WorldWideScience

Sample records for biomolecular structural determinations

  1. Biomolecular Structure Determination with Divide and Concur

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit

    2009-03-01

    Divide and concur (D-C) is a general computational approach, designed for the solution of highly frustrated problems. Recently applied to the problems of disk packing, the kissing number problem, and 3-SAT, it was competitive or outperformed special-purpose methods.ootnotetextS. Gravel and V. Elser, Phys. Rev. E 78, 036706 (2008) We present a method for applying the D-C framework to the problem of biomolecular structure determination. From a list of geometric constraints on groups of atoms in the molecule, we construct a deterministic iterative map that efficiently searches for structures simultaneously satisfying all constraints. As our method eschews an energy function and its minimization to focus on geometric constraints, it can very naturally integrate with the geometric constraints due to chemistry and physics, experimental constraints due to NMR data or many other experimental or biological hints. We present some results of our method.

  2. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    Energy Technology Data Exchange (ETDEWEB)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  3. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation method

  4. Structure and Interactions of Isolated Biomolecular Building Blocks.

    Science.gov (United States)

    de Vries, Mattanjah

    2006-03-01

    We investigate biomolecular building blocks and their clusters with each other and with water on a single molecular level. The motivation is the need to distinguish between intrinsic molecular properties and those that result from the biological environment. This is achieved by a combination of laser desorption and jet cooling, applied to aromatic amino acids, small peptides containing those, nucleobases and nucleosides. This approach is coupled with a number of laser spectroscopic techniques, including resonant multi-photon ionization, spectral hole burning and infra-red ion-dip spectroscopy. We will discuss examples illustrating how information can be obtained on spatial structure of individual biomolecules, including peptide conformations and details of DNA base-pairing.

  5. Retroactivity in the Context of Modularly Structured Biomolecular Systems

    Science.gov (United States)

    Pantoja-Hernández, Libertad; Martínez-García, Juan Carlos

    2015-01-01

    Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular. PMID:26137457

  6. Computer Programming and Biomolecular Structure Studies: A Step beyond Internet Bioinformatics

    Science.gov (United States)

    Likic, Vladimir A.

    2006-01-01

    This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled "Biomolecular Structure and Bioinformatics." Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics…

  7. Effect of antibody modifications on its biomolecular binding as determined by surface plasmon resonance.

    Science.gov (United States)

    Vashist, Sandeep Kumar

    2012-02-01

    A surface plasmon resonance (SPR)-based procedure was developed to determine the effect of antibody modifications on its biomolecular binding behavior. Mouse immunoglobulin G (IgG) was immobilized on a protein A-functionalized gold-coated SPR chip. Goat anti-mouse IgG and its various commercially available modifications (i.e., conjugated with atto 550, atto 647, tetramethylrhodamine isothiocyanate [TRITC], horseradish peroxidase [HRP], or biotin) were employed in exactly the same concentration for the detection of mouse IgG. The various modifications of goat anti-mouse IgG decreased its biomolecular binding to mouse IgG in the order of unmodified>HRP-labeled>atto 550-labeled>biotinylated>TRITC-labeled>atto 647-labeled. PMID:22093612

  8. 核磁共振、X射线小角散射以及计算机模拟相结合构建生物大分子复合物的结构模型%Determining Structural Models of Biomolecular Complexes Integrating Nuclear Magnetic Resonance, Small-Angle X-ray Scattering and Computational Simulations

    Institute of Scientific and Technical Information of China (English)

    彭俊辉; 赵德彪; 文彬; 张志勇

    2015-01-01

    Structural biology has been paying more attention on biomolecular complexes over the past decades, since they are crucial for many biological processes. Among these techniques for structural determination, nuclear magnetic resonance (NMR) has its advantage when dealing with biomolecules with high flexibility in solution. Small-angle X-ray scattering (SAXS) is a very important complementary technique that provides information on global shape of biomolecules. For biomolecular complexes, it can be much easier to determine atomic structures of individual subunits through NMR. In addition, NMR can also provide other structural information, such as the interface and orientations between subunits, and long range distance and angular restraints. Therefore, to construct structural models of biomolecular complexes, it would be very appropriate to combine experimental restraints obtained through NMR and low-resolution shape information from SAXS by utilizing computational tools, which is the main topic of this review.%近年来,结构生物学研究越来越注重生物大分子复合物的解析,因为许多重要生物学过程都离不开复合物的参与.溶液核磁共振是目前重要的结构解析方法之一.X射线小角散射(SAXS)作为一种新的结构生物学实验手段,近年来发展迅速.SAXS 能提供生物大分子复合物的较低分辨率结构信息,而核磁共振能解析复合物中各个亚基的原子分辨率结构.此外,通过核磁共振还能得到亚基之间的界面、取向以及距离信息.因此近年来通过计算机模拟,整合核磁共振和 SAXS 不同分辨率的结构信息,可以用来搭建生物大分子复合物的结构模型.该综述重点介绍这方面的研究进展.

  9. Biomolecular Deuteration for Neutron Structural Biology and Dynamics.

    Science.gov (United States)

    Haertlein, Michael; Moulin, Martine; Devos, Juliette M; Laux, Valerie; Dunne, Orla; Forsyth, V Trevor

    2016-01-01

    Neutron scattering studies provide important information in structural biology that is not accessible using other approaches. The uniqueness of the technique, and its complementarity with X-ray scattering, is greatest when full use is made of deuterium labeling. The ability to produce tailor-made deuterium-labeled biological macromolecules allows neutron studies involving solution scattering, crystallography, reflection, and dynamics to be optimized in a manner that has major impact on the scope, quality, and throughput of work in these areas. Deuteration facilities have now been developed at many neutron centres throughout the world; these are having a crucial effect on neutron studies in the life sciences and on biologically related studies in soft matter. This chapter describes methods that have been developed for the efficient production of deuterium-labeled samples for a wide range of neutron scattering applications. Examples are given that illustrate the use of these samples for each of the main techniques. Perspectives for biological deuterium labeling are discussed in relation to developments at current facilities and those that are planned in the future.

  10. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  11. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  12. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

    1994-10-01

    To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

  13. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.

    Science.gov (United States)

    Takada, Shoji; Kanada, Ryo; Tan, Cheng; Terakawa, Tsuyoshi; Li, Wenfei; Kenzaki, Hiroo

    2015-12-15

    Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to

  14. Atomic force microscopy of self-assembled biomolecular structures and their interaction with metallic nanoparticles.

    OpenAIRE

    Gysemans, Maarten

    2009-01-01

    We applied AFM to study biomolecular wires, both out of interest in thei r biological functions and in the framework of nanotechnology based fabr ication. We have focused on two different kinds of protein wires: Insuli n fibrils and microtubules. Microtubules are an important constituent of the cytoskeleton and fulfill multiple vital functions in the cell. Insu lin fibrils on the other hand are amyloid fibrils without a clear biolog ical role, but with intriguing polymerization properties tha...

  15. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics

    CERN Document Server

    2014-01-01

    Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...

  16. Variational Methods for Biomolecular Modeling

    CERN Document Server

    Wei, Guo-Wei

    2016-01-01

    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrosta...

  17. Integrative NMR for biomolecular research.

    Science.gov (United States)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ). PMID:27023095

  18. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  19. REACH coarse-grained biomolecular simulation: transferability between different protein structural classes.

    Science.gov (United States)

    Moritsugu, Kei; Smith, Jeremy C

    2008-08-01

    Coarse graining of protein interactions provides a means of simulating large biological systems. The REACH (Realistic Extension Algorithm via Covariance Hessian) coarse-graining method, in which the force constants of a residue-scale elastic network model are calculated from the variance-covariance matrix obtained from atomistic molecular dynamics (MD) simulation, involves direct mapping between scales without the need for iterative optimization. Here, the transferability of the REACH force field is examined between protein molecules of different structural classes. As test cases, myoglobin (all alpha), plastocyanin (all beta), and dihydrofolate reductase (alpha/beta) are taken. The force constants derived are found to be closely similar in all three proteins. An MD version of REACH is presented, and low-temperature coarse-grained (CG) REACH MD simulations of the three proteins are compared with atomistic MD results. The mean-square fluctuations of the atomistic MD are well reproduced by the CGMD. Model functions for the CG interactions, derived by averaging over the three proteins, are also shown to produce fluctuations in good agreement with the atomistic MD. The results indicate that, similarly to the use of atomistic force fields, it is now possible to use a single, generic REACH force field for all protein studies, without having first to derive parameters from atomistic MD simulation for each individual system studied. The REACH method is thus likely to be a reliable way of determining spatiotemporal motion of a variety of proteins without the need for expensive computation of long atomistic MD simulations. PMID:18469078

  20. Proteopedia: Exciting Advances in the 3D Encyclopedia of Biomolecular Structure

    Science.gov (United States)

    Prilusky, Jaime; Hodis, Eran; Sussman, Joel L.

    Proteopedia is a collaborative, 3D web-encyclopedia of protein, nucleic acid and other structures. Proteopedia ( http://www.proteopedia.org ) presents 3D biomolecule structures in a broadly accessible manner to a diverse scientific audience through easy-to-use molecular visualization tools integrated into a wiki environment that anyone with a user account can edit. We describe recent advances in the web resource in the areas of content and software. In terms of content, we describe a large growth in user-added content as well as improvements in automatically-generated content for all PDB entry pages in the resource. In terms of software, we describe new features ranging from the capability to create pages hidden from public view to the capability to export pages for offline viewing. New software features also include an improved file-handling system and availability of biological assemblies of protein structures alongside their asymmetric units.

  1. [Advances in biomolecular machine: methane monooxygenases].

    Science.gov (United States)

    Lu, Jixue; Wang, Shizhen; Fang, Baishan

    2015-07-01

    Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced. PMID:26647577

  2. A guide to the visual analysis and communication of biomolecular structural data.

    Science.gov (United States)

    Johnson, Graham T; Hertig, Samuel

    2014-10-01

    Biologists regularly face an increasingly difficult task - to effectively communicate bigger and more complex structural data using an ever-expanding suite of visualization tools. Whether presenting results to peers or educating an outreach audience, a scientist can achieve maximal impact with minimal production time by systematically identifying an audience's needs, planning solutions from a variety of visual communication techniques and then applying the most appropriate software tools. A guide to available resources that range from software tools to professional illustrators can help researchers to generate better figures and presentations tailored to any audience's needs, and enable artistically inclined scientists to create captivating outreach imagery.

  3. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V

    2012-07-01

    The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

  4. Biomolecular Science (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  5. Bio-molecular sensors based on guided mode resonance filters

    Science.gov (United States)

    Saleem, M. R.; Ali, R.; Honkanen, S.; Turunen, J.

    2016-08-01

    In this work a low surface roughness and homogenous, high refractive index, and amorphous TiO2 layer on corrugated structures of diffractive optical element is coated by Atomic Layer Deposition (ALD) for biosensors. The design of Guided Mode Resonance Filters (GMRFs) is based on refractive indices and thicknesses of the waveguide biomolecular layers. The designed spectral shifts are calculated by Fourier Modal Method (FMM) and depend on the magnitude of the variations in refractive index of the biomolecular layer on waveguide structures. Furthermore, the sensitivity of the biomolecular sensors depends on the thickness of biomolecular layer and periodicity of the structures. The waveguide structures designed for larger periods show an enhancement in the sensitivity (nm/RIU) of the biomolecular sensor at longer wavelengths. The periodicities of nanophotonic structures are varied from 300 to 500 nm in design calculations with predominance of increase in effective index of the structure to support leaky waveguide modes.

  6. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  7. Flavin mononucleotide biomolecular laser: longitudinal mode structure, polarization, and temporal characteristics as probes of local chemical environment.

    Science.gov (United States)

    Rivera, José A; Eden, J Gary

    2016-05-16

    A detailed characterization of the flavin mononucleotide (FMN) biomolecular laser, optically pumped in a stable resonator, is reported here. Photoexcitation of the molecule at 355 nm results in lasing over the ~566.5-573.5 nm spectral region, and the threshold pump energy density is measured to be 110 ± 10 µJ/mm2 for a 10 mM FMN/water solution. Over twenty longitudinal modes are observed when the cavity length L and the energy pump fluence Ep are 375 µm and 300 µJ/mm2, respectively. Partial substitution of glycerol for water as the solvent results in a factor of four reduction in the threshold pump energy fluence (to 2) and a quadrupling of the slope efficiency. This effect is attributed to the O2 - mediated photoconversion of FMN molecules in the triplet state to the singlet species. For pump intensities a factor of 2.5 above threshold, the laser pulse width is ~2 ns FWHM, and the output intensity decays exponentially with a photon lifetime of 1.7 ns. The addition of glycerol to a FMN/water solution also suppresses s-polarized emission (yielding P = 0.78 ± 0.08), presumably as a result of the inhibition of FMN rotational diffusion. The sensitivity of the spectral and optical properties of this and other biomolecular lasers to the chemical environment underscores the value of coherent emission as a biochemical or biomedical diagnostic tool, particularly insofar as molecule-molecule interactions are concerned. PMID:27409906

  8. Flourescence from Gas-Phase Biomolecular Ions

    DEFF Research Database (Denmark)

    Nielsen, Steen Brøndsted

    2013-01-01

    from experiments on dye-derivatised biomolecular ions that provide important information on folding/unfolding processes and local structural changes are presented. Examples included here are a model DNA duplex, the Trp-cage protein, polyproline peptides, and the cytochrome c heme protein. The chapter......This chapter deals with measurements of fluorescence from electronically excited biomolecular ions where there are no interactions with an external environment. Biomolecules with no natural fluorophores are labelled with a dye for such experiments. First, some of the advantages, but also...

  9. Advances in integrative modeling of biomolecular complexes

    NARCIS (Netherlands)

    Karaca, E.; Bonvin, A.M.J.J.

    2013-01-01

    High-resolution structural information is needed in order to unveil the underlying mechanistic of biomolecular function. Due to the technical limitations or the nature of the underlying complexes, acquiring atomic resolution information is difficult for many challenging systems, while, often, low-re

  10. Programming in Biomolecular Computation:

    DEFF Research Database (Denmark)

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue;

    2011-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem...... conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined...... by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways...

  11. Dipolar recoupling NMR of biomolecular self-assemblies : determining inter- and intrastrand distances in fibrilized Alzheimer's {betta}-amyloid peptide.

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D. M.; Senzinger, T. L. S.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Meredith, S. C.; Botto, R. E.; Chemistry; Univ. of Chicago

    1998-12-01

    data, taken together, refine the DRAWS method, and demonstrate its precision and utility in obtaining high resolution structural data in complex biomolecular aggregates such as A{beta}.

  12. A statistical mechanical description of biomolecular hydration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  13. Programming in Biomolecular Computation

    DEFF Research Database (Denmark)

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We introduce a model of computation that is evidently programmable......, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only...... in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient. A prototype model has been implemented (for now in silico on a conventional computer). This work opens new perspectives on just how computation may be specified at the biological level....

  14. Visualization of confocal microscopic biomolecular data

    Science.gov (United States)

    Liu, Zhanping; Moorhead, Robert J., II

    2005-04-01

    Biomolecular visualization facilitates insightful interpretation of molecular structures and complex mechanisms underlying bio-chemical processes. Effective visualization techniques are required to deal with confocal microscopic biomolecular data in which intricate structures, fine features, and obscure patterns might be overlooked without sophisticated data processing and image synthesis. This paper presents major challenges in visualizing confocal microscopic biomolecular data, followed by a survey of related work. We then introduce a case study conducted to investigate the interaction between two proteins contained in a budding yeast saccharomyces cerevisiae by embedding custom modules in Amira. The multi-channel confocal microscopic volume data was first processed using an exponential operator to correct z-drop artifacts introduced during data acquisition. Channel correlation was then exploited to extract the overlap between the proteins as a new channel to represent the interaction while a statistical method was employed to compute the intensity of interaction to locate hot spots. To take advantage of crisp surface representation of region boundaries by iso-surfaces and visually pleasing translucent delineation of dense volumes by volume rendering, we adopted hybrid rendering that incorporates these two methods to display clear-cut protein boundaries, amorphous interior materials, and the scattered interaction in the same view volume with suppressed and highlighted parts selected by the user. The highlighted overlap helped biologists learn where the interaction happens and how it spreads, particularly when the volume was investigated in an immersive Cave Automatic Virtual Environment (CAVE) for intuitive comprehension of the data.

  15. Determination of Calmodulin in Beta vulgaris L.Tissues by Biomolecular Interaction Analysis%生物分子相互作用分析法测定甜菜组织中的钙调素

    Institute of Scientific and Technical Information of China (English)

    陈贵华; 张少英; 赵军锋

    2011-01-01

    以甜菜为实验材料,经甜菜坏死黄脉病毒-(beet necrotic yellow vein virus,BNYVV)侵染后,用生物分子相互作用分析(biomolecular interaction analysis,BIA)技术测定植物组织中钙调素(calmodulin,CaM)含量,分析在BNYVV侵染下植物组织中CaM的变化.该方法可以实时检测生物分子之间的相互作用,受杂质影响小,可简化样品的前处理,能够快速高通量分析大量的蛋白质样品,灵敏度高,准确性好.%The sugar beet (Beta vulgaris) were used as experimental material. The calmodulin content and its changes in tissues were determined by biomolecular interaction analysis (BIA) technology after infected by beet necrotic yellow vein virus (BNYVV). The technology can detect the real-time interaction between molecules, less affected by impurity, simplify sample pre-treatment, and analysis a large number of high-throughput protein rapidly. The technology is high sensitivity and good accuracy.

  16. Grid computing and biomolecular simulation.

    Science.gov (United States)

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  17. Coassembly of aromatic dipeptides into biomolecular necklaces.

    Science.gov (United States)

    Yuran, Sivan; Razvag, Yair; Reches, Meital

    2012-11-27

    This paper describes the formation of complex peptide-based structures by the coassembly of two simple peptides, the diphenylalanine peptide and its tert-butyl dicarbonate (Boc) protected analogue. Each of these peptides can self-assemble into a distinct architecture: the diphenylalanine peptide into tubular structures and its analogue into spheres. Integrated together, these peptides coassemble into a construction of beaded strings, where spherical assemblies are connected by elongated elements. Electron and scanning force microscopy demonstrated the morphology of these structures, which we termed "biomolecular necklaces". Additional experiments indicated the reversibility of the coassembly process and the stability of the structures. Furthermore, we suggest a possible mechanism of formation for the biomolecular necklaces. Our suggestion is based on the necklace model for polyelectrolyte chains, which proposes that a necklace structure appears as a result of counterion condensation on the backbone of a polyelectrolyte. Overall, the approach of coassembly, demonstrated using aromatic peptides, can be adapted to any peptides and may lead to the development and discovery of new self-assembled architectures formed by peptides and other biomolecules. PMID:23061818

  18. The HADDOCK web server for data-driven biomolecular docking

    NARCIS (Netherlands)

    de Vries, S.J.; van Dijk, M.; Bonvin, A.M.J.J.

    2010-01-01

    Computational docking is the prediction or modeling of the three-dimensional structure of a biomolecular complex, starting from the structures of the individual molecules in their free, unbound form. HADDOC K is a popular docking program that takes a datadriven approach to docking, with support for

  19. Azurin for Biomolecular Electronics: a Reliability Study

    Science.gov (United States)

    Bramanti, Alessandro; Pompa, Pier Paolo; Maruccio, Giuseppe; Calabi, Franco; Arima, Valentina; Cingolani, Roberto; Corni, Stefano; Di Felice, Rosa; De Rienzo, Francesca; Rinaldi, Ross

    2005-09-01

    The metalloprotein azurin, used in biomolecular electronics, is investigated with respect to its resilience to high electric fields and ambient conditions, which are crucial reliability issues. Concerning the effect of electric fields, two models of different complexity agree indicating an unexpectedly high robustness. Experiments in device-like conditions confirm that no structural modifications occur, according to fluorescence spectra, even after a 40-min exposure to tens of MV/m. Ageing is then investigated experimentally, at ambient conditions and without field, over several days. Only a small conformational rearrangement is observed in the first tens of hours, followed by an equilibrium state.

  20. The biomolecular corona of nanoparticles in circulating biological media

    Science.gov (United States)

    Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.

    2015-08-01

    When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let

  1. Paramagnetic relaxation enhancements in structure determination of proteins by NMR spectroscopy

    International Nuclear Information System (INIS)

    Solution NMR spectroscopy is a versatile tool to study a variety of a biomolecular parameters such as its structural assembly, its dynamics and its interaction with other molecules. We used the methodological expansion of paramagnetic relaxation enhancements (PREs) to gain additional insights into spatial proximities and surface accessibility of a variety of proteins.The structure of Fst, a toxic, hydrophobic peptide was solved within a membrane mimicking environment. Using PREs, it was possible to show a transmembrane binding mode.Further, the structure of Cla h 8 was solved which is a eukaryotic homologue to prokaryotic cold shock proteins. We were using PREs to determine the high resolution structure and its mode of binding to DNA.Additionally, we solved the structure of Phl p 5a, a major grass pollen allergen. The determination of PREs displayed the dynamic behavior of different parts of the molecule. (author)

  2. Abstractions for biomolecular computations

    CERN Document Server

    Okunoye, Babatunde O

    2008-01-01

    Deoxyribonucleic acid is increasingly being understood to be an informational molecule, capable of information processing.It has found application in the determination of non-deterministic algorithms and in the design of molecular computing devices. This is a theoretical analysis of the mathematical properties and relations of the molecules which constituting DNA, which explains in part why DNA is a successful computing molecule.

  3. Determination of Uranium Oxides Structure

    International Nuclear Information System (INIS)

    Determination of uranium oxides structure have been worked using XRD (X-Ray Diffractometer). Where the diffraction patterns were analyzed by Rietan method. The samples that analysis were UO2,07; UO2,06; UO2,15; UO2,27 and U3O8 compound. Rietan refinement of the diffraction patterns showed cubic structures for UO2,07 and UO2,06, with a = 5,4663 A and 5,4638 A, respectively. UO2,15 compound was found to be a mixture of cubic, a = 5,4637 A and tetragonal structures, a = 5,454 A and c = 5,409 A. The structures of UO2,27 and U3O8 were found to be tetragonal and orthorhombic, respectively with a 5,4717 A and c = 5,407 A for the tetragonal structure, while a 6,7147 A, b = 11, 9506 A and c = 4,1448 A for the orthorhombic one. It was concluded from this investigation that large amounts of x oxygen atoms in UO2+x, transforms the cubic structure gradually to tetragonal and finely to orthorhombic structure. Sample of PPNY's UO2 had cubic structure, so that the structure specification as which expected. (author)

  4. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    OpenAIRE

    Wei, Guo Wei; Baker, Nathan A.

    2014-01-01

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, el...

  5. Organic & Biomolecular Chemistry

    OpenAIRE

    Zhang, Wenyu; Bryson, David I.; Crumpton, Jason B.; Wynn, Jessica; Santos, Webster L.

    2013-01-01

    On-bead high-throughput screening of a medium-sized (1000_2000 Da) branched peptideboronic acid (BPBA) library consisting of 46 656 unique sequences against HIV-1 RRE RNA generated peptides with binding affinities in the low micromolar range. In particular, BPBA1 had a Kd of 1.4 _M with RRE IIB, preference for RNA over DNA (27 fold), and selectivity of up to >75 fold against a panel of RRE IIB variants. Structure_activity studies suggest that the boronic acid moiety and ͐branching in peptide...

  6. Biomolecular simulation on thousands of processors

    Science.gov (United States)

    Phillips, James Christopher

    Classical molecular dynamics simulation is a generally applicable method for the study of biomolecular aggregates of proteins, lipids, and nucleic acids. As experimental techniques have revealed the structures of larger and more complex biomolecular machines, the time required to complete even a single meaningful simulation of such systems has become prohibitive. We have developed the program NAMD to simulate systems of 50,000--500,000 atoms efficiently with full electrostatics on parallel computers with 1000 and more processors. NAMD's scalability is achieved through latency tolerant adaptive message-driven execution and measurement-based load balancing. NAMD is implemented in C++ and uses object-oriented design and threads to shield the basic algorithms from the necessary complexity of high-performance parallel execution. Apolipoprotein A-I is the primary protein constituent of high density lipoprotein particles, which transport cholesterol in the bloodstream. In collaboration with A. Jonas, we have constructed and simulated models of the nascent discoidal form of these particles, providing theoretical insight to the debate regarding the lipid-bound structure of the protein. Recently, S. Sligar and coworkers have created 10 nm phospholipid bilayer nanoparticles comprising a small lipid bilayer disk solubilized by synthetic membrane scaffold proteins derived from apolipoprotein A-I. Membrane proteins may be embedded in the water-soluble disks, with various medical and technological applications. We are working to develop variant scaffold proteins that produce disks of greater size, stability, and homogeneity. Our simulations have demonstrated a significant deviation from idealized cylindrical structure, and are being used in the interpretation of small angle x-ray scattering data.

  7. Ultrasonic determination of steel structures

    International Nuclear Information System (INIS)

    In the research project 'Determination of steel structures by means of ultrasound' methods are developed for the non-destructive structure characterization with scattered ultrasound. Measurements were made at about 200 steel samples with frequencies between 5 and 20 Mc/sec. In the range of 0,05 <= d/lambda <= 0,5 (d=mean grain size, lambda = wavelength of the ultrasound pulse) known theories can be applied for the quantitative grain size determination and with an accuracy of +-15% the results agree with the metallographically measured values. The best method for this is the combination of two measurements with two different frequencies. Advantages are given by the measurement of the multiple scattering which is leading to the scattering coefficient and to the grain size with one measurement only and without assumptions concerning other parameters of ultrasound propagation. A structure characterization concerning the homogeneity inside the material is possible, too, because of the time (i.e. sound path-)-dependent scattering measurement. It is able to control the structure of monophasic steels with grain sizes between ASTM 1 and ASTM 11. Today problems unsolved are the martensitic steels, the multiphasic structures

  8. Nonequilibrium phase transitions in biomolecular signal transduction

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David

    2011-11-01

    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  9. Crystal structure determination of Efavirenz

    Energy Technology Data Exchange (ETDEWEB)

    Popeneciu, Horea, E-mail: horea.popeneciu@itim-cj.ro; Dumitru, Ristoiu [College of Environmental Science on Engineering Babes Bolyai University, 30 Fantanele, 400294 Cluj Napoca (Romania); Tripon, Carmen, E-mail: horea.popeneciu@itim-cj.ro; Borodi, Gheorghe, E-mail: horea.popeneciu@itim-cj.ro; Pop, Mihaela Maria, E-mail: mihaelapop@teracrystal.com

    2015-12-23

    Needle-shaped single crystals of the title compound, C{sub 14}H{sub 9}ClF{sub 3}NO{sub 2}, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  10. RECENT PROGRESS IN BIOMOLECULAR NMR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Structural genomics and proteomics were born from the understanding that functions of a protein are dictated by its 3D structure and dynamics. To understand protein functions on a genomic scale, we must know protein structures on a genomic scale. High resolution NMR can be used for this purpose. Traditional multidimensional NMR structure determination protocols become ineffective for structural genomics since to obtain a structure of a small protein of 15kD requires many months of painstaking spectral analysis and modeling. Recent advances in magnet and probe technology and in experimental methods have expanded the range of proteins amenable to structure determination and make the large scale structure determination possible. These advances are (1) effective expression systems for protein production, (2) introduction of cryoprobe, (3) structure determination with the use of the minimal amount of structural restraints obtained from the chemical shifts, residual dipolar couplings, NOEs, and computer modeling. In this talk,Iwill briefly outline these developments and related works done in our NMR lab.

  11. Interacting with the biomolecular solvent accessible surface via a haptic feedback device

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-10-01

    Full Text Available Abstract Background From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with molecular graphics has the potential to enhance three dimensional visualisation. Although haptic feedback devices have been used to feel the interaction forces during molecular docking they have not been used explicitly as an aid to visualisation. Results A haptic rendering application for biomolecular visualisation has been developed that allows the user to gain three-dimensional awareness of the shape of a biomolecule. By using a water molecule as the probe, modelled as an oxygen atom having hard-sphere interactions with the biomolecule, the process of exploration has the further benefit of being able to determine regions on the molecular surface that are accessible to the solvent. This gives insight into how awkward it is for a water molecule to gain access to or escape from channels and cavities, indicating possible entropic bottlenecks. In the case of liver alcohol dehydrogenase bound to the inhibitor SAD, it was found that there is a channel just wide enough for a single water molecule to pass through. Placing the probe coincident with crystallographic water molecules suggests that they are sometimes located within small pockets that provide a sterically stable environment irrespective of hydrogen bonding considerations. Conclusion By using the software, named HaptiMol ISAS (available from http://www.haptimol.co.uk, one can explore the accessible surface of biomolecules using a three-dimensional input device to gain insights into the shape and water

  12. Structure determination of enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-02-20

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  13. Combination of biomolecular and stable isotope techniques to determine the origin of organic matter used by bacterial communities: application to sediment

    NARCIS (Netherlands)

    Creach, V.; Lucas, F.; Deleu, C.; Bertru, G.; Mariotti, A.

    1999-01-01

    Natural isotopic composition is a good tool to trace organic matter in ecosystems. Recent studies used a combination of molecular and stable isotope techniques to determine the origin of the organic carbon used by bacteria in the water column. In our study, we show that this procedure can be used fo

  14. Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

    OpenAIRE

    Carlos A Lopez; George G Daaboul; Ahn, Sunmin; Reddington, Alexander P.; Monroe, Margo R.; Zhang, Xirui; Irani, Rostem J.; Yu, Chunxiao; Genco, Caroline A.; Cretich, Marina; Chiari, Marcella; Goldberg, Bennett B.; Connor, John H.; Ünlü, M. Selim

    2011-01-01

    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular aff...

  15. Biomolecular detection employing the Interferometric Reflectance Imaging Sensor (IRIS).

    Science.gov (United States)

    Lopez, Carlos A; Daaboul, George G; Ahn, Sunmin; Reddington, Alexander P; Monroe, Margo R; Zhang, Xirui; Irani, Rostem J; Yu, Chunxiao; Genco, Caroline A; Cretich, Marina; Chiari, Marcella; Goldberg, Bennett B; Connor, John H; Ünlü, M Selim

    2011-01-01

    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular affinities and specificities are useful for fully characterizing the systems under investigation. Many of the current systems employed to determine molecular concentrations or affinities rely on the use of labels. Examples of these systems include immunoassays such as the enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) techniques, gel electrophoresis assays, and mass spectrometry (MS). Generally, these labels are fluorescent, radiological, or colorimetric in nature and are directly or indirectly attached to the molecular target of interest. Though the use of labels is widely accepted and has some benefits, there are drawbacks which are stimulating the development of new label-free methods for measuring these interactions. These drawbacks include practical facets such as increased assay cost, reagent lifespan and usability, storage and safety concerns, wasted time and effort in labelling, and variability among the different reagents due to the labelling processes or labels themselves. On a scientific research basis, the use of these labels can also introduce difficulties such as concerns with effects on protein functionality/structure due to the presence of the attached labels and the inability to directly measure the interactions in real time. Presented here is the use of a new label-free optical biosensor that is amenable to microarray studies, termed the Interferometric Reflectance Imaging Sensor (IRIS), for detecting proteins, DNA, antigenic material

  16. Microwave spectroscopy of biomolecular building blocks.

    Science.gov (United States)

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment. PMID:25721775

  17. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    Science.gov (United States)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  18. Structural stability versus conformational sampling in biomolecular systems: Why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA?

    OpenAIRE

    Woiczikowski, P. Benjamin; Kubař, Tomáš; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Elstner, Marcus

    2010-01-01

    The electrical conduction properties of G4-DNA are investigated using a hybrid approach, which combines electronic structure calculations, molecular dynamics (MD) simulations, and the formulation of an effective tight-binding model Hamiltonian. Charge transport is studied by computing transmission functions along the MD trajectories. Though G4-DNA is structurally more stable than double-stranded DNA (dsDNA), our results strongly suggest that the potential improvement of the electrical transpo...

  19. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  20. On the use of time-averaging restraints when deriving biomolecular structure from [Formula: see text]-coupling values obtained from NMR experiments.

    Science.gov (United States)

    Smith, Lorna J; van Gunsteren, Wilfred F; Hansen, Niels

    2016-09-01

    Deriving molecular structure from [Formula: see text]-couplings obtained from NMR experiments is a challenge due to (1) the uncertainty in the Karplus relation [Formula: see text] connecting a [Formula: see text]-coupling value to a torsional angle [Formula: see text], (2) the need to account for the averaging inherent to the measurement of [Formula: see text]-couplings, and (3) the sampling road blocks that may emerge due to the multiple-valuedness of the inverse function [Formula: see text] of the function [Formula: see text]. Ways to properly handle these issues in structure refinement of biomolecules are discussed and illustrated using the protein hen egg white lysozyme as example. PMID:27627888

  1. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham Iii, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907

  2. Structural determinants of hospital closure.

    Science.gov (United States)

    Longo, D R; Chase, G A

    1984-05-01

    In a retrospective case-control study, structural characteristics of hospitals that closed during the years 1976-1980 were contrasted with three comparison groups: hospitals that were acquired in a merger; hospitals that joined a multihospital system; and hospitals that remained autonomously opened, to investigate these characteristics as predictors of closure. Characteristics investigated included environmental, structural, and process variables. The independent variables were measured 5 years prior to outcome. Findings indicate that closed hospitals resemble hospitals acquired in a merger ("failure"), and likewise autonomous hospitals resemble hospitals that join a multihospital system ("success"). The most important predictors of hospital failure were the physician-to-population ratio, the East North Central and West North Central census regions, the level of diversification, low occupancy rate, location in a standard metropolitan statistical area, the chief executive officer's lack of affiliation in the American College of Hospital Administrators, profit status, bed size of less than 50, and presence in a state with a rate-setting agency. Surprisingly, this study shows the bed-to-population ratio to be unrelated to closure. In addition, the findings strongly support the open-system perspective, which, unlike the closed-system perspective, is concerned with the vulnerability of the organization to the uncontrollable and often unpredictable influences of the environment.

  3. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  4. Global analysis of time-resolved fluorescence microspectroscopy and applications in biomolecular studies

    NARCIS (Netherlands)

    Laptenok, S.

    2009-01-01

    Understanding the properties of biomolecular networks is of central importance in life sciences. Optical microscopy has been very useful to determine the sub-cellular localisation of proteins but it cannot reveal whether proteins interact with one another. Micro-spectroscopic techniques (combining m

  5. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.;

    2005-01-01

    We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information at...

  6. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  7. Improvements in continuum modeling for biomolecular systems

    CERN Document Server

    Qiao, Yu

    2015-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulation. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.

  8. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    Science.gov (United States)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  9. Capital Structure Determinants and Governance Structure Variety in Franchising

    NARCIS (Netherlands)

    T. Jiang (Tao)

    2009-01-01

    textabstractThis thesis investigates two questions: the determinants of capital structure in franchising and its subsequent impact on the franchise financing decisions; and the efficient governance structure choice in franchising. We posit that firms franchise in order to benefit from the reduced fr

  10. A structural determinant required for RNA editing

    Science.gov (United States)

    Tian, Nan; Yang, Yun; Sachsenmaier, Nora; Muggenhumer, Dominik; Bi, Jingpei; Waldsich, Christina; Jantsch, Michael F.; Jin, Yongfeng

    2011-01-01

    RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing. PMID:21427087

  11. Advances on surface structural determination by LEED

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Edmar A; De Carvalho, Vagner E [Departamento de Fisica, ICEX, Universidade Federal de Minas Gerais, 31270-090, Belo Horizonte, MG (Brazil); De Castilho, Caio M C, E-mail: edmar@fisica.ufmg.br [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica and Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente (CIENAM)INCT-E and A, Universidade Federal da Bahia, Campus Universitario da Federacao, 40170-115, Salvador, BA (Brazil)

    2011-08-03

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  12. DETERMINANTS OF BANK BOARD STRUCTURE IN GHANA

    OpenAIRE

    Michael Adusei

    2012-01-01

    The paper investigates the determinants of bank board structure in Ghana and finds that the Scope of Operations Hypothesis could explain the variation in board size but not board independence. On the other hand, the Board Monitoring Hypothesis could only explain the variation in board independence but not board size. The study also finds that cost-income ratio, foreign majority ownership structure and Ghana Stock Exchange listing status are positively and significantly associated with large b...

  13. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...

  14. Systematic evaluation of bundled SPC water for biomolecular simulations.

    Science.gov (United States)

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-01

    In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water

  15. Representing Personal Determinants in Causal Structures.

    Science.gov (United States)

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  16. Barcoded microchips for biomolecular assays.

    Science.gov (United States)

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  17. Nanotube-Based Chemical and Biomolecular Sensors

    Institute of Scientific and Technical Information of China (English)

    J.Koh; B.Kim; S.Hong; H.Lim; H.C.Choi

    2008-01-01

    We present a brief review about recent results regarding carbon nanotube (CNT)-based chemical and biomolecular sensors. For the fabrication of CNT-based sensors, devices containing CNT channels between two metal electrodes are first fabricated usually via chemical vapor deposition (CVD) process or "surface programmed assembly" method. Then, the CNT surfaces are often functionalized to enhance the selectivity of the sensors. Using this process, highly-sensitive CNT-based sensors can be fabricated for the selective detection of various chemical and biological molecules such as hydrogen, ammonia, carbon monoxide, chlorine gas, DNA, glucose, alcohol, and proteins.

  18. Scalable Molecular Dynamics for Large Biomolecular Systems

    Directory of Open Access Journals (Sweden)

    Robert K. Brunner

    2000-01-01

    Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

  19. Micro and Nanotechnologies Enhanced Biomolecular Sensing

    Directory of Open Access Journals (Sweden)

    Tza-Huei Wang

    2013-07-01

    Full Text Available This editorial summarizes some of the recent advances of micro and nanotechnology-based tools and devices for biomolecular detection. These include the incorporation of nanomaterials into a sensor surface or directly interfacing with molecular probes to enhance target detection via more rapid and sensitive responses, and the use of self-assembled organic/inorganic nanocomposites that inhibit exceptional spectroscopic properties to enable facile homogenous assays with efficient binding kinetics. Discussions also include some insight into microfluidic principles behind the development of an integrated sample preparation and biosensor platform toward a miniaturized and fully functional system for point of care applications.

  20. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  1. Insights into cancer severity from biomolecular interaction mechanisms

    Science.gov (United States)

    Raimondi, Francesco; Singh, Gurdeep; Betts, Matthew J.; Apic, Gordana; Vukotic, Ranka; Andreone, Pietro; Stein, Lincoln; Russell, Robert B.

    2016-01-01

    To attain a deeper understanding of diseases like cancer, it is critical to couple genetics with biomolecular mechanisms. High-throughput sequencing has identified thousands of somatic mutations across dozens of cancers, and there is a pressing need to identify the few that are pathologically relevant. Here we use protein structure and interaction data to interrogate nonsynonymous somatic cancer mutations, identifying a set of 213 molecular interfaces (protein-protein, -small molecule or –nucleic acid) most often perturbed in cancer, highlighting several potentially novel cancer genes. Over half of these interfaces involve protein-small-molecule interactions highlighting their overall importance in cancer. We found distinct differences in the predominance of perturbed interfaces between cancers and histological subtypes and presence or absence of certain interfaces appears to correlate with cancer severity. PMID:27698488

  2. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  3. Biomolecular detection with a thin membrane transducer.

    Science.gov (United States)

    Cha, Misun; Shin, Jaeha; Kim, June-Hyung; Kim, Ilchaek; Choi, Junbo; Lee, Nahum; Kim, Byung-Gee; Lee, Junghoon

    2008-06-01

    We present a thin membrane transducer (TMT) that can detect nucleic acid based biomolecular reactions including DNA hybridization and protein recognition by aptamers. Specific molecular interactions on an extremely thin and flexible membrane surface cause the deflection of the membrane due to surface stress change which can be measured by a compact capacitive circuit. A gold-coated thin PDMS membrane assembled with metal patterned glass substrate is used to realize the capacitive detection. It is demonstrated that perfect match and mismatch hybridizations can be sharply discriminated with a 16-mer DNA oligonucleotide immobilized on the gold-coated surface. While the mismatched sample caused little capacitance change, the perfectly matched sample caused a well-defined capacitance decrease vs. time due to an upward deformation of the membrane by a compressive surface stress. Additionally, the TMT demonstrated the single nucleotide polymorphism (SNP) capabilities which enabled a detection of mismatching base pairs in the middle of the sequence. It is intriguing that the increase of capacitance, therefore a downward deflection due to tensile stress, was observed with the internal double mismatch hybridization. We further present the detection of thrombin protein through ligand-receptor type recognition with 15-mer thrombin aptamer as a receptor. Key aspects of this detection such as the effect of concentration variation are investigated. This capacitive thin membrane transducer presents a completely new approach for detecting biomolecular reactions with high sensitivity and specificity without molecular labelling and optical measurement. PMID:18497914

  4. High Resolution Powder Diffraction and Structure Determination

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  5. Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES

    OpenAIRE

    Chennubhotla, Chakra; Bahar, Ivet

    2006-01-01

    We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex ...

  6. Assembly of single wall carbon nanotube-metal nanohybrids using biomolecular components

    Science.gov (United States)

    Kim, Sang Nyon; Slocik, Joseph M.; Naik, Rajesh R.

    2010-08-01

    Biomaterials such as nucleic acids and proteins can be exploited to create higher order structures. The biomolecular components such as DNA and peptides have been used to assemble nanoparticles with high fidelity. Here, we use DNA and peptides, and their preferential interaction with inorganic and carbon nanomaterials to form homogeneous hybrids. The enhanced binding of Pt ions to both DNA and peptide functionalized nanoparticles mediates the assembly of carbon nanotubes functionalized with DNA with peptide coated gold nanoparticles.

  7. Determinants of Capital Structure in Nigeria

    Directory of Open Access Journals (Sweden)

    Oladele John AKINYOMI

    2013-08-01

    Full Text Available Capital structure represents one of the most discussed concepts in financial management. Capital structure refers to how a company finances its operations whether through shareholders equity-fund or debt or a combination of both. Various internal and external factors contribute to the choice of these sources of fund. The external factors include factors such as tax policy, capital market conditions and tax policy, among others. Meanwhile, the internal factors are those that relate to individual firm characteristics. This study examines the determinants of capital structure in Nigeria using the descriptive research design. The population comprised of the eighty-six manufacturing firms that are listed in the Nigerian Stock Exchange. The sample firms were selected using the simple random sampling method. Secondary data obtained from the annual accounts of 24 randomly selected manufacturing firms for 10 years period culminating in 240 firm-year observations. The results of the regression analysis revealed that leverage (a measure of capital structure has a negative relationship with firm size and tax on one hand and a positive relationship with tangibility of assets, profitability and growth on the other hand. However, only with tangibility of assets and firm size that significant relationship is established. It is recommended for future researchers to carry out similar studies in multiple sectors.

  8. Biomolecular Markers in Cancer of the Tongue

    Directory of Open Access Journals (Sweden)

    Daris Ferrari

    2009-01-01

    Full Text Available The incidence of tongue cancer is increasing worldwide, and its aggressiveness remains high regardless of treatment. Genetic changes and the expression of abnormal proteins have been frequently reported in the case of head and neck cancers, but the little information that has been published concerning tongue tumours is often contradictory. This review will concentrate on the immunohistochemical expression of biomolecular markers and their relationships with clinical behaviour and prognosis. Most of these proteins are associated with nodal stage, tumour progression and metastases, but there is still controversy concerning their impact on disease-free and overall survival, and treatment response. More extensive clinical studies are needed to identify the patterns of molecular alterations and the most reliable predictors in order to develop tailored anti-tumour strategies based on the targeting of hypoxia markers, vascular and lymphangiogenic factors, epidermal growth factor receptors, intracytoplasmatic signalling and apoptosis.

  9. Micro- and nanodevices integrated with biomolecular probes

    Science.gov (United States)

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A.

    2016-01-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. PMID:26363089

  10. Exploiting Microbeams for Membrane Protein Structure Determination.

    Science.gov (United States)

    Warren, Anna J; Axford, Danny; Paterson, Neil G; Owen, Robin L

    2016-01-01

    A reproducible, and sample independent means of predictably obtaining large, well-ordered crystals has proven elusive in macromolecular crystallography. In the structure determination pipeline, crystallisation often proves to be a rate-limiting step, and the process of obtaining even small or badly ordered crystals can prove time-consuming and laborious. This is particularly true in the field of membrane protein crystallography and this is reflected in the limited number of unique membrane protein structures deposited in the protein data bank (less than 650 by June 2016 - http://blanco.biomol.uci.edu/mpstruc ). Over recent years the requirement for, and time and cost associated with obtaining, large crystals has been partially alleviated through the development of beamline instrumentation allowing data collection, and structure solution, from ever-smaller crystals. Advances in several areas have led to a step change in what might be considered achievable during a synchrotron trip over the last decade. This chapter will briefly review the current status of the field, the tools available to ease data collection and processing, and give some examples of exploitation of these for membrane protein microfocus macromolecular crystallography. PMID:27553238

  11. Changes in biomolecular profile in a single nucleolus during cell fixation.

    Science.gov (United States)

    Kuzmin, Andrey N; Pliss, Artem; Prasad, Paras N

    2014-11-01

    Fixation of biological sample is an essential technique applied in order to "freeze" in time the intracellular molecular content. However, fixation induces changes of the cellular molecular structure, which mask physiological distribution of biomolecules and bias interpretation of results. Accurate, sensitive, and comprehensive characterization of changes in biomolecular composition, occurring during fixation, is crucial for proper analysis of experimental data. Here we apply biomolecular component analysis for Raman spectra measured in the same nucleoli of HeLa cells before and after fixation by either formaldehyde solution or by chilled ethanol. It is found that fixation in formaldehyde does not strongly affect the Raman spectra of nucleolar biomolecular components, but may significantly decrease the nucleolar RNA concentration. At the same time, ethanol fixation leads to a proportional increase (up to 40%) in concentrations of nucleolar proteins and RNA, most likely due to cell shrinkage occurring in the presence of coagulant fixative. Ethanol fixation also triggers changes in composition of nucleolar proteome, as indicated by an overall reduction of the α-helical structure of proteins and increase in the concentration of proteins containing the β-sheet conformation. We conclude that cross-linking fixation is a more appropriate protocol for mapping of proteins in situ. At the same time, ethanol fixation is preferential for studies of RNA-containing macromolecules. We supplemented our quantitative Raman spectroscopic measurements with mapping of the protein and lipid macromolecular groups in live and fixed cells using coherent anti-Stokes Raman scattering nonlinear optical imaging.

  12. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1977-01-01

    Crystallography may be described as the science of the structure of materi­ als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal­ lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post­ graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain ...

  13. Crystal structure determination of Jatrorrhizine chloride

    Institute of Scientific and Technical Information of China (English)

    LEI XianRong; YANG JianHua; LIN Xiang; DAI Qin; CHENG Qiang; GUO LingHong; LI Hui

    2009-01-01

    Optimum resolution data of powder X-ray diffraction (PXRD) for Jatrorrhizine (Jat) were collected by an X' Pert Pro MPD diffractometer with an X'celerator detector under the stepwise scanning condition as 8.255 ms and 0.00836°per step,2θrange of 50°-80° and total scanning period of 8-10 min. Indexing of the crystal system and a search of the space group from the powder X-ray diffraction data were conducted by the computational crystallography method. The pilot crystal models of Jat were globally optimized with Monte Carlo method and then refined with the Rietveld method. In parallel with PXRD test,single crystals of Jat were cultured in an aqueous solution by a slow-decreasing temperature method,then its crystal structure was determined by single crystal X-ray diffraction (SCXRD). Both crystal structures from PXRD and SCXRD are identical. The results show that the crystal structure of Jat belongs to a monoclinic system and the space group P21/c. The parameters of cell dimensions from PXRD are a=7.69(A),b= 12.55(A),c=20.89(A),β=106.53°,Z=4,and V=1933.4(A)3,meanwhile the parameters from SCXRD are a=7.72(A),b=12.61(A),c=20.99(A),β=106.38°,Z=4,and V=1961.3(A)3.

  14. Enthalpy-entropy compensation in biomolecular halogen bonds measured in DNA junctions.

    Science.gov (United States)

    Carter, Megan; Voth, Andrea Regier; Scholfield, Matthew R; Rummel, Brittany; Sowers, Lawrence C; Ho, P Shing

    2013-07-23

    Interest in noncovalent interactions involving halogens, particularly halogen bonds (X-bonds), has grown dramatically in the past decade, propelled by the use of X-bonding in molecular engineering and drug design. However, it is clear that a complete analysis of the structure-energy relationship must be established in biological systems to fully exploit X-bonds for biomolecular engineering. We present here the first comprehensive experimental study to correlate geometries with their stabilizing potentials for fluorine (F), chlorine (Cl), bromine (Br), or iodine (I) X-bonds in a biological context. For these studies, we determine the single-crystal structures of DNA Holliday junctions containing halogenated uracil bases that compete X-bonds against classic hydrogen bonds (H-bonds), estimate the enthalpic energies of the competing interactions in the crystal system through crystallographic titrations, and compare the enthalpic and entropic energies of bromine and iodine X-bonds in solution by differential scanning calorimetry. The culmination of these studies demonstrates that enthalpic stabilization of X-bonds increases with increasing polarizability from F to Cl to Br to I, which is consistent with the σ-hole theory of X-bonding. Furthermore, an increase in the X-bonding potential is seen to direct the interaction toward a more ideal geometry. However, the entropic contributions to the total free energies must also be considered to determine how each halogen potentially contributes to the overall stability of the interaction. We find that bromine has the optimal balance between enthalpic and entropic energy components, resulting in the lowest free energy for X-bonding in this DNA system. The X-bond formed by iodine is more enthalpically stable, but this comes with an entropic cost, which we attribute to crowding effects. Thus, the overall free energy of an X-bonding interaction balances the stabilizing electrostatic effects of the σ-hole against the competing

  15. ssDNA-Functionalized Nanoceria: A Redox-Active Aptaswitch for Biomolecular Recognition.

    Science.gov (United States)

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2016-04-01

    Quantification of biomolecular binding events is a critical step for the development of biorecognition assays for diagnostics and therapeutic applications. This paper reports the design of redox-active switches based on aptamer conjugated nanoceria for detection and quantification of biomolecular recognition. It is shown that the conformational transition state of the aptamer on nanoceria, combined with the redox properties of these particles can be used to create surface based structure switchable aptasensing platforms. Changes in the redox properties at the nanoceria surface upon binding of the ssDNA and its target analyte enables rapid and highly sensitive measurement of biomolecular interactions. This concept is demonstrated as a general applicable method to the colorimetric detection of DNA binding events. An example of a nanoceria aptaswitch for the colorimetric sensing of Ochratoxin A (OTA) and applicability to other targets is provided. The system can sensitively and selectivity detect as low as 0.15 × 10(-9) m OTA. This novel assay is simple in design and does not involve oligonucleotide labeling or elaborate nanoparticle modification steps. The proposed mechanism discovered here opens up a new way of designing optical sensing methods based on aptamer recognition. This approach can be broadly applicable to many bimolecular recognition processes and related applications. PMID:26844813

  16. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    Science.gov (United States)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  17. A multiscale modeling approach for biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, Alan, E-mail: bowling@uta.edu; Haghshenas-Jaryani, Mahdi, E-mail: mahdi.haghshenasjaryani@mavs.uta.edu [The University of Texas at Arlington, Department of Mechanical and Aerospace Engineering (United States)

    2015-04-15

    This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.

  18. Determining structure and function in nanomaterial biocomposites

    Science.gov (United States)

    Griffin, David M.

    Polymeric biomaterials represent the leading technologies available today for the repair of tissue damage and for targeted drug delivery. Perhaps the most valuable aspect of polymer-based systems is the extent to which their physical properties (e.g. elasticity, porosity, etc.) can be controlled and tuned by regulating experimental parameters during their synthesis. Biomaterial performance can be improved further still by including supplementary components resulting in a composite material. Synergetic interactions between the constituents of composite materials often results in bulk physical properties that are substantially more than the sum of individual parts. Through understanding and exploiting these sympathetic relationships, novel biocomposites can be developed which exhibit improved efficacy and biocompatibility. Here we report on the synthesis strategies and characterization of novel biocomposites from our laboratory. We look specifically at hydrogel composites containing a physically-associated network of PluronicRTM block copolymer along with a calcium-phosphate mineral component. Rheological results show that composites containing an in situ deposited mineral exhibit a significantly higher elastic modulus than composites of similar composition formed by conventional means. Moreover, analysis of the calcium-phosphate phase of in situ composites revealed that system parameters such as acidity play an integral role in determining the size and stability of the resultant mineral and subsequently the materials' expected in vivo performance. Changes to the structure in PluronicRTM/calcium-phosphate composite hydrogels during dehydration was investigated to provide a look into the mechanisms involved in composite formation. Small angle X-ray scattering analysis of these systems shows that hydrogen bonding interactions between phosphate ions and the polyethylene oxide (PEO) polymer block significantly impact the nanoscale structure and long-range order contained

  19. Utilizing plasma physics to create biomolecular movies

    Energy Technology Data Exchange (ETDEWEB)

    Hau-Riege, S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-24

    In spring of 2000, the LCLS Scientific Advisory Committee selected the top scientific experiments for LCLS. One of the proposed flagship experiments is atomic-resolution three-dimensional structure determination of isolated biolgical macromolecules and particles, with the ultimate goal of obtaining molecular (snapshot) movies. The key enabling insight was that radiation damage may be overcome by using x-ray pulses that are shorter than the time it takes for damage to manifest itself.

  20. Function of Amphiphilic Biomolecular Machines: Elastic Protein-based Polymers

    Science.gov (United States)

    Urry, Dan W.

    2000-03-01

    Elastic protein-based polymers function as biomolecular machines due to inverse temperature transitions of hydrophobic folding and assembly. The transitions occur either on raising the temperature from below to above the transition temperature, Tt, or on isothermally lowering Tt from above to below an operating temperature. The inverse temperature transition involves a decrease in entropy of the polymer component of the system on raising the temperature and a larger increase in solvent entropy on hydrophobic association. Tt depends on the quantity of hydrophobic hydration that undergoes transition to bulk water. Designed amphiphilic polymers perform free energy transductions involving the intensive variables of mechanical force, pressure, temperature, chemical potential, electrochemical potential and electromagnetic radiation and define a set of five axioms for their function as machines. The physical basis for these diverse energy conversions is competition for hydration between apolar (hydrophobic) and polar (e.g., charged) moieties. The effectiveness of these Tt-type entropic elastic protein-based machines is due to repeating peptide sequences that form regular, dynamic repeating structures and exhibit damping of backbone torsional oscillations on extension.

  1. The fidelity of dynamic signaling by noisy biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Clive G Bowsher

    Full Text Available Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.

  2. Stochastic Simulation of Biomolecular Networks in Dynamic Environments.

    Directory of Open Access Journals (Sweden)

    Margaritis Voliotis

    2016-06-01

    Full Text Available Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

  3. Combining vibrational biomolecular spectroscopy with chemometric techniques for the study of response and sensitivity of molecular structures/functional groups mainly related to lipid biopolymer to various processing applications.

    Science.gov (United States)

    Yu, Gloria Qingyu; Yu, Peiqiang

    2015-09-01

    The objectives of this project were to (1) combine vibrational spectroscopy with chemometric multivariate techniques to determine the effect of processing applications on molecular structural changes of lipid biopolymer that mainly related to functional groups in green- and yellow-type Crop Development Centre (CDC) pea varieties [CDC strike (green-type) vs. CDC meadow (yellow-type)] that occurred during various processing applications; (2) relatively quantify the effect of processing applications on the antisymmetric CH3 ("CH3as") and CH2 ("CH2as") (ca. 2960 and 2923 cm(-1), respectively), symmetric CH3 ("CH3s") and CH2 ("CH2s") (ca. 2873 and 2954 cm(-1), respectively) functional groups and carbonyl C=O ester (ca. 1745 cm(-1)) spectral intensities as well as their ratios of antisymmetric CH3 to antisymmetric CH2 (ratio of CH3as to CH2as), ratios of symmetric CH3 to symmetric CH2 (ratio of CH3s to CH2s), and ratios of carbonyl C=O ester peak area to total CH peak area (ratio of C=O ester to CH); and (3) illustrate non-invasive techniques to detect the sensitivity of individual molecular functional group to the various processing applications in the recently developed different types of pea varieties. The hypothesis of this research was that processing applications modified the molecular structure profiles in the processed products as opposed to original unprocessed pea seeds. The results showed that the different processing methods had different impacts on lipid molecular functional groups. Different lipid functional groups had different sensitivity to various heat processing applications. These changes were detected by advanced molecular spectroscopy with chemometric techniques which may be highly related to lipid utilization and availability. The multivariate molecular spectral analyses, cluster analysis, and principal component analysis of original spectra (without spectral parameterization) are unable to fully distinguish the structural differences in the

  4. Combining vibrational biomolecular spectroscopy with chemometric techniques for the study of response and sensitivity of molecular structures/functional groups mainly related to lipid biopolymer to various processing applications.

    Science.gov (United States)

    Yu, Gloria Qingyu; Yu, Peiqiang

    2015-09-01

    The objectives of this project were to (1) combine vibrational spectroscopy with chemometric multivariate techniques to determine the effect of processing applications on molecular structural changes of lipid biopolymer that mainly related to functional groups in green- and yellow-type Crop Development Centre (CDC) pea varieties [CDC strike (green-type) vs. CDC meadow (yellow-type)] that occurred during various processing applications; (2) relatively quantify the effect of processing applications on the antisymmetric CH3 ("CH3as") and CH2 ("CH2as") (ca. 2960 and 2923 cm(-1), respectively), symmetric CH3 ("CH3s") and CH2 ("CH2s") (ca. 2873 and 2954 cm(-1), respectively) functional groups and carbonyl C=O ester (ca. 1745 cm(-1)) spectral intensities as well as their ratios of antisymmetric CH3 to antisymmetric CH2 (ratio of CH3as to CH2as), ratios of symmetric CH3 to symmetric CH2 (ratio of CH3s to CH2s), and ratios of carbonyl C=O ester peak area to total CH peak area (ratio of C=O ester to CH); and (3) illustrate non-invasive techniques to detect the sensitivity of individual molecular functional group to the various processing applications in the recently developed different types of pea varieties. The hypothesis of this research was that processing applications modified the molecular structure profiles in the processed products as opposed to original unprocessed pea seeds. The results showed that the different processing methods had different impacts on lipid molecular functional groups. Different lipid functional groups had different sensitivity to various heat processing applications. These changes were detected by advanced molecular spectroscopy with chemometric techniques which may be highly related to lipid utilization and availability. The multivariate molecular spectral analyses, cluster analysis, and principal component analysis of original spectra (without spectral parameterization) are unable to fully distinguish the structural differences in the

  5. Structural Determinants of Juvenile Offenses in School.

    Science.gov (United States)

    Kowalski, Gregory S.; And Others

    1983-01-01

    Using multiple regression techniques, evaluates the relative contributions of community structure, school structure, and crime prevention efforts to delinquency in public schools. Finds that distance from central business district, school size, and region are of predictive value, when crimes against persons, property, and perceived crime are…

  6. WAY TO DETERMINE STIFFNESS FUNCTION OF STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    WANG De-ming; GAI Bing-zheng

    2005-01-01

    For calculating the stiffness function of a structure, the differential equation of the vibration of the structure was divided into the differential equation on the original stiffness function that was known, and Fredholm integral equation of the first kind on the undetermined stiffness function that was unknown. And the stable solutions of the integral equation, when the smooth factor was equal to zero, was solved by the extrapolation with p smooth factors. So the stiffness function of the structure is obtained. Applied examples show that the method is feasible and effective.

  7. Nanoscale field effect transistor for biomolecular signal amplification

    CERN Document Server

    Chen, Yu; Hong, Mi K; Erramilli, Shyamsunder; Rosenberg, Carol; Mohanty, Pritiraj

    2008-01-01

    We report amplification of biomolecular recognition signal in lithographically defined silicon nanochannel devices. The devices are configured as field effect transistors (FET) in the reversed source-drain bias region. The measurement of the differential conductance of the nanowire channels in the FET allows sensitive detection of changes in the surface potential due to biomolecular binding. Narrower silicon channels demonstrate higher sensitivity to binding due to increased surface-to-volume ratio. The operation of the device in the negative source-drain region demonstrates signal amplification. The equivalence between protein binding and change in the surface potential is described.

  8. Determining crystal structures through crowdsourcing and coursework

    Science.gov (United States)

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  9. DETERMINANTS OF FINANCIAL STRUCTURE OF GREEK COMPANIES

    Directory of Open Access Journals (Sweden)

    Gargalis PANAGIOTIS

    2016-06-01

    Full Text Available Capital structure is essential for the survival, growth and performance of a firm. There has been a growing interest worldwide in identifying the factors associated with debt leverage. This article aims to investigate the factors affecting the capital structure of companies listed on the Athens Stock Exchange (ASE. The data set used is composed of indicators reflecting the financial position and performance of 40 firms listed on the ASE in 2014. Using a regression model we estimate in what extent the financial structure of companies is affected by performance indicators and other specific factors like the field of activity or the size of the firms. The results obtained show an important influence of share of tangible assets in total assets of the company on the financial leverage, as main variable selected in order to reflect the capital structure of Greek companies.

  10. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1995-01-01

    X-ray crystallography provides us with the most accurate picture we can get of atomic and molecular structures in crystals. It provides a hard bedrock of structural results in chemistry and in mineralogy. In biology, where the structures are not fully crystalline, it can still provide valuable results and, indeed, the impact here has been revolutionary. It is still an immense field for young workers, and no doubt will provide yet more striking develop­ ments of a major character. It does, however, require a wide range of intellectual application, and a considerable ability in many fields. This book will provide much help. It is a very straightforward and thorough guide to every aspect of the subject. The authors are experienced both as research workers themselves and as teachers of standing, and this is shown in their clarity of exposition. There are plenty of iliustrations and worked examples to aid the student to obtain a real grasp of the subject.

  11. Determination of hair structure and shape.

    Science.gov (United States)

    Schlake, Thomas

    2007-04-01

    The hair follicle attracted significant attention as a model for the investigation of diverse biological problems. Whereas its morphology and the structure of the hair shaft are known in detail, the molecular biology of this miniorgan is significantly less characterised. Many efforts focussed on the development of the hair follicle and its stem cell reservoir; by contrast, the follicular product, the hair, which is interesting not only in terms of cosmetics was neglected. This review highlights our current knowledge of the control of hair structure and shape with emphasis on mouse hair follicle biology and discusses continuing problems.

  12. Determinants of the detrital arthropod community structure

    DEFF Research Database (Denmark)

    Lessard, J.P.; Sackett, Tara E.; Reynolds, William N.;

    2011-01-01

    Understanding the factors that shape community structure, and whether those factors vary geographically, has a long history in ecology. Because the abiotic environment often varies in predictable ways along elevational gradients, montane systems are ideal to study geographic variation in the dete...

  13. Determining the structure of Carbon-60

    International Nuclear Information System (INIS)

    Carbon-60 is the most stable and best known of the carbon cage structures known collectively as the fullerenes. It is a remarkable molecule that forms a fascinating solid. Although the molecular shape of C sub 6 sub 0 is familiar - it is simply the shape of a soccer ball with 12 pentagons and 20 hexagons - the manner in which it forms a crystal structure is by no means obvious. This talk will focus on the insights which neutron scattering at ISIS has brought to our understanding of solid C sub6 sub 0. At room temperature, the structure may be regarded as forming as essentially ideal cubic-close packed molecular bubble-raft: each molecule is reorienting so rapidly that a time-averaged picture, over as little as a nanosecond, reveals a closely spherical shell of atomic density. At 260 K, a rather unusual structural transition occurs. The molecules order but still retain cubic symmetry. Although this may not appear to be a rather dramatic change, detailed considerations show that a profound transition has occurred that bears close similarities to a solid-liquid phase transition but in two dimensions. Below 260 K, reorientation still occurs but at a dramatically reduced rate as the temperature is lowered. Indeed at around 90 K, The reorientation is so slow that thermodynamic equilibrium cannot be achieved in a reasonable timescale an orientational glass transition occurs. Although the behaviour of solid C sub 6 sub 0 undergoes dramatic changes as a function of temperature, a coherent description has evolved in which neutron scattering plays a central role. Close analogies are to be found in the study of systems as diverse as solid H sub 2 and human-rhinovirus structures. These analogies and the central role played by neutron scattering at ISIS will be emphasised in this paper. 5 figs., 10 refs. (author)

  14. Some structural determinants of melody recall.

    Science.gov (United States)

    Boltz, M

    1991-05-01

    Sophisticated musicians were asked to recall, using musical notation, a set of unfamiliar folk tunes that varied in rhythmic structure and referents of tonality. The results showed that memory was facilitated by tonic triad members marking phrase endings, but only when their presence was highlighted by a corresponding pattern of temporal accents. Conversely, recall significantly declined when tonal information was either absent or obscured by rhythmic structure. Error analyses further revealed that the retention of overall pitch contour and information at phrase ending points varied as a function of these manipulations. The results are discussed in terms of a framework that links the acts of perceiving and remembering to a common attentional scheme. PMID:1861610

  15. What Determines the Likelihood of Structural Reforms?

    OpenAIRE

    Agnello, Luca; Castro, Vitor; Jalles, João Tovar; Sousa, Ricardo M.

    2014-01-01

    We use data for a panel of 60 countries over the period 1980-2005 to investigate the main drivers of the likelihood of structural reforms. We find that: (i) external debt crises are the main trigger of financial and banking reforms; (ii) inflation and banking crises are the key drivers of external capital account reforms; (iii) banking crises also hasten financial reforms; and (iv) economic recessions play an important role in promoting the necessary consensus for financial, capital, banking ...

  16. Structure and determinants of consumer expenditures

    OpenAIRE

    Stejskal, Ladislav; Stávková, Jana

    2011-01-01

    The local and worldwide present economic situation is often judged and discussed on the basis of the consumer expenditures development. Consumer expenditures or a buying behaviour outcome of each individual market subject is in marketing defined as a product and service seeking, from that consumers expect satisfying of their needs. On the basis of the introduced determination authors conducted a marketing research. Results in combination with a marketing insight into consumer expenditures rea...

  17. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, Jan Henrik; Boebinger, Gregory S.; Comment, Arnaud;

    2015-01-01

    In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi‐author interdisciplinary Review presents a state‐of‐the‐art description...

  18. Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers

    Science.gov (United States)

    Tomala, Agnieszka; Göçerler, Hakan; Gebeshuber, Ille C.

    The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and - finally and most importantly - failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing

  19. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.

    Science.gov (United States)

    van Zundert, G C P; Rodrigues, J P G L M; Trellet, M; Schmitz, C; Kastritis, P L; Karaca, E; Melquiond, A S J; van Dijk, M; de Vries, S J; Bonvin, A M J J

    2016-02-22

    The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modeling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process. This has been at the core of our information-driven docking approach HADDOCK. We present here the updated version 2.2 of the HADDOCK portal, which offers new features such as support for mixed molecule types, additional experimental restraints and improved protocols, all of this in a user-friendly interface. With well over 6000 registered users and 108,000 jobs served, an increasing fraction of which on grid resources, we hope that this timely upgrade will help the community to solve important biological questions and further advance the field. The HADDOCK2.2 Web server is freely accessible to non-profit users at http://haddock.science.uu.nl/services/HADDOCK2.2.

  20. A self-regulating biomolecular comparator for processing oscillatory signals.

    Science.gov (United States)

    Agrawal, Deepak K; Franco, Elisa; Schulman, Rebecca

    2015-10-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  1. Photoelectron holography applied to surface structural determination

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, B.L.

    1995-05-01

    Photoemitted electron waves are used as coherent source waves for angstrom-scale holographic imaging of local atomic geometry at surfaces. Electron angular distribution patterns are collected above a sample surface and serve as a record of the interference between source wave and waves scattered from surrounding ion cores. Using a mathematical imaging integral transformation, the three-dimensional structural information is obtained directly from these collected patterns. Patterns measured with different electron kinetic energies are phase-summed for image improvement. Pt (111) surface is used as a model system. A pattern 9.6{angstrom}{sup {minus}1} (351 eV) is used to generate a full 3-D image of atom locations around an emitter with nearest neighbors within 0.l{angstrom} of the expected bulk positions. Atoms several layers beyond the nearest neighbors are also apparent. Twin-image reduction and artifact suppression is obtained by phase-summing eight patterns measured from 8.8 to 10.2{angstrom}{sup {minus}1} (295 to 396 eV). 32 were measured in 0.2{angstrom}{sup {minus}1} steps from 6.0 to 12.2{angstrom}{sup {minus}1} (137 to 567 eV) are presented here. Simple models of two-slit interference are compared with electron scattering to illuminate understanding of holographic recording of the structural information. This also shows why it sometimes fails due to destructive interferences. Simple theoretical models of electron scattering are compared to experiment to show the origin of the structural information and the differences that result from atomic scattering and from the source wave. Experimental parameters and their relation to imaging is discussed. Comparison is made to the Pt pattern measured at 351 eV using the simple theoretical model. The remaining data set is also modeled, and the eight appropriate theoretical patterns are used to regenerate the multiple-wavenumber experimental result. A clean Cu (001) surface is also measured and imaged.

  2. How structure determines correlations in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2011-05-01

    Full Text Available Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.

  3. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    Science.gov (United States)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.

  4. Structural and institutional determinants of investment activity in Africa

    OpenAIRE

    Chuku, Chuku; Onye, Kenneth; Ajah, Hycent

    2015-01-01

    This paper considers the structural and institutional determinants of investment activity in selected African countries within a neoclassical framework. Generalized method of moments and a family of panel data estimation techniques are utilized in addition to nonparametric kernel regression techniques to uncover the relationship. Three main findings emerge; (i) financial openness and institutional quality are reasonably robust structural and institutional determinants of investment activity...

  5. Determining building interior structures using compressive sensing

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  6. Structural Determinants of Sleeping Beauty Transposase Activity.

    Science.gov (United States)

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-08-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold.

  7. Structural Determinants of Sleeping Beauty Transposase Activity.

    Science.gov (United States)

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-08-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold. PMID:27401040

  8. Determination of Ice Characteristics for Marine Hydroengineering Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kantarzhi, I. G., E-mail: kantardgi@yandex.ru [Moscow State University of Civil Engineering (MSGU) (Russian Federation); Maderich, V. S., E-mail: vladmad@gmail.com; Koshebutskii, V. I., E-mail: koshik1@gmail.com [Ukrainian Center of Environmental and Water Projects (UTsÉVP) (Ukraine)

    2016-01-15

    Problems and potential approaches to determining ice characteristics for sea hydroengineering structures design are considered. A system for numerical modeling of ice dynamics is presented. The system may be used to define ice characteristics on approaches to structures with due regard for local hydrometeorological conditions and ice loads on structures. System application examples are presented for determining computational scenarios for ice loads at structures of the Pevek floating nuclear power plant (FNPP), as well as for the breakwater pier under reconstruction in Vanino. A scenario approach is used to determined ice loads.

  9. DockScreen: A Database of In Silico Biomolecular Interactions to Support Computational Toxicology

    Directory of Open Access Journals (Sweden)

    Michael-Rock Goldsmith

    2014-01-01

    Full Text Available We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme binding scores calculated by molecular docking of more than 1000 chemicals into 150 protein targets and contains nearly 135 thousand unique ligand/target binding scores. Obtaining this dataset was achieved using eHiTS (Simbiosys Inc., a fragment-based molecular docking approach with an exhaustive search algorithm, on a heterogeneous distributed high-performance computing framework. The chemical landscape covered in DockScreen comprises selected environmental and therapeutic chemicals. The target landscape covered in DockScreen was selected based on the availability of high-quality crystal structures that covered the assay space of phase I ToxCast in vitro assays. This in silico data provides continuous information that establishes a means for quantitatively comparing, on a structural biophysical basis, a chemical’s profile of biomolecular interactions. The combined minimum-score chemical/target matrix is provided.

  10. The methodology of determining the corrosion of steel structures

    OpenAIRE

    S.D. Fedotov; A.V. Ulybin; N.N. Shabrov

    2013-01-01

    The problems of determining the corrosive wear of steel structures are considered. The results of applying ultrasonic method to determine the remaining profile of the structure are described. The main advantages and disadvantages of ultrasonic thickness meters comparing to mechanical devices are given. Low reliability of the method based on evaluating the thickness of the corrosion oxides is substantiated. The problems of determining the original section of the elements are outlined. The alg...

  11. Audit Fee Determinants in different Ownership Structures : The Swedish Setting

    OpenAIRE

    Ask, Joakim; LJ Holm, Mattias

    2013-01-01

    The aim of this study is to test the audit fee determinants for companies listed on Nasdaq OMX Stockholm Stock Exchange and to examine whether the audit fee determinants diverge for ownership structures. By testing the audit fee determinants in a Swedish setting the study contributes to the research body in two ways; by testing a previously sparsely researched setting and examining the monitoring need for different ownership structures. The results indicate that audit fees are explained to a ...

  12. Ab initio structure determination via powder X-ray diffraction

    Indian Academy of Sciences (India)

    Digamber G Porob; T N Guru Row

    2001-10-01

    Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.

  13. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  14. MOTOR: model assisted software for NMR structure determination.

    Science.gov (United States)

    Schieborr, Ulrich; Sreeramulu, Sridhar; Elshorst, Bettina; Maurer, Marcus; Saxena, Krishna; Stehle, Tanja; Kudlinzki, Denis; Gande, Santosh Lakshmi; Schwalbe, Harald

    2013-11-01

    Eukaryotic proteins with important biological function can be partially unstructured, conformational flexible, or heterogenic. Crystallization trials often fail for such proteins. In NMR spectroscopy, parts of the polypeptide chain undergoing dynamics in unfavorable time regimes cannot be observed. De novo NMR structure determination is seriously hampered when missing signals lead to an incomplete chemical shift assignment resulting in an information content of the NOE data insufficient to determine the structure ab initio. We developed a new protein structure determination strategy for such cases based on a novel NOE assignment strategy utilizing a number of model structures but no explicit reference structure as it is used for bootstrapping like algorithms. The software distinguishes in detail between consistent and mutually exclusive pairs of possible NOE assignments on the basis of different precision levels of measured chemical shifts searching for a set of maximum number of consistent NOE assignments in agreement with 3D space. Validation of the method using the structure of the low molecular-weight-protein tyrosine phosphatase A (MptpA) showed robust results utilizing protein structures with 30-45% sequence identity and 70% of the chemical shift assignments. About 60% of the resonance assignments are sufficient to identify those structural models with highest conformational similarity to the real structure. The software was benchmarked by de novo solution structures of fibroblast growth factor 21 (FGF21) and the extracellular fibroblast growth factor receptor domain FGFR4 D2, which both failed in crystallization trials and in classical NMR structure determination. PMID:23852655

  15. Automating the determination of 3D protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  16. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method.

  17. Association of Biomolecular Resource Facilities Survey: Service Laboratory Funding

    OpenAIRE

    Ogorzalek Loo, Rachel; Nicolet, Charles M.; Niece, Ronald L.; Young, Mary; Simpson, John T.

    2009-01-01

    In 2007, The Association of Biomolecular Resource Facilities (ABRF) Survey Committee surveyed the ABRF membership and scientists at-large concerning the current state of funding in service-oriented laboratories. Questions pertained to services offered, cost recovery, capital equipment funding, and future outlook. The web-based survey, available for 3 weeks, achieved participation from 209 respondents in 13 countries, 77% of which represented academic laboratories. Most respondents (75%) direc...

  18. Dynamic Presentation of Immobilized Ligands Regulated through Biomolecular Recognition

    OpenAIRE

    Liu, Bo; Liu, Yang; Riesberg, Jeremiah J.; Shen, Wei

    2010-01-01

    To mimic the dynamic regulation of signaling ligands immobilized on extracellular matrices or on the surfaces of neighboring cells for guidance of cell behavior and fate selection, we have harnessed biomolecular recognition in combination with polymer engineering to create dynamic surfaces on which the accessibility of immobilized ligands to cell surface receptors can be reversibly interconverted under physiological conditions. The cell-adhesive RGD peptide is chosen as a model ligand. RGD is...

  19. CONCIDERING OF FUNDATION SLOPE TO DETERMINE THE ENGENEERING STRUCTURE HEIGHT

    OpenAIRE

    Zubko, Z.

    2005-01-01

    The article considers some aspects of determining of engineering structure height. It proposes the technique for terrain slope consideration in the course of base adjustment under difficult conditions of geodetic surveying.

  20. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    Science.gov (United States)

    Rödström, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.

  1. Single-Molecule Pull-down FRET (SiMPull-FRET) to dissect the mechanisms of biomolecular machines

    Science.gov (United States)

    Kahlscheuer, Matthew L.; Widom, Julia; Walter, Nils G.

    2016-01-01

    Spliceosomes are multi-megadalton RNA-protein complexes responsible for the faithful removal of non-coding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition and versatile structural dynamics. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues towards studying the mechanisms of biomolecular machines isolated directly from complex biological specimens such as cell extracts. Here we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy in exemplary single molecule pull-down FRET (SiMPull-FRET) studies of the yeast spliceosome and discuss the broad application potential of this technique. PMID:26068753

  2. NMRFAM-SDF: a protein structure determination framework

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam; Lee, Woonghee; Tonelli, Marco; Cornilescu, Claudia C.; Cornilescu, Gabriel; Assadi-Porter, Fariba M.; Westler, William M.; Eghbalnia, Hamid R.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)

    2015-08-15

    The computationally demanding nature of automated NMR structure determination necessitates a delicate balancing of factors that include the time complexity of data collection, the computational complexity of chemical shift assignments, and selection of proper optimization steps. During the past two decades the computational and algorithmic aspects of several discrete steps of the process have been addressed. Although no single comprehensive solution has emerged, the incorporation of a validation protocol has gained recognition as a necessary step for a robust automated approach. The need for validation becomes even more pronounced in cases of proteins with higher structural complexity, where potentially larger errors generated at each step can propagate and accumulate in the process of structure calculation, thereby significantly degrading the efficacy of any software framework. This paper introduces a complete framework for protein structure determination with NMR—from data acquisition to the structure determination. The aim is twofold: to simplify the structure determination process for non-NMR experts whenever feasible, while maintaining flexibility by providing a set of modules that validate each step, and to enable the assessment of error propagations. This framework, called NMRFAM-SDF (NMRFAM-Structure Determination Framework), and its various components are available for download from the NMRFAM website ( http://nmrfam.wisc.edu/software.htm http://nmrfam.wisc.edu/software.htm )

  3. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  4. Determination of absolute structure using Bayesian statistics on Bijvoet differences

    NARCIS (Netherlands)

    Hooft, R.W.W.; Straver, L.H.; Spek, A.L.

    2008-01-01

    A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The o

  5. China Takes the Lead in the Structural Determination of Lumbrokinase

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ After five years of arduous work, CAS scientists re cently succeeded in determining the structure of lumbrokinase (earthworm fibrinolytic enzyme),shedding light on the understanding of this drug at the molecular level and laying a foundation for drug design based on its structure.

  6. Generative probabilistic models extend the scope of inferential structure determination

    DEFF Research Database (Denmark)

    Olsson, Simon; Boomsma, Wouter; Frellsen, Jes;

    2011-01-01

    Conventional methods for protein structure determination from NMR data rely on the ad hoc combination of physical forcefields and experimental data, along with heuristic determination of free parameters such as weight of experimental data relative to a physical forcefield. Recently, a theoretical...

  7. Labor Market Structure and Salary Determination among Professional Basketball Players.

    Science.gov (United States)

    Wallace, Michael

    1988-01-01

    The author investigates the labor market structure and determinants of salaries for professional basketball players. An expanded version of the resource perspective is used. A three-tiered model of labor market segmentation is revealed for professional basketball players, but other variables also are important in salary determination. (Author/CH)

  8. Determinants of euro term structure of credit spreads

    OpenAIRE

    Astrid Van Landschoot

    2004-01-01

    In this paper, we investigate the determinants of the Euro term structure of credit spreads. More specifically, we analyze whether the sensitivity of credit spread changes to financial and macroeconomic variables depends on bond characteristics such as rating and maturity. According to the structural models and empirical evidence on credit spreads, we find that changes in the level and the slope of the default-free term structure, the market return, implied volatility, and liquidity risk sign...

  9. Biomolecular transport and separation in nanotubular networks.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Stevens, Mark Jackson (Sandia National Laboratories, Albuquerque, NM); Robinson, David B.; Branda, Steven S.; Zendejas, Frank; Meagher, Robert J.; Sasaki, Darryl Yoshio; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Hayden, Carl C.; Sinha, Anupama; Abate, Elisa; Wang, Julia; Carroll-Portillo, Amanda (Sandia National Laboratories, Albuquerque, NM); Liu, Haiqing (Sandia National Laboratories, Albuquerque, NM)

    2010-09-01

    Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.

  10. Integral membrane protein structure determination using pseudocontact shifts

    International Nuclear Information System (INIS)

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general

  11. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  12. Advances in biomolecular surface meshing and its applications to mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    CHEN MinXin; LU BenZhuo

    2013-01-01

    In the field of molecular modeling and simulation,molecular surface meshes are necessary for many problems,such as molecular structure visualization and analysis,docking problem and implicit solvent modeling and simulation.Recently,with the developments of advanced mathematical modeling in the field of implicit solvent modeling and simulation,providing surface meshes with good qualities efficiently for large real biomolecular systems becomes an urgent issue beyond its traditional purposes for visualization and geometry analyses for molecular structure.In this review,we summarize recent works on this issue.First,various definitions of molecular surfaces and corresponding meshing methods are introduced.Second,our recent meshing tool,TMSmesh,and its performances are presented.Finally,we show the applications of the molecular surface mesh in implicit solvent modeling and simulations using boundary element method (BEM) and finite element method (FEM).

  13. Structure Determination of Natural Products by Mass Spectrometry

    Science.gov (United States)

    Biemann, Klaus

    2015-07-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  14. Structural determination of intact proteins using mass spectrometry

    Science.gov (United States)

    Kruppa, Gary; Schoeniger, Joseph S.; Young, Malin M.

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  15. Condutância molecular e biomolecular

    Directory of Open Access Journals (Sweden)

    Gama A. Arnóbio S. da

    2000-01-01

    Full Text Available The concept of molecular conductance is discussed in terms of the propagation of an electronic interaction, between electron donor and acceptor groups, through the bonds of a molecular structure where these groups are embedded. The electronic interaction propagation is described by a Green's function matrix element, in a donor-bridge-acceptor molecular system reduced to a two-level representation.

  16. Biomolecular Interactions Measured by Atomic Force Microscopy

    NARCIS (Netherlands)

    Willemsen, Oscar H.; Snel, Margot M.E.; Cambi, Alessandra; Greve, Jan; Grooth, de Bart G.; Figdor, Carl G.

    2000-01-01

    Atomic force microscopy (AFM) is nowadays frequently applied to determine interaction forces between biological molecules. Starting with the detection of the first discrete unbinding forces between ligands and receptors by AFM only several years ago, measurements have become more and more quantitati

  17. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.;

    2014-01-01

    suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors...

  18. Raman microspectroscopic study of biomolecular structure inside living adhesive cells

    Institute of Scientific and Technical Information of China (English)

    LI; Guang; (李光); YANG; Hongying(杨红英); XU; Yiming; (许以明); ZHANG; Zhiyi(张志义)

    2002-01-01

    Cells adhesion is very important for many physiological processes. Using advanced Raman microspectroscopic technique, we selected T Leukemia cells (Jurkat) as the materials and obtained simultaneously conformation information of various biomolecules inside the whole living cells. By comparing the Raman microspectroscopic spectra of single and adhesive cancer cells, we found for the first time that when cells adhered, the conformation of the biomolecules (DNA, protein, carbohydrates and lipids) inside the cells had different changes: (i) the backbone of double-stranded DNA maintained orderly B-form or modified B-form conformation, whereas the groups of its deoxyribose and bases were modified; (ii) the conformational changes of the main chain and the side chain in the protein were obviously variant. The lines intensity belonging to α-helix andβ-sheet decreased, while that ofβ-turn increased. Tyrosine and tryptophane residues of the protein changed from "buried state" to "exposed state"; the lines intensity of its sulfhydryl group also increased; the conformation of its disulfide bond changed from two kinds to three kinds. These facts suggest that the cells adhesion causes changes in H-bonds organization of the main chain and environment of the side chain in the protein; (iii) the groups of the carbohydrates were also modified simultaneously; (iv) the conformation of the lipids bilayers of the membranes changed obviously; the order parameter for lateral interaction between chains decreased gradually with the increase of number of the adhesive cells. So cells adhesion resulted in an increase in fluidity of the membrane and ion permeability on the membrane.

  19. Birthday Cake Activity Structured Arrangement for Helping Children Determining Quantities

    Directory of Open Access Journals (Sweden)

    Neni Mariana

    2010-07-01

    Full Text Available Few researches have been concerned about relation between children’s spatial thinking and number sense. Narrowing for this small research, we focused on one component of spatial thinking, that is structuring objects, and one component of number senses, that is cardinality by determining quantities. This study focused on a design research that was conducted in Indonesia in which we investigated pre-school children’s (between 2 and 3.5 years old ability in making structured arrangement and their ability to determine the quantities by looking at the arrangements. The result shows us that some of the children were able to make such arrangement. However, the children found difficulties either to determine quantities from those arrangements or to compare some structures to easily recognize number of objects.

  20. Protein hydrogels with engineered biomolecular recognition

    Science.gov (United States)

    Mi, Lixin

    Extracellular matrices (ECMs) are the hydrated macromolecular gels in which cells migrate and proliferate and organize into tissues in vivo . The development of artificial ECM with the required mechanical, physico-chemical, and biological properties has long been a challenge in the biomaterial research field. In this dissertation, a novel set of bioactive protein hydrogels has been synthesized and characterized at both molecular and materials levels. The self-recognized and self-assembled protein copolymers have the ability to provide engineered biofunctionality through the controlled arrangement of bioactive domains on the nanoscale. Genetic engineering methods have been employed to synthesize these protein copolymers. Plasmid DNA carrying genes to express both di- and tri-block proteins have been constructed using molecular cloning techniques. These genes were expressed in bacterial E. coli to ensure homogeneous protein length and anticipated structure. Three diblock protein sequences having a leucine zipper construct on one end and polyelectrolyte (AGAGAGPEG)10 on the other, have been studied by circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and static light scattering to characterize their secondary structure, structural stability, and oligomeric state. The results show that ABC diblock mixtures form very stable heterotrimer aggregates via self-recognition and self-assembly of the coiled coil end domains. Tri-block proteins with two leucine zipper motif ends flanking the polyelectrolyte random coil in the middle have been investigated by circular dichroism and fluorescence spectroscopy, and the hydrogels formed by self-assembly of these tri-blocks have been studied using transmission electronic microscopy and diffusing wave spectroscopy. The reversible gelation behavior is the result of heterotrimeric aggregation of helices to form the physical crosslinks in the gel, with the polyelectrolyte region center block retaining

  1. Optimizing an emperical scoring function for transmembrane protein structure determination.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  2. Determinants of capital structure: Evidence from Istanbul stock exchange

    OpenAIRE

    Samery, Mohammad

    2013-01-01

    ABSTRACT: This thesis aims to explain determinants of capital structure evidence from istanbul stock exchange from three companies (Turkcell ,Vodafone and Deutesche Telekom).The two main theories used are for trade-off theory and pecking order theory. The essential of the pecking order is the manager's of capital structure decision are influenced by the market perception of manager's superior information. The trade-off theory provides support for manager's trade-off between benefits and costs...

  3. Slavnov determinants, Yang-Mills structure constants, and discrete KP

    OpenAIRE

    Foda, O.; Wheeler, M.

    2012-01-01

    Using Slavnov's scalar product of a Bethe eigenstate and a generic state in closed XXZ spin-1/2 chains, with possibly twisted boundary conditions, we obtain determinant expressions for tree-level structure constants in 1-loop conformally-invariant sectors in various planar (super) Yang-Mills theories. When certain rapidity variables are allowed to be free rather than satisfy Bethe equations, these determinants become discrete KP tau-functions.

  4. Scanning probe and optical tweezer investigations of biomolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rigby-Singleton, Shellie

    2002-07-01

    A complex array of intermolecular forces controls the interactions between and within biological molecules. The desire to empirically explore the fundamental forces has led to the development of several biophysical techniques. Of these, the atomic force microscope (AFM) and the optical tweezers have been employed throughout this thesis to monitor the intermolecular forces involved in biomolecular interactions. The AFM is a well-established force sensing technique capable of measuring biomolecular interactions at a single molecule level. However, its versatility has not been extrapolated to the investigation of a drug-enzyme complex. The energy landscape for the force induced dissociation of the DHFR-methotrexate complex was studied. Revealing an energy barrier to dissociation located {approx}0.3 nm from the bound state. Unfortunately, the AFM has a limited range of accessible loading rates and in order to profile the complete energy landscape alternative force sensing instrumentation should be considered, for example the BFP and optical tweezers. Thus, this thesis outlines the development and construction an optical trap capable of measuring intermolecular forces between biomolecules at the single molecule level. To demonstrate the force sensing abilities of the optical set up, proof of principle measurements were performed which investigate the interactions between proteins and polymer surfaces subjected to varying degrees of argon plasma treatment. Complementary data was gained from measurements performed independently by the AFM. Changes in polymer resistance to proteins as a response to changes in polymer surface chemistry were detected utilising both AFM and optical tweezers measurements. Finally, the AFM and optical tweezers were employed as ultrasensitive biosensors. Single molecule investigations of the antibody-antigen interaction between the cardiac troponin I marker and its complementary antibody, reveals the impact therapeutic concentrations of heparin

  5. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

    International Nuclear Information System (INIS)

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

  6. Engineering biomolecular microenvironments for cell instructive biomaterials.

    Science.gov (United States)

    Custódio, Catarina A; Reis, Rui L; Mano, João F

    2014-06-01

    Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.

  7. Biomolecular mechanisms in varicose veins development.

    Science.gov (United States)

    Segiet, Oliwia Anna; Brzozowa-Zasada, Marlena; Piecuch, Adam; Dudek, Damian; Reichman-Warmusz, Edyta; Wojnicz, Romuald

    2015-02-01

    Varicose veins (VVs) can be described as tortuous and dilated palpable veins, which are more than 3 mm in diameter. They are one of the clinical presentations of chronic venous disorders, which are a significant cause of morbidity. The prevalence of VVs has been estimated at 25-33% in women and 10-20% in men and is still increasing at an alarming rate. Family history, older age, female, pregnancy, obesity, standing occupations, and a history of deep venous thrombosis are the predominant risk factors. A great amount of factors are implicated in the pathogenesis of VVs, including changes in hydrostatic pressure, valvular incompetence, deep venous obstruction, ineffective function of calf muscle pump, biochemical and structural alterations of the vessel wall, extracellular matrix abnormalities, impaired balance between growth factors or cytokines, genetic alterations, and several other mechanisms. Nevertheless, the issue of pathogenesis in VVs is still not completely known, even if a great progress has been made in understanding their molecular basis. This kind of studies appears promising and should be encouraged, and perhaps the new insight in this matter may result in targeted therapy or possibly prevention.

  8. Capital Structure of Agricultural Businesses and its Determinants

    Directory of Open Access Journals (Sweden)

    R. Aulová

    2013-06-01

    Full Text Available The article deals with the analysis of the capital structure of agricultural businesses of legal entities and its determinants. It discusses the effect of selected determinants on the capital structure of businesses, expressed by way of three categories of indebtedness. The analysis of the determinants of capital structure is conducted by way of multiple linear regression. Also being verified is the hypothesis of whether the effect of individual determinants of capital structure is in accordance with the theoretical assumptions of conditional theories of capital structure and empirical studies.The panel data for the article were acquired from the Albertina database, provided by the company Soliditet, s.r.o. Specifically, the data used were those from accounting statements for the years 2004 – 2010 for the agricultural businesses of legal entities. In total, the object of examination was 16075 businesses, which were divided up according to legal forms (joint stock company, cooperative, and limited liability company and subsequently the relevant size group. In total, 18 groups of businesses were created, whereby the average balance and profit and loss account were drawn up for each group, on the basis of which the relevant calculations were conducted. The article is a part of the grant project IGA 20121069 “Identification of the main determinants of the result of economic activity of agricultural businesses of legal entities and the determination of their specifics” and of the institutional research intentions MSM 6046070906 „Economics sources of Czech agriculture and their efficient use in the context of multifunctional agri-food systems“.

  9. Thermal coupling at aqueous and biomolecular interfaces

    Science.gov (United States)

    Shenogina, Natalia B.

    structural characterization tools. We followed up with studies of models of heterogeneous interfaces where we addressed the issue of independent vs. correlated contributions of hydrophobic and hydrophilic interfacial regions to thermal transfer. Finally we simulated heat flow across lipid bilayers which involve hydrophilic interfaces, but are characterized by relatively high surface roughness and non-saturated hydrocarbon chains. We found that roughness of the interface can significantly enhance thermal transport across the lipid membranes.

  10. Birthday Cake Activity Structured Arrangement for Helping Children Determining Quantities

    Science.gov (United States)

    Mariana, Neni

    2010-01-01

    Few researches have been concerned about relation between children's spatial thinking and number sense. Narrowing for this small research, we focused on one component of spatial thinking, that is structuring objects, and one component of number senses, that is cardinality by determining quantities. This study focused on a design research that was…

  11. Macromolecular structure determination in the post-genome era

    International Nuclear Information System (INIS)

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system for the structure determination steps of this process, starting with the initial characterization of the frozen sample, followed by data collection, data reduction, phase determination, and model building. This paper focuses on the data collection elements of this high-throughput system

  12. Synthesis and structure determination of novel hexasubstituted cyclohexadienes

    Institute of Scientific and Technical Information of China (English)

    Hong Mei Qu; Xin Hui Niu; Juan Li; Jun Liu; Li Li Jiang; Jian Ke Tang; Li Shan Zhou

    2012-01-01

    The linear trienes were obtained in high yields by copper-mediated cycloaddition of 2,5-bis(trimethylsilyl)zirconacyclopentadienes with dimethyl acetylenedicarboxylate (DMAD) which can be quantitatively converted to novel asymmetric hexasubstituted cyclohexadienes with high (E)-stereoselectivity.The structure of cyclohexadienes was determined via X-ray analysis.

  13. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  14. The determinism and boundedness of self-assembling structures

    CERN Document Server

    Tesoro, S

    2016-01-01

    Self-assembly processes are widespread in nature, and lie at the heart of many biological and physical phenomena. The characteristics of self-assembly building blocks determine the structures that they form. Among the most important of these properties are whether the self-assembly is deterministic or nondeterministic, and whether it is bound or unbound. The former tells us whether the same set of building blocks always generates the same structure, and the latter whether it grows indefinitely. These properties are highly relevant in the context of protein structures, as the difference between deterministic protein self-assembly and nondeterministic protein aggregation is central to a number of diseases. Here we introduce a graph-based approach that can determine, with a few restrictions, whether a set of self-assembly building blocks is deterministic or nondeterministic, and whether it is bound or unbound. We apply this methodology to a previously studied lattice self-assembly model and discuss generalisatio...

  15. Perspective: Coarse-grained models for biomolecular systems

    Science.gov (United States)

    Noid, W. G.

    2013-09-01

    By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.

  16. Knowledge based cluster ensemble for cancer discovery from biomolecular data.

    Science.gov (United States)

    Yu, Zhiwen; Wongb, Hau-San; You, Jane; Yang, Qinmin; Liao, Hongying

    2011-06-01

    The adoption of microarray techniques in biological and medical research provides a new way for cancer diagnosis and treatment. In order to perform successful diagnosis and treatment of cancer, discovering and classifying cancer types correctly is essential. Class discovery is one of the most important tasks in cancer classification using biomolecular data. Most of the existing works adopt single clustering algorithms to perform class discovery from biomolecular data. However, single clustering algorithms have limitations, which include a lack of robustness, stability, and accuracy. In this paper, we propose a new cluster ensemble approach called knowledge based cluster ensemble (KCE) which incorporates the prior knowledge of the data sets into the cluster ensemble framework. Specifically, KCE represents the prior knowledge of a data set in the form of pairwise constraints. Then, the spectral clustering algorithm (SC) is adopted to generate a set of clustering solutions. Next, KCE transforms pairwise constraints into confidence factors for these clustering solutions. After that, a consensus matrix is constructed by considering all the clustering solutions and their corresponding confidence factors. The final clustering result is obtained by partitioning the consensus matrix. Comparison with single clustering algorithms and conventional cluster ensemble approaches, knowledge based cluster ensemble approaches are more robust, stable and accurate. The experiments on cancer data sets show that: 1) KCE works well on these data sets; 2) KCE not only outperforms most of the state-of-the-art single clustering algorithms, but also outperforms most of the state-of-the-art cluster ensemble approaches.

  17. Role of biomolecular logic systems in biosensors and bioactuators

    Science.gov (United States)

    Mailloux, Shay; Katz, Evgeny

    2014-09-01

    An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.

  18. Biomolecular logic systems: applications to biosensors and bioactuators

    Science.gov (United States)

    Katz, Evgeny

    2014-05-01

    The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.

  19. Programming in Biomolecular Computation: Programs, Self-Interpretation and Visualisation

    Directory of Open Access Journals (Sweden)

    J.G. Simonsen

    2011-01-01

    Full Text Available Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways and without arcane encodings of data and algorithm; it is also uniform: new ``hardware'' is not needed to solve new problems; and (last but not least it is Turing complete in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient.

  20. Overconfidence, Managerial Optimism, and the Determinants of Capital Structure

    Directory of Open Access Journals (Sweden)

    Alexandre di Miceli da Silveira

    2008-12-01

    Full Text Available This research examines the determinants of the capital structure of firms introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: firms managed by optimistic and/or overconfident people will choose more levered financing structures than others, ceteris paribus. We propose different proxies for optimism/overconfidence, based on the manager’s status as an entrepreneur or non-entrepreneur, an idea that is supported by theories and solid empirical evidence, as well as on the pattern of ownership of the firm’s shares by its manager. The study also includes potential determinants of capital structure used in earlier research. We use a sample of Brazilian firms listed in the Sao Paulo Stock Exchange (Bovespa in the years 1998 to 2003. The empirical analysis suggests that the proxies for the referred cognitive biases are important determinants of capital structure. We also found as relevant explanatory variables: profitability, size, dividend payment and tangibility, as well as some indicators that capture the firms’ corporate governance standards. These results suggest that behavioral approaches based on human psychology research can offer relevant contributions to the understanding of corporate decision making.

  1. X-ray structure determination and deuteration of nattokinase

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Yasuhide [Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025 (Japan); Chatake, Toshiyuki, E-mail: chatake@rri.kyoto-u.ac.jp [Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494 (Japan); Naito, Sawa; Ohsugi, Tadanori; Yatagai, Chieko; Sumi, Hiroyuki [Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505 (Japan); Kawaguchi, Akio [Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494 (Japan); Chiba-Kamosida, Kaori [Nippon Advanced Technology Co. Ltd, J-PARC, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ogawa, Megumi; Adachi, Tatsumi [Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025 (Japan); Morimoto, Yukio [Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494 (Japan)

    2013-11-01

    X-ray structure determination and deuteration of nattokinase were performed to facilitate neutron crystallographic analysis. Nattokinase (NK) is a strong fibrinolytic enzyme, which is produced in abundance by Bacillus subtilis natto. Although NK is a member of the subtilisin family, it displays different substrate specificity when compared with other subtilisins. The results of molecular simulations predict that hydrogen arrangements around Ser221 at the active site probably account for the substrate specificity of NK. Therefore, neutron crystallographic analysis should provide valuable information that reveals the enzymatic mechanism of NK. In this report, the X-ray structure of the non-hydrogen form of undeuterated NK was determined, and the preparation of deuterated NK was successfully achieved. The non-hydrogen NK structure was determined at 1.74 Å resolution. The three-dimensional structures of NK and subtilisin E from Bacillus subtilis DB104 are near identical. Deuteration of NK was carried out by cultivating Bacillus subtilis natto in deuterated medium. The D{sub 2}O resistant strain of Bacillus subtilis natto was obtained by successive cultivation rounds, in which the concentration of D{sub 2}O in the medium was gradually increased. NK was purified from the culture medium and its activity was confirmed by the fibrin plate method. The results lay the framework for neutron protein crystallography analysis.

  2. X-ray structure determination at low resolution

    International Nuclear Information System (INIS)

    Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible. As an example of structure determination in the 3.5–4.5 Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alone was subsequently solved at 3 Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ∼4 Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible

  3. Observation and Structure Determination of an Oxide Quasicrystal Approximant.

    Science.gov (United States)

    Förster, S; Trautmann, M; Roy, S; Adeagbo, W A; Zollner, E M; Hammer, R; Schumann, F O; Meinel, K; Nayak, S K; Mohseni, K; Hergert, W; Meyerheim, H L; Widdra, W

    2016-08-26

    We report on the first observation of an approximant structure to the recently discovered two-dimensional oxide quasicrystal. Using scanning tunneling microscopy, low-energy electron diffraction, and surface x-ray diffraction in combination with ab initio calculations, the atomic structure and the bonding scheme are determined. The oxide approximant follows a 3^{2}.4.3.4 Archimedean tiling. Ti atoms reside at the corners of each tiling element and are threefold coordinated to oxygen atoms. Ba atoms separate the TiO_{3} clusters, leading to a fundamental edge length of the tiling 6.7 Å. PMID:27610863

  4. Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges

    Directory of Open Access Journals (Sweden)

    A. Hosseinizadeh

    2015-07-01

    Full Text Available Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a spatial resolution of about 0.3 nm, with a rapidly emerging capability to map discrete and continuous conformational changes and the energy landscapes of biomolecular machines. Nonetheless, single-particle imaging by X-ray free-electron lasers remains important for a range of applications, including the study of large “electron-opaque” objects and time-resolved examination of key biological processes at physiological temperatures. After summarizing the state of the art in the study of structure and conformations by cryogenic electron microscopy, we identify the primary opportunities and challenges facing X-ray-based single-particle approaches, and possible means for circumventing them.

  5. Empirical Analysis of the Determinants of Marketing Contract Structures

    OpenAIRE

    Paulson, Nicholas D.; Katchova, Ani L.; Sergio H. Lence

    2008-01-01

    Initial draft replaced by updated/revised version. This is an electronic version of a journal article, please cite as: Paulson, N.D., A.L. Katchova, and S.H. Lence. “An Empirical Analysis of the Determinants of Marketing Contract Structures for Corn and Soybeans.” Journal of Agricultural and Food Industrial Organization 8(2010), 4: 1-23.

  6. Determination of the Basin Structure Beneath European Side of Istanbul

    Science.gov (United States)

    Karabulut, Savas; Cengiz Cinku, Mulla; Thomas, Michael; Lamontagne, Maurice

    2016-04-01

    Istanbul (near North Anatolian Fault Zone:NAFZ, Turkey) is located in northern part of Sea of Marmara, an area that has been influenced by possible Marmara Earthquakes. The general geology of Istanbul divided into two stratigraphic unit such as sedimentary (from Oligocene to Quaternary Deposits) and bedrock (Paleozoic and Eocene). The bedrock units consists of sand stone, clay stone to Paleozoic age and limestone to Eocene age and sedimentary unit consist of sand, clay, mil and gravel from Oligocene to Quaternary age. Earthquake disaster mitigation studies divided into two important phases, too. Firstly, earthquake, soil and engineering structure problems identify for investigation area, later on strategic emergency plan can prepare for these problems. Soil amplification play important role the disaster mitigation and the site effect analysis and basin structure is also a key parameter for determining of site effect. Some geophysical, geological and geotechnical measurements are requeired to defined this relationship. Istanbul Megacity has been waiting possible Marmara Earthquake and their related results. In order to defined to possible damage potential related to site effect, gravity measurements carried out for determining to geological structure, basin geometry and faults in Istanbul. Gravity data were collected at 640 sites by using a Scientrex CG-5 Autogravity meter Standard corrections applied to the gravity data include those for instrumental drift, Earth tides and latitude, and the free-air and Bouguer corrections. The corrected gravity data were imported into a Geosoft database to create a grid and map of the Bouguer gravity anomaly (grid cell size of 200 m). As a previously results, we determined some lineminants, faults and basins beneath Istanbul City. Especially, orientation of faults were NW-SE direction and some basin structures determined on between Buyukcekmece and Kucukcekmece Lake.

  7. The potential for biological structure determination with pulsed neutrons

    International Nuclear Information System (INIS)

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed

  8. Structural Determination and Daily Variations of Porcine Milk Oligosaccharides

    OpenAIRE

    Tao, Nannan; Ochonicky, Karen L.; German, J Bruce; Donovan, Sharon M.; Lebrilla, Carlito B.

    2010-01-01

    Free milk oligosaccharides (OS) is a major component of mammalian milk. Swine are important agricultural species and biomedical models. Despite their importance, little is known of the OS profile of porcine milk. Herein, the porcine milk glycome was elucidated and monitored over the entire lactation period by liquid chromatography profiling and structural determination with mass spectrometry. Milk was collected from second parity sows (n=3) at farrowing and on days 1, 4, 7 and 24 of lactation...

  9. Regional Mechanics Determine Collagen Fiber Structure in Healing Myocardial Infarcts

    OpenAIRE

    Fomovsky, Gregory M.; Rouillard, Andrew D.; Holmes, Jeffrey W.

    2012-01-01

    Following myocardial infarction, the mechanical properties of the healing infarct are an important determinant of heart function and the risk of progression to heart failure. In particular, mechanical anisotropy (having different mechanical properties in different directions) in the healing infarct can preserve pump function of the heart. Based on reports of different collagen structures and mechanical properties in various animal models, we hypothesized that differences in infarct size, shap...

  10. The potential for biological structure determination with pulsed neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.C. [CLRC Rutherford Appleton Laboratory, Chilton Didcot Oxon (United Kingdom)

    1994-12-31

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed.

  11. MOTIVATION INTERNALIZATION AND SIMPLEX STRUCTURE IN SELF-DETERMINATION THEORY.

    Science.gov (United States)

    Ünlü, Ali; Dettweiler, Ulrich

    2015-12-01

    Self-determination theory, as proposed by Deci and Ryan, postulated different types of motivation regulation. As to the introjected and identified regulation of extrinsic motivation, their internalizations were described as "somewhat external" and "somewhat internal" and remained undetermined in the theory. This paper introduces a constrained regression analysis that allows these vaguely expressed motivations to be estimated in an "optimal" manner, in any given empirical context. The approach was even generalized and applied for simplex structure analysis in self-determination theory. The technique was exemplified with an empirical study comparing science teaching in a classical school class versus an expeditionary outdoor program. Based on a sample of 84 German pupils (43 girls, 41 boys, 10 to 12 years old), data were collected using the German version of the Academic Self-Regulation Questionnaire. The science-teaching format was seen to not influence the pupils' internalization of identified regulation. The internalization of introjected regulation differed and shifted more toward the external pole in the outdoor teaching format. The quantification approach supported the simplex structure of self-determination theory, whereas correlations may disconfirm the simplex structure. PMID:26595290

  12. MOTIVATION INTERNALIZATION AND SIMPLEX STRUCTURE IN SELF-DETERMINATION THEORY.

    Science.gov (United States)

    Ünlü, Ali; Dettweiler, Ulrich

    2015-12-01

    Self-determination theory, as proposed by Deci and Ryan, postulated different types of motivation regulation. As to the introjected and identified regulation of extrinsic motivation, their internalizations were described as "somewhat external" and "somewhat internal" and remained undetermined in the theory. This paper introduces a constrained regression analysis that allows these vaguely expressed motivations to be estimated in an "optimal" manner, in any given empirical context. The approach was even generalized and applied for simplex structure analysis in self-determination theory. The technique was exemplified with an empirical study comparing science teaching in a classical school class versus an expeditionary outdoor program. Based on a sample of 84 German pupils (43 girls, 41 boys, 10 to 12 years old), data were collected using the German version of the Academic Self-Regulation Questionnaire. The science-teaching format was seen to not influence the pupils' internalization of identified regulation. The internalization of introjected regulation differed and shifted more toward the external pole in the outdoor teaching format. The quantification approach supported the simplex structure of self-determination theory, whereas correlations may disconfirm the simplex structure.

  13. Electron Crystallographic Study on Structure Determination for Minute Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Fanghua; FAN Haifu; WAN Zhenghua; HU Jianjun; TANG Dong

    2007-01-01

    @@ In the 1970s the development of high-resolution electron microscopy (HREM) provided a new approach to structure determination for minute crystals, which is thoroughly different from the diffraction methods.However, the previous method of trial and error has its own limits, such as some preliminary structural information must be known in advance; the crystals must be sufficient strong under the electron beam irradiation;and not all atoms can be seen in the image. Two ideas were proposed to initiate the present research project:one is to transform an arbitrary image into the crystal structure map, and the other is to enhance the image resolution by combining the information contained in the image and the corresponding electron diffraction pattern. These ideas have been realized via the combination of electron microscopy and diffraction crystallography.

  14. Local magnetic structure determination using polarized neutron holography

    Energy Technology Data Exchange (ETDEWEB)

    Szakál, Alex, E-mail: szakal.alex@wigner.mta.hu; Markó, Márton, E-mail: marko.marton@wigner.mta.hu; Cser, László, E-mail: cser.laszlo@wigner.mta.hu [Wigner Research Centre for Physics, Konkoly Thege M. út 29-33, H-1121 Budapest (Hungary)

    2015-05-07

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  15. Determination of the stretch tensor for structural transformations

    Science.gov (United States)

    Chen, Xian; Song, Yintao; Tamura, Nobumichi; James, Richard D.

    2016-08-01

    Structural transformations in crystalline solids are increasingly the basis of the functional behavior of materials. Recently, in diverse alloy systems, both low hysteresis and reversibility of phase transformations have been linked to the satisfaction of the nongeneric conditions of compatibility between phases. According to the Cauchy-Born rule, these conditions are expressed as properties of transformation stretch tensor. The transformation stretch tensor is difficult to measure directly due to the lack of knowledge about the exact transforming pathway during the structural change, and the complicating effects of microstructure. In this paper we give a rigorous algorithmic approach for determining the transformation stretch tensor from X-ray measurements of structure and lattice parameters. For some traditional and emerging phase transformations, the results given by the algorithm suggest unexpected transformation mechanisms.

  16. Method and apparatus for determining material structural integrity

    Science.gov (United States)

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  17. Determination of organic crystal structures by X ray powder diffraction

    CERN Document Server

    McBride, L

    2000-01-01

    The crystal structure of Ibuprofen has been solved from synchrotron X-ray powder diffraction data using a genetic algorithm (GA). The performance of the GA is improved by incorporating prior chemical information in the form of hard limits on the values that can be taken by the flexible torsion angles within the molecule. Powder X-ray diffraction data were collected for the anti-convulsant compounds remacemide, remacemide nitrate and remacemide acetate at 130 K on BM 16 at the X-ray European Synchrotron Radiation Facility (ESRF) at Grenoble. High quality crystal structures were obtained using data collected to a resolution of typically 1.5 A. The structure determinations were performed using a simulated annealing (SA) method and constrained Rietveld refinements for the structures converged to chi sup 2 values of 1.64, 1.84 and 1.76 for the free base, nitrate and acetate respectively. The previously unknown crystal structure of the drug famotidine Form B has been solved using X-ray powder diffraction data colle...

  18. Simulation of Parallel Logical Operations with Biomolecular Computing

    Directory of Open Access Journals (Sweden)

    Mahnaz Kadkhoda

    2008-01-01

    Full Text Available Biomolecular computing is the computational method that uses the potential of DNA as a parallel computing device. DNA computing can be used to solve NP-complete problems. An appropriate application of DNA computation is large-scale evaluation of parallel computation models such as Boolean Circuits. In this study, we present a molecular-based algorithm for evaluation of Nand-based Boolean Circuits. The contribution of this paper is that the proposed algorithm has been implemented using only three molecular operations and the number of passes in each level is decreased to less than half of previously addressed in the literature. Thus, the proposed algorithm is much easier to implement in the laboratory.

  19. Perspective: Markov Models for Long-Timescale Biomolecular Dynamics

    CERN Document Server

    Schwantes, Christian R; Pande, Vijay S

    2014-01-01

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.

  20. Synthesis and Structural Determination of Temocapril Sulfoxide Hydrochlorides

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Seok Bong; Moon, Jong Taik; Kim, Jung Ahn; Choo, Dong Joon; Lee, Jae Yeol [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-10-15

    Impurity (or related substance) control in pharmaceutical products is a primary goal of drug development. Stringent international regulatory requirements have been in place for several years as outlined in the International Conference on Harmonization (ICH) Guidelines Q3A (R), Q3B (R) and Q3C. According to ICH guidelines, impurities associated with the manufacture of a drug substance, also known as an active pharmaceutical ingredient (API), are classified into the following categories: (1) organic impurities (process and drug-related); (2) inorganic impurities (3) residual solvents. Many potential impurities result from the API manufacturing process including starting materials, isomers, intermediates, reagents, solvents, catalysts and reaction by-products. These potential impurities should be investigated to determine process control mechanisms for their removal and the need for specification controls at appropriate points in the process. The suggested structures of the impurities can be synthesized and will provide the final evidence for their structures, previously determined by spectroscopic methods. Therefore it is essential to know the structure of these impurities in the bulk drug in order to alter the reaction condition and to reduce the quantity of impurity to an acceptable level. Isolation, identification and quantification of impurities help the pharmaceutical company to obtain a pure substance with less toxicity and safety in drug therapy.

  1. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    Science.gov (United States)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  2. Structure Determination of Natural Products by Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Li, Du.

    High-field NMR experiments were used to determine the full structures of six new natural products extracted from plants. These are: four saponins (PT-2, P1, P2 and P3) from the plant Alphitonia zizyphoides found in Samoa; one sesquiterpene (DF-4) from Douglas fir and one diterpene derivative (E-2) from a Chinese medicinal herb. By concerted use of various 1D and 2D NMR techniques, the structures of the above compounds were established and complete resonance assignments were achieved. The 2D INADEQUATE technique coupled with a computerized spectral analysis was extensively used. When carried out on concentrations as low as 60 mg of sample, this technique provided absolute confirmation of the assignments for 35 of the possible 53 C-C bonds for PT-2. On 30 mg of sample of E-21, it revealed 22 of 28 possible C-C bonds.

  3. The determinants of health: structure, context and agency.

    Science.gov (United States)

    Williams, Gareth H

    2003-01-01

    The concept of social structure is one of the main building blocks of the social sciences, but it lacks any precise technical definition within general sociological theory. This paper reviews the way in which the concept has been deployed within medical sociology, arguing that in recent times it has been used primarily as a frame for the sociological interpretation of health inequalities and their social determinants. It goes on to examine the contribution that medical sociologists have made to the debate over health inequalities, giving particular attention to contributions to Sociology of Health and Illness. These have often provided a focus for discussions outside or critical of the mainstream debates that have been driven primarily by epidemiologists. The paper reviews some of the main points of criticism of epidemiological approaches, focusing in particular on the methodological constraints that limit the capacity of epidemiologists to develop more theoretically satisfactory accounts of the inter-relationships of social structure, context and agency in their impact on health and well being. Some recent examples from the Journal of more theoretically innovative and analytically fine-grained approaches to understanding the impact of social structure on health are then explored. The paper concludes with an argument for a more historically-informed analysis of the relationships between social structure and health, using the knowledgeable narratives of people in places as a window onto those relationships. PMID:14498934

  4. Crystal structure determination of anti-DNA Fab A52.

    Science.gov (United States)

    Stanfield, Robyn L; Eilat, Dan

    2014-08-01

    A52 is a murine monoclonal antibody isolated from autoimmune New Zealand Black/New Zealand White F1 mice that recognizes single and double stranded DNA. This mouse strain spontaneously develops systemic lupus erythematosus-like symptoms and has served as a model for that disease for many years. The 1.62 Å crystal structure of the A52 Fab fragment reveals an H3 complementarity determining region with four closely spaced arginine residues, creating a positively charged surface to accommodate bound DNA.

  5. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  6. Unraveling the biomolecular snapshots of mitosis in healthy and cancer cells using plasmonically-enhanced Raman spectroscopy.

    Science.gov (United States)

    Panikkanvalappil, Sajanlal R; Hira, Steven M; Mahmoud, Mahmoud A; El-Sayed, Mostafa A

    2014-11-12

    Owing to the dynamic and complex nature of mitosis, precise and timely executions of biomolecular events are critical for high fidelity cell division. In this context, visualization of such complex events at the molecular level can provide vital information on the biomolecular processes in abnormal cells. Here, we explored the plasmonically enhanced light scattering properties of functionalized gold nanocubes (AuNCs) together with surface-enhanced Raman spectroscopy (SERS) to unravel the complex and dynamic biological processes involved in mitosis of healthy and cancerous cells from its molecular perspectives. By monitoring various stages of mitosis using SERS, we noticed that relatively high rate of conversion of mitotic proteins from their α-helix structure to β-sheet conformation is likely in the cancer cells during meta-, ana-, and telophases. Unique biochemical modifications to the lipid and amino acid moieties, associated with the observed protein conformational modifications, were also identified. However, in healthy cells, the existence of proteins in their β conformation was momentary and was largely in the α-helix form. The role of abnormal conformational modifications of mitotic proteins on the development of anomalous mitotic activities was further confirmed by looking at plasmonic nanoparticle-induced cytokinesis failure in cancer cells. Our findings illustrate the vast possibilities of SERS in real-time tracking of complex, subtle, and momentary modifications of biomolecules in live cells, which could provide new insights to the role of protein conformation dynamics during mitosis on the development of cancer and many other diseases.

  7. Computational Recipe for Efficient Description of Large-Scale Conformational Changes in Biomolecular Systems.

    Science.gov (United States)

    Moradi, Mahmoud; Tajkhorshid, Emad

    2014-07-01

    Characterizing large-scale structural transitions in biomolecular systems poses major technical challenges to both experimental and computational approaches. On the computational side, efficient sampling of the configuration space along the transition pathway remains the most daunting challenge. Recognizing this issue, we introduce a knowledge-based computational approach toward describing large-scale conformational transitions using (i) nonequilibrium, driven simulations combined with work measurements and (ii) free energy calculations using empirically optimized biasing protocols. The first part is based on designing mechanistically relevant, system-specific reaction coordinates whose usefulness and applicability in inducing the transition of interest are examined using knowledge-based, qualitative assessments along with nonequilirbrium work measurements which provide an empirical framework for optimizing the biasing protocol. The second part employs the optimized biasing protocol resulting from the first part to initiate free energy calculations and characterize the transition quantitatively. Using a biasing protocol fine-tuned to a particular transition not only improves the accuracy of the resulting free energies but also speeds up the convergence. The efficiency of the sampling will be assessed by employing dimensionality reduction techniques to help detect possible flaws and provide potential improvements in the design of the biasing protocol. Structural transition of a membrane transporter will be used as an example to illustrate the workings of the proposed approach.

  8. Structural Determinants of Clostridium difficile Toxin A Glucosyltransferase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Pruitt, Rory N.; Chumbler, Nicole M.; Rutherford, Stacey A.; Farrow, Melissa A.; Friedman, David B.; Spiller, Ben; Lacy, D. Borden (Vanderbilt)

    2012-03-28

    The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.

  9. The determinants of capital structure choice: Evidence from Western Europe

    Directory of Open Access Journals (Sweden)

    Ana Mugosa

    2015-07-01

    Full Text Available This paper examines corporate leverage and its determinants on panel of 921 large Western European companies from 2003 to 2010. The results proved a substantial influence of estimated variables on changes in target debt or leverage ratio. Apart of the determinants from the “core” model, I test the influence of stock price variations on changes in capital structure to conclude if companies “time” the market. The estimation procedure of target debt ratio was performed using Fixed-Effect and FGLS methods. The results were compared to the results of often used methodology in previous research – OLS and Tobit regression. I found statistically significant and negative correlation between target leverage ratio and tangibility, market to book, profitability, product uniqueness and total return (average stock return and statistically significant and positive correlation between target leverage ratio and size. The results suggest the mix of trade-off and pecking order theory predictions and are consistent with findings of previous studies. Future research should focus on impact of leverage deficit (deviations from target leverage ratio on corporate decisions in Europe.

  10. The Detection of Structural Deformation Errors in Attitude Determination

    Institute of Scientific and Technical Information of China (English)

    M. J. Moore; C. Rizos; J. Wang

    2003-01-01

    In the determination of the attitude parameters from a multi-antenna GPS array, one of the major assumptions is that the body frame is rigid at all times. If this assumption is not true then the derived attitude parameters will be in error. It is well known that in airborne platforms the wings often experience some displacement during flight, especially during periods of initializing maneouvres, such as taking off, landing,and banking. Often it is at these points in time that it is most critical to have the most precise attitude parameters.There are a number of techniques available for the detection of modeling errors.The CUSUM algorithm has successfully been implemented in the past to detect small persistent changes. In this paper the authors investigate different methods of generating the residuals, to be tested by the CUSUM algorithm, in an effort to determine which technique is best suited for the detection of structural deformation of an airborne platform. The methods investigated include monitoring the mean of the residuals generated from the difference between the known body frame coordinates, and those calculated from the derived attitude parameters. The generated residuals are then passed to a CUSUM algorithm to detect any small persistent changes. An alternative method involves transforming the generated residuals into the frequency domain through the use of the Fast Fourier Transform. The CUSUM algorithm is then used to detect any frequency changes. The final technique investigated involves transforming the generated residuals using the Haar wavelet. The wavelet coefficients are then monitored by the CUSUM algorithm in order to detect any significant change to the rigidity of the body frame.Detecting structural deformation, and quantifying the degree of deformation, during flight will ensure that these effects can be removed from the system, thus ensuring the most precise and reliable attitude parameter solutions. This paper, through a series

  11. [Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). Implications for pathology].

    Science.gov (United States)

    Viertler, C; Zatloukal, K

    2008-11-01

    High quality human biological samples (e.g. blood, tissue or DNA) with associated, well documented clinical and research data are key resources for advancement of life sciences, biotechnology, clinical medicine, drug development and also molecular pathology. Millions of samples of diseased tissues have been collected in the context of routine histopathological diagnosis and are stored in the archives of hospitals and institutes of pathology. A concerted effort is necessary to overcome the current fragmentation of the European biobanking community in order to tap the full research potential of existing biobanks. A pan-European research infrastructure for biobanking and biomolecular resources (BBMRI) is currently in its planning phase. The mission is to link and provide access to local biobanks of different formats, including tissue collections, harmonize standards, establish operational procedures which properly consider ethical, legal, societal aspects, and to secure sustainable funding. Pathology plays a key role in development and administration of tissue banks and is, thus, a major partner for collaboration, expertise and construction of this pan-European research infrastructure.

  12. A programmable biomolecular computing machine with bacterial phenotype output.

    Science.gov (United States)

    Kossoy, Elizaveta; Lavid, Noa; Soreni-Harari, Michal; Shoham, Yuval; Keinan, Ehud

    2007-07-23

    The main advantage of autonomous biomolecular computing devices over electronic computers is their ability to interact directly with biological systems. No interface is required since all components of molecular computers, including hardware, software, input, and output are molecules that interact in solution along a cascade of programmable chemical events. Here, we demonstrate for the first time that the output of a computation preduced by a molecular finite automaton can be a visible bacterial phenotype. Our 2-symbol-2-state finite automaton utilized linear double-stranded DNA inputs that were prepared by inserting a string of six base pair symbols into the lacZ gene on the pUC18 plasmid. The computation resulted in a circular plasmid that differed from the original pUC18 by either a 9 base pair (accepting state) or 11 base pair insert (unaccepting state) within the lacZ alpha region gene. Upon transformation and expression of the resultant plasmids in E. coli, the accepting state was represented by production of functional beta-galactosidase and formation of blue colonies on X-gal medium. In contrast, the unaccepting state was represented by white colonies due to a shift in the open reading frame of lacZ. PMID:17562552

  13. Automatic Structure Determination of Organic Molecules: Principle and Implementation of the LSD Program

    Institute of Scientific and Technical Information of China (English)

    NUZILLARD,Jean-Marc

    2003-01-01

    The LSD (Logic for Structure Determination) program generates organic molecular structures from 1D and 2D NMR data without resorting to chemical shift databases. Its use in the resolution of natural product structure determination problems has been already reported in the literature. This paper describes how data and structures are internally represented and processed by LSD to build solution structures.

  14. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis.

    Science.gov (United States)

    Larimer, Curtis; Winder, Eric; Jeters, Robert; Prowant, Matthew; Nettleship, Ian; Addleman, Raymond Shane; Bonheyo, George T

    2016-01-01

    The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms.

  15. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis.

    Science.gov (United States)

    Larimer, Curtis; Winder, Eric; Jeters, Robert; Prowant, Matthew; Nettleship, Ian; Addleman, Raymond Shane; Bonheyo, George T

    2016-01-01

    The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms. PMID:26643074

  16. Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes.

    Science.gov (United States)

    Büchner, Tina; Drescher, Daniela; Merk, Virginia; Traub, Heike; Guttmann, Peter; Werner, Stephan; Jakubowski, Norbert; Schneider, Gerd; Kneipp, Janina

    2016-08-15

    Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag-Magnetite and Au-Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surface-enhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag-Magnetite and Au-Magnetite nanostructures that is very similar to that of other composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles. PMID:27353290

  17. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition.

    Science.gov (United States)

    Yu, Hua; Zhou, Peng; Deng, Maolin; Shang, Zhicai

    2014-07-28

    Protein-peptide interactions are prevalent and play essential roles in many living activities. Peptides recognize their protein partners by direct nonbonded interactions and indirect adjustment of conformations. Although processes of protein-peptide recognition have been comprehensively studied in both sequences and structures recently, flexibility of peptides and the configuration entropy penalty in recognition did not get enough attention. In this study, 20 protein-peptide complexes and their corresponding unbound peptides were investigated by molecular dynamics simulations. Energy analysis revealed that configurational entropy penalty introduced by restriction of the degrees of freedom of peptides in indirect readout process of protein-peptide recognition is significant. Configurational entropy penalty has become the main content of the indirect readout energy in protein-peptide recognition instead of deformation energy which is the main source of the indirect readout energy in classical biomolecular recognition phenomena, such as protein-DNA binding. These results provide us a better understanding of protein-peptide recognition and give us some implications in peptide ligand design.

  18. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-01-01

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules. PMID:27506964

  19. Amplified Immunoassay of Human IgG Using Real-time Biomolecular Interaction Analysis (BIA) Technology

    Institute of Scientific and Technical Information of China (English)

    PEI,Ren-Jun(裴仁军); CUI,Xiao-Qiang(崔小强); YANG,Xiu-Rong(杨秀荣); WANG,Er-Kang(汪尔康)

    2002-01-01

    An automated biomolecular interaction analysis instrument (BIAcore) based on surface plasmon resonance (SPR) has been used to determine human immunoglobulin G (IgG) in real time. Polyclonal anti-human IgG antibody was covalently immobilized to a carboxymethyldextran-modified gold film surface. The samples of human IgG prepared in HBS buffer were poured over the immobilized surface. The signal amplification antibody was applied to amplify the response signal. After each measurement, the surface was regenerated with 0.1 mol/L H3PO4. The assay was rapid, requiring only 30 min for antibody immobilization and 20 min for each subsequent process of immune binding, antibody amplification and regeneration. The antibody immobilized surface had good response to human IgG in the range of 0.12-60 nmol/L with a detection limit of 60 pmoL/L. The same antibody immobilized surface could be used for more than 110 cycles of binding, amplificafion and regeneration. The results demonstrate that the sensitivity, specificity and reproducibility of amplified immunoassay using real-time BIA technology are satisfactory.

  20. Crystal and molecular structures of some organophosphorus insecticides and computer methods for structure determination. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, R.L.

    1979-01-01

    Molecular structure investigations of a set of organophosphorus insecticides have been carried out in order to acquire the data base to develop correlations between such parameters and their toxicities. The crystal and molecular structures of dimethoate (LD/sub 50/ (rats) = 600 mg/kg), IPAT, and leptophos (LD/sub 50/ (rats) = 90 mg/kg) have been determined via three-dimensional x-ray analysis. The crystal and molecular structure of (-)-..cap alpha..-phenylethylammonium (-)-0-methyl-phenylphosphonothioate was solved by conventional Patterson and Fourier techniques to a final R value of 0.057. The crystal and molecular structures of two crystalline forms of calcium formate were determined. A new least-squares refinement program was written which is much more general and efficient than any previous program. In particular, a new block-diagonal approximation has been devised which is much more economical than full-matrix refinement and appears to work much better than previous block-diagonal methods. A Howells, Phillips and Rogers test for a center of symmetry and a Wilson plot have been programmed into the data collection algorithm. Some approximations and special problems are discussed relative to implementing these routines in a real-time mode on a minicomputer. A mathematical background and program description are included for each program.

  1. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  2. Biomolecular detection using a metal semiconductor field effect transistor

    Science.gov (United States)

    Estephan, Elias; Saab, Marie-Belle; Buzatu, Petre; Aulombard, Roger; Cuisinier, Frédéric J. G.; Gergely, Csilla; Cloitre, Thierry

    2010-04-01

    In this work, our attention was drawn towards developing affinity-based electrical biosensors, using a MESFET (Metal Semiconductor Field Effect Transistor). Semiconductor (SC) surfaces must be prepared before the incubations with biomolecules. The peptides route was adapted to exceed and bypass the limits revealed by other types of surface modification due to the unwanted unspecific interactions. As these peptides reveal specific recognition of materials, then controlled functionalization can be achieved. Peptides were produced by phage display technology using a library of M13 bacteriophage. After several rounds of bio-panning, the phages presenting affinities for GaAs SC were isolated; the DNA of these specific phages were sequenced, and the peptide with the highest affinity was synthesized and biotinylated. To explore the possibility of electrical detection, the MESFET fabricated with the GaAs SC were used to detect the streptavidin via the biotinylated peptide in the presence of the bovine Serum Albumin. After each surface modification step, the IDS (current between the drain and the source) of the transistor was measured and a decrease in the intensity was detected. Furthermore, fluorescent microscopy was used in order to prove the specificity of this peptide and the specific localisation of biomolecules. In conclusion, the feasibility of producing an electrical biosensor using a MESFET has been demonstrated. Controlled placement, specific localization and detection of biomolecules on a MESFET transistor were achieved without covering the drain and the source. This method of functionalization and detection can be of great utility for biosensing application opening a new way for developing bioFETs (Biomolecular Field-Effect Transistor).

  3. The structural determinants of insulin-like peptide 3 activity

    Directory of Open Access Journals (Sweden)

    Ross AD Bathgate

    2012-02-01

    Full Text Available INSL3 is a hormone and/or paracrine factor which is a member of the relaxin peptide family. It has key roles as a fertility regulator in both males and females. The receptor for INSL3 is the leucine rich repeat (LRR containing G-protein coupled receptor 8 (LGR8 which is now known as relaxin family peptide receptor 2 (RXFP2. Receptor activation by INSL3 involves binding to the LRRs in the large ectodomain of RXFP2 by residues within the B-chain of INSL3 as well as an interaction with the transmembrane exoloops of the receptor. Although the binding to the LRRs is well characterized the features of the peptide and receptor involved in the exoloop interaction are currently unknown. This study was designed to determine the key INSL3 determinants for RXFP2 activation. A chimeric peptide approach was first utilized to demonstrate that the A-chain is critical for receptor activation. Replacement of the INSL3 A-chain with that from the related peptides INSL5 and INSL6 resulted in complete loss of activity despite only minor changes in binding affinity. Subsequent replacement of specific A-chain residues with those from the INSL5 peptide highlighted that the N-terminus of the A-chain of INSL3 is critical for its activity. Remarkably, replacement of the entire N-terminus with four or five alanine residues resulted in peptides with near native activity suggesting that specific residues are not necessary for activity. Additionally removal of two amino acids at the C-terminus of the A-chain and mutation of Lys-8 in the B-chain also resulted in minor decreases in peptide activity. Therefore we have demonstrated that the activity of the INSL3 peptide is driven predominantly by residues 5-9 in the A-chain, with minor additional contributions from the two C-terminal A-chain residues and Lys-8 in the B-chain. Using this new knowledge, we were able to produce a truncated INSL3 peptide structure which retained native activity, despite having 14 fewer residues than

  4. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    Science.gov (United States)

    Doster, W.; Nakagawa, H.; Appavou, M. S.

    2013-07-01

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at Td from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature Tg. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature Td.

  5. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Doster, W. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Nakagawa, H. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany); Japan Atomic Energy Agency, Quantum Beam Science Directorate, Tokai, Ibaraki 319-1195 (Japan); Appavou, M. S. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2013-07-28

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at T{sub d} from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature T{sub g}. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature T{sub d}.

  6. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    International Nuclear Information System (INIS)

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at Td from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature Tg. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature Td

  7. Diffusion Monte Carlo applied to weak interactions - hydrogen bonding and aromatic stacking in (bio-)molecular model systems

    Science.gov (United States)

    Fuchs, M.; Ireta, J.; Scheffler, M.; Filippi, C.

    2006-03-01

    Dispersion (Van der Waals) forces are important in many molecular phenomena such as self-assembly of molecular crystals or peptide folding. Calculating this nonlocal correlation effect requires accurate electronic structure methods. Usual density-functional theory with generalized gradient functionals (GGA-DFT) fails unless empirical corrections are added that still need extensive validation. Quantum chemical methods like MP2 and coupled cluster are more accurate, yet limited to rather small systems by their unfavorable computational scaling. Diffusion Monte Carlo (DMC) can provide accurate molecular total energies and remains feasible also for larger systems. Here we apply the fixed-node DMC method to (bio-)molecular model systems where dispersion forces are significant: (dimethyl-) formamide and benzene dimers, and adenine-thymine DNA base pairs. Our DMC binding energies agree well with data from coupled cluster (CCSD(T)), in particular for stacked geometries where GGA-DFT fails qualitatively and MP2 predicts too strong binding.

  8. Market power versus capital structure determinants: Do they impact leverage?

    Directory of Open Access Journals (Sweden)

    Agha Jahanzeb

    2015-12-01

    Full Text Available The purpose of this study is to investigate the association between market power and capital structure. This study will further provide a logical explanation towards the factors affecting capital structure. This study analysed 176 non-financial Pakistani companies listed on Karachi Stock Exchange over the period of 2003–2012. Capital structure has been tried to investigate with a different perspective by investigating its association with market power. It has been seen that there is a significant and positive relation between market power and capital structure. Size and liquidity remained significantly negative with capital structure, whereas profitability and dividend payout remained significantly positive with capital structure. To the best of authors’ knowledge, this is the first study that investigates the relationship between market power and capital structure in any developing economy by employing the data of non-financial Pakistani firms.

  9. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.

    Science.gov (United States)

    Sasaki, Naoki

    2012-01-01

    AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.

  10. Multiple Features Based Approach to Extract Bio-molecular Event Triggers Using Conditional Random Field

    Directory of Open Access Journals (Sweden)

    Amit Majumder

    2012-11-01

    Full Text Available The purpose of Biomedical Natural Language Processing (BioNLP is to capture biomedical phenomena from textual data by extracting relevant entities, information and relations between biomedical entities (i.e. proteins and genes. In general, in most of the published papers, only binary relations were extracted. In a recent past, the focus is shifted towards extracting more complex relations in the form of bio-molecular events that may include several entities or other relations. In this paper we propose an approach that enables event trigger extraction of relatively complex bio-molecular events. We approach this problem as a detection of bio-molecular event trigger using the well-known algorithm, namely Conditional Random Field (CRF. We apply our experiments on development set. It shows the overall average recall, precision and F-measure values of 64.27504%, 69.97559% and 67.00429%, respectively for the event detection.

  11. iBIOMES: managing and sharing biomolecular simulation data in a distributed environment.

    Science.gov (United States)

    Thibault, Julien C; Facelli, Julio C; Cheatham, Thomas E

    2013-03-25

    Biomolecular simulations, which were once batch queue or compute limited, have now become data analysis and management limited. In this paper we introduce a new management system for large biomolecular simulation and computational chemistry data sets. The system can be easily deployed on distributed servers to create a mini-grid at the researcher's site. The system not only offers a simple data deposition mechanism but also a way to register data into the system without moving the data from their original location. Any registered data set can be searched and downloaded using a set of defined metadata for molecular dynamics and quantum mechanics and visualized through a dynamic Web interface.

  12. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo

  13. Output-input ratio in thermally fluctuating biomolecular machines.

    Science.gov (United States)

    Kurzynski, Michal; Torchala, Mieczyslaw; Chelminiak, Przemyslaw

    2014-01-01

    Biological molecular machines are proteins that operate under isothermal conditions and hence are referred to as free energy transducers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating (input) reaction and the free energy-accepting (output) one. Most if not all biologically active proteins display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. This makes the description of the enzymatic reaction kinetics in terms of conventional rate constants insufficient. In the steady state, upon taking advantage of the assumption that each reaction proceeds through a single pair (the gate) of transition conformational substates of the enzyme-substrates complex, the degree of coupling between the output and the input reaction fluxes has been expressed in terms of the mean first-passage times on a conformational transition network between the distinguished substates. The theory is confronted with the results of random-walk simulations on the five-dimensional hypercube. The formal proof is given that, for single input and output gates, the output-input degree of coupling cannot exceed unity. As some experiments suggest such exceeding, looking for the conditions for increasing the degree of coupling value over unity challenges the theory. Performed simulations of random walks on several model networks involving more extended gates indicate that the case of the degree of coupling value higher than 1 is realized in a natural way on critical branching trees extended by long-range shortcuts. Such networks are scale-free and display the property of the small world. For short-range shortcuts, the networks are scale-free and fractal, representing a reasonable model for biomolecular machines displaying tight coupling, i.e., the degree of coupling equal exactly to unity. A hypothesis is stated that the protein conformational transition networks, as

  14. Environmental filtering determines metacommunity structure in wetland microcrustaceans.

    Science.gov (United States)

    Gascón, Stéphanie; Arranz, Ignasi; Cañedo-Argüelles, Miguel; Nebra, Alfonso; Ruhí, Albert; Rieradevall, Maria; Caiola, Nuno; Sala, Jordi; Ibàñez, Carles; Quintana, Xavier D; Boix, Dani

    2016-05-01

    Metacommunity approaches are becoming popular when analyzing factors driving species distribution at the regional scale. However, until the popularization of the variation partitioning technique it was difficult to assess the main drivers of the observed patterns (spatial or environmental). Here we propose a new framework linking the emergence of different metacommunity structures (e.g., nested, Gleasonian, Clementsian) to spatial and environmental filters. This is a novel approach that provides a more profound analysis of how both drivers could lead to similar metacommunity structures. We tested this framework on 110 sites covering a strong environmental gradient (i.e., microcrustacean assemblages organized along a salinity gradient, from freshwater to brackish water wetlands). First we identified the metacommunity structure that better fitted these microcrustacean assemblages. Then, we used hierarchical variation partitioning to quantify the relative influences of environmental filters and the distance among wetlands on the identified structure. Our results showed that under strong environmental filtering metacommunity structures were non-random. We also noted that even passive dispersers, that are supposed to be poorly spatially filtered, showed spatial signals at a large geographical scale. However, some difficulties arose when inferring biotic interactions at finer-scale spatial signals. Overall, our study shows the potential of elements of metacommunity structure combined with variation partition techniques to detect environmental drivers and broadscale patterns of metacommunity structure, and that some caution is needed when interpreting finer-scale spatial signals. PMID:26781303

  15. Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex Ⅱ Determined

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists at the CAS Institute of Biophysics (IBP) and Tsinghua University have gained new insights into the mechanism of mitochondria, the subcellular structures which generate energy for living cells.

  16. WHAT DETERMINES THE CAPITAL STRUCTURE OF LISTED FIRMS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Floriniţa Duca

    2012-10-01

    Full Text Available This paper examines the relative importance of four factors in the capital structure decisions of Romanian listed firms. The existing empirical research on capital structure has been largely confined to developed countries. The Romanian Financial Market has been developing at an exponential rate and dedicated research in the field is required. We used 100 firms listed in 2010 at the Bucharest Stock Exchange. The objective of this paper is to build on previous studies model all the important factors affecting capital structure decisions. We find that factors such as tangibility of assets, firm size, liquidity, and profitability have significant influences on the leverage structure chosen by firms.These results are believed to have significant implications for the theory of finance and to be of importance to the corporate treasure in choice of new financing and to the financial analyst.

  17. Structural determinants of reductive terpene cyclization in iridoid biosynthesis

    DEFF Research Database (Denmark)

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M;

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a...

  18. Structural determinants of Smad function in TGF-β signaling.

    Science.gov (United States)

    Macias, Maria J; Martin-Malpartida, Pau; Massagué, Joan

    2015-06-01

    Smad transcription factors are central to the signal transduction pathway that mediates the numerous effects of the transforming growth factor β (TGF-β) superfamily of cytokines in metazoan embryo development as well as in adult tissue regeneration and homeostasis. Although Smad proteins are conserved, recent genome-sequencing projects have revealed their sequence variation in metazoan evolution, human polymorphisms, and cancer. Structural studies of Smads bound to partner proteins and target DNA provide a framework for understanding the significance of these evolutionary and pathologic sequence variations. We synthesize the extant mutational and structural data to suggest how genetic variation in Smads may affect the structure, regulation, and function of these proteins. We also present a web application that compares Smad sequences and displays Smad protein structures and their disease-associated variants.

  19. Environmental and Structural Determinants of Innovation in School Districts.

    Science.gov (United States)

    Burnham, Robert A.

    Conceptualizing organizations as open systems of interrelated variables, this study of 184 Illinois school districts determined the relationships among innovation adoption, selected organizational characteristics, and environmental variability. Organizational characteristics were differentiation (development of specialized organizational…

  20. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  1. Structural Determinants of Cadherin-23 Function in Hearing and Deafness

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P. (Harvard-Med); (Harvard)

    2010-06-21

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca{sup 2+}-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca{sup 2+} affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca{sup 2+} or mutating Ca{sup 2+}-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link.

  2. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold

    OpenAIRE

    Monney, Angèle; Albrecht, Martin

    2013-01-01

    This overview compiles recent advances in the synthesis and application of organometallic bioconjugates that comprise a metal–carbon linkage between the metal and the biomolecular scaffold. This specific area of bioorganometallic chemistry has been spurred by the discovery of naturally occurring bioorganometallic compounds and afforded organometallic bioconjugates from transition metals binding to amino acids, nucleic acids and other biomolecules. These artificial bioorganometallic compounds ...

  3. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BC...

  4. Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2014-01-01

    The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within...

  5. First-principles determination of the structure of magnesium borohydride.

    Science.gov (United States)

    Zhou, Xiang-Feng; Oganov, Artem R; Qian, Guang-Rui; Zhu, Qiang

    2012-12-14

    The energy landscape of Mg(BH(4))(2) under pressure is explored by ab initio evolutionary calculations. Two new tetragonal structures, with space groups P4 and I4(1)/acd, are predicted to be lower in enthalpy by 15.4 and 21.2 kJ/mol, respectively, than the earlier proposed P4(2)nm phase. We have simulated x-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and simulated x-ray diffraction patterns of I4(1)/acd and P4 structures are in excellent agreement with the experimental results.

  6. Trade-off between responsiveness and noise suppression in biomolecular system responses to environmental cues.

    Directory of Open Access Journals (Sweden)

    Alexander V Ratushny

    2011-06-01

    Full Text Available When living systems detect changes in their external environment their response must be measured to balance the need to react appropriately with the need to remain stable, ignoring insignificant signals. Because this is a fundamental challenge of all biological systems that execute programs in response to stimuli, we developed a generalized time-frequency analysis (TFA framework to systematically explore the dynamical properties of biomolecular networks. Using TFA, we focused on two well-characterized yeast gene regulatory networks responsive to carbon-source shifts and a mammalian innate immune regulatory network responsive to lipopolysaccharides (LPS. The networks are comprised of two different basic architectures. Dual positive and negative feedback loops make up the yeast galactose network; whereas overlapping positive and negative feed-forward loops are common to the yeast fatty-acid response network and the LPS-induced network of macrophages. TFA revealed remarkably distinct network behaviors in terms of trade-offs in responsiveness and noise suppression that are appropriately tuned to each biological response. The wild type galactose network was found to be highly responsive while the oleate network has greater noise suppression ability. The LPS network appeared more balanced, exhibiting less bias toward noise suppression or responsiveness. Exploration of the network parameter space exposed dramatic differences in system behaviors for each network. These studies highlight fundamental structural and dynamical principles that underlie each network, reveal constrained parameters of positive and negative feedback and feed-forward strengths that tune the networks appropriately for their respective biological roles, and demonstrate the general utility of the TFA approach for systems and synthetic biology.

  7. Biomolecularly capped uniformly sized nanocrystalline materials: glutathione-capped ZnS nanocrystals

    Science.gov (United States)

    Torres-Martínez, Claudia L.; Nguyen, Liem; Kho, Richard; Bae, Weon; Bozhilov, Krassimir; Klimov, Victor; Mehra, Rajesh K.

    1999-09-01

    Micro-organisms such as bacteria and yeasts form CdS to detoxify toxic cadmium ions. Frequently, CdS particles formed in yeasts and bacteria were found to be associated with specific biomolecules. It was later determined that these biomolecules were present at the surface of CdS. This coating caused a restriction in the growth of CdS particles and resulted in the formation of nanometre-sized semiconductors (NCs) that exhibited typical quantum confinement properties. Glutathione and related phytochelatin peptides were shown to be the biomolecules that capped CdS nanocrystallites synthesized by yeasts Candida glabrata and Schizosaccharomyces pombe. Although early studies showed the existence of specific biochemical pathways for the synthesis of biomolecularly capped CdS NCs, these NCs could be formed in vitro under appropriate conditions. We have recently shown that cysteine and cysteine-containing peptides such as glutathione and phytochelatins can be used in vitro to dictate the formation of discrete sizes of CdS and ZnS nanocrystals. We have evolved protocols for the synthesis of ZnS or CdS nanocrystals within a narrow size distribution range. These procedures involve three steps: (1) formation of metallo-complexes of cysteine or cysteine-containing peptides, (2) introduction of stoichiometric amounts of inorganic sulfide into the metallo-complexes to initiate the formation of nanocrystallites and finally (3) size-selective precipitation of NCs with ethanol in the presence of Na+. The resulting NCs were characterized by optical spectroscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction and electron diffraction. HRTEM showed that the diameter of the ZnS-glutathione nanocrystals was 3.45+/-0.5 nm. X-ray diffraction and electron diffraction analyses indicated ZnS-glutathione to be hexagonal. Photocatalytic studies suggest that glutathione-capped ZnS nanocrystals prepared by our procedure are highly efficient in degrading a test model

  8. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.; Prokofyev, A.; van der Cruijsen, E.A.W.; Nand, D.; Bonvin, A.M.J.J.; Pongs, O.; Baldus, M.

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while K

  9. Structural Determinants of Intergroup Association: Interracial Marriage and Crime.

    Science.gov (United States)

    South, Scott J.; Messner, Steven F.

    1986-01-01

    Using data from a sample of 25 U. S. metropolitan cities, this study investigates the relationship between interracial marriage and violent interracial crime. Results show a positive relationship, one which was predicted by Blau's macrosociological theory of social structure. (Author/JDH)

  10. Some structural determinants of Pavlovian conditioning in artificial neural networks

    NARCIS (Netherlands)

    Sanchez, Jose M.; Galeazzi, Juan M.; Burgos, Jose E.

    2010-01-01

    This paper investigates the possible role of neuroanatomical features in Pavlovian conditioning, via computer simulations with layered, feedforward artificial neural networks. The networks' structure and functioning are described by a strongly bottom-up model that takes into account the roles of hip

  11. Compressed Sensing Electron Tomography for Determining Biological Structure

    Science.gov (United States)

    Guay, Matthew D.; Czaja, Wojciech; Aronova, Maria A.; Leapman, Richard D.

    2016-06-01

    There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets.

  12. Fractal structure and fractal dimension determination at nanometer scale

    Institute of Scientific and Technical Information of China (English)

    张跃; 李启楷; 褚武扬; 王琛; 白春礼

    1999-01-01

    Three-dimensional fractures of different fractal dimensions have been constructed with successive random addition algorithm, the applicability of various dimension determination methods at nanometer scale has been studied. As to the metallic fractures, owing to the limited number of slit islands in a slit plane or limited datum number at nanometer scale, it is difficult to use the area-perimeter method or power spectrum method to determine the fractal dimension. Simulation indicates that box-counting method can be used to determine the fractal dimension at nanometer scale. The dimensions of fractures of valve steel 5Cr21Mn9Ni4N have been determined with STM. Results confirmed that fractal dimension varies with direction at nanometer scale. Our study revealed that, as to theoretical profiles, the dependence of fractal dimension with direction is simply owing to the limited data set number, i.e. the effect of boundaries. However, the dependence of fractal dimension with direction at nanometer scale in rea

  13. Iron phosphate glasses: Structure determination and radiation tolerance

    Science.gov (United States)

    Jolley, Kenny; Smith, Roger

    2016-05-01

    Iron phosphate glass (IPG) has gained recent interest for use in encapsulating radioactive waste for long term storage. In this work, we investigate 5 different compositions of iron phosphate glass. We consider amorphous structures of 3 known crystalline phases: Fe2+ Fe23+ (P2O7)2, Fe43 + (P2O7)3 and Fe3+(PO3)3, and structures of IPG (40 mol% Fe2O3 and 60 mol% P2O5), with 4% and 17% Fe2+ ion concentrations. Using constant volume molecular dynamics (MD), we quench a set of structures for each glass composition, to find the optimal density structure. We found that the lowest energy structures of IPG with 4% and 17% concentration of Fe2+, have a density of 3.25 and 3.28 g/cm3 respectively. This is slightly higher than the experimentally measured values of 2.9 and 2.95 g/cm3 respectively. We also estimate an upper and lower bound on the melting temperatures of each glass, then for each glass, we simulate radiation damage cascades at 4 keV. The cascade structures can be in the form of either a concentrated thermal spike or more diffuse with sub-cascade branching. We found that the glass compositions with a higher Fe/P atomic ratio, contained a greater number of displacements after the cascade. We also found that the IPG with 4% Fe2+, contained slightly fewer displacements than the IPG with 17% Fe2+. This is consistent with our previous work, which showed that the threshold displacement energies are lower for glasses with a lower Fe2+ content. In all the simulations, many PO4 polyhedra are destroyed during the early stages of irradiation, but recover strongly over a time scale of picoseconds, leaving very few over or under co-ordinated P atoms at the end of the ballistic phase. This is in contrast to recent work in apatite. The strong recovery indicates that phosphate glasses with a low Fe2+ content could be good materials for waste encapsulation.

  14. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints. PMID:25961412

  15. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    Science.gov (United States)

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. PMID:26786101

  16. Determination of channeling perspectives for complex crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, W.R.

    1993-03-01

    Specification of the atomic arrangement for axes and planes of high symmetry is essential for crystal alignment using Rutherford backscattering and for studies of the lattice location of impurities in single crystals. By rotation of an inscribed orthogonal coordinate system, a visual image for a given perspective of a crystal structure can be specified. Knowledge of the atomic arrangement permits qualitative channeling perspectives to be visualized and calculation of continuum potentials for channeling. Channeling angular-yield profiles can then be analytically modeled and, subsequently, shadowing by host atoms of positions within the unit cell predicted. Software to calculate transformed atom positions for a channeling perspective in a single crystal are described and illustrated for the spinel crystal structure.

  17. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.;

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  18. Structural determinants of reductive terpene cyclization in iridoid biosynthesis.

    Science.gov (United States)

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M; Kamileen, Mohammed O; Sherden, Nathaniel H; Geu-Flores, Fernando; Lawson, David M; O'Connor, Sarah E

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homolog progesterone 5β-reductase are highlighted. PMID:26551396

  19. FINITE VOLUME METHOD FOR DETERMINING THE NATURAL CHARACTERISTICS OF STRUCTURES

    OpenAIRE

    N. FALLAH

    2013-01-01

    In this paper a finite volume based formulation is developed to calculate the structural natural characteristics including the natural frequencies and the critical buckling loads of slender beam/beam-columns in which the shear effects are taken into account. For natural frequency calculations, both shear effects and rotational inertia effects are considered. In this finite volume based approach, the equilibrium equations of control volumes are expressed and used with the boundary conditions t...

  20. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.

    Science.gov (United States)

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E; Rashid, Asim J; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W; Iyer, Shrivats M; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L; Malenka, Robert C; Josselyn, Sheena A; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-26

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near -65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼ 15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor-based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure-function relationships of the light-gated pore.

  1. Music structure determines heart rate variability of singers

    Science.gov (United States)

    Vickhoff, Björn; Malmgren, Helge; Åström, Rickard; Nyberg, Gunnar; Ekström, Seth-Reino; Engwall, Mathias; Snygg, Johan; Nilsson, Michael; Jörnsten, Rebecka

    2013-01-01

    Choir singing is known to promote wellbeing. One reason for this may be that singing demands a slower than normal respiration, which may in turn affect heart activity. Coupling of heart rate variability (HRV) to respiration is called Respiratory sinus arrhythmia (RSA). This coupling has a subjective as well as a biologically soothing effect, and it is beneficial for cardiovascular function. RSA is seen to be more marked during slow-paced breathing and at lower respiration rates (0.1 Hz and below). In this study, we investigate how singing, which is a form of guided breathing, affects HRV and RSA. The study comprises a group of healthy 18 year olds of mixed gender. The subjects are asked to; (1) hum a single tone and breathe whenever they need to; (2) sing a hymn with free, unguided breathing; and (3) sing a slow mantra and breathe solely between phrases. Heart rate (HR) is measured continuously during the study. The study design makes it possible to compare above three levels of song structure. In a separate case study, we examine five individuals performing singing tasks (1–3). We collect data with more advanced equipment, simultaneously recording HR, respiration, skin conductance and finger temperature. We show how song structure, respiration and HR are connected. Unison singing of regular song structures makes the hearts of the singers accelerate and decelerate simultaneously. Implications concerning the effect on wellbeing and health are discussed as well as the question how this inner entrainment may affect perception and behavior. PMID:23847555

  2. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a dual objective innovation that has valuable NASA applicability and tremendous commercial potential. The first innovation is the structure determination...

  3. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize self learning neural network technology to determine the structure of osteoporosis, immune system disease, and excess radiation...

  4. Quantification of the impact of PSI:Biology according to the annotations of the determined structures

    OpenAIRE

    DePietro, Paul J; Julfayev, Elchin S.; McLaughlin, William A.

    2013-01-01

    Background Protein Structure Initiative:Biology (PSI:Biology) is the third phase of PSI where protein structures are determined in high-throughput to characterize their biological functions. The transition to the third phase entailed the formation of PSI:Biology Partnerships which are composed of structural genomics centers and biomedical science laboratories. We present a method to examine the impact of protein structures determined under the auspices of PSI:Biology by measuring their rates ...

  5. Role, Structure, and Determinants of Debt Covenants: Evidence from Japan

    OpenAIRE

    Kochiyama, Takuma; Nakamura, Ryosuke

    2014-01-01

    We examine types of financial covenants and how they are used in Japanese loan markets. Since previous literature on covenants focused on US firms, little is known about financial covenants in the so-called bank-oriented countries. We use a hand-collected dataset to explore the (1) types of financial covenants and (2) determinants of the use and strictness of financial covenants. Our binominal regression analysis shows that financial factors such as profitability, leverage, and interest rates...

  6. Structural determination of some uranyl compounds by vibrational spectroscopy

    International Nuclear Information System (INIS)

    The vibrational spectra of different uranyl compounds has been studied and of it spectral information has been used the fundamental asymmetric vibrational frequency, to determine the length and constant bond force U=O by means of the combination of the concept of absorbed energy and the mathematical expression of Badger modified by Jones. It is intended a factor that simplifies the mathematical treatment and the results are compared with the values obtained for other methods. (Author)

  7. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    Science.gov (United States)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  8. Determining the Spectral Signature of Spatial Coherent Structures

    CERN Document Server

    Pastur, L R; Fraigneau, Y; Podvin, B

    2005-01-01

    We applied to an open flow a proper orthogonal decomposition (pod) technique, on 2D snapshots of the instantaneous velocity field, to reveal the spatial coherent structures responsible of the self-sustained oscillations observed in the spectral distribution of time series. We applied the technique to 2D planes out of 3D direct numerical simulations on an open cavity flow. The process can easily be implemented on usual personal computers, and might bring deep insights on the relation between spatial events and temporal signature in (both numerical or experimental) open flows.

  9. Determination of HART I Blade Structural Properties by Laboratory Testing

    Science.gov (United States)

    Jung, Sung N.; Lau, Benton H.

    2012-01-01

    The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.

  10. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  11. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    Science.gov (United States)

    Boyarkin, Oleg V.; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ˜150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  12. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Boyarkin, Oleg V., E-mail: oleg.boiarkin@epfl.ch; Kopysov, Vladimir [Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne (Switzerland)

    2014-03-15

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ∼150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion–He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  13. Molecular Determinants of Staphylococcal Biofilm Dispersal and Structuring

    Directory of Open Access Journals (Sweden)

    Katherine Y Le

    2014-11-01

    Full Text Available Staphylococci are frequently implicated in human infections, and continue to pose a therapeutic dilemma due to their ability to form deeply seated microbial communities, known as biofilms, on the surfaces of implanted medical devices and host tissues. Biofilm development has been proposed to occur in three stages: 1 attachment, 2 proliferation/structuring, and 3 detachment/dispersal. Although research within the last several decades has implicated multiple molecules in the roles as effectors of staphylococcal biofilm proliferation/structuring and detachment/dispersal, to date, only phenol soluble modulins (PSMs have been consistently demonstrated to serve in this role under both in-vitro and in-vivo settings. PSMs are regulated directly through a density-dependent manner by the accessory gene regulator (Agr system. They disrupt the non-covalent forces holding the biofilm extracellular matrix together, which is necessary for the formation of channels, a process essential for the delivery of nutrients to deeper biofilm layers, and for dispersal/dissemination of clusters of biofilm to distal organs in acute infection. Given their relevance in both acute and chronic biofilm-associated infections, the Agr system and the psm genes hold promise as potential therapeutic targets.

  14. Determinants of the mouse ultrasonic vocal structure and repertoire.

    Science.gov (United States)

    Heckman, Jesse; McGuinness, Brigit; Celikel, Tansu; Englitz, Bernhard

    2016-06-01

    Mouse ultrasonic vocalizations (USV) exhibit a high degree of complexity as demonstrated in recent years. A multitude of factors have been identified to influence USVs on the spectrotemporal as well as structural - e.g. syntactic - level. A synthesis of the various studies that attributes semantics to USV properties or sequences is still lacking. Presently, we address the factors modulating the composition of USVs, specifically age, gender, genetic background (including the targeted FoxP2 mutagenesis), behavioral state and individuality. It emerges that the different factors share a set of common influences, e.g. vocalization rate and frequency range are universally modulated across independent variables described; however, distinct influences exist for sequential structure (different effects for age, behavioral state and genetic background) or vocal repertoire (age). Recently, USV research has seen important advances based on the quantitative maturation of methods on multiple levels of vocalization. Adoption of these methods to address the natural statistics of USV will ultimately benefit several related research areas, e.g. neurolinguistics, neurodevelopmental disorders, multisensory and sensorimotor research. PMID:27060755

  15. Using Dust as Probes to Determine Sheath Extent and Structure

    CERN Document Server

    Douglass, Angela; Qiao, Ke; Matthews, Lorin; Hyde, Truell

    2016-01-01

    Two in-situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a RF plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma toward the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that t...

  16. Extracellular matrix structure and nano-mechanics determine megakaryocyte function.

    Science.gov (United States)

    Malara, Alessandro; Gruppi, Cristian; Pallotta, Isabella; Spedden, Elise; Tenni, Ruggero; Raspanti, Mario; Kaplan, David; Tira, Maria Enrica; Staii, Cristian; Balduini, Alessandra

    2011-10-20

    Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis.

  17. Electron Crystallography Novel Approaches for Structure Determination of Nanosized Materials

    CERN Document Server

    Weirich, Thomas E; Zou, Xiaodong

    2006-01-01

    During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to r...

  18. Epoxide Chemistry: Guided Inquiry Experiment Emphasizing Structure Determination and Mechanism

    Science.gov (United States)

    Krishnamurty, H. G.; Jain, Niveta; Samby, Kiran

    2000-04-01

    This paper presents an operationally simple three-step synthesis of an a-hydroxy acid based on epoxide chemistry. The focus of the experiment is on the preparation of the chalcone epoxide and its reaction with hot alcoholic alkali. The experiment leads to an unpredicted reaction product. Its structure is established as 2-benzyl-2-phenylglycollic acid by chemical and spectroscopic analysis. The hydroxyacid is a good example to bring home an important NMR principle: the nonequivalence of hydrogens adjacent to a stereogenic center. The formation of the alpha-hydroxy acid is a mechanistic puzzle. A stepwise mechanism can be developed applying lecture-based organic chemistry concepts. On the other hand, acid-catalyzed (H2SO4, BF3) reaction of the chalcone epoxide gives benzoylphenylacetaldehyde. The exercise can be used as a multistep organic chemistry experiment. It also gives students a research-type experience.

  19. 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy.

    Science.gov (United States)

    Pan, Bin-Bin; Yang, Feng; Ye, Yansheng; Wu, Qiong; Li, Conggang; Huber, Thomas; Su, Xun-Cheng

    2016-08-11

    Determining the three-dimensional structure of a protein in living cells remains particularly challenging. We demonstrated that the integration of site-specific tagging proteins and GPS-Rosetta calculations provides a fast and effective way of determining the structures of proteins in living cells, and in principle the interactions and dynamics of protein-ligand complexes. PMID:27470136

  20. Structure and partitioning of bacterial DNA: determined by a balance of competion and expansion forces?

    DEFF Research Database (Denmark)

    Woldringh, C. L.; Jensen, Peter Ruhdal; Westerhoff, H. V.

    1995-01-01

    The mechanisms that determine chromosome structure and chromosome partitioning in bacteria are largely unknown. Here we discuss two hypotheses: (i) the structure of the Escherichia coli nucleoid is determined by DNA binding proteins and DNA supercoiling, representing a compaction force on the one...

  1. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    C. S. Chidan Kumar

    2015-09-01

    Full Text Available A series of five new 2‐(1‐benzofuran‐2‐yl‐2‐oxoethyl 4-(un/substitutedbenzoates 4(a–e, with the general formula of C8H5O(C=OCH2O(C=OC6H4X, X = H, Cl, CH3, OCH3 or NO2, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a–e were characterized by FTIR, 1H-, 13C- and 1H-13C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34% in diphenyl-2-picrylhydrazyl (DPPH radical scavenging, 4d (31.01% ± 4.35% in ferric reducing antioxidant power (FRAP assay and 4a (27.11% ± 1.06% in metal chelating (MC activity.

  2. FINITE VOLUME METHOD FOR DETERMINING THE NATURAL CHARACTERISTICS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    N. FALLAH

    2013-02-01

    Full Text Available In this paper a finite volume based formulation is developed to calculate the structural natural characteristics including the natural frequencies and the critical buckling loads of slender beam/beam-columns in which the shear effects are taken into account. For natural frequency calculations, both shear effects and rotational inertia effects are considered. In this finite volume based approach, the equilibrium equations of control volumes are expressed and used with the boundary conditions to obtain the eigenvalue equation in the standard format. Then, the natural characteristics of beam/beam-columns are obtained by solving the eigenvalue equations. The formulation is tested on a number of benchmark problems. Accordingly, the proposed formulation has been found to accurately predict the natural frequencies and the critical buckling loads of the test problems. Also, the formulation is tested for the very thin and thick beams. It is found that the formulation is also able to analyze the thin beams in which no shear locks is observed.

  3. Theoretical models for the emergence of biomolecular homochirality

    Science.gov (United States)

    Walker, Sara Imari

    Little is known about the emergence of life from nonliving precursors. A key missing-piece is the origin of homochirality: nearly all life is characterized by exclusively dextrorotary sugars and levorotary amino acids. The research presented in this thesis addresses the challenge of uncovering mechanisms for chiral symmetry breaking in a prebiotic environment and implications for the origin of life on Earth. Expanding on a well-known model for chiral selection through polymerization, and modeling the spatiotemporal dynamics starting from near-racemic initial conditions, it is demonstrated that the net chirality of molecular building blocks grows with the longest polymer in the reaction network (of length N) with critical behavior for the onset of chiral asymmetry determined by the value of N. This surprising result indicates that significant chiral asymmetry occurs only for systems which permit growth of long polymers. Expanding on this work, the effects of environmental disturbances on the evolution of chirality in prebiotic reaction-diffusion networks are studied via the implementation of a stochastic spatiotemporal Langevin equation. The results show that environmental interactions can have significant impact on the evolution of prebiotic chirality: the history of prebiotic chirality is therefore interwoven with the Earths early environmental history in a mechanism we call punctuated chirality. This result establishes that the onset of homochirality is not an isolated phenomenon: chiral selection must occur in tandem with the transition from chemistry to biology, otherwise the prebiotic soup is unstable to environmental events. Addressing the challenge of understanding the role of chirality in the transition from non-life to life, the diffusive slowdown of reaction networks induced, for example, through tidal cycles or evaporating pools, is modeled. The results of this study demonstrate that such diffusive slowdown leads to the stabilization of homochiral

  4. New improvements in automatic structure elucidation using the LSD (Logic for Structure Determination) and the SISTEMAT expert systems.

    Science.gov (United States)

    Plainchont, Bertrand; Nuzillard, Jean-Marc; Rodrigues, Gilberto V; Ferreira, Marcelo J P; Scotti, Marcus T; Emerenciano, Vicente P

    2010-05-01

    This article describes the integration of the LSD (Logic for Structure Determination) and SISTEMAT expert systems that were both designed for the computer-assisted structure elucidation of small organic molecules. A first step has been achieved towards the linking of the SISTEMAT database with the LSD structure generator. The skeletal descriptions found by the SISTEMAT programs are now easily transferred to LSD as substructural constraints. Examples of the synergy between these expert systems are given for recently reported natural products.

  5. Crystallization of an achiral cyclohexanone ethylene ketal in enantiomorphs and determination of the absolute structure.

    Science.gov (United States)

    Graus, Sara; Tejedor, Rosa M; Uriel, Santiago; Serrano, José Luis; Alkorta, Ibon; Elguero, José

    2010-06-16

    The achiral 4-methoxy-4-(p-methoxyphenyl)-cyclohexanone ethylene ketal (1) resolves spontaneously. The crystal structure is solved in chiral spatial group P2(1). Because compound 1 is composed of only light atoms (C, H, O) it is not possible to determine its absolute structure configuration. An efficient procedure for the absolute structure configuration determination of flexible molecules containing only light atoms is proposed, based on the combination of X-ray diffraction, solid-state VCD, and DFT calculations.

  6. Constructing Bio-molecular Databases on a DNA-based Computer

    CERN Document Server

    Chang, Weng-Long; Ho,; Guo, Minyi

    2007-01-01

    Codd [Codd 1970] wrote the first paper in which the model of a relational database was proposed. Adleman [Adleman 1994] wrote the first paper in which DNA strands in a test tube were used to solve an instance of the Hamiltonian path problem. From [Adleman 1994], it is obviously indicated that for storing information in molecules of DNA allows for an information density of approximately 1 bit per cubic nm (nanometer) and a dramatic improvement over existing storage media such as video tape which store information at a density of approximately 1 bit per 1012 cubic nanometers. This paper demonstrates that biological operations can be applied to construct bio-molecular databases where data records in relational tables are encoded as DNA strands. In order to achieve the goal, DNA algorithms are proposed to perform eight operations of relational algebra (calculus) on bio-molecular relational databases, which include Cartesian product, union, set difference, selection, projection, intersection, join and division. Fu...

  7. PREFACE: India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation

    Science.gov (United States)

    Onoda, Mitsuyoshi; Malhotra, Bansi D.

    2012-04-01

    The 'India-Japan Workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation' (IJWBME 2011) will be held on 7-10 December 2011 at EGRET Himeji, Himeji, Hyogo, Japan. This workshop was held for the first time on 17-19 December 2009 at NPL, New Delhi. Keeping in mind the importance of organic nanotechnology and biomolecular electronics for environmental preservation and their anticipated impact on the economics of both the developing and the developed world, IJWBME 2009 was jointly organized by the Department of Biological Functions, Graduate School of Life Sciences and Systems Engineering, the Kyushu Institute of Technology (KIT), Kitakyushu, Japan, and the Department of Science & Technology Centre on Biomolecular Electronics (DSTCBE), National Physical Laboratory (NPL). Much progress in the field of biomolecular electronics and organic nanotechnology for environmental preservation is expected for the 21st Century. Organic optoelectronic devices, such as organic electroluminescent devices, organic thin-film transistors, organic sensors, biological systems and so on have especially attracted much attention. The main purpose of this workshop is to provide an opportunity for researchers interested in biomolecular electronics and organic nanotechnology for environmental preservation, to come together in an informal and friendly atmosphere and exchange technical knowledge and experience. We are sure that this workshop will be very useful and fruitful for all participants in summarizing the recent progress in biomolecular electronics and organic nanotechnology for environmental preservation and preparing new ground for the next generation. Many papers have been submitted from India and Japan and more than 30 papers have been accepted for presentation. The main topics of interest are as follows: Bioelectronics Biomolecular Electronics Fabrication Techniques Self-assembled Monolayers Nano-sensors Environmental Monitoring Organic Devices

  8. Biochemical filter with sigmoidal response: increasing the complexity of biomolecular logic.

    Science.gov (United States)

    Privman, Vladimir; Halámek, Jan; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2010-11-11

    The first realization of a designed, rather than natural, biochemical filter process is reported and analyzed as a promising network component for increasing the complexity of biomolecular logic systems. Key challenge in biochemical logic research has been achieving scalability for complex network designs. Various logic gates have been realized, but a "toolbox" of analog elements for interconnectivity and signal processing has remained elusive. Filters are important as network elements that allow control of noise in signal transmission and conversion. We report a versatile biochemical filtering mechanism designed to have sigmoidal response in combination with signal-conversion process. Horseradish peroxidase-catalyzed oxidation of chromogenic electron donor by H(2)O(2) was altered by adding ascorbate, allowing to selectively suppress the output signal, modifying the response from convex to sigmoidal. A kinetic model was developed for evaluation of the quality of filtering. The results offer improved capabilities for design of scalable biomolecular information processing systems.

  9. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    Science.gov (United States)

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  10. Bridge- and Solvent-Mediated Intramolecular Electronic Communications in Ubiquinone-Based Biomolecular Wires

    OpenAIRE

    Liu, Xiao-Yuan; Ma, Wei; Zhou, Hao; Cao, Xiao-Ming; Long, Yi-Tao

    2015-01-01

    Intramolecular electronic communications of molecular wires play a crucial role for developing molecular devices. In the present work, we describe different degrees of intramolecular electronic communications in the redox processes of three ubiquinone-based biomolecular wires (Bis-CoQ0s) evaluated by electrochemistry and Density Functional Theory (DFT) methods in different solvents. We found that the bridges linkers have a significant effect on the electronic communications between the two pe...

  11. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids

    OpenAIRE

    Tessier, Matthew B; DeMarco, Mari L.; Yongye, Austin B.; Woods, Robert J.

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a c...

  12. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  13. Capital structure determinants of private small and medium-sized enterprises in China

    OpenAIRE

    Newman, Alexander

    2010-01-01

    This thesis examines the capital structure determinants of private SMEs in China and the extent to which financial theories of capital structure adequately explain their financing behaviour. It also investigates whether other theoretical perspectives can be utilised to explain their capital structure decisions. In order to investigate these issues a mixed method approach is utilised, combining analysis of secondary data, with field research in the form of semi-structured interviews and su...

  14. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems.

    Science.gov (United States)

    Prischi, Filippo; Pastore, Annalisa

    2016-01-01

    The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.

  15. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications.

    Science.gov (United States)

    Yu, Yong; Mok, Beverly Y L; Loh, Xian Jun; Tan, Yen Nee

    2016-08-01

    Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents.

  16. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    Science.gov (United States)

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme. PMID:27057643

  17. An improved simple polarisable water model for use in biomolecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Stephan J.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)

    2014-12-14

    The accuracy of biomolecular simulations depends to some degree on the accuracy of the water model used to solvate the biomolecules. Because many biomolecules such as proteins are electrostatically rather inhomogeneous, containing apolar, polar, and charged moieties or side chains, a water model should be able to represent the polarisation response to a local electrostatic field, while being compatible with the force field used to model the biomolecules or protein. The two polarisable water models, COS/G2 and COS/D, that are compatible with the GROMOS biomolecular force fields leave room for improvement. The COS/G2 model has a slightly too large dielectric permittivity and the COS/D model displays a much too slow dynamics. The proposed COS/D2 model has four interaction sites: only one Lennard-Jones interaction site, the oxygen atom, and three permanent charge sites, the two hydrogens, and one massless off-atom site that also serves as charge-on-spring (COS) polarisable site with a damped or sub-linear dependence of the induced dipole on the electric field strength for large values of the latter. These properties make it a cheap and yet realistic water model for biomolecular solvation.

  18. Roof structure theory and support resistance determination of longwall face in shallow seam

    Institute of Scientific and Technical Information of China (English)

    HUANG Qing-xiang(黄庆享)

    2003-01-01

    This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models are differ from classic theory, it establishes the new roof control theory of instability structure roof, especially in shallow seam. Based on the new roof structure theory, the support working state of "given sliding load" is put forward, and the factor of load transmitting is introduced to determine the load on roof structure. Therefore, the proper and accurate calculating methods of support resistance are established. Based on this, the dynamic structure theory in shallow seam could be predicted.

  19. SMEs capital structure determinants during severe economic crisis: The case of Greece

    Directory of Open Access Journals (Sweden)

    D. Balios

    2016-12-01

    Full Text Available The objective of this paper was to explore whether and how the main capital structure determinants of SMEs affected capital structure determination in different ways during the years of economic crisis. We used panel data of 8,052 SMEs operating in Greece during 2009–2012. We found that the effect of capital structure determinants on leverage does not change in an environment of economic crisis; larger SMEs continued to show higher debt ratios, the relationship between profitability and tangibility of assets with leverage continued to be negative, and growth was positively related to leverage.

  20. Vegetation structure determination using LIDAR data and the forest growth parameters

    Science.gov (United States)

    Rybansky, M.; Brenova, M.; Cermak, J.; van Genderen, J.; Sivertun, Å.

    2016-06-01

    The goal of this paper is to identify the main vegetation factors in the terrain, which are important for the analysis of forest structure. Such an analysis is important for forestry, rescue operations management during crises situations and disasters such as fires, storms, earthquakes and military analysis (transportation, cover, concealment, etc.). For the forest structure determination, both LIDAR and the forest growth prediction analysis were used. As main results, the vegetation height, tree spacing and stem diameters were determined

  1. Determining the velocity fine structure by a laser anemometer with fixed orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Leif; Kirkegaard, P.; Mikkelsen, Torben

    2011-02-15

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the along-beam turbulent velocity. The purpose has been to establish a basis for remote determining of turbulence fine-structure in terms of the rate of dissipation of specific kinetic energy in the atmospheric boundary layer. (Author)

  2. On Explorative and Integrative Modeling of Biomolecular Complexes

    NARCIS (Netherlands)

    van Zundert, G.C.P.

    2015-01-01

    This thesis introduces and showcases novel approaches for explorative and integrative modeling in the presence of cryo-EM data and distance restraints. In it the PowerFit software is presented, a Python package for fast cross correlation based rigid body fitting of high-resolution structures in low-

  3. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks

    DEFF Research Database (Denmark)

    Evans, Amanda C.; Meinert, Cornelia; Bredehoft, Jan H.;

    2013-01-01

    homochirality observed in living organisms. This review describes a new chiroptical technique that is of significance for advances in asymmetric photochemistry and that is also highly relevant for the European Space Agency Rosetta Mission, which will determine enantiomeric excesses (ees) in chiral organic...

  4. Crystal structure determination by powder neutron diffraction at the spallation neutron source, ISIS

    International Nuclear Information System (INIS)

    The paper concerns the determination of crystal structure by powder neutron diffraction at the spallation neutron source, ISIS. The practicability of the technique is illustrated by a study of the crystal structure of ferric arsenate, FeAsO4. (U.K.)

  5. Profitability of Western European banking systems: panel evidence on structural and cyclical determinants

    OpenAIRE

    Beckmann, Rainer

    2007-01-01

    This paper analyses structural and cyclical determinants of banking profitability in 16 Western European countries. We find that financial structure matters, particularly through the beneficial effect of the capital market orientation in the respective national financial system. Furthermore, higher diversification regarding banks' income sources shows a positive effect. The industry concentration of national banking systems, though, does not significantly affect aggregate profitability. Busin...

  6. EXAFS, Determination of Short Range Order and Local Structures in Materials

    NARCIS (Netherlands)

    Koningsberger, D.C.; Prins, R.

    1981-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable str

  7. Determinants of Rural Industrial Entrepreneurship of Farmers in West Bengal : A Structural Equations Approach

    NARCIS (Netherlands)

    Folmer, Henk; Dutta, Subrata; Oud, Han

    2010-01-01

    This article presents a structural equations model of rural industrial entrepreneurship (RIE) among farmers in the Bardhaman district, West Bengal, India. It identifies the determinants of RIE but also analyzes impacts of RIE on its endogenous determinants. Age, education, marital status, number of

  8. Towards a calculus of biomolecular complexes at equilibrium.

    Science.gov (United States)

    Mjolsness, Eric

    2007-07-01

    An overview is presented of the construction and use of algebraic partition functions to represent the equilibrium statistical mechanics of multimolecular complexes and their action within a larger regulatory network. Unlike many applications of equilibrium statistical mechanics, multimolecular complexes may operate with various subsets of their components present and connected to the others, the rest remaining in solution. Thus they are variable-structure systems. This aspect of their behavior may be accounted for by the use of 'fugacity' variables as a representation within the partition functions. Four principles are proposed by which the combinatorics of molecular complex construction can be reflected in the construction of their partition functions. The corresponding algebraic operations on partition functions are multiplication, addition, function composition and a less commonly used operation called contraction. Each has a natural interpretation in terms of probability distributions on multimolecular structures. Possible generalizations to nonequilibrium statistical mechanics are briefly discussed.

  9. Accurate structural correlations from maximum likelihood superpositions.

    Directory of Open Access Journals (Sweden)

    Douglas L Theobald

    2008-02-01

    Full Text Available The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method ("PCA plots" for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology.

  10. Validation of a new restraint docking method for solution structure determinations of protein-ligand complexes

    Energy Technology Data Exchange (ETDEWEB)

    Polshakov, Vladimir I.; Morgan, William D.; Birdsall, Berry; Feeney, James [National Institute for Medical Research, Division of Molecular Structure (United Kingdom)

    1999-06-15

    A new method is proposed for docking ligands into proteins in cases where an NMR-determined solution structure of a related complex is available. The method uses a set of experimentally determined values for protein-ligand, ligand-ligand, and protein-protein restraints for residues in or near to the binding site, combined with a set of protein-protein restraints involving all the other residues which is taken from the list of restraints previously used to generate the reference structure of a related complex. This approach differs from ordinary docking methods where the calculation uses fixed atomic coordinates from the reference structure rather than the restraints used to determine the reference structure. The binding site residues influenced by replacing the reference ligand by the new ligand were determined by monitoring differences in {sup 1}H chemical shifts. The method has been validated by showing the excellent agreement between structures of L. casei dihydrofolate reductase.trimetrexate calculated by conventional methods using a full experimentally determined set of restraints and those using this new restraint docking method based on an L. casei dihydrofolate reductase.methotrexate reference structure.

  11. Direct methods determination of the Si(111)-(6x6)Au surface structure

    DEFF Research Database (Denmark)

    Grozea, D.; Landree, E.; Marks, L.D.;

    1998-01-01

    The atomic structure of the Au 6 x 6 on Si(111) phase has been determined using direct methods and surface X-ray diffraction data. This surface structure is very complicated, with 14 independent gold atoms, relaxations in 24 independent silicon sites and three partially occupied gold sites. In on...... the gold structures in the coverage range 0.8-1.5 monolayers as pseudo-glasses with strong short-range order but varying degrees of long-range order. (C) 1998 Elsevier Science B.V. All rights reserved.......The atomic structure of the Au 6 x 6 on Si(111) phase has been determined using direct methods and surface X-ray diffraction data. This surface structure is very complicated, with 14 independent gold atoms, relaxations in 24 independent silicon sites and three partially occupied gold sites. In one...

  12. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination.

    Science.gov (United States)

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2013-11-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation.

  13. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data.

    Science.gov (United States)

    Lee, Woonghee; Petit, Chad M; Cornilescu, Gabriel; Stark, Jaime L; Markley, John L

    2016-06-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27-98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models. PMID:27169728

  14. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  15. Perspectives for quantum interference with biomolecules and biomolecular clusters

    Science.gov (United States)

    Geyer, P.; Sezer, U.; Rodewald, J.; Mairhofer, L.; Dörre, N.; Haslinger, P.; Eibenberger, S.; Brand, C.; Arndt, M.

    2016-06-01

    Modern quantum optics encompasses a wide field of phenomena that are either related to the discrete quantum nature of light, the quantum wave nature of matter or light–matter interactions. We here discuss new perspectives for quantum optics with biological nanoparticles. We focus in particular on the prospects of matter-wave interferometry with amino acids, nucleotides, polypeptides or DNA strands. We motivate the challenge of preparing these objects in a ‘biomimetic’ environment and argue that hydrated molecular beam sources are promising tools for quantum-assisted metrology. The method exploits the high sensitivity of matter-wave interference fringes to dephasing and shifts in the presence of external perturbations to access and determine molecular properties.

  16. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  17. A novel strategy for NMR resonance assignment and protein structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander [University of Toronto, Ontario Cancer Institute and Campbell Family Cancer Research Institute, Department of Medical Biophysics (Canada); Gutmanas, Aleksandras [European Bioinformatics Institute, Protein Data Bank Europe (United Kingdom); Chitayat, Seth; Karra, Murthy [University of Toronto, Ontario Cancer Institute and Campbell Family Cancer Research Institute, Department of Medical Biophysics (Canada); Fares, Christophe [Max-Planck-Institut f. Kohlenforschung (Germany); Sunnerhagen, Maria [Linkoeping University, Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology (Sweden); Arrowsmith, Cheryl H., E-mail: carrow@uhnres.utoronto.ca [University of Toronto, Ontario Cancer Institute and Campbell Family Cancer Research Institute, Department of Medical Biophysics (Canada)

    2011-01-15

    The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution - especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

  18. A novel strategy for NMR resonance assignment and protein structure determination

    International Nuclear Information System (INIS)

    The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

  19. Determination Strength of Concrete in-Situ by Seismic Ultrasonic Method in Detecting Risky Structure

    Science.gov (United States)

    Uyanik, O.; Öziçer, S.; Sabbağ, N.

    2014-12-01

    Strength of concrete is important in the analysis of structures. Strength of concrete can be determined as destructive or non destructive. In order to determine to strength of concrete as destructive, core is taken from concrete parts of the structure and uniaxial compressive strength test is applied in the laboratory. In contrast, strength of concrete can be determined as non destructive in situ by seismic ultrasonic technique. In this study, seismic ultrasonic P wave velocity measurements. Schmidt hammer test in situ and core sampling along with uniaxial compressive test are carried out in order to determine the strength of concrete in existing structures in Bornova district of İzmir. Seismic ultrasonic P wave velocity measurements in situ were also applied on the core. The concrete strength values obtained from techniques applied in study were compared and error values are determined. By seismic ultrasonic P wave velocity measurements with error value %5 strength of concrete is determined quickly without any destruction on structures studied.

  20. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Mangani, Stefano

    2005-01-01

    Nuclear magnetic resonance (NMR) is a powerful technique for protein structure determination in solution. However, when dealing with metalloproteins, NMR methods are unable to directly determine the structure of the metal site and its coordination geometry. The capability of X-ray absorption spectroscopy (XAS) to provide the structure of a metal ion bound to a protein is then perfectly suited to complement the process of the structure determination. This aspect is particularly relevant in structural genomic projects where high throughput of structural results is the main goal. The synergism of the two techniques has been exploited in the structure determination of bacterial copper transport proteins.

  1. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks...... that are significantly affected between or across conditions. Results of the Reporter Feature analysis not only provide a snapshot of the transcriptional regulatory program but also are biologically easy to interpret and provide a powerful way to generate new hypotheses. Our Reporter Features analyses of yeast glucose...

  2. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  3. Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers

    International Nuclear Information System (INIS)

    We have developed a protein-enabled strategy to fabricate quantum dot (QD) nanoarrays where up to a 15-fold increase in surface-plasmon-enhanced fluorescence has been achieved. This approach permits a comprehensive control both laterally (via lithographically defined gold nanoarrays) and vertically (via the QD-metal distance) of the collectively behaving assemblies of QDs and gold nanoarrays by way of biomolecular recognition. Specifically, we demonstrated the spectral tuning of plasmon resonant metal nanoarrays and self-assembly of protein-functionalized QDs in a stepwise fashion with a concomitant incremental increase in separation from the metal surface through biotin-streptavidin spacer units.

  4. The use of gold nanoparticle aggregation for DNA computing and logic-based biomolecular detection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Hee; Yang, Kyung-Ae; Zhang, Byoung-Tak [School of Computer Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Lee, Ji-Hoon [Center for Bioinformation Technology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Park, Ji-Yoon; Chai, Young Gyu [Division of Molecular and Life Sciences, Hanyang University, 1271 Sa-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Jae-Hoon [Fachgebiet Mikrobiologie und Genetik, Institut fuer Biotechnologie, Technische Universitaet Berlin, Gustav-Meyer Allee 25, D-13355 Berlin (Germany)], E-mail: btzhang@bi.snu.ac.kr

    2008-10-01

    The use of DNA molecules as a physical computational material has attracted much interest, especially in the area of DNA computing. DNAs are also useful for logical control and analysis of biological systems if efficient visualization methods are available. Here we present a quick and simple visualization technique that displays the results of the DNA computing process based on a colorimetric change induced by gold nanoparticle aggregation, and we apply it to the logic-based detection of biomolecules. Our results demonstrate its effectiveness in both DNA-based logical computation and logic-based biomolecular detection.

  5. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  6. Attenuation contrast between biomolecular and inorganic materials at terahertz frequencies

    Science.gov (United States)

    Chan, T. L. J.; Bjarnason, J. E.; Lee, A. W. M.; Celis, M. A.; Brown, E. R.

    2004-09-01

    Wideband photomixing spectroscopy is used in the present work to contrast the transmission spectra of macromolecules commonly found in biomaterials such as potato starch, wheat flour and cornstarch, and proteins (Cytoplex™), and micromolecules such as sucrose, and inorganic materials such as sodium bicarbonate, and calcium sulfate. Powdered samples were measured at 0.1-0.5THz frequencies. A significant difference in attenuation is found between these samples. At 300GHz starch shows an absorption coefficient of ˜6cm-1 whereas Cytoplex shows 1-3cm-1, while inorganic micromolecules have ˜1cm-1. The absorption in starch increases rapidly with frequency tending to follow a power law α =fn with n typically between 1.5 and 2.0. In contrast, protein materials display a slower dependence on frequency with n between 1.0 and 1.5, and simple molecules show the least n among all three categories. The difference between these ubiquitous macromolecular and micromolecular materials is explained in terms of water content and molecular structure.

  7. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  8. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support.

    Science.gov (United States)

    Fei, Yiyan; Landry, James P; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A; Chen, Xi; Zhu, X D

    2013-11-01

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10,000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  9. The structure of melon necrotic spot virus determined at 2.8 Å resolution

    International Nuclear Information System (INIS)

    The structure of melon necrotic spot virus is reported. The structure of melon necrotic spot virus (MNSV) was determined at 2.8 Å resolution. Although MNSV is classified into the genus Carmovirus of the family Tombusviridae, the three-dimensional structure of MNSV showed a higher degree of similarity to tomato bushy stunt virus (TBSV), which belongs to the genus Tombusvirus, than to carnation mottle virus (CMtV), turnip crinkle virus (TCV) or cowpea mottle virus (CPMtV) from the genus Carmovirus. Thus, the classification of the family Tombusviridae at the genus level conflicts with the patterns of similarity among coat-protein structures. MNSV is one of the viruses belonging to the genera Tombusvirus or Carmovirus that are naturally transmitted in the soil by zoospores of fungal vectors. The X-ray structure of MNSV provides us with a representative structure of viruses transmitted by fungi

  10. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures

    Directory of Open Access Journals (Sweden)

    Mainil Jacques

    2005-12-01

    Full Text Available Abstract Background Cultures of enterocytes and colonocytes represent valuable tools to study growth and differentiation of epithelial cells. In vitro models may be used to evaluate passage or toxicity of drugs, interactions of enteropathogenes bacteria strains with intestinal epithelium and other physiologic or pathologic phenomenon involving the digestive tract. Results Cultures of bovine colonocytes and jejunocytes were obtained from organoid-enriched preparations, using a combination of enzymatic and mechanical disruption of the intestine epithelium, followed by an isopicnic centrifugation discarding most single cells. Confluent cell monolayers arising from plated organoids exhibited epithelium typical features, such as the pavement-like structure, the presence of apical microvilli and tight junctions. Accordingly, cells expressed several markers of enterocyte brush border (i.e. maltase, alkaline phosphatase and fatty acid binding protein as well as an epithelial cytoskeleton component (cytokeratin 18. However, enterocyte primocultures were also positive for the vimentin immunostaining (mesenchyme marker. Vimentin expression studies showed that this gene is constitutively expressed in bovine enterocytes. Comparison of the vimentin expression profile with the pattern of brush border enzymes activities, suggested that the decrease of cell differentiation level observed during the enterocyte isolation procedure and early passages of the primoculture could result from a post-transcriptional de-repression of vimentin synthesis. The low differentiation level of bovine enterocytes in vitro could partly be counteracted adding butyrate (1–2 mM or using a glucose-deprived culture medium. Conclusion The present study describes several complementary approaches to characterize bovine primary cultures of intestinal cells. Cultured cells kept their morphologic and functional characteristics during several generations.

  11. Biomolecular modification of zirconia surfaces for enhanced biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang; Hsu, Hsueh-Chuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan, ROC (China); Yao, Chun-Hsu [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2014-12-01

    Yttria-tetragonal zirconia polycrystal (Y-TZP) is a preferred biomaterial due to its good mechanical properties. In order to improve the biocompatibility of zirconia, RGD-peptide derived from extracellular matrix proteins was employed to modify the surface of Y-TZP to promote cell adhesion in this study. The surface of Y-TZP specimens was first modified using a hydrothermal method for different lengths of time. The topographies of modified Y-TZP specimens were analyzed by contact angle, XRD, FTIR, AFM, and FE-SEM. The mechanical properties were evaluated using Vickers hardness and three point bending strength. Then, the RGD-peptide was immobilized on the surface of the Y-TZP by chemical treatment. These RGD-peptide immobilized Y-TZP specimens were characterized by FTIR and AFM, and then were cocultured with MG-63 osteoblast cells for biocompatibility assay. The cell morphology and proliferation were evaluated by SEM, WST-1, and ALP activity assay. The XRD results indicated that the phase transition, from tetragonal phase to monoclinic phase, was increased with a longer incubation time of hydrothermal treatment. However, there were no significant differences in mechanical strengths after RGD-peptide was successfully grafted onto the Y-TZP surface. The SEM images showed that the MG-63 cells appeared polygonal, spindle-shaped, and attached on the RGD-peptide immobilized Y-TZP. The proliferation and cellular activities of MG-63 cells on the RGD-peptide immobilized Y-TZP were better than that on the unmodified Y-TZP. From the above results, the RGD-peptide can be successfully grafted onto the hydrothermal modified Y-TZP surface. The RGD-peptide immobilized Y-TZP can increase cell adhesion, and thus, improve the biocompatibility of Y-TZP. - Highlights: • Covalent bonding between peptide and Y-TZP was proposed. • Stable biomimetic structures produced on the surface of zirconia. • The biocompatibility was improved.

  12. A general protocol for determining the structures of molecularly ordered but noncrystalline silicate frameworks.

    Science.gov (United States)

    Brouwer, Darren H; Cadars, Sylvian; Eckert, Juergen; Liu, Zheng; Terasaki, Osamu; Chmelka, Bradley F

    2013-04-17

    A general protocol is demonstrated for determining the structures of molecularly ordered but noncrystalline solids, which combines constraints provided by X-ray diffraction (XRD), one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, and first-principles quantum chemical calculations. The approach is used to determine the structure(s) of a surfactant-directed layered silicate with short-range order in two dimensions but without long-range periodicity in three-dimensions (3D). The absence of long-range 3D molecular order and corresponding indexable XRD reflections precludes determination of a space group for this layered silicate. Nevertheless, by combining structural constraints obtained from solid-state (29)Si NMR analyses, including the types and relative populations of distinct (29)Si sites, their respective (29)Si-O-(29)Si connectivities and separation distances, with unit cell parameters (though not space group symmetry) provided by XRD, a comprehensive search of candidate framework structures leads to the identification of a small number of candidate structures that are each compatible with all of the experimental data. Subsequent refinement of the candidate structures using density functional theory calculations allows their evaluation and identification of "best" framework representations, based on their respective lattice energies and quantitative comparisons between experimental and calculated (29)Si isotropic chemical shifts and (2)J((29)Si-O-(29)Si) scalar couplings. The comprehensive analysis identifies three closely related and topologically equivalent framework configurations that are in close agreement with all experimental and theoretical structural constraints. The subtle differences among such similar structural models embody the complexity of the actual framework(s), which likely contain coexisting or subtle distributions of structural order that are intrinsic to the material. PMID:23560776

  13. Determining complex crystal structures from high pressure single-crystal diffraction data collected on synchrotron sources

    Science.gov (United States)

    McMahon, M. I.; Loa, I.; Stinton, G. W.; Lundegaard, L. F.

    2013-08-01

    As part of a Long Term Project, single-crystal diffraction techniques have been developed for use at the high pressure beamlines ID09 and ID27 at the European Synchrotron Radiation Facility, and have been utilised to determine the crystal structures of various high pressure phases, including those with incommensurate structures, at both high and low temperatures. The same techniques have also been used to determine the structures of high pressure phases at the SRS, Diamond and Petra-III synchrotron sources. In this paper, we describe technical details of the methods developed, and describe some of the considerations necessary for planning experiments and collecting and processing the data. We then illustrate the quality of data that can be obtained, and the complexity of the structures that can be refined, using recent results obtained from complex high pressure phases of N2 and Ba.

  14. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  15. Crystal structure determination and reaction pathway of amide-hydride mixtures

    International Nuclear Information System (INIS)

    Combined synchrotron in situ X-ray diffraction and neutron diffraction studies were performed on 2:1 mixtures of lithium amide and magnesium hydride, which have shown promise as solid-state hydrogen storage materials. The dehydrogenated product is a mixed lithium and magnesium imide, Li2Mg(NH)2, whose crystal structure has not heretofore been determined. Furthermore, at elevated temperatures, Li2Mg(NH)2 undergoes two structural transitions from an orthorhombic structure to a primitive cubic structure at intermediate temperature (350 deg. C) followed by a face-centered cubic crystal structure at high temperature (500 deg. C). Disordering of the Li, Mg and cation vacancies as a function of temperature drives the structural transitions. We report the reaction pathway from in situ X-ray diffraction studies and the crystal structures of the three structural variants of Li2Mg(NH)2 as determined by high-resolution X-ray and neutron powder diffraction. We also report the hydrogen storage reaction pathways for mixtures with other cation ratios

  16. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yingang, E-mail: fengyg@qibebt.ac.cn [Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 (China); Song, Xiaxia [Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Jinzhong [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xuan, Jinsong [Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cui, Qiu [Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 (China); Wang, Jinfeng [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  17. Biomolecular interactions probed by fluorescence resonance energy transfer

    Science.gov (United States)

    Lange, Daniela Charlotte

    2000-09-01

    trafficking, with emphasis on defining the role of apoD in this disease. In vitro FRET studies on the dynamic structure of apoD and its close relative, β-lactoglobulin, are presented. FRET combined with conventional fluorescence microscopy established a direct association between apoD and cholesterol in situ. No evidence was found for interaction between apoD and the NPC1 protein.

  18. Determining the size-dependent structure of ligand-free gold-cluster ions.

    Science.gov (United States)

    Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2010-03-28

    Ligand-free metal clusters can be prepared over a wide size range, but only in comparatively small amounts. Determining their size-dependent properties has therefore required the development of experimental methods that allow characterization of sample sizes comprising only a few thousand mass-selected particles under well-defined collision-free conditions. In this review, we describe the application of these methods to the geometric structural determination of Au(n)(+) and Au(n)(-) with n = 3-20. Geometries were assigned by comparing experimental data, primarily from ion-mobility spectrometry and trapped ion electron diffraction, to structural models from quantum chemical calculations.

  19. DETERMINANTS OF CAPITAL STRUCTURE OF CROATIAN ENTERPRISES BEFORE AND DURING THE FINANCIAL CRISIS

    Directory of Open Access Journals (Sweden)

    Ena Mostarac

    2013-06-01

    Full Text Available This paper analysis capital structure determinants of Croatian enterprises based on a cross-sectional data for pre-recession 2007 and recession 2010 comprising about 10,000 firms. Determinants are selected with reference to the relevant capital structure theories and include asset tangibility, profitability, firm size and business risk. The results indicate highly positive significant impact of tangibility and negative significant impact of profitability on financial leverage in both observed years. Firm size seems to be statistically significant at higher level in crisis period, but at the same time no relationship can be found between business risk and financial leverage that is of economic significance.

  20. Experimental determination of the π meson structure functions by the Drell-Yan mechanism

    International Nuclear Information System (INIS)

    We have studied high statistics samples of dimuon events (proportional35,000) produced from πsup(+-) on platinum target in the mass interval 4.22 sigma/dx1 dx2 to π+ and π- data. At 200 GeV, the simultaneous use of π+ and π- data allows a separate determination of the valence and sea structure functions of the π. Furthermore, the 150 and 280 GeV data allow an accurate determination of the shape of the valence structure function and give an estimate of its evolution between Q2=25 and 50 GeV2. (orig.)

  1. Determinants of Capital Structure: A case from Textile Industry of Pakistan

    Directory of Open Access Journals (Sweden)

    Aurangzeb

    2012-04-01

    Full Text Available This study examines the determinants of capital structure in Textile industry of Pakistan on a data for the period of 2004 to 2009. Multiple regression technique is used to analyze the relationship between dependent variable (Leverage and independent variables (Firm Size, Tangibility of Assets, Profitability, and Sales Growth. It is concluded all independent variables have significant impact on the balance of leverage. It is concludes that firm size, tangibility of assets and profitability having positive relationship with leverage. On the other hand sales growth has negative relationship with leverage. It is recommended that policy makers should focus on these determinants when making any decisions regarding capital structure.

  2. Organic structure determination using 2-D NMR spectroscopy a problem-based approach

    CERN Document Server

    Simpson, Jeffrey H

    2011-01-01

    Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, provides an introduction to the use of two-dimensional (2-D) nuclear magnetic resonance (NMR) spectroscopy to determine organic structure. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; s

  3. Present and future of membrane protein structure determination by electron crystallography.

    Science.gov (United States)

    Ubarretxena-Belandia, Iban; Stokes, David L

    2010-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins.

  4. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  5. An Empirical Study on Capital Structure Determinants of Selected ASEAN Countries

    OpenAIRE

    Ngo, Hoang Anh

    2013-01-01

    Capital structure has been a controversial topic for decades. Conflicting arguments in theories and mixed findings in empirical work require further studies on this subject. More importantly, most previous studies have focused on developed countries and little attention is paid to emerging economies, especially ASEAN. Therefore, this study attempts to fill the gap by examining effects of capital structure's determinants on different measures of leverage of listed manufacturing companies in se...

  6. Identification and determination of solitary wave structures in nonlinear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, W.I.; Campbell, D.K.; Hyman, J.M.

    1991-01-01

    Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.

  7. The Determinants of Capital Structure: Evidence from the Turkish Manufacturing Sector

    OpenAIRE

    Songul KAKILLI ACARAVCI

    2015-01-01

    This study investigates the determinants of capital structure in Turkey by using panel data methods. The sample period spans from 1993 to 2010 for 79 firms in the manufacturing sector traded on the Istanbul Stock Exchange. The base model was expanded with firm size and sectorspecific effects. This study compares also effects on capital structure according to sectors and firm size of variables used in models. Growth opportunities, size, profitability, tangibility and non-debt tax shields are u...

  8. Determinants of capital structure in small and medium sized enterprises in Malaysia

    OpenAIRE

    Mat Nawi, Hafizah

    2015-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This study aims to investigate the determinants of capital structure in small and medium-sized enterprises (SMEs) in Malaysia and their effect on firms’ performance. The study addresses the following primary question: What are the factors that influence the capital structure of SMEs in Malaysia? The sample of this research is SMEs in the east coast region of Malaysia. Adopting a posi...

  9. Determinants of Firm Affiliation to Pyramid Structure: A Survey from Malaysian Public Listed Firms

    OpenAIRE

    Irfah Najihah Basir Malan; Norhana Salamudin; Noryati Ahmad

    2013-01-01

    This research seeks to examine the determinants of affiliation to pyramid structure of Malaysian public listed firms. A motivation of the research comes from the phenomenon of pyramid structure causing divergence of ultimate owners’ actual ownership and control leading to severe expropriation of minority shareholders’ interest. The method adapts Attig Model and employs Panel Generalised Least Square on 136 Malaysian pyramid firms over a twenty one-year period from 1990 to 2010. There are ten ...

  10. Corporate performance, board structure, and their determinants in the banking industry

    OpenAIRE

    Renée B. Adams; Mehran, Hamid

    2008-01-01

    The subprime crisis highlights how little we know about the governance of banks. This paper addresses a long-standing gap in the literature by analyzing board governance using a sample of banking firm data that spans forty years. We examine the relationship between board structure (size and composition) and bank performance, as well as some determinants of board structure. We document that mergers and acquisitions activity influences bank board composition, and we provide new evidence that or...

  11. Phase Structures of Microemulsions Determined by the Steady-State Fluorescence Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The steady-state fluorescence method has been tentatively used to determine the phase structures of microemulsion systems consisting of cetyltrimethylammonium bromide (CTAB), n-butanol (n-C4H9OH), octane (n-C5H18), and water. The excimer/monomer intensity ratio (Ie/Im) of pyrene has demonstrated that the various structures in the microemulsion phase region can be distinguished. The results are consistent with electrical conductivity data already reported.

  12. Exploration and analysis of the structural and intermediate social determinants of the HIV/AIDS pandemic

    Directory of Open Access Journals (Sweden)

    Yesica Daniela Liscano Pinzón

    2015-08-01

    Full Text Available Understanding distribution, epidemiology and the Social Determinants of Health related with HIV/AIDS are the basis on which we must work to achieve full containment of the epidemic in taking preventive measures such as clinical measures implemented for this purpose. Objective: To analyse intermediate and structural social determinants related to the HIV / AIDS reported in the national and international literature in the period 1993-2013. Material and methods: This research is hermeneutic, was developed in three phases: 1 Literature search and classification results. 2 Revision 3 Analysis of this literature with subsequent preparation of the final report. Results: met inclusion criteria 119 items. Eighty-four were for structural studies of determinants, 33 related to socioeconomic status, gender 25 and 26 with other structural determinants. Thirty-five were for intermediate DDS, 22 related to the conduct and 13 with the material conditions of life. Discussion: the structural determinants (gender and socioeconomic status are those with a high probability of exercising greater constraint on the behaviour of HIV, and therefore require considerable efforts in this field to combat the pandemic. 

  13. MARKET-STRUCTURE DETERMINANTS OF NATIONAL BRAND-PRIVATE LABEL PRICE DIFFERENCES OF MANUFACTURED FOOD PRODUCTS

    OpenAIRE

    Connor, John M.; Peterson, Everett B.

    1991-01-01

    This paper estimates the relationships between market structure and the Lerner index of monopoly constructed from price data on processed food products sold through grocery stores. A theoretical model of a differentiated oligopoly specifies two determinants of price-cost margins: the Herfindahl-Hirschman index of seller concentration adjusted for the elasticity of demand and the industry advertising-to-sales ratio. The results indicate that the three principal determinants of price-cost margi...

  14. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J. (UWASH); (Emerald)

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  15. The J-UNIO protocol for automated protein structure determination by NMR in solution

    International Nuclear Information System (INIS)

    The J-UNIO (JCSG protocol using the software UNIO) procedure for automated protein structure determination by NMR in solution is introduced. In the present implementation, J-UNIO makes use of APSY-NMR spectroscopy, 3D heteronuclear-resolved [1H,1H]-NOESY experiments, and the software UNIO. Applications with proteins from the JCSG target list with sizes up to 150 residues showed that the procedure is highly robust and efficient. In all instances the correct polypeptide fold was obtained in the first round of automated data analysis and structure calculation. After interactive validation of the data obtained from the automated routine, the quality of the final structures was comparable to results from interactive structure determination. Special advantages are that the NMR data have been recorded with 6–10 days of instrument time per protein, that there is only a single step of chemical shift adjustments to relate the backbone signals in the APSY-NMR spectra with the corresponding backbone signals in the NOESY spectra, and that the NOE-based amino acid side chain chemical shift assignments are automatically focused on those residues that are heavily weighted in the structure calculation. The individual working steps of J-UNIO are illustrated with the structure determination of the protein YP926445.1 from Shewanella amazonensis, and the results obtained with 17 JCSG targets are critically evaluated.

  16. Determination of conduction and valence band electronic structure of anatase and rutile TiO2

    Indian Academy of Sciences (India)

    Jakub Szlachetko; Katarzyna Michalow-Mauke; Maarten Nachtegaal; Jacinto Sá

    2014-03-01

    Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelastic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti -band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase possesses localized states located in the band gap where electrons can be trapped, which are almost absent in the rutile structure. This could well explain the reported longer lifetimes in anatase. It was revealed that HR-XAS is insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps.

  17. Use of electrophoretic mobility to determine the secondary structure of a small antisense RNA.

    OpenAIRE

    Jacques, J P; Susskind, M M

    1991-01-01

    Natural antisense RNAs have stem-loop (hairpin) secondary structures that are important for their function. The sar antisense RNA of phage P22 is unusual: the 3' half of the molecule forms an extensive stem-loop, but potential structures for the 5' half are not predicted to be thermodynamically stable. We devised a novel method to determine the secondary structure of sar RNA by examining the electrophoretic mobility on non-denaturing gels of numerous sar mutants. The results show that the wil...

  18. The Resource Approach to Determining the Competitiveness of Integrated Business Structures

    Directory of Open Access Journals (Sweden)

    Kosata Inna A.

    2015-03-01

    Full Text Available Solving problems of increasing the competitiveness of domestic integrated business structures under the current conditions of increasing impact of the global financial and economic crisis is inextricably linked to the effective use of available resources by business entities. This raises the need for creating new approaches to assessing the conditions, justification of characteristics , definition of the goals and directions of the integration processes, forms of cooperation between economic entities, assessing the degree of integration, establishing the functioning of integrated business structures at different stages of the life cycle and assessing their competitiveness. In the article the resource approach to determining the competitiveness of integrated business structures has been developed

  19. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Giulio Caravagna

    Full Text Available After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii a model of enzymatic futile cycle and (iii a genetic toggle switch. In (ii and (iii we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  20. Biomolecular solid state NMR with magic-angle spinning at 25 K

    Science.gov (United States)

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 liters/hour of liquid helium, while the 4 mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed. PMID:18922715

  1. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    Science.gov (United States)

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  2. Neutral-particle emission in collisions of electrons with biomolecular ions in an electrostatic storage ring

    International Nuclear Information System (INIS)

    Electron-biomolecular ion collisions were studied using an electrostatic storage ring with a merging electron beam device. Biomolecular ions produced by an electrospray ion source and accelerated to 20 keV/charge were injected into the ring after being mass-analyzed. The circulating ion beam was then merged with an electron beam. Neutral reaction products in collisions of electrons with ions were detected by a micro-channel plate outside of the ring. Electron-ion collisions were studied for multiply-deprotonated oligonucleotide and peptide anions as well as singly protonated oligonucleotide and peptide cations. For peptide cations, neutrals were resonantly emitted at an electron energy of around 6.5 eV, which was almost independent of the ion masses. This is deduced to come from electron-ion recombination, resulting in the cleavage of a peptide bond. For DNA oligonucleotide cations, resonant neutral particle emission was also observed. In electron and DNA anion collisions, neutrals started to increase from definite threshold energies, where the threshold energies increased in proportion to the ion charge. The same was found for peptide anions. The origin of this phenomenon is discussed

  3. Submicrometer Hall sensors for detection of magnetic nanoparticles in biomolecular sensing

    Science.gov (United States)

    Mihajlovic, Goran; Xiong, P.; von Molnar, S.; Ohtani, K.; Ohno, H.; Field, M.; Sullivan, G. J.

    2006-03-01

    Significant progress has been made in the recent years in synthesis and biomolecular functionalization of magnetic nanoparticles. These magnetic bio-nanolabels can be utilized as protein or gene markers in biomolecular sensing assays, in contrast to the much larger micron sized magnetic beads that are usually limited to cell labeling. However, the low magnetic moments of individual nanoparticles (10^4-10^5 μB) render their sensitive detection still a challenging task. In order to address this issue we are developing miniaturized Hall sensors from InAs/AlSb quantum well semiconductor heterostructures with active Hall cross areas down to 300 nm x 300 nm. Our preliminary characterization measurements performed at room temperature show functional devices with magnetic field resolution < 100 μT/√Hz at frequencies above 100 Hz, yielding a moment sensitivity ˜ 10^5 μB. In addition to the progress in improving the moment sensitivity of the submicrometer Hall detectors, we will also present efforts in device integration with on-chip microcoils for the generation of local magnetic excitation fields. Results on nanoparticle detection will also be presented.

  4. The detection of specific biomolecular interactions with micro-Hall magnetic sensors

    Science.gov (United States)

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C. Steven; Field, Mark; Sullivan, Gerard J.; Strouse, Geoffrey F.; Bryant Chase, P.; von Molnár, Stephan; Xiong, Peng

    2009-09-01

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  5. Precise equilibrium structure determination of hydrazoic acid (HN{sub 3}) by millimeter-wave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J. [Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Stanton, John F. [Institute for Theoretical Chemistry, Department of Chemistry, The University of Texas–Austin, Austin, Texas 78712 (United States)

    2015-09-14

    The millimeter-wave spectrum of hydrazoic acid (HN{sub 3}) was analyzed in the frequency region of 235-450 GHz. Transitions from a total of 14 isotopologues were observed and fit using the A-reduced or S-reduced Hamiltonian. Coupled-cluster calculations were performed to obtain a theoretical geometry, as well as rotation-vibration interaction corrections. These calculated vibration-rotation correction terms were applied to the experimental rotational constants to obtain mixed theoretical/experimental equilibrium rotational constants (A{sub e}, B{sub e}, and C{sub e}). These equilibrium rotational constants were then used to obtain an equilibrium (R{sub e}) structure using a least-squares fitting routine. The R{sub e} structural parameters are consistent with a previously published R{sub s} structure, largely falling within the uncertainty limits of that R{sub s} structure. The present R{sub e} geometric parameters of HN{sub 3} are determined with exceptionally high accuracy, as a consequence of the large number of isotopologues measured experimentally and the sophisticated (coupled-cluster theoretical treatment (CCSD(T))/ANO2) of the vibration-rotation interactions. The R{sub e} structure exhibits remarkable agreement with the CCSD(T)/cc-pCV5Z predicted structure, validating both the accuracy of the ab initio method and the claimed uncertainties of the theoretical/experimental structure determination.

  6. Precise equilibrium structure determination of hydrazoic acid (HN3) by millimeter-wave spectroscopy

    International Nuclear Information System (INIS)

    The millimeter-wave spectrum of hydrazoic acid (HN3) was analyzed in the frequency region of 235-450 GHz. Transitions from a total of 14 isotopologues were observed and fit using the A-reduced or S-reduced Hamiltonian. Coupled-cluster calculations were performed to obtain a theoretical geometry, as well as rotation-vibration interaction corrections. These calculated vibration-rotation correction terms were applied to the experimental rotational constants to obtain mixed theoretical/experimental equilibrium rotational constants (Ae, Be, and Ce). These equilibrium rotational constants were then used to obtain an equilibrium (Re) structure using a least-squares fitting routine. The Re structural parameters are consistent with a previously published Rs structure, largely falling within the uncertainty limits of that Rs structure. The present Re geometric parameters of HN3 are determined with exceptionally high accuracy, as a consequence of the large number of isotopologues measured experimentally and the sophisticated (coupled-cluster theoretical treatment (CCSD(T))/ANO2) of the vibration-rotation interactions. The Re structure exhibits remarkable agreement with the CCSD(T)/cc-pCV5Z predicted structure, validating both the accuracy of the ab initio method and the claimed uncertainties of the theoretical/experimental structure determination

  7. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Levin, Igor

    2008-11-01

    Full Text Available The functional responses (e. g., dielectric, magnetic, catalytic, etc. of many industrially-relevant materials are controlled by their local structure-a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale-the so-called "nanostructure problem"-at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem-an ultimate frontier in materials characterization-necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed "institute" would provide an intellectual infrastructure for local structure determination by (1 developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2, (2 connecting industrial and academic users with experts in measurement techniques, (3

  8. Spectroscopic structure and mass determination of plasma cluster accelerated by a coaxial gun

    International Nuclear Information System (INIS)

    The structure of air cluster by spectral line intensities is determined using an unstationary collisional-radiative model. The ratio of filling gas and admixtures is stated. The dependence of cluster mass on the time delay of discharge after admitting of filling gas is calculated at known electron density and cluster volume. (author)

  9. Processing visual rhetoric in advertisements: Interpretations determined by verbal anchoring and visual structure

    NARCIS (Netherlands)

    Lagerwerf, L.; Hooijdonk, van C.M.J.; Korenberg, A.

    2012-01-01

    This research investigated meaning operation in relation to verbal anchoring and visual structure of visual rhetoric in advertisements. Meaning operation refers to the relation between meaningful visual elements, and determines the number of interpretations of an image. Meaning operation ‘connection

  10. The determination of the in situ structure by nuclear spin contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS Forschungszentrum, Geesthacht (Germany); Nierhaus, K.H. [Max-Planch-Institut fuer Molekulare Genetik, Berlin (Germany)

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  11. Determinants of community structure of zooplankton in heavily polluted river ecosystems

    Science.gov (United States)

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-02-01

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.

  12. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    Science.gov (United States)

    Nothias-Scaglia, Louis-Félix; Gallard, Jean-François; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2015-10-23

    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available.

  13. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    Science.gov (United States)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  14. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    Science.gov (United States)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H. W.; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  15. Ab initio determination of dark structures in radiationless transitions for aromatic carbonyl compounds.

    Science.gov (United States)

    Fang, Wei-Hai

    2008-03-01

    Mechanistic photodissociation of a polyatomic molecule has long been regarded as an intellectually challenging area of chemical physics, the results of which are relevant to atmospheric chemistry, biological systems, and many application fields. Carbonyl compounds play a unique role in the development of our understanding of the spectroscopy, photochemistry, and photophysics of polyatomic molecules and their photodissociation has been the subject of numerous studies over many decades. Upon irradiation, a molecule can undergo internal conversion (IC) and intersystem crossing (ISC) processes, besides photochemical and other photophysical processes. Transient intermediates formed in the IC and ISC radiationless processes, which are termed "dark", are not amenable to detection by conventional light absorption or emission. However, these dark intermediates play critical roles in IC and ISC processes and thus are essential to understanding mechanistic photochemistry of a polyatomic molecule. We have applied the multiconfiguration complete active space self-consistent field (CASSCF) method to determine the dark transient structures involved in radiationless processes for acetophenone and the related aromatic carbonyl compounds. The electronic and geometric structures predicted for the dark states are in a good agreement with those determined by ultrafast electron diffraction experiments. Intersection structure of different electronic states provides a very efficient "funnel" for the IC or ISC process. However, experimental determination of the intersection structure involved in radiationless transitions of a polyatomic molecule is impossible at present. We have discovered a minimum energy crossing point among the three potential energy surfaces (S1, T1, and T2) that appears to be common to a wide variety of aromatic carbonyl compounds with a constant structure. This new type of crossing point holds the key to understanding much about radiationless processes after

  16. Use of the CSD program package for structure determination from powder data

    International Nuclear Information System (INIS)

    Although Rietveld's method of full profile structure refinement of powder data is a much-used tool today, ab initio structure solution from powder data is still not a routine task. One of the reasons for this is that fully overlapped peaks usually cannot be handled by routine structure determination programs. This shortcoming is not present in the Crystal Structure Determination (CSD) package which accepts intensities from powder diagrams as well as single crystal data. In order to demonstrate the possibilities of the CSD package, powder diagrams of five substances with already known crystal structure were collected and evaluated with the CSD package. The samples were scheelite (CaWO4), pentaerythritol (C(CH2OH)4), sodium sulfite (Na2SO3), copper sulfate pentahydrate (CuSO4.5H2O) and silver germanium phosphide (Ag6Ge10P12) and showed problems typical for powder work like preferred orientation and heavy peak overlapping. For four of the samples, correct atomic positions for some atoms could be found from the automatic MULTAN solution, which were then used in subsequent least squares- and difference Fourier calculations to locate the remaining atoms. Surprisingly, the cubic Ag6Ge10P12 posed the most problems for the structure solution although one third of the observed intensities was single-indexed and the final R-value was as low as 4%. (orig.)

  17. Effective Method for Determining Environmental Loads on Supporting Structures for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Dymarski Paweł

    2016-01-01

    Full Text Available This paper presents a description of an effective method for determining loads due to waves and current acting on the supporting structures of the offshore wind turbines. This method is dedicated to the structures consisting of the cylindrical or conical elements as well as (truncates pyramids of polygon with a large number of sides (8 or more. The presented computational method is based on the Morison equation, which was originally developed only for cylindrically shaped structures. The new algorithm shown here uses the coefficients of inertia and drag forces that were calculated for non-cylindrical shapes. The analysed structure consists of segments which are truncated pyramids on the basis of a hex decagon. The inertia coefficients, CM, and drag coefficients, CD, were determined using RANSE-CFD calculations. The CFD simulations were performed for a specific range of variation of the period, and for a certain range of amplitudes of the velocity. In addition, the analysis of influence of the surface roughness on the inertia and drag coefficients was performed. In the next step, the computations of sea wave, current and wind load on supporting structure for the fifty-year storm were carried out. The simulations were performed in the time domain and as a result the function of forces distribution along the construction elements was obtained. The most unfavourable distribution of forces will be used, to analyse the strength of the structure, as the design load.

  18. Competition between intermolecular interaction and configuration entropy as the structure-determining factor for inclusion compounds

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, O.; Belosludov, V.; Adamova, T. [Russian Academy of Science, Novosibirsk (Russian Federation). Nikolaev Inst. of Inorganic Chemistry; Belosludov, R.; Kawazoe, Y. [Tohoku Univ., Aoba-ku, Sendai (Japan). Inst. for Materials Research; Kudoh, J.I. [Tohoku Univ., Aoba-ku, Sendai (Japan). Center for Northeast Asia Studies

    2008-07-01

    This paper presented a newly developed method to accurately predict the thermodynamic properties of clathrate hydrates, particularly their structural phase transitions under pressure. The method is based on the theory of Van-der-Waals and Platteeuw with some modifications that include the influence of guest molecules on the host lattice. The model was used to explain the exception from the established rule that small guest molecules form structure s1 and large molecules form structure s2 hydrates. In this study, the thermodynamic properties of argon (Ar) hydrate and methane hydrate, each in both cubic structure s1 and s2 were modelled. The model showed that two competing factors play a role in the formation of inclusions, notably the intermolecular interaction of guest molecules with water molecules, and the configuration entropy. Competition of these 2 factors determines the structure of hydrate formed at different pressures. The model provides an accurate description of the thermodynamic properties of gas hydrates and how they behave under pressure. For the argon hydrates, the structural phase transition from structure s2 to s1 at high pressure was predicted, while methane hydrates were predicted to be metastable in the s2 structure. The model can be used for other inclusion compounds with the same type of composition such as clathrate silicon, zeolites, and inclusion compounds of semiconductor elements. 17 refs., 5 figs.

  19. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions

    International Nuclear Information System (INIS)

    We describe the role of the BioMagResBank (BMRB) within the Worldwide Protein Data Bank (wwPDB) and recent policies affecting the deposition of biomolecular NMR data. All PDB depositions of structures based on NMR data must now be accompanied by experimental restraints. A scheme has been devised that allows depositors to specify a representative structure and to define residues within that structure found experimentally to be largely unstructured. The BMRB now accepts coordinate sets representing three-dimensional structural models based on experimental NMR data of molecules of biological interest that fall outside the guidelines of the Protein Data Bank (i.e., the molecule is a peptide with 23 or fewer residues, a polynucleotide with 3 or fewer residues, a polysaccharide with 3 or fewer sugar residues, or a natural product), provided that the coordinates are accompanied by representation of the covalent structure of the molecule (atom connectivity), assigned NMR chemical shifts, and the structural restraints used in generating model. The BMRB now contains an archive of NMR data for metabolites and other small molecules found in biological systems

  20. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    Science.gov (United States)

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO.

  1. Determining the Velocity Fine Structure by a Laser Anemometer in VAD operation

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mikkelsen, Torben

    The theoretical basis for determining the dissipation ε, by measuring the velocity structure function with a CW-laser anemometer has been derived in the case of calm wind conditions. If there is a well defined mean wind speed the structure function can be obtained by having the laser beam pointing....... Then it is necessary to “create” a mean wind by turning the laser beam. Since the instrument is not moved the beam will describe a cone which could be a VAD-scanning. In any case the measured velocity components will not be parallel and this implies that the measured structure function will contain a...... term which is proportional to the total variance. The theoretical expression for the line-filtered structure function is derived in two equivalent ways, one in physical space and one in wave-number space, of which the last can be reliably evaluated by numerical integration. Also a practical approximate...

  2. Crystal structure determination of alkaline haemorrhagin AaHⅢ from snake venom of Agkistrodon acutus

    Institute of Scientific and Technical Information of China (English)

    龚为民; 滕脉坤; 牛立文

    1997-01-01

    The haemorrhagin AaH Ⅲ isolated from the snake venom of Agkistrodon acutus is one of the few al-kaline ones in snake venoms. Its crystals belong to space group P212121 with a = 9. 573 4 nm, b = 4. 996 7 nm and c = 4. 728 8 nm. Its crystal structure was determined by the molecular replacement method according to the model of metalloproteinase Adamalysin n from eastern rattlesnake venom. The AaHⅢ structure has been refined by PROLSQ. The final R factor was 0.254 and the RMS deviations of bond lengths and angles were 0. 001 8 nm and 1.5°. The structure comparison suggested that AaHⅢ has a similar structure to other snake venom zinc-metalloproteinases. They all belong to matrix metalloproteinases super-family.

  3. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    Science.gov (United States)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  4. The Determination of Stress State of Structures Considering Sequence of Construction and Load Application

    Directory of Open Access Journals (Sweden)

    Kuroedov Vladimir

    2016-01-01

    Full Text Available For more accurate calculation of structure it is required to apply loads in the process of its construction instead of load application after structure has taken its final form. This action is necessary in order to observe changes in the stress-strain state of the structure under study. This circumstance is important for the massive hydraulic structures, such as hydroelectric dams. It is required to determine tensions, deformations and displacements in solving the building-up tasks. It is necessary to consider the problem for constructions of linear and nonlinear materials and check the principle of superposition on which the method of solving nonlinear problems is based. Also it is necessary to consider the solution of finite element schemes with the help of various iterative methods, such as the method of additional loads and the method of variable.

  5. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    Science.gov (United States)

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  6. Experimental and theoretical aspects of ab initio structure determination using powder diffraction techniques

    International Nuclear Information System (INIS)

    Neutron powder diffraction has, over the past two decades, developed into a powerful technique for the refinement of moderately complex crystal structures. The advent of a new generation of ultra-high resolution X-ray and neutron powder diffractometers, however, not only permits the refinement of more complex materials but also opens up new areas of research. Perhaps the most exciting development in powder diffraction techniques associated with high resolution is the ab initio determination of crystal structures. This has until recently been possible, in a routine way, only by single crystal studies. The compression of three dimensions of diffraction data to the one dimension of a powder diffraction pattern leads to an unavoidable loss of information. For many, but not all, crystal symmetries high resolution minimises this loss thus allowing the intensities of a sufficient number of resolved Bragg reflections from moderately complex materials to be extracted for use in structure solution by direct methods of phase determination and by Patterson methods. Recent structure determination using the high resolution powder diffractometer, HRPD, at ISIS will be presented. The inherent limitations resulting from crystal and instrumental resolution are discussed along with maximum entropy techniques that seek to optimise the information content of a powder diffraction pattern. (author) 36 refs., 1 fig., 3 tabs

  7. Using Nature's "Tricks" To Rationally Tune the Binding Properties of Biomolecular Receptors.

    Science.gov (United States)

    Ricci, Francesco; Vallée-Bélisle, Alexis; Simon, Anna J; Porchetta, Alessandro; Plaxco, Kevin W

    2016-09-20

    The biosensor community has long focused on achieving the lowest possible detection limits, with specificity (the ability to differentiate between closely similar target molecules) and sensitivity (the ability to differentiate between closely similar target concentrations) largely being relegated to secondary considerations and solved by the inclusion of cumbersome washing and dilution steps or via careful control experimental conditions. Nature, in contrast, cannot afford the luxury of washing and dilution steps, nor can she arbitrarily change the conditions (temperature, pH, ionic strength) under which binding occurs in the homeostatically maintained environment within the cell. This forces evolution to focus at least as much effort on achieving optimal sensitivity and specificity as on achieving low detection limits, leading to the "invention" of a number of mechanisms, such as allostery and cooperativity, by which the useful dynamic range of receptors can be tuned, extended, narrowed, or otherwise optimized by design, rather than by sample manipulation. As the use of biomolecular receptors in artificial technologies matures (i.e., moves away from multistep, laboratory-bound processes and toward, for example, systems supporting continuous in vivo measurement) and these technologies begin to mimic the reagentless single-step convenience of naturally occurring chemoperception systems, the ability to artificially design receptors of enhanced sensitivity and specificity will likely also grow in importance. Thus motivated, we have begun to explore the adaptation of nature's solutions to these problems to the biomolecular receptors often employed in artificial biotechnologies. Using the population-shift mechanism, for example, we have generated nested sets of receptors and allosteric inhibitors that greatly expanded the normally limited (less than 100-fold) useful dynamic range of unmodified molecular and aptamer beacons, enabling the single-step (e.g., dilution

  8. Eddy current measurement system evaluation for corrosion depth determination on cast aluminum aircraft structure

    Science.gov (United States)

    Singh, Surendra; Greving, Dan; Kinney, Andy; Vensel, Fred; Ohm, Jim; Peeler, Mike

    2013-01-01

    An eddy current (EC) technique was developed to determine the corrosion depth on a bare flange face of a cast aluminum A356-T6 aircraft engine structure. The EC response and the corrosion depths determined through metallurgical cross sections were used to develop an empirical relation between EC response and depth. The EC technique and depth determination are used to inspect the engine structures during overhaul to determine if they are fit for continued service. An accurate and reliable Non-Destructive Inspection is required to ensure that structures returned to service are safe for continued operation. NDE system reliability demonstrations of the eddy current technique are traditionally reported in terms of Probability of Detection (POD) data using MIL-HDBK-1823A. However, the calculation of POD data is based on a simple linear predictive model that is valid only if certain criteria are met. These are: 1) NDE system response is measurable (i.e. continuous data), 2) Flaw size is known and measurable (i.e. continuous data), 3) relationship between the NDE system response and flaw size is linear (or linear on a log scale), 4) variation in measured responseresponse around a predicted response for a given flaw size is normally distributed, 5) the variation around the predicted response is constant (i.e. variation does not change with flaw size), and 6) inherent variability in the NDE system is known and fully understood. In this work, a Measurement System Evaluation (MSE) of the Eddy Current System was used to address some of these concerns. This work was completed on two aircraft structures having varying corrosion depths. The data were acquired in a random manner at fifty regions of interests (ROIs). Three operators participated in this study, and each operator measured Eddy Current response three times in each ROI. In total, there were four hundred and fifty data points collected. Following this, the two structures were sectioned for measuring corrosion depth. The

  9. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  10. Computational Approaches for determination of Most Probable RNA Secondary Structure Using Different Thermodynamics Parameters

    Directory of Open Access Journals (Sweden)

    Binod Kumar,

    2010-03-01

    Full Text Available Many bioinformatics studies require the analysis of RNA structures. More specifically, extensive work is done to elaborate efficient algorithms able to predict the 2-D folding structures of RNA. The core of RNA structure is a dynamic programming algorithm to predict RNA secondary structures from sequence based on the principle of minimizing free energy. In this paper the thermodynamic data have been used for RNA predictions. In this paper the free energy inimization and the partition function code has been used to predictinternal loops of any size in O (N3 time. The free energy table for multibranch loops has been used by Dynalign. Base pair probabilities have been determined by the partition function calculation. Parameters controlling the prediction of suboptimal structures are Max % Energy Difference and Max Number of Structures. The foldmodule provides the basic implementation of RNA secondary structure prediction. A Dynalign dot plot, a separate dot plot is generated foreach of the two sequences involved. OligoScreen calculates the unimolecular and bimolecular folding free energies for a set of RNA oligonucleotides.

  11. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes.

    Science.gov (United States)

    Goh, Boon Chong; Hadden, Jodi A; Bernardi, Rafael C; Singharoy, Abhishek; McGreevy, Ryan; Rudack, Till; Cassidy, C Keith; Schulten, Klaus

    2016-07-01

    The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed. PMID:27145875

  12. Are the Crystal Structures of Enantiopure and Racemic Mandelic Acids Determined by Kinetics or Thermodynamics?

    Science.gov (United States)

    Hylton, Rebecca K; Tizzard, Graham J; Threlfall, Terence L; Ellis, Amy L; Coles, Simon J; Seaton, Colin C; Schulze, Eric; Lorenz, Heike; Seidel-Morgenstern, Andreas; Stein, Matthias; Price, Sarah L

    2015-09-01

    Mandelic acids are prototypic chiral molecules where the sensitivity of crystallized forms (enantiopure/racemic compound/polymorphs) to both conditions and substituents provides a new insight into the factors that may allow chiral separation by crystallization. The determination of a significant number of single crystal structures allows the analysis of 13 enantiopure and 30 racemic crystal structures of 21 (F/Cl/Br/CH3/CH3O) substituted mandelic acid derivatives. There are some common phenyl packing motifs between some groups of racemic and enantiopure structures, although they show very different hydrogen-bonding motifs. The computed crystal energy landscape of 3-chloromandelic acid, which has at least two enantiopure and three racemic crystal polymorphs, reveals that there are many more possible structures, some of which are predicted to be thermodynamically more favorable as well as slightly denser than the known forms. Simulations of mandelic acid dimers in isolation, water, and toluene do not differentiate between racemic and enantiopure dimers and also suggest that the phenyl ring interactions play a major role in the crystallization mechanism. The observed crystallization behavior of mandelic acids does not correspond to any simple "crystal engineering rules" as there is a range of thermodynamically feasible structures with no distinction between the enantiopure and racemic forms. Nucleation and crystallization appear to be determined by the kinetics of crystal growth with a statistical bias, but the diversity of the mandelic acid crystallization behavior demonstrates that the factors that influence the kinetics of crystal nucleation and growth are not yet adequately understood.

  13. Computational tools for experimental determination and theoretical prediction of protein structure

    Energy Technology Data Exchange (ETDEWEB)

    O`Donoghue, S.; Rost, B.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  14. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination

    International Nuclear Information System (INIS)

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10-5 SI units and can generate magnetic susceptibility maps with 4 x 4 mm2 pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends

  15. A Dynamic Analysis of Capital Structure Determinants. Empirical Results for Romanian Capital Market

    Directory of Open Access Journals (Sweden)

    Mihaela Dragota

    2008-04-01

    Full Text Available The analysis of capital structure and its determinants represents an useful approach for the Romanian and foreign investors and for the companies, at the same time. The main conclusion for capital structure analysis was that Romanian listed companies sustained their assets, in this order, on equity, commercial debt and, finally, on financial debt. The four variables used in the regression model are significant. The pecking order theory seemed to be more appropriate for the Romanian capital market, but the signalling theory was not entirely rejected.

  16. Structure Determination of the Nuclear Pore Complex with Three-Dimensional Cryo electron Microscopy.

    Science.gov (United States)

    von Appen, Alexander; Beck, Martin

    2016-05-22

    Determining the structure of the nuclear pore complex (NPC) imposes an enormous challenge due to its size, intricate composition and membrane-embedded nature. In vertebrates, about 1000 protein building blocks assemble into a 110-MDa complex that fuses the inner and outer membranes of a cell's nucleus. Here, we review the recent progress in understanding the in situ architecture of the NPC with a specific focus on approaches using three-dimensional cryo electron microscopy. We discuss technological benefits and limitations and give an outlook toward obtaining a high-resolution structure of the NPC. PMID:26791760

  17. Determinants of Capital Structure:Evidence from UK Firm Panel Data

    OpenAIRE

    Song, Ping

    2015-01-01

    This study investigates the factors that determine firms’ the capital structures in the UK market. There 139 firms, in total, listed on FTSE 100 and FTSE 250 have been used as the sample set, and a 10-year time scale, from 2004 to 2013, is selected to constitute the panel data. Both firm-specific and macroeconomic determinants are included to be investigated whether they would pose impacts on total, long term and short term debt issuance. The fixed effects regression model is adopted to estim...

  18. Advancement and testing of analysis techniques for the determination of the structural dynamic behavior of containment structures. Final report

    International Nuclear Information System (INIS)

    Within the framework of project RS1197, analysis methods have been further developed and tested for the determination of the structural dynamic loading and the maximum load-bearing capacity of containment structures with a focus on the quantification of safety margins against failures due to loads resulting from selected internal and external hazards. The analyses comprised a model containment structure of prestressed reinforced concrete under internal pressure loading until reaching failure pressure, an outer containment structure made of reinforced concrete under local impact loads that may occur during a targeted aircraft crash, and a steel containment under local peak loads from internal pressure and temperature loads due to core melt scenarios with a local hydrogen combustion. GRS participated in the international ''Standard Problem Exercise 3'' on the issue ''Performance of Containment Vessel under Severe Accident Conditions''. Together with the cooperation partners, aspects of the global containment behaviour were considered based on the example of the Sandia 1:4 model containment of prestressed concrete, which was loaded by rising internal pressure until failure. Complex analysis models were developed, calculating the behaviour of the prestressing tendons under consideration of the frictional contact with the cladding tubes. Compared with corresponding measurement values, the analysis results show that the stresses near the tensioning device and the deformation of the inner surface can be realistically modelled as a function of the internal pressure. In the experiment, global structural failure of the containment model was caused by tendon rupture at about 3.64 times the design pressure. With the developed analysis models of a generic structure of an outer reinforced concrete containment, simulations were carried out for various aircraft crash scenarios as contact problems with explicit impactor simulation. For this

  19. From X - rays to Biomolecular Structure: D. Hodgkin, R. Franklin and A. Yonath [Dos Raios - X à Estrutura Biomolecular: D. Hodgkin, R. Franklin e A. Yonath

    Directory of Open Access Journals (Sweden)

    Raquel Gonçalves - Maia

    2012-10-01

    Full Text Available Following the discovery of X-rays by Wilhelm Röntgen and Max von Laue’s discovery of X-ray diffraction by crystals, William and Lawrence Bragg made it possible to calculate the positions of the atoms within a crystal from the way in which an X-ray beam is diffracted by a crystal lattice. Since then, several researchers have applied this powerful technique in the study of many molecules of life, such as proteins, vitamins and hormones. In this interdisciplinary field, two women played a very important role, viz. Dorothy Hodgkin (Nobel Prize, 1964 and Rosalind Franklin. Nowadays, Ada Yonath (Nobel Prize, 2009 follows a similar line of research. We will emphasize the extraordinary work of these scientists.

  20. Residual dipolar coupling constants and structure determination of large DNA duplexes

    Energy Technology Data Exchange (ETDEWEB)

    Mauffret, Olivier; Tevanian, Georges; Fermandjian, Serge [Institut Gustave-Roussy, Departement de Biologie et Pharmacologie Structurales (France)], E-mail: sfermand@igr.fr

    2002-12-15

    Several NMR works have shown that long-range information provided by residual dipolar couplings (RDCs) significantly improve the global structure definition of RNAs and DNAs. Most of these are based on the use of a large set of RDCs, the collect of which requires samples labeled with {sup 13}C, {sup 15}N, and sometimes, {sup 2}H. Here, we carried out torsion-angle dynamics simulations on a non-self complementary DNA fragment of 17 base-pairs, d(GGAAAATATCTAGCAGT).(ACTGCTAGAGATTTTCC). This reproduces the U5 LTR distal end of the HIV-1 cDNA that contains the enzyme integrase binding site. Simulations aimed at evaluating the impact of RDCs on the structure definition of long oligonucleotides, were performed in incorporating (i) nOe-distances at both < 4.5 A and < 5 A; (ii) a small set of {sup 13}C-{sup 1}H RDCs, easily detectable at the natural abundance, and (iii) a larger set of RDCs only accessible through the {sup 13}C labeling of DNAs. Agreement between a target structure and a simulated structure was measured in terms of precision and accuracy. Results allowed to define conditions in which accurate DNA structures can be determined. We confirmed the strong impact of RDCs on the structure determination, and, above all, we found that a small set of RDC constraints (ca. 50) detectable at the natural abundance is sufficient to accurately derive the global and local DNA duplex structures when used in conjunction with nOe-distances < 5 A.

  1. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  2. Statically determined structures: tension between classical and modern design--an engineering approach

    Science.gov (United States)

    Kappelhof, J. P.; Nijenhuis, Jan R.

    2003-10-01

    The two most important characteristics of mechanical structures used in space or astronomy are accuracy and stability. Much time, money and energy is invested in achieving this. However because the resources are limited it is important to realize that the cost of an instrument is mainly fixed during the design process. Three factors can influence the design to a great extend which are: creativity, design rules and analysis. The most important tool for analysis nowadays is the computer. This one has become so powerful that even large structures are no problem to model in detail in FEM. It is even tempting to spend much time and effort in optimizing structures with the computer. However the basis for the best result is creativity during the design phase and the application of design rules. Although design rules are used extensively it is surprising to see that one of the most important ones is so little used. This lecture is therefore especially about the rule to make structures static determined. The importance can be invaluable because in applying this rule there is no need for computers. Furthermore the application often results in non-conventional structures and it helps to clearly define the basics of the structure. It also provides simple qualitative results that help to make decisions concerning alternatives. Results of computer models can be verified on their validity. Some interesting results of the application of this design rule will be shown. Examples are the linear guiding system for the VLTI delay line and the mount of mirrors. Also existing structures like e.g. the secondary mirror mount of the VLT will be analysed and it will be shown how they could have looked like when they would have been static determined.

  3. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer

    Science.gov (United States)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2016-01-01

    Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique.

  4. Serendipitous crystallization and structure determination of cyanase (CynS) from Serratia proteamaculans.

    Science.gov (United States)

    Butryn, Agata; Stoehr, Gabriele; Linke-Winnebeck, Christian; Hopfner, Karl Peter

    2015-04-01

    Cyanate hydratase (CynS) catalyzes the decomposition of cyanate and bicarbonate into ammonia and carbon dioxide. Here, the serendipitous crystallization of CynS from Serratia proteamaculans (SpCynS) is reported. SpCynS was crystallized as an impurity and its identity was determined using mass-spectrometric analysis. The crystals belonged to space group P1 and diffracted to 2.1 Å resolution. The overall structure of SpCynS is very similar to a previously determined structure of CynS from Escherichia coli. Density for a ligand bound to the SpCynS active site was observed, but could not be unambiguously identified. Additionally, glycerol molecules bound at the entry to the active site of the enzyme indicate conserved residues that might be important for the trafficking of substrates and products.

  5. Evidence against the continuum structure underlying motivation measures derived from self-determination theory.

    Science.gov (United States)

    Chemolli, Emanuela; Gagné, Marylène

    2014-06-01

    Self-determination theory (SDT) proposes a multidimensional conceptualization of motivation in which the different regulations are said to fall along a continuum of self-determination. The continuum has been used as a basis for using a relative autonomy index as a means to create motivational scores. Rasch analysis was used to verify the continuum structure of the Multidimensional Work Motivation Scale and of the Academic Motivation Scale. We discuss the concept of continuum against SDT's conceptualization of motivation and argue against the use of the relative autonomy index on the grounds that evidence for a continuum structure underlying the regulations is weak and because the index is statistically problematic. We suggest exploiting the full richness of SDT's multidimensional conceptualization of motivation through the use of alternative scoring methods when investigating motivational dynamics across life domains.

  6. Heuristic Optimization Techniques for Determining Optimal Reserve Structure of Power Generating Systems

    DEFF Research Database (Denmark)

    Ding, Yi; Goel, Lalit; Wang, Peng;

    2012-01-01

    Electric power generating systems are typical examples of multi-state systems (MSS). Sufficient reserve is critically important for maintaining generating system reliabilities. The reliability of a system can be increased by increasing the reserve capacity, noting that at the same time the reserve...... cost of the system will also increase. The reserve structure of a MSS should be determined based on striking a balance between the required reliability and the reserve cost. The objective of reserve management for a MSS is to schedule the reserve at the minimum system reserve cost while maintaining...... optimization has been used to determine the optimal reserve structure for power generating systems, which can greatly improve the computational efficiency. The computational efficiency and accuracy of the proposed method have been compared with those of the GA technique in the illustrative example....

  7. Crystallization and X-ray structure determination of a thermoalkalophilic lipase from Geobacillus SBS-4S

    International Nuclear Information System (INIS)

    Crystallization and the structure determination at 1.6 Å resolution of LIPSBS, a thermoalkalophilic lipase from Geobacillus strain SBS-4S, are described. The crystals belonged to orthorhombic space group P212121. A thermoalkalophilic lipase (LIPSBS) from the newly isolated Geobacillus strain SBS-4S which hydrolyzes a wide range of fatty acids has been characterized. In the present study, the crystallization of purified LIPSBS using the sitting-drop vapour-diffusion method and its X-ray diffraction studies are described. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 55.13, b = 71.75, c = 126.26 Å. The structure was determined at 1.6 Å resolution by the molecular-replacement method using the lipase from G. stearothermophilus L1 as a model

  8. New insights into structural determinants of prion protein folding and stability.

    Science.gov (United States)

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  9. Neutron diffraction stress determination in W-laminates for structural divertor applications

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2015-07-01

    Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.

  10. Structural determination and physical properties of 4d transitional metal diborides by first-principles calculations

    Science.gov (United States)

    Ying, Chun; Zhao, Erjun; Lin, Lin; Hou, Qingyu

    2014-10-01

    The structural determination, thermodynamic, mechanical, dynamic and electronic properties of 4d transitional metal diborides MB2 (M = Y-Ag) are systematically investigated by first-principles within the density functional theory (DFT). For each diboride, five structures are considered, i.e. AlB2-, ReB2-, OsB2-, MoB2- and WB2-type structures. The calculated lattice parameters are in good agreement with the previously theoretical and experimental studies. The formation enthalpy increases from YB2 to AgB2 in AlB2-type structure (similar to MoB2- and WB2-type). While the formation enthalpy decreases from YB2 to MoB2, reached minimum value to TcB2, and then increases gradually in ReB2-type structure (similar to OsB2-type), which is consistent with the results of the calculated density of states. The structural stability of these materials relates mainly on electronegative of metals, boron structure and bond characters. Among the considered structures, TcB2-ReB2 (TcB2-ReB2 represents TcB2 in ReB2-type structure, the same hereinafter) has the largest shear modulus (248 GPa), and is the hardest compound. The number of electrons transferred from metals to boron atoms and the calculated densities of states (DOS) indicate that each diboride is a complex mixture of metallic, ionic and covalent characteristics. Trends are discussed.

  11. Effect of temperature and magnetic field on the photocurrent response of biomolecular bulk-hetero junction

    Science.gov (United States)

    Tajima, Hiroyuki; Sekiguchi, Yusuke; Matsuda, Masaki

    2012-02-01

    The photocurrent responses were investigated for the biomolecular bulk-hetero junction of chlorophyll α (Chl-α) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-1-phenyl-(6,6)C61 (PCBM) in the temperature range between 300 K and 1.5 K under the magnetic field up to 8 T. The chopped-light photocurrent decreases on lowering the temperature. Below 10 K, photocurrent decrease was observed under the applied magnetic field. Decay of the photocurrent observed at 10 K was ascribed to the formation of the charged trap under light irradiation. The magnetic field effect (MFE) observed in this device was found to be very similar to that observed in P3HT:PCBM bulk-hetero junction at low temperatures.

  12. A Review of Salam Phase Transition in Protein Amino Acids Implication for Biomolecular Homochirality

    CERN Document Server

    Bai, F; Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis aroused suspicion. This paper is aimed to provide direct experimental evidence of a phase transition in alanine, valine single crystals but deny the configuration change of D- to L- enantiomers. New views on Salam phase transition are presented to revalidate its great importance in the origin of homochirality.

  13. Settlement specifics: Effective induction of abalone settlement and metamorphosis corresponds to biomolecular composition of natural cues.

    Science.gov (United States)

    Williams, Elizabeth A; Cummins, Scott; Degnan, Sandie M

    2009-07-01

    Chemical signaling plays a major role in shaping life history processes that drive ecology and evolution in marine systems, notably including habitat selection by marine invertebrate larvae that must settle out of the plankton onto the benthos.1 For larvae, the identification of appropriate habitats in which to settle and undergo metamorphosis to the adult form relies heavily on the recognition of cues indicative of a favorable environment. By documenting settlement responses of larvae of the tropical abalone, Haliotis asinina, to a range of coralline algae species, we recently highlighted the species-specific nature of this interaction.2 Here, we demonstrate that this specificity is likely driven by chemical, rather than physical, properties of the algae. Our initial characterization of the surface cell biomarkers from three different algal species shows that inductive cue biomolecular composition correlates with variations in larval settlement response.

  14. Biomolecular ion detection using high-temperature superconducting MgB2 strips

    Science.gov (United States)

    Zen, N.; Shibata, H.; Mawatari, Y.; Koike, M.; Ohkubo, M.

    2015-06-01

    Superconducting strip ion detectors (SSIDs) are promising for realization of ideal ion detection with 100% efficiency and nanosecond-scale time response in time-of-flight mass spectrometry. We have detected single biomolecular ions in the keV range using a 10-nm-thick and 250-nm-wide strip of a high temperature superconductor, magnesium diboride (MgB2), at temperatures of up to 13 K. The output pulse shape is explained remarkably well using circuit simulations and time-dependent Ginzburg-Landau simulations coupled with a heat diffusion equation. The simulations show that the hot spot model is applicable to the proposed MgB2-SSIDs and the normal region expansion is completed within 16 ps, which corresponds to a maximum length of 1010 nm.

  15. Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic

    CERN Document Server

    Privman, Vladimir; Arugula, Mary A; Melnikov, Dmitriy; Bocharova, Vera; Katz, Evgeny

    2010-01-01

    The first realization of a designed, rather than natural, biochemical filter process is reported and analyzed as a promising network component for increasing the complexity of biomolecular logic systems. Key challenge in biochemical logic research has been achieving scalability for complex network designs. Various logic gates have been realized, but a "toolbox" of analog elements for interconnectivity and signal processing has remained elusive. Filters are important as network elements that allow control of noise in signal transmission and conversion. We report a versatile biochemical filtering mechanism designed to have sigmoidal response in combination with signal-conversion process. Horseradish peroxidase-catalyzed oxidation of chromogenic electron donor by hydrogen peroxide, was altered by adding ascorbate, allowing to selectively suppress the output signal, modifying the response from convex to sigmoidal. A kinetic model was developed for evaluation of the quality of filtering. The results offer improved...

  16. A program to calculate non-bonded interaction energy in biomolecular aggregates.

    Science.gov (United States)

    Sundaram, K; Prasad, C V

    1982-02-01

    This paper describes a program to calculate intermolecular as well as intramolecular electronic potential energy resulting from non-bonded interactions. The underlying theory is obtained by the application of Rayleigh-Schroedinger perturbation theory to non-overlap regions of a molecular system. The rigorous theoretical expressions for the energy terms are simplified by approximations consistent with those commonly employed in semi-empirical molecular orbital theories. The program is particularly suited for the study of biomolecular assemblies, and in situations where insight into contributions to total energy from various component interaction types is desired. The inclusion of the non-additive dispersion effects in this approach makes it especially interesting for the study of cooperative phenomena in the light of a recent finding [1]. PMID:7067416

  17. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    Science.gov (United States)

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  18. THE INTERNATIONALISATION OF PRODUCTION BY ITALIAN INDUSTRIAL DISTRICTS' FIRMS. STRUCTURAL AND BEHAVIOURAL DETERMINANTS

    OpenAIRE

    Mariotti, Sergio; Mutinelli, Marco; Piscitello, Lucia

    2008-01-01

    International audience The paper argues that structural and behavioural determinants combine to influence internationalisation of production through FDI by industrial districts' firms. As far as the former, leadership effects, represented by the presence of large firms within the district, and Porterian effects, denoted by the intensity of domestic rivalry, positively influence the likelihood that district firms will start internationalise through FDI. Moreover, spillovers induced by the p...

  19. The Internationalization of Production by Italian Industrial Districts' Firms: Structural and Behavioural Determinants

    OpenAIRE

    Mariotti, Sergio; Mutinelli, Marco; Piscitello, Lucia

    2008-01-01

    Abstract The paper argues that structural and behavioural determinants combine to influence internationalisation of production through FDI by industrial districts? firms. As far as the former, leadership effects, represented by the presence of large firms within the district, and Porterian effects, denoted by the intensity of domestic rivalry, positively influence the likelihood that district firms will start internationalise through FDI. Moreover, spillovers induced by the presenc...

  20. Structural Determinants of the Total Loans Volume in the Czech Republic

    OpenAIRE

    Řepková, Iveta

    2010-01-01

    The aim of this paper is to analyze the structural determinants of the total loans volume in the Czech banking sector. Analysis of five selected characteristics is realized in period 2000-2008. It used the OLS regression analysis for estimate of model. The regression analysis showed that the concentration of the credit market and the profitability calculated as the return on assets (ROA) has positive impact to total loans and the quality of portfolio has negative impact to total loans. If the...

  1. Determinants of Capital Structure: A case from Textile Industry of Pakistan

    OpenAIRE

    Aurangzeb; Anwar ul Haq

    2012-01-01

    This study examines the determinants of capital structure in Textile industry of Pakistan on a data for the period of 2004 to 2009. Multiple regression technique is used to analyze the relationship between dependent variable (Leverage) and independent variables (Firm Size, Tangibility of Assets, Profitability, and Sales Growth). It is concluded all independent variables have significant impact on the balance of leverage. It is concludes that firm size, tangibility of assets and profitability ...

  2. High-resolution structure determination by continuous rotation data collection in MicroED

    OpenAIRE

    Nannenga, Brent L; Shi, Dan; Leslie, Andrew G W; Gonen, Tamir

    2014-01-01

    MicroED uses very small three-dimensional protein crystals and electron diffraction for structure determination. An improved data collection protocol for MicroED called “continuous rotation” is presented. Here microcrystals are continuously rotated during data collection yielding improved data, and allowing data processing with MOSFLM resulting in improved resolution for the model protein lysozyme. These improvements pave the way for the implementation and application of MicroED with wide app...

  3. Determinants of capital structure: Evidence from UK listed firm panel data

    OpenAIRE

    Wang, Zicong

    2012-01-01

    This paper follows many previous empirical researches, identifying and finding the determinants of capital structure of UK-listed firms. It chooses indicators for each explanatory variable and apply regression model to obtain the qualitative results, and then analyse them. Each research always gets its own results. This paper tends to find its results in the recent years and compare it with previous paper. 200 UK-listed companies in the period of 2001 to 2011 are investigated. Capital structu...

  4. Crystal structure determination of thymoquinone by high-resolution X-ray powder diffraction

    OpenAIRE

    Pagola, S.; Benavente, A; Raschi, A.; Romano, E; Molina, M. A. A.; Stephens, P.W.

    2004-01-01

    The crystal structure of 2-isopropyl-5-methyl-1,4-benzoquinone (thymoquinone) and its thermal behavior—as necessary physical and chemical properties—were determined in order to enhance the current understanding of thymoquinone chemical action by using high resolution x-ray powder diffraction, Fourier transform infrared spectroscopy (FTIR), and 3 thermo-analytical techniques thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The ...

  5. Purification and Primary Structure Determination of a Novel Polypeptide Isolated from Mistletoe Viscum coloratum

    Institute of Scientific and Technical Information of China (English)

    Jing Lin KONG; Xiu Bao DU; Chong Xu FAN; Ying CAO; Hui JIANG; Jian Fu XU; Xiao Jun ZHENG

    2004-01-01

    A novel polypeptide was isolated from mistletoe Viscum coloratum. The primary structure of the polypeptide 'named viscotoxin B2' was determined to be KSCCKNTTGRNIYNT CRFAGGSRERCAKLSGCKIISASTCPSDYPK by Edman degradation. Viscotoxin B2 shared high sequence homology with viscotoxins isolated from Viscum album. Pharmacological experiments showed that viscotoxin B2 had distinct cytotoxic activity on tumor cells. Viscotoxin B2 could be used as a leading compound in cancer therapy.

  6. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    Science.gov (United States)

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-01

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  7. Calibration of a Computation Model for a Reinforced Concrete Structure Against the Experimentally Determined Dynamic Characteristics

    OpenAIRE

    Gavriloaia, Constantin; Budescu, Mihai; Ţăranu, Nicolae; Hohan, Raluca

    2013-01-01

    The dynamic characteristics of the structures range are depending on their mass and lateral stiffness. In the present paper a method for improving the computation model is proposed, thus creating a link between the dynamic characteristics obtained with the computation model based on the finite element method and the experimentally determined dynamic characteristics. The finite element model was obtained using the program ETABS and the experimental dynamic characteristics were obtained on a lo...

  8. A pipeline for structure determination of in vivo-grown crystals using in cellulo diffraction

    OpenAIRE

    Boudes, Marion; Garriga, Damià; Fryga, Andrew; Caradoc-Davies, Tom; Coulibaly, Fasséli

    2016-01-01

    While structure determination from micrometre-sized crystals used to represent a challenge, serial X-ray crystallography on microfocus beamlines at synchrotron and free-electron laser facilities greatly facilitates this process today for microcrystals and nanocrystals. In addition to typical microcrystals of purified recombinant protein, these advances have enabled the analysis of microcrystals produced inside living cells. Here, a pipeline where crystals are grown in insect cells, sorted by ...

  9. Three-dimensional structure determination of capsid of Aedes albopicus C6/36 cell densovirus

    Institute of Scientific and Technical Information of China (English)

    CHENG Lingpeng; CHEN Senxiong; Jenifer M.Brannan; Joanita Jakana; ZHANG Qinfen; Z.H.Zhou; ZHANG Jingqiang

    2004-01-01

    The three-dimensional structure of capsid of Aedes albopictus C6/36 densovirus was determined to 14-(A) resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.

  10. On the use of pseudocontact shifts in the structure determination of metalloproteins.

    Science.gov (United States)

    Jensen, Malene Ringkjøbing; Hansen, D Flemming; Ayna, Umit; Dagil, Robert; Hass, Mathias A S; Christensen, Hans E M; Led, Jens J

    2006-03-01

    The utility of pseudocontact shifts in the structure refinement of metalloproteins has been evaluated using a native, paramagnetic Cu(2+) metalloprotein, plastocyanin from Anabaena variabilis (A.v.), as a model protein. First, the possibility of detecting signals of nuclei spatially close to the paramagnetic metal ion is investigated using the WEFT pulse sequence in combination with the conventional TOCSY and (1)H-(15)N HSQC sequences. Second, the importance of the electrical charge of the metal ion for the determination of correct pseudocontact shifts from the obtained chemical shifts is evaluated. Thus, using both the Cu(+) plastocyanin and Cd(2+)-substituted plastocyanin as the diamagnetic references, it is found that the Cd(2+)-substituted protein with the same electrical charge of the metal ion as the paramagnetic Cu(2+) plastocyanin provides the most appropriate diamagnetic reference signals. Third, it is found that reliable pseudocontact shifts cannot be obtained from the chemical shifts of the (15)N nuclei in plastocyanin, most likely because these shifts are highly dependent on even minor differences in the structure of the paramagnetic and diamagnetic proteins. Finally, the quality of the obtained (1)H pseudocontact shifts, as well as the possibility of improving the accuracy of the obtained structure, is demonstrated by incorporating the shifts as restraints in a refinement of the solution structure of A.v. plastocyanin. It is found that incorporation of the pseudocontact shifts enhances the precision of the structure in regions with only few NOE restraints and improves the accuracy of the overall structure.

  11. Oscillation Laue Analysis (OLA) - A new crystal structure determination method for mineral physics

    Science.gov (United States)

    Dera, P.; Downs, R. T.; Liermann, H.; Yang, W.

    2006-12-01

    We present a new approach for collection and interpretation of polychromatic radiation diffraction images, called Oscillation Laue Analysis, which combines capabilities of single crystal X-ray diffraction and X-ray absorption spectroscopy. The method is based on smearing Laue reflections into variable-energy curves by slight oscillation of the crystal during the exposure. The OLA method allows for simple and precise peak energy determination and harmonic overlap deconvolution through measurement of X-ray attenuation coefficient of metal foils inserted into incident beam. The method provides an easy reliable way of determining unit cells of unknown single-crystal phases, yields multiple monochromatic structure factor sets covering wide range of energies, which can be used for Multiple Anomalous Dispersion (MAD) based structure solution or enhancement of contrast between neighboring elements in the periodic table, and allows the routine ab initio solution of unknown structures. The results of our first experiments, performed at sector 16 of the Advanced Photon Source Laboratory, and aimed at determination of the compression mechanism of escolite (Cr2O3) will be presented and discussed in the context of application of the new approach in micromineralogy, characterization of meteoritic samples, and high-pressure mineral physics.

  12. Determining the Structure of Biomaterials Interfaces using Synchrotron-based X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    McBride, M

    2002-01-24

    The purpose of this project is to explore the feasibility of using surface X-ray diffraction (SXRD) to determine the structure of biomineral surfaces in electrolyte solutions and of the adsorbed layer of acidic amino acids that are believed to play a central role in the control of biomineral formation and function. The work is a critical component in the development of an integrated picture of the physical and chemical basis for deposition and dissolution at solid-liquid interfaces in biological systems, and brings a new and very powerful surface-sensitive capability to LLNL. We have chosen as our model systems calcium carbonate and calcium phosphate in aspartic and glutamic acid-bearing solutions. The calcium compounds are ubiquitous among biomineral structures, both those that are beneficial such as bones and teeth, and those that are pathological such as kidney stones, while the two acidic amino acids--both as simple and poly-amino acids--are the dominant constituents of protein mixtures implicated in the control of biomineralization. The goals of the work are: (1) to determine the surface structure of pure calcium phosphate and calcium carbonate surfaces in aqueous solution using SXRD; (2) to determine how those surfaces are modified by the presence of aspartic and glutamic acid, both as the simple amino acids and as poly-aspartate and poly-glutamate and (3) to model the interactions of acidic amino acids with calcite.

  13. Biomolecular Characterization of Diazotrophs Isolated from the Tropical Soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Zulkifli H Shamsuddin

    2013-08-01

    Full Text Available This study was conducted to evaluate selected biomolecular characteristics of rice root-associated diazotrophs isolated from the Tanjong Karang rice irrigation project area of Malaysia. Soil and rice plant samples were collected from seven soil series belonging to order Inceptisol (USDA soil taxonomy. A total of 38 diazotrophs were isolated using a nitrogen-free medium. The biochemical properties of the isolated bacteria, such as nitrogenase activity, indoleacetic acid (IAA production and sugar utilization, were measured. According to a cluster analysis of Jaccard’s similarity coefficients, the genetic similarities among the isolated diazotrophs ranged from 10% to 100%. A dendogram constructed using the unweighted pair-group method with arithmetic mean (UPGMA showed that the isolated diazotrophs clustered into 12 groups. The genomic DNA rep-PCR data were subjected to a principal component analysis, and the first four principal components (PC accounted for 52.46% of the total variation among the 38 diazotrophs. The 10 diazotrophs that tested highly positive in the acetylene reduction assay (ARA were identified as Bacillus spp. (9 diazotrophs and Burkholderia sp. (Sb16 using the partial 16S rRNA gene sequence analysis. In the analysis of the biochemical characteristics, three principal components were accounted for approximately 85% of the total variation among the identified diazotrophs. The examination of root colonization using scanning electron microscopy (SEM and transmission electron microscopy (TEM proved that two of the isolated diazotrophs (Sb16 and Sb26 were able to colonize the surface and interior of rice roots and fixed 22%–24% of the total tissue nitrogen from the atmosphere. In general, the tropical soils (Inceptisols of the Tanjong Karang rice irrigation project area in Malaysia harbor a diverse group of diazotrophs that exhibit a large variation of biomolecular characteristics.

  14. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  15. Graph-theoretical identification of dissociation pathways on free energy landscapes of biomolecular interaction.

    Science.gov (United States)

    Wang, Ling; Stumm, Boris; Helms, Volkhard

    2010-03-01

    Biomolecular association and dissociation reactions take place on complicated interaction free energy landscapes that are still very hard to characterize computationally. For large enough distances, though, it often suffices to consider the six relative translational and rotational degrees of freedom of the two particles treated as rigid bodies. Here, we computed the six-dimensional free energy surface of a dimer of water-soluble alpha-helices by scanning these six degrees of freedom in about one million grid points. In each point, the relative free energy difference was computed as the sum of the polar and nonpolar solvation free energies of the helix dimer and of the intermolecular coulombic interaction energy. The Dijkstra graph algorithm was then applied to search for the lowest cost dissociation pathways based on a weighted, directed graph, where the vertices represent the grid points, the edges connect the grid points and their neighbors, and the weights are the reaction costs between adjacent pairs of grid points. As an example, the configuration of the bound state was chosen as the source node, and the eight corners of the translational cube were chosen as the destination nodes. With the strong electrostatic interaction of the two helices giving rise to a clearly funnel-shaped energy landscape, the eight lowest-energy cost pathways coming from different orientations converge into a well-defined pathway for association. We believe that the methodology presented here will prove useful for identifying low-energy association and dissociation pathways in future studies of complicated free energy landscapes for biomolecular interaction. PMID:19603501

  16. The influence of the stray-light component in determining coronal temperature structures

    Institute of Scientific and Technical Information of China (English)

    HAO Juan; ZHANG Mei

    2009-01-01

    We use a few solar partial eclipse observations made by XRT/Hinode to estimate the influence of stray-light component in determining coronal temperature structures. Our analysis shows that the stray light will largely affect the estimation of coronal temperature and change the estimated temperature structure in one coronal hole region. The stray lights mildly influence the estimated temperatures in one quiet Sun region and do not change the estimated temperature structure. This implies that the influence of stray lights differs from one region to another, and definitely needs to be considered in some regions. Whereas a carefully estimated point-spread-function Is needed to remove the stray light component, our study shows that by a simple approach such as subtracting the average intensity of distant (e.g. >1.4 solar radius) points from the data values, the influence of stray light can be largely removed, at least for the two regions we study here.

  17. IRMA iterative relaxation matrix approach for NMR structure determination application to DNA fragments

    International Nuclear Information System (INIS)

    The subject of this thesis is the structure determination of DNA molecules in solution with the use of NMR. For this purpose a new relaxation matrix approach is introduced. The emphasis is on the interpretation of nuclear Overhauser effects (NOEs) in terms of proton-proton distances and related three dimensional structures. The DNA molecules studied are obligonucleotides, unmodifief as well as modified molecules bu UV radiation. From comparison with unmodified molecules it turned out that UV irradiation scarcely influences the helical structure of the DNA string. At one place of the string a nucleotide is rotated towards the high-ANTI conformation which results in a slight unwinding of the DNA string but sufficient for blocking of the normal reading of genetic information. (H.W.). 456 refs.; 50 figs.; 30 tabs

  18. Low-energy electron diffraction experiment, theory and surface structure determination

    CERN Document Server

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  19. Determination of shape anisotropy in embedded low contrast submonolayer quantum dot structures

    Energy Technology Data Exchange (ETDEWEB)

    Dhomkar, S.; Ji, H.; Kuskovsky, I. L. [Department of Physics, Queens College of CUNY, Queens, New York 11367 (United States); The Graduate Center, CUNY, New York, New York 10016 (United States); Vaxelaire, N.; Noyan, I. C., E-mail: icn2@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Shuvayev, V. [Department of Physics, Queens College of CUNY, Queens, New York 11367 (United States); Tamargo, M. C. [The Graduate Center, CUNY, New York, New York 10016 (United States); Department of Chemistry, City College of New York, New York, New York 10031 (United States)

    2015-12-21

    We describe a procedure for the morphological characterization of hard-to-image submonolayer quantum dot structures. This procedure employs high resolution x-ray diffraction based reciprocal space mapping, accompanied by rigorous diffraction modeling for precise determination of the morphology of submonolayer quantum dots. Our modelling results and experimental data clearly show that the investigated quantum dots are anisotropically elongated along the [110] orientation. Complementary polarization dependent photoluminescence measurements, combined with our previously reported magneto-photoluminescence data, confirm this conclusion. Our formalism enables direct extraction of structural information of complex embedded three-dimensional structures, which, due to their low electron density contrast with respect to the surrounding host matrix, cannot be readily investigated by traditional electron diffraction techniques.

  20. Ab initio structure determination of new compound Ba 3(BO 3)(PO 4)

    Science.gov (United States)

    Ma, H. W.; Liang, J. K.; Wu, L.; Liu, G. Y.; Rao, G. H.; Chen, X. L.

    2004-10-01

    The crystal structure of new compound Ba3BPO7 was determined by ab initio method from high-resolution conventional X-ray powder diffraction data. The Rietveld refinement converged to Rp=5.92%, Rwp=8.87%, Rexp=5.00% with the following details: Hexagonal, space group P63mc, a=5.4898 (1) Å, c=14.7551(1) Å, Z=2. The basic unit of the structure is the [BaO10]-[BO3]-[PO4] polar polyhedra-chain composed of Ba1-B-P-O cluster. These chains, running along c-axis, stack in a HCP mode to build the whole structure with triangular prism channels. The channels are parallel to c-axis too, in which Ba2 and Ba3 are located.

  1. Determination of shape anisotropy in embedded low contrast submonolayer quantum dot structures

    International Nuclear Information System (INIS)

    We describe a procedure for the morphological characterization of hard-to-image submonolayer quantum dot structures. This procedure employs high resolution x-ray diffraction based reciprocal space mapping, accompanied by rigorous diffraction modeling for precise determination of the morphology of submonolayer quantum dots. Our modelling results and experimental data clearly show that the investigated quantum dots are anisotropically elongated along the [110] orientation. Complementary polarization dependent photoluminescence measurements, combined with our previously reported magneto-photoluminescence data, confirm this conclusion. Our formalism enables direct extraction of structural information of complex embedded three-dimensional structures, which, due to their low electron density contrast with respect to the surrounding host matrix, cannot be readily investigated by traditional electron diffraction techniques

  2. The influence of the stray-light component in determining coronal temperature structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We use a few solar partial eclipse observations made by XRT/Hinode to estimate the influence of stray-light component in determining coronal temperature structures. Our analysis shows that the stray light will largely affect the estimation of coronal temperature and change the estimated temperature structure in one coronal hole region. The stray lights mildly influence the estimated temperatures in one quiet Sun region and do not change the estimated temperature structure. This implies that the influence of stray lights differs from one region to another, and definitely needs to be considered in some regions. Whereas a carefully estimated point-spread-function is needed to remove the stray light component, our study shows that by a simple approach such as subtracting the average intensity of distant (e.g. >1.4 solar radius) points from the data values, the influence of stray light can be largely removed, at least for the two regions we study here.

  3. STRUCTURAL DETERMINATION OF TITANIUM-OXIDE NANOPARTICLES BY X-RAY ABSORPTION SPECTROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Z.Y.Wu; Y.N.Xie; Q.H.Zhang; L.Gao; Z.Z.Chen; J.Zhang; K.Ibrahim; M.I.Abbas; G.Li; Y.Tao; T.D.Hu; F.Q.Liu; H.J.Qian

    2002-01-01

    As a potential application of titanium-oxide nanoparticles, it is extremely importantto investigate a detailed picture of the surface and interior structural properties ofnanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm,respectively. X-ray absorption spectroscopy has been used to identify the local Ti envi-ronment and related electronic structure. We combine the experimental results at theTi edge in both bulk and nano-crystals to determine the lattice distortion in terms ofdifferently characteristic preedge features and the variation in the multiple-scatteringregion of X-ray absorption near-edge structure (XANES) spectra. The relationshipbetween the transition peaks and the surface-to volume ratio is also discussed.

  4. X-ray diffractometry for the structure determination of a submicrometre single powder grain

    International Nuclear Information System (INIS)

    A high-precision diffractometer with a synchrotron radiation microfocusing technique has been developed to investigate the crystal structure of a submicrometre-scale single grain of powder sample. The structure of a BaTiO3 single powder grain, of dimensions ∼600 × 600 × 300 nm, was determined. A high-precision diffractometer has been developed for the structure analysis of a submicrometre-scale single grain of a powder sample at the SPring-8 BL40XU undulator beamline. The key design concept is the combination of a stable focused synchrotron radiation beam and the precise axis control of the diffractometer, which allows accurate diffraction intensity data of a submicrometre-scale single powder grain to be measured. The phase zone plate was designed to create a high-flux focused synchrotron radiation beam. A low-eccentric goniometer and high-precision sample positioning stages were adopted to ensure the alignment of a micrometre-scale focused synchrotron radiation beam onto the submicrometre-scale single powder grain. In order to verify the diffractometer performance, the diffraction pattern data of several powder grains of BaTiO3, of dimensions ∼600 × 600 × 300 nm, were measured. By identifying the diffraction data set of one single powder grain, the crystal structure was successfully determined with a reliable factor of 5.24%

  5. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Debora Lika, E-mail: dmakino@biochem.mpg.de; Conti, Elena [Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2013-11-01

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.

  6. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    International Nuclear Information System (INIS)

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented

  7. Rapid fold and structure determination of the archaeal translation elongation factor 1β from Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    The tertiary fold of the elongation factor, aEF-1β, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1β was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1β structure revealed close similarity to its human analogue, eEF-1β. In agreement with studies on EF-Ts and human EF-1β, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1α. aEF-1β was also found to bind calcium in the groove between helix α2 and strand β4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation

  8. Controls of functional group chemistry on calcium carbonate nucleation: Insights into systematics of biomolecular innovations for skeletal mineralization?

    Science.gov (United States)

    Dove, P. M.; Hamm, L. M.; Giuffre, A. J.

    2012-12-01

    Living organisms produce skeletal structures within a complex matrix of organic macromolecules that guide the nucleation and growth of crystalline structures into the organic-inorganic composites we know as biominerals. This type of biomolecule-directed mineralization is an ancient process as evidenced by structures in the fossil record that date to the Ediacaran (ca. 549 Ma). Our understanding of template-directed biomineralization, however, is largely based upon assumptions from studies that: 1) qualitatively demonstrate some chemical functionalities influence the nucleating mineral phase and morphology; 2) propose proteins are the primary driver to template-directed mineralization and 3) propose the ubiquitous polysaccharides are inert components. Thus, a mechanistic basis for how the underlying chemistry of macromolecules controls nucleation kinetics and thermodynamics in template-directed nucleation is not well established. Moreover, there is not yet a good appreciation for how patterns of skeletal mineralization evolved with biochemical innovations in response to environmental changes over geologic timescales. In small steps toward understanding biochemical controls on biomineralization, we test the hypothesis that the kinetics and thermodynamics of calcium carbonate (CaCO3) formation is regulated by a systematic relationship to the functional group chemistry of macromolecules. A long-term goal is to establish the energetic basis for biochemical motifs that are seen (and not seen) at sites of calcification across the phylogenetic tree. Two types of studies were conducted. The first measured nucleation rates on model biomolecular substrates with termini that are found in proteins associated with sites of calcification (-COOH, -PO4, and -SH) and two alkanethiol chain lengths (16-C and 11-C) at a variety of chemical driving forces. The measurements show functional group chemistry and molecule conformation regulate rates by a predictable relation to interfacial

  9. Pressure-dependent changes in the structure of the melittin {alpha}-helix determined by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Mitsuo; Asakura, Tetsuo [Tokyo University of Agriculture and Technology, Department of Biotechnology (Japan); Dubovskii, Peter V.; Yamada, Hiroaki; Akasaka, Kazuyuki [Kobe University, Graduate School of Science and Technology and Department of Chemistry of Faculty of Science (Japan); Williamson, Michael P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)

    2001-02-15

    A novel method is described, which uses changes in NMR chemical shifts to characterise the structural change in a protein with pressure. Melittin in methanol is a small {alpha}-helical protein, and its chemical shifts change linearly and reversibly with pressure between 1 and 2000 bar. An improved relationship between structure and HN shift has been calculated, and used to drive a molecular dynamics-based calculation of the change in structure. With pressure, the helix is compressed, with the H-O distance of the NH-O=C hydrogen bonds decreased by 0.021 {+-} 0.039 A, leading to an overall compression along the entire helix of about 0.4 A, corresponding to a static compressibility of 6 x10{sup -6} bar{sup -1}. The backbone dihedral angles {phi} and {psi} are altered by no more than {+-} 3 deg. for most residues with a negative correlation coefficient of -0.85 between {phi}{sub i} and {psi}{sub i-1}, indicating that the local conformation alters to maintain hydrogen bonds in good geometries. The method is shown to be capable of calculating structural change with high precision, and the results agree with structural changes determined using other methodologies.

  10. Determination of surface structure and the depth profile of silica glass by infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    C.Z.Tan

    2005-01-01

    The surface structure and properties are different from those of the bulk, depending on the substrate materials and deposition condition, and playing an important role in precise optical components. The conventional spectroscopic methods to monitor the surface structure are restricted only in several layers of molecules. It is known that the penetration depth of the incident light increases with its wavelength and decreases with the angle of incidence. Thus infrared spectroscopy provides a powerful means for determination of surface structure and the depth profile up to micrometers. By recording the reflection spectra at different angles of incidence, the surface structure and its depth profile can be monitored successively. Further, the incident field has the subcomponents parallel and perpendicular to the surface, which excite the transverse and longitudinal optic modes, respectively. Change of the polarization direction of the incident light provides a practical function to study anisotropic property of the surface and the interaction between the transverse and longitudinal optic modes. In this work, infrared spectrophotometer was applied to investigate the depth profile in microstructure of silica glass. Combining with the glass fiber system, this technique can be used for in-situ control of the deposition process. In comparing with ellipsometry, this method reveals both structural and constitutional information.

  11. Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest

    Science.gov (United States)

    Castaño-Villa, Gabriel J.; Ramos-Valencia, Santiago A.; Fontúrbel, Francisco E.

    2014-11-01

    Habitat complexity in reforested stands has been acknowledged as a key factor that influences habitat use by birds, being especially critical for habitat disturbance-sensitive species such as tropical understory insectivorous birds. Most studies regarding the relationship between forest structure and species diversity were conducted at the landscape scale, but different diversity patterns may emerge at a finer scale (i.e., within a habitat patch). We examined a tropical reforested area (State of Caldas, Colombia), hypothesizing that insectivorous bird richness, abundance, and foraging guild abundance would increase as intra-habitat complexity increases. We established 40 monitoring plots within a reforested area, measured their structural features, and determined their relationships with species richness, total abundance, and foraging guild abundance, using Generalized Additive Models. We found that the increasing variation in basal area, stem diameter, and number of stems was positively correlated with species richness, total abundance, and foraging guild abundance. Relationships between richness or abundance and structural features were not lineal, but showing curvilinear responses and thresholds. Our results show that heterogeneity on basal area, stem diameter, and the number of stems was more correlated to insectivorous bird richness and abundance than the average of those structural features. Promoting structural variation on reforested areas by planting species with different growth rates may contribute to increase the richness and abundance of a tropical vulnerable group of species such as the understory insectivorous birds.

  12. Interpopulation variation in contour feather structure is environmentally determined in great tits.

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    Full Text Available BACKGROUND: The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland and one southern population in Lund (Sweden. Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. CONCLUSIONS/SIGNIFICANCE: Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.

  13. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeffrey E.; Fusco, Marnie L.; Abelson, Dafna M.; Hessell, Ann J.; Burton, Dennis R. [Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Saphire, Erica Ollmann, E-mail: erica@scripps.edu [Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2009-11-01

    Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing of the trimeric ebolavirus glycoprotein are described. The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008 ▶), Nature (London), 454, 177–182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the

  14. Ultrafast colorimetric determination of predominant protein structure evolution with gold nanoplasmonic particles

    Science.gov (United States)

    Kim, Hye Young; Choi, Inhee

    2016-01-01

    The intracellular and extracellular accumulation of disordered proteins and aggregated proteins occurs in many protein conformational diseases, such as aging-related neurodegeneration and alcoholic liver diseases. However, the conventional methods to study protein structural changes are limited for the rapid detection and monitoring of protein aggregation because of long incubation times (i.e., usually several days), complicated sample pretreatment steps, and expensive instrumentation. Here, we describe an ultrafast colorimetric method for the real-time monitoring of protein structure evolution and the determination of predominant structures via nanoparticle-assisted protein aggregation. During the aggregation process, nanoparticles act as nucleation cores, which form networks depending on the structures of the protein aggregates, and accelerate the kinetics of the protein aggregation. Simultaneously, these nanoparticles exhibit colorimetric responses according to their embedded shapes (e.g., fibrillar and amorphous) on the protein aggregates. We observed distinct spectral shifts and concomitant colorimetric responses of concentration- and type-dependent protein aggregation with the naked eye within a few minutes (pH levels, high temperature, and chemicals. These findings suggest that the proposed method is an easy way to study the molecular biophysics of protein aggregation and to rapidly screen anti-aggregation drugs for protein conformational diseases.The intracellular and extracellular accumulation of disordered proteins and aggregated proteins occurs in many protein conformational diseases, such as aging-related neurodegeneration and alcoholic liver diseases. However, the conventional methods to study protein structural changes are limited for the rapid detection and monitoring of protein aggregation because of long incubation times (i.e., usually several days), complicated sample pretreatment steps, and expensive instrumentation. Here, we describe an

  15. PREFACE: Structure and dynamics determined by neutron and x-ray scattering Structure and dynamics determined by neutron and x-ray scattering

    Science.gov (United States)

    Müller-Buschbaum, Peter

    2011-06-01

    Neutron and x-ray scattering have emerged as powerful methods for the determination of structure and dynamics. Driven by emerging new, powerful neutron and synchrotron radiation sources, the continuous development of new instrumentation and novel scattering techniques gives rise to exciting possibilities. For example, in situ observations become possible via a high neutron or x-ray flux at the sample and, as a consequence, morphological transitions with small time constants can be detected. This special issue covers a broad range of different materials from soft to hard condensed matter. Hence, different material classes such as colloids, polymers, alloys, oxides and metals are addressed. The issue is dedicated to the 60th birthday of Professor Winfried Petry, scientific director of the Research Neutron Source Heinz Maier-Leibnitz (FRM-II), Germany, advisor at the physics department for the Bayerische Elite-Akademie, chair person of the Arbeitsgemeinschaft Metall- und Materialphysik of the German Physical Society (DPG) and a member of the professional council of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). We would like to acknowledge and thank all contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the refereeing process, and Valeria Lauter for the beautiful cover artwork. Finally, to the readers, we hope that you find this special issue a valuable resource that provides insights into the present possibilities of neutron and x-ray scattering as powerful tools for the investigation of structure and dynamics. Structure and dynamics determined by neutron and x-ray scattering contents In situ studies of mass transport in liquid alloys by means of neutron radiography F Kargl, M Engelhardt, F Yang, H Weis, P Schmakat, B Schillinger, A Griesche and A Meyer Magnetic spin

  16. 3D structure determination of protein using TEM single particle analysis.

    Science.gov (United States)

    Sato, Chikara; Mio, Kazuhiro; Kawata, Masaaki; Ogura, Toshihiko

    2014-11-01

    Proteins play important roles in cell functions such as enzymes, cell trafficking, neurotransmission, muscle contraction and hormone secretion. However, some proteins are very difficult to be crystallized and their structures are undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Among them, electron microscopy based single particle reconstruction (SPA) technique is a computer-aided structure determination method. This method reconstructs the 3D structure from projection images of dispersed protein. A large number of two-dimensional particle images are picked up from EM films, aligned and classified to generate 2D averages, and used to reconstruct the 3D structure by assigning the Euler angle of each 2D average. Due to the necessity of elaborate collaboration between the classical biology and the innovative information technology including parallel computing, scientists needed to break unseen barriers to get a start of this analysis. However, recent progresses in electron microscopes, mathematical algorithms, and computational abilities greatly reduced the height of barriers and expanded targets that are considered to be primarily addressable using single particle analysis. Membrane proteins are one of these targets to which the single particle analysis is successfully applied for the understanding of their 3D structures. For this purpose, we have developed various SPA methods [1-5] and applied them to different proteins [6-8].Here, we introduce reconstructed proteins, and discuss the availability of this technique. The intramembrane-cleaving proteases (I-CLiPs) that sever the transmembrane domains of their substrates have been identified in a range of organisms and play a variety of roles in biological conditions. I-CLiPs have been classified into three groups: serine-, aspartyl- and metalloprotease

  17. Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs.

    Science.gov (United States)

    Mazué, Frédéric; Colin, Didier; Gobbo, Jessica; Wegner, Maria; Rescifina, Antonio; Spatafora, Carmela; Fasseur, Dominique; Delmas, Dominique; Meunier, Philippe; Tringali, Corrado; Latruffe, Norbert

    2010-07-01

    Resveratrol is the subject of intense research because of the abundance of this compound in the human diet and as one of the most valuable natural chemopreventive agents. Further advances require new resveratrol analogs be used to identify the structural determinants of resveratrol for the inhibition potency of cell proliferation by comparing experimental and docking studies. Therefore, we synthesized new trans/(E)- and cis/(Z)-resveratrol - analogs not reported to date - by modifying the hydroxylation pattern of resveratrol and a double bond geometry. We included them in a larger panel of 14 molecules, including (Z)-3,5,4'-trimethoxystilbene, the most powerful molecule that is used as reference. Using a docking model complementary to experimental studies on the proliferation inhibition of the human colorectal tumor SW480 cell line, we show that methylation is the determinant substitution in inhibition efficacy, but only in molecules bearing a Z configuration. Most of the synthetic methylated derivatives (E or Z) stop mitosis at the M phase and lead to polyploid cells, while (E)-resveratrol inhibits cells at the S phase. Docking studies show that almost all of the docked structures of (Z)-polymethoxy isomers, but not most of the (E)-polymethoxy isomers substantially overlap the docked structure of combretastatin A-4, taken as reference ligand at the colchicine-tubulin binding site. PMID:20395019

  18. Structural determinants of phenotypic diversity and replication rate of human prions.

    Directory of Open Access Journals (Sweden)

    Jiri G Safar

    2015-04-01

    Full Text Available The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD, determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains. Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.

  19. Factors determining the structure of Au, Ag and Cr thin layers deposited on alkaline halogen substrates

    International Nuclear Information System (INIS)

    Metal thin layer deposited on dielectric substrates, in general, and on alkaline halogen substrates, in particular, have been thoroughly studied in order to make clear the phenomenology of the formation and development processes, to set out fundamental factors in determining their structure and to determine optimum conditions for the obtaining of monocrystal thin layers or metastable structured thin layers in view of their practical applications. Starting from a systematic programme of experimental investigations, an attempt has been made to investigate the influence of substrate composition, of defects within alkaline halogen substrates and of deposition conditions on the orientated formation and development of Au layer and on the formation of metastable Cr-delta structures in the case of thin Cr layers. A systematic study on the influence of deposition conditions and on alkaline halogen substrates with colloidal centres is carried out in view of elaborating a method for the development of monocrystal Au layers for ''channeling targets''. A correlation between characteristic parameters which define the atomic theory of nucleation including deposition conditions and material parameters, Au parameters for the case of epitaxial layers deposited on KBr, KCl and NaCl substrates has been attempted. (author)

  20. Structural determinants for protein adsorption/non-adsorption to silica surface

    International Nuclear Information System (INIS)

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nano-technology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many p-p interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. (authors)

  1. The Antsy Social Network: Determinants of Nest Structure and Arrangement in Asian Weaver Ants.

    Science.gov (United States)

    Devarajan, Kadambari

    2016-01-01

    Asian weaver ants (Oecophylla smaragdina) are arboreal ants that are known to form mutualistic complexes with their host trees. They are eusocial ants that build elaborate nests in the canopy in tropical areas. A colony comprises of multiple nests, usually on multiple trees, and the boundaries of the colony may be difficult to identify. However, they provide the ideal model for studying group living in invertebrates since there are a definite number of nests for a given substrate, the tree. Here, we briefly examine the structure of the nests and the processes involved in the construction and maintenance of these nests. We have described the spatial arrangement of weaver ant nests on trees in two distinct tropical clusters, a few hundred kilometres apart in India. Measurements were made for 13 trees with a total of 71 nests in the two field sites. We have considered a host of biotic and abiotic factors that may be crucial in determining the location of the nesting site by Asian weaver ants. Our results indicate that tree characteristics and architecture followed by leaf features help determine nest location in Asian weaver ants. While environmental factors may not be as influential to nest arrangement, they seem to be important determinants of nest structure. The parameters that may be considered in establishing the nests could be crucial in picking the evolutionary drivers for colonial living in social organisms. PMID:27271037

  2. Mechanism for determining the ecology-economic activity of cluster structure

    Directory of Open Access Journals (Sweden)

    V.V. Gimpel

    2013-03-01

    Full Text Available The aim of the article. The purpose of the article is proposing methods for determining the components of vectors integral indicator of eco-economic activity of the cluster structure.The results of the analysis. The article offers the author's definition of the cluster of environmental and economic activity. Innovative cluster of ecological and economic activity in the development of the region (ICEEA is a form of interaction that connects businesses and organizations of different forms, which are oriented in their work on ecobalanced management decisions on an innovative basis for sustainable development. Advantages ICEEA is to produce competitive environmental products, to increase the export potential of the region, increasing the share of high technology and knowledge-intensive sectors of the economy, reducing demand for primary resources, the developing of green business and, as a consequence to increase the investment attractiveness of the region. For the ecological and economic evaluation of the enterprises activity within the cluster structure prompted the concept of level of environmental and economic activity cluster. The level of environmental and economic activity cluster refers to the degree of investment attractiveness of the region at different stages of cluster operation taking into account environmental, social, economic and environmental and economic factors. The sequence of ecological and economic evaluation of processes in the enterprises to determine the level of environmental and economic activity takes place in 13 stages. The article describes the key aspects of innovative regional development, namely clustering. The emphasis is on the mathematical evaluation model of ecological-economic activity in cluster formation and determination of integral indicator vectors of ecological and economic activity. The mathematical evaluation model of ecological-economic activity of cluster consists of four vectors: social, economic

  3. Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging.

    Science.gov (United States)

    Laguna-Marco, M A; Piquer, C; Roca, A G; Boada, R; Andrés-Vergés, M; Veintemillas-Verdaguer, S; Serna, C J; Iadecola, A; Chaboy, J

    2014-09-14

    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.

  4. Structure determination and biochemical characterization of a putative HNH endonuclease from Geobacter metallireducens GS-15.

    Directory of Open Access Journals (Sweden)

    Shuang-yong Xu

    Full Text Available The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been determined at 2.6 Å resolution using single-wavelength anomalous dispersion method. The structure contains a two-stranded anti-parallel β-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4 endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15-20% amino acid sequence identity. An overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well as the zinc binding site (zinc ribbon are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn²⁺-dependent nicking activity on supercoiled plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting Gmet_0936 may be a DNA repair enzyme.

  5. Semiconductor Surface Structure Determination via Low Energy Positron Diffraction: Cleavage Faces of Cadmium-Selenide

    Science.gov (United States)

    Horsky, Thomas Neil

    Low energy positron diffraction (LEPD) is used to determine the surface structure of the wurtzite CdSe(1010) and CdSe(1120) cleavage faces. Low energy electron diffraction (LEED) is also performed, utilizing a beam optical system which produces both a e^+ and e ^- beam with the same phase-space characteristics, i.e. 1 mm-deg. Both e^+ and e^- measurements were collected from the same sample surface of each cleavage face, removing systematic errors from the comparison. Dynamical calculations were performed for both the LEPD and LEED using the R-factor methodology of Duke et al. For the (1010) surface, the calculations and analyses were performed at Brandeis via link to the John Von Neumann Supercomputer Center at Princeton, NJ. For the (1120) surface, the LEPD calculations and analysis was performed by Battelle Pacific Northwest Laboratories, while the LEED calculations were performed by Princeton University. Resulting surface structures for CdSe(1010) are in accord with the proposed reconstruction model of Wang and Duke, indicating a bond-length-conserving rotation of the surface dimer. The best-fit values of the bond-rotation angle omega are 15^circ +/- 5^circ as determined by LEPD and omega = 21.5^ circ +/- 4^ circ as determined by LEED. These values are in agreement with the predicted value of omega = 17^circ. For CdSe(1120), the best-fit LEPD results indicate an omega of 27^circ +/- 7^circ while preliminary LEED results indicate an omega of 35^circ +/- 5^circ. Both values for this previously undetermined surface are also in agreement with the theoretically predicted value of omega = 32^circ . These results serve to confirm a universal model of reconstruction which describes the surface structures of both the zincblende and wurtzite compound semiconductor cleavage faces.

  6. Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission.

    Directory of Open Access Journals (Sweden)

    Pascale Schellenberger

    2011-05-01

    Full Text Available Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV, a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP, carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.

  7. Structural and enzymatic characterization of a host-specificity determinant from Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Amanda C. [Rockefeller University, New York, NY 10065 (United States); Spanò, Stefania; Galán, Jorge E. [Yale University School of Medicine, New Haven, CT 06536 (United States); Stebbins, C. Erec, E-mail: stebbins@rockefeller.edu [Rockefeller University, New York, NY 10065 (United States)

    2014-02-01

    The Salmonella effector protein GtgE functions as a cysteine protease to cleave a subset of the Rab-family GTPases and to prevent delivery of antimicrobial agents to the Salmonella-containing vacuole. GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine protease inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.

  8. Crystal structure of thermostable catechol 2,3-dioxygenase determined by multiwavelength anomalous dispersion method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The selenomethionyl derivative of the thermostable catechol 2,3-dioxygenase (SeMet-TC23O) is expressed,purified and crystallized. By using multiwave length anomalous dispersion (MAD) phasing techniques, the crystal structure of TC23O at 0.3 nm resolutions is determined.TC23O is a homotetramer. Each monomer is composed of N-terminal and C-terminal domains (residues 1~153 and 153~319, respectively). The two domains are proximately symmetric by a non-crystallographic axis. Each domain contains two characteristic motifs which are found in almost all of extradial dioxygenases.Kevwords: multiwavelength anomalous dispersion (MAD), X-ray diffraction, thermostable catechol 2,3-dioxygenase, crystal structure,synchrotron light source.

  9. Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Desbois, Sebastien; Dogovski, Con; Gorman, Michael A; Ketaren, Natalia E; Paxman, Jason J; Siddiqui, Tanzeela; Zammit, Leanne M; Abbott, Belinda M; Robins-Browne, Roy M; Parker, Michael W; Jameson, Geoffrey B; Hall, Nathan E; Panjikar, Santosh; Perugini, Matthew A

    2016-08-01

    Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS. PMID:27427481

  10. Determination of structure tilting in magnetized plasmas - Time delay estimation in two dimensions

    CERN Document Server

    Guszejnov, Dávid; Zoletnik, Sándor; Andreas-Krämer-Flecken,

    2013-01-01

    Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion plasmas. The present work is an extension of the earlier works of A. Bencze and S. Zoletnik 2005 and B. T\\'al et al. 2011. From the prospective of the comparison of theory and experiment it seem to be important to estimate the statistical properties of the TDE based on solid mathematical groundings. This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma edge and also gives an explicit method for determination of the tilt angle of structures. As a demonstration this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy (BES) measurement performed at the TEXTOR tokamak.

  11. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data

    International Nuclear Information System (INIS)

    The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and protein core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis

  12. 2-D crustal structure of Changbaishan- Tianchi volcanic region determined by seismic traveltime inversion

    Institute of Scientific and Technical Information of China (English)

    王夫运; 张先康; 杨卓欣

    2002-01-01

    2-D velocity structure and tectonics of the crust and upper mantle is revealed by inversion of seismic refraction and wide-angle reflection traveltimes acquired along the profile L1 in the Changbaishan-Tianchi volcanic region. It is used in this study that seismic traveltime inversion for simultaneous determination of 2-D velocity and interface structure of the crust and upper mantle. The result shows that, under Changbaishan-Tianchi crater, there exists a low-velocity body in the shape of an inverted triangle, and the crustal reflecting boundaries and Moho all become lower by a varying margin of 2~6 km, forming a crustal root which is assumed to be the Changbaishan-Tianchi volcanic system. Finally, we make a comparison between our 2-D velocity model and the result from the studies by using trial-and-error forward modeling with SEIS83.

  13. Structure determination of LpxA from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii.

    Science.gov (United States)

    Badger, John; Chie-Leon, Barbara; Logan, Cheyenne; Sridhar, Vandana; Sankaran, Banumathi; Zwart, Peter H; Nienaber, Vicki

    2012-12-01

    Acinetobacter baumannii is a Gram-negative pathogenic bacterium which is resistant to most currently available antibiotics and that poses a significant health threat to hospital patients. LpxA is a key enzyme in the biosynthetic pathway of the lipopolysaccharides that are components of the bacterial outer membrane. It is a potential target for antibacterial agents that might be used to fight A. baumannii infections. This paper describes the structure determination of the apo form of LpxA in space groups P2(1)2(1)2(1) and P6(3). These crystal forms contained three and one protein molecules in the asymmetric unit and diffracted to 1.8 and 1.4 Å resolution, respectively. A comparison of the conformations of the independent protein monomers within and between the two crystal asymmetric units revealed very little structural variation across this set of structures. In the P6(3) crystal form the enzymatic site is exposed and is available for the introduction of small molecules of the type used in fragment-based drug discovery and structure-based lead optimization. PMID:23192027

  14. An evolutionary game approach for determination of the structural conflicts in signed networks

    Science.gov (United States)

    Tan, Shaolin; Lü, Jinhu

    2016-02-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks.

  15. Crystal structure of nitarsone determined from synchrotron X-ray powder diffraction data

    Science.gov (United States)

    van der Lee, A.; Richez, P.; Tapiero, C.

    2005-05-01

    The crystal structure of nitarsone, 4-nitrophenylarsonic acid, a substitute for nifursol and dimetridazole in the prevention and treatment of turkey histomoniasis desease, has been determined from synchrotron X-ray powder diffraction data. Nitarsone crystallizes in the monoclinic space group P2 1/ n with unit cell parameters a=7.46413(5), b=25.68543(17), c=4.657388(32) Å, β=105.4670(5)°. The structure was solved using simulated annealing techniques by treating the molecule as a rigid body for which the configuration resulting from an energy minimization was used in slightly adapted form. Structure refinement treated the NO 2 and the AsO(OH) 2 groups as free groups, leading to final confidence factors Rp=0.059 and Rwp=0.071. The crystal structure contains 4 molecules per unit cell that are hydrogen bonded to form infinite chains of dimers running along the c-axis. Nitarsone's low toxicity when compared with inorganic sources of arsenic is explained by the existence of a partial double C-As bond (1.866(5) Å) which confers greater stability so that under physiological conditions nitarsone is not converted to mineral-like As V or III.

  16. Structure of the organic crystallite unit in coal as determined by X-ray diffraction

    Institute of Scientific and Technical Information of China (English)

    Song Dangyu; Yang Cunbei; Zhang Xiaokui; Su Xianbo; Zhang Xiaodong

    2011-01-01

    X-ray diffraction (XRD) was used to study the structure of the organic crystallite unit (La,Lc,d002) in coals collected from Henan and Shanxi Provinces,XRD patterns of coal were collected in a step-scan mode (0.1 °/step) over an angular range of 2-90° (2θ),allowing 8 s at each step.The structure of the crystallite unit was determined from the Scherrer equation and peak parameters deduced from whole pattern fitting.The results show that the structure of the crystallite unit in coal is mainly controlled by the coal rank.As the coal rank increases the average diameter of a coal crystallite unit (La) increases,the interlayer spacing (d002) decreases slightly,and the average height of a coal crystallite unit (Lc) increases at first but then decreases.A new diffraction peak from the crystallite unit in coal was found at a low scattering angle in the XRD pattern (2-10°).This suggests a structure with an inter-layer spacing from 1.9 to 2.8 nm exists in coal crystallites.

  17. Synthesis, characterization, and structure determination of the orthorhombic U2(PO4)(P3O10)

    International Nuclear Information System (INIS)

    β-UP2O7 has been synthesized under hydrothermal conditions (θ=500 deg. C, P=200 MPa), using UO2 and H3PO4. β-UP2O7 crystallizes in the orthorhombic space group Pn21a, with a=11.526 (2) A, b=7.048 (2) A, c=12.807 (2) A and Z=4. Its structure has been determined through direct methods and difference Fourier synthesis and has been refined to R=0.0396. The structure is built on UO8 polyhedral chains along the b-axis. PO43- and P3O105- groups coexist in the structure and the latter groups form non-linear chains. Cohesion of the structure is made through the linkage of UO8 chains by PO4 and P3O10 groups leading to the formula U2(PO4)(P3O10) instead of β-UP2O7. Vibrational and optical spectra confirm the results obtained by X-ray diffraction. DTA-TGA measurements show that the transformation of U2(PO4)(P3O10) to the cubic α-UP2O7 occurs at θ=870 deg. C

  18. High-throughput determination of structural phase diagram and constituent phases using GRENDEL

    Science.gov (United States)

    Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.

    2015-11-01

    Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.

  19. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    Science.gov (United States)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  20. Determining the base resistance of InP HBTs: An evaluation of methods and structures

    Science.gov (United States)

    Nardmann, Tobias; Krause, Julia; Pawlak, Andreas; Schroter, Michael

    2016-09-01

    Many different methods can be found in the literature for determining both the internal and external base series resistance based on single transistor terminal characteristics. Those methods are not equally reliable or applicable for all technologies, device sizes and speeds. In this review, the most common methods are evaluated regarding their suitability for InP heterojunction bipolar transistors (HBTs) based on both measured and simulated data. Using data generated by a sophisticated physics-based compact model allows an evaluation of the extraction method precision by comparing the extracted parameter value to its known value. Based on these simulations, this study provides insight into the limitations of the applied methods, causes for errors and possible error mitigation. In addition to extraction methods based on just transistor terminal characteristics, test structures for separately determining the components of the base resistance from sheet and specific contact resistances are discussed and applied to serve as reference for the experimental evaluation.

  1. Seismic transmission tomography: determination of the elastic properties of building structures (some examples

    Directory of Open Access Journals (Sweden)

    E. Cardarelli

    2000-06-01

    Full Text Available This paper is a general review on seismic transmission tomography considering data acquisition and processing. Some questions on linear and non linear inversions are tackled, and advice given on the choice of the best damping factor. Taking into account prediction matrices we show that it is possible to point out the best distribution of sensors and shot points in terms of resolution and stability of system. Then two examples in which seismic tomography was used are described concerning the determination of elastic characteristics of building structures.

  2. Synthesis and crystal structure determination of Pb2[UO2][TeO3]3

    International Nuclear Information System (INIS)

    Single crystals of Pb2[UO2][TeO3]3 were obtained by hydrothermal synthesis. The crystal data are reported. The structure was determined from X-ray intensities measured on a two-circle diffractometer and was refined for 2566 independent observed reflections to R = 0.059. It can be described as built up by [[UO2][TeO3]3]4sup(n)-sub(n) sheets parallel to (010) which are connected by lead atoms in irregular coordination. (orig./GSCH)

  3. Structural determinants within the subunit protein of Ty1 virus-like particles.

    Science.gov (United States)

    Martin-Rendon, E; Marfany, G; Wilson, S; Ferguson, D J; Kingsman, S M; Kingsman, A J

    1996-11-01

    The Ty virus-like particles (VLPs) are functionally analogous to retroviral particles. They package the enzymes and the RNA necessary for retrotransposition, and mediate the integration of the reverse-transcription product into the genome of the host cell. Here we map three structural determinants of particle assembly in the subunit protein. We have also identified key residues in these regions that seem to be involved in subunit interaction and particle morphology. In particular, two point mutations in putative amphipathic helices have remarkable effects on VLP morphology, increasing the diameter as much as eightfold. PMID:8951814

  4. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    Science.gov (United States)

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  5. Synthesis and crystal structure determination of Br2SeIBr polyhalogen–chalcogen

    Indian Academy of Sciences (India)

    A A Alemi; E Solaimani

    2004-06-01

    In this paper polyhalogen–chalcogen Br2SeIBr was synthesized and the crystal structure was determined by single crystal X-ray diffraction method. This compound was prepared in the temperature range 150–50°C which was brownish-red in colour and crystallized in monoclinic crystal system and space group 21/c with four molecules per unit cell. Lattice parameters were: = 6.3711(1), = 6.7522(2), = 16.8850(5) Å, = = 90°, = 95·96°, = 722·45 Å3.

  6. A simple structural power method for determining the vibratory strength of machinery sources

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1998-01-01

    A new simple characterisation of the vibrational source strength of multi-terminal machinery is formulated in terms of a total terminal source power. This single power spectrum is determined from a summation of pairs of mean square velocities and point mobilities of the machine feet. The method...... is tested experimentally for two practical source-receiver configurations. The results clearly demonstrate the simplicity of the method and its high potential for engineering evaluation of machinery source strength and for coarse prediction of power transmission to supporting structures. In principle...

  7. Understanding consumer confidence in the safety of food: its two-dimensional structure and determinants.

    Science.gov (United States)

    de Jonge, Janneke; van Trijp, Hans; Jan Renes, Reint; Frewer, Lynn

    2007-06-01

    Understanding of the determinants of consumer confidence in the safety of food is important if effective risk management and communication are to be developed. In the research reported here, we attempt to understand the roles of consumer trust in actors in the food chain and regulators, consumer recall of food safety incidents, consumer perceptions regarding the safety of particular product groups, personality characteristics, and sociodemographics, as potential determinants of consumer confidence in the safety of food. Consumer confidence in the safety of food was conceptualized as consisting of two distinct dimensions, namely, "optimism" and "pessimism." On the basis of a representative sample of 657 Dutch consumers, structural equation modeling was applied to simultaneously estimate the effect of the determinants on both "optimism" and "pessimism." The results indicated that, to a considerable extent, both optimism and pessimism about the safety of food arise from consumer trust in regulators and actors in the food chain and the perceived safety of meat and fish rather than other product categories. In addition, support was found for the notion that optimism and pessimism are conceptually distinct, as these dimensions of confidence were partly influenced by different determinants. The results of this study imply that consumer confidence in the safety of food could be enhanced by improving both consumer trust in societal actors, and consumer safety perceptions of particular product groups. PMID:17640219

  8. Structure of Csd3 from Helicobacter pylori, a cell shape-determining metallopeptidase

    International Nuclear Information System (INIS)

    H. pylori Csd3 (HP0506), together with other peptidoglycan hydrolases, plays an important role in determining cell shape. Its crystal structure in the latent state is reported. Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its d, d-endopeptidase activity cleaves the d-Ala4-mDAP3 peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a d, d-carboxypeptidase that cleaves off the terminal d-Ala5 from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn2+ ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain

  9. Structure of Csd3 from Helicobacter pylori, a cell shape-determining metallopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    An, Doo Ri [Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-742 (Korea, Republic of); Seoul National University, Seoul 151 742 (Korea, Republic of); Kim, Jieun; Im, Ha Na; Yoon, Hye Jin; Yoon, Ji Young; Jang, Jun Young [Seoul National University, Seoul 151-742 (Korea, Republic of); Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar [University of Notre Dame, Notre Dame, IN 46556 (United States); Kim, Soon-Jong [Mokpo National University, Chonnam 534-729 (Korea, Republic of); Lee, Byung Il [National Cancer Center, Gyeonggi 410-769 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-03-01

    H. pylori Csd3 (HP0506), together with other peptidoglycan hydrolases, plays an important role in determining cell shape. Its crystal structure in the latent state is reported. Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its d, d-endopeptidase activity cleaves the d-Ala{sup 4}-mDAP{sup 3} peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a d, d-carboxypeptidase that cleaves off the terminal d-Ala{sup 5} from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn{sup 2+} ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.

  10. Report on result 1998. Research and development on fusion area. Part 3 (biomolecular mechanism and design); 1998 nendo seika hokokusho. Yugo ryoiki kenkyu kaihatsu daisan bunsatsu (bimolecular mechanism and design)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An organism is a molecular mechanical system consisting of nucleic acid, peptide and protein having a self-forming and a self-repairing function. For the purpose of creating cells, tissues and molecular mechanism alternating these biological functions, their basic technology was developed. Concretely, studies were made on three-dimensional cellular structural module engineering and biomolecular mechanism and design. Studies on biological soft tissue resulted in success by giving atmospheric glow discharge treatment to the inner surface of a tubular PVC. An artificial vitreous body was created using PVA hydrogels. In addition, liver cells were successfully cultured for the first time in the world. Studies on biological hard tissue revealed that osteopontin plays a role of a trigger for the initial differentiation of the osteoblast cell. Further, a basic experiment was carried out on the initial response of the cartilage cell. In the research on the molecular mechanism, examination was made on the mechanism of a double-head molecular motor. Examination was also made on the adjustment of the hydrogenase LB film as an electricity/hydrogen energy conversion element and on the biomolecular mechanism and design. (NEDO)

  11. Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA).

    OpenAIRE

    Bates, P. J.; Dosanjh, H. S.; S. Kumar; Jenkins, T. C.; Laughton, C A; Neidle, S

    1995-01-01

    Real-time biomolecular interaction analysis (BIA) has been applied to triplex formation between oligodeoxynucleotides. 5'-Biotinylated oligonucleotides were immobilised on the streptavidin-coated surface of a biosensor chip and subsequently hybridised to their complementary strand. Sequence-specific triplex formation was observed when a suitable third-strand oligopyrimidine was injected over the surface-bound duplex. In addition, a single-stranded oligonucleotide immobilised on the chip surfa...

  12. Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR

    Directory of Open Access Journals (Sweden)

    Tyson Jess

    2012-12-01

    Full Text Available Abstract Background Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. Results In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. Conclusion This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.

  13. Application of Characteristics of Seismogenic Structures in the Determination of Parameter of Potential Seismic Source Areas

    Institute of Scientific and Technical Information of China (English)

    Zhou Bengang

    2005-01-01

    The characteristics of seismogenic structures are an important basis for delineating the potential seismic source areas and determining the annual occurrence rate of earthquakes. The potential seismic source area does not only have the intension that "this area has the possibility for destructive earthquakes to occur in the future" but also means that earthquakes of high magnitude interval have the characteristics of similar recurrence. When determining the seismic activity parameters of a statistical unit, some active tectonic blocks in the unit may have different background earthquakes. In order to better reflect the heterogeneity in space of seismic activities, it is necessary to divide the potential seismic source areas into three orders.By analyzing the recurrence characteristics of earthquakes of high magnitude interval in the potential source area and calculating the occurrence probability of earthquakes of high magnitude interval in the potential seismic source area in the time window for prediction, the average annual occurrence rate of earthquakes can be obtained by the method of probability equivalent conversion in the time window for prediction. This would be helpful for considering the recurrence characteristics of strong earthquakes in potential source areas within the framework of seismic risk analysis of China. Besides, the insufficient frequency of characteristic earthquakes of the next high magnitude interval in the potential source area and the heterogeneity of strong earthquakes on seismogenic structures are analyzed to see their application in seismic risk analysis.

  14. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  15. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.

    Science.gov (United States)

    Lorent, Joseph Helmuth; Levental, Ilya

    2015-11-01

    Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.

  16. Disulfide Trapping for Modeling and Structure Determination of Receptor:Chemokine Complexes

    Science.gov (United States)

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G.; Qin, Ling; Zheng, Yi; Handel, Tracy M.

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies, and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity towards the most energetically favorable cross-links. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. PMID:26921956

  17. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Directory of Open Access Journals (Sweden)

    Mauricio Lima

    Full Text Available Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors. Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  18. The Determinants of Capital Structure: an Empirical Study of Omani Listed Industrial Companies

    Directory of Open Access Journals (Sweden)

    Mawih Al Ani

    2015-06-01

    Full Text Available This study investigates five determinants of capital structure (leverage in three subsectors of the Omani Industrial companies (food, construction and chemical listed on Muscat Securities Market for the period 2008–2012. According to available information and literature review, the determinants are profitability measured by return on assets (ROA, risk measured by the standard deviation of return on assets, the size of the company measured by the natural logarithm of total assets, rate of growth measured by the market-book value ratio (P/E and assets tangibility measured by fixed assets to total assets ratio. The capital structure or leverage is measured by total debt ratio. In the industrial sector as whole; the findings of the study indicate that there is a statistically positive association between risk and tangibility and leverage. Also, there is a statistically negative association between growth rate and profitability and leverage, while there is no association with size. Regression analysis indicates that size, tangibility and risk have a statistically significant effect on leverage.

  19. A pipeline for structure determination of in vivo-grown crystals using in cellulo diffraction.

    Science.gov (United States)

    Boudes, Marion; Garriga, Damià; Fryga, Andrew; Caradoc-Davies, Tom; Coulibaly, Fasséli

    2016-04-01

    While structure determination from micrometre-sized crystals used to represent a challenge, serial X-ray crystallography on microfocus beamlines at synchrotron and free-electron laser facilities greatly facilitates this process today for microcrystals and nanocrystals. In addition to typical microcrystals of purified recombinant protein, these advances have enabled the analysis of microcrystals produced inside living cells. Here, a pipeline where crystals are grown in insect cells, sorted by flow cytometry and directly analysed by X-ray diffraction is presented and applied to in vivo-grown crystals of the recombinant CPV1 polyhedrin. When compared with the analysis of purified crystals, in cellulo diffraction produces data of better quality and a gain of ∼0.35 Å in resolution for comparable beamtime usage. Importantly, crystals within cells are readily derivatized with gold and iodine compounds through the cellular membrane. Using the multiple isomorphous replacement method, a near-complete model was autobuilt from 2.7 Å resolution data. Thus, in favourable cases, an in cellulo pipeline can replace the complete workflow of structure determination without compromising the quality of the resulting model. In addition to its efficiency, this approach maintains the protein in a cellular context throughout the analysis, which reduces the risk of disrupting transient or labile interactions in protein-protein or protein-ligand complexes. PMID:27050136

  20. Determinants of capital structure: An empirical study of companies from selected post-transition economies

    Directory of Open Access Journals (Sweden)

    Sasho Arsov

    2016-06-01

    Full Text Available The goal of this paper is to examine if there are any determinants that systematically influence the capital structure of the companies in the Balkan countries and to determine if any of the existing capital structure theories are relevant in their case. We apply a panel regression on a sample consisting of the largest and most frequently traded joint-stock companies from four countries. The results show that the larger companies and those with higher fixed asset investments exhibit higher leverage, while the more profitable companies and those with more tangible assets use less debt financing. Other variables, such as the concentration of company ownership, the riskiness of its operating profits and the effective tax rates have not been found statistically significant. These results, supported by the robustness tests, have confirmed our expectation that the managers in these countries do not set specific target leverage ratios, but instead follow a particular order in the selection of the sources of financing. In other words, the companies behave in accordance with the pecking order theory, which is a confirmation of our initial hypothesis. The governments of these countries should put more effort on stimulating the use of other sources of financing to relieve the possible excessive company dependence on the banking sector.