using an increasing concentration of pectin, which acts as the single source of reducing and stabilizing agent. The as-formed NPs were studied by UV-vis, infrared Fourier transform and surface-enhanced Raman spectroscopies, as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. A high yield of anisotropic gold nanostructures was observed at low concentrations of pectin, while its increase results in the formation of smaller sharp edged perfect triangles with a considerable number of quasi-spherically shaped gold NP. On the other hand, the size of spherical silver NP decreased as the biopolymer concentration in the solution increased. The surface-enhanced Raman scattering enhancement of different NPs was evaluated using a Cu-complex of cationic tetrakis(4-N-methylpyridyl)porphyrin as a probe molecule at 441.6 and 532 nm excitation. Great enhancement of Raman signal was obtained with a pectin-silver NP and for most of them their levels were higher than that for the routinely synthesized citrate silver NP.

  12. The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohini Sain

    2007-01-01

    Full Text Available The aim of this work was to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of hemp nanofibers, using inverse gas chromatography (IGC, and to investigate the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Bio-nanocomposite materials were prepared from poly (lactic acid (PLA and polyhydroxybutyrate (PHB as the matrix, and the cellulose nanofibers extracted from hemp fiber by chemo-mechanical treatments. Cellulose fibrils have a high density of –OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. The IGC results indicated that styrene maleic anhydride coated and ethylene-acrylic acid coated fibers improved their potential to interact with both acidic and basic resins. From transmission electron microscopy (TEM, it was shown that the nanofibers were partially dispersed in the polymer matrix. The mechanical properties of the nanocomposites were lower than those predicted by theoretical calculations for both nanofiber-reinforced biopolymers.

  13. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers

    Directory of Open Access Journals (Sweden)

    Cynthia G. Flores-Hernández

    2014-03-01

    Full Text Available The performance as reinforcement of a fibrillar protein such as feather keratin fiber over a biopolymeric matrix composed of polysaccharides was evaluated in this paper. Three different kinds of keratin reinforcement were used: short and long biofibers and rachis particles. These were added separately at 5, 10, 15 and 20 wt% to the chitosan-starch matrix and the composites were processed by a casting/solvent evaporation method. The morphological characteristics, mechanical and thermal properties of the matrix and composites were studied by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The thermal results indicated that the addition of keratin enhanced the thermal stability of the composites compared to pure matrix. This was corroborated with dynamic mechanical analysis as the results revealed that the storage modulus of the composites increased with respect to the pure matrix. The morphology, evaluated by scanning electron microscopy, indicated a uniform dispersion of keratin in the chitosan-starch matrix as a result of good compatibility between these biopolymers, also corroborated by FTIR. These results demonstrate that chicken feathers can be useful to obtain novel keratin reinforcements and develop new green composites providing better properties, than the original biopolymer matrix.

  14. Biopolymers. January 1970-July 1989 (Citations from the US Patent data base). Report for January 1970-July 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    This bibliography contains citations of selected patents concerning production methods and applications of biopolymer materials. Fermentation processes are described, and applications in oil-recovery operations and in medicine are discussed. (This updated bibliography contains 102 citations, 17 of which are new entries to the previous edition.)

  15. Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives.

    Science.gov (United States)

    Tudorache, Madalina; Gheorghe, Andreea; Negoi, Alina; Enache, Madalin; Maria, Gabriel-Mihai; Parvulescu, Vasile I

    2016-11-01

    Bifunctional catalysts designed as carbohydrate biopolymers entrapping lipase have been investigated for the biotransformation of a natural compound (α-pinene) to oxy-derivatives. Lipases assisted the epoxidation of α-pinene using H2O2 as oxidation reagent and ethyl acetate as both acetate-supplier and solvent affording α-pinene oxide as the main product. Further, the biopolymer promoted the isomerization of α-pinene oxide to campholenic aldehyde and trans-carenol. In this case, the biopolymers played double roles of the support and also active part of the bifunctional catalyst. Screening of enzymes and their entrapping in a biopolymeric matrix (e.g. Ca-alginate and κ-carrageenan) indicated the lipase extracted from Aspergillus niger as the most efficient. In addition, the presence of biopolymers enhanced the catalytic activity of the immobilized lipase (i.e. 13.39×10(3), 19.76×10(3)and 26.46×10(3) for the free lipase, lipase-carrageenan and lipase-alginate, respectively). The catalysts stability and reusability were confirmed in eight consecutively reaction runs.

  16. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers

    Science.gov (United States)

    Glycerine and levulinic acid were used alone and in combination for the fermentative synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) biopolymers. Shake-flask cultures of Pseudomonas oleovorans NRRL B-14682 containing different glycerine:levulinic acid ratios (1%, w/v total carbon ...

  17. Structural characterisation of aliphatic, non-hydrolyzable biopolymers in freshwater algae and a leaf cuticle by ruthenium tetroxide degradation

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Moerkerken, P.; Gelin, F.; Baas, M.; Leeuw, J.W. de

    1998-01-01

    Aliphatic, non-hydrolyzable biopolymers were subjected to RuO4-oxidation in order to examine the potential of this method in revealing details on their structures. The method was tested on model compounds first and found to cleave alkyl chains of aromatic moieties, double bonds and ether bonds. Oxid

  18. Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers.

    Science.gov (United States)

    Kimura, Katsuki; Tanaka, Ken; Watanabe, Yoshimasa

    2014-02-01

    Although low-pressure membranes (microfiltration (MF) or ultrafiltration (UF)) have become viable options for drinking water treatment, problems caused by membrane fouling must still be addressed. The objective of this study was to compare five different surface waters and to identify a relevant index of water quality that can be used for prediction of the fouling potential of the water. Bench-scale filtration tests were carried out with commercially available hollow-fiber MF membranes. Fairly long-term (a few days) filtrations in the constant-flow mode were carried out with automatic backwash. Membrane fouling in this study was shown to be irreversible as a result of the periodic backwash carried out throughout of the operation. Easily accessible indexes of water quality including dissolved organic carbon (DOC), UV absorbance, Ca concentration and turbidity could not explain the degree of fouling encountered in the filtration tests. Fluorescence excitation-emission matrix (EEM) could provide information on the presence of protein-like substances in water, and peaks for protein showed some correlation with the membrane fouling. Biopolymer (characterized by high molecular weights and insensitivity to UV light absorption) concentrations in the five waters determined by liquid chromatography with organic carbon detection (LC-OCD) exhibited an excellent correlation with the fouling rates. Coagulation with polyaluminum chloride could mitigate membrane fouling in all cases. The extent of fouling seen with coagulated waters was also correlated with biopolymer concentrations. The relationship between biopolymer concentrations and the fouling rates established for the raw waters could also be applied to the coagulated waters. These results suggested that the contribution of biopolymers to membrane fouling in the present study was significant, an observation that was supported by the analysis of foulants extracted at the termination of each test. Biopolymer concentrations

  19. Biopolymer Elasticity

    CERN Document Server

    Sinha, S

    2003-01-01

    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  20. Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent.

    Science.gov (United States)

    Wang, Xiuxiu; Zhang, Jian; Cheng, Ru; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2016-03-14

    Reductively degradable biopolymers have emerged as a unique class of smart biomedical materials. Here, a functional coupling agent, cystamine diisocyanate (CDI), was designed to offer a facile access to reductively degradable biopolymers via polycondensation with various diols. CDI was readily obtained with a decent yield of 46% by reacting cystamine dihydrochloride with triphosgene. The polycondensation of oligo(ethylene glycol) diol (Mn = 0.4 or 1.5 kg/mol) or oligo(ε-caprolactone) diol (Mn = 0.53 kg/mol) with CDI in N,N-dimethylformamide at 60 °C using dibutyltin dilaurate as a catalyst afforded reductively degradable poly(ethylene glycol) (SSPEG, Mn = 6.2-76.8 kg/mol) or poly(ε-caprolactone) (SSPCL, Mn = 6.8-16.3 kg/mol), in which molecular weights were well controlled by diol/CDI molar ratios. Moreover, PEG-SSPCL-PEG triblock copolymers could be readily prepared by reacting dihydroxyl-terminated SSPCL with PEG-isocyanate derivative. PEG-SSPCL-PEG with an Mn of 5.0-16.3-5.0 kg/mol formed small-sized micelles with an average diameter of about 85 nm in PB buffer. The in vitro release studies using doxorubicin (DOX) as a model drug showed that, in sharp contrast to reduction-insensitive PEG-PCL(HDI)-PEG controls, drug release from PEG-SSPCL-PEG micelles was fast and nearly complete in 24 h under a reductive condition containing 10 mM glutathione. The confocal microscopy experiments in drug-resistant MCF-7 cells (MCF-7/ADR) displayed efficient cytoplasmic DOX release from PEG-SSPCL-PEG micelles. MTT assays revealed that DOX-loaded PEG-SSPCL-PEG micelles were much more potent against MCF-7/ADR cells than reduction-insensitive PEG-PCL(HDI)-PEG controls (IC50: 6.3 vs 55.4 μg/mL). It should further be noted that blank PEG-SSPCL-PEG micelles were noncytotoxic up to a tested concentration of 1 mg/mL. Hence, cystamine diisocyanate appears to be an innovative coupling agent that facilitates versatile synthesis of biocompatible and reductively degradable biopolymers.

  1. Layer-by-layer assembled carbon nanotube-acetylcholinesterase/biopolymer renewable interfaces: SPR and electrochemical characterization.

    Science.gov (United States)

    Zhang, Yuanyuan; Arugula, Mary A; Kirsch, Jeffrey S; Yang, Xiaoyun; Olsen, Eric; Simonian, Aleksandr L

    2015-02-01

    Developing simple, reliable, and cost-effective methods of renewing an inhibited biocatalyst (e.g., enzymatic interfaces) on biosensors is needed to advance multiuse, reusable sensor applications. We report a method for the renewal of layer-by-layer (LbL) self-assembled inhibition-based enzymatic interfaces in multiwalled carbon nanotube (MWCNT) armored acetylcholinesterase (AChE) biosensors. The self-assembly process of MWCNT dispersed enzymes/biopolymers was investigated using surface plasmon resonance (SPR). The LbL fabrication consisted of alternating cushion layers of positively charged CNT-polyethylenimine (CNT-PEI) and negatively charged CNT-deoxyribonucleic acid (CNT-DNA) and a functional interface consisting of alternating layers of CNT-PEI and negatively charged CNT-acetylcholine esterase (CNT-AChE, pH 7.4). The observed SPR response signal increased while assembling the different layers, indicating the buildup of multiple layers on the Au surface. A partial desorption of the top enzymatic layer in the LbL structure was observed with a desorption strategy employing alkaline treatment. This indicates that the strong interaction of CNT-biopolymer conjugates with the Au surface was a result of both electrostatic interactions between biopolymers and the surface binding energy from CNTs: the closer the layers are to the Au surface, the stronger the interactions. In contrast, a similar LbL assembly of soluble enzyme/polyelectrolytes resulted in stronger desorption on the surface after the alkaline treatment; this led to the investigation of AChE layer removal, permanently inhibited after pesticide exposure on glassy carbon (GC) electrodes, while keeping the cushion layers intact. The desorption strategy permitted the SPR and electrochemical electrode surfaces to be regenerated multiple times by the subsequent self-assembly of fresh PEI/AChE layers. Flow-mode electrochemical amperometric analysis demonstrated good stability toward the determination of

  2. Simple method to measure and analyze the fluctuations of a small particle in biopolymer solutions

    Science.gov (United States)

    Kuroda, Masafumi; Murayama, Yoshihiro

    2015-12-01

    We developed a simple method to investigate the motion of a small particle in biopolymer solutions. Using optical tweezers with low stiffness, a trapped probe particle fluctuates widely for a long time along the light axis, which reflects the rheological properties of the surrounding environment. We present a convenient technique for three-dimensional position tracking and the analysis focused on the distribution of particle positions and its variance in a given time interval. It allows us to obtain useful information about the dynamics of a small particle in a wide range from a free diffusive motion to a constrained motion with statistical significance. We applied this method to investigate the dynamics in collagen and DNA solutions; it was found that a collagen solution behaves as a simple viscous liquid and a DNA solution has apparent elasticity due to the slow relaxation of the configuration of molecules.

  3. Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution.

    Science.gov (United States)

    Liimatainen, Henrikki; Sirviö, Juho; Sundman, Ola; Visanko, Miikka; Hormi, Osmo; Niinimäki, Jouko

    2011-10-01

    The flocculation behavior of cationic, quaternary ammonium groups containing cellulosic biopolymers, CDACs, synthesized by cationizing dialdehyde cellulose in mild aqueous solution was studied in a kaolin suspension. In particular, the role of CDAC dosage and solution pH, NaCl concentration, and temperature were clarified. In addition, the initial apparent charge densities (CDs), particle sizes, ζ-potential, and stability of CDs were determined. CDACs possessed a high flocculation activity in neutral and acidic solutions, but a significant decrease was observed in alkaline solutions (pH >9). This was also seen as a decline in the apparent CD and particle size of the CDACs in alkaline conditions. The measurements also indicated that the apparent CD decreased to a constant level of 3 mmol/g in aqueous solutions. However, no notable decrease in flocculation performance was obtained after several days of storage. Moreover, the variation of NaCl concentration and temperature did not affect the flocculation activity. PMID:21862324

  4. Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation-Part 1: Alginate

    International Nuclear Information System (INIS)

    The understanding of how macromocules act in precipitation of inorganic phases is the key knowledge that is needed to establish the foundation to mimic nature and produce materials with high mechanical modulus besides outstanding optical and thermal properties. This study investigated how addition of small amounts of alginate (7-70 ppm), that presents many carboxylic groups, affects phase distribution and morphology of calcium phosphates, obtained through precipitation and further submitted to calcination and sintering. The results lead to the conclusion that alginate action is dynamic, where alginate molecules act as templates to nucleation, and most of the biopolymer remains in solution even when all calcium phosphate has precipitated. However, despite the effect on phase composition being mainly related to the system's kinetics, alginate does present thermodynamic interaction with the precipitates. It is probable that it acts by reducing the free energy of nucleation, as in heterogeneous nucleation processes.

  5. Production of novel biopolymers in plants: recent technological advances and future prospects.

    Science.gov (United States)

    Snell, Kristi D; Singh, Vijay; Brumbley, Stevens M

    2015-04-01

    The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants.

  6. Structural and multi-scale rheophysical investigation of diphasic magneto-sensitive materials based on biopolymers.

    Science.gov (United States)

    Roger, Stéphane; Sang, Yan Yip Cheung; Bee, Agnès; Perzynski, Régine; Di Meglio, Jean Marc; Ponton, Alain

    2015-08-01

    We present a structural and a multi-scale rheophysical investigation of magneto-sensitive materials based on biopolymers, namely aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles, functionalized with adsorbed negative citrate ions. The large alginate ionic strength impacts the structure and the rheology of these nanocomposites in zero magnetic field. In given physico-chemical conditions, the system is fluid and homogeneous on macroscopic scales while it is diphasic on microscopic ones, containing micro-droplets coming from the demixion of the system. These micro-droplets are liquid and deformable under magnetic field. Their under-field elongation and their zero-field relaxation are directly observed by optical microscopy to determine their interfacial tension, their magnetic susceptibility and their internal viscosity. A structural analysis of the solutions of alginate chains and of the phase-separated mixtures of alginate and nanoparticles by Small Angle Scattering completes the local description of the system. PMID:26264396

  7. Structural and multi-scale rheophysical investigation of diphasic magneto-sensitive materials based on biopolymers.

    Science.gov (United States)

    Roger, Stéphane; Sang, Yan Yip Cheung; Bee, Agnès; Perzynski, Régine; Di Meglio, Jean Marc; Ponton, Alain

    2015-08-01

    We present a structural and a multi-scale rheophysical investigation of magneto-sensitive materials based on biopolymers, namely aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles, functionalized with adsorbed negative citrate ions. The large alginate ionic strength impacts the structure and the rheology of these nanocomposites in zero magnetic field. In given physico-chemical conditions, the system is fluid and homogeneous on macroscopic scales while it is diphasic on microscopic ones, containing micro-droplets coming from the demixion of the system. These micro-droplets are liquid and deformable under magnetic field. Their under-field elongation and their zero-field relaxation are directly observed by optical microscopy to determine their interfacial tension, their magnetic susceptibility and their internal viscosity. A structural analysis of the solutions of alginate chains and of the phase-separated mixtures of alginate and nanoparticles by Small Angle Scattering completes the local description of the system.

  8. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids.

    Science.gov (United States)

    Janmey, Paul A; Slochower, David R; Wang, Yu-Hsiu; Wen, Qi; Cēbers, Andrejs

    2014-03-14

    Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-mediated effects on four structurally unrelated biopolymers of similar charge density: F-actin, vimentin, Pf1 virus, and DNA, and explores the possible biological and pathophysiological consequences of the polyelectrolyte properties of biological filaments.

  9. Cationic inulin: a plant based natural biopolymer for algal biomass harvesting.

    Science.gov (United States)

    Rahul, Rahul; Kumar, Sunil; Jha, Usha; Sen, Gautam

    2015-01-01

    The synthesis of cationic inulin (CI) and its application in algal biomass harvesting have been investigated. (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) was used as the etherifying reagent to introduce quaternary amine groups onto the backbone of the biopolymer. The resulting cationized adduct was characterized by various physicochemical techniques such as intrinsic viscosity measurement, elemental analysis (C, H, N and O), FTIR spectroscopy and scanning electron microscopy (SEM) studies. The algal flocculation efficacy of the synthesized product was studied through standard jar test procedure. High removal efficiency of 88.61% within 15 min was achieved at the optimal flocculant dosage (60 mg/L), for fresh water green algae, viz., Botryococcus sp.

  10. Properties of films obtained from biopolymers of different origins for skin lesions therapy

    Directory of Open Access Journals (Sweden)

    Márcia Zilioli Bellini

    2015-04-01

    Full Text Available In this study, the effects of the origin of xanthan used, in combination with chitosan, to prepare films for the treatment of skin lesions were evaluated. The characteristics of the films obtained with xanthan commercially available for the food industry sector and xanthan originated from a fermentation process conducted in a pilot plant were compared. Results showed that the source did not strongly interfere in many of the properties of the films, such as the mechanical properties, cytotoxicity to L929 cells, absorption of simulated body fluid and culture medium, stability in water and saline solution. Hence, even though the properties of biopolymers of different sources might vary, the films prepared with two distinct types of xanthan gum could be considered as potentially safe and similar in terms of relevant characteristics considering the aimed application.

  11. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension

    CERN Document Server

    Kim, Won Kyu; Sung, Wokyung

    2012-01-01

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, o...

  12. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng

    2009-01-01

    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  13. Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation-Part 1: Alginate

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira de Lima, Daniel; Gomes Aimoli, Cassiano [Faculdade de Engenharia Quimica, Unicamp, CP6066 CEP13083-970, Campinas, SP (Brazil); Beppu, Marisa Masumi, E-mail: beppu@feq.unicamp.br [Faculdade de Engenharia Quimica, Unicamp, CP6066 CEP13083-970, Campinas, SP (Brazil)

    2009-05-05

    The understanding of how macromocules act in precipitation of inorganic phases is the key knowledge that is needed to establish the foundation to mimic nature and produce materials with high mechanical modulus besides outstanding optical and thermal properties. This study investigated how addition of small amounts of alginate (7-70 ppm), that presents many carboxylic groups, affects phase distribution and morphology of calcium phosphates, obtained through precipitation and further submitted to calcination and sintering. The results lead to the conclusion that alginate action is dynamic, where alginate molecules act as templates to nucleation, and most of the biopolymer remains in solution even when all calcium phosphate has precipitated. However, despite the effect on phase composition being mainly related to the system's kinetics, alginate does present thermodynamic interaction with the precipitates. It is probable that it acts by reducing the free energy of nucleation, as in heterogeneous nucleation processes.

  14. GeneBee-net: Internet-based server for analyzing biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, L.I.; Ivanov, V.V.; Nikolaev, V.K. [Small Scientific Manufacturing Enterprise, Moscow (Russian Federation)] [and others

    1995-08-01

    This work describes a network server for searching databanks of biopolymer structures and performing other biocomputing procedures; it is available via direct Internet connection. Basic server procedures are dedicated to homology (similarity) search of sequence and 3D structure of proteins. The homologies found could be used to build multiple alignments, predict protein and RNA secondary structure, and construct phylogenetic trees. In addition to traditional methods of sequence similarity search, the authors propose {open_quotes}non-matrix{close_quotes} (correlational) search. An analogous approach is used to identify regions of similar tertiary structure of proteins. Algorithm concepts and usage examples are presented for new methods. Service logic is based upon interaction of a client program and server procedures. The client program allows the compilation of queries and the processing of results of an analysis.

  15. Hydrodynamic correlations in the translocation of biopolymer through a nanopore: theory and multiscale simulations

    CERN Document Server

    Fyta, Maria; Succi, Sauro; Kaxiras, Efthimios

    2008-01-01

    We investigate the process of biopolymer translocation through a narrow pore using a multiscale approach which explicitly accounts for the hydrodynamic interactions of the molecule with the surrounding solvent. The simulations confirm that the coupling of the correlated molecular motion to hydrodynamics results in significant acceleration of the translocation process. Based on these results, we construct a phenomenological model which incorporates the statistical and dynamical features of the translocation process and predicts a power law dependence of the translocation time on the polymer length with an exponent $\\alpha$ $\\approx 1.2$. The actual value of the exponent from the simulations is $\\alpha = 1.28 \\pm 0.01$, which is in excellent agreement with experimental measurements of DNA translocation through a nanopore, and is not sensitive to the choice of parameters in the simulation. The mechanism behind the emergence of such a robust exponent is related to the interplay between the longitudinal and transv...

  16. Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers

    Science.gov (United States)

    Yajima, Yuya; Yamada, Masumi; Yamada, Emi; Iwase, Masaki; Seki, Minoru

    2014-01-01

    We present facile strategies for the fabrication of two types of microfluidic devices made of hydrogels using the natural biopolymers, alginate, and gelatin as substrates. The processes presented include the molding-based preparation of hydrogel plates and their chemical bonding. To prepare calcium-alginate hydrogel microdevices, we suppressed the volume shrinkage of the alginate solution during gelation using propylene glycol alginate in the precursor solution along with sodium alginate. In addition, a chemical bonding method was developed using a polyelectrolyte membrane of poly-L-lysine as the electrostatic glue. To prepare gelatin-based microdevices, we used microbial transglutaminase to bond hydrogel plates chemically and to cross-link and stabilize the hydrogel matrix. As an application, mammalian cells (fibroblasts and vascular endothelial cells) were cultivated on the microchannel surface to form three-dimensional capillary-embedding tissue models for biological research and tissue engineering. PMID:24803964

  17. Biopolymers for Hard and Soft Engineered Tissues: Application in Odontoiatric and Plastic Surgery Field

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    2011-02-01

    Full Text Available The goal of modern dentistry and plastic surgery is to restore the patient to normal function, health and aesthetics, regardless of the disease or injury to the stomatognathic and cutaneous system respectively. In recent years tissue engineering and regenerative medicine have yielded many novel tissue replacements and implementation strategies. Scientific advances in biomaterials, stem cell isolation, growth and differentiation factors and biomimetic environments have created unique opportunities to fabricate tissues in the laboratory. Repairing of bone and skin is likely to become of clinical interest when three dimensional tissue reconstructive procedures and the appropriate supporting biomimetic materials are correctly assembled. In the present review, we provide an overview of the most promising biopolymers that may find clinical application in dento-maxillo-facial and plastic surgery.

  18. Characterization of carboxy methylcellulose doped with DTAB as new types of biopolymer electrolytes

    Indian Academy of Sciences (India)

    A S Samsudin; M I N Isa

    2012-12-01

    The investigation of new solid biopolymer electrolyte (BEs) system based on carboxy methylcellulose (CMC) is creating opportunity for new types of electrochemical devices, which may themselves, in turn, revolutionize many industrial areas. Biodegradable carboxy methylcellulose (CMC) doped with dodecyltrimethyl ammonium bromide (DTAB) as BEs were prepared via solution-casting method. Upon addition of 35 wt. % of DTAB, highest ionic conductivity of 7.72 × 10-4 Scm-1 was achieved due to its higher amorphous region compared to other samples prepared. This result had been further proven in FTIR study. Temperature dependence relationship obeys the Arrhenius rule from which the activation energy, a, for ionic conductivity and activation energy for relaxation process, , were evaluated. The divergent values between a for ionic conductivity and relaxation process shows that the ions hop by jumping over a potential barrier.

  19. Various corona treated biopolymer substrates for the deposition of polyelectrolyte multilayers

    Science.gov (United States)

    Yovcheva, T. A.; Marudova, M. G.; Viraneva, A. P.; Sotirov, S. I.; Rusev, S. H.; Bodurov, I. P.; Pilicheva, B. A.; Uzunova, Y. I.; Exner, G. K.; Grancharova, Ts. Ts.; Vlaeva, I. Y.

    2016-03-01

    In the present paper the effect of the substrate type and the corona polarity were investigated. Various biopolymer substrates (poly lactic acid (PLA), PLA with chitosan and lyophilized PLA) were prepared. These substrates were charged in a positive and in a negative corona and time dependences of the normalized surface potential were studied. After that multilayer films were formed by alternative dipping the substrates into chitosan and xanthan polyelectrolyte solutions. For this purpose 0.1% chitosan solution and 0.05% xanthan solution in acetate buffers with pH 4.5 and ionic strength 0.1 mol/l were used. The films' morphology was investigated by FTIR and SEM methods. A comparative analysis of the experimental results was presented and the most appropriate substrate type for the irreversible binding of the chitosan/ xanthan polyelectrolytes was determined.

  20. Effect of Some Biopolymers on the Rheological Behavior of Surimi Gel

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-05-01

    Full Text Available The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC, on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.

  1. Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks

    CERN Document Server

    Jiao, Yang

    2012-01-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient $D_e$ and mean survival time $\\tau$) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function $P(\\delta)$ for the networks and present a variety of analytical estimates of the effective diffusion coefficient $D_e$ for finite-sized diffusing particles. The Hashin-Strikman upper bound on the effective diffusion coefficient $D_e$ and the pore-size lower bound on the mean survival time $\\tau$ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to th...

  2. Production of novel biopolymers in plants: recent technological advances and future prospects.

    Science.gov (United States)

    Snell, Kristi D; Singh, Vijay; Brumbley, Stevens M

    2015-04-01

    The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants. PMID:25437636

  3. Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater.

    Science.gov (United States)

    Troncoso, O P; Torres, F G; Grande, C J

    2008-07-01

    Byssus fibres are tough biopolymer fibres produced by mussels to attach themselves to rocks. In this communication, we present the mechanical properties of the byssus from the South American mussel Aulacomya ater which have not been previously reported in the literature. The mechanical properties of the whole threads were assessed by uniaxial tensile tests of dry and hydrated specimens. Elastoplastic and elastomeric stress-strain curves were found for byssal threads from A. ater in the dry and hydrated state, respectively. The results obtained from mechanical tests were modelled using linear, power-law-type and Mooney-Rivlin relationships. These methods for dealing with tensile measurements of mussel byssus have the potential to be used with other stretchy biomaterials. PMID:18321800

  4. Effect of Nanopore Length on the Translocation Process of a Biopolymer: Numerical Study

    Directory of Open Access Journals (Sweden)

    Yong Kweon Suh

    2013-09-01

    Full Text Available In this study, we simulate the electrophoretic motion of a bio-polymer through a synthetic nanopore in the presence of an external bias voltage by considering the hydrodynamic interactions between the polymer and the fluid explicitly. The motion of the polymer is simulated by 3D Langevin dynamics technique by modeling the polymer as a worm-like-chain, while the hydrodynamic interactions are incorporated by the lattice Boltzmann equation. We report the simulation results for three different lengths of the nanopore. The translocation time increases with the pore length even though the electrophoretic force on the polymer is the same irrespective of the pore length. This is attributed to the fact that the translocation velocity of each bead inside the nanopore decreases with the pore length due to the increased fluid resistance force caused by the increase in the straightened portion of the polymer. We confirmed this using a theoretical formula.

  5. Influence of Biopolym Granulat effects on reductionof ammonia concentration in stables of intensive farm animals breeding

    Directory of Open Access Journals (Sweden)

    Bohuslav Čermák

    2014-11-01

    Full Text Available The living environment distress is connected currently not only with industrial production but also agriculture is biggest producer of toxic gas – ammonia (NH3 .Emissions of that gas originate mainly in the farm animals breeding and generate within storage and handling with farmyard manure, slurry, poultry excrements and litter. Agriculture influences considerably landscape. has impact on basic effect on soil, water and air. In assessing experiment the preparation Biopolym Granulat rumen metabolism and N-balance was found positive effects in terms of increased ammonia nitrogen, the number of ciliates and the reduction of N-compounds in feces. Confirmed the impact on the ammonia content in well-ventilated dairy stable. The economic evaluation depends on the exercise price of milk.

  6. Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2016-05-01

    Full Text Available In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs as fillers and an antibiotic, i.e., ciprofloxacin (CFX, as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid (PLA and a copolyester (BioFlex®. The prepared materials were characterized by scanning electron microscopy (SEM, and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the tuning of the release of CFX without hindering the antimicrobial activity of the obtained materials.

  7. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    Science.gov (United States)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  8. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Salil, E-mail: sdesai@ncat.ed [Department of Industrial and Systems Engineering, North Carolina A and T State University, NC 27411 (United States); Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States); Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC 27157 (United States); Perkins, Jessica [Department of Industrial and Systems Engineering, North Carolina A and T State University, NC 27411 (United States); Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States); Harrison, Benjamin S. [Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC 27157 (United States); Sankar, Jag [Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States)

    2010-04-15

    Drug delivery and dosage concentrations are considered as major focal points in conventional as well as battlefield emergency medicine. The concept of localizing drug delivery via microcapsules is an evolving field to confine the adverse side effects of high concentration drug doses. This paper focuses on understanding release kinetics through biopolymer microcapsules for time-dependent drug release. Calcium alginate microcapsules were manufactured using a direct-write inkjet technique. Rhodamine 6G was used as the release agent to observe the release kinetics from calcium alginate beads in distilled water. A design of experiments was constructed to compare the effect of the microcapsule diameter and different concentrations of calcium chloride (M) and sodium alginate (%, w/v) solutions on the release kinetics profiles of the microcapsules. This research gives insight to identify favorable sizes of microcapsules and concentrations of sodium alginate and calcium chloride solutions for controlled release behavior of drug delivery microcapsules.

  9. Chemical characterization of Xanthan biopolymers synthesized by Xanthomonas campestris pv pruni strains

    International Nuclear Information System (INIS)

    In this work we describe the characterisation of Xanthan biopolymers synthesized by two Xanthomonas campestris pv pruni strains, in aerobic fermentation. By chromatography on TLC we could notice the presence of Mannose monomer in higher proportion in the 82 strain with relation to the another ones. The viscosity results showed the temperature dependence. The 06 and 82 strains had their viscosity increased whereas for the 87 strain we could observe a reduction with temperature increasing. The 13C NMR spectrum of 87 strain showed the characteristic signals at approximately 92.8, 70.4 and 61.4 ppm, attributed to C1, C4 and C6 from glucose monomer, with higher intensity. (author)

  10. Xanthan gum and Scleroglucan - how both differ at elevated temperatures. Industrial biopolymers for oilwell drilling

    Energy Technology Data Exchange (ETDEWEB)

    Lange, P.; Keilhofer, G. [Degussa Construction Polymers GmbH, Trostberg (Germany)

    2004-12-01

    Industrial biopolymers produced by microorganisms have become very popular in the oilfield over the last years. Especially Xanthan Gum and Scleroglucan are used extensively as viscosifiers for various drilling fluid applications due to its unique rheological properties. Scleroglucan is known to be more temperature stable than Xanthan Gum. It is distinguished by a better stability against molecular decomposition. Moreover, Scleroglucan offers a better thickening performance at elevated temperatures. This latter aspect is often neglected when temperature stability is discussed. Although the viscosity-behaviour at increased temperature is of decisive importance with regard to downhole conditions. Rheology measurements indicate that Scleroglucan becomes superior to Xanthan Gum even at moderate temperatures of 60 to 80 C (140 to 175 F). At these temperatures and above, Xanthan Gum fluid viscosity drops significantly. Whereas Scleroglucan shows a flat and stable performance profile. This advantage of Scleroglucan first became obvious from a solids settling experiment at 80 C (175 F). It was only the Scleroglucan solution that retained the sized sand particles in suspension. While in the Xanthan Gum solution the solids settled down completely. Surprisingly, from the oilfield-standard FANN 35 SA viscometer this result was not evident. The instrument does not reach the ultra-low-shear range which is most relevant for particle settling. Advanced special instruments are available to cover this. However, it turned out, that also a common Brookfield HAT viscometer is very well suited for this purpose. Equipped with a heating cup and rotating at its lowest speed of 0.5 rpm, the instrument provides a simple and reliable approach to trace suspension capacity with increasing temperature. For example, with 2 ppb of Scleroglucan in a CaCl{sub 2} brine the biopolymer provides a stable Brookfield viscosity of about 20.000 mPas. Whereas with 2 ppb Xanthan Gum it drops down to 5.200 m

  11. Use of a gel biopolymer for the treatment of eviscerated eyes: experimental model in rabbits

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Cordeiro-Barbosa

    2012-08-01

    Full Text Available PURPOSE: To evaluate histologically the integration process of cellulose gel produced by Zoogloea sp when implanted into rabbits' eviscerated eyes. METHODS: This experimental study employed 36 eyes of 18 rabbits subjected to evisceration of their right eyes. The sclerocorneal bag was sutured and filled with biopolymer from sugar cane in the gel state. All animals were clinically examined by biomicroscopy until the day of their sacrifice which occurred on the 7th, 30th, 60th, 90th, 120th, or 240th day. The eyeballs obtained, including the left eyes considered controls were sent for histopathological study by optical macroscopy and microscopy. Tissue staining techniques used included hematoxylin-eosin, Masson trichrome (with aniline, Gomori trichrome, Van Gienson, Picrosirius red, and periodic acid-Schiff (PAS. RESULTS: No clinical signs of infection, allergy, toxicity, or extrusion were observed throughout the experiment. The corneas were relatively preserved. Macroscopic examination revealed a decrease of ~ 8% in the volume of the bulbs implanted with the biopolymer. After cutting, the sclerocorneal bag was solid, compact, elastic, and resistant to traction, with a smooth and whitish surface, and showed no signs of necrosis or liquefaction. The episcleral tissues were somewhat hypertrophied. The histological preparations studied in different colors revealed an initial lymphoplasmacytic infiltration, replaced by a fibroblastic response and proliferation of histiocytes, along with formation of giant cells. Few polymorphonuclearneutrophils and eosinophils were also found. Neovascularization and collagen deposition were present in all animals starting from day 30; although on the 240th day of the experiment the chronic inflammatory response, neovascularization and collagen deposition had not yet reached the center of the implant. CONCLUSION: In this model, the cellulose gel produced by Zoogloea sp proved to be biocompatible and integrated into the

  12. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.

    Science.gov (United States)

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2016-10-01

    Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated

  13. Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes

    Science.gov (United States)

    Wu, Bi-cheng; McClements, David Julian

    2015-11-01

    Biopolymer hydrogel particles formed by electrostatic complexation of proteins and polysaccharides have various applications within the food and other industries, including as delivery systems for bioactive compounds, as texture modifiers, and as fat replacers. The functional attributes of these electrostatic complexes are strongly influenced by their morphology, which is determined by the molecular interactions between the biopolymer molecules. In this study, electrostatic complexes were formed using an amphoteric protein (gelatin) and an anionic polysaccharide (pectin). Gelatin undergoes a helix-to-coil transition when heated above a critical temperature, which impacts its molecular interactions and hydrogel formation. The aim of this research was to study the influence of thermal annealing on the properties of hydrogel particles formed by electrostatic complexation of gelatin and pectin. Hydrogel particles were fabricated by mixing 0.5 wt% gelatin and 0.01 wt% pectin at pH 10 (where both were negatively charged) at various temperatures, followed by acidification to pH 5 (where they have opposite charges) with controlled acidification and stirring. The gelation ({{T}\\text{g}} ) and melting temperature ({{T}\\text{m}} ) of the electrostatic complexes were measuring using a small amplitude oscillation test: {{T}\\text{g}}=26.3 °C and {{T}\\text{m}}=32.3 °C. Three annealing temperatures (5, 30 and 50 °C) corresponding to different regimes (T{{T}\\text{m}} ) were selected to control the configuration of the gelatin chain. The effects of formation temperature, annealing temperature, and incubation time on the morphology of the hydrogel particles were characterized by turbidity, static light scattering, and microscopy. The results of this study will facilitate the rational design of hydrogel particles with specific particle dimensions and morphologies, which has important implications for tailoring their functionality for various applications.

  14. An optimized methodology to analyze biopolymer capsules by environmental scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Conforto, Egle, E-mail: egle.conforto@univ-lr.fr [LaSIE UMR 7356 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France); Joguet, Nicolas [Equipe Approches Moléculaires Environnement-Santé, LIENSs, UMR 7266 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France); Buisson, Pierre [INNOV' IA, 4 rue Samuel Champlain, Z.I. Chef de Baie, 17000 La Rochelle (France); Vendeville, Jean-Eudes; Chaigneau, Carine [IDCAPS, filiale R and D INNOV' IA, 4 rue Samuel Champlain, Z.I. Chef de Baie, 17000 La Rochelle (France); Maugard, Thierry [Equipe Approches Moléculaires Environnement-Santé, LIENSs, UMR 7266 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France)

    2015-02-01

    The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc.… This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. - Highlights: • We optimized a methodology using ESEM to analyze biopolymer capsules. • This methodology allows analyzing original surface samples without any preparation. • No preparation artefact are introduced which would mask important surface details. • Morphological details and chemical contrast from the original surface are preserved. • Capsule shape, volume, surface roughness and coating quality were reliably evaluated.

  15. Probing the electrochemical properties of biopolymer modified EMD nanoflakes through electrodeposition for high performance alkaline batteries.

    Science.gov (United States)

    Biswal, Avijit; Minakshi, Manickam; Tripathy, Bankim Chandra

    2016-04-01

    In the present work, a novel biopolymer approach has been made to electrodeposit manganese dioxide from manganese sulphate in a sulphuric acid bath containing chitosan in the absence and presence of glutaraldehyde as a cross-linking agent. Galvanostatically synthesised electrolytic manganese dioxide (EMD) nanoflakes were used as electrode materials and their electrochemical properties with the influence of biopolymer chitosan were systematically characterized. The structural determination, surface morphology and porosity of nanostructured EMD were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and nitrogen adsorption-desorption techniques. The results obtained were compared with that of blank EMD (polymer free). The results indicated that the EMD having chitosan cross-linked with glutaraldehyde possesses a reduced particle size and more porous structure than the blank and EMDs synthesized in the presence of chitosan but without glutaraldehyde. The results revealed that chitosan was unable to play any significant role on its own but chitosan in the presence of glutaraldehyde forms a cross-linking structure, which in turn influences the nucleation and growth of the EMDs during electrodeposition. EMDs obtained in the presence of chitosan (1 g dm(-3)) and glutaraldehyde (1% glutaraldehyde) exhibited a reversible and better discharge capacity upon cycling than the blank which showed its typical capacity fading behaviour with cycling. In addition, EMD synthesized in the presence of 1 g dm(-3) chitosan and 2% glutaraldehyde exhibited a superior electrochemical performance than the blank and lower amounts (1%; 1.5%) of glutaraldehyde, showing a stable discharge capacity of 60 mA h g(-1) recorded up to 40 cycles in alkaline KOH electrolyte for a Zn-MnO2 system. Our results demonstrate the potential of using polymer modified EMDs as a new generation of alkaline battery materials. The XPS data show that

  16. Insoluble, nonhydrolyzable highly aliphatic biopolymers from algal cell walls and vascular plant cuticles and barks as sources of N-alkanes in crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Tegelaar, E.W.; De Leeuw, J.E.; Horsfield, B.

    1989-03-01

    Recently discovered insoluble, nonhydrolyzable highly aliphatic biopolymers occurring in cell walls of several extant algae and in cuticles and barks of vascular plants are selectively preserved during diagenesis and represent as such, or in a slightly altered form, a considerable part of kerogens. Thermal simulation experiments performed with these isolated biopolymers of extant organisms yield series of n-alkanes with carbon number distribution patterns very similar to those of n-alkanes in natural crude oils.

  17. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-09-01

    Full Text Available Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes, therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol, B (isopropanol and acetone, C (saturated barium hydroxide, and D (Fehling solution] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05 improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.

  18. A facile method for processing lignin reinforced chitosan biopolymer microfibres: optimising the fibre mechanical properties through lignin type and concentration

    Science.gov (United States)

    Wang, K.; Loo, L. S.; Goh, K. L.

    2016-03-01

    A chitosan biopolymer microfibre—reinforced by lignin—has been processed by a wet-spinning method. To optimise the fibre mechanical and structural properties two types of lignin, with molecular weights 28 000 g mol-1 and 60 000 g mol-1, were examined and the chitosan fibre was blended with the respective lignin type at 1, 3, 5, 7 and 8 wt% lignin concentrations. The main effects of lignin type and concentration, as well as the interaction between the two parameters, on the fibre tensile stiffness, extensibility, strength and toughness were evaluated using the two-factor analysis of variance. Significant variations in the respective mechanical properties were observed with varying lignin concentrations (P chitosan, based on findings from scanning electron microscopy and Fourier transform infrared spectroscopy. This new method for the fabrication of chitosan biopolymer microfibre is inexpensive and versatile and could lend itself to the production of high performance biocomposite structures.

  19. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin.

    Science.gov (United States)

    Lim, Hui-Peng; Tey, Beng-Ti; Chan, Eng-Seng

    2014-07-28

    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.

  20. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers.

    Science.gov (United States)

    Sun, Zhifang; Lv, Fucong; Cao, Lujie; Liu, Lin; Zhang, Yi; Lu, Zhouguang

    2015-06-26

    A new type of multistimuli-responsive hydrogels cross-linked by metal ions and biopolymers is reported. By mixing the biopolymer chitosan (CS) with a variety of metal ions at the appropriate pH values, we obtained a series of transparent and stable hydrogels within a few seconds through supramolecular complexation. In particular, the CS-Ag hydrogel was chosen as the model and the gelation mechanism was revealed by various measurements. It was found that the facile association of Ag(+) ions with amino and hydroxy groups in CS chains promoted rapid gel-network formation. Interestingly, the CS-Ag hydrogel exhibits sharp phase transitions in response to multiple external stimuli, including pH value, chemical redox reactions, cations, anions, and neutral species. Furthermore, this soft matter showed a remarkable moldability to form shape-persistent, free-standing objects by a fast in situ gelation procedure.

  1. Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix.

    Science.gov (United States)

    Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero

    2015-06-15

    This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering.

  2. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    Science.gov (United States)

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products.

  3. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  4. THERMO-TARGETED DRUG DELIVERY OF GELDANAMYCIN TO HYPERTHERMIC TUMOR MARGINS WITH DIBLOCK ELASTIN-BASED BIOPOLYMERS

    Science.gov (United States)

    Chen, Y; Youn, P; Furgeson, DY

    2011-01-01

    The tumor margins are the barrier to hepatocellular carcinoma (HCC) eradication for tumors > 3 cm. Indeed, inadequately treated tumor margins commonly result in local and regional HCC recurrence with increased size and mass. Tumor recurrence is a common problem with chemotherapy, radiotherapy, thermal ablation, and/or surgical resection, by the inability to properly treat the tumor core and the tumor margins. Here we present novel thermosensitive biopolymer-drug conjugates for thermo-targeted chemotherapy at hyperthermic isotherms produced by focal, locoregional thermal ablation. The chemotherapeutic target is heat shock protein 90 (HSP90), a key molecular chaperone of several, and potent pro-oncogenic pathways including Akt, Raf-1, and mutated p53 that is upregulated in HCC. To inhibit HSP90, we have chosen geldanamycin (GA), a potent HSP90 inhibitor. GA has gained significant attention for its low IC50 ~ 1nM and inhibition of Akt and Raf-1, amongst other critical pro-oncogenic pathways. Despite such evidence, clinical trials of GA have not shown promise due to off-target toxicity and poor formulation design. Here, we propose using diblock elastin-based biopolymers as a Ringsdorf macromolecular GA solubilizer - a new generation containing functional poly(Asp)/(Glu) blocks for facile drug conjugation and an ELP block for thermo-targeting of hyperthermic ablative margins. GA release is controlled by pH-sensitive, covalent hydrazone bonds with the biopolymer backbone to avoid systemic toxicity and off-target effects. The resultant biopolymer-conjugates form stable nanoconstructs and display tunable, acute phase transitions at high temperatures. Drug release kinetics are favorable with or without the presence of serum. Thermo-targeted chemotherapy and synchronous thermal ablation provide a unique opportunity for simultaneous destruction of the HCC ablative margins and tumor core for focal, locoregional control of HCC. PMID:21846483

  5. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    OpenAIRE

    Si-Kyung Lee; Inwook Choi; Young-Chan Kim; Sun-Jin Hur

    2013-01-01

    The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of tota...

  6. Investigation of biopolymer-based hydrogels as green and heterogeneous catalysts in C-C bond formation

    OpenAIRE

    Kühbeck, Dennis

    2015-01-01

    The present dissertation evaluates the efficacy of different polysaccharides (e.g. chitosan, alginate and kappa-carrageenan) and proteins (e.g. gelatin, collagen, silk fibroin) as possible catalysts for a variety of C-C bond formation reactions. These biopolymers can be obtained in different forms (e.g. hydrogels, mesoporous materials). Among different forms hydrogels are one of the most interesting since they could act as biphasic and heterogeneous systems in chemical transformations and fa...

  7. Preparation of (+)-1-Phenylethylamine by Optical Resolution of Racemic 1-Phenylethylamine with a Chiral Biopolymer,Casein

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results It has been reported that crystalline form racemates can be resoluted by various methods[1],but for optical resolution of liquid form racemates,the method is limited in chromatograph.So chiral compounds cannot be obtained on large scale by such method.In our previous paper,(+)-3-chloro-1,2-propanediol has been obtained by optical resolution of its racemata (liquid) with a chiral biopolymer,casein[2].

  8. Concentration regimes of biopolymers xanthan, tara, and clairana, comparing dynamic light scattering and distribution of relaxation time.

    Directory of Open Access Journals (Sweden)

    Patrícia D Oliveira

    Full Text Available The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums by an analysis of the overlap (c* and aggregation (c** concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers.

  9. Concentration Regimes of Biopolymers Xanthan, Tara, and Clairana, Comparing Dynamic Light Scattering and Distribution of Relaxation Time

    Science.gov (United States)

    Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.

    2013-01-01

    The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627

  10. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    Science.gov (United States)

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW.

  11. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    Directory of Open Access Journals (Sweden)

    Si-Kyung Lee

    2013-08-01

    Full Text Available The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract.

  12. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  13. Use of bio-polymers in the tertiary crude oil production. Bio-polymer - a fashion name or real alternative to products used up to new. Einsatz von Bio-Polymeren in der tertiaeren Erdoelgewinnung. Bio-Polymer - ein Modename oder eine echte Alternative zu den bisher eingesetzten Produkten

    Energy Technology Data Exchange (ETDEWEB)

    Greil, D.

    1990-01-01

    Oil yield can be enhanced by pressure injection of watery, viscous polymer solutions into the deposit (polymer flooding). Field experimental results are available with partially hydrolysed polyacrylamide. The success of polymer flooding depends largely on the conditions in the deposit; salty and/or calcareous water reduces the efficacy by reducing viscosity. Bio-polymers are natural compounds or products that are manufactured biochemically. Biocides prevent their degradation in the deposit. Currently, xanthane is the most important bio-polymer; its structure, its manufacture from sugar using a bacterium, and its properties or action are discussed. - Oil yield at the deposits Adorf and Scheerhorn (Emsland consortium - annotation by the reviewer) is 22%. Polymer flooding using xanthane is expected to result in far-reaching oil displacement, also in view of the fact that xanthane yielded positive results in the polymer flooding project Edesse of Preussag. (orig.).

  14. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  15. Enhancement of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments

    Directory of Open Access Journals (Sweden)

    Miao Wu

    2014-01-01

    Full Text Available Lignocellulosic biomass is an abundant renewable resource that has the potential to displace petroleum in the production of biomaterials and biofuels. In the present study, the fractionation of different lignin biopolymers from hybrid poplar based on organosolv pretreatments using 80% aqueous methanol, ethanol, 1-propanol, and 1-butanol at 220°C for 30 min was investigated. The isolated lignin fractions were characterized by Fourier transform infrared spectroscopy (FT-IR, high-performance anion exchange chromatography (HPAEC, 2D nuclear magnetic resonance (2D NMR, and thermogravimetric analysis (TGA. The results showed that the lignin fraction obtained with aqueous ethanol (EOL possessed the highest yield and the strongest thermal stability compared with other lignin fractions. In addition, other lignin fractions were almost absent of neutral sugars (1.16–1.46% though lignin preparation extracted with 1-butanol (BOL was incongruent (7.53%. 2D HSQC spectra analysis revealed that the four lignin fractions mainly consisted of β-O-4′ linkages combined with small amounts of β-β′ and β-5′ linkages. Furthermore, substitution of Cα in β-O-4′ substructures had occurred due to the effects of dissolvent during the autocatalyzed alcohol organosolv pretreatments. Therefore, aqueous ethanol was found to be the most promising alcoholic organic solvent compared with other alcohols to be used in noncatalyzed processes for the pretreatment of lignocellulosic biomass in biorefinery.

  16. Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers

    Science.gov (United States)

    Lazare, S.; Bonneau, R.; Gaspard, S.; Oujja, M.; de Nalda, R.; Castillejo, M.; Sionkowska, A.

    2009-03-01

    Self standing films of biopolymers like gelatine, collagen, and chitosan irradiated with single nanosecond or femtosecond laser pulse easily yield on their surface, a nanofoam layer, formed by a cavitation and bubble growth mechanism. The laser foams have interesting properties that challenge the molecular features of the natural extracellular matrix and which make them good candidates for fabrication of artificial matrix (having nanoscopic fibers, large availability of cell adhesion sites, permeability to fluids due to the open cell structure). As part of the mechanistic study, the dynamics of the process has been measured in the nanosecond timescale by recording the optical transmission of the films at 632.8 nm during and after the foaming laser pulse. A rapid drop 100→0% taking place within the first 100 ns supports the cavitation mechanism as described by the previous negative pressure wave model. As modeled a strong pressure rise (˜several thousands of bar) first takes place in the absorption volume due to pressure confinement and finite sound velocity, and then upon relaxation after some delay equal to the pressure transit time gives rise to a rarefaction wave (negative pressure) in which nucleation and bubble growth are very fast.

  17. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation.

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-19

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5 wt%) with pectin (0 to 0.2 wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30 °C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01 wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ≈ 23 µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  18. Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations.

    Science.gov (United States)

    Kulasinski, Karol; Guyer, Robert; Derome, Dominique; Carmeliet, Jan

    2015-08-01

    Molecular simulation of adsorption of water molecules in nanoporous amorphous biopolymers, e.g., cellulose, reveals nonlinear swelling and nonlinear mechanical response with the increase in fluid content. These nonlinearities result from hydrogen bond breakage by water molecules. Classical poroelastic models, employing porosity and pore pressure as basic variables for describing the "pore fluid," are not adequate for the description of these systems. There is neither a static geometric structure to which porosity can sensibly be assigned nor arrangements of water molecules that are adequately described by giving them a pressure. We employ molar concentration of water and chemical potential to describe the state of the "pore fluid" and stress-strain as mechanical variables. A thermodynamic description is developed using a model energy function having mechanical, fluid, and fluid-mechanical coupling contributions. The parameters in this model energy are fixed by the output of the initial simulation and validated with the results of further simulation. The poroelastic properties, e.g., swelling and mechanical response, are found to be functions both of the molar concentration of water and the stress. The basic fluid-mechanical coupling coefficient, the swelling coefficient, depends on the molar concentration of water and stress and is interpreted in terms of porosity change and solid matrix deformation. The difference between drained and undrained bulk stiffness is explained as is the dependence of these moduli on concentration and stress.

  19. Novel approach for labeling of biopolymers with DOTA complexes using in situ click chemistry for quantification.

    Science.gov (United States)

    He, Yide; Esteban-Fernández, Diego; Linscheid, Michael W

    2015-03-01

    In this work, we present a two-step labeling approach for the efficient tagging with lanthanide-containing complexes. For this purpose, derivatization of the cysteine residues with an alkyne group acting as linker was done before the DOTA complex was introduced using in situ click chemistry. The characterization of this new methodology is presented including the optimization of the labeling process, demonstration of the quantitative capabilities using both electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) detection, and study of the fragmentation behavior of the labeled peptides by collision-induced dissociation (CID) for identification purposes. The results show that, in terms of labeling efficiency, this new methodology improves previously developed DOTA-based label strategies, such as MeCAT-maleimide (metal-coded affinity tag, MeCAT-Mal) and MeCAT-iodoacetamide (MeCAT-IA) reagents. The goal of reducing the steric hindrance caused by the voluminous DOTA complex was fulfilled allowing both, quantification and identification of labeled biopolymers.

  20. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers.

    Science.gov (United States)

    Lu, George J; Opella, Stanley J

    2013-08-28

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical π/2 Z-rotational symmetry that confers the "motion adapted" property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence "Motion-adapted SAMPI4" and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2π nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments.

  1. Chitosan-gelatin biopolymers as carrier substrata for limbal epithelial stem cells.

    Science.gov (United States)

    de la Mata, Ana; Nieto-Miguel, Teresa; López-Paniagua, Marina; Galindo, Sara; Aguilar, María Rosa; García-Fernández, Luis; Gonzalo, Sandra; Vázquez, Blanca; Román, Julio San; Corrales, Rosa María; Calonge, Margarita

    2013-12-01

    The aim of this work was to evaluate semi-synthetic biopolymers based on chitosan (CH) and gelatin (G) as potential in vitro carrier substrata for human limbal epithelial cells (hLECs). To that end, human corneal epithelial cells (HCE) were cultured onto different CH-G membranes. None of the polymers were cytotoxic and cell proliferation was higher when CH was functionalized with G. Expression levels of corneal epithelial markers (K3, K12, E-caherin, desmoplakin, and zonula occludens (ZO)-1) were better maintained in HCE cells grown on CH-G 20:80 membranes than other proportions. Consequently, CH-G 20:80 was chosen for the subsequent expansion of hLECs. Cells derived from limbal explants were successfully expanded on CH-G 20:80 membranes using a culture medium lacking components of non-human animal origin. The expression levels found for corneal (K3 and K12) and limbal epithelial stem cells (K15) specific markers were similar to or higher than those found in limbal cells grown onto the control substratum. Our results demonstrate that CH-G 20:80 membranes are suitable for the expansion and maintenance of stem cells derived from the limbal niche. These results strongly support the use of polymers as alternative substrata for the transplantation of cultivated limbal cells onto the ocular surface.

  2. Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2014-09-01

    In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques. Under batch equilibrium mode, a systematic study was performed to optimize the various equilibrium parameters viz., contact time, pH, dosage, initial concentration of oil, and temperature. The adsorption process reached equilibrium at 40 min of contact time and the percentage removal of oil was found to be higher (90%) in the acidic medium. The Freundlich and Langmuir models were applied to describe the equilibrium isotherms and the isotherm constants were calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to find out the nature of the sorption mechanism. The kinetic studies were investigated with reaction-based and diffusion-based models. The suitable mechanism for the removal of oil has been established.

  3. Dihedral-based segment identification and classification of biopolymers II: polynucleotides.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which--to our knowledge--were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides.

  4. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization.

    Directory of Open Access Journals (Sweden)

    Bertrand Jóźwiak

    Full Text Available The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2. The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G' and G" and shear creep compliance J(t. It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process.

  5. Effect of high-pressure food processing on the physical properties of synthetic and biopolymer films.

    Science.gov (United States)

    Galotto, M J; Ulloa, P A; Guarda, A; Gavara, R; Miltz, J

    2009-08-01

    The effect of high-pressure processing on 2 plastic food packaging films, a biopolymer (PLASiOx/PLA) and a synthetic polymer (PET-AlOx), was studied. Samples in direct contact with olive oil, as a fatty food simulant, and distilled water, as an aqueous simulant, were subjected to a pressure of 500MPa for 15 min at 50 degrees C. The mechanical, thermal, and gas barrier properties of both films were evaluated after the high-pressure processing (HPP) and compared to control samples that have not undergone this treatment. Significant changes in all properties were observed in both films after the HPP treatment and in contact with the food simulants. In both films an induced crystallization was noticed. In the PLASiOx/PLA film the changes were larger when in contact with water that probably acted as a plasticizer. In the PET-AlOx film the changes in properties were attributed to the formation of pinholes and cracks during the HPP treatment. In this film, most of the properties changed more in the presence of oil as the food simulant.

  6. Biopolymer Doped with Titanium Dioxide Superhydrophobic Photocatalysis as Self-Clean Coating for Lightweight Composite

    Directory of Open Access Journals (Sweden)

    Anika Zafiah M. Rus

    2013-01-01

    Full Text Available The development of a lightweight composite (LC based on Portland cement concrete with waste lightweight aggregate (WLA additive was carried out to improve the sustainability and environmental impact and to offer potential cost savings without sacrificing strength. Treatment of the surface of the LC exposed to environmental attack by coating with biopolymer based on waste cooking oil doped with titanium dioxide photocatalysis (TOP with superhydrophilic property was found to affect the mechanical properties of the LC in a systematic way. The results of compressive strength showed that the composite achieved the minimum required strength for lightweight construction materials of 17.2 MPa. Scratch resistance measurements showed that the highest percentages loading of superhydrophilic particles (up to 2.5% of biomonomer weight for LC's surface coating gave the highest scratch resistance while the uncoated sample showed the least resistances. Scanning electron microscope (SEM pictures revealed the difference between the surface roughness for LC with and without TOP coating. TOP is also formulated to provide self-cleaning LC surfaces based on two principal ways: (1 the development by coating the LC with a photocatalytic superhydrophilic, (2 if such a superhydrophilic is illuminated by light, the grease, dirt, and organic contaminants will be decomposed and can easily be swept away by rain.

  7. Dynamic light scattering of nano-gels of xanthan gum biopolymer in colloidal dispersion

    Directory of Open Access Journals (Sweden)

    Abbas Rahdar

    2016-09-01

    Full Text Available The dynamical properties of nanogels of xanthan gum (XG with hydrodynamic radius controlled in a size range from 5 nm to 35 nm, were studied at the different XG concentrations in water/sodium bis-2-ethylhexyl-sulfosuccinate (AOT/decane reverse micelles (RMs vs. mass fraction of nano-droplet (MFD at W = 40, using dynamic light scattering (DLS. The diffusion study of nanometer-sized droplets by DLS technique indicated that enhancing concentration of the XG polysaccharide resulted in exchanging the attractive interaction between nano-gels to repulsive interaction, as the mass fraction of nano-droplets increased. The reorientation time (τr of water nanodroplets decreased with MFD for water-in-oil AOT micro-emulsion comprising high concentration (0.0000625 of XG. On the other hand, decreasing concentration of biopolymer led to increasing the rotational correlation time of water nanodroplets with MFD. In conclusion, a single relaxation curve was observed for AOT inverse microemulsions containing different XG concentrations. Furthermore, the interaction between nanogels was changed from attractive to repulsive versus concentration of XG in the AOT RMs.

  8. Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state

    Science.gov (United States)

    Caldara, Marina; Friedlander, Ronn S.; Kavanaugh, Nicole L.; Aizenberg, Joanna; Foster, Kevin R.; Ribbeck, Katharina

    2013-01-01

    Summary Many species of bacteria form surface-attached communities known as biofilms. Surrounded in secreted polymers, these aggregates are difficult to both prevent and eradicate, posing problems for medicine and industry [1, 2]. Humans play host to hundreds of trillions of microbes that live adjacent to our epithelia and we are typically able to prevent harmful colonization. Mucus, the hydrogel overlying all wet epithelia in the body, can prevent bacterial contact with the underlying tissue. The digestive tract, for example, is lined by a firmly adherent mucus layer that is typically devoid of bacteria, followed by a second, loosely adherent layer that contains numerous bacteria [3]. Here, we investigate mucus's role as a principle arena for host-microbe interactions. Using defined in vitro assays, we found that mucin biopolymers, the main functional constituents of mucus, promote the motility of planktonic bacteria, and prevent their adhesion to underlying surfaces. The deletion of motility genes, however, allows Pseudomonas aeruginosa to overcome the dispersive effects of mucus and form suspended antibiotic-resistant flocs, which mirror the clustered morphology of immotile natural isolates found in the cystic fibrosis lung mucus [4, 5]. Mucus may offer new strategies to target bacterial virulence, such as the design of anti-biofilm coatings for implants. PMID:23142047

  9. Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Science.gov (United States)

    Mücke, Norbert; Klenin, Konstantin; Kirmse, Robert; Bussiek, Malte; Herrmann, Harald; Hafner, Mathias; Langowski, Jörg

    2009-01-01

    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions. PMID:19888472

  10. FRET Fluctuation Spectroscopy of Diffusing Biopolymers: Contributions of Conformational Dynamics and Translational Diffusion

    Science.gov (United States)

    Gurunathan, Kaushik; Levitus, Marcia

    2009-01-01

    The use of Fluorescence Correlation Spectroscopy (FCS) to study conformational dynamics in diffusing biopolymers requires that the contributions to the signal due to translational diffusion are separated from those due to conformational dynamics. A simple approach that has been proposed to achieve this goal involves the analysis of fluctuations in Fluorescence Resonance Energy Transfer (FRET) efficiency. In this work, we investigate the applicability of this methodology by combining Monte Carlo simulations and experiments. Results show that diffusion does not contribute to the measured fluctuations in FRET efficiency in conditions where the relaxation time of the kinetic process is much shorter than the mean transit time of the molecules in the optical observation volume. However, in contrast to what has been suggested in previous work, the contributions of diffusion are otherwise significant. Neglecting the contributions of diffusion can potentially lead to an erroneous interpretation of the kinetic mechanisms. As an example, we demonstrate that the analysis of FRET fluctuations in terms of a purely kinetic model would generally lead to the conclusion that the system presents complex kinetic behavior even for an idealized two-state system PMID:20030305

  11. Filamentous biopolymers on surfaces: atomic force microscopy images compared with Brownian dynamics simulation of filament deposition.

    Directory of Open Access Journals (Sweden)

    Norbert Mücke

    Full Text Available Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarily on the interaction strength between the filament and the support: i For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a 'trapping' mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these 'ideal' adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica ('ideal' trapping and on glass ('ideal' equilibrated with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions.

  12. Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Galina [Department of Biotechnology, University of Szeged, Szeged (Hungary); Rakhely, Gabor; Kovacs, Kornel L. [Department of Biotechnology, University of Szeged, Szeged (Hungary); Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged (Hungary)

    2008-12-15

    The biopolymers agarose and alginic acid, and hemicellulose-rich pine tree wood shavings, frequently discarded as waste, proved to be utilized as energy sources for hydrogen production by the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus. The addition of 0.5% (w/v) pine wood shavings to the growth medium yielded a 14-fold increase in hydrogen production over a period of 55 days relative to cultures grown in the same medium without wood shavings (average rate was about 0.45 ml H{sub 2} ml culture{sup -1} day{sup -1}). The shavings were also shown to be degraded by C. saccharolyticus in the absence of any other carbohydrate source. A study on storage of the cells at 42 C in the presence of either agarose or alginic acid cultures immobilized on granulated activated carbon, wood shavings or perlite revealed that the immobilization improved both the storability and hydrogen evolving capacity of the cells. From these carriers the soft wood shavings showed the best performance. The relevance of these findings for biohydrogen production is discussed. (author)

  13. Rayleigh scattering of Moessbauer radiation in oriented fibres of hydrated biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, G. [Parma Univ. (Italy). Ist. di Fisica; Deriu, A. [Parma Univ. (Italy). Ist. di Fisica; Cavatorta, F. [Parma Univ. (Italy). Ist. di Fisica; Rupprecht, A. [Stockholm Univ. (Sweden). Dept. of Physical, Inorganic and Structural Chemistry

    1995-03-01

    The Rayleigh scattering of Moessbauer radiation (RSMR) has been measured on films of highly oriented hydrated polynucleotides (A-NaDNA) and polysaccharides (Na-hyaluronate). Both DNA and hyaluronate (HA) have helical secondary structures with a similar pitch (28.2 A for A-DNA, and 32.8 A for Na-HA), but they differ in the basic elements which make up the helices and in the extent of water-biopolymer interactions. These differences are responsible for the diverse stiffness of the polymer backbone, and also affect the dynamics of the first hydration layers. For both samples the elastic scattering intensity shows a sharp peak at about 2 A{sup -1} only for samples oriented with Q parallel to the fibre direction. Its position is close to that of the first maximum in the structure factor of bulk water; it is, however, much narrower than in pure H{sub 2}O and it is similar to a crystalline Bragg peak. It can be attributed to an ordered structure of water along the double helices. From the temperature dependence of the elastic intensity under the peak maximum, the mean square displacement of water oxygens in the direction parallel to the helices has been deduced. The thermal diffuse scattering intensity is also peaked at the same Q values of the elastic intensity, indicating the presence of coherent vibrational excitations propagating along the ordered water filaments. (orig.)

  14. Dihedral-Based Segment Identification and Classification of Biopolymers II: Polynucleotides

    Science.gov (United States)

    2013-01-01

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which—to our knowledge—were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides. PMID:24364355

  15. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers

    Science.gov (United States)

    Lu, George J.; Opella, Stanley J.

    2013-01-01

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical π/2 Z-rotational symmetry that confers the “motion adapted” property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence “Motion-adapted SAMPI4” and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2π nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments. PMID:24006989

  16. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    International Nuclear Information System (INIS)

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10−4 S cm−1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10−3 S cm−1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm−1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)

  17. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization.

    Science.gov (United States)

    Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek

    2015-01-01

    The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G' and G" and shear creep compliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process. PMID:26599756

  18. Functional finishing of aminated polyester using biopolymer-based polyelectrolyte microgels.

    Science.gov (United States)

    Glampedaki, Pelagia; Dutschk, Victoria; Jocic, Dragan; Warmoeskerken, Marijn M C G

    2011-10-01

    This study focuses on a microgel-based functionalization method applicable to polyester textiles for improving their hydrophilicity and/or moisture-management properties, eventually enhancing wear comfort. The method proposed aims at achieving pH-/temperature-controlled wettability of polyester within a physiological pH/temperature range. First, primary amine groups are created on polyester surfaces using ethylenediamine; second, biopolymer-based polyelectrolyte microgels are incorporated using the natural cross-linker genipin. The microgels consist of the pH-responsive natural polysaccharide chitosan and pH/thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) microparticles. Scanning electron microscopy confirmed the microgel presence on polyester surfaces. X-ray photoelectron spectroscopy revealed nitrogen concentration, supporting increased microscopy results. Electrokinetic analysis showed that functionalized polyester surfaces have a zero-charge point at pH 6.5, close to the microgel isoelectric point. Dynamic wetting measurements revealed that functionalized polyester has shorter total water absorption time than the reference. This absorption time is also pH dependent, based on dynamic contact angle and micro-roughness measurements, which indicated microgel swelling at different pH values. Furthermore, at 40 °C functionalized polyester has higher vapor transmission rates than the reference, even at high relative humidity. This was attributed to the microgel thermoresponsiveness, which was confirmed through the almost 50% decrease in microparticle size between 20 and 40 °C, as determined by dynamic light scattering measurements. PMID:21751392

  19. Toll-like receptor-2 agonist functionalized biopolymer for mucosal vaccination.

    Science.gov (United States)

    Heuking, S; Iannitelli, A; Di Stefano, A; Borchard, G

    2009-11-01

    The objective of this study was to provide a new water-soluble chitosan derivative being functionalized with a Toll-like receptor-2 (TLR-2) agonist. At first, we synthesized the water-soluble TLR-2 agonist omega-amido-[N(alpha)-palmitoyl-oxy-S-[2,3-bis(palmitoyl-oxy)-(2R)-propyl]-[R]-cysteinyl]-alpha-amino poly(ethylene glycol) (Pam(3)Cys-PEG-NH(2)), which was characterized by (1)H and (13)C NMR as well as mass spectroscopy. Secondly, Pam(3)Cys-PEG-NH(2) was then successfully grafted to 6-O-carboxymethyl-N,N,N-trimethyl chitosan polymers (CM-TMC) using EDC/NHS as condensing agents. The copolymer was analysed by means of (1)H and (13)C NMR and FTIR spectroscopy. (13)C NMR spectroscopy did not deliver evidence that an amide bond was formed between CM-TMC and Pam(3)Cys-PEG-NH(2). However, (1)H NMR and FTIR spectroscopy demonstrated clearly that successful grafting took place. Based upon these results, this new TLR-2 functionalized biopolymer merits further investigations as material for vaccine delivery systems. PMID:19782879

  20. Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5%bentonite/chitosan.

    Science.gov (United States)

    Moussout, Hamou; Ahlafi, Hammou; Aazza, Mustapha; Zegaoui, Omar; El Akili, Charaf

    2016-01-01

    Chitosan (CS) and nanocomposite 5%bentonite/chitosan (5%Bt/CS) prepared from the natural biopolymer CS were tested to remove Cu(II) ions using a batch adsorption experiment at various temperatures (25, 35 and 45°C). X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used in CS and the nanocomposite characterisation. This confirmed the exfoliation of bentonite (Bt) to form the nanocomposite. The adsorption kinetics of copper on both solids was found to follow a pseudo-second-order law at each studied temperature. The Cu(II) adsorption capacity increased as the temperature increased from 25 to 45°C for nanocomposite adsorbent but slightly increased for CS. The data were confronted to the nonlinear Langmuir, Freundlich and Redlich-Peterson models. It was found that the experimental data fitted very well the Langmuir isotherm over the whole temperature and concentration ranges. The maximum monolayer adsorption capacity for the Cu(II) was 404-422 mg/g for CS and 282-337 mg/g for 5%Bt/CS at 25-45°C. The thermodynamic study showed that the adsorption process was spontaneous and endothermic. The complexation of Cu(II) with NH(2) and C = O groups as active sites was found to be the main mechanism in the adsorption processes. PMID:27148722

  1. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  2. Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes

    Science.gov (United States)

    Isa, M. I. N.; Noor, N. A. M.

    2015-12-01

    In this paper, a proton conducting solid biopolymer electrolytes (SBE) comprises of carboxymethyl cellulose (CMC) as polymer host, ammonium thiocyanate (NH4SCN) as doping salt and ethylene carbonate (EC) as plasticizer has been prepared via solution casting technique. Electrical Impedance Spectroscopy (EIS) was carried out to study the conductivity and electrical properties of plasticized CMC-NH4SCN SBE system over a wide range of frequency between 50 Hz and 1 MHz at temperature range of 303 to 353 K. Upon addition of plasticizer into CMC-NH4SCN SBE system, the conductivity increased from 10-5 to 10-2 Scm-1. The highest conductivity was obtained by the electrolyte containing 10 wt.% of EC. The conductivity of plasticized CMC-NH4SCN SBE system by various temperatures obeyed Arrhenius law where the ionic conductivity increased as the temperature increased. The activation energy, Ea was found to decrease with enhancement of EC concentration. Dielectric studies for the highest conductivity electrolyte obeyed non-Debye behavior. The conduction mechanism for the highest conductivity electrolyte was determined by employing Jonsher's universal power law and thus, can be represented by the quantum mechanical tunneling (QMT) model.

  3. Tailored topography control of biopolymer surfaces by ultrafast lasers for cell–substrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania); Cazan, M. [University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, 30 Reactorului Street, PO Box MG-6, 077125 Magurele-Bucharest (Romania); Filipescu, M.; Sandel, S.; Zamfirescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania)

    2014-05-01

    Nowadays, the culture surfaces used for in vitro testing must be capable of possessing an improved interface for cell interactions and adhesion. For this reason, the materials used need to have an appropriate chemistry and architecture of its surface, resembling to the extracellular matrix. Within this context, in this work we combined the advantages of natural biopolymer characteristics (chitosan) with the flexibility in surface texturing by ultrafast laser for creating functional microstructured surfaces for cell–substrate in vitro studies. A Ti:Sapphire femtosecond laser irradiation (λ = 775 nm and 387 nm) was used for tailoring surface morphological characteristics of chitosan based films (i.e. polymer “bubbles”, “fingertips” and “sponge-like” structures). These structures were investigated by scanning electron microscopy and atomic force microscopy. The morphology of the structures obtained was correlated with the response of oligodendrocytes cells line. In vitro tests on the patterned surface showed that early cell growth was conditioned by the microtopography and indicate possible uses of the structures in biomedical applications.

  4. Polysaccharides as biopolymers for food shelf-life extention: recent patents.

    Science.gov (United States)

    Volpe, Maria G; Malinconico, Mario; Varricchio, Ettore; Paolucci, Marina

    2010-06-01

    Biopolymers have properties that make them suitable for use in increasing food shelf-life. At present, conventional polymers could be substituted with biobased food packaging materials in several areas such as meat products, fruits and vegetables, dairy products, frozen food, dry food, snacks, ready to eat food and drinks. In spite of the enormous amount of published scientific articles and reviews on polysaccharide employment in food shelf-life extension, there is a comparatively limited number of patents issued from industry. Several polysaccharides alone or in combination with other substances are proposed in the patents aimed to extend the food shelf-life of fresh food, reducing modifications in color, flavor and taste. In this review, we will focus on polysaccharides extracted from biomass and their applications in the food industry, in particular on food shelf-life extension. The patents issued in the last twenty years for polysaccharides and their applications in food shelf-life extension will be reviewed. PMID:20653558

  5. Spinodal decomposition in a food colloid-biopolymer mixture: evidence for a linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Suresh [Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, 1700 Fribourg (Switzerland); Tuinier, Remco [Forschungszentrum Juelich, Institut fuer Festkoerperforschung, 52425 Juelich (Germany); Schurtenberger, Peter [Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, 1700 Fribourg (Switzerland)

    2006-07-05

    We investigate phase separation and structural evolution in a complex food colloid (casein micelles) and biopolymer (xanthan) mixture using small-angle light scattering. We demonstrate that phase separation is induced by a depletion mechanism, and that the resulting coexistence curve can be described by osmotic equilibrium theory for mixtures of colloids and polymer chains in a background solvent, taking into account interactions between the polymer chains in the excluded volume limit. We show that the light scattering pattern of an unstable mixture exhibits the typical behaviour of spinodal decomposition, and we are able to confirm the validity of dynamic similarity scaling. We find three distinct regimes (initial or linear, intermediate and transition stage) for the decomposition kinetics that differ in the time dependence of the peak position of the structure factor. In particular we find clear evidence for the existence of an initial linear regime, where the peak position remains constant and the amplitude grows. The existence of spinodal-like decomposition and the validity of universal scaling in the intermediate and transition stages have been found in previous studies of phase separation in attractive colloidal suspensions. However, to our knowledge the initial linear regime has never been observed in colloidal suspensions, and we attribute this at least partly to the effect of hydrodynamic interactions which are efficiently screened in our system due to the fact that the measurements were performed at high polymer concentrations, i.e. in the semi-dilute regime. (letter to the editor)

  6. Spinodal decomposition in a food colloid-biopolymer mixture: evidence for a linear regime

    International Nuclear Information System (INIS)

    We investigate phase separation and structural evolution in a complex food colloid (casein micelles) and biopolymer (xanthan) mixture using small-angle light scattering. We demonstrate that phase separation is induced by a depletion mechanism, and that the resulting coexistence curve can be described by osmotic equilibrium theory for mixtures of colloids and polymer chains in a background solvent, taking into account interactions between the polymer chains in the excluded volume limit. We show that the light scattering pattern of an unstable mixture exhibits the typical behaviour of spinodal decomposition, and we are able to confirm the validity of dynamic similarity scaling. We find three distinct regimes (initial or linear, intermediate and transition stage) for the decomposition kinetics that differ in the time dependence of the peak position of the structure factor. In particular we find clear evidence for the existence of an initial linear regime, where the peak position remains constant and the amplitude grows. The existence of spinodal-like decomposition and the validity of universal scaling in the intermediate and transition stages have been found in previous studies of phase separation in attractive colloidal suspensions. However, to our knowledge the initial linear regime has never been observed in colloidal suspensions, and we attribute this at least partly to the effect of hydrodynamic interactions which are efficiently screened in our system due to the fact that the measurements were performed at high polymer concentrations, i.e. in the semi-dilute regime. (letter to the editor)

  7. A comparative study of biopolymers and alum in the separation and recovery of pulp fibres from paper mill effluent by flocculation.

    Science.gov (United States)

    Mukherjee, Sumona; Mukhopadhyay, Soumyadeep; Pariatamby, Agamuthu; Ali Hashim, Mohd; Sahu, Jaya Narayan; Sen Gupta, Bhaskar

    2014-09-01

    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.

  8. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    Science.gov (United States)

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-01-01

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation

  9. Complex Coacervate Core Micelles with Spectroscopic Labels for Diffusometric Probing of Biopolymer Networks.

    Science.gov (United States)

    Bourouina, Nadia; de Kort, Daan W; Hoeben, Freek J M; Janssen, Henk M; Van As, Henk; Hohlbein, Johannes; van Duynhoven, John P M; Kleijn, J Mieke

    2015-11-24

    We present the design, preparation, and characterization of two types of complex coacervate core micelles (C3Ms) with cross-linked cores and spectroscopic labels and demonstrate their use as diffusional probes to investigate the microstructure of percolating biopolymer networks. The first type consists of poly(allylamine hydrochloride) (PAH) and poly(ethylene oxide)-poly(methacrylic acid) (PEO-b-PMAA), labeled with ATTO 488 fluorescent dyes. We show that the size of these probes can be tuned by choosing the length of the PEO-PMAA chains. ATTO 488-labeled PEO113-PMAA15 micelles are very bright with 18 dye molecules incorporated into their cores. The second type is a (19)F-labeled micelle, for which we used PAH and a (19)F-labeled diblock copolymer tailor-made from poly(ethylene oxide)-poly(acrylic acid) (mPEO79-b-PAA14). These micelles contain approximately 4 wt % of (19)F and can be detected by (19)F NMR. The (19)F labels are placed at the end of a small spacer to allow for the necessary rotational mobility. We used these ATTO- and (19)F-labeled micelles to probe the microstructures of a transient gel (xanthan gum) and a cross-linked, heterogeneous gel (κ-carrageenan). For the transient gel, sensitive optical diffusometry methods, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, and super-resolution single nanoparticle tracking, allowed us to measure the diffusion coefficient in networks with increasing density. From these measurements, we determined the diameters of the constituent xanthan fibers. In the heterogeneous κ-carrageenan gels, bimodal nanoparticle diffusion was observed, which is a signpost of microstructural heterogeneity of the network.

  10. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    Science.gov (United States)

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation

  11. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-01

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5 wt%) with pectin (0 to 0.2 wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30 °C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01 wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ≈ 23 µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  12. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Science.gov (United States)

    Kuntanoo, K.; Promkotra, S.; Kaewkannetra, P.

    2015-03-01

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (Tm) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  13. Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems.

    Science.gov (United States)

    Regand, A; Goff, H D

    2002-11-01

    Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was observed but is not the only mechanism of stabilizer action. Thermodynamic incompatibility between biopolymers was observed to promote localized high concentrations of milk proteins located at the ice crystal interface, probably exerting a water-holding action that significantly enhanced the stabilizer effect. Qualitatively, solution heterogeneity (phase separation) was directly proportional to ice crystal growth inhibition. It is suggested that water-holding by stabilizer and proteins, and in some cases steric hindrance induced by a stabilizer gel-like network, caused a reduction in the kinetics of the ice recrystallization phenomena and promoted mechanisms of melt-regrow instead of melt-diffuse-grow recrystallization, thus resulting in the preservation of the ice crystal size and in a small span of the ice crystal size distribution.

  14. Mussel-inspired biopolymer modified 3D graphene foam for enzyme immobilization and high performance biosensor

    International Nuclear Information System (INIS)

    Highlights: • Outstanding 3D biosensing platform was explored for reagentless detection of H2O2. • Monolithic 3D graphene foam served as a freestanding electrode scaffold. • MB-CNTs hybrid assembled on 3D graphene as efficient electron mediator. • Mussel inspired polydopamine as a green linker for enzyme immobilization. - Abstract: A simple and versatile method is described to construct high performance three-dimensional (3D) graphene-based enzyme biosensor. Monolithic and macroporous 3D graphene foam grown by chemical vapor deposition (CVD) was used as a freestanding electrode for co-immobilization of horseradish peroxidase (HRP) and a commonly used redox mediator, methylene blue (MB). Carbon nanotubes (CNTs) were employed as carriers of MB molecules to immobilize them on 3D graphene surface through strong π-π stacking force. Mussel-inspired biopolymer polydopamine (PDA) was formed by in-situ polymerization and served as a green linker, which could covalently graft HRP on the surface of 3D graphene/MB-CNTs electrode. In addition, PDA layer could also effectively prevent the leakage of inner electron mediators. Owing to the 3D macroporous architecture, exceptional properties of graphene and surface-bound mediators, the biosensor demonstrated outstanding performance for reagentless detection of H2O2 in terms of wide linear range (0.2 μM to 1.1 mM), high sensitivity (227.8 μA mM−1 cm−2), low detection limit (58.0 nM), and fast response (reaching 95% of the steady current within 3 s). The biosensor exhibited high reproducibility and stability

  15. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Kuntanoo, K., E-mail: thip-kk@hotmail.com [Graduate School of Khon Kaen University, Khon Kaen, 40002 Thailand (Thailand); Promkotra, S., E-mail: sarunya@kku.ac.th [Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Kaewkannetra, P., E-mail: paknar@kku.ac.th [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand)

    2015-03-30

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (T{sub m}) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  16. Obtention of gelatin biopolymers by ionizing radiation; Obtencao de biopolimeros de gelatina por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Takinami, Patricia Yoko Inamura

    2014-07-01

    The gelatin (Gel) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the Gel has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, Gel-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with {sup 60}Co, electron beam (EB) and/or pulsed EB. The Gel based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with {sup 60}Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels. (author)

  17. Complex Coacervate Core Micelles with Spectroscopic Labels for Diffusometric Probing of Biopolymer Networks.

    Science.gov (United States)

    Bourouina, Nadia; de Kort, Daan W; Hoeben, Freek J M; Janssen, Henk M; Van As, Henk; Hohlbein, Johannes; van Duynhoven, John P M; Kleijn, J Mieke

    2015-11-24

    We present the design, preparation, and characterization of two types of complex coacervate core micelles (C3Ms) with cross-linked cores and spectroscopic labels and demonstrate their use as diffusional probes to investigate the microstructure of percolating biopolymer networks. The first type consists of poly(allylamine hydrochloride) (PAH) and poly(ethylene oxide)-poly(methacrylic acid) (PEO-b-PMAA), labeled with ATTO 488 fluorescent dyes. We show that the size of these probes can be tuned by choosing the length of the PEO-PMAA chains. ATTO 488-labeled PEO113-PMAA15 micelles are very bright with 18 dye molecules incorporated into their cores. The second type is a (19)F-labeled micelle, for which we used PAH and a (19)F-labeled diblock copolymer tailor-made from poly(ethylene oxide)-poly(acrylic acid) (mPEO79-b-PAA14). These micelles contain approximately 4 wt % of (19)F and can be detected by (19)F NMR. The (19)F labels are placed at the end of a small spacer to allow for the necessary rotational mobility. We used these ATTO- and (19)F-labeled micelles to probe the microstructures of a transient gel (xanthan gum) and a cross-linked, heterogeneous gel (κ-carrageenan). For the transient gel, sensitive optical diffusometry methods, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, and super-resolution single nanoparticle tracking, allowed us to measure the diffusion coefficient in networks with increasing density. From these measurements, we determined the diameters of the constituent xanthan fibers. In the heterogeneous κ-carrageenan gels, bimodal nanoparticle diffusion was observed, which is a signpost of microstructural heterogeneity of the network. PMID:26535962

  18. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  19. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  20. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Science.gov (United States)

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  1. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell

    International Nuclear Information System (INIS)

    In this work, carboxymethyl kappa-carrageenan was used as the principle host for developing new biopolymer electrolytes based on the blend of carboxymethyl kappa-carrageenan/carboxymethyl cellulose. The blending of carboxymethyl cellulose into carboxymethyl kappa-carragenan was found to be a promising strategy to improve the material properties such as conductive properties. The electrolyte samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, ionic transference number measurement and linear sweep voltammetry in order to investigate their structural, thermal and electrochemical properties. Impedance study showed that the ionic conductivity increased with the increment of ammonium iodide concentration. The highest room temperature ionic conductivity achieved was 2.41 × 10−3 S cm−1 at 30 wt% of the salt. The increment of conductivity was due to the increase of formation of transient cross-linking between the carboxymethyl kappa-carrageenan/carboxymethyl cellulose chains and the doping salt as indicated the Tg trend. The conductivity was also attributed by the increase in the number of charge carriers in the biopolymer electrolytes system. The interactions between polymers and salt were confirmed by FTIR study. The transference number measurements showed that the conductivity was predominantly ionic. Temperature dependent conductivity study showed that conductivity increased with the reciprocal of temperature. The conductivity-temperature plots suggested that the conductivity obeyed the Vogel–Tammann–Fulcher relation and the activation energy for the best conducting sample was 0.010 eV. This system was used for the fabrication of dye sensitized solar cells, FTO/TiO2-dye/CMKC/CMCE-NH4I + I2/Pt. The fabricated cell showed response under light intensity of 100 mW cm−2 with efficiency of 0.13% indicating that the blend biopolymer system has

  2. Preparation of new Calix[4]arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol-gel encapsulation.

    Science.gov (United States)

    Ozyilmaz, Elif; Sayin, Serkan

    2013-08-01

    The article describes preparation of new calixarene biopolymers consisting of the immobilization of convenience calixarene derivative onto cellulose and chitosan biopolymers, and the encapsulation of these calixarene biopolymers with Candida rugosa lipase within a chemical inert sol-gel supported by polycondensation with tetraethoxysilane and octyltriethoxysilane. The catalytic properties of immobilized lipase were evaluated into model reactions employing the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of naproxen methyl esters from racemic prodrugs in aqueous buffer solution/isooctane reaction system. The resolution studies using sol-gel support have observed more improvement in the enantioselectivity of naproxen E = 300 with Cel-Calix-E than with encapsulated lipase without calixarene-based materials. Furthermore, the encapsulated lipase (Cel-Calix-E) was still retained about 39 % of their conversion ratios after the fifth reuse in the enantioselective reaction.

  3. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    Science.gov (United States)

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated.

  4. 我国生物质非织造材料的研究进展%Development of biopolymer nonwoven materials of China

    Institute of Scientific and Technical Information of China (English)

    陈燕; 靳向煜

    2013-01-01

    为替代日趋紧缺的石油、煤、天然气等石化资源,应积极推进可再生、可降解的生物质资源和生物化工新材料的发展。概述了生物质纤维的种类,介绍了我国生物质非织造材料的相关研究现状以及进展。%Renewable , biodegradable biopolymer resources and biochemical new materials should be promoted actively, as alternatives to the dying petrochemical resources like oil , coal, natural gas, etc.Species of biopolymer fibers were summarized and the present research status and progresses of Chinese biopolymer nonwoven materials were introduced .

  5. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures - a biomechanical in-vitro study

    OpenAIRE

    Paech A; Wilde E; Schulz AP; Heinrichs G; Wendlandt R; Queitsch C; Kienast B; Jürgens Ch

    2010-01-01

    Abstract The cut-out of the sliding screw is one of the most common complications in the treatment of intertrochanteric fractures. The reasons for the cut-out are: a suboptimal position of the hip-screw in the femoral head, the type of fracture and poor bone quality. The aim of this study was to reproduce the cut-out event biomechanically and to evaluate the possible prevention of this event by the use of a biopolymer augmentation of the hip screw. Concerning the density and compression force...

  6. Combinatorial matrix-assisted pulsed laser evaporation: Single-step synthesis of biopolymer compositional gradient thin film assemblies

    Science.gov (United States)

    Sima, F.; Axente, E.; Sima, L. E.; Tuyel, U.; Eroglu, M. S.; Serban, N.; Ristoscu, C.; Petrescu, S. M.; Toksoy Oner, E.; Mihailescu, I. N.

    2012-12-01

    We introduce a combinatorial approach for the fabrication of organic biopolymer thin films. Structures with compositional gradient are obtained by simultaneous laser vaporization of two distinct targets. Matrix-assisted pulsed laser evaporation deposition method was applied to obtain a compositional library of levan and oxidized levan in form of thin film. The gradient of film composition and structure was demonstrated by infrared spectroscopy while in vitro cell culture assays illustrated characteristic responses of cells to specific surface regions. The method can rapidly generate discrete areas of organic film compositions with improved properties than starting materials.

  7. Anti-complementary Activities of Exo- and Endo-biopolymer Produced by Submerged Mycelial Culture of Eight Different Mushrooms

    OpenAIRE

    Yang, Byung-Keun; Gu, Young-Ah; Jeong, Yong-Tae; Song, Chi-Hyun

    2007-01-01

    The Elfvingia applanata (EA), Hericium erinaceum (HE),Grifola frondosa (GF), Pholiota nameko (PN), Pleurotus eryngii (PE), Trametes suaveolens (TS), Fomes fomentarius (FF), and Inonotus obliquus (IO) could produce the endo- (EN) and exo-biopolymer (EX) in submerged culture. The highest anti-complementary activity of the EN was exhibited by PN (49.1%), followed by HE (38.6%), TS (37.0%),and FF (33.0%),whereas the high activity of the EX was found with GF (59.8%),followed by HE (36.3%),TS (30.8...

  8. Rapid communication: Computational simulation and analysis of a candidate for the design of a novel silk-based biopolymer.

    Science.gov (United States)

    Golas, Ewa I; Czaplewski, Cezary

    2014-09-01

    This work theoretically investigates the mechanical properties of a novel silk-derived biopolymer as polymerized in silico from sericin and elastin-like monomers. Molecular Dynamics simulations and Steered Molecular Dynamics were the principal computational methods used, the latter of which applies an external force onto the system and thereby enables an observation of its response to stress. The models explored herein are single-molecule approximations, and primarily serve as tools in a rational design process for the preliminary assessment of properties in a new material candidate. PMID:24723330

  9. Relationships between algal coals and resistant cell wall biopolymers of extant algae as revealed by Py-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Derenne, S.; Largeau, C.; Casadevall, E.; Tegelaar, E.; De Leeuw, J.W.

    1988-12-01

    The resistant biopolymers (PRB A, PRB B and PRB L), isolated from the walls of three different races of the extant alga Botryococcus braunii and two algal coals (Torbanite, Kukersite) were examined using Py-GC and Py-GC-MS. These pyrolytic methods appear as particularly efficient tools in comparative studies of such materials. The structure of PRB L was thus shown to be different from those of PRB A, PRB B and Torbanite while the spectroscopic features (FT IR, solid state /sup 13/C NMR) of all these products are similar. It also appeared that Kukersite does not consist of selectively preserved PRB L. 34 refs., 2 figs., 1 tab.

  10. Synthesis of reactive nucleic acid analogues and their application for the study of structure and functions of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kanevskii, Igor' E; Kuznetsova, Svetlana A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-07-31

    Data on the synthesis of reactive derivatives of nucleic acid analogues and their application for the study of structure and functions of biopolymers are generalised. The main types of such analogues including photoactivated reagents containing azidoaryl, halogeno, and thiol groups, psoralen and its derivatives, platinum-based reagents, and nucleic acid analogues containing substituted pyrophosphate or acyl phosphate internucleotide groups are presented. The mechanisms of interaction of these compounds with proteins and nucleic acids are considered. The prospects for the in vivo application of reactive nucleic acids in various systems are discussed. The bibliography includes 76 references.

  11. Monitoramento tecnológico e mercadológico de biopolímeros Biopolymers' technology and market monitoring

    OpenAIRE

    Suzana Borschiver; Luiz F. M. Almeida; Tamar Roitman

    2008-01-01

    Este artigo aborda um estudo de monitoramento tecnológico em biopolímeros aplicados em diversas áreas, usando como fontes de informações artigos científicos e patentes. Para tanto, foram utilizados, respectivamente, o programa Scifinder Scholar, que emprega as bases de dados CAPLUS e MEDLINE, e a base de dados americana de patentes, a USPTO. Os dados foram obtidos utilizando-se como palavras-chaves "biopolymers" e "biomaterials". Foram realizadas análises "macro", "meso" e "micro" em relação ...

  12. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5-15 wt% on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young's modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5-10 wt%, the hydrogels have high freezable water content (0.89-0.93 and concentration of permeated glucose (591.3-615.5 µg/ml. These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer

  13. 中子散射技术在生物大分子领域的应用%Neutron Scattering's Application in Biopolymers' Study

    Institute of Scientific and Technical Information of China (English)

    伍国琳; 马建标

    2001-01-01

      Neutron scattering has been used more and more widely, as neutron sources and scattering techniques have been developed. For the basic properties of the neutron the usefulness of neutrons scattering is better than other scattering techniques (X-Ray scattering, Raman scattering etc.) at a lot of areas especially in biopolymer studies. Because firstly, H has a very big neutron scattering cross-section as neutron scattering can tell us the site of H and H-bond distinctly and it is very important in the researches of the biopolymer structures. Secondly, neutron can distribute H and D for they have different neutron scattering cross-sections, so we can use isotopic substitution at studies, it is very useful for the researches of compound biopolymers and a lot of biopolymers are compounds. At the same time biopolymers' dynamic behaviors can be obtained by neutron scattering too. In this paper the applications of neutron scattering in biopolymers including structure and dynamics of biomacromolecules are reviewed.%  随着中子源和散射装置的改进,中子散射技术在生物大分子领域的应用也日益广泛,且许多方面是其它(X射线等)散射技术无法比拟的。本文综述了中子散射在生物大分子的结构和动态性能等方面的研究进展和方法,同时也讨论了中子散射技术在应用过程中的一些优缺点。

  14. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    Science.gov (United States)

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture. PMID:26652188

  15. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    International Nuclear Information System (INIS)

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: → Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. → Alternative approach to bio-oil production. → Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. → Electron-beam distillation mode is preferable for lignin conversion. → Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  16. Surface changes of biopolymers PHB and PLLA induced by Ar{sup +} plasma treatment and wet etching

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar{sup +} plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers – polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  17. Xanthan Exopolysaccharide: Cu(2+) Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers.

    Science.gov (United States)

    Causse, Benjamin; Spadini, Lorenzo; Sarret, Géraldine; Faure, Adeline; Travelet, Christophe; Madern, Dominique; Delolme, Cécile

    2016-04-01

    The conformational impact of environmental biopolymers on metal sorption was studied through Cu sorption on xanthan. The apparent Cu(2+) complexation constant (logK; Cu(2+) + L(-) ↔ CuL(+)) decreased from 2.9 ± 0.1 at pH 3.5 to 2.5 ± 0.1 at pH 5.5 (ionic strength I = 0.1). This behavior is in apparent contradiction with basic thermodynamics, as usually the higher the pH the more cations bind. Our combined titration, circular dichroism and dynamic light scattering study indicated that the change observed in Cu bond strength relates to a conformational change of the structure of xanthan, which generates more chelating sites at pH 3.5 than at pH 5.5. This hypothesis was validated by the fact that the Cu sorption constants on xanthan were always higher than those measured on a mixture of pyruvic and glucuronic acids (logK = 2.2), which are the two constitutive ligands present in the xanthan monomer. This study shows the role of the structural conformation of natural biopolymers in metal bond strength. This finding may help to better predict the fate of Cu and other metals in acidic environmental settings such as aquatic media affected by acid mine drainage, as well as peats and acidic soils, and to better define optimal conditions for bioremediation processes.

  18. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A.V., E-mail: ponomarev@ipc.rssi.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation); Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation)

    2011-11-15

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: > Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. > Alternative approach to bio-oil production. > Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. > Electron-beam distillation mode is preferable for lignin conversion. > Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  19. A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers

    Science.gov (United States)

    Hu, Kan-Nian; Qiang, Wei; Tycko, Robert

    2011-01-01

    We describe a general computational approach to site-specific resonance assignments in multidimensional NMR studies of uniformly 15N,13C-labeled biopolymers, based on a simple Monte Carlo/simulated annealing (MCSA) algorithm contained in the program MCASSIGN2. Input to MCASSIGN2 includes lists of multidimensional signals in the NMR spectra with their possible residue-type assignments (which need not be unique), the biopolymer sequence, and a table that describes the connections that relate one signal list to another. As output, MCASSIGN2 produces a high-scoring sequential assignment of the multidimensional signals, using a score function that rewards good connections (i.e., agreement between relevant sets of chemical shifts in different signal lists) and penalizes bad connections, unassigned signals, and assignment gaps. Examination of a set of high-scoring assignments from a large number of independent runs allows one to determine whether a unique assignment exists for the entire sequence or parts thereof. We demonstrate the MCSA algorithm using two-dimensional (2D) and three-dimensional (3D) solid state NMR spectra of several model protein samples (α-spectrin SH3 domain and protein G/B1 microcrystals, HET-s218–289 fibrils), obtained with magic-angle spinning and standard polarization transfer techniques. The MCSA algorithm and MCASSIGN2 program can accommodate arbitrary combinations of NMR spectra with arbitrary dimensionality, and can therefore be applied in many areas of solid state and solution NMR. PMID:21710190

  20. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    Science.gov (United States)

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  1. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    Science.gov (United States)

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems.

  2. Rayleigh Scattering of Moessbauer Radiation (RSMR) data, hydration effects and glass-like dynamical model of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V.I.; Krupyanskii, Yu.F.; Fleurov, V.N.

    1986-06-01

    Specific features of the Rayleigh Scattering of Moessbauer Radiation (RSMR) technique in the study of biological systems are described. Experimental data show that the temperature and hydration degree are the principal parameters which influence intramolecular mobility in biopolymers. Data on temperature dependencies of elastic fraction, f, and spectrum line-shape do not fit neither Debye or Einstein models of solids nor the free diffusion in liquids and demand for their explanation a multimode approximation (i.e. a wide spectrum of correlation times, at T=293 K from 10/sup -6/s to 10/sup -12/-10/sup -13/s). On the basis of RSMR, low temperature specific heat and X-ray dynamic analysis data and from the general conditions that information macromolecule must be in a non-equilibrium state (an independent confirmation of this fact comes from the kinetic model of protein folding) a glass-like dynamical model of biopolymers is formulated. A possible interpretation of RSMR data shows that fluctuatively prepared tunneling between quasiequilibrium positions (QEP) can prevail activated transitions up to a room temperature.

  3. Research and development of two marine-degradable biopolymers. Rept. for 1 Oct 89-30 Sep 90

    Energy Technology Data Exchange (ETDEWEB)

    Andrady, A.L.; Pegram, J.E.; Olson, T.M.

    1992-03-01

    The Navy is developing a biopolymeric film material suitable for fabrication into marine-disposable trash bags so that it can comply with impending national and international requirements which will prohibit the discharge of plastics into the sea. Two biopolymers, chitosan and regenerated cellulose, were selected and tested to meet this need. After 6 weeks of marine exposure, regenerated cellulose samples disappeared; after 10 weeks, chitosan samples became brittle and separated, while chitosan showed greater anaerobic degradation than regenerated cellulose in soil studies, the opposite occurred in the marine sediment environment. Aerobic degradation was much higher than anaerobic degradation for both biopolymers. To improve flexibility, 50 plasticizers were tested in chitosan. Ten percent lithium bromide and 5% lithium acetate/10% PEG 400 in chitosan were the most effective plasticizers. Regenerated cellulose films treated with lithium salt solutions also showed improved flexibility. Incorporating urea and potassium phosphate into cellulose showed that degradation could be increased in soil. Tests are ongoing to further accelerate the rate of biodegradation by increasing the availability of nitrogen and phosphorus. Fabricating trash bags will require adhesive bonding. Five adhesives were evaluated with regenerated cellulose. Covinax 220, JW 2-47, and Adcote 333T proved acceptable. Chitosan requires further development to be produced and processed into bags efficiently. With minor adjustments, regenerated cellulose presently meets this requirement; thus, it is the more promising film. Progress towards the goal of developing a biopolymeric film material meeting the Navy's requirements is continuing.

  4. Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties?

    Indian Academy of Sciences (India)

    Tapas Mitra; G Sailakshmi; A Gnanamani

    2014-01-01

    In the field of natural and/or synthetic polymer preparation and stabilization, glutaraldehyde is the most commonly used cross-linker. Glutaraldehyde is focused by several scientists due its ease of cross-linking ability through the formation of Schiff base type of compound. Though glutaraldehyde cross-linked product has several advantages, the main drawback lies with the toxicity and poor mechanical stability. The poor mechanical strength of glutaraldehyde cross-linked product is due to the bonding pattern (-C=N-) between glutaraldehyde and amine group containing compound, where, there is a large energy barrier to rotation associated with groups joined by double bond. This is the time to search for an alternative cross-linker which will provide a non-toxic and mechanically stable biopolymer material. In order to achieve the requisite property, in the present study, we have chosen glutaric acid (oxidized form of glutaraldehyde) and studied its interaction with chitosan and type-I collagen. The chemistry behind the interaction and the characteristics of the biopolymer material obtained upon cross-linking suggests that non-covalent interactions play a major role in deciding the property of the said materials and its suitability for biomedical applications.

  5. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.

    Science.gov (United States)

    Lopez-Pena, Cynthia Lyliam; McClements, David Julian

    2014-06-15

    Polylysine is a cationic biopolymer with a strong antimicrobial activity against a wide range of microorganisms, however, its functional performance is influenced by its interactions with anionic biopolymers. We examined the stability of polylysine-pectin complexes in the presence of carrageenan, and vice versa. Polylysine-pectin or polylysine-carrageenan complexes were formed at mass ratios of 1:0 to 1:32 (pH 3.5), and then micro-electrophoresis, turbidity, microscopy, and isothermal titration calorimetry (ITC) were used to characterise them. Solutions containing polylysine-pectin complexes were slightly turbid and relatively stable to aggregation at high mass ratios, whereas those containing polylysine-carrageenan complexes were turbid and unstable to aggregation and precipitation. Pectin did not strongly interact with polylysine-carrageenan complexes, whereas carrageenan displaced pectin from polylysine-pectin complexes, which was attributed to differences in electrostatic attraction between polylysine, carrageenan, and pectin. These results have important implications for the design of effective antimicrobial delivery systems for foods and beverages.

  6. Influence of Chitosan Coating on Mechanical Stability of Biopolymer Carriers with Probiotic Starter Culture in Fermented Whey Beverages

    Directory of Open Access Journals (Sweden)

    Nataša S. Obradović

    2015-01-01

    Full Text Available The aim of this study was to improve the mechanical stability of biopolymer carriers and cell viability with addition of chitosan coating during fermentation process and product storage. Dairy starter culture (1% (w/v was diluted in whey and mixed with sodium alginate solution and the beads were made using extrusion technique. The mechanical stability of coated and uncoated beads, the release behavior, and the viability of encapsulated probiotic dairy starter culture in fermented whey beverages were analyzed. The mechanical properties of the beads were determined according to force-displacement and engineering stress-strain curves obtained after compression testing. It was observed that addition of chitosan as a coating on the beads as well as the fermentation process increased the elastic modulus of the calcium alginate-whey beads and cell survival. The current study revealed that the coating did not significantly improve the viability of probiotics during the fermentation but had an important influence on preservation of the strength of the carrier during storage. Our results indicate that whey-based substrate has positive effect on the mechanical stability of biopolymer beads with encapsulated probiotics.

  7. Xanthan Exopolysaccharide: Cu(2+) Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers.

    Science.gov (United States)

    Causse, Benjamin; Spadini, Lorenzo; Sarret, Géraldine; Faure, Adeline; Travelet, Christophe; Madern, Dominique; Delolme, Cécile

    2016-04-01

    The conformational impact of environmental biopolymers on metal sorption was studied through Cu sorption on xanthan. The apparent Cu(2+) complexation constant (logK; Cu(2+) + L(-) ↔ CuL(+)) decreased from 2.9 ± 0.1 at pH 3.5 to 2.5 ± 0.1 at pH 5.5 (ionic strength I = 0.1). This behavior is in apparent contradiction with basic thermodynamics, as usually the higher the pH the more cations bind. Our combined titration, circular dichroism and dynamic light scattering study indicated that the change observed in Cu bond strength relates to a conformational change of the structure of xanthan, which generates more chelating sites at pH 3.5 than at pH 5.5. This hypothesis was validated by the fact that the Cu sorption constants on xanthan were always higher than those measured on a mixture of pyruvic and glucuronic acids (logK = 2.2), which are the two constitutive ligands present in the xanthan monomer. This study shows the role of the structural conformation of natural biopolymers in metal bond strength. This finding may help to better predict the fate of Cu and other metals in acidic environmental settings such as aquatic media affected by acid mine drainage, as well as peats and acidic soils, and to better define optimal conditions for bioremediation processes. PMID:26824427

  8. Reparative regeneration of cornea at nanostructured biopolymer of hyaluronic acid application

    Directory of Open Access Journals (Sweden)

    V.N. Kanyukov

    2014-04-01

    Full Text Available ABSTRACT Purpose. Estimation of corneal reparative regeneration processes course at application of bioplastic material – nanostructured biopolymer of hyaluronic acid on the model of chemical (alkaline and acid cornea burn. Material and methods. Experimental modeling of cornea chemical burn was carried out on 36 rabbits (72 eyes. The study had two series of cornea burn: alkaline (18 rabbits – 36 eyes and acid (18 rabbits – 36 eyes corneal burns. In each of the series there was identified: an experimental group, which used the applique of bioplastic material «hyamatrix» according to the method of prof. V.N. Kanyukov and control one with Solcoseryl instillations. The clinical study included an examination of the eye anterior segment using the focus and side lighting and photographic recording. At the of period of 3, 7, 14, 30 and 90 days the animals were removed from the experiment for the light-optical, immunocytochemistry and electron microscopy studies. Results. At conducting «hyamatrix» application conjunctiva edema and injection, corneal edema were reversed faster that reduced neovascularization risk in the outcome of corneal alkaline burn. Morphological studies at different periods of the experiment made it possible to determine the sequence of processes from the moment of cornea chemical burns application until the completion of its restoration, which were different in the experimental and control groups. Symptoms of toxic effect of the damaged cells decay products were determined morphologically. Endothelial cells remained intact. The use of «hyamatrix» application allowed reducing the recovery time with the improvement of cornea reparative processes. Conclusion. 1. Application of bioplastic material to the cornea in the early stages of cornea injuries treatment (alkaline and acid burn reduces the severity of edema and hyperemia, and as a result reduces the exudative phase of inflammation. 2. As a result of clinical and

  9. NOS-based biopolymers; towards novel thromboresistant NO-release materials

    Science.gov (United States)

    Abou Diwan, Charbel

    Nitric Oxide releasing biopolymers have the potential to prolong vascular graft and stent potency without adverse systemic vasodilation. It was reported in literature that eNOS-overexpressing endothelial cell seeding of synthetic small diameter vascular grafts decreased human platelet aggregation by 46% and bovine aortic smooth muscle cell proliferation by 67.2% in vitro. We hypothesized that incorporating the enzyme nitric oxide synthase (NOS) in biocompatible polymeric matrix will provide a source of NO that utilizes endogenous compounds to maintain an unlimited supply of NO. To test this hypothesis, we have incorporated the enzyme nitric oxide synthase into a polyethyleneimine film using a layer-by-layer electrostatic deposition. This approach will provide a source of NO that utilizes endogenous compounds available in the blood matrix to maintain a constant supply of NO at the blood/device interface. When coated onto the surface of various blood-contacting implantable medical devices, it will provide NO fluxes at levels equal or greater than the normal endothelial cells, and for extended time periods. This configuration will help solve the issues of both thrombosis and stenosis that occur as side effects for several types of biomedical implants. Our results indicate a proof of principle of a new approach for making antithrombotic coatings for medical devices and implants based on NO release. We have demonstrated that NOS-based polymetric films successfully generate NO under physiologic conditions at small levels equal to and higher than those observed for endothelial cells. The level of NO release can be fine-tuned through varying the number of NOS layers in the film buildup. We have shown that NO fluxes from our NOS-based PEI films are sustained for prolonged periods of time, which has the potential of producing efficient, short and long-term, antithrombotic coatings for medical devices and blood-contacting tools such as stents and catheters. We also show that

  10. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender;

    2009-01-01

    of clay nanoparticulates, an analytical system combining asymmetrical flow field-flow fractionation (AF4) with multi-angle light-scattering detection (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) is presented. In a migration study, we tested a biopolymer nanocomposite consisting...

  11. Recognition of n-alkyl and isoprenoid biopolymers in marine sediments by stable carbon isotopic analysis of pyrolysis products of kerogens

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hold, I.M.; Schouten, S.; Kaam-Peters, H.M.E. van

    1998-01-01

    Analysis of the pyrolysis products of several marine kerogens revealed that the stable carbon isotopic composition of the n-alkanes (C10-C25) are quite similar to those of the n-alkenes. This suggests that they have a common origin such as algal biopolymers. The isoprenoid alkanes (C13-C20) also hav

  12. Molecular level characterization of diatom-associated biopolymers that bind 234Th, 233Pa, 210Pb, and 7Be in seawater: A case study with Phaeodactylum tricornutum

    Science.gov (United States)

    Chuang, Chia-Ying; Santschi, Peter H.; Xu, Chen; Jiang, Yuelu; Ho, Yi-Fang; Quigg, Antonietta; Guo, Laodong; Hatcher, Patrick G.; Ayranov, Marin; Schumann, Dorothea

    2015-09-01

    In order to investigate the importance of biogenic silica associated biopolymers on the scavenging of radionuclides, the diatom Phaeodactylum tricornutum was incubated together with the radionuclides 234Th, 233Pa, 210Pb, and 7Be during their growth phase. Normalized affinity coefficients were determined for the radionuclides bound with different organic compound classes (i.e., proteins, total carbohydrates, uronic acids) in extracellular (nonattached and attached exopolymeric substances), intracellular (ethylene diamine tetraacetic acid and sodium dodecyl sulfate extractable), and frustule embedded biopolymeric fractions (BF). Results indicated that radionuclides were mostly concentrated in frustule BF. Among three measured organic components, Uronic acids showed the strongest affinities to all tested radionuclides. Confirmed by spectrophotometry and two-dimensional heteronuclear single quantum coherence-nuclear magnetic resonance analyses, the frustule BF were mainly composed of carboxyl-rich, aliphatic-phosphoproteins, which were likely responsible for the strong binding of many of the radionuclides. Results from this study provide evidence for selective absorption of radionuclides with different kinds of diatom-associated biopolymers acting in concert rather than as a single compound. This clearly indicates the importance of these diatom-related biopolymers, especially frustule biopolymers, in the scavenging and fractionation of radionuclides used as particle tracers in the ocean.

  13. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release.

    Science.gov (United States)

    Fulzele, Suniket V; Satturwar, Prashant M; Dorle, Avinash K

    2007-01-01

    The purpose of this study was to investigate the in vitro-in vivo degradation and tissue compatibility of three novel biopolymers viz. polymerized rosin (PR), glycerol ester of polymerized rosin (GPR) and pentaerythritol ester of polymerized rosin (PPR) and study their potential as implant matrix for the delivery of ciprofloxacin hydrochloride. Free films of polymers were used for in vitro degradation in PBS (pH 7.4) and in vivo in rat subcutaneous model. Sample weight loss, molecular weight decline, and morphological changes were analyzed after periodic intervals (30, 60, and 90 days) to monitor the degradation profile. Biocompatibility was evaluated by examination of the inflammatory tissue response to the implanted films on postoperative days 7, 14, 21, and 28. Furthermore, direct compression of dry blends of various polymer matrices with 20%, 30%, and 40% w/w drug loading was performed to investigate their potential for implant systems. The implants were characterized in terms of porosity and ciprofloxacin release. Biopolymer films showed slow rate of degradation, in vivo rate being faster on comparative basis. Heterogeneous bulk degradation was evident with the esterified products showing faster rates than PR. Morphologically all the films were stiff and intact with no significant difference in their appearance. The percent weight remaining in vivo was 90.70 +/- 6.2, 85.59 +/- 5.8, and 75.56 +/- 4.8 for PR, GPR, and PPR films respectively. Initial rapid drop in Mw was demonstrated with nearly 20.0% and 30.0% decline within 30 days followed by a steady decline to nearly 40.0% and 50.0% within 90 days following in vitro and in vivo degradation respectively. Biocompatibility demonstrated by acute and subacute tissue reactions showed minimal inflammatory reactions with prominent fibrous encapsulation and absence of necrosis demonstrating good tissue compatibility to the extent evaluated. All implants showed erosion and increase in porosity that affected the drug

  14. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-01-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10−4 S cm−1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor. PMID:27265642

  15. Use of slow-release fertilizers and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ran Xu; Li Ching Yong; Yong Giak Lim; Obbard, J.P. [National University of Singapore (Singapore). Department of Chemical and Biomolecular Engineering

    2005-07-01

    Nutrient concentration and hydrocarbon bioavailability are key factors affecting biodegradation rates of oil in contaminated beach sediments. The effect of a slow-release fertilizer, Osmocote, as well as two biopolymers, chitin and chitosan, on the bioremediation of oil-spiked beach sediments was investigated using an open irrigation system over a 56-day period under laboratory conditions. Osmocote was effective in sustaining a high level of nutrients in leached sediments, as well as elevated levels of microbial activity and rates of hydrocarbon biodegradation. Chitin was more biodegradable than chitosan and gradually released nitrogen into the sediment. The addition of chitin or chitosan to the Osmocote amended sediments enhanced biodegradation rates of the alkanes relative to the presence of Osmocote alone, where chitosan was more effective than chitin due to its greater oil sorption capacity. Furthermore, chitosan significantly enhanced the biodegradation rates of all target polycyclic aromatic hydrocarbons. (author)

  16. Associative polymers and physical gels derived from natural biopolymers; Polymeres associes et gels physiques derives de biopolymeres naturels

    Energy Technology Data Exchange (ETDEWEB)

    Muller, G.; Huguet, J.; Merle, L.; Grisel, M.; Picton, L.; Bataille, I.; Charpentier, D.; Glinel, K. [CNRS, Polymeres, Biopolymeres et Membranes, Universite de Rouen, 76 - Mont-Saint-Aignan (France)

    1997-04-01

    Polymers are largely used in oil-field operations where the control of rheology of aqueous phases ids of primary importance. Polymers systems showing high viscosity present many advantages as candidates for drilling muds. Associating polymers, i.e. polymers the hydrophilic main chains of which have been properly modified by introducing hydrophobic groups and weak physical ges are good examples of such systems. The different systems chosen to be studied are derived from natural biopolymers. They are: Alkyl derivatives issued from neutral (HEC) and ionic (CMC) cellulosic ether derivatives; alkyl and fluoro alkyl derivatives from neutral (Pull) and ionic (CMP) bacterial polysaccharide pullulane; weak physical gels resulting from complex formation between borate ions and the neutral fungal polysaccharide schizophyllan. The different results are given in tables and figures. (N.C.)

  17. Isolation and characterization of a new class of amphipathic biopolymers capable of self-assembly from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G.G.; Cannon, G.C.; McCormick, C.L. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

    1996-10-01

    Extensive research is being done in many laboratories to investigate the role of synthetic hydrophobically-modified polymers and amphipathic proteins for their potential in phase-transfer, sequestration, and elimination of polluting hydrocarbons and surfactants. Our laboratory has begun a research program which is aimed at the development of a new class of environmentally benign biomaterials using the amphipathic proteins termed {open_quotes}hydrophobins{close_quotes} and an associated polysaccharide, schizophyllan. These biopolymers can stabilize oil dispersions, attach strongly to polyethylene and polytetrafluoroethylene surfaces rendering them hydrophilic, and can self-assemble into a stable, flexible membrane. Preliminary experiments in our laboratory and others have demonstrated the immense technological potential of this class of biomaterials for surface modification of membranes and coatings, fouling resistance, controlled delivery, protective encapsulation, and drag reduction.

  18. Anti-tumor Effects of Exo- and Endo-biopolymers Produced from Submerged Cultures of Three Different Mushrooms

    Science.gov (United States)

    Jeong, Yong-Tae; Yang, Byung-Keun; Li, Chun-ru

    2008-01-01

    The anti-tumor effects of exo- (EX) and endo-biopolymers (EN) produced from submerged mycelial cultures of Ganoderma applanatum (GA), Collybia confluens (CC), and Pleurotus eryngii (PE) were studied using Sarcoma 180 bearing mice. Solid tumor growth was inhibited most effectively when 40 mg/kg body weight (BW) of GA-EX or PE-EN was administered to the intraperitoneal (i.p.) cavity of BALB/c mice. The spleen and liver indexes were increased in mice following i.p. administration of GA-EX and PE-EN fractions. GA-EX and PE-EN reduced the tumor formation by 30.7% and 29.4%, respectively. GA-EX and PE-EN increased the natural killer (NK) cell activity of splenocytes by 41.3% and 28.9%, respectively. PMID:23990743

  19. Hypoglycemic Effects of Exo-biopolymers Produced by Five Different Medicinal Mushrooms in STZ-induced Diabetic Rats

    Science.gov (United States)

    Yang, Byung-Keun; Kim, Guk-Nam; Jeong, Yong-Tae; Jeong, Hun; Mehta, Pradeep

    2008-01-01

    Hypoglycemic effects of exo-biopolymers (EBP) produced by submerged mycelial cultures of Coriolus versicolor, Cordyceps sinensis, Paecilomyces japonica, Armillariella mellea, and Fomes fomentarius were investigated in streptozotocin (STZ)-induced diabetic rats. The rats from each experimental group were orally administered with EBPs (100 mg/kg BW) daily for 2 weeks. Though the hypoglycemic effect was achieved in all the cases, however, C. versicolor EBP proved as the most potent one. The administration of the C. versicolor EBP substantially reduced (29.9%) the plasma glucose level as compared to the saline administered group (control). It also reduced the plasma total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and, alanine aminotransferase (ALT) levels by 9.22, 23.83, 16.93, and 27.31%, respectively. The sugar and amino acid compositions of this EBP were also analyzed in detail. PMID:23997607

  20. Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer.

    Science.gov (United States)

    Sindhu, Raveendran; Kuttiraja, Mathiyazhakan; Prabisha, Thunoli Payyanvalappil; Binod, Parameswaran; Sukumaran, Rajeev K; Pandey, Ashok

    2016-09-01

    The present study highlights the development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer (poly-3-hydroxybutyrate). Maximum reducing sugar yield was 0.374g/g. The hydrolyzate is devoid of major fermentation inhibitors like furfural and organic acids and can be used for fermentation without any detoxification. Fermentation of the non-detoxified hydrolyzate with Saccharomyces cerevisiae yielded 1.48% of ethanol with a fermentation efficiency of 61.25% and with Comamonas sp. yielded 35.86% of poly-3-hydroxybutyrate without any nutrient supplementation. Characterization of native, control as well as the residue left out after combined pretreatment and hydrolysis of RS by scanning electron microscopy and X-ray diffraction showed difference. Compositional analysis revealed that the residue contains lignin and hemicellulose as the major component indicating that major portion of cellulose were hydrolyzed in this strategy. PMID:26949053

  1. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  2. Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material

    Science.gov (United States)

    Zhang, Fei-yan; Wang, Zhen-yong; Yan, Cheng-en; Zhou, Jun

    2012-03-01

    A novel biopolymer, deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-HCTAC), is used as the core layer material in optical waveguide, and the cleanroom technology is successfully applied to fabricate the single-mode channel waveguides with low propagation loss. The prepared DNA-HCTAC material shows high optical quality at the optical telecommunication wavelengths, such as high transparency, relatively high refractive index and low birefringence. In the fabrication approach, polymethyl methacrylate (PMMA) is used as a barrier layer to protect the DNA-HCTAC material from the corrosive of photoresist developer, and the etching conditions are optimized to form the smooth wall and sharp cross-section of the waveguide. Lastly, the optical characteristics of DNA-HCTAC channel waveguides are measured. The results show that the DNA-HCTAC waveguide operates with single-mode propagation and has a low optical loss.

  3. Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei-yan; WANG Zhen-yong; YAN Cheng-en; ZHOU Jun

    2012-01-01

    A novel biopolymer,deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-HCTAC),is used as the core layer material in optical waveguide,and the cleanroom technology is successfully applied to fabricate the single-mode channel waveguides with low propagation loss.The prepared DNA-HCTAC material shows high optical quality at the optical telecommunication wavelengths,such as high transparency,relatively high refractive index and low birefringence.In the fabrication approach,polymethyl methacrylate (PMMA) is used as a barrier layer to protect the DNA-HCTAC material from the corrosive ofphotoresist developer,and the etching conditions are optimized to form the smooth wall and sharp cross-section of the waveguide.Lastly,the optical characteristics of DNA-HCTAC channel waveguides are measured.The results show that the DNA-HCTAC waveguide operates with single-mode propagation and has a low optical loss.

  4. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Duclerc F. [Universidade Presbiteriana Mackenzie, R. da Consolacao, 930, Sao Paulo - SP (Brazil)]. E-mail: dfparra@ipen.br; Rodrigues, Juliana A.F.R. [Universidade Presbiteriana Mackenzie, R. da Consolacao, 930, Sao Paulo - SP (Brazil); Lugao, Ademar B. [Universidade Presbiteriana Mackenzie, R. da Consolacao, 930, Sao Paulo - SP (Brazil)

    2005-07-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a {sup 60}Co source. Samples were melted at 200 deg. C and quenched to 0 deg. C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N{sub 2} atmosphere, heating from -50 to 200 deg. C (10 deg. C min{sup -1}), cooling from 200 to -50 deg. C (10 deg. C min{sup -1}); and heating from -50 to 200 deg. C (10 deg. C min{sup -1}). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.

  5. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    Science.gov (United States)

    Parra, Duclerc F.; Rodrigues, Juliana A. F. R.; Lugão, Ademar B.

    2005-07-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60Co source. Samples were melted at 200 °C and quenched to 0 °C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N2 atmosphere, heating from -50 to 200 °C (10 °C min-1), cooling from 200 to -50 °C (10 °C min-1); and heating from -50 to 200 °C (10 °C min-1). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.

  6. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    Science.gov (United States)

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. PMID:27474675

  7. [Evaluation of Chirulen biopolymer properties based on molecular and super-molecular structure changes caused by plastic strain and radiation sterilization].

    Science.gov (United States)

    Cybo, Jerzy; Czaja, Krystyna; Duda, Piotr; Sudoł, Marek; Okrajni, Jerzy

    2002-01-01

    The paper presents an analysis of the effect of plastic strain and sterilization treatment by an electron beam as well as the joint effect of both of the two external factors on the change of molecular and supermolecular characteristics of the Chirulen biopolymer which is used for the production of Weller endoprosthesis cups. It has been shown how, due to these influences, the weighted mean molar mass, differentiation of macromolecule sizes, crystalline phase fraction and the degree of order of polymer internal structure are changing. In terms of such changes the effects on the cup material are presented connected with hardness, the modulus of elasticity and polymer susceptibility to undurable deformations. Simultaneously, conclusions were formed concerning possible biopolymer behaviors during endoprosthesis service if the described effects and accompanying modification of the internal structure occur.

  8. Hypolipidemic Effects of Biopolymers Extracted from Culture Broth, Mycelia, and Fruiting Bodies of Auricularia auricula-judae in Dietary-induced Hyperlipidemic Rats

    Science.gov (United States)

    Jeong, Hun; Yang, Byung-Keun; Jeong, Yong-Tae; Kim, Guk-Nam; Jeong, Yu-Sun; Kim, Sang-Min; Mehta, Pradeep

    2007-01-01

    Hypolipidemic effect of biopolymers extracted from culture broth (CP), mycelia (MP), and fruiting bodies (FP) of Auricularia auricula-judae was investigated in dietary-induced hyperlipidemic rats. The experimental animals were administrated (100 mg/kg body weight) with different biopolymers, daily for 4 weeks. Hypolipidemic effects were achieved in all the experimental groups, however, FP was proved to be the most potent one. The administration of the FP reduced the plasma triglyceride, total cholesterol, low-density lipoprotein cholesterol, and atherogenic index by 24.3, 28.5, 36.4, and 40.9%, respectively, while increased the high-density lipoprotein cholesterol level (9.0%), when compared to the saline (control) administered group. PMID:24015062

  9. Mercury and mercury electrodes in the electrochemistry of biopolymers: Are they really inevitable in the decade of non-mercury sensors?

    OpenAIRE

    Fojta, Miroslav; Havran, Luděk; Horáková, Petra; Pivoňková, Hana

    2011-01-01

    In this article, electrochemical properties of nucleic acids and proteins at mercury electrodes are briefly reviewed. We focus on structure sensitive DNA and protein sensing and/or techniques based on the utilization of catalytic hydrogen evolution i.e., analyses that are inherently connected with the mercury electrodes. Advantages of these approaches are briefly summarized and discussed towards answering the title question regarding necessity of mercury electrodes in biopolymer elec...

  10. Staple fiber processing of biopolymers opens doors to new markets%生物高分子短纤维加工走向新市场

    Institute of Scientific and Technical Information of China (English)

    S.Ramaswamy; S.Ray; M.A.Raina; T.Gries; 王倩妮

    2011-01-01

    Research and innovation on the development of raw materials and energy sources based on the use to renew- able resources have now become a world priority. Application of biopolymers in textile based products need to be increased to make a step towards sustainable and green development. The paper presents a state of the art and also discusses the envisaged applications for biopolymers in textile based products. To gather some basic idea about the technology for biopolymer staple spinning with minimum expense of resources the appli- cation of theory of solving inventive problems (TRIZ) is discussed.%原材料发展和以再生资源为主的能源方面的研究和创新现已成为世界关注的焦点。生物高分子在纺织产品上的应用应进一步朝着可持续和绿色的方向发展。介绍了目前生物高分子发展水平,讨论了生物高分子材料在纺织品上的应用预测。创新问题解决理论(TRIZ)的应用是讨论以最少的资源为代价开发一些生物高分子纤维纺纱技术的基本思路。

  11. Improved oil production using economical biopolymer-surfactant blends for profile modification and mobility control. Final report, November 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, J. [Prairie View A and M Univ., TX (United States); Barrufet, M.A.; Burnett, D.B. [Texas A and M Univ., College Station, TX (United States)

    1998-12-01

    In the past, starch hydrocolloids have not been effective alternates to partially hydrolyzed polyacrylamides, copolymers, and xanthan gum polymers as water shutoff agents in fractures and in matrix flow configurations. Poor injectivity and questionable stability have usually prevented their use in profile control applications. However, in recent years, the demands of the oil and gas drilling industry have led to the development of new drilling, drill-in, and completion fluids with improved functionality. New types of modified starches have contributed to these new drill in fluid (DIF) products. It was felt that the properties of the new products would lend themselves to applications in improved recovery. The objective of this project has been to evaluate the use of agricultural starch biopolymers for gelled and polymer applications in oil recovery processes. The authors believe that there is great potential for finding new functional starch products because of their chemical and structural flexibility, low cost, and wide availability. The goals of this project have been, therefore, to systematically investigate how the physical properties and chemical composition of relatively inexpensive agricultural starch products will influence their use as effective selective permeability control agents or as gels for water shut-off.

  12. Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques.

    Science.gov (United States)

    Edalatmanesh, Maryam; Sain, Mohini; Liss, Steven N

    2010-01-01

    For proper treatment, recycling, or disposal of the pulp and paper mill secondary sludge qualitative and quantitative determination of its characteristics are necessary. Chemical extraction, quantitative characterization, and spectroscopic experiments have been performed to determine the molecular composition and chemical functionality of a pulp and paper mill secondary sludge. In order to extract the low-molecular-weight substances, soxhlet extraction with polar and non-polar solvents was performed where most of the target substances (17±1.3%.) were extracted after 2 hours. Over time, this extraction followed a first-order kinetics. Fiber analyses have shown 12±3% lignin, 28±3% cellulose, and 12±4% hemicelluloses content. The ash content was about 17±0.5%. In this work, 7 and 16% intra- and extracellular polymeric substances, respectively, were extracted from the secondary sludge. EPS and mixture of intra- and extracellular biopolymers have shown similar chemical functionalities. These analyses confirmed that the paper secondary sludge consisted mainly of wood fiber, i.e. lignocellulosic substances, along with proteins and polysaccharides originated from microorganisms. PMID:21123914

  13. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity.

    Science.gov (United States)

    Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A

    2016-06-25

    The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. PMID:27083804

  14. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    Science.gov (United States)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  15. Inhibition of calcification of bovine pericardium after treatment with biopolymers, E-beam irradiation and in vitro endothelization

    Energy Technology Data Exchange (ETDEWEB)

    Polak, Roberta [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, USP, Sao Paulo, SP (Brazil); Rodas, Andrea C.D. [Biotechnology Center, Energy and Nuclear Research Institute, IPEN-CNEN/SP, Sao Paulo, SP (Brazil); Chicoma, Dennis L.; Giudici, Reinaldo [Department of Chemical Engineering of Polytechnic School, University of Sao Paulo, SP (Brazil); Beppu, Marisa M. [School of Chemical Engineering, University of Campinas, UNICAMP, Campinas, SP (Brazil); Higa, Olga Z. [Biotechnology Center, Energy and Nuclear Research Institute, IPEN-CNEN/SP, Sao Paulo, SP (Brazil); Pitombo, Ronaldo N.M., E-mail: pitombo@usp.br [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, USP, Sao Paulo, SP (Brazil)

    2013-01-01

    This work has investigated the in vitro calcification of bovine pericardium (BP) treated with chitosan (C), silk fibroin (SF) and electron beam irradiation after its endothelization in vitro. For this purpose, freeze-dried BP membranes treated with mixtures of C and SF (1:3, 1:1 and 3:1) and then irradiated by electron beam irradiation were seeded with human umbilical vein endothelial cells (HUVEC) in vitro. After 3 weeks of cultivation these membranes were submitted to in vitro calcification tests using simulated body fluid as the calcifying agent. Control membranes were also studied (without endothelial cells exposure). The results have shown that the membrane compatibility with HUVECs in vitro prevent such biomaterial from calcifying, showing a potential application in biomaterial area, such as cardiac valves and repair patches. - Highlights: Black-Right-Pointing-Pointer Bovine pericardium tissue treated with biopolymers followed by electron beam irradiation could be endothelized in vitro Black-Right-Pointing-Pointer Calcification was inhibited after endothelization, demonstrating a new anti calcifying treatment for BP membranes Black-Right-Pointing-Pointer This membranes could be used as cardiac valves and repair patches.

  16. Preparation and characterization of biopolymers comprising chitosan-grafted-ENR via acid-induced reaction of ENR50 with chitosan

    Directory of Open Access Journals (Sweden)

    M. R. H. Mas Haris

    2014-02-01

    Full Text Available This paper describes the first detailed tailored-approach for the preparation of biopolymers comprising chitosan (CTS grafted onto the backbone of epoxidized natural rubber (CTS-g-ENR. In a typical experiment, appropriate amount of CTS and AlCl3•6H2O was added to a specified amount of ENR50 (ENR with about 50% epoxy content dissolved in a dual-solvent consisting of 1,4-dioxane and water (97.5:2.5% v/v and the resulting mixture refluxed with continuous stirring for 6 hours. Nuclear magnetic resonance (NMR spectral analysis of a biocomposite, CTS-g-ENR-P1, revealed that its epoxy content is 22.36% which is considerably lower than 44.93% as determined for ENR50-control (ENR50 derivative obtained under similar experimental condition but in the absence of CTS. This means that the grafting of CTS onto the backbone of ENR had occurred. The revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR, and the appearance of new bands at 1219, 902 and 733 cm–1 in the Fourier transform infrared (FTIR spectrum of CTS-g-ENR-P1. Further evidence that CTS had been successfully grafted onto the backbone of ENR can be deduced and described in this paper from the data obtained by means of Differential Scanning Calorimetric analysis, Thermogravimetric analysis and Variable Pressure Scanning Electron Microscopy.

  17. Synthesis of Monodisperse Poly(glycidylmethacrylate-co-ethylene dimethacrylate) Beads and Their Application in Separation of Biopolymers

    Institute of Scientific and Technical Information of China (English)

    GONG, Bo-Lin(龚波林); KE, Cong-Yu(柯从玉); GENG, Xin-Du(耿信笃)

    2004-01-01

    The monodisperse poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads with macroporous in the range of 8.0-12.0 μm were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. The pore size distribution of the beads was evaluated by gel permeation chromatography and mercury intrusion method. By using this media, a weak cation exchange (WCX) stationary phase for HPLC was synthesized by a new chemical modification method. The prepared resin has advantages of biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery and good resolution for proteins. The measured bioactivity recovery for lysozyme was (96±5)%. The dynamic protein loading capacity of the synthesized WCX packings was 21.3 mg/g. Five proteins were completely separated in 8.0 min using the synthesized WCX stationary phase. The experimental results show that the obtained WCX resin has very weak hydrophobicity. The WCX resin was also used for the rapid separation and purification of lysozyme from egg white in 8 min with only one step . The purity and specific bioactivity of the purified lysozyme was found more than 92.0% and 70184 U/mg, respectively.

  18. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    Science.gov (United States)

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. PMID:27384744

  19. Negative pressure model for surface foaming of collagen and other biopolymer films by KrF laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Lazare, S [Laboratoire de Physicochimie Moleculaire (LPCM), UMR 5803 du CNRS, Universite de Bordeaux 1, 351 cours de la Liberation, F-33405 Talence (France); Tokarev, V N [Laboratoire de Physicochimie Moleculaire (LPCM), UMR 5803 du CNRS, Universite de Bordeaux 1, 351 cours de la Liberation, F-33405 Talence (France); Sionkowska, A [Nicolaus Copernicus University, Faculty of Chemistry, Gagarin 7, 87-100 Torun (Poland); Wisniewski, M [Nicolaus Copernicus University, Faculty of Chemistry, Gagarin 7, 87-100 Torun (Poland)

    2007-04-15

    A single KrF laser pulse of energy larger than 0.5 J/cm{sup 2} is enough to create a microfoam layer on the surface of a collagen film and other related biopolymers. This is a new result that can be of interest for many new applications. The target material is excited in the radiation absorption depth of {approx}17 {mu}m and expands into a foam layer whose new surface is {approx}5 {mu}m above the original one. The estimated surface transient temperature of {approx}83deg. C at threshold fluence does not account satisfactorily for this fast foaming process but consideration of the bipolar pressure variation {approx}{+-}200 bar, i.e. laser induced acoustic wave suggests that a cold homogeneous boiling is induced by the tensile part of the pressure wave in the laser excited volume. The classical nucleation theory predicts a spontaneous dense and homogeneous bubble formation when the pressure is negative in the inviscid liquid. These results constitute new examples of laser induced fast expulsion of liquid due to the hydrodynamic pressure wave which can also be considered as resulting from the surface acceleration/deceleration sequence.

  20. Influence of Pulse Pressure on the State of Biopolymers and the Probability of Hydrolysis of Starch in Seeds

    Directory of Open Access Journals (Sweden)

    Violetta Pavlova

    2013-09-01

    Full Text Available Damage of seeds which leads to destruction of the crystal lattice and the phase transition of polymers is formed under the pulse pressure (PP treatment. Biopolymers such as starch compressed under specific conditions can be changed from crystalline to a glassy state; this transition is known to extend the life of seeds. The aging of seeds is involved in the enzymatic glycosylation of proteins and nucleic acids. Reducing sugars which have been produced in seeds by non-enzymatic hydrolysis enter into reaction of glycosylation with proteins and amino acids actively. The authors studied the water absorption by seeds of buckwheat (Fagopyrum esculentum Moench., cultivar Saulyk treated by PP. The values of PP which were used to treat had an influence on water absorption during the first hours of imbibition. When water content was 60%, hydrolysis of reserve substances could begin, so water potential was created by osmotically active molecules. Gibbs energy calculation by method of groups’ contribution indicated the reduction in probability of starch hydrolysis in plant seeds during transition from the crystalline to the glassy state.

  1. Solid biopolymer electrolytes came from renewable biopolymer

    Science.gov (United States)

    Wang, Ning; Zhang, Xingxiang; Qiao, Zhijun; Liu, Haihui

    2009-07-01

    Solid polymer electrolytes (SPEs) have attracted many attentions as solid state ionic conductors, because of their advantages such as high energy density, electrochemical stability, and easy processing. SPEs obtained from starch have attracted many attentions in recent years because of its abundant, renewable, low price, biodegradable and biocompatible. In addition, the efficient utilization of biodegradable polymers came from renewable sources is becoming increasingly important due to diminishing resources of fossil fuels as well as white pollution caused by undegradable plastics based on petroleum. So N, N-dimethylacetamide (DMAc) with certain concentration ranges of lithium chloride (LiCl) is used as plasticizers of cornstarch. Li+ can complexes with the carbonyl atoms of DMAc molecules to produce a macro-cation and leave the Cl- free to hydrogen bond with the hydroxyl or carbonyl of starch. This competitive hydrogen bond formation serves to disrupt the intra- and intermolecular hydrogen bonding existed in starch. Therefore, melt extrusion process conditions are used to prepare conductive thermoplastic starch (TPS). The improvements of LiCl concentration increase the water absorption and conductance of TPS. The conductance of TPS containing 0.14 mol LiCl achieve to 10-0.5 S cm-1 with 18 wt% water content.

  2. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures--a biomechanical in-vitro study.

    Science.gov (United States)

    Paech, A; Wilde, E; Schulz, A P; Heinrichs, G; Wendlandt, R; Queitsch, C; Kienast, B; Jürgens, Ch

    2010-04-01

    The cut-out of the sliding screw is one of the most common complications in the treatment of intertrochanteric fractures. The reasons for the cut-out are: a suboptimal position of the hip-screw in the femoral head, the type of fracture and poor bone quality. The aim of this study was to reproduce the cut-out event biomechanically and to evaluate the possible prevention of this event by the use of a biopolymer augmentation of the hip screw. Concerning the density and compression force of osteoporotic femoral bone polyurethane foam according to the terms of the Association for Standard Testing Material (ASTMF 1839-97) was used as test material. The polyurethane foam Lumoltan 200 with a compression force of 3.3 Mpa and a density of 0.192 g/cm(3) was used to reproduce the osteoporotic bone of the femoral fragment (density 12 lbm/ft(3)). A cylinder of 50 mm of length and 50 mm of width was produced by a rotary splint raising procedure with planar contact. The axial load of the system was performed by a hydraulic force cylinder of a universal test machine type Zwick 1455, Ulm, Germany. The CCD-angle of the used TGN-System was preset at 130 degrees. The migration pattern of the hip screw in the polyurethane foam was measured and expressed as a curve of the distance in millimeter (mm) against the applied load in Newton (N) up to the cut-out point. During the tests the implants reached a critical changing point from stable to unstable with an increased load progression of steps of 50 Newton. This unstable point was characterized by an increased migration speed in millimeters and higher descending gradient in the migration curve. This peak of the migration curve served as an indicator for the change of the hip screw position in the simulated bone material. The applied load in the non-augmented implant showed that in this group for a density degree of 12 (0,192 g/cm(3)) the mean force at the failure point was 1431 Newton (+/- 52 Newton). In the augmented implant we found that

  3. Specific applications of capillary electrochromatography to biopolymers, including proteins, nucleic acids, peptide mapping, antibodies, and so forth.

    Science.gov (United States)

    Krull, I S; Sebag, A; Stevenson, R

    2000-07-28

    Separation of biopolymers is an obvious application of capillary electrochromatography (CEC) technology, since speed and resolution should increase significantly over high-performance liquid chromatography (HPLC). All too often, HPLC chromatograms of polymers show poorly resolved envelopes of overlapping peaks from oligomers. The practical limitation of column length and pressure drop has hindered development of high resolution separations of many polymers in HPLC. However, this generally applies only to packed beds of small particles, and not to continuous (or monolithic) beds, as introduced by Hjerten et al. [S. Hjerten, Ind. Eng. Chem. Res. 38 (1999) 1205; S. Hjerten, C. Ericson, Y.-M. Li, R. Zhang, Biomed. Chromatogr. 12 (1998) 120; C. Ericson, S. Hjerten, Anal. Chem. 71 (1999) 1621; J.-L. Liao, N. Chen, C. Ericson, S. Hjerten, Anal. Chem. 68 (1996) 3468; S. Hjerten, A. Vegvari, T. Srichaiyo, H.-X. Zhang, C. Ericson, D. Eaker, J. Capillary. Elec. 5 (1998) 13; C. Ericson, J.-L. Liao, K. Nakazato, S. Hjerten, J. Chromatogr. A 767 (1997) 33; S. Hjerten, D. Eaker, K. Elenbring, C. Ericson, K. Kubo, J.-L. Liao, C.-M. Zeng, P.-A. Lidstrom, C. Lindh, A. Palm, T. Srichiayo, L. Valtcheva, R. Zhang, Jpn. J. Electroph. 39 (1995) 1]. Throughout this review we will refer to such packings as monolithic or continuous beds, but they are identical type packings, formed by the in situ polymerization in the capillary or column. CEC capillaries can be much longer, and contain smaller particles than is practical for HPLC. This improves resolution significantly. CEC is able to capitalize on existing mobile phase technology developed over 30 years to improve separations. The requirement that the mobile phase simultaneously promote the separation and mobile phase mobility needs to be considered. In RPLC, this dual role is not much of a problem. It may be much more important in other modes, particularly ion-exchange (IEC). As the field develops, it is becoming clear that CEC is not

  4. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures - a biomechanical in-vitro study

    Directory of Open Access Journals (Sweden)

    Paech A

    2010-04-01

    Full Text Available Abstract The cut-out of the sliding screw is one of the most common complications in the treatment of intertrochanteric fractures. The reasons for the cut-out are: a suboptimal position of the hip-screw in the femoral head, the type of fracture and poor bone quality. The aim of this study was to reproduce the cut-out event biomechanically and to evaluate the possible prevention of this event by the use of a biopolymer augmentation of the hip screw. Concerning the density and compression force of osteoporotic femoral bone polyurethane foam according to the terms of the Association for Standard Testing Material (ASTMF 1839-97 was used as test material. The polyurethane foam Lumoltan 200 with a compression force of 3.3 Mpa and a density of 0.192 g/cm3 was used to reproduce the osteoporotic bone of the femoral fragment (density 12 lbm/ft3. A cylinder of 50 mm of length and 50 mm of width was produced by a rotary splint raising procedure with planar contact. The axial load of the system was performed by a hydraulic force cylinder of a universal test machine type Zwick 1455, Ulm, Germany. The CCD-angle of the used TGN-System was preset at 130 degrees. The migration pattern of the hip screw in the polyurethane foam was measured and expressed as a curve of the distance in millimeter [mm] against the applied load in Newton [N] up to the cut-out point. During the tests the implants reached a critical changing point from stable to unstable with an increased load progression of steps of 50 Newton. This unstable point was characterized by an increased migration speed in millimeters and higher descending gradient in the migration curve. This peak of the migration curve served as an indicator for the change of the hip screw position in the simulated bone material. The applied load in the non-augmented implant showed that in this group for a density degree of 12 (0,192 g/cm3 the mean force at the failure point was 1431 Newton (± 52 Newton. In the augmented

  5. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D

    Science.gov (United States)

    Fabris, Daniele; Yu, Eizadora T.

    2010-01-01

    Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers, but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown substrates or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns, and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures, while highlighting common elements, salient distinctions, and complementary capabilities exhibited by methods employed in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological substrates. PMID:20648672

  6. Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks

    Science.gov (United States)

    Walker, Joan Marie

    Nanoparticles of gold and iron oxide not only possess remarkable optical and magnetic properties, respectively, but are also capable of influencing their local environment with an astounding degree of precision. Using nanoparticles to direct the reactivity of organic molecules near their surface provides a unique method of spatial and temporal control. Enediynes represent an exceptional class of compounds that are thermally reactive to produce a diradical intermediate via Bergman cycloaromatization. While natural product enediynes are famously cytotoxic, a rich chemistry of synthetic enediynes has developed utilizing creative means to control this reactivity through structure, electronics, metal chelation, and external triggering mechanisms. In a heretofore unexplored arena for Bergman cyclization, we have investigated the reactivity of enediynes in connection with inorganic nanoparticles in which the physical properties of the nanomaterial are directly excited to thermally promote aromatization. As the first example of this methodology, gold nanoparticles conjugated with (Z)-octa-4-en-2,6-diyne-1,8-dithiol were excited with 514 nm laser irradiation. The formation of aromatic and polymeric products was confirmed through Raman spectroscopy and electron microscopy. Water soluble analogues Au-PEG-EDDA and Fe3O4-PEG-EDDA (EDDA = (Z)-octa-4-en-2,6-diyne-1,8-diamine) show similar reactivity under laser irradiation or alternating magnetic field excitation, respectively. Furthermore, we have used these functionalized nanoparticles to attack proteinaceous substrates including fibrin and extracellular matrix proteins, capitalizing on the ability of diradicals to disrupt peptidic bonds. By delivering a locally high payload of reactive molecules and thermal energy to the large biopolymer, network restructuring and collapse is achieved. As a synthetic extension towards multifunctional nanoparticles, noble metal seed-decorated iron oxides have also been prepared and assessed for

  7. The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems.

    Science.gov (United States)

    Chen, Yu; Sun, Xiaofu; Yan, Chuanyu; Cao, Yuanyuan; Mu, Tiancheng

    2014-10-01

    There are mainly three findings related to the dynamic process of atmospheric water sorption in the ionic liquid (IL) 1-ethyl-3-methlyl-imidazolium acetate ([EMIM][Ac]) and its mixtures with biopolymers (i.e., cellulose, chitin, and chitosan), and CO2 capture in these systems above. The analytical methods mainly include gravimetric hygroscopicity measurement and in situ infrared spectroscopy with the techniques of difference, derivative, deconvoluted attenuated total reflectance and two-dimensional correlation. These three findings are listed as below. (1) Pure [EMIM][Ac] only shows a two-regime pattern, while all the mixtures of [EMIM][Ac] with biopolymers (i.e., cellulose, chitin, and chitosan) present a three-regime tendency for the dynamic process of atmospheric water sorption. Specifically, the IL/chitosan mixture has a clear three-regime mode; the [EMIM][Ac]/chitin mixture has an unclear indiscernible regime 3; and the [EMIM][Ac]/cellulose mixture shows an indiscernible regime 2. (2) [EMIM][Ac] and its mixtures with biopolymers could physically absorb a trace amount of and chemically react with a much larger amount of CO2 from the air. The chemisorption capacity of CO2 in these pure and mixed systems is ordered as chitosan/[EMIM][Ac] mixture > chitin/[EMIM][Ac] mixture > cellulose/[EMIM][Ac] mixture > pure [EMIM][Ac] (ca. 0.09 mass ratio % g/g CO2/IL). (3) The CO2 solubility in [EMIM][Ac] decreases about 50% after being exposed to the atmospheric moist air for some specific time period.

  8. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling.

  9. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  10. Measuring distances within unfolded biopolymers using fluorescence resonance energy transfer: The effect of polymer chain dynamics on the observed fluorescence resonance energy transfer efficiency

    Science.gov (United States)

    Makarov, Dmitrii E.; Plaxco, Kevin W.

    2009-01-01

    Recent years have seen a number of investigations in which distances within unfolded proteins, polypeptides, and other biopolymers are probed via fluorescence resonance energy transfer, a method that relies on the strong distance dependence of energy transfer between a pair of dyes attached to the molecule of interest. In order to interpret the results of such experiments it is commonly assumed that intramolecular diffusion is negligible during the excited state lifetime. Here we explore the conditions under which this “frozen chain” approximation fails, leading to significantly underestimated donor-acceptor distances, and describe a means of correcting for polymer dynamics in order to estimate these distances more accurately. PMID:19725638

  11. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties.. Annual report to be submitted to DOE Program Managers for posting on web page.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, BH

    2001-06-15

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government.

  12. Nanoparticles based on naturally-occurring biopolymers as versatile delivery platforms for delicate bioactive molecules: an application for ocular gene silencing.

    Science.gov (United States)

    Parraga, Jenny E; Zorzi, Giovanni K; Diebold, Yolanda; Seijo, Begoña; Sanchez, Alejandro

    2014-12-30

    Nanoparticles based on naturally-occurring biopolymers, most of them endogenous macromolecules, were designed as a versatile generation of delivery platforms for delicate bioactive molecules. The design of these nanosystems was specifically based on our recent finding about the ability of endogenous polyamine spermine (SPM) to interact with anionic biopolymers (ABs) generating ionically cross-linked nanosystems. The initial first generation of these delivery platforms, based on glycosaminoglycans and other polysaccharides, showed a very high association capacity for some delicate bioactive proteins such as growth factors, but a limited capacity to associate negatively charged molecules, such as pDNA and siRNA. However, the versatility of these nanosystems in terms of composition allowed us to customise the association of active ingredients and their physicochemical characteristics. Concretely, we prepared and incorporated gelatine cationized with spermine (CGsp) to their composition. The resulting modified formulations were characterised by a nanometric size (150-340 nm) and offer the possibility to modulate their zeta potential (from -35 to 28 mV), providing an efficient association of nucleic acids. The biological evaluation of these optimised nanosystems revealed that they are able to be internalised in vivo into corneal and conjunctival tissues and also to provide a significant siRNA gene silencing effect.

  13. Chemical Composition of Hypodermal and Endodermal Cell Walls and Xylem Vessels Isolated from Clivia miniata (Identification of the Biopolymers Lignin and Suberin).

    Science.gov (United States)

    Zeier, J.; Schreiber, L.

    1997-01-01

    The occurrence of the biopolymers lignin and suberin was investigated with hypodermal (HCW) and endodermal cell walls (ECW) and xylem vessels (XV) isolated from Clivia miniata Reg. roots. Both biopolymers were detected in HCW and ECW, whereas in XV, typical aliphatic suberin monomers were missing and only representative lignin monomers such as guaiacyl (G) and syringyl (S) units could be detected. The absolute amounts of lignin were about one order of magnitude higher compared with suberin in both HCW and ECW. The ratios of the two aromatic lignin units (G/S) decreased from 39 in XV and 10 in HCW to about 1 in ECW, indicating significant differences in lignin structure and function between the three investigated samples. Additionally, compared with the detectable lignin-derived aromatic units G and S, significantly higher amounts of esterified p-coumaric acid-derived aromatic monomers were obtained with HCW, but not with ECW. This is interpreted as a functional adaption of HCW toward pathogen defense at the root/soil interface. The final aim of this study was to provide a thorough chemical characterization of the composition of HCW, ECW, and XV, which in turn will form the basis for a better understanding of the relevant barriers toward the passive, radial, and apoplastic diffusion of solutes from the soil across the root cortex into the root cylinder. PMID:12223670

  14. 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells

    Science.gov (United States)

    HONG, HELEN; STEGEMANN, JAN P.

    2009-01-01

    Collagen Type I and fibrin are polymeric proteins commonly used in the field of regenerative medicine as the foundational matrix of engineered tissues. We examined the response of vascular smooth muscle cells (VSMC) to both two-dimensional (2D) substrates as well as three-dimensional (3D) matrices of these biopolymers. Pure collagen Type I, pure fibrin and composite matrices consisting of 1:1 mixtures of collagen and fibrin were studied. Relative gene expression of three ECM molecules (collagen Type I and III, and tropoelastin) and three integrin subunits (integrins α1, β1 and β3) was determined over 7 days in culture using quantitative RT-PCR. Expression of all of these marker genes was up-regulated in 3D matrices, relative to 2D substrates. Tropoelastin, integrin α1 and integrin β1 were highest in collagen matrices, while collagen III and integrin β3 expression were highest in pure fibrin, and collagen I expression was highest in the collagen-fibrin composite materials. Both the compositional and temporal expression patterns of these specific ECM-related genes were suggestive of a wound healing response. These results illuminate the short-term responses of VSMC to 2D and 3D biopolymer matrices, and have relevance to tissue engineering and cardiovascular biology. PMID:18854122

  15. Photodegradation of textile dye Rhodamine B over a novel biopolymer-metal complex wool-Pd/CdS photocatalysts under visible light irradiation.

    Science.gov (United States)

    Wang, Qizhao; Li, Jiajia; Bai, Yan; Lu, Xiaolin; Ding, Yaming; Yin, Shuqun; Huang, Haohao; Ma, Hengchang; Wang, Fangping; Su, Bitao

    2013-09-01

    A novel biopolymer-metal complex wool-Pd/CdS photocatalysts were prepared and exhibited high activity for photodegradation of Rh B under visible light irradiation. The wool-Pd could not only enhance the utilization rate of noble metal Pd but also significantly improve the activity of dye degradation. Wool-Pd was able to introduce Pd and PdS to effectively prohibit the recombination of photogenerated electrons and holes. The optimal weight percentage of wool-Pd in the photocatalyst was found to be 0.5wt%, which resulted in a good result of degradation of Rh B under visible light. It is obviously better in the catalyst efficiency than pure CdS. The photocatalysts were characterized by X-ray diffraction, diffuse reflectance UV-vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopic (XPS) studies, transmission electron microscopy (TEM). In a word, the prepared novel biopolymer-metal complex wool-Pd/CdS photocatalysts not only improve the degradation efficiency of Rh B, but also has a good advantage of recycling and cost-effective. It will have a good application prospect. In addition, the possible degradation pathway of Rh B was proposed in this paper.

  16. Improvement of the healing of a rat tibia defect by means of a Calcium Carbonate based biopolymer mixed with Epidermal Growth Factor and Ascorbic Acid

    Science.gov (United States)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Hernández-Flores, C.; Lecona-Butrón, H.; García-López, E. S.

    2000-10-01

    At the present bone reparation is commonly solved by means of different graft types. Biomaterials such as hidroxyapatite, coraline, octacalcium phosphate and tricalcium phosphate are used. By other side there are factors like Epidermal Growth Factor (EGF), Fibroblast Growth Factor (TGF), Laminine, Ascorbic Acid (AA), etc. that stimulate the osteogenesis in fracture or bony defect. The goal of this work is to evaluate the effect of the addition of EGF and ascorbic acid to a Ca2CO3 based biopolymer in the healing of a rat tibia model to improve the consolidation with adequate bony quality. No implant rejection or inflammatory reaction was observed during a 5 weeks period in our in vivo studies. The evolution of the osteointegration has been followed employing scanning electronic microscopy (SEM), energy dispersive x-ray analysis (EDX), and biochemistry activity for calcium, phosphor and alkaline phosphatase. We conclude that the combined use of the based Ca2CO3 biopolymer with Ascorbic Acid and Epidermal Growth Factor (group B&AA&EGF) in vivo accelerates the process of bony repair, as compared with the other groups. The mixture B&AA&EGF provide a bridge in the lesion, helping in the cellular migration and increasing the collagen synthesis.

  17. Final Technical Report for 'Investigations of the Role of Protozoa in Transformations of Marine Biopolymers using Phaeocytis Polymer Gels as a Model'

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, Evelyn

    2003-04-01

    OAK B188 Biopolymers and biopolymer gels are major components of the organic carbon and nitrogen pools in the ocean. The overall goal of this project was to better understand the chemical and physical transformations of polymers and polymer gels in coastal waters that are mediated by protists and bacteria. Bacteria are thought to be the major consumers of marine biopolymers, but direct consumption by protists, and the interactions of bacteria and protists, may also be important but largely unexplored pathways of biopolymer cycling. Phaeocystis is a colonial prymnesiophyte alga that produces large amounts of polymer gels that have similar properties to those found in the dissolved organic carbon (DOC) pool namely, they are tangled networks of polymers held together by calcium bridges. We used the polymers and polymer gels produced by two species of Phaeocystis (from the North Atlantic and Antarctica) as models to examine the consumption, degradation and alteration of algal polymer gels by protists and bacteria. We developed several novel methods and approaches to examine polymer gel transformations. One tool was an immunoassay (ELISA) using a polyclonal antibody specific to Phaeocystis polymers that allowed us to track the polymer gels in situ and in laboratory experiments. We successfully tested the ability of the immunoassay to detect and quantify Phaeocystis polymer carbon in water from the Ross Sea, Gulf of Alaska and North Water (Greenland). This exciting new approach demonstrates the usefulness of antibodies for detecting and quantifying a specific component of the DOM pool in natural samples and provides a method for following the sources and sinks of that component. We also developed a fluorescent immunoassay procedure with the antibody to visualize and quantify ingested polymers in single protist cells. In experiments with polymer gels as the sole organic source (no prey), prey plus polymer gels, and prey without polymer gels, we determined that some

  18. Biopolymers Versus Synthetic Polymers

    Directory of Open Access Journals (Sweden)

    Florentina Adriana Cziple

    2008-10-01

    Full Text Available This paper present an overview of important synthetic and natural polymers with emphasis on polymer structure, the chemistry of polymer formation. an introduction to polymer characterization. The biodegradation process can take place aerobically and anaerobically with or without the presence of light. These factors allow for biodegradation even in landfill conditions which are normally inconducive to any degradation. The sheeting used to make these packages differs significantly from other “degradable plastics” in the market as it does not attempt to replace the current popular materials but instead enhances them by rendering them biodegradable.

  19. Biopolymers by Azotobacter Vinelandii

    OpenAIRE

    Silva, Adriana Navarro da; Garcia-Cruz, Crispin Humberto

    2010-01-01

    The highest PHB yield (100 mg g cell-1 h-1) using sugar cane molasses occurred in the incubation time of 10 h, 60.0 ºC and the soluble solids concentrations between 14.0 – 25.0%. To alginate yield was observed that, using molasses, yield was greater (250 mg g cell-1 h-1) also in the incubation time of 10 h, temperature of 60.0 ºC and the soluble solids concentration between 4.0 - 6.0%. The PHB purity was between 93.0 to 97.5%. Thus, Cane sugar molasses was very promising for the alginate ...

  20. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Kalla, Divya; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2014-11-01

    With a vision of finding greener materials to synthesize nanoparticles, we report the production and isolation of levan, a polysaccharide with repeating units of fructose, from Acetobacter xylinum NCIM2526. The isolated levan were characterized using potassium ferricyanide reducing power assay, Fourier transform infra-red (FTIR) spectroscopy and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR). To exploit levan in nanotechnology, we present a simple and greener method to synthesize silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using biopolymer, levan as both reducing and stabilizing agents. The morphology and stability of the AgNPs and AuNPs were examined by transmission electron microscopy (TEM) and UV-vis absorption (UV-vis) spectroscopy. The possible capping mechanism of the nanoparticles was postulated using FTIR studies. As synthesized biogenic nanoparticles showed excellent catalytic activity as evidenced from sodium borohydride mediated reduction of 4-nitro phenol and methylene blue. PMID:25129779