WorldWideScience

Sample records for biomes map image

  1. Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis

    Science.gov (United States)

    Townsend, P. A.; Singh, A.; Wang, Z.

    2016-12-01

    One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.

  2. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available This study used remotely-sensed phenology data derived from Advanced Very High Resolution Radiometer (AVHRR), in a fully supervised decision-tree classification based on the new biome map of South Africa. The objectives were: (i) to investigate...

  3. Biomes.

    Science.gov (United States)

    Web Feet K-8, 2001

    2001-01-01

    This annotated subject guide to Web sites and additional resources focuses on biomes. Specifies age levels for resources that include Web sites, CD-ROMs and software, videos, books, audios, and magazines; includes professional resources; and presents a relevant class activity. (LRW)

  4. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Directory of Open Access Journals (Sweden)

    Särkinen Tiina

    2011-11-01

    Full Text Available Abstract Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1 poor spatial resolution, and (2 poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in

  5. Applying plant functional types to construct biome maps from eastern North American pollen data: comparisons with model results

    Science.gov (United States)

    Williams, John W.; Summers, Robert L.; Webb, Thompson, III

    Global biome models like BIOME1 convert climate-model simulations of past climates into biome distributions and thus facilitate comparison of both climate and biome model results with biomes estimate from paleoecological data. We adapted a biomization method, recently developed for European pollen data, for use with pollen data in eastern North America and then compared its estimated biomes with those derived from applying BIOME1 to the climate simulations from the NCAR CCM1 (National Center for Atmospheric Research Community Climate Model, Version 1) for 6000 years ago (6 ka). We first tested the biomization method by seeing how well the biomes inferred from modern pollen data match observed biomes. We found that modifications to the method were necessary in part to account for physiological differences between North American and European taxa, and in part to cope with our choice of using just 23 major pollen taxa. Our modifications significantly improved the match between observed modern biomes and pollen-derived biomes, as measured by the kappa statistic. We tested our tuning of the biomization method by matching its inferred 6 ka biomes to biomes estimated from pollen data using the modern analog technique. The degree of agreement at 6 ka is close to that for today, showing that (1) the biomization method and modern analog technique, when applied to the same pollen data, produce consistent results, and (2) the modifications made to the biomization method are robust back to 6 ka. We then used the results of the biomization method to test the biome maps simulated by BIOME1, which derives biome distributions from observed climate values for today and from the climatic simulations of the CCM1 for 6 ka. Only a fair agreement is seen, and significant offsets exist in the placement of biomes by BIOME1. For today BIOME1 simulates the boundary between the temperate deciduous and cool mixed forests to be too far south and the steppe-forest boundary to be too far west

  6. Mapping fire events in the transition of Amazon and Cerrado biome using remote sensing

    Science.gov (United States)

    Antunes Daldegan, G.; Roberts, D. A.; Peterson, S.; Ribeiro, F.

    2015-12-01

    threat fire is posting to them, this research aims to perform a multiscale study of fire events in the transition zone between the two biomes, using MODIS to identify fire scars in a coarser resolution and then refining the scale using Landsat images, aiming to confirm the fire scar identification and compare the differences between the measurements performed using the two methods.

  7. Image processing for optical mapping.

    Science.gov (United States)

    Ravindran, Prabu; Gupta, Aditya

    2015-01-01

    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  8. Recalage d'images d'empreintes digitales en biométrie sans contact ...

    African Journals Online (AJOL)

    empreintes digitales acquises sans contact. Pour estimer la transformation géométrique, on recherche un ensemble de paires de points dans les images à apparier. Ces paires sont construites à partir de points d'intérêt extraits des images à l'aide du ...

  9. User Preferences in Image Map Using

    Science.gov (United States)

    Vondráková, A.; Vozenilek, V.

    2016-06-01

    In the process of map making, the attention is given to the resulting image map (to be accurate, readable, and suit the primary purpose) and its user aspects. Current cartography understands the user issues as all matters relating to user perception, map use and also user preferences. Most commercial cartographic production is strongly connected to economic circumstances. Companies are discovering user's interests and market demands. However, is it sufficient to focus just on the user's preferences? Recent research on user aspects at Palacký University Olomouc addresses a much wider scope of user aspects. The user's preferences are very often distorting - the users think that the particular image map is kind, beautiful, and useful and they wants to buy it (or use it - it depends on the form of the map production). But when the same user gets the task to use practically this particular map (such as finding the shortest way), so the user concludes that initially preferred map is useless, and uses a map, that was worse evaluated according to his preferences. It is, therefore, necessary to evaluate not only the correctness of image maps and their aesthetics but also to assess the user perception and other user issues. For the accomplishment of such testing, eye-tracking technology is a useful tool. The research analysed how users read image maps, or if they prefer image maps over traditional maps. The eye tracking experiment on the comparison of the conventional and image map reading was conducted. The map readers were asked to solve few simple tasks with either conventional or image map. The readers' choice of the map to solve the task was one of investigated aspect of user preferences. Results demonstrate that the user preferences and user needs are often quite different issues. The research outcomes show that it is crucial to implement map user testing into the cartographic production process.

  10. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  11. Defining functional biomes and monitoring their change globally.

    Science.gov (United States)

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.

  12. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  13. Anthropization on the Cerrado biome in the Brazilian Uruçuí-Una Ecological Station estimated from orbital images.

    Science.gov (United States)

    Pereira, A C; Gama, V F

    2010-11-01

    In this study we analysed the dynamics of deforestation and burnings during the dry seasons from 2003 to 2008 in the Uruçuí-Una Ecological Station (UUES) and its buffer zone, located in the Cerrado biome of the southwest of Piauí, a Brazil's State, based on images from the orbital sensors CCD/CBERS-2 and TM/Landsat-5. Two dates from each of the years were interpreted and analysed: one in the middle of the dry season and one at the end. The deforested areas were expanded through the period analysed and were larger in the buffer zone, suggesting a relative protection of the UUES. New cut-offs were predictable because of the early opening of roads that would become their limits. The burning scars were larger at the end of the dry season as a consequence of the management and implementation of agricultures and pastures. In 2004 and 2007 these scars were larger probably because of the increase of dry phytomass that every three years is big enough to spread the fire originated in the anthropogenic burnings through the native vegetation. This scenario reaffirms the need for: stronger enforcement in order to stop anthropisation in the UUES and a management plan, absent for this unit so far. These proceedings are urgent also because the UUES is located in one of the most preserved regions of the Cerrado and controversially where intense anthropisation in ongoing, which stresses the lack, need and urgency of biological conservation proceedings for the Piauí's southeastern Cerrado.

  14. Anthropization on the Cerrado biome in the Brazilian Uruçuí-Una Ecological Station estimated from orbital images

    Directory of Open Access Journals (Sweden)

    AC. Pereira

    Full Text Available In this study we analysed the dynamics of deforestation and burnings during the dry seasons from 2003 to 2008 in the Uruçuí-Una Ecological Station (UUES and its buffer zone, located in the Cerrado biome of the southwest of Piauí, a Brazil's State, based on images from the orbital sensors CCD/CBERS-2 and TM/Landsat-5. Two dates from each of the years were interpreted and analysed: one in the middle of the dry season and one at the end. The deforested areas were expanded through the period analysed and were larger in the buffer zone, suggesting a relative protection of the UUES. New cut-offs were predictable because of the early opening of roads that would become their limits. The burning scars were larger at the end of the dry season as a consequence of the management and implementation of agricultures and pastures. In 2004 and 2007 these scars were larger probably because of the increase of dry phytomass that every three years is big enough to spread the fire originated in the anthropogenic burnings through the native vegetation. This scenario reaffirms the need for: stronger enforcement in order to stop anthropisation in the UUES and a management plan, absent for this unit so far. These proceedings are urgent also because the UUES is located in one of the most preserved regions of the Cerrado and controversially where intense anthropisation in ongoing, which stresses the lack, need and urgency of biological conservation proceedings for the Piauí's southeastern Cerrado.

  15. New false color mapping for image fusion

    NARCIS (Netherlands)

    Toet, A.; Walraven, J.

    1996-01-01

    A pixel based colour mapping algorithm is presented that produces a fused false colour rendering of two gray level images representing different sensor modalities. The result-ing fused false colour images have a higher information content than each of the original images and retain sensor-specific

  16. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  17. Granulometric maps from high resolution satellite images:

    OpenAIRE

    Chopin, Franck; Mering, Catherine

    2002-01-01

    A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every ...

  18. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  19. Mapping spatial patterns with morphological image processing

    Science.gov (United States)

    Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham

    2006-01-01

    We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...

  20. Analysis of engineering drawings and raster map images

    CERN Document Server

    Henderson, Thomas C

    2013-01-01

    Presents up-to-date methods and algorithms for the automated analysis of engineering drawings and digital cartographic maps Discusses automatic engineering drawing and map analysis techniques Covers detailed accounts of the use of unsupervised segmentation algorithms to map images

  1. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    Laine, F.J.; Fatouros, P.P.; Kraft, K.A.

    1990-01-01

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  2. Mapping Soil Organic Matter with Hyperspectral Imaging

    Science.gov (United States)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  3. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  4. Mineral mapping and applications of imaging spectroscopy

    Science.gov (United States)

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  5. User's Guide to Biome Information from the United States International Biological Program (IBP). First Edition.

    Science.gov (United States)

    Hinckley, A. Dexter; Haug, Peter T.

    This publication is a guide to the biome research conducted under the International Biological Program. The guide lists biome researchers by interest and by biome as well as a central list. A site list, map, information sources section reporting abstracts, bibliographies, journals, books, evaluations, and data books are also included. Three…

  6. PERSISTENCE MAPPING USING EUV SOLAR IMAGER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B. J. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Young, C. A., E-mail: barbara.j.thompson@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)

    2016-07-01

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call “Persistence Mapping,” to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or “time-lapse” imaging uses the full sample (of size N ), Persistence Mapping rejects ( N − 1)/ N of the data set and identifies the most relevant 1/ N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.

  7. MMSE based map estimation for image denoising

    Science.gov (United States)

    Om, Hari; Biswas, Mantosh

    2014-04-01

    Denoising of a natural image corrupted by the additive white Gaussian noise (AWGN) is a classical problem in image processing. The NeighShrink [17,18], LAWML [19], BiShrink [20,21], IIDMWT [23], IAWDMNC [25], and GIDMNWC [24] denoising algorithms remove the noise from the noisy wavelet coefficients using thresholding by retaining only the large coefficients and setting the remaining to zero. Generally the threshold depends mainly on the variance, image size, and image decomposition levels. The performances of these methods are not very effective as they are not spatially adaptive i.e., the parameters considered are not smoothly varied in the neighborhood window. Our proposed method overcomes this weakness by using minimum mean square error (MMSE) based maximum a posterior (MAP) estimation. In this paper, we modify the parameters such as variance of the classical MMSE estimator in the neighborhood window of the noisy wavelet coefficients to remove the noise effectively. We demonstrate experimentally that our method outperforms the NeighShrink, LAWML, BiShrink, IIDMWT, IAWDMNC, and GIDMNWC methods in terms of the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). It is more effective particularly for the highly corrupted natural images.

  8. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  9. Learning Aerial Image Segmentation From Online Maps

    Science.gov (United States)

    Kaiser, Pascal; Wegner, Jan Dirk; Lucchi, Aurelien; Jaggi, Martin; Hofmann, Thomas; Schindler, Konrad

    2017-11-01

    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.

  10. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    Science.gov (United States)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  11. Presurgical mapping with magnetic source imaging. Comparisons with intraoperative findings

    International Nuclear Information System (INIS)

    Roberts, T.P.L.; Ferrari, P.; Perry, D.; Rowley, H.A.; Berger, M.S.

    2000-01-01

    We compare noninvasive preoperative mapping with magnetic source imaging to intraoperative cortical stimulation mapping. These techniques were directly compared in 17 patients who underwent preoperative and postoperative somatosensory mapping of a total of 22 comparable anatomic sites (digits, face). Our findings are presented in the context of previous studies that used magnetic source imaging and functional magnetic resonance imaging as noninvasive surrogates of intraoperative mapping for the identification of sensorimotor and language-specific brain functional centers in patients with brain tumors. We found that magnetic source imaging results were reasonably concordant with intraoperative mapping findings in over 90% of cases, and that concordance could be defined as 'good' in 77% of cases. Magnetic source imaging therefore provides a viable, if coarse, identification of somatosensory areas and, consequently, can guide and reduce the time taken for intraoperative mapping procedures. (author)

  12. Presurgical mapping with magnetic source imaging. Comparisons with intraoperative findings

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, T.P.L.; Ferrari, P.; Perry, D.; Rowley, H.A.; Berger, M.S. [Univ. of California, San Francisco, CA (United States)

    2000-07-01

    We compare noninvasive preoperative mapping with magnetic source imaging to intraoperative cortical stimulation mapping. These techniques were directly compared in 17 patients who underwent preoperative and postoperative somatosensory mapping of a total of 22 comparable anatomic sites (digits, face). Our findings are presented in the context of previous studies that used magnetic source imaging and functional magnetic resonance imaging as noninvasive surrogates of intraoperative mapping for the identification of sensorimotor and language-specific brain functional centers in patients with brain tumors. We found that magnetic source imaging results were reasonably concordant with intraoperative mapping findings in over 90% of cases, and that concordance could be defined as 'good' in 77% of cases. Magnetic source imaging therefore provides a viable, if coarse, identification of somatosensory areas and, consequently, can guide and reduce the time taken for intraoperative mapping procedures. (author)

  13. System and method for image mapping and visual attention

    Science.gov (United States)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  14. MapSnapper: engineering an efficient algorithm for matching images of maps from mobile phones

    Science.gov (United States)

    Hare, Jonathon S.; Lewis, Paul H.; Gordon, Layla; Hart, Glen

    2008-01-01

    The MapSnapper project aimed to develop a system for robust matching of low-quality images of a paper map taken from a mobile phone against a high quality digital raster representation of the same map. The paper presents a novel methodology for performing content-based image retrieval and object recognition from query images that have been degraded by noise and subjected to transformations through the imaging system. In addition the paper also provides an insight into the evaluation-driven development process that was used to incrementally improve the matching performance until the design specifications were met.

  15. Hybrid image classification technique for land-cover mapping in the Arctic tundra, North Slope, Alaska

    Science.gov (United States)

    Chaudhuri, Debasish

    Remotely sensed image classification techniques are very useful to understand vegetation patterns and species combination in the vast and mostly inaccessible arctic region. Previous researches that were done for mapping of land cover and vegetation in the remote areas of northern Alaska have considerably low accuracies compared to other biomes. The unique arctic tundra environment with short growing season length, cloud cover, low sun angles, snow and ice cover hinders the effectiveness of remote sensing studies. The majority of image classification research done in this area as reported in the literature used traditional unsupervised clustering technique with Landsat MSS data. It was also emphasized by previous researchers that SPOT/HRV-XS data lacked the spectral resolution to identify the small arctic tundra vegetation parcels. Thus, there is a motivation and research need to apply a new classification technique to develop an updated, detailed and accurate vegetation map at a higher spatial resolution i.e. SPOT-5 data. Traditional classification techniques in remotely sensed image interpretation are based on spectral reflectance values with an assumption of the training data being normally distributed. Hence it is difficult to add ancillary data in classification procedures to improve accuracy. The purpose of this dissertation was to develop a hybrid image classification approach that effectively integrates ancillary information into the classification process and combines ISODATA clustering, rule-based classifier and the Multilayer Perceptron (MLP) classifier which uses artificial neural network (ANN). The main goal was to find out the best possible combination or sequence of classifiers for typically classifying tundra type vegetation that yields higher accuracy than the existing classified vegetation map from SPOT data. Unsupervised ISODATA clustering and rule-based classification techniques were combined to produce an intermediate classified map which was

  16. Image of the World on polyhedral maps and globes

    Directory of Open Access Journals (Sweden)

    Pędzich Paweł

    2016-12-01

    Full Text Available Application of polyhedrons as image surface in cartographic projections has a tradition of more than 200 years. The first maps relying on polyhedrons appeared in the 19th century. One of the first maps which based on an original polyhedral projection using a regular octahedron was constructed by the Californian architect Bernard Cahill in 1909. Other well known polyhedral projections and maps included Buckminster Fuller’s projection and map into icosahedron from 1954 and S. Waterman’s projection into truncated octahedron from 1996, which resulted in the “butterfly” map. Polyhedrons as image surface have the advantage of allowing a continuous image of continents of the Earth with low projection distortion. Such maps can be used for many purposes, such as presentation of tectonic plates or geographic discoveries.

  17. Consequences of biome depletion

    International Nuclear Information System (INIS)

    Salvucci, Emiliano

    2013-01-01

    The human microbiome is an integral part of the superorganism together with their host and they have co-evolved since the early days of the existence of the human species. The modification of the microbiome as a result changes in food and social habits of human beings throughout their life history has led to the emergence of many diseases. In contrast with the Darwinian view of nature of selfishness and competence, new holistic approaches are rising. Under these views, the reconstitution of the microbiome comes out as a fundamental therapy for emerging diseases related to biome depletion.

  18. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  19. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  20. Saharasar: An Interactive SAR Image Database for Desert Mapping

    Science.gov (United States)

    Lopez, S.; Paillou, Ph.

    2017-06-01

    We present a dedicated tool for accessing radar images acquired by the ALOS/PALSAR mission over Sahara and Arabia. We developed a dedicated web site, using the Mapserver web mapping server and the Cesium javascript library.

  1. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced airborne imaging system for fire detection/mapping is proposed. The goal of the project is to improve control and management of wildfires in order to...

  2. New modified map for digital image encryption and its performance

    Science.gov (United States)

    Suryadi, MT; Yus Trinity Irsan, Maria; Satria, Yudi

    2017-10-01

    Protection to classified digital data becomes so important in avoiding data manipulation and alteration. The focus of this paper is in data and information protection of digital images form. Protection is provided in the form of encrypted digital image. The encryption process uses a new map, {x}n+1=\\frac{rλ {x}n}{1+λ {(1-{x}n)}2}\\quad ({mod} 1), which is called MS map. This paper will show: the results of digital image encryption using MS map and how the performance is regarding the average time needed for encryption/decryption process; randomness of key stream sequence with NIST test, histogram analysis and goodness of fit test, quality of the decrypted image by PSNR, initial value sensitivity level, and key space. The results show that the average time of the encryption process is relatively same as the decryption process and it depends to types and sizes of the image. Cipherimage (encrypted image) is uniformly distributed since: it passes the goodness of fit test and also the histogram of the cipherimage is flat; key stream, that are generated by MS map, passes frequency (monobit) test, and runs test, which means the key stream is a random sequence; the decrypted image has same quality as the original image; and initial value sensitivity reaches 10-17, and key space reaches 3.24 × 10634. So, that encryption algorithm generated by MS map is more resistant to brute-force attack and known plaintext attack.

  3. Parallel image encryption algorithm based on discretized chaotic map

    International Nuclear Information System (INIS)

    Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue

    2008-01-01

    Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms

  4. Improved field-mapping and artifact correction in multispectral imaging.

    Science.gov (United States)

    Quist, Brady; Shi, Xinwei; Weber, Hans; Hargreaves, Brian A

    2017-11-01

    To develop a method for improved B 0 field-map estimation, deblurring, and image combination for multispectral imaging near metal. A goodness-of-fit field-map estimation technique is proposed that uses only the multispectral imaging (MSI) data to estimate the field map. Using the improved field map, a novel deblurring technique is proposed that also employs a new image combination scheme to reduce the effects of noise and other residual MSI artifacts. The proposed field-map estimation and deblurring techniques are compared to the current methods in phantoms and/or in vivo from subjects with knee, hip, and spinal metallic implants. Phantom experiments validate that the goodness-of-fit field-map estimation is less sensitive to noise and bias than the conventional center-of-mass technique, which reduces distortion in the deblurring methods. The new deblurring approach also is substantially less sensitive to noise and distortion than the current deblurring method, as demonstrated in phantoms and in vivo, and is able to find a good tradeoff between deblurring and distortion. The proposed methods not only enable field-mapping with reduced noise sensitivity but are able to create deblurred images with less distortion and better signal-to-noise ratio with no additional scan time, thereby enabling improved visualization of underlying anatomy near metallic implants. Magn Reson Med 78:2022-2034, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Disturbance maintains alternative biome states.

    Science.gov (United States)

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  6. Evolution of the indoor biome.

    Science.gov (United States)

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Climate-biomes, pedo-biomes and pyro-biomes: which world view explains the tropical forest - savanna boundary in South America?

    Science.gov (United States)

    Langan, Liam; Higgins, Steven; Scheiter, Simon

    2015-04-01

    . Using the ISRIC-WISE soil depth dataset we show that applying spatially variable soil depth, in contrast to globally fixed soil depth, improves the accuracy with which we predict the South American savanna biome distribution when compared to multiple contemporary biome maps and that the emergence of the savanna biome results in markedly different ecosystem structural properties such as tree height, tree cover and above ground biomass. Many of these areas are capable of supporting forest and savanna biome states and have been deemed bi-stable areas, we show that, in these bi-stable areas the emergent tree community trait suite differs markedly between forest and savanna biome states.

  8. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  9. On the applicability of numerical image mapping for PIV image analysis near curved interfaces

    International Nuclear Information System (INIS)

    Masullo, Alessandro; Theunissen, Raf

    2017-01-01

    This paper scrutinises the general suitability of image mapping for particle image velocimetry (PIV) applications. Image mapping can improve PIV measurement accuracy by eliminating overlap between the PIV interrogation windows and an interface, as illustrated by some examples in the literature. Image mapping transforms the PIV images using a curvilinear interface-fitted mesh prior to performing the PIV cross correlation. However, degrading effects due to particle image deformation and the Jacobian transformation inherent in the mapping along curvilinear grid lines have never been deeply investigated. Here, the implementation of image mapping from mesh generation to image resampling is presented in detail, and related error sources are analysed. Systematic comparison with standard PIV approaches shows that image mapping is effective only in a very limited set of flow conditions and geometries, and depends strongly on a priori knowledge of the boundary shape and streamlines. In particular, with strongly curved geometries or streamlines that are not parallel to the interface, the image-mapping approach is easily outperformed by more traditional image analysis methodologies invoking suitable spatial relocation of the obtained displacement vector. (paper)

  10. A fast image encryption algorithm based on chaotic map

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  11. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    International Nuclear Information System (INIS)

    Azmi, S M; Ahmad, Baharin; Ahmad, Anuar

    2014-01-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps

  12. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    Science.gov (United States)

    Azmi, S. M.; Ahmad, Baharin; Ahmad, Anuar

    2014-02-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps.

  13. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

    Directory of Open Access Journals (Sweden)

    Matthieu Molinier

    2016-10-01

    Full Text Available Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha, spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha, with total relative R M S E ( % = 29 . 66 % . In Durango, Mexico (temperate zone, Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha. Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

  14. Integrated terrain mapping with digital Landsat images in Queensland, Australia

    Science.gov (United States)

    Robinove, Charles Joseph

    1979-01-01

    Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and

  15. Texel color mapping of ultrasonic images

    International Nuclear Information System (INIS)

    Birnholz, J.C.

    1986-01-01

    Regional texture appearances contribute to subjective interpretation of US images, particularly in the case of diffuse parenchymal diseases. The authors have begun to dissect texture features of magnified, large aperture, dynamically focused images with 7 x 7 pixel connected, overlapping fields. A luminosity statistic for each field is used to color code the central pixel, resulting in chromatic distributions amplifying subjective motions of ''fine,'' ''patchy,'' and ''coarse'' textures. This method was developed for an inexpensive personal computer system and can be applied more generally in nuclear and conventional radiology, CT, and MR imaging

  16. MODIS Level-3 Standard Mapped Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  17. Mid- to Late-Holocene pollen-based biome reconstructions for Colombia

    NARCIS (Netherlands)

    Marchant, R.; Behling, H.; Berrío, J.C.; Cleef, A.M.; Duivenvoorden, J.; Hooghiemstra, H.; Kuhry, P.; Melief, B.; Geel, van B.; Hammen, van der T.; Reenen, van T.; Wille, M.

    2001-01-01

    The assignment of Colombian pollen data to biomes allows the data to be synthesised at 10 `time windows' from the present-day to 6000 radiocarbon years before present (BP). The modern reconstructed biomes are compared to a map of modern potential vegetation to check the applicability of the method

  18. Geometric description of images as topographic maps

    CERN Document Server

    Caselles, Vicent

    2010-01-01

    This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...

  19. Transmittance spectroscopy and transmitted multispectral imaging to map covered paints

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2016-01-01

    Full Text Available Transmitted spectroscopy and transmitted multispectral imaging in the 400-900 nm range have been applied for the mapping and tentative identification of paints covered by a white preparation as in the case of a ground laid for reusing a canvas for another painting. These methods can be applied to polychrome works of art, as long as their support and new preparation are sufficiently translucent. This work presents the transmittance spectra acquired from a test board consisting of a prepared canvas with swatches of 54 pigments covered with titanium white and the multispectral images realized with transmitted light to map covered paints on a mock-up painting. It was observed that 18 out of 54 historical pigments provide characteristic transmittance spectra even underneath a titanium white preparation layer and that transmitted light multispectral imaging can map hidden paint layers.

  20. Treefall Gap Mapping Using Sentinel-2 Images

    Directory of Open Access Journals (Sweden)

    Iván Barton

    2017-11-01

    Full Text Available Proper knowledge about resources in forest management is fundamental. One of the most important parameters of forests is their size or spatial extension. By determining the area of treefall gaps inside the compartments, a more accurate yield can be calculated and the scheduling of forestry operations could be planned better. Several field- and remote sensing-based approaches are in use for mapping but they provide only static measurements at high cost. The Earth Observation satellite mission Sentinel-2 was put in orbit as part of the Copernicus programme. With the 10-m resolution bands, it is possible to observe small-scale forestry operations like treefall gaps. The spatial extension of these gaps is often less than 200 m2, thus their detection can only be done on sub-pixel level. Due to the higher temporal resolution of Sentinel-2, multiple observations are available in a year; therefore, a time series evaluation is possible. The modelling of illumination can increase the accuracy of classification in mountainous areas. The method was tested on three deciduous forest sites in the Börzsöny Mountains in Hungary. The area evaluation produced less than 10% overestimation with the best possible solutions on the sites. The presented work shows a low-cost method for mapping treefall gaps which delivers annual information about the gap area in a deciduous forest.

  1. An image guided algorithm for range map super-resolution

    Science.gov (United States)

    Lei, Jieyu; Han, Shaokun; Xia, Wenze; Wang, Liang; Zhai, Yu

    2018-01-01

    Three-dimensional imaging is increasingly becoming important in a number of applications that observe and analyze real-world environments. Range sensors, such as flash imaging Lidar and Time-of-flight camera, which can deliver high accuracy range measurement images, but are limited by the low resolution. To overcome this limitation, this paper shows the benefit of multimodal sensor system, combining a low-resolution range sensor with a high-resolution optical sensor, in order to provide a high-resolution, low-noise range image of the scene. First, an extrinsic calibration algorithm is used to align the range map with optical image. Then, an image-guided algorithm is proposed to solve the super-resolution optimization problem. This algorithm using the Markov Random Field framework. It defines an energy function that combines a standard quadratic data term and a regularizing term with the weighting factors that relate optical image edges to range map edges. Experiments on synthetic and real data are provided and analyzed to validate this method. The result confirms that the quality of the estimated high-resolution range map is improved. This work can be extended for video super-resolution with the consideration of temporal coherence.

  2. Anthropogenic biomes: a key contribution to earth-system science

    Science.gov (United States)

    Lilian Alessa; F. Stuart Chapin

    2008-01-01

    Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.

  3. The study of landscape units in Pantanal biome

    Directory of Open Access Journals (Sweden)

    Maria Elisa Siqueira Silva

    2012-04-01

    Full Text Available The geoecological landscape observation allows the analysis of geosystems fragmentation in small areas or a diagnosis of a particular environment or biome. This geosystemic approach permits the integration of elements that constitutes the environment, allowing the interaction and interdependence analysis of social and ecological elements. The main goal of this work was to elaborate a map of landscape units and a territorial planning for Pantanal biome, using data generated by the Brazilian Institute of Geography and Statistics (IBGE corresponding to morphometric relief units, geology, soils and agricultural capability; the land cover and land use map developed by the Brazilian Agricultural Research Corporation (EMBRAPA and the maps of flooded areas and spatial variability of the Pantanal biome. From the crosstab between altitude, slope, spatial variability map and geology we identified 16 landscape units. Additionally, the analysis of Pantanal biome environmental vulnerability of the landscape units considering different types of vegetation, topography and soils units showed that Pantanal has an intermediate environmental fragility, located mainly in the alluvial deposition areas of the Taquari river and in flood plains with altitude between 50 and 250 meters.

  4. Spectral identity mapping for enhanced chemical image analysis

    Science.gov (United States)

    Turner, John F., II

    2005-03-01

    Advances in spectral imaging instrumentation during the last two decades has lead to higher image fidelity, tighter spatial resolution, narrower spectral resolution, and improved signal to noise ratios. An important sub-classification of spectral imaging is chemical imaging, in which the sought-after information from the sample is its chemical composition. Consequently, chemical imaging can be thought of as a two-step process, spectral image acquisition and the subsequent processing of the spectral image data to generate chemically relevant image contrast. While chemical imaging systems that provide turnkey data acquisition are increasingly widespread, better strategies to analyze the vast datasets they produce are needed. The Generation of chemically relevant image contrast from spectral image data requires multivariate processing algorithms that can categorize spectra according to shape. Conventional chemometric techniques like inverse least squares, classical least squares, multiple linear regression, principle component regression, and multivariate curve resolution are effective for predicting the chemical composition of samples having known constituents, but are less effective when a priori information about the sample is unavailable. To address these problems, we have developed a fully automated non-parametric technique called spectral identity mapping (SIMS) that reduces the dependence of spectral image analysis on training datasets. The qualitative SIMS method provides enhanced spectral shape specificity and improved chemical image contrast. We present SIMS results of infrared spectral image data acquired from polymer coated paper substrates used in the manufacture of pressure sensitive adhesive tapes. In addition, we compare the SIMS results to results from spectral angle mapping (SAM) and cosine correlation analysis (CCA), two closely related techniques.

  5. Image encryption based on permutation-substitution using chaotic map and Latin Square Image Cipher

    Science.gov (United States)

    Panduranga, H. T.; Naveen Kumar, S. K.; Kiran, HASH(0x22c8da0)

    2014-06-01

    In this paper we presented a image encryption based on permutation-substitution using chaotic map and Latin square image cipher. The proposed method consists of permutation and substitution process. In permutation process, plain image is permuted according to chaotic sequence generated using chaotic map. In substitution process, based on secrete key of 256 bit generate a Latin Square Image Cipher (LSIC) and this LSIC is used as key image and perform XOR operation between permuted image and key image. The proposed method can applied to any plain image with unequal width and height as well and also resist statistical attack, differential attack. Experiments carried out for different images of different sizes. The proposed method possesses large key space to resist brute force attack.

  6. Varying influence of environmental gradients on vegetation patterns across biomes

    Science.gov (United States)

    Dahlin, K.; Asner, G. P.; Mascaro, J.; Taylor, P.

    2016-12-01

    Environmental gradients, like elevation, slope, aspect, and soil properties, filter vegetation types at the local scale. These `environmental filters' create conditions that are conducive to the success or failure of different plant types, influencing landscape-scale heterogeneity in taxonomic diversity, functional diversity, biomass accumulation, greenness, and more. Niche-based models implicitly assume that environmental filtering is the dominant process controlling plant distributions. While environmental filtering is a well understood process, its importance relative to other drivers of heterogeneity, like disturbance, human impacts, and plant-animal interactions, remains unknown and likely varies between biomes. Here we synthesize results from several studies using data from the Carnegie Airborne Observatory - a fused LiDAR and imaging spectroscopy system - that mapped a vegetation patterns in multiple biomes and associated these with environmental gradients. The study sites range from Panama to California, and the patterns range from aboveground carbon to foliar chemistry. We show that at fine spatial scales environmental filtering is a strong predictor of aboveground biomass in a dry system (Jasper Ridge Biological Preserve, California - Dahlin et al 2012) but a weak predictor of plant functional traits in that same system (Dahlin et al 2014), a weak predictor of aboveground carbon in the tropics (Barro Colorado Island, Panama - Mascaro et al 2011; Osa Peninsula, Costa Rica - Taylor et al 2015), and a weak predictor of greenness (NDVI) in a disturbed dry system (Santa Cruz Island, California - Dahlin et al 2014). Collectively, these results suggest that while environmental filtering is an important driver of landscape-scale heterogeneity, it is not the only, or often even the most important, driver for many of these systems and patterns.

  7. Automated mapping of the intertidal beach from video images

    NARCIS (Netherlands)

    Uunk, L.; Uunk, L.; Wijnberg, Kathelijne Mariken; Morelissen, R.; Morelissen, R.

    2010-01-01

    This paper presents a fully automated procedure to derive the intertidal beach bathymetry on a daily basis from video images of low-sloping beaches that are characterised by the intermittent emergence of intertidal bars. Bathymetry data are obtained by automated and repeated mapping of shorelines

  8. Relaxation-based viscosity mapping for magnetic particle imaging.

    Science.gov (United States)

    Utkur, M; Muslu, Y; Saritas, E U

    2017-05-07

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where 'color MPI' techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  9. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  10. The Peak Pairs algorithm for strain mapping from HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)

    2007-11-15

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  11. GROUND SURFACE VISUALIZATION USING RED RELIEF IMAGE MAP FOR A VARIETY OF MAP SCALES

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2016-06-01

    Full Text Available There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008 to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  12. The Biomes of Homewood: Interactive Map Software

    Science.gov (United States)

    Shingles, Richard; Feist, Theron; Brosnan, Rae

    2005-01-01

    To build a learning community, the General Biology faculty at Johns Hopkins University conducted collaborative, problem-based learning assignments outside of class in which students are assigned to specific areas on campus, and gather and report data about their area. To overcome the logistics challenges presented by conducting such assignments in…

  13. CMOS IMAGING SENSOR TECHNOLOGY FOR AERIAL MAPPING CAMERAS

    Directory of Open Access Journals (Sweden)

    K. Neumann

    2016-06-01

    Full Text Available In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  14. The role of image registration in brain mapping

    Science.gov (United States)

    Toga, A.W.; Thompson, P.M.

    2008-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  15. Description of the Karoo Biome project

    CSIR Research Space (South Africa)

    Cowling, RM

    1986-01-01

    Full Text Available The ecological characteristics and ecological problems of the karoo biome are briefly described. A conceptual basis and guidelines for the development of the Karoo Biome Project are outlined by addressing project goals, project structure...

  16. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  17. Neural response imaging (NRI) cochlear mapping: prospects for clinical application.

    Science.gov (United States)

    Arnold, L; Lindsey, P; Hacking, C; Boyle, P

    2007-12-01

    The objective of the study was to investigate the potential for clinical application of neural response imaging (NRI) cochlear mapping. Cochlear mapping was performed at each fitting session up to at least six months following initial fitting. Stimulation was delivered to one electrode site. NRI was recorded from each of the remaining sites. The procedure was repeated for apical, medial and basal stimulation sites, stimulating at subjective threshold and most comfortable levels. Responses were obtained in five out of six subjects and are discussed in terms of: reproducibility, quality, changes over time. Cochlear mapping provided repeatable data that gave interesting insights into the implanted cochlea. Further work is required to determine whether this approach could contribute to programme optimisation. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    Science.gov (United States)

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  19. Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging.

    Science.gov (United States)

    Miclos, Sorin; Parasca, Sorin Viorel; Calin, Mihaela Antonina; Savastru, Dan; Manea, Dragos

    2015-09-01

    The measurement of tissue oxygenation plays an important role in the diagnosis and therapeutic assessment of a large variety of diseases. Many different methods have been developed and are currently applied in clinical practice for the measurement of tissue oxygenation. Unfortunately, each of these methods has its own limitations. In this paper we proposed the use of hyperspectral imaging as new method for the assessment of the tissue oxygenation level. To extract this information from hyperspectral images a new algorithm for mapping cutaneous tissue oxygen concentration was developed. This algorithm takes into account and solves some problems related to setting and calculation of some parameters derived from hyperspectral images. The algorithm was tested with good results on synthetic images and then validated on the fingers of a hand with different blood irrigation states. The results obtained have proved the ability of hyperspectral imaging together with the developed algorithm to map the oxy- and deoxyhemoglobin distribution on the analyzed fingers. These are only preliminary results and other studies should be done before this approach to be used in the clinical setting for the diagnosis and monitoring of various diseases.

  20. A filtering approach to edge preserving MAP estimation of images.

    Science.gov (United States)

    Humphrey, David; Taubman, David

    2011-05-01

    The authors present a computationally efficient technique for maximum a posteriori (MAP) estimation of images in the presence of both blur and noise. The image is divided into statistically independent regions. Each region is modelled with a WSS Gaussian prior. Classical Wiener filter theory is used to generate a set of convex sets in the solution space, with the solution to the MAP estimation problem lying at the intersection of these sets. The proposed algorithm uses an underlying segmentation of the image, and a means of determining the segmentation and refining it are described. The algorithm is suitable for a range of image restoration problems, as it provides a computationally efficient means to deal with the shortcomings of Wiener filtering without sacrificing the computational simplicity of the filtering approach. The algorithm is also of interest from a theoretical viewpoint as it provides a continuum of solutions between Wiener filtering and Inverse filtering depending upon the segmentation used. We do not attempt to show here that the proposed method is the best general approach to the image reconstruction problem. However, related work referenced herein shows excellent performance in the specific problem of demosaicing.

  1. Transmittance spectroscopy and transmitted multispectral imaging to map covered paints

    OpenAIRE

    Antonino Cosentino

    2016-01-01

    Transmitted spectroscopy and transmitted multispectral imaging in the 400-900 nm range have been applied for the mapping and tentative identification of paints covered by a white preparation as in the case of a ground laid for reusing a canvas for another painting. These methods can be applied to polychrome works of art, as long as their support and new preparation are sufficiently translucent. This work presents the transmittance spectra acquired from a test board consisting of a prepared ca...

  2. Identification of biomes affected by marginal expansion of agricultural land use induced by increased crop consumption

    DEFF Research Database (Denmark)

    Kløverpris, Jesper Hedal

    2009-01-01

    or potential grassland/steppe, whereas expansion on land suited for grazing but not for crop cultivation (grazable land) typically occurs on potential shrubland or a few other biomes depending on the region. Some uncertainty applies to the results but it is concluded that it is feasible to identify biomes...... to characterise these areas. The present study ascribes so-called biomes (natural potential vegetation) to the areas affected by agricultural expansion in order to provide a basis for assessing the environmental impacts from land use in the life cycle impact assessment (LCIA). The methodology builds...... on agricultural statistics and maps of global agricultural areas and the global distribution of biomes. The application of the method is illustrated with four examples. The results indicate that agricultural expansion on land suited for crop cultivation (cultivable land) typically affects forest biomes...

  3. Mapping potentialy asbestos-bearing rocks using imaging spectroscopy

    Science.gov (United States)

    Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J.

    2009-01-01

    Rock and soil that may contain naturally occurring asbestos (NOA), a known human carcinogen, were mapped in the Sierra Nevada, California, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to determine if these materials could be uniquely identified with spectroscopy. Such information can be used to prepare or refine maps of areas that may contain minerals that can be asbestiform, such as serpentine and tremolite-actinolite, which were the focus of this study. Although thick vegetation can conceal underlying rock and soil, use of linear-mixture spectra calculated from spectra of dry grass and serpentine allowed detection of serpentine in some parts of the study area with up to ???80% dry-grass cover. Chaparral vegetation, which was dominantly, but not exclusively, found in areas underlain by serpentinized ultramafic rocks, was also mapped. Overall, field checking at 201 sites indicated highly accurate identification by AVIRIS of mineral (94%) and vegetation (89%) categories. Practical applications of AVIRIS to mapping areas that may contain NOA include locating roads that are surfaced with serpentine aggregate, identifying sites that may require enhanced dust control or other safety measures, and filling gaps in geologic mapping where field access is limited. ?? 2009 Geological Society of America.

  4. Characterizing forest carbon stocks at tropical biome and landscape level in Mount Apo National Park, Philippines

    Science.gov (United States)

    Rubas, L. C.

    2012-12-01

    Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that

  5. REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES

    Directory of Open Access Journals (Sweden)

    T. Yamakawa

    2016-06-01

    Full Text Available Mobile mapping systems (MMS can capture dense point-clouds of urban scenes. For visualizing realistic scenes using point-clouds, RGB colors have to be added to point-clouds. To generate colored point-clouds in a post-process, each point is projected onto camera images and a RGB color is copied to the point at the projected position. However, incorrect colors are often added to point-clouds because of the misalignment of laser scanners, the calibration errors of cameras and laser scanners, or the failure of GPS acquisition. In this paper, we propose a new method to correct RGB colors of point-clouds captured by a MMS. In our method, RGB colors of a point-cloud are corrected by comparing intensity images and RGB images. However, since a MMS outputs sparse and anisotropic point-clouds, regular images cannot be obtained from intensities of points. Therefore, we convert a point-cloud into a mesh model and project triangle faces onto image space, on which regular lattices are defined. Then we extract edge features from intensity images and RGB images, and detect their correspondences. In our experiments, our method worked very well for correcting RGB colors of point-clouds captured by a MMS.

  6. NOISY IMAGE SEGMENTATION USING A SELF-ORGANIZING MAP NETWORK

    Directory of Open Access Journals (Sweden)

    Saleh Gorjizadeh

    2015-05-01

    Full Text Available Image segmentation is an essential step in image processing. Many image segmentation methods are available but most of these methods are not suitable for noisy images or they require priori knowledge, such as knowledge on the type of noise. In order to overcome these obstacles, a new image segmentation algorithm is proposed by using a self-organizing map (SOM with some changes in its structure and training data. In this paper, we choose a pixel with its spatial neighbors and two statistical features, mean and median, computed based on a block of pixels as training data for each pixel. This approach helps SOM network recognize a model of noise, and consequently, segment noisy image as well by using spatial information and two statistical features. Moreover, a two cycle thresholding process is used at the end of learning phase to combine or remove extra segments. This way helps the proposed network to recognize the correct number of clusters/segments automatically. A performance evaluation of the proposed algorithm is carried out on different kinds of image, including medical data imagery and natural scene. The experimental results show that the proposed algorithm has advantages in accuracy and robustness against noise in comparison with the well-known unsupervised algorithms.

  7. Tomographic image reconstruction and rendering with texture-mapping hardware

    International Nuclear Information System (INIS)

    Azevedo, S.G.; Cabral, B.K.; Foran, J.

    1994-07-01

    The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially-designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture-mapping hardware, such as that on the Silicon Graphics Reality Engine (TM), shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in this case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. The techniques can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties

  8. Image encryption using the two-dimensional logistic chaotic map

    Science.gov (United States)

    Wu, Yue; Yang, Gelan; Jin, Huixia; Noonan, Joseph P.

    2012-01-01

    Chaos maps and chaotic systems have been proved to be useful and effective for cryptography. In our study, the two-dimensional logistic map with complicated basin structures and attractors are first used for image encryption. The proposed method adopts the classic framework of the permutation-substitution network in cryptography and thus ensures both confusion and diffusion properties for a secure cipher. The proposed method is able to encrypt an intelligible image into a random-like one from the statistical point of view and the human visual system point of view. Extensive simulation results using test images from the USC-SIPI image database demonstrate the effectiveness and robustness of the proposed method. Security analysis results of using both the conventional and the most recent tests show that the encryption quality of the proposed method reaches or excels the current state-of-the-art methods. Similar encryption ideas can be applied to digital data in other formats (e.g., digital audio and video). We also publish the cipher MATLAB open-source-code under the web page https://sites.google.com/site/tuftsyuewu/source-code.

  9. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    Science.gov (United States)

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping. © 2013.

  10. Optimized multiple linear mappings for single image super-resolution

    Science.gov (United States)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  11. Model prediction of biome-specific global soil respiration from 1960 to 2012

    Science.gov (United States)

    Zhao, Zhengyong; Peng, Changhui; Yang, Qi; Meng, Fan-Rui; Song, Xinzhang; Chen, Shutao; Epule, Terence Epule; Li, Peng; Zhu, Qiuan

    2017-07-01

    Biome-specific soil respiration (Rs) has important yet different roles in both the carbon cycle and climate change from regional to global scales. To date, no comparable studies related to global biome-specific Rs have been conducted applying comprehensive global Rs databases. The goal of this study was to develop artificial neural network (ANN) models capable of spatially estimating global Rs and to evaluate the effects of interannual climate variations on 10 major biomes. We used 1976 annual Rs field records extracted from global Rs literature to train and test the ANN models. We determined that the best ANN model for predicting biome-specific global annual Rs was the one that applied mean annual temperature (MAT), mean annual precipitation (MAP), and biome type as inputs (r2 = 0.60). The ANN models reported an average global Rs of 93.3 ± 6.1 Pg C yr-1 from 1960 to 2012 and an increasing trend in average global annual Rs of 0.04 Pg C yr-1. Estimated annual Rs increased with increases in MAT and MAP in cropland, boreal forest, grassland, shrubland, and wetland biomes. Additionally, estimated annual Rs decreased with increases in MAT and increased with increases in MAP in desert and tundra biomes, and only significantly decreased with increases in MAT (r2 = 0.87) in the savannah biome. The developed biome-specific global Rs database for global land and soil carbon models will aid in understanding the mechanisms underlying variations in soil carbon dynamics and in quantifying uncertainty in the global soil carbon cycle.

  12. Updating Landsat-based forest cover maps with MODIS images using multiscale spectral-spatial-temporal superresolution mapping

    Science.gov (United States)

    Zhang, Yihang; Li, Xiaodong; Ling, Feng; Atkinson, Peter M.; Ge, Yong; Shi, Lingfei; Du, Yun

    2017-12-01

    With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images.

  13. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  14. Mapping Iterative Medical Imaging Algorithm on Cell Accelerator

    Directory of Open Access Journals (Sweden)

    Meilian Xu

    2011-01-01

    architectures that exploit data parallel applications, medical imaging algorithms such as OS-SART can be studied to produce increased performance. In this paper, we map OS-SART on cell broadband engine (Cell BE. We effectively use the architectural features of Cell BE to provide an efficient mapping. The Cell BE consists of one powerPC processor element (PPE and eight SIMD coprocessors known as synergetic processor elements (SPEs. The limited memory storage on each of the SPEs makes the mapping challenging. Therefore, we present optimization techniques to efficiently map the algorithm on the Cell BE for improved performance over CPU version. We compare the performance of our proposed algorithm on Cell BE to that of Sun Fire ×4600, a shared memory machine. The Cell BE is five times faster than AMD Opteron dual-core processor. The speedup of the algorithm on Cell BE increases with the increase in the number of SPEs. We also experiment with various parameters, such as number of subsets, number of processing elements, and number of DMA transfers between main memory and local memory, that impact the performance of the algorithm.

  15. Biosphere 2's Marsh Biome

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  16. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping.

    Science.gov (United States)

    Scott, Alison J; Jones, Jace W; Orschell, Christie M; MacVittie, Thomas J; Kane, Maureen A; Ernst, Robert K

    2014-01-01

    Integral to the characterization of radiation-induced tissue damage is the identification of unique biomarkers. Biomarker discovery is a challenging and complex endeavor requiring both sophisticated experimental design and accessible technology. The resources within the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Consortium, Medical Countermeasures Against Radiological Threats (MCART), allow for leveraging robust animal models with novel molecular imaging techniques. One such imaging technique, MALDI (matrix-assisted laser desorption ionization) mass spectrometry imaging (MSI), allows for the direct spatial visualization of lipids, proteins, small molecules, and drugs/drug metabolites-or biomarkers-in an unbiased manner. MALDI-MSI acquires mass spectra directly from an intact tissue slice in discrete locations across an x, y grid that are then rendered into a spatial distribution map composed of ion mass and intensity. The unique mass signals can be plotted to generate a spatial map of biomarkers that reflects pathology and molecular events. The crucial unanswered questions that can be addressed with MALDI-MSI include identification of biomarkers for radiation damage that reflect the response to radiation dose over time and the efficacy of therapeutic interventions. Techniques in MALDI-MSI also enable integration of biomarker identification among diverse animal models. Analysis of early, sublethally irradiated tissue injury samples from diverse mouse tissues (lung and ileum) shows membrane phospholipid signatures correlated with histological features of these unique tissues. This paper will discuss the application of MALDI-MSI for use in a larger biomarker discovery pipeline.

  17. Recurrent Neural Networks to Correct Satellite Image Classification Maps

    Science.gov (United States)

    Maggiori, Emmanuel; Charpiat, Guillaume; Tarabalka, Yuliya; Alliez, Pierre

    2017-09-01

    While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.

  18. Algorithm for total suspended solids mapping using digital camera images

    Science.gov (United States)

    Mat Jafri, Mohammad Z.; Abdullah, Khiruddin; Lim, Hwe San; Abu Bakar, Mohd Noordin b.; Din, Zubir B.; Marshall, Steve

    2003-05-01

    An algorithm was developed based on reflectance model of inherent properties of seawater. A digital camera was used to capture digital images of river estuaries of Prai, Muda, and Merbok from a low altitude flying light aircraft. Water samples were collected simultaneously with the airborne image acquisition and later analyzed in the laboratory. Vertical images were captured through a special hole at the floor of the aircraft. Atmospheric correction for multidate images was performed by selecting average digital number of grass as a reference. The digital colour images of the study areas were separated into three bands (red, green and blue) for multi-spectral analysis. The digital numbers for each band corresponding to the sea-truth locations were extracted and used to calibrate the algorithm. The calibrated total suspended solids (TSS) algorithm was then used to generate the water quality maps of the study areas. This study indicates that a digital camera can be a useful tool for airborne remote sensing. The newly developed algorithm can estimate TSS concentration with linear correlation coefficient square (R2) of 0.94.

  19. Temporal profiles of vegetation indices for characterizing grazing intensity on natural grasslands in Pampa biome

    OpenAIRE

    Junges,Amanda Heemann; Bremm,Carolina; Fontana,Denise Cybis; Oliveira,Carlos Alberto Oliveira de; Schaparini,Laura Pigatto; Carvalho,Paulo César de Faccio

    2016-01-01

    ABSTRACT The Pampa biome is an important ecosystem in Brazil that is highly relevant to livestock production. The objective of this study was to analyze the potential use of vegetation indices to discriminate grazing intensities on natural grasslands in the Pampa biome. Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images from Jan to Dec, 2000 to 2013 series, were analyzed for natural grassland experimen...

  20. Feature maps driven no-reference image quality prediction of authentically distorted images

    Science.gov (United States)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  1. Dynamic speckle image segmentation using self-organizing maps

    Science.gov (United States)

    Pra, Ana L. Dai; Meschino, Gustavo J.; Guzmán, Marcelo N.; Scandurra, Adriana G.; González, Mariela A.; Weber, Christian; Trivi, Marcelo; Rabal, Héctor; Passoni, Lucía I.

    2016-08-01

    The aim of this work is to build a computational model able to automatically identify, after training, dynamic speckle pattern regions with similar properties. The process is carried out using a set of descriptors applied to the intensity variations with time in every pixel of a speckle image sequence. An image obtained by projecting a self-organized map is converted into regions of similar activity that can be easily distinguished. We propose a general procedure that could be applied to numerous situations. As examples we show different situations: (a) an activity test in a simplified situation; (b) a non-biological example and (c) biological active specimens. The results obtained are encouraging; they significantly improve upon those obtained using a single descriptor and will eventually permit automatic quantitative assessment.

  2. Mapping soil heterogeneity using RapidEye satellite images

    Science.gov (United States)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  3. Improved sliced velocity map imaging apparatus optimized for H photofragments.

    Science.gov (United States)

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of ∼5 ns out of a cloud stretched to ⩾50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H2S, and the CH2OH radical, with kinetic energies ranging from 3 eV. It demonstrated KE resolution ≲1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  4. Subsurface Profile Mapping using 3-D Compressive Wave Imaging

    Directory of Open Access Journals (Sweden)

    Hazreek Z A M

    2017-01-01

    Full Text Available Geotechnical site investigation related to subsurface profile mapping was commonly performed to provide valuable data for design and construction stage based on conventional drilling techniques. From past experience, drilling techniques particularly using borehole method suffer from limitations related to expensive, time consuming and limited data coverage. Hence, this study performs subsurface profile mapping using 3-D compressive wave imaging in order to minimize those conventional method constraints. Field measurement and data analysis of compressive wave (p-wave, vp was performed using seismic refraction survey (ABEM Terraloc MK 8, 7 kg of sledgehammer and 24 units of vertical geophone and OPTIM (SeisOpt@Picker & SeisOpt@2D software respectively. Then, 3-D compressive wave distribution of subsurface studied was obtained using analysis of SURFER software. Based on 3-D compressive wave image analyzed, it was found that subsurface profile studied consist of three main layers representing top soil (vp = 376 – 600 m/s, weathered material (vp = 900 – 2600 m/s and bedrock (vp > 3000 m/s. Thickness of each layer was varied from 0 – 2 m (first layer, 2 – 20 m (second layer and 20 m and over (third layer. Moreover, groundwater (vp = 1400 – 1600 m/s starts to be detected at 2.0 m depth from ground surface. This study has demonstrated that geotechnical site investigation data related to subsurface profiling was applicable to be obtained using 3-D compressive wave imaging. Furthermore, 3-D compressive wave imaging was performed based on non destructive principle in ground exploration thus consider economic, less time, large data coverage and sustainable to our environment.

  5. Scanning electron image analysis to monitor of implant degradation and host healing following implantation of a drug-eluting bone graft void filler - biomed 2013.

    Science.gov (United States)

    Davidoff, Sherry N; Lawson, Scott T; Grainger, David W; Brooks, Amanda E

    2013-01-01

    Osteomyelitis is most commonly caused by Staphylococcus aureus and often sourced during orthopedic surgical intervention. Successful treatment or prevention of this bone penetrating infection requires antibiotics be delivered in excess of the minimal inhibitory concentration to prohibit the growth of the causative organism for sufficient duration. Unfortunately, current standard-of-care antibiotic therapies, administered via intravenous or oral delivery, suffer not only from systemic toxicity and low patient compliance but also provide insufficient local concentrations for therapy. To overcome these clinical inadequacies, a synthetic bone graft material was coated with an antibiotic (tobramycin)-releasing polymer (polycaprolactone) matrix to create a polymer-controlled antibiotic- releasing combination therapy for use as a bone void filler in orthopedic surgeries. Even though this local delivery strategy allows antibiotic delivery over a clinically relevant time frame to prevent infection, complete healing requires the host bone to infiltrate and reabsorb the bone void filler, ultimately replacing the defect with healthy tissue. Unfortunately, the same polymer matrix that allows for controlled local antibiotic delivery may also discourage host bone healing. Efficient orthopedic healing requires the rate of polymer degradation to match the rate of host-bone infiltration. Current imaging techniques, such as histological staining and x-ray imaging, are insufficient to simultaneously assess polymer degradation and host bone integration. Alternative techniques relying on backscatter electron detection during scanning electron microscopy (SEM) imaging may allow a visual differentiation between host bone, synthetic bone, and polymer. Analysis of backscattered SEM images was automated using a custom MATLAB program to determine the ratio of bone to polymer based upon the contrast between the bone (white) and polymer (dark grey). By collecting images of the implant over time

  6. OBJECT-SPACE MULTI-IMAGE MATCHING OF MOBILE-MAPPING-SYSTEM IMAGE SEQUENCES

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2012-07-01

    Full Text Available This paper proposes an object-space multi-image matching procedure of terrestrial MMS (Mobile Mapping System image sequences to determine the coordinates of an object point automatically and reliably. This image matching procedure can be applied to find conjugate points of MMS image sequences efficiently. Conventional area-based image matching methods are not reliable to deliver accurate matching results for this application due to image scale variations, viewing angle variations, and object occlusions. In order to deal with these three matching problems, an object space multi-image matching is proposed. A modified NCC (Normalized Cross Correlation coefficient is proposed to measure the similarity of image patches. A modified multi-window matching procedure will also be introduced to solve the problem of object occlusion. A coarse-to-fine procedure with a combination of object-space multi-image matching and multi-window matching is adopted. The proposed procedure has been implemented for the purpose of matching terrestrial MMS image sequences. The ratio of correct matches of this experiment was about 80 %. By providing an approximate conjugate point in an overlapping image manually, most of the incorrect matches could be fixed properly and the ratio of correct matches was improved up to 98 %.

  7. Polychromatic map-making from imaging telescopes with asymmetric beams.

    Science.gov (United States)

    Quinn, Solomon; Bunn, Emory

    2018-01-01

    Data from an imaging telescope with an asymmetric antenna pattern that varies significantly with wavelength can be used to reconstruct images in multiple wavelength bands from a single set of scans. This is potentially particularly valuable for an instrument such as QUBIC, because the QUBIC antenna pattern has multiple peaks with wavelength-dependent positions. We quantify the ability of such an instrument to reconstruct polychromatic maps both analytically and numerically. When the telescope has full-sky coverage, it is convenient to transform to the spherical harmonic basis. Hence we analyze statistical properties of the signal reconstruction as a function of the coefficients of the antenna pattern. When the telescope observes only part of the sky, no such transformation can be made—hence more computation is required in this case. We compare monochromatic and polychromatic map-making to determine the number of wavelength bands that can be accurately reconstructed in a QUBIC-like instrument as a function of angular scale. This formalism can be applied to other instruments whose antenna patterns have features that vary strongly with wavelength.

  8. Aquisição e manipulação de imagens por tomografia computadorizada da região maxilofacial visando à obtenção de protótipos biomédicos Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    Directory of Open Access Journals (Sweden)

    Maria Inês Meurer

    2008-02-01

    Full Text Available O processo de construção de protótipos biomédicos surgiu da união das tecnologias de prototipagem rápida e do diagnóstico por imagens. No entanto, este processo é complexo, em função da necessária interação entre as ciências biomédicas e a engenharia. Para que bons resultados sejam obtidos, especial atenção deve ser dispensada à aquisição das imagens por tomografia computadorizada e à manipulação dessas imagens em softwares específicos. Este artigo apresenta a experiência multidisciplinar de um grupo de pesquisadores com a aquisição e a manipulação de imagens por tomografia computadorizada do complexo maxilofacial, visando à construção de protótipos biomédicos com finalidade cirúrgica.Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific softwares. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes.

  9. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  10. Anthropogenic Biomes of the World, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World Dataset, Version 1 describes globally- significant ecological patterns within the terrestrial biosphere caused by sustained...

  11. Mapping Asphaltic Roads’ Skid Resistance Using Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nimrod Carmon

    2018-03-01

    Full Text Available The purpose of this study is to evaluate a realistic feasibility of using hyperspectral remote sensing (also termed imaging spectroscopy airborne data for mapping asphaltic roads’ transportation safety. This is done by quantifying the road-tire friction, an attribute responsible for vehicle control and emergency stopping. We engaged in a real-life operational scenario, where the roads’ friction was modeled against the reflectance information extracted directly from the image. The asphalt pavement’s dynamic friction coefficient was measured by a standardized technique using a Dynatest 6875H (Dynatest Consulting Inc., Westland, MI, USA Friction Measuring System, which uses the common test-wheel retardation method. The hyperspectral data was acquired by the SPECIM AisaFenix 1K (Specim, Spectral Imaging Ltd., Oulu, Finland airborne system, covering the entire optical range (350–2500 nm, over a selected study site, with roads characterized by different aging conditions. The spectral radiance data was processed to provide apparent surface reflectance using ground calibration targets and the ACORN-6 atmospheric correction package. Our final dataset was comprised of 1370 clean asphalt pixels coupled with geo-rectified in situ friction measurement points. We developed a partial least squares regression model using PARACUDA-II spectral data mining engine, which uses an automated outlier detection procedure and dual validation routines—a full cross-validation and an iterative internal validation based on a Latin Hypercube sampling algorithm. Our results show prediction capabilities of R2 = 0.632 for full cross-validation and R2 = 0.702 for the best available model in internal validation, both with significant results (p < 0.0001. Using spectral assignment analysis, we located the spectral bands with the highest weight in the model and discussed their possible physical and chemical assignments. The derived model was applied back on the

  12. Image mosaic and topographic map of the moon

    Science.gov (United States)

    Hare, Trent M.; Hayward, Rosalyn K.; Blue, Jennifer S.; Archinal, Brent A.

    2015-01-01

    Sheet 1: This image mosaic is based on data from the Lunar Reconnaissance Orbiter Wide Angle Camera (WAC; Robinson and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The equatorial WAC images were orthorectified onto the Global Lunar Digital Terrain Mosaic (GLD100, WAC-derived 100 m/pixel digital elevation model; Scholten and others, 2012) while the polar images were orthorectified onto the lunar LOLA polar digital elevation models (Neumann and others, 2010). The Mercator projection is used between latitudes ±57°, with a central meridian at 0° longitude and latitude equal to the nominal scale at 0°. The Polar Stereographic projection is used for the regions north of the +55° parallel and south of the –55° parallel, with a central meridian set for both at 0° and a latitude of true scale at +90° and -90°, respectively. All named features greater than 85 km in diameter or length were included unless they were not visible on the map. Some selected well-known features less than 85 km in size were also included. For listed references, please open the full PDF.

  13. Refining of image using self-organizing map with clustering

    Science.gov (United States)

    Dahiya, Neeraj; Dalal, Surjeet; Tanwar, Gundeep

    2016-03-01

    Self Organization Map(SOM) is an automatic tool in data analysis in data mining,it is used to explore the multi-dimentional data which simplifies complexity and produce meaningful relation with each other or high dimentional into low dimentional .the powerful method of SOM i.e learning method results excellent performance .the SOM algorithum have various steps from starting stage to the final neuron and their weight updation and modification, these procedure resultant a lot of compplexity accoording to the parameters on the basis of experiments .this paper will compare and discuss various papameters and their result or factors that can improve and refine the image through varius process of SOM.

  14. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

    Science.gov (United States)

    Clark, R.N.; Brown, R.H.; Jaumann, R.; Cruikshank, D.P.; Nelson, R.M.; Buratti, B.J.; McCord, T.B.; Lunine, J.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Hoefen, T.M.; Curchin, J.M.; Hansen, G.; Hibbits, K.; Matz, K.-D.

    2005-01-01

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

  15. Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy

    Science.gov (United States)

    Swayze, Gregg A.; Clark, Roger N.; Goetz, Alexander F.H.; Livo, K. Eric; Breit, George N.; Kruse, Fred A.; Sutley, Stephen J.; Snee, Lawrence W.; Lowers, Heather A.; Post, James L.; Stoffregen, Roger E.; Ashley, Roger P.

    2014-01-01

    Mineral maps based on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used to study late Miocene advanced argillic alteration at Cuprite, Nevada. Distributions of Fe-bearing minerals, clays, micas, sulfates, and carbonates were mapped using the Tetracorder spectral-shape matching system. The Al content of white micas increases toward altered areas and near intrusive rocks. Alunite composition varies from pure K to intimate mixtures of Na-K endmembers with subpixel occurrences of huangite, the Ca analogue of alunite. Intimately mixed Na-K alunite marks areas of relatively lower alteration temperature, whereas co-occurring Na-alunite and dickite may delineate relict hydrothermal conduits. The presence of dickite, halloysite, and well-ordered kaolinite, but absence of disordered kaolinite, is consistent with acidic conditions during hydrothermal alteration. Partial lichen cover on opal spectrally mimics chalcedony, limiting its detection to lichen-free areas. Pods of buddingtonite are remnants of initial quartz-adularia-smectite alteration. Thus, spectral maps provide a synoptic view of the surface mineralogy, and define a previously unrecognized early steam-heated hydrothermal event.Faulting and episodes of hydrothermal alteration at Cuprite were intimately linked to upper plate movements above the Silver Peak-Lone Mountain detachment and growth, collapse, and resurgence of the nearby Stonewall Mountain volcanic complex between 8 and 5 Ma. Isotopic dating indicates that hydrothermal activity started at least by 7.61 Ma and ended by about 6.2 Ma. Spectral and stable isotope data suggest that Cuprite is a late Miocene low-sulfidation adularia-sericite type hot spring deposit overprinted by late-stage, steam-heated advanced argillic alteration formed along the margin of the Stonewall Mountain caldera.

  16. Mineral Mapping with Imaging Spectroscopy: The Ray Mine, AZ

    Science.gov (United States)

    Clark, Roger N.; Vance, J. Sam; Livo, K. Eric; Green, Robert O.

    1998-01-01

    Mineral maps generated for the Ray Mine, Arizona were analyzed to determine if imaging spectroscopy can provide accurate information for environmental management of active and abandoned mine regions. The Ray Mine, owned by the ASARCO Corporation, covers an area of 5700 acres and is situated in Pinal County, Arizona about 70 miles north of Tucson near Hayden, Arizona. This open-pit mine has been a major source of copper since 1911, producing an estimated 4.5 million tons of copper since its inception. Until 1955 mining was accomplished by underground block caving and shrinkage stope methods. (excavation by working in stepped series usually employed in a vertical or steeply inclined orebody) In 1955, the mine was completely converted to open pit method mining with the bulk of the production from sulfide ore using recovery by concentrating and smelting. Beginning in 1969 a significant production contribution has been from the leaching and solvent extraction-electrowinnowing method of silicate and oxide ores. Published reserves in the deposit as of 1992 are 1.1 billion tons at 0.6 percent copper. The Environmental Protection Agency, in conjunction with ASARCO, and NASA/JPL obtained AVIRIS data over the mine in 1997 as part of the EPA Advanced Measurement Initiative (AMI) (Tom Mace, Principal Investigator). This AVIRIS data set is being used to compare and contrast the accuracy and environmental monitoring capabilities of remote sensing technologies: visible-near-IR imaging spectroscopy, multispectral visible and, near-IR sensors, thermal instruments, and radar platforms. The goal of this effort is to determine if these various technologies provide useful information for envirorunental management of active and abandoned mine sites in the arid western United States. This paper focuses on the analysis of AVIRIS data for assessing the impact of the Ray Mine on Mineral Creek. Mineral Creek flows to the Gila River. This paper discusses our preliminary AVIRIS mineral mapping

  17. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    Science.gov (United States)

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  18. Criteria for the optimal selection of remote sensing optical images to map event landslides

    Science.gov (United States)

    Fiorucci, Federica; Giordan, Daniele; Santangelo, Michele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto

    2018-01-01

    Landslides leave discernible signs on the land surface, most of which can be captured in remote sensing images. Trained geomorphologists analyse remote sensing images and map landslides through heuristic interpretation of photographic and morphological characteristics. Despite a wide use of remote sensing images for landslide mapping, no attempt to evaluate how the image characteristics influence landslide identification and mapping exists. This paper presents an experiment to determine the effects of optical image characteristics, such as spatial resolution, spectral content and image type (monoscopic or stereoscopic), on landslide mapping. We considered eight maps of the same landslide in central Italy: (i) six maps obtained through expert heuristic visual interpretation of remote sensing images, (ii) one map through a reconnaissance field survey, and (iii) one map obtained through a real-time kinematic (RTK) differential global positioning system (dGPS) survey, which served as a benchmark. The eight maps were compared pairwise and to a benchmark. The mismatch between each map pair was quantified by the error index, E. Results show that the map closest to the benchmark delineation of the landslide was obtained using the higher resolution image, where the landslide signature was primarily photographical (in the landslide source and transport area). Conversely, where the landslide signature was mainly morphological (in the landslide deposit) the best mapping result was obtained using the stereoscopic images. Albeit conducted on a single landslide, the experiment results are general, and provide useful information to decide on the optimal imagery for the production of event, seasonal and multi-temporal landslide inventory maps.

  19. Biomass allocation patterns across China's terrestrial biomes.

    Directory of Open Access Journals (Sweden)

    Limei Wang

    Full Text Available Root to shoot ratio (RS is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China's terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP and potential water deficit index (PWDI. Mean annual temperature (MAT also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship.

  20. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Science.gov (United States)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  1. COMPARING IMAGE-BASED METHODS FOR ASSESSING VISUAL CLUTTER IN GENERALIZED MAPS

    Directory of Open Access Journals (Sweden)

    G. Touya

    2015-08-01

    Full Text Available Map generalization abstracts and simplifies geographic information to derive maps at smaller scales. The automation of map generalization requires techniques to evaluate the global quality of a generalized map. The quality and legibility of a generalized map is related to the complexity of the map, or the amount of clutter in the map, i.e. the excessive amount of information and its disorganization. Computer vision research is highly interested in measuring clutter in images, and this paper proposes to compare some of the existing techniques from computer vision, applied to generalized maps evaluation. Four techniques from the literature are described and tested on a large set of maps, generalized at different scales: edge density, subband entropy, quad tree complexity, and segmentation clutter. The results are analyzed against several criteria related to generalized maps, the identification of cluttered areas, the preservation of the global amount of information, the handling of occlusions and overlaps, foreground vs background, and blank space reduction.

  2. Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data

    NARCIS (Netherlands)

    Mutanga, O.; Kumar, L.

    2007-01-01

    We tested the utility of imaging spectroscopy and neural networks to map phosphorus concentration in savanna grass using airborne HyMAP image data. We also sought to ascertain the key wavelengths for phosphorus prediction using hyperspectral remote sensing. The remote sensing of foliar phosphorus

  3. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Science.gov (United States)

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  4. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Yin Dayi; Chen Yingmao; Yao Shulin; Shao Mingzhe; Yin Ling; Tian Jiahe; Cui Hongyan

    2007-01-01

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (P corrected uncorrected <0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  5. Subpixel level mapping of remotely sensed image using colorimetry

    Directory of Open Access Journals (Sweden)

    M. Suresh

    2018-04-01

    Full Text Available The problem of extracting proportion of classes present within a pixel has been a challenge for researchers for which already numerous methodologies have been developed but still saturation is far ahead, since still the methods accounting these mixed classes are not perfect and they would never be perfect until one can talk about one to one correspondence for each pixel and ground data, which is practically impossible. In this paper a step towards generation of new method for finding out mixed class proportions in a pixel on the basis of the mixing property of colors as per colorimetry. The methodology involves locating the class color of a mixed pixel on chromaticity diagram and then using contextual information mainly the location of neighboring pixels on chromaticity diagram to estimate the proportion of classes in the mixed pixel.Also the resampling method would be more accurate when accounting for sharp and exact boundaries. With the usage of contextual information can generate the resampled image containing only the colors which really exist. The process is simply accounting the fraction and then the number of pixels by multiplying the fraction by total number of pixels into which one pixel is splitted to get number of pixels of each color based on contextual information. Keywords: Subpixel classification, Remote sensing imagery, Colorimetric color space, Sampling and subpixel mapping

  6. Noo Peroxy Isomer Exposed with Velocity-Map Imaging

    Science.gov (United States)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2016-06-01

    O2, a toxic gas formed in most combustion processes, plays an important role in the Earth's atmosphere due to its role in the production of both photochemical smog and tropospheric ozone. The existence of the peroxy radial, NOO, has been proposed, both as a collision reaction intermediate, and as a negative-ion in some discharge sources, in order to account for extended tails seen in some photoelectron spectra. In this work a velocity-mapped image of NO2- photodetachment measured at 519 nm, shown, reveals high-energy electron structure, that persists at detachment energies lower than the electron affinity of ONO, 2.273 eV. {b} The central ring has the spectral signature of O^-, while the outer-ripples, that appear in character to be similar to NO- detachment, are, we propose due to the NOO- peroxy radical, which is also responsible for the presence of O-. The photoelectron spectrum resolves the vibrational structure to characterize the neutral peroxy radical. The identification is further supported by ab initio calculations. The photoelectron angular distributions associated with the peroxy radical have a negative anisotropy parameter, opposite in sign to detachment from ONO^-. K. M. Ervin and J. Ho and W. C. Lineberger, J. Phys. Chem. 92, 5405 (1988). doi:10.1021/j100330a017 Research supported by the ARC DP160102585.

  7. Progressive significance map and its application to error-resilient image transmission.

    Science.gov (United States)

    Hu, Yang; Pearlman, William A; Li, Xin

    2012-07-01

    Set partition coding (SPC) has shown tremendous success in image compression. Despite its popularity, the lack of error resilience remains a significant challenge to the transmission of images in error-prone environments. In this paper, we propose a novel data representation called the progressive significance map (prog-sig-map) for error-resilient SPC. It structures the significance map (sig-map) into two parts: a high-level summation sig-map and a low-level complementary sig-map (comp-sig-map). Such a structured representation of the sig-map allows us to improve its error-resilient property at the price of only a slight sacrifice in compression efficiency. For example, we have found that a fixed-length coding of the comp-sig-map in the prog-sig-map renders 64% of the coded bitstream insensitive to bit errors, compared with 40% with that of the conventional sig-map. Simulation results have shown that the prog-sig-map can achieve highly competitive rate-distortion performance for binary symmetric channels while maintaining low computational complexity. Moreover, we note that prog-sig-map is complementary to existing independent packetization and channel-coding-based error-resilient approaches and readily lends itself to other source coding applications such as distributed video coding.

  8. Thresholds for boreal biome transitions.

    Science.gov (United States)

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.

  9. Description of the Fynbos Biome Project

    CSIR Research Space (South Africa)

    Kruger, FJ

    1978-06-01

    Full Text Available The objectives, organization and research programme of the Fynbos Biome Project being undertaken in the south-west and southern Cape are described. The project is a cooperative multi-disciplinary study of the ecological characteristics, structure...

  10. Anthropogenic Biomes of the World, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 1 data set describes globally-significant ecological patterns within the terrestrial biosphere caused by sustained...

  11. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    Directory of Open Access Journals (Sweden)

    Heegwang Kim

    2017-12-01

    Full Text Available Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  12. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    Science.gov (United States)

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  13. The extent of forest in dryland biomes

    Science.gov (United States)

    Jean-Francois Bastin; Nora Berrahmouni; Alan Grainger; Danae Maniatis; Danilo Mollicone; Rebecca Moore; Chiara Patriarca; Nicolas Picard; Ben Sparrow; Elena Maria Abraham; Kamel Aloui; Ayhan Atesoglu; Fabio Attore; Caglar Bassullu; Adia Bey; Monica Garzuglia; Luis G. GarcÌa-Montero; Nikee Groot; Greg Guerin; Lars Laestadius; Andrew J. Lowe; Bako Mamane; Giulio Marchi; Paul Patterson; Marcelo Rezende; Stefano Ricci; Ignacio Salcedo; Alfonso Sanchez-Paus Diaz; Fred Stolle; Venera Surappaeva; Rene Castro

    2017-01-01

    Dryland biomes cover two-fifths of Earth’s land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high...

  14. Disparity Map Generation from Illumination Variant Stereo Images Using Efficient Hierarchical Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Viral H. Borisagar

    2014-01-01

    Full Text Available A novel hierarchical stereo matching algorithm is presented which gives disparity map as output from illumination variant stereo pair. Illumination difference between two stereo images can lead to undesirable output. Stereo image pair often experience illumination variations due to many factors like real and practical situation, spatially and temporally separated camera positions, environmental illumination fluctuation, and the change in the strength or position of the light sources. Window matching and dynamic programming techniques are employed for disparity map estimation. Good quality disparity map is obtained with the optimized path. Homomorphic filtering is used as a preprocessing step to lessen illumination variation between the stereo images. Anisotropic diffusion is used to refine disparity map to give high quality disparity map as a final output. The robust performance of the proposed approach is suitable for real life circumstances where there will be always illumination variation between the images. The matching is carried out in a sequence of images representing the same scene, however in different resolutions. The hierarchical approach adopted decreases the computation time of the stereo matching problem. This algorithm can be helpful in applications like robot navigation, extraction of information from aerial surveys, 3D scene reconstruction, and military and security applications. Similarity measure SAD is often sensitive to illumination variation. It produces unacceptable disparity map results for illumination variant left and right images. Experimental results show that our proposed algorithm produces quality disparity maps for both wide range of illumination variant and invariant stereo image pair.

  15. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  16. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus

    2012-11-01

    We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.

  17. FIFE data analysis: Testing BIOME-BGC predictions for grasslands

    Science.gov (United States)

    Hunt, E. Raymond, Jr.

    1994-01-01

    -based ecosystem simulations at a variety of scales are possible. The second objective of this study is concerned with determining the accuracy of the estimated fluxes from BIOME-BGC, when extrapolated spatially over the entire 15-km by 15-km FIFE site. To accomplish this objective, a topographically distributed map of soil depth at the FIFE site was developed. These spatially-distributed fluxes were then tested with data from aircraft by eddy-flux correlation obtained during the FIFE experiment.

  18. LOFAR lightning imaging: Mapping lightning with nanosecond precision

    NARCIS (Netherlands)

    B.M. Hare; O. Scholten; A. Bonardi; S. Buitink; A. Corstanje; U. M. Ebert (Ute); H. Falcke; J.R. Hörandel (Jörg); H. Leijnse; P. Mitra; K. Mulrey; A. Nelles; J.P. Rachen; L. Rossetto; C. Rutjes (Casper); P. Schellart; S. Thoudam; T.N.G. Trinh (Gia); S. ter Veen (Sander); T. Winchen

    2018-01-01

    textabstractLightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3D map of the flash. We show that LOFAR has unparalleled precision, on the

  19. Landscape mapping MAV using single image perspective cues

    CSIR Research Space (South Africa)

    Tekane, YC

    2015-01-01

    Full Text Available in order to do mapping, our method does require a 3D model. Instead, our method first classifies the type of site the MAV is in, and the uses vision algorithms based on perspective cues to estimate the landscape location and the do mapping. We tested our...

  20. High resolution mapping of urban areas using SPOT-5 images and ancillary data

    Directory of Open Access Journals (Sweden)

    Elif Sertel

    2015-08-01

    Full Text Available This research aims to propose new rule sets to be used for object based classification of SPOT-5 images to accurately create detailed urban land cover/use maps. In addition to SPOT-5 satellite images, Normalized Difference Vegetation Index (NDVI and Normalized Difference Water Index (NDWI maps, cadastral maps, Openstreet maps, road maps and Land Cover maps, were also integrated into classification to increase the accuracy of resulting maps. Gaziantep city, one of the highly populated cities of Turkey with different landscape patterns was selected as the study area. Different rule sets involving spectral, spatial and geometric characteristics were developed to be used for object based classification of 2.5 m resolution Spot-5 satellite images to automatically create urban map of the region. Twenty different land cover/use classes obtained from European Urban Atlas project were applied and an automatic classification approach was suggested for high resolution urban map creation and updating. Integration of different types of data into the classification decision tree increased the performance and accuracy of the suggested approach. The accuracy assessment results illustrated that with the usage of newly proposed rule set algorithms in object-based classification, urban areas represented with seventeen different sub-classes could be mapped with 94 % or higher overall accuracy.

  1. The underestimated biodiversity of tropical grassy biomes.

    Science.gov (United States)

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  2. Ground truth and mapping capability of urban areas in large scale using GE images

    Science.gov (United States)

    Ramzi, Ahmed I.

    2015-10-01

    Monitoring and mapping complex urban features (e.g. roads and buildings) from remotely sensed data multispectral and hyperspectral has gained enormous research interest. Accurate ground truth allows for high quality assessment of classified images and to verify the produced map. Ground truth can be acquired from: field using the handheld Global Positioning System (GPS) device and from Images with high resolution extracted from Google Earth in additional to field. Ground truth or training samples could be achieved from VHR satellite images such as QuickBird, Ikonos, Geoeye-1 and Wordview images. Archived images are costly for researchers in developing countries. Images from GE with high spatial resolution are free for public and can be used directly producing large scale maps, in producing LULC mapping and training samples. Google Earth (GE) provides free access to high resolution satellite imagery, but is the quality good enough to map urban areas. Costal of the Red sea, Marsa Alam could be mapped using GE images. The main objective of this research is exploring the accuracy assessment of producing large scale maps from free Google Earth imagery and to collect ground truth or training samples in limited geographical extend. This research will be performed on Marsa Alam city or located on the western shore of the Red Sea, Red sea Governorate, Egypt. Marsa Alam is located 274 km south of Hurghada. The proposed methodology involves image collection taken into consideration the resolution of collected photographs which depend on the height of view. After that, image rectification using suitable rectification methods with different number and distributions of GCPs and CPs. Database and Geographic information systems (GIS) layers were created by on-screen vectorization based on the requirement of large scale maps. Attribute data have been collected from the field. The obtained results show that the planmetric accuracy of the produced map from Google Earth Images met map

  3. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Margarita Peak Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows

    NARCIS (Netherlands)

    Stamhuis, Eize J.

    2006-01-01

    Particle image velocimetry (PIV) has proven to be a very useful technique in mapping animal-generated flows or flow patterns relevant to biota. Here, theoretical background is provided and experimental details of 2-dimensional digital PIV are explained for mapping flow produced by or relevant to

  7. Head Tracking via Robust Registration in Texture Map Images

    National Research Council Canada - National Science Library

    LaCascia, Marco

    1998-01-01

    .... The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking...

  8. Mapping land cover from satellite images: A basic, low cost approach

    Science.gov (United States)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  9. Imaging Spectroscopy: A Novel Use for the Velocity Mapped Ion Imaging Technique.

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Jennie S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Culberson, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steill, Jeffrey D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chandler, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The ability to measure the velocity of neutral atoms and molecules with a precision of several meter/sec provides an opportunity to measure subtle perturbations on electronic states with high resolution. Using Velocity Mapped Ion Imaging we are able to measure induced perturbations of electronic states such as broadening and magnetic and electric field splittings . We demonstrate this ability utilizing the 5s[3/2]2 → 5p[5/2]3 cycling transition at 811.5 nm in metastable Kr atoms to investigate the saturation broadening caused by Rabi cycling on a resonant transition with MHz resolution. In addition we investigate the lifetime broadening associated with ionization from the cycling states and the Zeeman splitting of the states. We discuss the inherent limits to resolution obtained with this technique.

  10. A Novel Image Encryption Scheme Based on Clifford Attractor and Noisy Logistic Map for Secure Transferring Images in Navy

    Directory of Open Access Journals (Sweden)

    Mohadeseh Kanafchian

    2017-04-01

    In this paper, we first give a brief introduction into chaotic image encryption and then we investigate some important properties and behaviour of the logistic map. The logistic map, aperiodic trajectory, or random-like fluctuation, could not be obtained with some choice of initial condition. Therefore, a noisy logistic map with an additive system noise is introduced. The proposed scheme is based on the extended map of the Clifford strange attractor, where each dimension has a specific role in the encryption process. Two dimensions are used for pixel permutation and the third dimension is used for pixel diffusion. In order to optimize the Clifford encryption system we increase the space key by using the noisy logistic map and a novel encryption scheme based on the Clifford attractor and the noisy logistic map for secure transfer images is proposed. This algorithm consists of two parts: the noisy logistic map shuffle of the pixel position and the pixel value. We use times for shuffling the pixel position and value then we generate the new pixel position and value by the Clifford system. To illustrate the efficiency of the proposed scheme, various types of security analysis are tested. It can be concluded that the proposed image encryption system is a suitable choice for practical applications.

  11. Lineament mapping using Landsat TM image in the eastern part of Gua Musang-Cameron Highland road

    International Nuclear Information System (INIS)

    Mohd Muzamil Mohd Hashim; Juhari Mat Akhir

    2010-01-01

    Landsat TM satellite image was used in study of lineament mapping in the eastern part of Jalan Gua Musang-Cameron Highland. The satellite image has been digitally processed including geometric corrections and radiometric corrections to produce a lineament map. Lineament map that produced from the satellite image was analyzed base on the aspect of density, orientation, length and correlation with geological map. Result of analysis was used to identify the areas that have potential of ground water resources. (author)

  12. Multiband radar characterization of forest biomes

    Science.gov (United States)

    Dobson, M. Craig; Ulaby, Fawwaz T.

    1990-01-01

    The utility of airborne and orbital SAR in classification, assessment, and monitoring of forest biomes is investigated through analysis of orbital synthetic aperature radar (SAR) and multifrequency and multipolarized airborne SAR imagery relying on image tone and texture. Preliminary airborne SAR experiments and truck-mounted scatterometer observations demonstrated that the three dimensional structural complexity of a forest, and the various scales of temporal dynamics in the microwave dielectric properties of both trees and the underlying substrate would severely limit empirical or semi-empirical approaches. As a consequence, it became necessary to develop a more profound understanding of the electromagnetic properties of a forest scene and their temporal dynamics through controlled experimentation coupled with theoretical development and verification. The concatenation of various models into a physically-based composite model treating the entire forest scene became the major objective of the study as this is the key to development of a series of robust retrieval algorithms for forest biophysical properties. In order to verify the performance of the component elements of the composite model, a series of controlled laboratory and field experiments were undertaken to: (1) develop techniques to measure the microwave dielectric properties of vegetation; (2) relate the microwave dielectric properties of vegetation to more readily measured characteristics such as density and moisture content; (3) calculate the radar cross-section of leaves, and cylinders; (4) improve backscatter models for rough surfaces; and (5) relate attenuation and phase delays during propagation through canopies to canopy properties. These modeling efforts, as validated by the measurements, were incorporated within a larger model known as the Michigan Microwave Canopy Scattering (MIMICS) Model.

  13. Adaptive enhancement for nonuniform illumination images via nonlinear mapping

    Science.gov (United States)

    Wang, Yanfang; Huang, Qian; Hu, Jing

    2017-09-01

    Nonuniform illumination images suffer from degenerated details because of underexposure, overexposure, or a combination of both. To improve the visual quality of color images, underexposure regions should be lightened, whereas overexposure areas need to be dimmed properly. However, discriminating between underexposure and overexposure is troublesome. Compared with traditional methods that produce a fixed demarcation value throughout an image, the proposed demarcation changes as local luminance varies, thus is suitable for manipulating complicated illumination. Based on this locally adaptive demarcation, a nonlinear modification is applied to image luminance. Further, with the modified luminance, we propose a nonlinear process to reconstruct a luminance-enhanced color image. For every pixel, this nonlinear process takes the luminance change and the original chromaticity into account, thus trying to avoid exaggerated colors at dark areas and depressed colors at highly bright regions. Finally, to improve image contrast, a local and image-dependent exponential technique is designed and applied to the RGB channels of the obtained color image. Experimental results demonstrate that our method produces good contrast and vivid color for both nonuniform illumination images and images with normal illumination.

  14. A novel image encryption algorithm based on a 3D chaotic map

    Science.gov (United States)

    Kanso, A.; Ghebleh, M.

    2012-07-01

    Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.

  15. Confidence maps and confidence intervals for near infrared images in breast cancer.

    Science.gov (United States)

    Tosteson, T D; Pogue, B W; Demidenko, E; McBride, T O; Paulsen, K D

    1999-12-01

    This paper extends basic concepts of statistical hypothesis testing and confidence intervals to images generated by a new procedure for near infrared spectroscopic tomography being developed for use in breast cancer diagnosis. By estimating the covariance matrix of the pixels of an image from data used in the image reconstruction process, confidence maps for statistical tests on individual pixels and confidence intervals for entire images are displayed as an aid to research and clinical personnel interpreting possibly noisy images. The methods are applied to simulated and phantom-based images.

  16. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    International Nuclear Information System (INIS)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P.

    1998-01-01

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  17. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  18. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  19. Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images

    Directory of Open Access Journals (Sweden)

    Weili Kou

    2015-01-01

    Full Text Available Accurate and updated finer resolution maps of rubber plantations and stand ages are needed to understand and assess the impacts of rubber plantations on regional ecosystem processes. This study presented a simple method for mapping rubber plantation areas and their stand ages by integration of PALSAR 50-m mosaic images and multi-temporal Landsat TM/ETM+ images. The L-band PALSAR 50-m mosaic images were used to map forests (including both natural forests and rubber trees and non-forests. For those PALSAR-based forest pixels, we analyzed the multi-temporal Landsat TM/ETM+ images from 2000 to 2009. We first studied phenological signatures of deciduous rubber plantations (defoliation and foliation and natural forests through analysis of surface reflectance, Normal Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, and Land Surface Water Index (LSWI and generated a map of rubber plantations in 2009. We then analyzed phenological signatures of rubber plantations with different stand ages and generated a map, in 2009, of rubber plantation stand ages (≤5, 6–10, >10 years-old based on multi-temporal Landsat images. The resultant maps clearly illustrated how rubber plantations have expanded into the mountains in the study area over the years. The results in this study demonstrate the potential of integrating microwave (e.g., PALSAR and optical remote sensing in the characterization of rubber plantations and their expansion over time.

  20. Future changes in South American biomass distributions, biome distributions and plant trait spectra is dependent on applied atmospheric forcings.

    Science.gov (United States)

    Langan, Liam; Scheiter, Simon; Higgins, Steven

    2017-04-01

    It remains poorly understood why the position of the forest-savanna biome boundary, in a domain defined by precipitation and temperature, differs in South America, Africa and Australia. Process based Dynamic Global Vegetation Models (DGVMs) are a valuable tool to investigate the determinants of vegetation distributions, however, many DGVMs fail to predict the spatial distribution or indeed presence of the South American savanna biome. Evidence suggests fire plays a significant role in mediating forest-savanna biome boundaries, however, fire alone appear to be insufficient to predict these boundaries in South America. We hypothesize that interactions between precipitation, constraints on tree rooting depth and fire, affect the probability of savanna occurrence and the position of the savanna-forest boundary. We tested our hypotheses at tropical forest and savanna sites in Brazil and Venezuela using a novel DGVM, aDGVM2, which allows plant trait spectra, constrained by trade-offs between traits, to evolve in response to abiotic and biotic conditions. Plant hydraulics is represented by the cohesion-tension theory, this allowed us to explore how soil and plant hydraulics control biome distributions and plant traits. The resulting community trait distributions are emergent properties of model dynamics. We showed that across much of South America the biome state is not determined by climate alone. Interactions between tree rooting depth, fire and precipitation affected the probability of observing a given biome state and the emergent traits of plant communities. Simulations where plant rooting depth varied in space provided the best match to satellite derived biomass estimates and generated biome distributions that reproduced contemporary biome maps well. Future projections showed that biomass distributions, biome distributions and plant trait spectra will change, however, the magnitude of these changes are highly dependent on the applied atmospheric forcings.

  1. Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.

    Science.gov (United States)

    Beaulieu, Anne

    2002-01-01

    Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)

  2. Postfire soil burn severity mapping with hyperspectral image unmixing

    Science.gov (United States)

    Peter R. Robichaud; Sarah A. Lewis; Denise Y. M. Laes; Andrew T. Hudak; Raymond F. Kokaly; Joseph A. Zamudio

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after...

  3. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    Directory of Open Access Journals (Sweden)

    Jakob Nikolas Kather

    Full Text Available Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions.In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images.To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images.Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  4. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    Science.gov (United States)

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K; Schad, Lothar R; Zöllner, Frank Gerrit

    2015-01-01

    Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  5. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  6. Joint depth map and color consistency estimation for stereo images with different illuminations and cameras.

    Science.gov (United States)

    Heo, Yong Seok; Lee, Kyoung Mu; Lee, Sang Uk

    2013-05-01

    Abstract—In this paper, we propose a method that infers both accurate depth maps and color-consistent stereo images for radiometrically varying stereo images. In general, stereo matching and performing color consistency between stereo images are a chicken-and-egg problem since it is not a trivial task to simultaneously achieve both goals. Hence, we have developed an iterative framework in which these two processes can boost each other. First, we transform the input color images to log-chromaticity color space, from which a linear relationship can be established during constructing a joint pdf of transformed left and right color images. From this joint pdf, we can estimate a linear function that relates the corresponding pixels in stereo images. Based on this linear property, we present a new stereo matching cost by combining Mutual Information (MI), SIFT descriptor, and segment-based plane-fitting to robustly find correspondence for stereo image pairs which undergo radiometric variations. Meanwhile, we devise a Stereo Color Histogram Equalization (SCHE) method to produce color-consistent stereo image pairs, which conversely boost the disparity map estimation. Experimental results show that our method produces both accurate depth maps and color-consistent stereo images, even for stereo images with severe radiometric differences.

  7. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    Directory of Open Access Journals (Sweden)

    Yerai Berenguer

    2015-10-01

    Full Text Available This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

  8. Quantification of brain images using Korean standard templates and structural and cytoarchitectonic probabilistic maps

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong

    2004-01-01

    Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior' / 'posterior' was decreased by 3.1% per decade of age (p -11 , r=0.81) and 'caudal anterior' / 'posterior' was decreased by 1.7% (p -8 , r=0.72). Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis of brain image of Korean people since the difference

  9. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    International Nuclear Information System (INIS)

    Xiao Di; Cai Hong-Kun; Zheng Hong-Ying

    2015-01-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. (paper)

  10. Quantum image encryption based on generalized affine transform and logistic map

    Science.gov (United States)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  11. Disturbance and the dynamics of fynbos biome communities

    CSIR Research Space (South Africa)

    Cowling, RM

    1987-01-01

    Full Text Available This volume comprises invited review and research papers dealing with the effects of disturbance on the dynamics of fynbos biome communities. Since fire is the most important disturbance factor in the biome, most contributions concentrate...

  12. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  13. Effective palette indexing for image compression using self-organization of Kohonen feature map.

    Science.gov (United States)

    Pei, Soo-Chang; Chuang, Yu-Ting; Chuang, Wei-Hong

    2006-09-01

    The process of limited-color image compression usually involves color quantization followed by palette re-indexing. Palette re-indexing could improve the compression of color-indexed images, but it is still complicated and consumes extra time. Making use of the topology-preserving property of self-organizing Kohonen feature map, we can generate a fairly good color index table to achieve both high image quality and high compression, without re-indexing. Promising experiment results will be presented.

  14. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  15. Comparison of manually produced and automated cross country movement maps using digital image processing techniques

    Science.gov (United States)

    Wynn, L. K.

    1985-01-01

    The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.

  16. Mapping Urban Land Use by Using Landsat Images and Open Social Data

    Directory of Open Access Journals (Sweden)

    Tengyun Hu

    2016-02-01

    Full Text Available High-resolution urban land use maps have important applications in urban planning and management, but the availability of these maps is low in countries such as China. To address this issue, we have developed a protocol to identify urban land use functions over large areas using satellite images and open social data. We first derived parcels from road networks contained in Open Street Map (OSM and used the parcels as the basic mapping unit. We then used 10 features derived from Points of Interest (POI data and two indices obtained from Landsat 8 Operational Land Imager (OLI images to classify parcels into eight Level I classes and sixteen Level II classes of land use. Similarity measures and threshold methods were used to identify land use types in the classification process. This protocol was tested in Beijing, China. The results showed that the generated land use map had an overall accuracy of 81.04% and 69.89% for Level I and Level II classes, respectively. The map revealed significantly more details of the spatial pattern of land uses in Beijing than the land use map released by the government.

  17. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  18. Fast CEUS image segmentation based on self organizing maps

    Science.gov (United States)

    Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine

    2014-03-01

    Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.

  19. Generalized double-humped logistic map-based medical image encryption

    Directory of Open Access Journals (Sweden)

    Samar M. Ismail

    2018-03-01

    Full Text Available This paper presents the design of the generalized Double Humped (DH logistic map, used for pseudo-random number key generation (PRNG. The generalized parameter added to the map provides more control on the map chaotic range. A new special map with a zooming effect of the bifurcation diagram is obtained by manipulating the generalization parameter value. The dynamic behavior of the generalized map is analyzed, including the study of the fixed points and stability ranges, Lyapunov exponent, and the complete bifurcation diagram. The option of designing any specific map is made possible through changing the general parameter increasing the randomness and controllability of the map. An image encryption algorithm is introduced based on pseudo-random sequence generation using the proposed generalized DH map offering secure communication transfer of medical MRI and X-ray images. Security analyses are carried out to consolidate system efficiency including: key sensitivity and key-space analyses, histogram analysis, correlation coefficients, MAE, NPCR and UACI calculations. System robustness against noise attacks has been proved along with the NIST test ensuring the system efficiency. A comparison between the proposed system with respect to previous works is presented.

  20. Changes in forest productivity across Alaska consistent with biome shift

    Science.gov (United States)

    Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz

    2011-01-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...

  1. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  2. Hyperspectral Image Classification using a Self-Organizing Map

    Science.gov (United States)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  3. Attention Priority Map of Face Images in Human Early Visual Cortex.

    Science.gov (United States)

    Mo, Ce; He, Dongjun; Fang, Fang

    2018-01-03

    Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as

  4. Color Image Encryption Using Three-Dimensional Sine ICMIC Modulation Map and DNA Sequence Operations

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; He, Yi; Yu, Mengyao

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a three-dimensional hyperchaotic Sine ICMIC modulation map (3D-SIMM) is proposed based on a close-loop modulation coupling (CMC) method. Based on this map, a novel color image encryption algorithm is designed by employing a hybrid model of multidirectional circular permutation and deoxyribonucleic acid (DNA) masking. In this scheme, the pixel positions of image are scrambled by multidirectional circular permutation, and the pixel values are substituted by DNA sequence operations. The simulation results and security analysis show that the algorithm has good encryption effect and strong key sensitivity, and can resist brute-force, statistical, differential, known-plaintext and chosen-plaintext attacks.

  5. Colour segmentation of multi variants tuberculosis sputum images using self organizing map

    Science.gov (United States)

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2017-05-01

    Lung tuberculosis detection is still identified from Ziehl-Neelsen sputum smear images in low and middle countries. The clinicians decide the grade of this disease by counting manually the amount of tuberculosis bacilli. It is very tedious for clinicians with a lot number of patient and without standardization for sputum staining. The tuberculosis sputum images have multi variant characterizations in colour, because of no standardization in staining. The sputum has more variants colour and they are difficult to be identified. For helping the clinicians, this research examined the Self Organizing Map method for colouring image segmentation in sputum images based on colour clustering. This method has better performance than k-means clustering which also tried in this research. The Self Organizing Map could segment the sputum images with y good result and cluster the colours adaptively.

  6. Thermal inertia imaging - A new geologic mapping tool

    Science.gov (United States)

    Kahle, A. B.; Gillespie, A. R.; Goetz, A. F. H.

    1976-01-01

    A thermal model of the earth's surface has been developed and used to determine the thermal inertia of a test site in the Mojave Desert, California. The model, which includes meteorological heating terms as well as radiation and conduction heating terms, is used with remotely sensed surface temperature and reflectance data to determine the thermal inertia of the surface materials at the test site. The thermal inertia is displayed in image form, and can aid in the differentiation of the various lithologic materials in the test site. Since this thermal property is representative of the upper several cm of the surface, it complements visible and reflected near-IR image data.

  7. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  8. Panoramic Images Mapping Tools Integrated Within the ESRI ArcGIS Software

    International Nuclear Information System (INIS)

    Guo, Jiao; Zhong, Ruofei; Zeng, Fanyang

    2014-01-01

    There is a general study on panoramic images which are presented along with appearance of the Google street map. Despite 360 degree viewing of street, we can realize more applications over panoramic images. This paper developed a toolkits plugged in ArcGIS, which can view panoramic photographs at street level directly from ArcMap and measure and capture all visible elements as frontages, trees and bridges. We use a series of panoramic images adjoined with absolute coordinate through GPS and IMU. There are two methods in this paper to measure object from these panoramic images: one is to intersect object position through a stereogram; the other one is multichip matching involved more than three images which all cover the object. While someone wants to measure objects from these panoramic images, each two panoramic images which both contain the object can be chosen to display on ArcMap. Then we calculate correlation coefficient of the two chosen panoramic images so as to calculate the coordinate of object. Our study test different patterns of panoramic pairs and compare the results of measurement to the real value of objects so as to offer the best choosing suggestion. The article has mainly elaborated the principles of calculating correlation coefficient and multichip matching

  9. A Chaotic Cryptosystem for Images Based on Henon and Arnold Cat Map

    Science.gov (United States)

    Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications. PMID:25258724

  10. A symmetric image encryption scheme based on 3D chaotic cat maps

    International Nuclear Information System (INIS)

    Chen Guanrong; Mao Yaobin; Chui, Charles K.

    2004-01-01

    Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. Due to the exceptionally desirable properties of mixing and sensitivity to initial conditions and parameters of chaotic maps, chaos-based encryption has suggested a new and efficient way to deal with the intractable problem of fast and highly secure image encryption. In this paper, the two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme. This new scheme employs the 3D cat map to shuffle the positions (and, if desired, grey values as well) of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security and fast encryption speed of the new scheme

  11. Combining climatic and soil properties better predicts covers of Brazilian biomes

    Science.gov (United States)

    Arruda, Daniel M.; Fernandes-Filho, Elpídio I.; Solar, Ricardo R. C.; Schaefer, Carlos E. G. R.

    2017-04-01

    Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.

  12. Combining climatic and soil properties better predicts covers of Brazilian biomes.

    Science.gov (United States)

    Arruda, Daniel M; Fernandes-Filho, Elpídio I; Solar, Ricardo R C; Schaefer, Carlos E G R

    2017-04-01

    Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km 2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.

  13. Global climate and the distribution of plant biomes.

    Science.gov (United States)

    Woodward, F I; Lomas, M R; Kelly, C K

    2004-10-29

    Biomes are areas of vegetation that are characterized by the same life-form. Traditional definitions of biomes have also included either geographical or climatic descriptors. This approach describes a wide range of biomes that can be correlated with characteristic climatic conditions, or climatic envelopes. The application of remote sensing technology to the frequent observation of biomes has led to a move away from the often subjective definition of biomes to one that is objective. Carefully characterized observations of life-form, by satellite, have been used to reconsider biome classification and their climatic envelopes. Five major tree biomes can be recognized by satellites based on leaf longevity and morphology: needleleaf evergreen, broadleaf evergreen, needleleaf deciduous, broadleaf cold deciduous and broadleaf drought deciduous. Observations indicate that broadleaf drought deciduous vegetation grades substantially into broadleaf evergreen vegetation. The needleleaf deciduous biome occurs in the world's coldest climates, where summer drought and therefore a drought deciduous biome are absent. Traditional biome definitions are quite static, implying no change in their life-form composition with time, within their particular climatic envelopes. However, this is not the case where there has been global ingress of grasslands and croplands into forested vegetation. The global spread of grasses, a new super-biome, was probably initiated 30-45 Myr ago by an increase in global aridity, and was driven by the natural spread of the disturbances of fire and animal grazing. These disturbances have been further extended over the Holocene era by human activities that have increased the land areas available for domestic animal grazing and for growing crops. The current situation is that grasses now occur in most, if not all biomes, and in many areas they dominate and define the biome. Croplands are also increasing, defining a new and relatively recent component to the

  14. Improvement to the scanning electron microscope image adaptive Canny optimization colorization by pseudo-mapping.

    Science.gov (United States)

    Lo, T Y; Sim, K S; Tso, C P; Nia, M E

    2014-01-01

    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.

  15. Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in -w magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu Shao-De; Wu Shi-Bin; Xie Yao-Qin; Wang Hao-Yu; Wei Xin-Hua; Chen Xin; Pan Wan-Long; Hu Jiani

    2015-01-01

    Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. (paper)

  16. Automatic 3d Mapping Using Multiple Uncalibrated Close Range Images

    Science.gov (United States)

    Rafiei, M.; Saadatseresht, M.

    2013-09-01

    Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D) images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure) and camera pose (motion), it is commonly known as structure from motion (SfM). In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction). Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower).

  17. Mapping stain distribution in pathology slides using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI offers a novel approach to digitize and review pathology slides, but the voluminous data generated by this technology demand new computational methods for image analysis. Materials and Methods: In this study, we report a method that recognizes stains in WSI data and uses kernel density estimator to calculate the stain density across the digitized pathology slides. The validation study was conducted using a rat model of acute cardiac allograft rejection and another rat model of heart ischemia/reperfusion injury. Immunohistochemistry (IHC was conducted to label ED1 + macrophages in the tissue sections and the stained slides were digitized by a whole slide scanner. The whole slide images were tessellated to enable parallel processing. Pixel-wise stain classification was conducted to classify the IHC stains from those of the background and the density distribution of the identified IHC stains was then calculated by the kernel density estimator. Results: The regression analysis showed a correlation coefficient of 0.8961 between the number of IHC stains counted by our stain recognition algorithm and that by the manual counting, suggesting that our stain recognition algorithm was in good agreement with the manual counting. The density distribution of the IHC stains showed a consistent pattern with those of the cellular magnetic resonance (MR images that detected macrophages labeled by ultrasmall superparamagnetic iron-oxide or micron-sized iron-oxide particles. Conclusions: Our method provides a new imaging modality to facilitate clinical diagnosis. It also provides a way to validate/correlate cellular MRI data used for tracking immune-cell infiltration in cardiac transplant rejection and cardiac ischemic injury.

  18. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    Science.gov (United States)

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.

  19. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    Science.gov (United States)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  20. Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Pupa U.P.A., E-mail: pupa@physics.wisc.edu [University of Wisconsin-Madison, Departments of Physics and Chemistry, Madison, WI 53706 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Nanocrystal orientation shown by Polarization-dependent Imaging Contrast (PIC) maps. Black-Right-Pointing-Pointer PIC-mapping of carbonate biominerals reveals their ultrastructure at the nanoscale. Black-Right-Pointing-Pointer The formation mechanisms of biominerals is discovered by PIC-mapping using PEEM. -- Abstract: Carbonate biominerals are one of the most interesting systems a physicist can study. They play a major role in the CO{sub 2} cycle, they master templation, self-assembly, nanofabrication, phase transitions, space filling, crystal nucleation and growth mechanisms. A new imaging modality was introduced in the last 5 years that enables direct observation of the orientation of carbonate single crystals, at the nano- and micro-scale. This is Polarization-dependent Imaging Contrast (PIC) mapping, which is based on X-ray linear dichroism, and uses PhotoElectron Emission spectroMicroscopy (PEEM). Here we present PIC-mapping results from biominerals, including the nacre and prismatic layers of mollusk shells, and sea urchin teeth. We describe various PIC-mapping approaches, and show that these lead to fundamental discoveries on the formation mechanisms of biominerals.

  1. Keyframes Global Map Establishing Method for Robot Localization through Content-Based Image Matching

    Directory of Open Access Journals (Sweden)

    Tianyang Cao

    2017-01-01

    Full Text Available Self-localization and mapping are important for indoor mobile robot. We report a robust algorithm for map building and subsequent localization especially suited for indoor floor-cleaning robots. Common methods, for example, SLAM, can easily be kidnapped by colliding or disturbed by similar objects. Therefore, keyframes global map establishing method for robot localization in multiple rooms and corridors is needed. Content-based image matching is the core of this method. It is designed for the situation, by establishing keyframes containing both floor and distorted wall images. Image distortion, caused by robot view angle and movement, is analyzed and deduced. And an image matching solution is presented, consisting of extraction of overlap regions of keyframes extraction and overlap region rebuild through subblocks matching. For improving accuracy, ceiling points detecting and mismatching subblocks checking methods are incorporated. This matching method can process environment video effectively. In experiments, less than 5% frames are extracted as keyframes to build global map, which have large space distance and overlap each other. Through this method, robot can localize itself by matching its real-time vision frames with our keyframes map. Even with many similar objects/background in the environment or kidnapping robot, robot localization is achieved with position RMSE <0.5 m.

  2. Segmentation of head magnetic resonance image using self-mapping characteristic

    International Nuclear Information System (INIS)

    Madokoro, Hirokazu; Sato, Kazuhito; Ishii, Masaki; Kadowaki, Sakura

    2004-01-01

    In this paper, we proposed a segmentation method, for head magnetic resonance (MR) images. Our method used self mapping characteristic of a self-organization map (SOM), and it does not need the setting of the representative point by the operator. We considered the continuity and boundary in the brain tissues by the definition of the local block. In the evaluation experiment, we obtained the segmentation result of matching anatomical structure information. In addition, our method applied the clinical MR images, it was possible to obtain the effective and objective result for supporting the diagnosis of the brain atrophy by the doctor. (author)

  3. Registration of heat capacity mapping mission day and night images

    Science.gov (United States)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L.

    1982-01-01

    Registration of thermal images is complicated by distinctive differences in the appearance of day and night features needed as control in the registration process. These changes are unlike those that occur between Landsat scenes and pose unique constraints. Experimentation with several potentially promising techniques has led to selection of a fairly simple scheme for registration of data from the experimental thermal satellite HCMM using an affine transformation. Two registration examples are provided.

  4. Attenuation correction in SPECT images using attenuation map estimation with its emission data

    Science.gov (United States)

    Tavakoli, Meysam; Naji, Maryam; Abdollahi, Ali; Kalantari, Faraz

    2017-03-01

    Photon attenuation during SPECT imaging significantly degrades the diagnostic outcome and the quantitative accuracy of final reconstructed images. It is well known that attenuation correction can be done by using iterative reconstruction methods if we access to attenuation map. Two methods have been used to calculate the attenuation map: transmission-based and transmissionless techniques. In this phantom study, we evaluated the importance of attenuation correction by quantitative evaluation of errors associated with each method. For transmissionless approach, the attenuation map was estimated from the emission data only. An EM algorithm with attenuation model was developed and used for attenuation correction during image reconstruction. Finally, a comparison was done between reconstructed images using our OSEM code and analytical FBP method before and after attenuation correction. The results of measurements showed that: our programs are capable to reconstruct SPECT images and correct the attenuation effects. Moreover, to evaluate reconstructed image quality before and after attenuation correction we applied a novel approach using Image Quality Index. Attenuation correction increases the quality and quantitative accuracy in both methods. This increase is independent of activity in quantity factor and decreases with activity in quality factor. In EM algorithm, it is necessary to use regularization to obtain true distribution of attenuation coefficients.

  5. A Side Scan Sonar Image Target Detection Algorithm Based on a Neutrosophic Set and Diffusion Maps

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2018-02-01

    Full Text Available To accurately achieve side scan sonar (SSS image target detection, a novel target detection algorithm based on a neutrosophic set (NS and diffusion maps (DMs is proposed in this paper. Firstly, the neutrosophic subset images were obtained by transforming the input SSS image into the NS domain. Secondly, the shadowed areas of the SSS image were detected using the single gray value threshold method before the diffusion map was calculated. Lastly, based on the diffusion map, the target areas were detected using the improved target scoring equation defined by the diffusion distance and texture feature. The experiments using SSS images of single clear and unclear targets, with or without shadowed areas, showed that the algorithm accurately detects targets. Experiments using SSS images of multiple targets, with or without shadowed areas, showed that no false or missing detections occurred. The target areas were also accurately detected in SSS images with complex features such as sand wave terrain. The accuracy and effectiveness of the proposed algorithm were assessed.

  6. On coupling global biome models with climate models

    International Nuclear Information System (INIS)

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  7. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation

    Directory of Open Access Journals (Sweden)

    Luis Guanter

    2015-07-01

    Full Text Available Imaging spectroscopy, also known as hyperspectral remote sensing, is based on the characterization of Earth surface materials and processes through spectrally-resolved measurements of the light interacting with matter. The potential of imaging spectroscopy for Earth remote sensing has been demonstrated since the 1980s. However, most of the developments and applications in imaging spectroscopy have largely relied on airborne spectrometers, as the amount and quality of space-based imaging spectroscopy data remain relatively low to date. The upcoming Environmental Mapping and Analysis Program (EnMAP German imaging spectroscopy mission is intended to fill this gap. An overview of the main characteristics and current status of the mission is provided in this contribution. The core payload of EnMAP consists of a dual-spectrometer instrument measuring in the optical spectral range between 420 and 2450 nm with a spectral sampling distance varying between 5 and 12 nm and a reference signal-to-noise ratio of 400:1 in the visible and near-infrared and 180:1 in the shortwave-infrared parts of the spectrum. EnMAP images will cover a 30 km-wide area in the across-track direction with a ground sampling distance of 30 m. An across-track tilted observation capability will enable a target revisit time of up to four days at the Equator and better at high latitudes. EnMAP will contribute to the development and exploitation of spaceborne imaging spectroscopy applications by making high-quality data freely available to scientific users worldwide.

  8. Automated Analysis of 123I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo

    2014-01-01

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4- 123 I-iodophenyl)tropane ( 123 I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional 123 I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease

  9. Content-based image retrieval using a signature graph and a self-organizing map

    Directory of Open Access Journals (Sweden)

    Van Thanh The

    2016-06-01

    Full Text Available In order to effectively retrieve a large database of images, a method of creating an image retrieval system CBIR (contentbased image retrieval is applied based on a binary index which aims to describe features of an image object of interest. This index is called the binary signature and builds input data for the problem of matching similar images. To extract the object of interest, we propose an image segmentation method on the basis of low-level visual features including the color and texture of the image. These features are extracted at each block of the image by the discrete wavelet frame transform and the appropriate color space. On the basis of a segmented image, we create a binary signature to describe the location, color and shape of the objects of interest. In order to match similar images, we provide a similarity measure between the images based on binary signatures. Then, we present a CBIR model which combines a signature graph and a self-organizing map to cluster and store similar images. To illustrate the proposed method, experiments on image databases are reported, including COREL,Wang and MSRDI.

  10. The extent of forest in dryland biomes.

    Science.gov (United States)

    Bastin, Jean-François; Berrahmouni, Nora; Grainger, Alan; Maniatis, Danae; Mollicone, Danilo; Moore, Rebecca; Patriarca, Chiara; Picard, Nicolas; Sparrow, Ben; Abraham, Elena Maria; Aloui, Kamel; Atesoglu, Ayhan; Attore, Fabio; Bassüllü, Çağlar; Bey, Adia; Garzuglia, Monica; García-Montero, Luis G; Groot, Nikée; Guerin, Greg; Laestadius, Lars; Lowe, Andrew J; Mamane, Bako; Marchi, Giulio; Patterson, Paul; Rezende, Marcelo; Ricci, Stefano; Salcedo, Ignacio; Diaz, Alfonso Sanchez-Paus; Stolle, Fred; Surappaeva, Venera; Castro, Rene

    2017-05-12

    Dryland biomes cover two-fifths of Earth's land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high temporal resolution, which are available through the Google Earth platform. We show that in 2015, 1327 million hectares of drylands had more than 10% tree-cover, and 1079 million hectares comprised forest. Our estimate is 40 to 47% higher than previous estimates, corresponding to 467 million hectares of forest that have never been reported before. This increases current estimates of global forest cover by at least 9%. Copyright © 2017, American Association for the Advancement of Science.

  11. Surging wildfire activity in a grassland biome

    Science.gov (United States)

    Donovan, Victoria M.; Wonkka, Carissa L.; Twidwell, Dirac

    2017-06-01

    Rapid changes in wildfire patterns are documented globally, increasing pressure to identify regions that may experience increases in wildfire in future decades. Temperate grassland and savanna biomes were some of the most frequently burned regions on Earth; however, large wildfires have been largely absent from the Great Plains of North America over the last century. In this paper, we conduct an in-depth analysis of changes in large wildfire (>400 ha) regime characteristics over a 30 year period across the Great Plains. For the entire biome, (i) the average number of large wildfires increased from 33.4 ± 5.6 per year from 1985 to 1994 to 116.8 ± 28.8 wildfires per year from 2005 to 2014, (ii) total area burned by large wildfires increased 400%, (iii) over half the ecoregions had greater than a 70% probability of a large wildfire occurring in the last decade, and (iv) seasonality of large wildfires remained relatively similar.

  12. Integrating satellite images and lidar data for straight-line mapping

    Science.gov (United States)

    Elaksher, Ahmed; Alharthy, Abdullatif; Ali, Tarig

    2017-09-01

    Currently, most mapping tasks are carried out using remote sensing data such as satellite imageries and LIDAR point clouds. This paper presents the integration of a QuickBird imagery set (both pan and multispectral) and LIDAR DEM generated from a LIDAR point cloud for mapping the coastline. A number of image processing techniques were applied to pan image to generate a coastline. Then a supervised classification is performed on the multispectral image followed by a raster to vector conversion to extract another shoreline. A third line was created from the LIDAR data using a set of processing algorithms. The three lines are weighted and pixels belonging to all of them are grouped to fit a final coastline. In order to evaluate the results, we manually extracted the corresponding line from the pan image and compared points belonging to both lines. Differences averaged about 1.37 meters.

  13. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images.

    Science.gov (United States)

    Su, Yuan-Fong; Liou, Jun-Jih; Hou, Ju-Chen; Hung, Wei-Chun; Hsu, Shu-Mei; Lien, Yi-Ting; Su, Ming-Daw; Cheng, Ke-Sheng; Wang, Yeng-Fung

    2008-10-10

    his study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. SPOT satellite images nearly concurrent with the water quality sampling campaigns were also acquired. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model. Finally, quantitative coastal water quality mapping was accomplished by substituting the pixel-specific spectral reflectance into the multivariate water quality estimation model.

  14. A Biophysical Image Compositing Technique for the Global-Scale Extraction and Mapping of Barren Lands

    Directory of Open Access Journals (Sweden)

    Ram C. Sharma

    2016-11-01

    Full Text Available As the barren lands play a key role in the interaction between land cover dynamics and climate system, an efficient methodology for the global-scale extraction and mapping of the barren lands is important. The discriminative potential of the existing soil/bareness indexes was assessed by collecting globally distributed reference data belonging to major land cover types. The existing soil/bareness indexes parameterized at the local scale did not work satisfactorily everywhere at the global level. A new technique called the Biophysical Image Composite (BIC is proposed in the research by exploiting time-series of the multi-spectral data to capture global-scale barren land attributes effectively. The BIC is a false color composite image made up of Normalized Difference Vegetation Index (NDVI, short wave infrared reflectance, and green reflectance, which were specially selected from the highest vegetation activity period by avoiding signals from the seasonal snowfall. The drastic contrast between the barren lands and vegetation as exhibited by the BIC provides a robust extraction and mapping of the barren lands, and facilitates its visual interpretation. Random Forests based supervised classification approach was applied on the BIC for the mapping of global barren lands. A new global barren land cover map of year 2013 was produced with high accuracy. The comparison of the resulted map with an existing map of the same year showed a substantial discrepancy between two maps due to methodological variation. To cope with this problem, the BIC based mapping methodology, with a special account of the land surface phenological changes, is suggested to standardize the global-scale estimates and mapping of the barren lands.

  15. The Brazilian Pampa: A Fragile Biome

    Directory of Open Access Journals (Sweden)

    Valdir Marcos Stefenon

    2009-12-01

    Full Text Available Biodiversity is one of the most fundamental properties of Nature. It underpins the stability of ecosystems, provides vast bioresources for economic use, and has important cultural significance for many people. The Pampa biome, located in the southernmost state of Brazil, Rio Grande do Sul, illustrates the direct and indirect interdependence of humans and biodiversity. The Brazilian Pampa lies within the South Temperate Zone where grasslands scattered with shrubs and trees are the dominant vegetation. The soil, originating from sedimentary rocks, often has an extremely sandy texture that makes them fragile—highly prone to water and wind erosion. Human activities have converted or degraded many areas of this biome. In this review we discuss our state-of-the-art knowledge of the diversity and the major biological features of this regions and the cultural factors that have shaped it. Our aim is to contribute toward a better understanding of the current status of this special biome and to describe how the interaction between human activities and environment affects the region, highlighting the fragility of the Brazilian Pampa.

  16. Brief Communication: Contrast-stretching- and histogram-smoothness-based synthetic aperture radar image enhancement for flood map generation

    Science.gov (United States)

    Nazir, F.; Riaz, M. M.; Ghafoor, A.; Arif, F.

    2015-02-01

    Synthetic-aperture-radar-image-based flood map generation is usually a challenging task (due to degraded contrast). A three-step approach (based on adaptive histogram clipping, histogram remapping and smoothing) is proposed for generation of a more visualized flood map image. The pre- and post-flood images are adaptively histogram equalized. The hidden details in difference image are enhanced using contrast-based enhancement and histogram smoothing. A fast-ready flood map is then generated using equalized pre-, post- and difference images. Results (evaluated using different data sets) show significance of the proposed technique.

  17. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    Science.gov (United States)

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  18. Denoising of B1+ field maps for noise-robust image reconstruction in electrical properties tomography

    International Nuclear Information System (INIS)

    Michel, Eric; Hernandez, Daniel; Cho, Min Hyoung; Lee, Soo Yeol

    2014-01-01

    Purpose: To validate the use of adaptive nonlinear filters in reconstructing conductivity and permittivity images from the noisy B 1 + maps in electrical properties tomography (EPT). Methods: In EPT, electrical property images are computed by taking Laplacian of the B 1 + maps. To mitigate the noise amplification in computing the Laplacian, the authors applied adaptive nonlinear denoising filters to the measured complex B 1 + maps. After the denoising process, they computed the Laplacian by central differences. They performed EPT experiments on phantoms and a human brain at 3 T along with corresponding EPT simulations on finite-difference time-domain models. They evaluated the EPT images comparing them with the ones obtained by previous EPT reconstruction methods. Results: In both the EPT simulations and experiments, the nonlinear filtering greatly improved the EPT image quality when evaluated in terms of the mean and standard deviation of the electrical property values at the regions of interest. The proposed method also improved the overall similarity between the reconstructed conductivity images and the true shapes of the conductivity distribution. Conclusions: The nonlinear denoising enabled us to obtain better-quality EPT images of the phantoms and the human brain at 3 T

  19. Using Adaptive Tone Mapping to Enhance Edge-Preserving Color Image Automatically

    Directory of Open Access Journals (Sweden)

    Lu Min-Yao

    2010-01-01

    Full Text Available One common characteristic of most high-contrast images is the coexistence of dark shadows and bright light source in one scene. It is very difficult to present details in both dark and bright areas simultaneously on most display devices. In order to resolve this problem, a new method utilizing bilateral filter combined with adaptive tone-mapping method is proposed to improve image quality. First of all, bilateral filter is used to decompose image into two layers: large-scale layer and detail layer. Then, the large-scale layer image is divided into three regions: bright, mid-tone, and dark region. Finally, an appropriate tone-mapping method is chosen to process each region according to its individual property. Only large-scale layer image is enhanced by using adaptive tone mapping; therefore, the details of the original image can be preserved. The experiment results demonstrate the success of proposed method. Furthermore, the proposed method can also avoid posterization produced by methods using histogram equalization.

  20. Aerial image geolocalization by matching its line structure with route map

    Science.gov (United States)

    Kunina, I. A.; Terekhin, A. P.; Khanipov, T. M.; Kuznetsova, E. G.; Nikolaev, D. P.

    2017-03-01

    The classic way of aerial photographs geolocation is to bind their local coordinates to a geographic coordinate system using GPS and IMU data. At the same time the possibility of geolocation in a jammed navigation field is also of interest for practical purposes. In this paper we consider one approach to visual localization relatively to a vector road map without GPS. We suggest a geolocalization algorithm which detects image line segments and looks for a geometrical transformation which provides the best mapping between the obtained segments set and line segments in the road map. We consider IMU and altimeter data still known which allows to work with orthorectified images. The problem is hence reduced to a search for a transformation which contains an arbitrary shift and bounded rotation and scaling relatively to the vector map. These parameters are estimated using RANSAC by matching straight line segments from the image to vector map segments. We also investigate how the proposed algorithm's stability is influenced by segment coordinates (two spatial and one angular).

  1. Local search for optimal global map generation using mid-decadal landsat images

    Science.gov (United States)

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  2. Analysis of Horizontal Accuracy for Large Scale Rural Mapping Using Rotary Wing UAV Image

    Science.gov (United States)

    Hidayat, Husnul; Muljo Sukojo, Bangun

    2017-12-01

    In order to fulfil the need of large scale map for rural mapping, Indonesian government is now looking for alternatives of geospatial data sources. With newly developed technology, nowadays rotary wing UAV can be used to acquire very high resolution aerial imagery quickly with low cost. This research assesses the horizontal accuracy of rural mapping in 1:2000 scale using orthophoto derived from rotary wing UAV image data. The test site of this research is Kebonwaris village, Pandaan, East Java which has an area of approximately 167 hectares. Image data was taken with approximately 80% overlap each other and processed using Structure from Motion approach. Twelve GCPs coordinates were measured using differential GPS observations for georeferencing purpose. For accuracy assessment, 22 test points were established and their coordinates were measured using static differential GPS observations. The results show that the mean absolute horizontal errors are 0.071 m and 0.142 m for easting and northing respectively and the Root Mean Square Errors are 0.088 m and 0.169 m for easting and northing respectively. These RMSE values represents horizontal RMSE 0.190 m. According to Peraturan Kepala BIG No. 15 Tahun 2014, this RMSE value represents the 0.289 m horizontal accuracy based on CE90 criterion. Therefore, with this level of accuracy the UAV image data can be used to make a class 1 base map in 1:2500 scale or class 2 base map in 1:1000 scale.

  3. Mapping of the Seagrass Cover Along the Mediterranean Coast of Turkey Using Landsat 8 Oli Images

    Science.gov (United States)

    Bakirman, T.; Gumusay, M. U.; Tuney, I.

    2016-06-01

    Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5-10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction) of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.

  4. Building Keypoint Mappings on Multispectral Images by a Cascade of Classifiers with a Resurrection Mechanism

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-05-01

    Full Text Available Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF, color and intensity distribution of segment (CIDS, global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods.

  5. MAPPING OF THE SEAGRASS COVER ALONG THE MEDITERRANEAN COAST OF TURKEY USING LANDSAT 8 OLI IMAGES

    Directory of Open Access Journals (Sweden)

    T. Bakirman

    2016-06-01

    Full Text Available Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5–10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.

  6. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, I.C. [Lund Univ. (Sweden). Dept. of Ecology; Guiot, J. [Lab. de Botanique Historique et Palynologie, CNRS, Marseille (France); Huntley, B. [Univ. of Durham (United Kingdom). Dept. of Biological Sciences; Jolly, D. [Lund Univ. (Sweden). Dept. of Ecology; Cheddadi, R. [European Pollen Data Base, Centre Universitaire d`Arles (France)

    1996-02-01

    Biome models allow the results of experiments with atmospheric general circulation models to be translated into global maps of potential natural vegetation. The use of biome models as a diagnostic tool for palaeoclimate simulations can yield maps that are directly comparable with palaeoecological (pollen and plant macrofossil) records provided these records are ``biomized``, i.e. assigned to biomes in a consistent way. This article describes a method for the objective biomization of pollen samples based on fuzzy logic. Pollen types (taxa) are assigned to one or more plant functional types (PFTs), then affinity scores are calculated for each biome in turn based on its list of characteristic PFTs. The pollen sample is assigned to the biome to which it has the highest affinity, subject to a tie-breaking rule. Modern pollen data from surface samples, reflecting present vegetation across Europe, are used to validate the method. Pollen data from dated sediment cores are then used to reconstruct European vegetation patterns for 6 ka. The reconstruction shows systematic differences from present that are consistent with previous interpretations. The method has proved robust with respect to human impacts on vegetation, and provides a rational way to interpret combinations of pollen types that do not have present-day analogs. The method demands minimal prior information and is therefore equally suitable for use in other regions with richer floras, and/or lower densities of available modern and fossil pollen samples, than Europe. (orig.). With 3 figs., 3 tabs.

  7. Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Hyungki Kim

    2014-01-01

    Full Text Available Three-dimensional city models are becoming a valuable resource because of their close geospatial, geometrical, and visual relationship with the physical world. However, ground-oriented applications in virtual reality, 3D navigation, and civil engineering require a novel modeling approach, because the existing large-scale 3D city modeling methods do not provide rich visual information at ground level. This paper proposes a new framework for generating 3D city models that satisfy both the visual and the physical requirements for ground-oriented virtual reality applications. To ensure its usability, the framework must be cost-effective and allow for automated creation. To achieve these goals, we leverage a mobile mapping system that automatically gathers high-resolution images and supplements sensor information such as the position and direction of the captured images. To resolve problems stemming from sensor noise and occlusions, we develop a fusion technique to incorporate digital map data. This paper describes the major processes of the overall framework and the proposed techniques for each step and presents experimental results from a comparison with an existing 3D city model.

  8. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    Science.gov (United States)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  9. Forward and backward tone mapping of high dynamic range images based on subband architecture

    Science.gov (United States)

    Bouzidi, Ines; Ouled Zaid, Azza

    2015-01-01

    This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.

  10. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.

    Science.gov (United States)

    Choi, Geonho; Lee, Jeonghyeon; Kim, Hyeongeun; Jang, Jaemyung; Im, Changkyun; Jeon, Nooli; Jung, Woonggyu

    2018-03-01

    In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of microwave thermotherapy with histopathology, magnetic resonance imaging and temperature mapping

    NARCIS (Netherlands)

    Huidobro, Christian; Bolmsjö, Magnus; Larson, Thayne; de la Rosette, Jean; Wagrell, Lennart; Schelin, Sonny; Gorecki, Tomasz; Mattiasson, Anders

    2004-01-01

    Purpose: Interstitial temperature mapping was used to determine the heat field within the prostate by the Coretherm. (ProstaLund, Lund, Sweden) transurethral microwave thermotherapy device. Gadolinium. enhanced magnetic resonance imaging (MRI) and histopathology were used to determine the extent and

  12. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations

    Science.gov (United States)

    Ewing, Andrew V.; Kazarian, Sergei G.

    2018-05-01

    Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.

  13. Regional quantitative analysis of cortical surface maps of FDG PET images

    CERN Document Server

    Protas, H D; Hayashi, K M; Chin Lung, Yu; Bergsneider, M; Sung Cheng, Huang

    2006-01-01

    Cortical surface maps are advantageous for visualizing the 3D profile of cortical gray matter development and atrophy, and for integrating structural and functional images. In addition, cortical surface maps for PET data, when analyzed in conjunction with structural MRI data allow us to investigate, and correct for, partial volume effects. Here we compared quantitative regional PET values based on a 3D cortical surface modeling approach with values obtained directly from the 3D FDG PET images in various atlas-defined regions of interest (ROIs; temporal, parietal, frontal, and occipital lobes). FDG PET and 3D MR (SPGR) images were obtained and aligned to ICBM space for 15 normal subjects. Each image was further elastically warped in 2D parameter space of the cortical surface, to align major cortical sulci. For each point within a 15 mm distance of the cortex, the value of the PET intensity was averaged to give a cortical surface map of FDG uptake. The average PET values on the cortical surface map were calcula...

  14. Velocity-Map-Imaging Studien an reaktiven Intermediaten: Fulvenallen, C3H2 Isomere und Alkylradikale

    OpenAIRE

    Giegerich, Jens

    2015-01-01

    In der vorliegenden Dissertation wurde die Photodissoziationsdynamik einer Reihe reaktiver Intermediate mittels Velocity-Map-Imaging Spektroskopie untersucht. Diese sind vor allem im Kontext von Verbrennungsprozessen sowie der Chemie im interstellaren Raum von Interesse. Die wichtigsten Erkenntnisse dieser Arbeit sollen nun kurz zusammengefasst werden. Fulvenallen stellt einen wichtigen Verzweigungspunkt in der Verbrennung von Toluol dar. Die Photodissoziationsdynamik von Fulvenallen, wel...

  15. Weed map generation from UAV image mosaics based on crop row detection

    DEFF Research Database (Denmark)

    Midtiby, Henrik Skov

    To control weed in a field effectively with a minimum of herbicides, knowledge about the weed patches is required. Based on images acquired by Unmanned Aerial Vehicles (UAVs), a vegetation map of the entire field can be generated. Manual analysis, which is often required, to detect weed patches...

  16. Visible and NIR image fusion using weight-map-guided Laplacian ...

    Indian Academy of Sciences (India)

    NIR) image pair is often considered as a solution to improve the visual quality of ... based multi-resolution fusion process, guided by weight maps generated using local entropy,local contrast and visibility as metrics that control the fusion result.

  17. Is Intraoperative Diffusion tensor Imaging at 3.0T Comparable to Subcortical Corticospinal tract Mapping?

    Czech Academy of Sciences Publication Activity Database

    Ostrý, S.; Belšan, T.; Otáhal, Jakub; Beneš, V.; Netuka, D.

    2013-01-01

    Roč. 73, č. 5 (2013), s. 797-807 ISSN 0148-396X Institutional support: RVO:67985823 Keywords : corticospinal tract * intraoperative tractography * intraoperative image distortion * motor-evoked potentials * subcortical mapping Subject RIV: FH - Neurology Impact factor: 3.031, year: 2013

  18. 3D diffraction imaging and orientation mapping in deformed ice crystals

    Energy Technology Data Exchange (ETDEWEB)

    Donges, Jörn, E-mail: joern.donges@desy.de [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany); Montagnat, Maurine [Laboratoire de Glaciologie et Géophysique de l’Environnement, UJF – Grenoble 1/CNRS, 54 rue Molière, F-38402 St Martin d’Hères cedex (France); Bastie, Pierre [Laboratoire Interdisciplinaire de Physique,UMR UJF – Grenoble 1/CNRS no 5588, BP 87, F-38402 St. Martin d’Hères cedex (France); Grennerat, Fanny [Laboratoire de Glaciologie et Géophysique de l’Environnement, UJF – Grenoble 1/CNRS, 54 rue Molière, F-38402 St Martin d’Hères cedex (France)

    2013-04-01

    A method to acquire three dimensional diffraction data and orientation mapping with the 2D imaging setup of Hasylab beamline G3 is presented. The method has been successfully applied to undeformed large grains extracted from ice samples and extended to the 2D determination of lattice misorientation and lattice orientation distribution within deformed grains.

  19. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    Directory of Open Access Journals (Sweden)

    Yihua Tan

    2015-09-01

    Full Text Available This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  20. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    Science.gov (United States)

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  1. Extended substitution-diffusion based image cipher using chaotic standard map

    Science.gov (United States)

    Kumar, Anil; Ghose, M. K.

    2011-01-01

    This paper proposes an extended substitution-diffusion based image cipher using chaotic standard map [1] and linear feedback shift register to overcome the weakness of previous technique by adding nonlinearity. The first stage consists of row and column rotation and permutation which is controlled by the pseudo-random sequences which is generated by standard chaotic map and linear feedback shift register, second stage further diffusion and confusion is obtained in the horizontal and vertical pixels by mixing the properties of the horizontally and vertically adjacent pixels, respectively, with the help of chaotic standard map. The number of rounds in both stage are controlled by combination of pseudo-random sequence and original image. The performance is evaluated from various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results illustrate that performance of this is highly secured and fast.

  2. Habitat Mapping and Quality Assessment of NATURA 2000 Heathland Using Airborne Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Birgen Haest

    2017-03-01

    Full Text Available Appropriate management of (semi-natural areas requires detailed knowledge of the ecosystems present and their status. Remote sensing can provide a systematic, synoptic view at regular time intervals, and is therefore often suggested as a powerful tool to assist with the mapping and monitoring of protected habitats and vegetation. In this study, we present a multi-step mapping framework that enables detailed NATURA 2000 (N2000 heathland habitat patch mapping and the assessment of their conservation status at patch level. The method comprises three consecutive steps: (1 a hierarchical land/vegetation type (LVT classification using airborne AHS imaging spectroscopy and field reference data; (2 a spatial re-classification to convert the LVT map to a patch map based on life forms; and (3 identification of the N2000 habitat type and conservation status parameters for each of the patches. Based on a multivariate analysis of 1325 vegetation reference plots acquired in 2006–2007, 24 LVT classes were identified that were considered relevant for the assessment of heathland conservation status. These labelled data were then used as ground reference for the supervised classification of the AHS image data to an LVT classification map, using Linear Discriminant Analysis in combination with Sequential-Floating-Forward-Search feature selection. Overall classification accuracies for the LVT mapping varied from 83% to 92% (Kappa ≈ 0.82–0.91, depending on the level of detail in the hierarchical classification. After converting the LVT map to a N2000 habitat type patch map, an overall accuracy of 89% was obtained. By combining the N2000 habitat type patch map with the LVT map, two important conservation status parameters were directly deduced per patch: tree and shrub cover, and grass cover, showing a strong similarity to an independent dataset with estimates made in the field in 2009. The results of this study indicate the potential of imaging spectroscopy

  3. Evaluation of lesion detection capabilities of anatomically based MAP image reconstruction methods using the computer observer model

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya; Kudo, Hiroyuki

    2010-01-01

    This study was conducted to evaluate the lesion detection capabilities of anatomically based maximum a posteriori (MAP) image reconstruction methods in emission computed tomography using the computer observer model. In lesion detection tasks, conventional anatomically based MAP reconstruction methods cannot preserve lesions not present in the anatomical image with high contrast and at the same time suppress noise in the background regions. We previously proposed a new anatomically based MAP reconstruction method called the SOS-MAP method, which is based on the spots-on-smooth image model in which the image is modeled by the sum of the smooth background image and the sparse spot image, and showed that the SOS-MAP method can overcome the above-mentioned drawback of conventional anatomically based MAP methods. However, the lesion detection capabilities of the SOS-MAP method remained to be clarified. In the present study, the computer observer model was used to evaluate the lesion detection capabilities of the SOS-MAP method, and it was found that the SOS-MAP method is superior to conventional anatomically based MAP methods for the detection of lesions. (author)

  4. Quantification of brain images using Korean standard templates and structural and cytoarchitectonic probabilistic maps

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)] [and others

    2004-06-01

    Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior' / 'posterior' was decreased by 3.1% per decade of age (p<10{sup -11}, r=0.81) and 'caudal anterior' / 'posterior' was decreased by 1.7% (p<10{sup -8}, r=0.72). Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis

  5. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  6. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  7. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    Science.gov (United States)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  8. The Circumpolar Arctic vegetation map

    Science.gov (United States)

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  9. Integrated Mapping and Imaging at a Legacy Test Site (Invited)

    Science.gov (United States)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Kelley, R. E.; Sweeney, J. J.; Vigil, S.; DiBenedetto, J.; Chipman, V.

    2013-12-01

    A team of multi-disciplinary geoscientists was tasked to characterize and evaluate a legacy nuclear detonation site in order to develop research locations with the long-term goal of improving treaty monitoring, verification, and other national security applications. There was a test at the site of interest that was detonated on June 12, 1985 in a vertical emplacement borehole at a depth of 608m below the surface in rhyolites. With announced yield of 20-150 kt, the event did not collapse to the surface and form a crater, but rather experienced a subsurface collapse with more subtle surface expressions of deformation. This result provides the team with an opportunity to evaluate a number of surface and subsurface inspection technologies in a broad context. The team collected ground-based visual observation, ground penetrating radar, electromagnetic, ground-based and airborne LiDAR, ground-based and airborne hyperspectral, gravity and magnetics, dc and induction electrical methods, and active seismic data during field campaigns in the summers of 2012 and 2013. Detection of features was performed using various approaches that were assessed for accuracy, efficiency and diversity of target features. For example, whereas the primary target of the ground-based visual observation survey was to map the surface features, the target of the gravity survey was to attempt the detection of a possible subsurface collapse zone which might be located as little as 200 meters below the surface. The datasets from surveys described above are integrated into a geographical information system (GIS) database for analysis and visualization. Other presentations during this session provide further details as to some of the work conducted. Work by Los Alamos National Laboratory and Lawrence Livermore National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under

  10. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  11. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Science.gov (United States)

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  12. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  13. Pollen-based biome reconstructions for Colombia at 3000, 6000, 9000, 12 000, 15 000 and 18 000 14C yr ago: Late Quaternary tropical vegetation dynamics

    Science.gov (United States)

    Marchant, Robert; Behling, Hermann; Berrio, Juan-Carlos; Cleef, Antoine; Duivenvoorden, Joost; Hooghiemstra, Henry; Kuhry, Peter; Melief, Bert; Schreve-Brinkman, Elisabeth; van Geel, Bas; van der Hammen, Thomas; van Reenen, Guido; Wille, Michael

    2002-02-01

    Colombian biomes are reconstructed at 45 sites from the modern period extending to the Last Glacial Maximum (LGM). The basis for our reconstruction is pollen data assigned to plant functional types and biomes at six 3000-yr intervals. A reconstruction of modern biomes is used to check the treatment of the modern pollen data set against a map of potential vegetation. This allows the biomes reconstructed at past periods to be assessed relative to the modern situation. This process also provides a check on the a priori assignment of pollen taxa to plant functional types and biomes. For the majority of the sites, the pollen data accurately reflect the potential vegetation, even though much of the original vegetation has been transformed by agricultural practices. At 18 000 14C yr BP, a generally cool and dry environment is reflected in biome, assignments of cold mixed forests, cool evergreen forests and cool grassland-shrub; the latter extending to lower altitudes than presently recorded. This signal is strongly recorded at 15 000 and 12 000 14C yr BP, the vegetation at these times also reflecting a relatively cool and dry environment. At 9000 14C yr BP there is a shift to biomes thought to result from slightly cooler environmental conditions. This trend is reversed by 6000 14C yr BP; most sites, within a range of different environmental settings, recording a shift to more xeric biome types. There is an expansion of steppe and cool mixed-forest biomes, replacing tropical dry forest and cool grassland-shrub biomes, respectively. These changes in biome assignments from the modern situation can be interpreted as a biotic response to mid-Holocene climatic aridity. At 3000 14C yr BP the shift is mainly to biomes characteristic of slightly more mesic environmental conditions.There are a number of sites that do not change biome assignment relative to the modern reconstruction, although the affinities that these sites have to a specific biome do change. These anomalies are

  14. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    Science.gov (United States)

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  15. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, R.; Malladi, R. [Lawrence Berkeley National Lab., CA (United States); Sochen, N. [Tel-Aviv Univ. (Israel)

    1997-02-01

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.

  16. Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    International Nuclear Information System (INIS)

    Fornaciai, A.; Bisson, M.; Mazzarini, F.; Del Carlo, P.; Pasquare, G.

    2009-01-01

    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identify different surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Paven Volcanic Field (PVF). PFV is a Quaternary fissural structure belonging to the black-arc extensional areas of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented [it

  17. Fourier-Mellin moment-based intertwining map for image encryption

    Science.gov (United States)

    Kaur, Manjit; Kumar, Vijay

    2018-03-01

    In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.

  18. A Self-adaptive Bit-level Color Image Encryption Algorithm Based on Generalized Arnold Map

    Directory of Open Access Journals (Sweden)

    Ye Rui-Song

    2017-01-01

    Full Text Available A self-adaptive bit-level color image encryption algorithm based on generalized Arnold map is proposed. The red, green, blue components of the plain-image with height H and width W are decomposed into 8-bit planes and one three-dimensional bit matrix with size ze H×W×24 is obtained. The generalized Arnold map is used to generate pseudo-random sequences to scramble the resulted three-dimensional bit matrix by sort-based approach. The scrambled 3D bit matrix is then rearranged to be one scrambled color image. Chaotic sequences produced by another generalized Arnold map are used to diffuse the resulted red, green, blue components in a cross way to get more encryption effects. Self-adaptive strategy is adopted in both the scrambling stage and diffusion stage, meaning that the key streams are all related to the content of the plain-image and therefore the encryption algorithm show strong robustness against known/chosen plaintext attacks. Some other performances are carried out, including key space, key sensitivity, histogram, correlation coefficients between adjacent pixels, information entropy and difference attack analysis, etc. All the experimental results show that the proposed image encryption algorithm is secure and effective for practical application.

  19. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  20. A New Image Encryption Scheme Based on Dynamic S-Boxes and Chaotic Maps

    Science.gov (United States)

    Rehman, Atique Ur; Khan, Jan Sher; Ahmad, Jawad; Hwang, Soeng Oun

    2016-03-01

    Substitution box is a unique and nonlinear core component of block ciphers. A better designing technique of substitution box can boost up the quality of ciphertexts. In this paper, a new encryption method based on dynamic substitution boxes is proposed via using two chaotic maps. To break the correlation in an original image, pixels values of the original plaintext image are permuted row- and column-wise through random sequences. The aforementioned random sequences are generated by 2-D Burgers chaotic map. For the generation of dynamic substitution boxes, Logistic chaotic map is employed. In the process of diffusion, the permuted image is divided into blocks and each block is substituted via different dynamic substitution boxes. In contrast to conventional encryption schemes, the proposed scheme does not undergo the fixed block cipher and hence the security level can be enhanced. Extensive security analysis including histogram test is applied on the proposed image encryption technique. All experimental results reveal that the proposed scheme has a high level of security and robustness for transmission of digital images on insecure communication channels.

  1. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  2. Perceptual Characterization of the Macronutrient Picture System (MaPS for Food Image fMRI

    Directory of Open Access Journals (Sweden)

    Jill L. King

    2018-01-01

    Full Text Available Food image fMRI paradigms are used widely for investigating the neural basis of ingestive behavior. However, these paradigms have not been validated in terms of ingestive behavior constructs, engagement of food-relevant neural systems, or test-retest reliability, making the generalizability of study findings unclear. Therefore, we validated the Macronutrient Picture System (MaPS (McClernon et al., 2013, which includes food images from the six categories represented in the Geiselman Food Preference Questionnaire (FPQ (Geiselman et al., 1998. Twenty-five healthy young adults (n = 21 female, mean age = 20.6 ± 1.1 years, mean BMI = 22.1 ± 1.9 kg/m2 rated the MaPS images in terms of visual interest, appetitive quality, nutrition, emotional valence, liking, and frequency of consumption, and completed the FPQ. In a second study, 12 individuals (n=8 female, mean age = 25.0 ± 6.5 years, mean BMI = 28.2 ± 8.7 kg/m2 viewed MaPS and control images (vegetables and non-food during two separate 3T BOLD fMRI scans after fasting overnight. Intuitively, high fat/high sugar (HF/HS and high fat/high complex carbohydrate (HF/HCCHO images achieved higher liking and appetitive ratings, and lower nutrition ratings, than low fat/low complex carbohydrate/high protein (LF/LCHO/HP images on average. Within each food category, FPQ scores correlated strongly with MaPS image liking ratings (p < 0.001. Brain activation differences between viewing images of HF/HS and vegetables, and between HF/HCCHO and vegetables, were seen in several reward-related brain regions (e.g., putamen, insula, and medial frontal gyrus. Intra-individual, inter-scan agreement in a summary measure of brain activation differences in seven reward network regions of interest was high (ICC = 0.61, and was even higher when two distinct sets of food images with matching visual ratings were shown in the two scans (ICC = 0.74. These results suggest that the MaPS provides valid representation of food

  3. Whole brain myelin mapping using T1- and T2-weighted MR imaging data.

    Science.gov (United States)

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2014-01-01

    Despite recent advancements in MR imaging, non-invasive mapping of myelin in the brain still remains an open issue. Here we attempted to provide a potential solution. Specifically, we developed a processing workflow based on T1-w and T2-w MR data to generate an optimized myelin enhanced contrast image. The workflow allows whole brain mapping using the T1-w/T2-w technique, which was originally introduced as a non-invasive method for assessing cortical myelin content. The hallmark of our approach is a retrospective calibration algorithm, applied to bias-corrected T1-w and T2-w images, that relies on image intensities outside the brain. This permits standardizing the intensity histogram of the ratio image, thereby allowing for across-subject statistical analyses. Quantitative comparisons of image histograms within and across different datasets confirmed the effectiveness of our normalization procedure. Not only did the calibrated T1-w/T2-w images exhibit a comparable intensity range, but also the shape of the intensity histograms was largely corresponding. We also assessed the reliability and specificity of the ratio image compared to other MR-based techniques, such as magnetization transfer ratio (MTR), fractional anisotropy (FA), and fluid-attenuated inversion recovery (FLAIR). With respect to these other techniques, T1-w/T2-w had consistently high values, as well as low inter-subject variability, in brain structures where myelin is most abundant. Overall, our results suggested that the T1-w/T2-w technique may be a valid tool supporting the non-invasive mapping of myelin in the brain. Therefore, it might find important applications in the study of brain development, aging and disease.

  4. MODIS phenology image service ArcMap toolbox

    Science.gov (United States)

    Talbert, Colin; Kern, Tim J.; Morisette, Jeff; Brown, Don; James, Kevin

    2013-01-01

    implementing long-term conservation plans). In either case, it is important to first grasp the magnitude of natural variation so that it is not confused with actual trends. This work used existing and freely available remote sensing data, specifically the NASA-funded 250-meter (m) spatial resolution land-surface phenology product for North America. This product is calculated from an annual record of vegetation health observed by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The land-surface phenology product is, in essence, a method to summarize all the observations throughout a year into a few key, ecologically relevant “metrics”.

  5. Potential of hyperspectral imaging to assess the stability of mudflat surfaces by mapping sediment characteristics

    Science.gov (United States)

    Smith, Geoff; Thomson, Andrew; Moller, Iris; Kromkamp, Jacco

    2003-03-01

    This work assessed the suitability of hyperspectral data for estimating mudflat surface characteristics related to stability. Due to the inaccessibility of intertidal areas, precise ground-based measurements of mudflat stability are difficult to conduct. Remote sensing can provide full spatial coverage and non-intrusive measurement. As stability changes on mudflats are linked to subtle differences in mudflat surface characteristics, they can potentially be mapped by hyperspectral data. Hyperspectral images were collected along with near contemporary ground measurements. An unsupervised classification gave a map which confirmed that a channel bar was mainly sand whereas soft mud dominated an adjacent embayment. Multiple regression analysis was used to relate surface characteristics to hyperspectral data to construct regression equations. Erosion shear stress was estimated directly from the hyperspectral data and also by a relationship with the surface characteristics. The results of the thematic class map matched well with the known situation at the site during image acquisition. The maps of surface characteristics highlighted the additional information that can be extracted from hyperspectral data. Stability maps, based on the erosion shear stress, can be used as a basis for predicting the likely future behaviour in this dynamic environment and will be of use for coastal zone management.

  6. MR relaxometry in chronic liver diseases: Comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity

    Energy Technology Data Exchange (ETDEWEB)

    Cassinotto, Christophe, E-mail: christophe.cassinotto@chu-bordeaux.fr [Department of Diagnostic and Interventional Imaging, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire et Université de Bordeaux, 1 Avenue de Magellan, 33604 Pessac (France); INSERM U1053, Université Bordeaux, Bordeaux (France); Feldis, Matthieu, E-mail: matthieu.feldis@chu-bordeaux.fr [Department of Diagnostic and Interventional Imaging, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire et Université de Bordeaux, 1 Avenue de Magellan, 33604 Pessac (France); Vergniol, Julien, E-mail: julien.vergniol@chu-bordeaux.fr [Centre D’investigation de la Fibrose Hépatique, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, 1 Avenue de Magellan, 33604 Pessac (France); Mouries, Amaury, E-mail: amaury.mouries@chu-bordeaux.fr [Department of Diagnostic and Interventional Imaging, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire et Université de Bordeaux, 1 Avenue de Magellan, 33604 Pessac (France); Cochet, Hubert, E-mail: hubert.cochet@chu-bordeaux.fr [Department of Diagnostic and Interventional Imaging, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire et Université de Bordeaux, 1 Avenue de Magellan, 33604 Pessac (France); and others

    2015-08-15

    Highlights: • The use of MR to classify cirrhosis in different stages is a new interesting field. • We compared liver and spleen T1 mapping, T2 mapping and diffusion-weighted imaging. • MR relaxometry using liver T1 mapping is accurate for the diagnosis of cirrhosis. • Liver T1 mapping shows that values increase with the severity of cirrhosis. • Diffusion-weighted imaging is less accurate than T1 mapping while T2 mapping is not reliable. - Abstract: Background: MR relaxometry has been extensively studied in the field of cardiac diseases, but its contribution to liver imaging is unclear. We aimed to compare liver and spleen T1 mapping, T2 mapping, and diffusion-weighted MR imaging (DWI) for assessing the diagnosis and severity of cirrhosis. Methods: We prospectively included 129 patients with normal (n = 40) and cirrhotic livers (n = 89) from May to September 2014. Non-enhanced liver T1 mapping, splenic T2 mapping, and liver and splenic DWI were measured and compared for assessing cirrhosis severity using Child-Pugh score, MELD score, and presence or not of large esophageal varices (EVs) and liver stiffness measurements using Fibroscan{sup ®} as reference. Results: Liver T1 mapping was the only variable demonstrating significant differences between normal patients (500 ± 79 ms), Child-Pugh A patients (574 ± 84 ms) and Child-Pugh B/C patients (690 ± 147 ms; all p-values <0.00001). Liver T1 mapping had a significant correlation with Child-Pugh score (Pearson's correlation coefficient of 0.46), MEDL score (0.30), and liver stiffness measurement (0.52). Areas under the receiver operating characteristic curves of liver T1 mapping for the diagnosis of cirrhosis (O.85; 95% confidence intervals (CI), 0.77–0.91), Child-Pugh B/C cirrhosis (0.87; 95%CI, 0.76–0.93), and large EVs (0.75; 95%CI, 0.63–0.83) were greater than that of spleen T2 mapping, liver and spleen DWI (all p-values < 0.01). Conclusion: Liver T1 mapping is a promising new diagnostic

  7. In vivo flow mapping in complex vessel networks by single image correlation.

    Science.gov (United States)

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-12-05

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution.

  8. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  9. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry.

    Science.gov (United States)

    Kruse, Fred A; L Bedell, Richard; Taranik, James V; Peppin, William A; Weatherbee, Oliver; Calvin, Wendy M

    2012-03-20

    Imaging spectrometer data (also known as 'hyperspectral imagery' or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure.

  10. An investigation of multispectral imaging for the mapping of pigments in paintings

    Science.gov (United States)

    Zhao, Yonghui; Berns, Roy S.; Taplin, Lawrence A.; Coddington, James

    2008-02-01

    Compared with colorimetric imaging, multispectral imaging has the advantage of retrieving spectral reflectance factor of each pixel of a painting. Using this spectral information, pigment mapping is concerned with decomposing the spectrum into its constituent pigments and their relative contributions. The output of pigment mapping is a series of spatial concentration maps of the pigments comprising the painting. This approach was used to study Vincent van Gogh's The Starry Night. The artist's palette was approximated using ten oil pigments, selected from a large database of pigments used in oil paintings and a priori analytical research on one of his self portraits, executed during the same time period. The pigment mapping was based on single-constant Kubelka-Munk theory. It was found that the region of blue sky where the stars were located contained, predominantly, ultramarine blue while the swirling sky and region surrounding the moon contained, predominantly, cobalt blue. Emerald green, used in light bluish-green brushstrokes surrounding the moon, was not used to create the dark green in the cypresses. A measurement of lead white from Georges Seurat's La Grande Jatte was used as the white when mapping The Starry Night. The absorption and scattering properties of this white were replaced with a modern dispersion of lead white in linseed oil and used to simulate the painting's appearance before the natural darkening and yellowing of lead white oil paint. Pigment mapping based on spectral imaging was found to be a viable and practical approach for analyzing pigment composition, providing new insight into an artist's working method, the possibility for aiding in restorative inpainting, and lighting design.

  11. Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nazmutdinov, R. R.

    2009-01-01

    based on a slab model for the metal surface. The ordered monolayer offers a platform for submolecular scale electronic mapping that is an issue of fundamental interest but remains a challenge in STM imaging science and surface chemistry. Single Cys molecules were mapped as three electronic subunits...... bulk. The correlation between physical location and electronic contrast of the adsorbed molecules was also revealed by the computational data. The present study shows that cysteine packing in the adlayer on Au(110) from the liquid environment is in contrast to that from the ultrahigh-vacuum environment...

  12. Functional Magnetic Resonance Imaging for Language Mapping in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    An Wang

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI is a noninvasive technique that is increasingly used to understand the cerebral cortical networks and organizations. In this paper, we describe the role of fMRI for mapping language networks in the presurgical workup of patients with medically intractable temporal lobe epilepsy (TLE. Studies comparing fMRI with the intracarotid sodium amobarbital (Wada test and fMRI with intraoperative cortical stimulation mapping for language lateralization and/or localization in medically intractable TLE are discussed.

  13. Global soil-climate-biome diagram: linking soil properties to climate and biota

    Science.gov (United States)

    Zhao, X.; Yang, Y.; Fang, J.

    2017-12-01

    As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.

  14. La filatelia biomédica

    OpenAIRE

    Emilio J.A. Roldán; Claudio Zuckerberg

    2011-01-01

    La temática biomédica es un capítulo extendido de la filatelia o coleccionismo de sellos postales. Inaugura la temática la imagen de la diosa Hygeia, en un sello de la isla Nevis de 1861. Los primeros médicos retratados en una estampilla son tres constitucionalistas americanos, en un ejemplar de 1869, pero recién en 1937 aparecen médicos holandeses en reconocimiento específico de sus aportes a la salud. En la Argentina la primera estampilla que oficialmente se ocupa del tema es de 1944, en ay...

  15. Airborne remote sensing of forest biomes

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  16. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  17. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  18. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  19. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  20. Magnetic Resonance Imaging for Patellofemoral Chondromalacia: Is There a Role for T2 Mapping?

    Science.gov (United States)

    van Eck, Carola F; Kingston, R Scott; Crues, John V; Kharrazi, F Daniel

    2017-11-01

    Patellofemoral pain is common, and treatment is guided by the presence and grade of chondromalacia. To evaluate and compare the sensitivity and specificity in detecting and grading chondral abnormalities of the patella between proton density fat suppression (PDFS) and T2 mapping magnetic resonance imaging (MRI). Cohort study; Level of evidence, 2. A total of 25 patients who underwent MRI of the knee with both a PDFS sequence and T2 mapping and subsequently underwent arthroscopic knee surgery were included. The cartilage surface of the patella was graded on both MRI sequences by 2 independent, blinded radiologists. Cartilage was then graded during arthroscopic surgery by a sports medicine fellowship-trained orthopaedic surgeon. Reliability, sensitivity, specificity, and accuracy were determined for both MRI methods. The findings during arthroscopic surgery were considered the gold standard. Intraobserver and interobserver agreement for both PDFS (98.5% and 89.4%, respectively) and T2 mapping (99.4% and 91.3%, respectively) MRI were excellent. For T2 mapping, the sensitivity (61%) and specificity (64%) were comparable, whereas for PDFS there was a lower sensitivity (37%) but higher specificity (81%) in identifying cartilage abnormalities. This resulted in a similar accuracy for PDFS (59%) and T2 mapping (62%). Both PDFS and T2 mapping MRI were reliable but only moderately accurate in predicting patellar chondromalacia found during knee arthroscopic surgery.

  1. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  2. A New Low-Rank Representation Based Hyperspectral Image Denoising Method for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Lianru Gao

    2017-11-01

    Full Text Available Hyperspectral imaging technology has been used for geological analysis for many years wherein mineral mapping is the dominant application for hyperspectral images (HSIs. The very high spectral resolution of HSIs enables the identification and the diagnosis of different minerals with detection accuracy far beyond that offered by multispectral images. However, HSIs are inevitably corrupted by noise during acquisition and transmission processes. The presence of noise may significantly degrade the quality of the extracted mineral information. In order to improve the accuracy of mineral mapping, denoising is a crucial pre-processing task. By leveraging on low-rank and self-similarity properties of HSIs, this paper proposes a state-of-the-art HSI denoising algorithm that implements two main steps: (1 signal subspace learning via fine-tuned Robust Principle Component Analysis (RPCA; and (2 denoising the images associated with the representation coefficients, with respect to an orthogonal subspace basis, using BM3D, a self-similarity based state-of-the-art denoising algorithm. Accordingly, the proposed algorithm is named Hyperspectral Denoising via Robust principle component analysis and Self-similarity (HyDRoS, which can be considered as a supervised version of FastHyDe. The effectiveness of HyDRoS is evaluated in a series of mineral mapping experiments using noise-reduced AVIRIS and Hyperion HSIs. In these experiments, the proposed denoiser yielded systematically state-of-the-art performance.

  3. Privacy-Aware Image Encryption Based on Logistic Map and Data Hiding

    Science.gov (United States)

    Sun, Jianglin; Liao, Xiaofeng; Chen, Xin; Guo, Shangwei

    The increasing need for image communication and storage has created a great necessity for securely transforming and storing images over a network. Whereas traditional image encryption algorithms usually consider the security of the whole plain image, region of interest (ROI) encryption schemes, which are of great importance in practical applications, protect the privacy regions of plain images. Existing ROI encryption schemes usually adopt approximate techniques to detect the privacy region and measure the quality of encrypted images; however, their performance is usually inconsistent with a human visual system (HVS) and is sensitive to statistical attacks. In this paper, we propose a novel privacy-aware ROI image encryption (PRIE) scheme based on logistical mapping and data hiding. The proposed scheme utilizes salient object detection to automatically, adaptively and accurately detect the privacy region of a given plain image. After private pixels have been encrypted using chaotic cryptography, the significant bits are embedded into the nonprivacy region of the plain image using data hiding. Extensive experiments are conducted to illustrate the consistency between our automatic ROI detection and HVS. Our experimental results also demonstrate that the proposed scheme exhibits satisfactory security performance.

  4. Novelty Detection Classifiers in Weed Mapping: Silybum marianum Detection on UAV Multispectral Images.

    Science.gov (United States)

    Alexandridis, Thomas K; Tamouridou, Afroditi Alexandra; Pantazi, Xanthoula Eirini; Lagopodi, Anastasia L; Kashefi, Javid; Ovakoglou, Georgios; Polychronos, Vassilios; Moshou, Dimitrios

    2017-09-01

    In the present study, the detection and mapping of Silybum marianum (L.) Gaertn. weed using novelty detection classifiers is reported. A multispectral camera (green-red-NIR) on board a fixed wing unmanned aerial vehicle (UAV) was employed for obtaining high-resolution images. Four novelty detection classifiers were used to identify S. marianum between other vegetation in a field. The classifiers were One Class Support Vector Machine (OC-SVM), One Class Self-Organizing Maps (OC-SOM), Autoencoders and One Class Principal Component Analysis (OC-PCA). As input features to the novelty detection classifiers, the three spectral bands and texture were used. The S. marianum identification accuracy using OC-SVM reached an overall accuracy of 96%. The results show the feasibility of effective S. marianum mapping by means of novelty detection classifiers acting on multispectral UAV imagery.

  5. La filatelia biomédica

    Directory of Open Access Journals (Sweden)

    Emilio J.A. Roldán

    2011-02-01

    Full Text Available La temática biomédica es un capítulo extendido de la filatelia o coleccionismo de sellos postales. Inaugura la temática la imagen de la diosa Hygeia, en un sello de la isla Nevis de 1861. Los primeros médicos retratados en una estampilla son tres constitucionalistas americanos, en un ejemplar de 1869, pero recién en 1937 aparecen médicos holandeses en reconocimiento específico de sus aportes a la salud. En la Argentina la primera estampilla que oficialmente se ocupa del tema es de 1944, en ayuda de las víctimas del terremoto de San Juan. Florentino Ameghino es el primer científico incluido en 1954, y en 1967 se edita un sello conmemorativo de la Dra. Cecilia Grierson. La filatelia argentina luego reconoce varios de nuestros científicos y médicos, congresos, universidades, campañas sanitarias, temas de odontología, farmacia, enfermería y otros, generando un amplio material filatélico en reconocimiento del valor social que la ciencia biomédica argentina ha logrado en el contexto propio e internacional. Posiblemente sea un científico, el Dr. Bernardo Houssay, uno de los argentinos más veces editado en distintos sellos postales de la filatelia mundial.

  6. BioMe: biologically relevant metals

    Science.gov (United States)

    Tus, Alan; Rakipović, Alen; Peretin, Goran; Tomić, Sanja; Šikić, Mile

    2012-01-01

    In this article, we introduce BioMe (biologically relevant metals), a web-based platform for calculation of various statistical properties of metal-binding sites. Users can obtain the following statistical properties: presence of selected ligands in metal coordination sphere, distribution of coordination numbers, percentage of metal ions coordinated by the combination of selected ligands, distribution of monodentate and bidentate metal-carboxyl, bindings for ASP and GLU, percentage of particular binuclear metal centers, distribution of coordination geometry, descriptive statistics for a metal ion–donor distance and percentage of the selected metal ions coordinated by each of the selected ligands. Statistics is presented in numerical and graphical forms. The underlying database contains information about all contacts within the range of 3 Å from a metal ion found in the asymmetric crystal unit. The stored information for each metal ion includes Protein Data Bank code, structure determination method, types of metal-binding chains [protein, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), water and other] and names of the bounded ligands (amino acid residue, RNA nucleotide, DNA nucleotide, water and other) and the coordination number, the coordination geometry and, if applicable, another metal(s). BioMe is on a regular weekly update schedule. It is accessible at http://metals.zesoi.fer.hr. PMID:22693222

  7. Velocity map imaging of HBr photodissociation in large rare gas clusters.

    Science.gov (United States)

    Fedor, J; Kocisek, J; Poterya, V; Votava, O; Pysanenko, A; Lipciuc, M L; Kitsopoulos, T N; Fárník, M

    2011-04-21

    We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) "hot" photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas "snowball" is consistent with the experimental observations.

  8. Quality Evaluation and Nonuniform Compression of Geometrically Distorted Images Using the Quadtree Distortion Map

    Directory of Open Access Journals (Sweden)

    Cristina Costa

    2004-09-01

    Full Text Available The paper presents an analysis of the effects of lossy compression algorithms applied to images affected by geometrical distortion. It will be shown that the encoding-decoding process results in a nonhomogeneous image degradation in the geometrically corrected image, due to the different amount of information associated to each pixel. A distortion measure named quadtree distortion map (QDM able to quantify this aspect is proposed. Furthermore, QDM is exploited to achieve adaptive compression of geometrically distorted pictures, in order to ensure a uniform quality on the final image. Tests are performed using JPEG and JPEG2000 coding standards in order to quantitatively and qualitatively assess the performance of the proposed method.

  9. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  10. Analysis of identification of digital images from a map of cosmic microwaves

    Science.gov (United States)

    Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.

    2018-04-01

    This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.

  11. Mapping of crop calendar events by object-based analysis of MODIS and ASTER images

    Directory of Open Access Journals (Sweden)

    A.I. De Castro

    2014-06-01

    Full Text Available A method to generate crop calendar and phenology-related maps at a parcel level of four major irrigated crops (rice, maize, sunflower and tomato is shown. The method combines images from the ASTER and MODIS sensors in an object-based image analysis framework, as well as testing of three different fitting curves by using the TIMESAT software. Averaged estimation of calendar dates were 85%, from 92% in the estimation of emergence and harvest dates in rice to 69% in the case of harvest date in tomato.

  12. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks.

    Science.gov (United States)

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks.

  13. An Adaptive Histogram Equalization Algorithm on the Image Gray Level Mapping

    Science.gov (United States)

    Zhu, Youlian; Huang, Cheng

    The conventional histogram equalization algorithm is easy causing information loss. The paper presented an adaptive histogram-based algorithm in which the information entropy remains the same. The algorithm introduces parameter β in the gray level mapping formula, and takes the information entropy as the target function to adaptively adjust the spacing of two adjacent gray levels in the new histogram. So it avoids excessive gray pixel merger and excessive bright local areas of the image. Experiments show that the improved algorithm may effectively improve visual effects under the premise of the same information entropy. It is useful in CT image processing.

  14. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  15. Saliency Map Generation for SAR Images with Bayes Theory and Heterogeneous Clutter Model

    Directory of Open Access Journals (Sweden)

    Deliang Xiang

    2017-12-01

    Full Text Available Saliency map generation in synthetic aperture radar (SAR imagery has become a promising research area, since it has a close relationship with quick potential target identification, rescue services, etc. Due to the multiplicative speckle noise and complex backscattering in SAR imagery, producing satisfying results is still challenging. This paper proposes a new saliency map generation approach for SAR imagery using Bayes theory and a heterogeneous clutter model, i.e., the G 0 model. With Bayes theory, the ratio of the probability density functions (PDFs in the target and background areas contributes to the saliency. Local and global background areas lead to different saliency measures, i.e., local saliency and global saliency, which are combined to make a final saliency measure. To measure the saliency of targets of different sizes, multiscale saliency enhancement is conducted with different region sizes of target and background areas. After collecting all of the salient regions in the image, the result is refined by considering the image’s immediate context. The saliency of regions that are far away from the focus of attention is suppressed. Experimental results with two single-polarization and two multi-polarization SAR images demonstrate that the proposed method has better speckle noise robustness, higher accuracy, and more stability in saliency map generation both with and without the complex background than state-of-the-art methods. The saliency map accuracy can achieve above 95% with four datasets, which is about 5–20% higher than other methods.

  16. Panoramic, Macro and Micro Multispectral Imaging: An Affordable System for Mapping Pigments on Artworks

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2015-07-01

    Full Text Available Multispectral imaging systems are used in art examinations to map and identify pigments, binders and areas of retouching. A monochromatic camera is combined with an appropriate wavelength selection system and acquires a variable number of spectral images of a scene. These images are then stacked into a reflectance imaging cube to reconstruct reflectance spectra from each of the images’ pixels. This paper presents an affordable multispectral imaging system composed of a monochromatic CCD camera and a set of only 12 interference filters for mapping pigments on works of art and for the tentative identification of such pigments. This work demonstrates the versatility of this set-up, a versatility enabling it to be applied to different tasks, involving examination and documentation of objects of varying size. Use of this multispectral camera for both panoramic and macro photography is discussed, together with the possibilities facilitated from the coupling of the system to a stereomicroscope and a compound microscope. This system is of particular interest for the cultural heritage sector because of its hardware simplicity and acquisition speed, as well as its lightness and small dimensions.

  17. Pairwise-Distance-Analysis-Driven Dimensionality Reduction Model with Double Mappings for Hyperspectral Image Visualization

    Directory of Open Access Journals (Sweden)

    Yi Long

    2015-06-01

    Full Text Available This paper describes a novel strategy for the visualization of hyperspectral imagery based on the analysis of image pixel pairwise distances. The goal of this approach is to generate a final color image with excellent interpretability and high contrast at the cost of distorting a few pairwise distances. Specifically, the principle of equal variance is introduced to divide all hyperspectral bands into three subgroups and to ensure the energy is distributed uniformly between them, as in natural color images. Then, after detecting both normal and outlier pixels, these three subgroups are mapped into three color components of the output visualization using two different mapping (i.e., dimensionality reduction schemes for the two types of pixels. The widely-used multidimensional scaling (MDS is used for normal pixels and a new objective function, taking into account the weighting of pairwise distances, is presented for the outlier pixels. The pairwise distance weighting is designed such that small pairwise distances between the outliers and their respective neighbors are emphasized and large deviations are suppressed. This produces an image with high contrast and good interpretability while retaining the detailed information content. The proposed algorithm is compared with several state-of-the-art visualization techniques and evaluated on the well-known AVIRIS hyperspectral images. The effectiveness of the proposed strategy is substantiated both visually and quantitatively.

  18. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging.

    Science.gov (United States)

    Nilsson, Markus; Lätt, Jimmy; van Westen, Danielle; Brockstedt, Sara; Lasič, Samo; Ståhlberg, Freddy; Topgaard, Daniel

    2013-06-01

    We present the first in vivo application of the filter-exchange imaging protocol for diffusion MRI. The protocol allows noninvasive mapping of the rate of water exchange between microenvironments with different self-diffusivities, such as the intracellular and extracellular spaces in tissue. Since diffusional water exchange across the cell membrane is a fundamental process in human physiology and pathophysiology, clinically feasible and noninvasive imaging of the water exchange rate would offer new means to diagnose disease and monitor treatment response in conditions such as cancer and edema. The in vivo use of filter-exchange imaging was demonstrated by studying the brain of five healthy volunteers and one intracranial tumor (meningioma). Apparent exchange rates in white matter range from 0.8±0.08 s(-1) in the internal capsule, to 1.6±0.11 s(-1) for frontal white matter, indicating that low values are associated with high myelination. Solid tumor displayed values of up to 2.9±0.8 s(-1). In white matter, the apparent exchange rate values suggest intra-axonal exchange times in the order of seconds, confirming the slow exchange assumption in the analysis of diffusion MRI data. We propose that filter-exchange imaging could be used clinically to map the water exchange rate in pathologies. Filter-exchange imaging may also be valuable for evaluating novel therapies targeting the function of aquaporins. Copyright © 2012 Wiley Periodicals, Inc.

  19. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Directory of Open Access Journals (Sweden)

    Binjie Qin

    2009-12-01

    Full Text Available This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM, is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case.

  20. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  1. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.

    Science.gov (United States)

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-05-25

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure-up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.

  2. Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging

    Science.gov (United States)

    2016-01-01

    Gustafson, B. Jalving, ystein Engelhardtsen, and N. Burchill. HUGIN 1000 Arctic class AUV. In The Polar Petroleum Potential Conference & Exhibition, pages...potential for efficient, accurate and quantitative mapping in Arctic exploration [103], Mariana Trench exploration [18], pipeline inspection [65] and...pressure depth sensor, two cameras for 3D bearing measure- ments, and an imaging sonar. The use of these sensors for SLAM is described in detail by

  3. Geometric Context and Orientation Map Combination for Indoor Corridor Modeling Using a Single Image

    Science.gov (United States)

    Baligh Jahromi, Ali; Sohn, Gunho

    2016-06-01

    Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected and converted to a 3D

  4. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    Science.gov (United States)

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  5. The Geometry of Large Tundra Lakes Observed in Historical Maps and Satellite Images

    Science.gov (United States)

    Sudakov, Ivan; Essa, Almabrok; Mander, Luke; Gong, Ming; Kariyawasam, Tharanga

    2017-10-01

    Tundra lakes are key components of the Arctic climate system because they represent a source of methane to the atmosphere. In this paper, we aim to analyze the geometry of the patterns formed by large ($>0.8$ km$^2$) tundra lakes in the Russian High Arctic. We have studied images of tundra lakes in historical maps from the State Hydrological Institute, Russia (date 1977; scale $0.21166$ km/pixel) and in Landsat satellite images derived from the Google Earth Engine (G.E.E.; date 2016; scale $0.1503$ km/pixel). The G.E.E. is a cloud-based platform for planetary-scale geospatial analysis on over four decades of Landsat data. We developed an image-processing algorithm to segment these maps and images, measure the area and perimeter of each lake, and compute the fractal dimension of the lakes in the images we have studied. Our results indicate that as lake size increases, their fractal dimension bifurcates. For lakes observed in historical maps, this bifurcation occurs among lakes larger than $100$ km$^2$ (fractal dimension $1.43$ to $1.87$). For lakes observed in satellite images this bifurcation occurs among lakes larger than $\\sim$100 km$^2$ (fractal dimension $1.31$ to $1.95$). Tundra lakes with a fractal dimension close to $2$ have a tendency to be self-similar with respect to their area--perimeter relationships. Area--perimeter measurements indicate that lakes with a length scale greater than $70$ km$^2$ are power-law distributed. Preliminary analysis of changes in lake size over time in paired lakes (lakes that were visually matched in both the historical map and the satellite imagery) indicate that some lakes in our study region have increased in size over time, whereas others have decreased in size over time. Lake size change during this 39-year time interval can be up to half the size of the lake as recorded in the historical map.

  6. The Geometry of Large Tundra Lakes Observed in Historical Maps and Satellite Images

    Directory of Open Access Journals (Sweden)

    Ivan Sudakov

    2017-10-01

    Full Text Available The climate of the Arctic is warming rapidly and this is causing major changes to the cycling of carbon and the distribution of permafrost in this region. Tundra lakes are key components of the Arctic climate system because they represent a source of methane to the atmosphere. In this paper, we aim to analyze the geometry of the patterns formed by large (> 0.8 km 2 tundra lakes in the Russian High Arctic. We have studied images of tundra lakes in historical maps from the State Hydrological Institute, Russia (date 1977; scale 0.21166 km/pixel and in Landsat satellite images derived from the Google Earth Engine (G.E.E.; date 2016; scale 0.1503 km/pixel. The G.E.E. is a cloud-based platform for planetary-scale geospatial analysis on over four decades of Landsat data. We developed an image-processing algorithm to segment these maps and images, measure the area and perimeter of each lake, and compute the fractal dimension of the lakes in the images we have studied. Our results indicate that as lake size increases, their fractal dimension bifurcates. For lakes observed in historical maps, this bifurcation occurs among lakes larger than 100 km 2 (fractal dimension 1.43 to 1.87 . For lakes observed in satellite images this bifurcation occurs among lakes larger than ∼100 km 2 (fractal dimension 1.31 to 1.95 . Tundra lakes with a fractal dimension close to 2 have a tendency to be self-similar with respect to their area–perimeter relationships. Area–perimeter measurements indicate that lakes with a length scale greater than 70 km 2 are power-law distributed. Preliminary analysis of changes in lake size over time in paired lakes (lakes that were visually matched in both the historical map and the satellite imagery indicate that some lakes in our study region have increased in size over time, whereas others have decreased in size over time. Lake size change during this 39-year time interval can be up to half the size of the lake as recorded in the

  7. A case of a resectable single hepatic epithelioid hemangioendothelioma with characteristic imaging by ADC map.

    Science.gov (United States)

    Okano, Hiroshi; Nakajima, Hideki; Tochio, Tomomasa; Suga, Daisuke; Kumazawa, Hiroaki; Isono, Yoshiaki; Tanaka, Hiroki; Matsusaki, Shimpei; Sase, Tomohiro; Saito, Tomonori; Mukai, Katsumi; Nishimura, Akira; Matsushima, Nobuyoshi; Baba, Youichirou; Murata, Tetsuya; Hamada, Takashi; Taoka, Hiroki

    2015-12-01

    A 47-year-old woman with a single-nodule hepatic tumor was referred to our hospital. She had no symptoms. The tumor was located at the surface of the right lobe of the liver; it showed peripheral low signal intensity on a magnetic resonance imaging apparent diffusion coefficient (ADC) map, and an influx of blood flow into the peripheral area of the tumor at the early vascular phase on perflubutane microbubble (Sonazoid(®)) contrast-enhanced (CE) ultrasonography. Since we suspected a malignant tumor, the patient underwent surgical resection. The hepatic tumor was resected curatively. Pathological examination revealed that the tumor was composed of epithelioid cells with an epithelioid structure and/or cord-like structure. Immunohistochemical staining was positive for cluster of differentiation 34 and factor VIII-related antigen. Based on the above, a final diagnosis of hepatic epithelioid hemangioendothelioma (EHE) was made. Hepatic EHE is a rare hepatic tumor: only a few cases of hepatic EHE with curative resection have been reported. We were unable to reach a diagnosis of hepatic EHE by imaging studies; however, an ADC map was useful in showing the malignant potential of the tumor, and CE ultrasonography was useful in revealing the peripheral blood flow of the tumor. When an unusual hepatic mass is encountered, hepatic EHE should be kept in mind, and the mass should be inspected with more than one imaging modality, including an ADC map, in the process of differential diagnosis.

  8. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  9. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field

    Science.gov (United States)

    Shi, Junfei; Li, Lingling; Liu, Fang; Jiao, Licheng; Liu, Hongying; Yang, Shuyuan; Liu, Lu; Hao, Hongxia

    2016-04-01

    Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.

  10. Mapping language to visual referents: Does the degree of image realism matter?

    Science.gov (United States)

    Saryazdi, Raheleh; Chambers, Craig G

    2018-01-01

    Studies of real-time spoken language comprehension have shown that listeners rapidly map unfolding speech to available referents in the immediate visual environment. This has been explored using various kinds of 2-dimensional (2D) stimuli, with convenience or availability typically motivating the choice of a particular image type. However, work in other areas has suggested that certain cognitive processes are sensitive to the level of realism in 2D representations. The present study examined the process of mapping language to depictions of objects that are more or less realistic, namely photographs versus clipart images. A custom stimulus set was first created by generating clipart images directly from photographs of real objects. Two visual world experiments were then conducted, varying whether referent identification was driven by noun or verb information. A modest benefit for clipart stimuli was observed during real-time processing, but only for noun-driving mappings. The results are discussed in terms of their implications for studies of visually situated language processing. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using Multi-Resolution Image Datasets

    Directory of Open Access Journals (Sweden)

    Muhammad Kamal

    2015-04-01

    Full Text Available Providing accurate maps of mangroves, where the spatial scales of the mapped features correspond to the ecological structures and processes, as opposed to pixel sizes and mapping approaches, is a major challenge for remote sensing. This study developed and evaluated an object-based approach to understand what types of mangrove information can be mapped using different image datasets (Landsat TM, ALOS AVNIR-2, WorldView-2, and LiDAR. We compared and contrasted the ability of these images to map five levels of mangrove features, including vegetation boundary, mangrove stands, mangrove zonations, individual tree crowns, and species communities. We used the Moreton Bay site in Australia as the primary site to develop the classification rule sets and Karimunjawa Island in Indonesia to test the applicability of the rule sets. The results demonstrated the effectiveness of a conceptual hierarchical model for mapping specific mangrove features at discrete spatial scales. However, the rule sets developed in this study require modification to map similar mangrove features at different locations or when using image data acquired by different sensors. Across the hierarchical levels, smaller object sizes (i.e., tree crowns required more complex classification rule sets. Incorporation of contextual information (e.g., distance and elevation increased the overall mapping accuracy at the mangrove stand level (from 85% to 94% and mangrove zonation level (from 53% to 59%. We found that higher image spatial resolution, larger object size, and fewer land-cover classes result in higher mapping accuracies. This study highlights the potential of selected images and mapping techniques to map mangrove features, and provides guidance for how to do this effectively through multi-scale mangrove composition mapping.

  12. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiu-Ling [Department of Dental Medicine, Mackay Memorial Hospital, Taipei, Taiwan (China); Huang, Yung-Hui [Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Wang, Shih-Yuan [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China)

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31{+-}15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  13. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Science.gov (United States)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  14. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Huang, S.C.; Lin, K.P.; Small, G.; Phelps, M.E. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1996-12-31

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer`s disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects.

  15. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  16. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  17. Multifunctional Perceptual Mapping of the Various Components of the World Image in Students

    Directory of Open Access Journals (Sweden)

    Kostyuchenko E.V.,

    2015-08-01

    Full Text Available The article analyzes the products of artistic, graphic and verbal activity, objective measures of actualization of the world image in students of different majors and courses of Kiev National University of Culture and Arts on the basis of allocation of the dominant dichotomous signs, and criteria of interrelated components of the world image (physical, cognitive, psychosomatic, emotional and social. We compared the representation of these characteristics in all artworks (group 1: 1438 students and in a dedicated group of pictures of students, for whom the dominant channel of verbal representation of the world image is perceptual one (group 2: 145 students. We revealed the multifunctional indicators of perceptual representation, and composition category in the mapping of the various components of the world image: harmony, integrity and consistency of form, proportionality and flexibility, structuredness. The perceptual image of the world as a reference image is displayed in the form of compositional integrity, it corrects all the other images, affects the peculiarities of their manifestations in artistic activity; it has a personal meaning, which characterizes the attitude of the individual to the world

  18. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil

    Directory of Open Access Journals (Sweden)

    Rubens Chojniak

    Full Text Available Abstract Objective: To map the different methods for diagnostic imaging instruction at medical schools in Brazil. Materials and Methods: In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Results: Of the 178 questionnaires sent, 45 (25.3% were completed and returned. Of those 45 responses, 17 (37.8% were from public medical schools, whereas 28 (62.2% were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%, classic (independent discipline at 13 (28.9%, hybrid (classical and modular at 9 (20.0%, and none of the preceding at 3 (6.7%. Diagnostic imaging is part of the formal curriculum at 36 (80.0% of the schools, an elective course at 3 (6.7%, and included within another modality at 6 (13.3%. Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5% of the institutions. Conclusion: The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.

  19. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil.

    Science.gov (United States)

    Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe

    2017-01-01

    To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.

  20. Microstructural parcellation of the human cerebral cortex – from Brodmann's post-mortem map to in vivo mapping with high-field magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Stefan Geyer

    2011-02-01

    Full Text Available The year 2009 marked the 100th anniversary of the publication of the famous brain map of Korbinian Brodmann. Although a "classic" guide to microanatomical parcellation of the cerebral cortex, it is – from today's state-of-the-art neuroimaging perspective – problematic to use Brodmann's map as a structural guide to functional units in the cortex. In this article we discuss some of the reasons, especially the problematic compatibility of the "post-mortem world" of microstructural brain maps with the "in vivo world" of neuroimaging. We conclude with some prospects for the future of in vivo structural brain mapping: a new approach which has the enormous potential to make direct correlations between microstructure and function in living human brains: "in vivo Brodmann mapping" with high-field magnetic resonance imaging.

  1. Quantitative magnetic resonance imaging traits as endophenotypes for genetic mapping in epilepsy

    Directory of Open Access Journals (Sweden)

    Saud Alhusaini

    2016-01-01

    Full Text Available Over the last decade, the field of imaging genomics has combined high-throughput genotype data with quantitative magnetic resonance imaging (QMRI measures to identify genes associated with brain structure, cognition, and several brain-related disorders. Despite its successful application in different psychiatric and neurological disorders, the field has yet to be advanced in epilepsy. In this article we examine the relevance of imaging genomics for future genetic studies in epilepsy from three perspectives. First, we discuss prior genome-wide genetic mapping efforts in epilepsy, considering the possibility that some studies may have been constrained by inherent theoretical and methodological limitations of the genome-wide association study (GWAS method. Second, we offer a brief overview of the imaging genomics paradigm, from its original inception, to its role in the discovery of important risk genes in a number of brain-related disorders, and its successful application in large-scale multinational research networks. Third, we provide a comprehensive review of past studies that have explored the eligibility of brain QMRI traits as endophenotypes for epilepsy. While the breadth of studies exploring QMRI-derived endophenotypes in epilepsy remains narrow, robust syndrome-specific neuroanatomical QMRI traits have the potential to serve as accessible and relevant intermediate phenotypes for future genetic mapping efforts in epilepsy.

  2. A Novel Image Encryption Scheme Based on Intertwining Chaotic Maps and RC4 Stream Cipher

    Science.gov (United States)

    Kumari, Manju; Gupta, Shailender

    2018-03-01

    As the systems are enabling us to transmit large chunks of data, both in the form of texts and images, there is a need to explore algorithms which can provide a higher security without increasing the time complexity significantly. This paper proposes an image encryption scheme which uses intertwining chaotic maps and RC4 stream cipher to encrypt/decrypt the images. The scheme employs chaotic map for the confusion stage and for generation of key for the RC4 cipher. The RC4 cipher uses this key to generate random sequences which are used to implement an efficient diffusion process. The algorithm is implemented in MATLAB-2016b and various performance metrics are used to evaluate its efficacy. The proposed scheme provides highly scrambled encrypted images and can resist statistical, differential and brute-force search attacks. The peak signal-to-noise ratio values are quite similar to other schemes, the entropy values are close to ideal. In addition, the scheme is very much practical since having lowest time complexity then its counterparts.

  3. A novel image encryption scheme based on the ergodicity of baker map

    Science.gov (United States)

    Ye, Ruisong; Chen, Yonghong

    2012-01-01

    Thanks to the exceptionally good properties in chaotic systems, such as sensitivity to initial conditions and control parameters, pseudo-randomness and ergodicity, chaos-based image encryption algorithms have been widely studied and developed in recent years. A novel digital image encryption scheme based on the chaotic ergodicity of Baker map is proposed in this paper. Different from traditional encryption schemes based on Baker map, we permute the pixel positions by their corresponding order numbers deriving from the approximating points in one chaotic orbit. To enhance the resistance to statistical and differential attacks, a diffusion process is suggested as well in the proposed scheme. The proposed scheme enlarges the key space significantly to resist brute-force attack. Additionally, the distribution of gray values in the cipher-image has a random-like behavior to resist statistical analysis. The proposed scheme is robust against cropping, tampering and noising attacks as well. It therefore suggests a high secure and efficient way for real-time image encryption and transmission in practice.

  4. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI)

    Science.gov (United States)

    Payen, Thomas; Palermo, Carmine F.; Sastra, Stephen A.; Chen, Hong; Han, Yang; Olive, Kenneth P.; Konofagou, Elisa E.

    2016-08-01

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young’s moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  5. An Overview of the BIOMed Project.

    Science.gov (United States)

    Mantas, John; Wageih, Mohamed A

    2017-01-01

    The purpose is to: 1) foster the national BioMedical Informatics (BMI) foundation aligning with the international medical informatics association (IMIA) in order to remodel the national strategies; 2) structure the BMHI strategic plans in Egypt and Jordan as models for other Arab States; 3) define the requirements for new joint EU-Mediterranean BMHI projects and initiatives; and 4) encourage and support the BMHI centres of excellence in Egypt and Jordan. BIOMed will synergistically apply up-to-date European and International methodologies & standards. The pre-defined challenges were integrating multiple segregated BMHI initiatives and policies; overcoming obstructions- socio, political, economic; recommendation adaptation, assessing the current and proposed solutions; defining the national health systems real demands; identifying different European best practices. Political instability in the Middle East after the Arab Spring in 2011 added further challenges as well as improved the importance of the EU-MENA (EU and Middle East and North Africa) cooperation.

  6. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image

    Science.gov (United States)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu

    2017-10-01

    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  7. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    Science.gov (United States)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  8. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Baltimore, MD, 2011 (NODC Accession 0086105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The original images...

  9. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, New Hampshire, 2008 (NODC Accession 0074094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are an Integrated Ocean and Coastal Mapping (IOCM) Product of coastal New Hampshire. The images were acquired from a nominal altitude of 5,000 feet above...

  10. Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, Northern Vietnam

    Science.gov (United States)

    Won-In, Krit; Charusiri, Punya

    2003-06-01

    Information available from the earth science image processing package (ESIPP) software program was applied to enhance the satellite image data of the Cho Dien area, northern Vietnam. The area with dense vegetation covers is dominated by several small Zn-Pb prospects in middle Paleozoic limestone units. Interpretation of satellite image data using the digital enhancement ESIPP program, forms the prime objective of this study, which is to improve the image quality and visual interpretation of regional geology, lineament and structural geology. Thematic mapper of bands 7, 5 and 4 with the false-color composites: blue, green and red, respectively, are considered to be the most appropriate for geologic interpretation. Dark pixel correction is carried out prior to other enhancement analyses which include high-pass filtering, albedo correction, image classification, principle component analysis (PCA) and band ratios. High-pass filtering enhancement is considered to be the most suitable approach for lineament analysis. Albedo is good for differentiating lithology, and image classification is also successfully used for lineament interpretation and discrimination of lithologies but is regarded not better than high-pass filtering and albedo. PCA and ratio of band enhancements are considered not good because there are many disturbed and excavated land areas such as abandoned and current open pits in the concerned area. The result of Landsat interpretation indicate that most lineament structures developed in a roughly N-trending anticlinal structure are in NE-, E- and N-trends. Minor lineaments are in roughly NW-trend, and cross-cutting the NE- and E-trends. Interpretation from enhanced Landsat information also fits very well with field evidences. The interpreted map is slightly different from those of the previous mapping works, particularly with respect to detailed lithological boundaries.

  11. Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study

    Science.gov (United States)

    Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana

    2016-04-01

    The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with

  12. Dynamic contrast enhanced magnetic resonance imaging for hypoxia mapping and potential for brachytherapy targeting

    Directory of Open Access Journals (Sweden)

    Anna Li

    2017-03-01

    Full Text Available Background and purpose: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI may be used to visualize tumor hypoxia, and was in this work explored in treatment planning of hypoxia-guided brachytherapy of patients with locally advanced cervical cancer (LACC. Materials and methods: Pharmacokinetic ABrix maps were derived from DCE-MR images taken prior to chemoradiotherapy of 78 patients with LACC. A logistic regression procedure was used to segment the tumor volume fraction from the ABrix maps that showed the strongest association with patient survival, denoted biological target volume (BTV fraction. A hypoxia gene score was calculated from a biopsy-based gene signature and correlated against the BTV fraction. Brachytherapy planning based on the ABrix maps was performed, for 23 patients. A general planning aim was a minimum D90 dose of 7.5 Gy to the tumor per brachytherapy fraction. Two planning approaches were explored: (1 a conventional uniform and (2 a non-uniform approach targeting the BTV to the highest dose possible. Results: The segmented BTV fraction was significantly associated local and locoregional control (P = 0.025 and the hypoxia gene score (P = 0.002. Comparing brachytherapy approaches 1 and 2, it was possible to dose escalate the BTV with 0.4 Gy per fraction in median (D90; cohort range [0, 3.8]. Some tumors could not be dose escalated without violating the dose constraints to the organs at risk. Conclusions: Tumor regions associated with hypoxia may be targeted with brachytherapy. The presented methodology may become useful in future strategies to improve cure probability of resistant tumors. Keywords: Hypoxia, Uterine cervical cancer, Computer-assisted image analysis, Magnetic resonance imaging, Brachytherapy

  13. Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error

    Science.gov (United States)

    Hosseinyalamdary, S.; Peter, M.

    2017-05-01

    In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.

  14. LANE LEVEL LOCALIZATION; USING IMAGES AND HD MAPS TO MITIGATE THE LATERAL ERROR

    Directory of Open Access Journals (Sweden)

    S. Hosseinyalamdary

    2017-05-01

    Full Text Available In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone’s GPS receiver, images are taken from smartphone’s camera and the ground truth is provided by using Real-Time Kinematic (RTK technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.

  15. MAPPING ERODED AREAS ON MOUNTAIN GRASSLAND WITH TERRESTRIAL PHOTOGRAMMETRY AND OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. Mayr

    2016-06-01

    Full Text Available In the Alps as well as in other mountain regions steep grassland is frequently affected by shallow erosion. Often small landslides or snow movements displace the vegetation together with soil and/or unconsolidated material. This results in bare earth surface patches within the grass covered slope. Close-range and remote sensing techniques are promising for both mapping and monitoring these eroded areas. This is essential for a better geomorphological process understanding, to assess past and recent developments, and to plan mitigation measures. Recent developments in image matching techniques make it feasible to produce high resolution orthophotos and digital elevation models from terrestrial oblique images. In this paper we propose to delineate the boundary of eroded areas for selected scenes of a study area, using close-range photogrammetric data. Striving for an efficient, objective and reproducible workflow for this task, we developed an approach for automated classification of the scenes into the classes grass and eroded. We propose an object-based image analysis (OBIA workflow which consists of image segmentation and automated threshold selection for classification using the Excess Green Vegetation Index (ExG. The automated workflow is tested with ten different scenes. Compared to a manual classification, grass and eroded areas are classified with an overall accuracy between 90.7% and 95.5%, depending on the scene. The methods proved to be insensitive to differences in illumination of the scenes and greenness of the grass. The proposed workflow reduces user interaction and is transferable to other study areas. We conclude that close-range photogrammetry is a valuable low-cost tool for mapping this type of eroded areas in the field with a high level of detail and quality. In future, the output will be used as ground truth for an area-wide mapping of eroded areas in coarser resolution aerial orthophotos acquired at the same time.

  16. The Effects of Image-Based Concept Mapping on the Learning Outcomes and Cognitive Processes of Mobile Learners

    Science.gov (United States)

    Yen, Jung-Chuan; Lee, Chun-Yi; Chen, I-Jung

    2012-01-01

    The purpose of this study was to investigate the effects of different teaching strategies (text-based concept mapping vs. image-based concept mapping) on the learning outcomes and cognitive processes of mobile learners. Eighty-six college freshmen enrolled in the "Local Area Network Planning and Implementation" course taught by the first author…

  17. Infrared and visible image fusion based on visual saliency map and weighted least square optimization

    Science.gov (United States)

    Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua

    2017-05-01

    The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.

  18. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  19. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    Science.gov (United States)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  1. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    Science.gov (United States)

    2017-05-14

    neuropsychological tests: cognitive performance, perceptual reasoning, working memory , processing speed and perceived stress scale were performed. Brain...AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT

  2. Non invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions

    Science.gov (United States)

    2017-05-14

    neuropsychological tests: cognitive performance, perceptual reasoning, working memory , processing speed and perceived stress scale were performed. Brain...AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT

  3. Biomass Allocation Patterns across China’s Terrestrial Biomes

    Science.gov (United States)

    Wang, Limei; Li, Longhui; Chen, Xi; Tian, Xin; Wang, Xiaoke; Luo, Geping

    2014-01-01

    Root to shoot ratio (RS) is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China’s terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm) for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP) and potential water deficit index (PWDI). Mean annual temperature (MAT) also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship. PMID:24710503

  4. The Use of Fire Radiative Power to Estimate the Biomass Consumption Coefficient for Temperate Grasslands in the Atlantic Forest Biome

    Directory of Open Access Journals (Sweden)

    Bibiana Salvador Cabral da Costa

    Full Text Available Abstract Every year, many active fire spots are identified in the satellite images of the southern Brazilian grasslands in the Atlantic Forest biome and Pampa biome. Fire Radiative Power (FRP is a technique that uses remotely sensed data to quantify burned biomass. FRP measures the radiant energy released per time unit by burning vegetation. This study aims to use satellite and field data to estimate the biomass consumption rate and the biomass consumption coefficient for the southern Brazilian grasslands. Three fire points were identified in satellite FRP products. These data were combined with field data, collected through literature review, to calculate the biomass consumption coefficient. The type of vegetation is an important variable in the estimation of the biomass consumption coefficient. The biomass consumption rate was estimated to be 2.237 kg s-1 for the southern Brazilian grasslands in Atlantic Forest biome, and the biomass consumption coefficient was estimated to be 0.242 kg MJ-1.

  5. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity.

    Science.gov (United States)

    Liu, Hesheng; Buckner, Randy L; Talukdar, Tanveer; Tanaka, Naoaki; Madsen, Joseph R; Stufflebeam, Steven M

    2009-10-01

    Low-frequency components of the spontaneous functional MR imaging signal provide information about the intrinsic functional and anatomical organization of the brain. The ability to use such methods in individual patients may provide a powerful tool for presurgical planning. The authors explore the feasibility of presurgical motor function mapping in which a task-free paradigm is used. Six surgical candidates with tumors or epileptic foci near the motor cortex participated in this study. The investigators directly compared task-elicited activation of the motor system to activation obtained from intrinsic activity correlations. The motor network within the unhealthy hemisphere was identified based on intrinsic activity correlations, allowing distortions of functional anatomy caused by the tumor and epilepsy to be directly visualized. The precision of the motor function mapping was further explored in 1 participant by using direct cortical stimulation. The motor regions localized based on the spontaneous activity correlations were quite similar to the regions defined by actual movement tasks and cortical stimulation. Using intrinsic activity correlations, it was possible to map the motor cortex in presurgical patients. This task-free paradigm may provide a powerful approach to map functional anatomy in patients without task compliance and allow multiple brain systems to be determined in a single scanning session.

  6. Mapping Oil Palm Plantations in Cameroon Using PALSAR 50-m Orthorectified Mosaic Images

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-01-01

    Full Text Available Oil palm plantations have expanded rapidly. Estimating either positive effects on the economy, or negative effects on the environment, requires accurate maps. In this paper, three classification algorithms (Support Vector Machine (SVM, Decision Tree and K-Means were explored to map oil palm plantations in Cameroon, using PALSAR 50 m Orthorectified Mosaic images and differently sized training samples. SVM had the ideal performance with overall accuracy ranging from 86% to 92% and a Kappa coefficient from 0.76 to 0.85, depending upon the training sample size (ranging from 20 to 500 pixels per class. The advantage of SVM was more obvious when the training sample size was smaller. K-Means required the user’s intervention, and thus, the accuracy depended on the level of his/her expertise and experience. For large-scale mapping of oil palm plantations, the Decision Tree algorithm outperformed both SVM and K-Means in terms of speed and performance. In addition, the decision threshold values of Decision Tree for a large training sample size agrees with the results from previous studies, which implies the possible universality of the decision threshold. If it can be verified, the Decision Tree algorithm will be an easy and robust methodology for mapping oil palm plantations.

  7. Image registration of BANG[reg] gel dose maps for quantitative dosimetry verification

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Bova, Frank J.; Maryanski, Marek J.; Kendrick, Lance A.; Ranade, Manisha K.; Buatti, John M.; Friedman, William A.

    1999-01-01

    Background: The BANG[reg] (product symbol SGEL, MGS Research Inc., Guilford, CT) polymer gel has been shown to be a valuable dosimeter for determining three-dimensional (3D) dose distributions. Because the proton relaxation rate (R2) of the gel changes as a function of absorbed dose, MR scans of the irradiated gel can be used to generate 3D dose maps. Previous work with the gel, however, has not relied on precise localization of the measured dose distribution. This has limited its quantitative use, as no precise correlation exists with the planned distribution. This paper reports on a technique for providing this correlation, thus providing a quality assurance tool that includes all of the steps of imaging, treatment planning, dose calculation, and treatment localization. Methods and Materials: The BANG[reg] gel formulation was prepared and poured into spherical flasks (15.3-cm inner diameter). A stereotactic head ring was attached to each flask. Three magnetic resonance imaging (MRI) and computed tomography (CT) compatible fiducial markers were placed on the flask, thus defining the central axial plane. A high-resolution CT scan was obtained of each flask. These images were transferred to a radiosurgery treatment-planning program, where treatment plans were developed. The gels were irradiated using our systems for stereotactic radiosurgery or fractionated stereotactic radiotherapy. The gels were MR imaged, and a relative 3D dose map was created from an R2 map of these images. The dose maps were transferred to an image-correlation program, and then fused to the treatment-planning CT scan through a rigid body match of the MRI/CT-compatible fiducial markers. The fused dose maps were imported into the treatment-planning system for quantitative comparison with the calculated treatment plans. Results: Calculated and measured isodose surfaces agreed to within 2 mm at the worst points within the in-plane dose distributions. This agreement is excellent, considering that

  8. Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain

    Directory of Open Access Journals (Sweden)

    Shaode Yu

    2013-01-01

    Full Text Available Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM and the other depicts fluctuation magnitude (FMM. Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

  9. Digital mapping of side-scan sonar data with the Woods Hole Image Processing System software

    Science.gov (United States)

    Paskevich, Valerie F.

    1992-01-01

    Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing and digitally mosaicking high and low resolution sidescan sonar data. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. Recent development of a UNIX-based image-processing software system includes a series of task specific programs for pre-processing sidescan sonar data. To extend the capabilities of the UNIX-based programs, development of digital mapping techniques have been developed. This report describes the initial development of an automated digital mapping procedure. Included is a description of the programs and steps required to complete the digital mosaicking on a UNIXbased computer system, and a comparison of techniques that the user may wish to select.

  10. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)

    Energy Technology Data Exchange (ETDEWEB)

    Schweser, Ferdinand [New York State Univ., Buffalo, NY (United States). Buffalo Neuroimaging Analysis Center; New York State Univ., Buffalo, NY (United States). MRI Clinical and Translational Research Center; Deistung, Andreas [Jena Univ. (Germany). Medical Physics Group; Reichenbach, Juergen R. [Jena Univ. (Germany). Medical Physics Group; Jena Univ. (Germany). Michael Stifel Center for Data-driven and Simulation Science Jena

    2016-05-01

    Quantitative Susceptibility Mapping (QSM) is a novel MRI based technique that relies on estimates of the magnetic field distribution in the tissue under examination. Several sophisticated data processing steps are required to extract the magnetic field distribution from raw MRI phase measurements. The objective of this review article is to provide a general overview and to discuss several underlying assumptions and limitations of the pre-processing steps that need to be applied to MRI phase data before the final field-to-source inversion can be performed. Beginning with the fundamental relation between MRI signal and tissue magnetic susceptibility this review covers the reconstruction of magnetic field maps from multi-channel phase images, background field correction, and provides an overview of state of the art QSM solution strategies.

  11. Mapping of Inner and Outer Celestial Bodies Using New Global and Local Topographic Data Derived from Photogrammetric Image Processing

    Science.gov (United States)

    Karachevtseva, I. P.; Kokhanov, A. A.; Rodionova, J. F.; Zharkova, A. Yu.; Lazareva, M. S.

    2016-06-01

    New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter), Enceladus (a satellite of Saturn), terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design): basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury's topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel) for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2). New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015), organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

  12. MAPPING OF INNER AND OUTER CELESTIAL BODIES USING NEW GLOBAL AND LOCAL TOPOGRAPHIC DATA DERIVED FROM PHOTOGRAMMETRIC IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    I. P. Karachevtseva

    2016-06-01

    Full Text Available New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter, Enceladus (a satellite of Saturn, terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design: basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury’s topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2. New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015, organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

  13. Objective evaluation of naturalness, contrast, and colorfulness of tone-mapped images

    Science.gov (United States)

    Krasula, Lukáš; Fliegel, Karel; Le Callet, Patrick; Klíma, Miloš

    2014-09-01

    The main obstacle preventing High Dynamic Range (HDR) imaging from becoming standard in image and video processing industry is the challenge of displaying the content. The prices of HDR screens are still too high for ordinary customers. During last decade, a lot of effort has been dedicated to finding ways to compress the dynamic range for legacy displays with simultaneous preservation of details in highlights and shadows which cannot be achieved by standard systems. These dynamic range compression techniques are called tone-mapping operators (TMO) and introduce novel distortions such as spatially non-linear distortion of contrast or naturalness corruption. This paper provides an analysis of objective no-reference naturalness, contrast and colorfulness measures in the context of tone-mapped images evaluation. Reliable measures of these features could be further merged together into single overall quality metric. The main goal of the paper is to provide an initial study of the problem and identify the potential candidates for such a combination.

  14. A Simple and Robust Gray Image Encryption Scheme Using Chaotic Logistic Map and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Adelaïde Nicole Kengnou Telem

    2014-01-01

    Full Text Available A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP. During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme.

  15. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration

    Science.gov (United States)

    Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe

    2018-01-01

    A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.

  16. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration.

    Science.gov (United States)

    Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe

    2018-01-01

    A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O 2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O 2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF 3 I dissociation at 277.38 nm, many CF 3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.

  17. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  18. The Functional Diffusion Map: An Imaging Biomarker for the Early Prediction of Cancer Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Bradford A. Moffat

    2006-04-01

    Full Text Available Functional diffusion map (fDM has been recently reported as an early and quantitative biomarker of clinical brain tumor treatment outcome. This MRI approach spatially maps and quantifies treatment-induced changes in tumor water diffusion values resulting from alterations in cell density/cell membrane function and microenvironment. This current study was designed to evaluate the capability of fDM for preclinical evaluation of dose escalation studies and to determine if these changes were correlated with outcome measures (cell kill and overall survival. Serial T2-weighted and diffusion MRI were carried out on rodents with orthotopically implanted 9L brain tumors receiving three doses of 1,3-bis(2-chloroethyl-1-nitrosourea (6.65, 13.3, and 26.6 mg/kg, i.p.. All images were coregistered to baseline T2-weighted images for fDM analysis. Analysis of tumor fDM data on day 4 posttreatment detected dosedependent changes in tumor diffusion values, which were also found to be spatially dependent. Histologic analysis of treated tumors confirmed spatial changes in cellularity as observed by fDM. Early changes in tumor diffusion values were found to be highly correlative with drug dose and independent biologic outcome measures (cell kill and survival. Therefore, the fDM imaging biomarker for early prediction of treatment efficacy can be used in the drug development process.

  19. Statistical modeling and MAP estimation for body fat quantification with MRI ratio imaging

    Science.gov (United States)

    Wong, Wilbur C. K.; Johnson, David H.; Wilson, David L.

    2008-03-01

    We are developing small animal imaging techniques to characterize the kinetics of lipid accumulation/reduction of fat depots in response to genetic/dietary factors associated with obesity and metabolic syndromes. Recently, we developed an MR ratio imaging technique that approximately yields lipid/{lipid + water}. In this work, we develop a statistical model for the ratio distribution that explicitly includes a partial volume (PV) fraction of fat and a mixture of a Rician and multiple Gaussians. Monte Carlo hypothesis testing showed that our model was valid over a wide range of coefficient of variation of the denominator distribution (c.v.: 0-0:20) and correlation coefficient among the numerator and denominator (ρ 0-0.95), which cover the typical values that we found in MRI data sets (c.v.: 0:027-0:063, ρ: 0:50-0:75). Then a maximum a posteriori (MAP) estimate for the fat percentage per voxel is proposed. Using a digital phantom with many PV voxels, we found that ratio values were not linearly related to PV fat content and that our method accurately described the histogram. In addition, the new method estimated the ground truth within +1.6% vs. +43% for an approach using an uncorrected ratio image, when we simply threshold the ratio image. On the six genetically obese rat data sets, the MAP estimate gave total fat volumes of 279 +/- 45mL, values 21% smaller than those from the uncorrected ratio images, principally due to the non-linear PV effect. We conclude that our algorithm can increase the accuracy of fat volume quantification even in regions having many PV voxels, e.g. ectopic fat depots.

  20. Mapping Sargassum beds off, ChonBuri Province, Thailand, using ALOS AVNI2 image

    Science.gov (United States)

    Noiraksar, Thidarat; Komatsu, Teruhisa; Sawayama, Shuhei; Phauk, Sophany; Hayashizaki, Ken-ichi

    2012-10-01

    Sargassum species grow on rocks and dead corals and form dense seaweed beds. Sargassum beds play ecological roles such as CO2 uptake and O2 production through photosynthesis, spawning and nursery grounds of fish, feeding ground for sea urchins and abalones, and substrates for attached animals and plants on leaves and holdfasts. However, increasing human impacts and climate change decrease or degrade Sargassum beds in ASEAN countries. It is necessary to grasp present spatial distributions of this habitat. Thailand, especially its coastal zone along the Gulf of Thailand, is facing degradation of Sargassum beds due to increase in industries and population. JAXA launched non-commercial satellite, ALOS, providing multiband images with ultra-high spatial resolution optical sensors (10 m), AVNIR2. Unfortunately, ALOS has terminated its mission in April 2011. However, JAXA has archived ALOS AVNIR2 images over the world. They are still useful for mapping coastal ecosystems. We examined capability of remote sensing with ALOS AVNIR2 to map Sargassum beds in waters off Sattahip protected area as a natural park in Chon Buri Province, Thailand, threatened by degradation of water quality due to above-mentioned impacts. Ground truth data were obtained in February 2012 by using continual pictures taken by manta tow. Supervised classification could detect Sargassum beds off Sattahip at about 70% user accuracy. It is estimated that error is caused by mixel effect of bottom substrates in a pixel with 10 x 10 m. Our results indicate that ALOS AVNIR2 images are useful for mapping Sargassum beds in Southeast Asia.

  1. ONE-STEP AND TWO-STEP CALIBRATION OF A PORTABLE PANORAMIC IMAGE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    P.-C. Wang

    2012-07-01

    Full Text Available A Portable Panoramic Image Mapping System (PPIMS is proposed for rapid acquisition of three-dimensional spatial information. By considering the convenience of use, cost, weight of equipment, precision, and power supply, the designed PPIMS is equipped with 6 circularly arranged cameras to capture panoramic images and a GPS receiver for positioning. The motivation for this design is to develop a hand-held Mobile Mapping System (MMS for some difficult accessing areas by vehicle MMS, such as rugged terrains, forest areas, heavily damaged disaster areas, and crowed places etc. This PPIMS is in fact a GPS assisted close-range photogrammetric system. Compared with the traditional close-range photogrammetry, PPIMS can reduce the need of ground control points significantly. Under the condition of knowing the relative geometric relationships of the equipped sensors, the elements of exterior orientation of each captured image can be solved. However, the procedure of a system calibration should be done accurately to determine the relative geometric relationships of multi-cameras and the GPS antenna center, before the PPIMS can be applied for geo-referenced mapping. In this paper, both of one-step and two-step calibration procedures for PPIMS are performed to determine the lever-arm offsets and boresight angles among cameras and GPS. The performance of the one-step and two-step calibration is evaluated through the analysis of the experimental results. The comparison between these two calibration procedures was also conducted. The two-step calibration method outperforms the one-step calibration method in terms of calibration accuracy and operation convenience. We expect that the proposed two-step calibration procedure can also be applied to other platform-based MMSs.

  2. Model-based coding of facial images based on facial muscle motion through isodensity maps

    Science.gov (United States)

    So, Ikken; Nakamura, Osamu; Minami, Toshi

    1991-11-01

    A model-based coding system has come under serious consideration for the next generation of image coding schemes, aimed at greater efficiency in TV telephone and TV conference systems. In this model-based coding system, the sender's model image is transmitted and stored at the receiving side before the start of the conversation. During the conversation, feature points are extracted from the facial image of the sender and are transmitted to the receiver. The facial expression of the sender facial is reconstructed from the feature points received and a wireframed model constructed at the receiving side. However, the conventional methods have the following problems: (1) Extreme changes of the gray level, such as in wrinkles caused by change of expression, cannot be reconstructed at the receiving side. (2) Extraction of stable feature points from facial images with irregular features such as spectacles or facial hair is very difficult. To cope with the first problem, a new algorithm based on isodensity lines which can represent detailed changes in expression by density correction has already been proposed and good results obtained. As for the second problem, we propose in this paper a new algorithm to reconstruct facial images by transmitting other feature points extracted from isodensity maps.

  3. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and

  4. INTEGRATED GEOREFERENCING OF STEREO IMAGE SEQUENCES CAPTURED WITH A STEREOVISION MOBILE MAPPING SYSTEM – APPROACHES AND PRACTICAL RESULTS

    Directory of Open Access Journals (Sweden)

    H. Eugster

    2012-07-01

    Full Text Available Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations – in our case of the imaging sensors – normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  5. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    Science.gov (United States)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  6. Montane plant environments in the Fynbos Biome

    Directory of Open Access Journals (Sweden)

    B. M. Campbell

    1983-12-01

    Full Text Available Environmental data collected at 507 plots on 22 transects, and soil analytical data from 81 of these plots, have been used to describe the plant environments of the mountains in the Fynbos Biome. Two major regional gradients are recognized: a west-east gradient and a coast-interior gradient. Of particular consequence for fynbos-environment studies is the increase in the proportion of fine soil particles from west to east. At least some aspects of soil fertility also increase towards the east. The edaphic changes are paralleled by climatic changes: chiefly a decrease in the severity of summer drought towards the east. On the coast-interior gradient a major non-climatic variable in the gradient is rock cover. High rock cover is a feature of the interior ranges. Soils with organic horizons or with E horizons are a feature on the coastal mountains, but are generally lacking on the interior mountains. The other environmental gradients recognized occur on individual transects and all include edaphic variables. The rockiness-soil depth gradient, on which an increase in rockiness is associated with a decrease in soil depth and usually a decrease in clay content, tends to occur in three situations. Firstly, it is associated with local topographic variation; the shallow, rocky soils being a feature of the steeper slopes. Secondly, it is associated with the aspect gradient; the hot, dry northern aspects having shallow, rocky, less developed soils. Thirdly, it tends to be associated with the altitude-rainfall gradient: shallower soils being found at higher altitudes. It is also at higher altitudes that higher rainfall is found. Variation in oxidizable carbon is chiefly accounted for by the altitude-rainfall gradient. Whereas at a biome-wide level, aspects of soil fertility are related to soil texture, it appears that on individual transects fertility is linked to amounts of plant remains in the soil and to rainfall. Apart from these gradients, which are

  7. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging.

    Science.gov (United States)

    Zheng, Weili; Nichol, Helen; Liu, Saifeng; Cheng, Yu-Chung N; Haacke, E Mark

    2013-09-01

    Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10±0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A fast image encryption system based on chaotic maps with finite precision representation

    International Nuclear Information System (INIS)

    Kwok, H.S.; Tang, Wallace K.S.

    2007-01-01

    In this paper, a fast chaos-based image encryption system with stream cipher structure is proposed. In order to achieve a fast throughput and facilitate hardware realization, 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption system is a pseudo-random keystream generator based on a cascade of chaotic maps, serving the purpose of sequence generation and random mixing. Unlike the other existing chaos-based pseudo-random number generators, the proposed keystream generator not only achieves a very fast throughput, but also passes the statistical tests of up-to-date test suite even under quantization. The overall design of the image encryption system is to be explained while detail cryptanalysis is given and compared with some existing schemes

  9. Velocity map imaging of scattering dynamics in orthogonal two-color fields

    Science.gov (United States)

    Würzler, D.; Eicke, N.; Möller, M.; Seipt, D.; Sayler, A. M.; Fritzsche, S.; Lein, M.; Paulus, G. G.

    2018-01-01

    In strong-field ionization processes, two-color laser fields are frequently used for controlling sub-cycle electron dynamics via the relative phase of the laser fields. Here we apply this technique to velocity map imaging spectroscopy using an unconventional orientation with the polarization of the ionizing laser field perpendicular to the detector surface and the steering field parallel to it. This geometry allows not only to image the phase-dependent photoelectron momentum distribution (PMD) of low-energy electrons that interact only weakly with the ion (direct electrons), but also to investigate the low yield of higher-energy rescattered electrons. Phase-dependent measurements of the PMD of neon and xenon demonstrate control over direct and rescattered electrons. The results are compared with semi-classical calculations in three dimensions including elastic scattering at different orders of return and with solutions of the three-dimensional time-dependent Schrödinger equation.

  10. Extended focused imaging and depth map reconstruction in optical scanning holography.

    Science.gov (United States)

    Ren, Zhenbo; Chen, Ni; Lam, Edmund Y

    2016-02-10

    In conventional microscopy, specimens lying within the depth of field are clearly recorded whereas other parts are blurry. Although digital holographic microscopy allows post-processing on holograms to reconstruct multifocus images, it suffers from defocus noise as a traditional microscope in numerical reconstruction. In this paper, we demonstrate a method that can achieve extended focused imaging (EFI) and reconstruct a depth map (DM) of three-dimensional (3D) objects. We first use a depth-from-focus algorithm to create a DM for each pixel based on entropy minimization. Then we show how to achieve EFI of the whole 3D scene computationally. Simulation and experimental results involving objects with multiple axial sections are presented to validate the proposed approach.

  11. Forest resilience to drought varies across biomes.

    Science.gov (United States)

    Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego

    2018-05-01

    Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.

  12. Structural Mapping of Folded Sedimentary Environments from Satellite Images: an Example from Central Asia

    Science.gov (United States)

    Leith, W.

    1985-01-01

    In the Tadjik Depression, in Soviet Central Asia, in the absence of existing geologic or topographic maps, an enhanced LANDSAT multispectral scanner image was used in combination with field data to produce a 1:250000 geologic map of the Vakhsh fold-and-thrust belt and adjacent autochthon. Several structural conclusions are reached as a result of this mapping. Deformation of the Cretaceous and Tertiary strata of the fold-and-thrust belt is, in the central Tadjik Depression, conspicuously absent north of a buried basement fault that marks the hinge-zone of the Late Mesozoic passive margin. But, in the eastern half of the depression, thrusting has moved coherent sheets northward, over the block fault, these sheets now lie flat atop the autochthon to the north. The crustal structure inherited from the Mesozoic extensional phase has strongly influenced the Late Cenozoic pattern of deformation, producing the fold-and-thrust belt that is markedly asymmetric. The development of the thrust system has included the progressive overlapping of thrust: the later thrusts apparently formed internal to the older thrusts, and subsequently overrode them.

  13. Structural characterization of vegetation in the fynbos biome

    CSIR Research Space (South Africa)

    Campbell, BM

    1981-08-01

    Full Text Available A proposed system for the standardization of descriptive terminology for structural characterization of vegetation in the Fynbos Biome is presented in tabular form. Specific applications of the system are described and illustrations of some...

  14. Using an Exploratory Internet Activity & Trivia Game to Teach Students about Biomes

    Science.gov (United States)

    Richardson, Matthew L.

    2009-01-01

    Students in life science classes need an introduction to biomes, including an introduction to the concept, key biotic and abiotic features of biomes, and geographic locations of biomes. In this activity, students in seventh- and eighth-grade science classes used a directed exploratory Internet activity to learn about biomes. The author tested…

  15. La filatelia biomédica Biomedicine philately

    Directory of Open Access Journals (Sweden)

    Emilio J.A. Roldán

    2011-02-01

    Full Text Available La temática biomédica es un capítulo extendido de la filatelia o coleccionismo de sellos postales. Inaugura la temática la imagen de la diosa Hygeia, en un sello de la isla Nevis de 1861. Los primeros médicos retratados en una estampilla son tres constitucionalistas americanos, en un ejemplar de 1869, pero recién en 1937 aparecen médicos holandeses en reconocimiento específico de sus aportes a la salud. En la Argentina la primera estampilla que oficialmente se ocupa del tema es de 1944, en ayuda de las víctimas del terremoto de San Juan. Florentino Ameghino es el primer científico incluido en 1954, y en 1967 se edita un sello conmemorativo de la Dra. Cecilia Grierson. La filatelia argentina luego reconoce varios de nuestros científicos y médicos, congresos, universidades, campañas sanitarias, temas de odontología, farmacia, enfermería y otros, generando un amplio material filatélico en reconocimiento del valor social que la ciencia biomédica argentina ha logrado en el contexto propio e internacional. Posiblemente sea un científico, el Dr. Bernardo Houssay, uno de los argentinos más veces editado en distintos sellos postales de la filatelia mundial.Biomedicine is a vast field in philately or stamp collecting. It opens the topic the image of the goddess Hygeia, issued in a stamp from Nevis Island dated 1861. The first physicians to appear printed in stamps, in 1869, were three American constitutionalists, but only in 1937 there appear Dutch physicians as an acknowledgement of their contribution to public health. In Argentina the first stamp officially related to the topic was issued in 1944, to raise funds for the victims of the San Juan earthquake. Florentino Ameghino was the first scientist included in 1954, and in 1967 a stamp was issued in honour of Dr. Cecilia Grierson. Afterwards, Argentinean philately has recognized several of our scientists and physicians, congresses, universities, health campaigns, dentistry topics

  16. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  17. Mapping of leptospirosis risk factor based on remote sensing image in Tembalang, Semarang City, Central Java

    Directory of Open Access Journals (Sweden)

    Sunaryo Sunaryo

    2012-09-01

    Full Text Available AbstrakLatar belakang: Leptospirosis merupakan penyakit zoonosis yang disebabkan oleh bakteri leptospira dan menular kepada manusia melalui kontak dengan urine hewan dan lingkungan yang terkontaminasi bakteri leptospira. Kecamatan Tembalang merupakan daerah endemis leptospirosis selama tiga tahun terakhir. Tujuan penelitian ini mengkaji kegunaan citra penginderaan jauh untuk pemetaan faktor risiko lingkungan leptospirosis.Metode: Penelitian ini menggunakan cara potong lintang, subyek sebanyak 246 dipetakan dengan GPS. Dengan program ArcGis 9.2 kasus leptospirosis ditumpang susun dengan citra Quickbird, kemudian dilakukan interpretasi kenampakan visual, dan dilakukan digitasi layar untuk identifi kasi faktor risiko secara visual.Hasil: Berdasarkan visualisasi digital diperoleh data bahwa kasus leptospirosis tahun 2009 terbanyak tersebar membentuk klaster di wilayah Tembalang dengan indeks jarak terdekat 0,009 km, sedangkan indeks jarak terjauh 18 km. Kasus lebih banyak ditemukan pada anak-anak dan remaja laki-laki, secara temporal kasus meningkat pada musim kemarau, antara bulan Juli dan Agustus. Hasil interpretasi visual dan digitasi diperoleh peta penggunaan lahan, badan air, pemukiman, area luasan banjir, kerapatan vegetasi dan ketinggian tempat.Kesimpulan: Citra penginderaan jauh resolusi spasial tinggi sangat baik untuk pemetaan faktor risiko leptospirosis. Sebaran kasus leptospirosis membentuk klaster di wilayah Tembalang, kasus didominasi anakanakdan remaja laki-laki. (Health Science Indones 2012;1:45-50Kata kunci: citra penginderaan jauh, leptospirosis, Tembalang AbstractBackground: Leptospirosis is a zoonotic disease, caused by leptospira bacteria and transmitted to human by contact though contaminated animal urine and environment. Tembalang Sub District is endemic area ofleptospirosis and increased at last three years. The aim of this research was to study the ability and usefulness of image remote sensing for mapping as distribution

  18. Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging.

    Science.gov (United States)

    Wu, Xiang; Song, Xinglin; Qiu, Zhengjun; He, Yong

    2016-03-01

    In this study, NIR hyperspectral imaging technology was applied to determine the distribution of TBARS in frozen-thawed pork. A total of 240 fresh pork samples were assigned to 4 treatment groups (0, 1, 3, 5 frozen-thawed cycles). For each sample, a hyperspectral image (874-1734nm) was collected, followed by chemical TBARS analysis. Successive projection algorithm (SPA) was applied to choose effective wavelengths (EWs). The selected 13 EWs of the calibration set and relevant TBARS value were used as inputs of partial least squares regression (PLSR) model, yielding correlation coefficient of prediction of 0.81 and root mean square error of prediction of 0.33. The developed PLSR model were applied pixel-wise to produce chemical maps of TBARS for 24 selected samples in the prediction set. The results indicated that NIR hyperspectral imaging combined with image processing has the potential to visualize TBARS distribution in frozen-thawed pork. This technique could be useful in real-time quality monitoring in meat industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mapping tropical forest canopy diversity using high‐fidelity imaging spectroscopy.

    Science.gov (United States)

    Féret, Jean-Baptiste; Asner, Gregory P

    There is a growing need for operational biodiversity mapping methods to quantify and to assess the impact of climate change, habitat alteration, and human activity on ecosystem composition and function. Here, we present an original method for the estimation of α- and β-diversity of tropical forests based on high-fidelity imaging spectroscopy. We acquired imagery over high-diversity Amazonian tropical forest landscapes in Peru with the Carnegie Airborne Observatory and developed an unsupervised method to estimate the Shannon index (H′) and variations in species composition using Bray-Curtis dissimilarity (BC) and nonmetric multidimensional scaling (NMDS). An extensive field plot network was used for the validation of remotely sensed α- and β-diversity. Airborne maps of H′ were highly correlated with field α-diversity estimates (r = 0.86), and BC was estimated with demonstrable accuracy (r = 0.61–0.76). Our findings are the first direct and spatially explicit remotely sensed estimates of α- and β-diversity of humid tropical forests, paving the way for new applications using airborne and space-based imaging spectroscopy.

  20. USING LANDSAT IMAGES IN MAPPING AND MONITORING WATER BODIES IN MĂGURA BASIN

    Directory of Open Access Journals (Sweden)

    MEREUȚĂ M.

    2015-03-01

    Full Text Available The work is part of a wider range of interdisciplinary studies undertaken in Măgura catchment, a right-side tributary of Bahlui River. The Măgura River flows from the massif Great Hill-Hârlău. Before the year 2000 there were 11 lakes, and today are only 4. The purpose of this project is to determine the accuracy of the simple techniques in digital image processing for mapping and monitoring lakes and wetlands. Landsat 7 ETM + and Landsat 8 OLI TIRS data sets are used. The paper highlights the bands’ thematic classification accuracy using minimum technical and digital (software resources. The water bodies’ delineated boundaries of each digital classification procedure were compared with the limits obtained by digitizing the topographical plans (1973 and aerial images (2008. The comparisons show that the Landsat data can be used to map accurately the water bodies. It is a simple method of determining the silting degree, especially for lakes with an area of at least 1 ha. Măgura basin has a high archaeological potential (prehistory up to the modern period, part of the national and international cultural heritage. Creating a GIS database, in order to analyze the human-environment relationship, began by studying the hydrological variables. This factor has an important role in the society’s development, both prehistoric and current.

  1. SEMI-AUTOMATIC BUILDING MODELS AND FAÇADE TEXTURE MAPPING FROM MOBILE PHONE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Jeong

    2016-06-01

    Full Text Available Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.

  2. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, {delta}R1 and value of pre-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Buchbender, Christian; Scherer, Axel; Kroepil, Patric; Quentin, Michael; Reichelt, Dorothea C.; Lanzman, Rotem S.; Mathys, Christian; Blondin, Dirk; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [University Duesseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Koerbl, Birthe [Heinrich-Heine-University, Department of Endocrinology, Diabetology and Rheumatology, Medical Faculty, Duesseldorf (Germany); Heinrich-Heine-University, Leibniz Centre for Diabetes Research, Institute of Biometrics and Epidemiology, German Diabetes Centre, Duesseldorf (Germany); Bittersohl, Bernd; Zilkens, Christoph [Heinrich-Heine-University, Department of Orthopaedics, Medical Faculty, Duesseldorf (Germany); Hofer, Matthias [Heinrich-Heine-University, Medical Education Group, Medical School, Duesseldorf (Germany); Schneider, Matthias; Ostendorf, Benedikt [Heinrich-Heine-University, Department of Endocrinology, Diabetology and Rheumatology, Medical Faculty, Duesseldorf (Germany)

    2012-06-15

    To prospectively evaluate four non-invasive markers of cartilage quality - T2* mapping, native T1 mapping, dGEMRIC and {delta}R1 - in healthy volunteers and rheumatoid arthritis (RA) patients. Cartilage of metacarpophalangeal (MCP) joints II were imaged in 28 consecutive subjects: 12 healthy volunteers [9 women, mean (SD) age 52.67 (9.75) years, range 30-66] and 16 RA patients with MCP II involvement [12 women, mean (SD) age 58.06 (12.88) years, range 35-76]. Sagittal T2* mapping was performed with a multi-echo gradient-echo on a 3 T MRI scanner. For T1 mapping the dual flip angle method was applied prior to native T1 mapping and 40 min after gadolinium application (delayed gadolinium-enhanced MRI of cartilage, dGEMRIC, T1{sub Gd}). The difference in the longitudinal relaxation rate induced by gadolinium ({delta}R1) was calculated. The area under the receiver operating characteristic curve (AROC) was used to test for differentiation of RA patients from healthy volunteers. dGEMRIC (AUC 0.81) and {delta}R1 (AUC 0.75) significantly differentiated RA patients from controls. T2* mapping (AUC 0.66) and native T1 mapping (AUC 0.66) were not significantly different in RA patients compared to controls. The data support the use of dGEMRIC for the assessment of MCP joint cartilage quality in RA. T2* and native T1 mapping are of low diagnostic value. Pre-contrast T1 mapping for the calculation of {delta}R1 does not increase the diagnostic value of dGEMRIC. (orig.)

  3. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, ΔR1 and value of pre-contrast imaging

    International Nuclear Information System (INIS)

    Buchbender, Christian; Scherer, Axel; Kroepil, Patric; Quentin, Michael; Reichelt, Dorothea C.; Lanzman, Rotem S.; Mathys, Christian; Blondin, Dirk; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk; Koerbl, Birthe; Bittersohl, Bernd; Zilkens, Christoph; Hofer, Matthias; Schneider, Matthias; Ostendorf, Benedikt

    2012-01-01

    To prospectively evaluate four non-invasive markers of cartilage quality - T2* mapping, native T1 mapping, dGEMRIC and ΔR1 - in healthy volunteers and rheumatoid arthritis (RA) patients. Cartilage of metacarpophalangeal (MCP) joints II were imaged in 28 consecutive subjects: 12 healthy volunteers [9 women, mean (SD) age 52.67 (9.75) years, range 30-66] and 16 RA patients with MCP II involvement [12 women, mean (SD) age 58.06 (12.88) years, range 35-76]. Sagittal T2* mapping was performed with a multi-echo gradient-echo on a 3 T MRI scanner. For T1 mapping the dual flip angle method was applied prior to native T1 mapping and 40 min after gadolinium application (delayed gadolinium-enhanced MRI of cartilage, dGEMRIC, T1 Gd ). The difference in the longitudinal relaxation rate induced by gadolinium (ΔR1) was calculated. The area under the receiver operating characteristic curve (AROC) was used to test for differentiation of RA patients from healthy volunteers. dGEMRIC (AUC 0.81) and ΔR1 (AUC 0.75) significantly differentiated RA patients from controls. T2* mapping (AUC 0.66) and native T1 mapping (AUC 0.66) were not significantly different in RA patients compared to controls. The data support the use of dGEMRIC for the assessment of MCP joint cartilage quality in RA. T2* and native T1 mapping are of low diagnostic value. Pre-contrast T1 mapping for the calculation of ΔR1 does not increase the diagnostic value of dGEMRIC. (orig.)

  4. Diverging responses of tropical Andean biomes under future climate conditions.

    Science.gov (United States)

    Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter

    2013-01-01

    Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other

  5. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H; Elmendorf, Sarah C; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome....

  6. Detection of root canal isthmuses in molars by map-reading dynamic using CBCT images.

    Science.gov (United States)

    Pécora, Jesus Djalma; Estrela, Carlos; Bueno, Mike Reis; Porto, Olavo César; Alencar, Ana Helena Gonçalves; Sousa-Neto, Manoel Damião; Estrela, Cyntia Rodrigues de Araújo

    2013-01-01

    The aim of this study was to detect root isthmuses in maxillary and mandibular molars and evaluate their frequencies using map-reading dynamics in CBCT images. Two hundred extracted human maxillary and mandibular molars were used in ex vivo assay. A consecutive sample of two hundred maxillary and mandibular molars (first and second) was selected from CBCT exams. The isthmuses were detected from the pulp orifice to the apex and were recorded according to their beginning and their end, into categories: 1. begin and end in cervical third; 2. beginning in cervical third and end in middle third; 3. beginning in cervical third and end in apical third; 4. beginning and end in middle third; 5. begin in middle third and end in apical third; 6. beginning and end in apical third; 7. no isthmus. The scans were obtained in different planes with map-reading in axial slices of 0.5 mm/0.5 mm involved the coronal to apical direction. The frequencies of isthmus were analyzed according to the level of root and evaluated by Chi-square test. The level of significance was set at α=0.05. The presence of isthmus detected in maxillary molars was 86% in ex vivo assay and 62% in vivo assay, whereas in mandibular molars was observed 70% in ex vivo assay and 72% in vivo assay. The frequency of isthmus was high in both study models. The map-reading dynamics in CBCT images was found to be precise to detect the localization of isthmus.

  7. Subpixel urban impervious surface mapping: the impact of input Landsat images

    Science.gov (United States)

    Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li

    2017-11-01

    Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.

  8. High resolution mapping of development in the wildland-urban interface using object based image extraction

    Directory of Open Access Journals (Sweden)

    Michael D. Caggiano

    2016-10-01

    Full Text Available The wildland-urban interface (WUI, the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA approach that utilizes 4-band multispectral National Aerial Image Program (NAIP imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2 having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability

  9. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Michael [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Stock, Lorenz G. [Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Traxler, Lukas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Leclercq, Laurent [Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Bonazza, Klaus; Friedbacher, Gernot [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Cottet, Hervé [Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Stutz, Hanno [Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Ebner, Andreas, E-mail: andreas.ebner@jku.at [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria)

    2016-08-03

    Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. - Highlights: • SMIL coating allows generation of homogeneous ultra-flat surfaces. • Molecular electrostatic adhesion forces can be determined in the inner wall of CZE capillary with picoNewton accuracy. • Topographical images and simultaneously acquired adhesion maps yield morphological and chemical information at the nanoscale.

  10. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, S [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Fatemi-Ardekani, A [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Song, W [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequence with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.

  11. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  12. Mapping Woody Plant Encroachment in Grassland Using Multiple Source Remote Sensing images: Case Study in Oklahoma

    Science.gov (United States)

    Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Zhang, Y.; Zou, Z.; Zhou, Y.; Wu, X.; Bajgain, R.

    2015-12-01

    Woody plant encroachment (mainly Juniperus virginiana, a coniferous evergreen tree) in the native grassland has been rapidly increasing in the U.S. Southern Great Plains, largely triggered by overgrazing domestic livestock, fire suppression, and changing rainfall regimes. Increasing dense woody plants have significant implications for local grassland ecosystem dynamics, such as carbon storage, soil nutrient availability, herbaceous forage production, livestock, watershed hydrology and wildlife habitats. However, very limited data are available about the spatio-temporal dynamics of woody plant encroachment to the native grassland at regional scale. Data from remotes sensing could potentially provide relevant information and improve the conversion of native grassland to woody plant encroachment. Previous studies on woody detection in grassland mainly conducted at rangeland scale using airborne or high resolution images, which is sufficient to monitor the dynamics of woody plant encroachment in local grassland. This study examined the potential of medium resolution images to detect the woody encroachment in tallgrass prairie. We selected Cleveland county, Oklahoma, US. as case study area, where eastern area has higher woody coverage than does the western area. A 25-m Phased Array Type L-band Synthetic Aperture Radar (PALSAR, N36W98) image was used to map the trees distributed in the grassland. Then, maximum enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the winter calculated from time-series Landsat images was used to identify the invaded woody species (Juniperus virginiana) through phenology-based algorithm. The resulting woody plant encroachment map was compared with the results extracted from the high resolution images provided by the National Agriculture Imagery Program (NAIP). Field photos were also used to validate the accuracy. These results showed that integrating PALSAR and Landsat had good performance to identify the

  13. biojs-io-biom, a BioJS component for handling data in Biological Observation Matrix (BIOM) format.

    Science.gov (United States)

    Ankenbrand, Markus J; Terhoeven, Niklas; Hohlfeld, Sonja; Förster, Frank; Keller, Alexander

    2016-01-01

    The Biological Observation Matrix (BIOM) format is widely used to store data from high-throughput studies. It aims at increasing interoperability of bioinformatic tools that process this data. However, due to multiple versions and implementation details, working with this format can be tricky. Currently, libraries in Python, R and Perl are available, whilst such for JavaScript are lacking. Here, we present a BioJS component for parsing BIOM data in all format versions. It supports import, modification, and export via a unified interface. This module aims to facilitate the development of web applications that use BIOM data. Finally, we demonstrate its usefulness by two applications that already use this component. Availability: https://github.com/molbiodiv/biojs-io-biom, https://dx.doi.org/10.5281/zenodo.218277.

  14. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    Science.gov (United States)

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  15. INVESTIGATION OF 1 : 1,000 SCALE MAP GENERATION BY STEREO PLOTTING USING UAV IMAGES

    Directory of Open Access Journals (Sweden)

    S. Rhee

    2017-08-01

    Full Text Available Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after

  16. Investigation of 1 : 1,000 Scale Map Generation by Stereo Plotting Using Uav Images

    Science.gov (United States)

    Rhee, S.; Kim, T.

    2017-08-01

    Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs) generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after drawing a specific

  17. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    International Nuclear Information System (INIS)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D

    2016-01-01

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  18. Habitat mapping using hyperspectral images in the vicinity of Hekla volcano in Iceland

    Science.gov (United States)

    Vilmundardóttir, Olga K.; Sigurmundsson, Friðþór S.; Pedersen, Gro B. M.; Falco, Nicola; Rustowicz, Rose; Gísladóttir, Guðrún; Benediktsson, Jón A.

    2016-04-01

    Hekla, one of the most active volcanoes in Iceland, has created a diverse volcanic landscape with lava flows, hyaloclastite and tephra fields. The variety of geological formations and different times of formation create diverse vegetation within Hekla's vicinity. The region is subjected to extensive loss of vegetation cover and soil erosion due to human utilization of woodlands and ongoing sheep grazing. The eolian activity and frequent tephra deposition has created vast areas of sparse vegetation cover. Over the 20th century, many activities have centered on preventing further loss of vegetated land and restoring ecosystems. The benefit of these activities is now noticeable in the increased vegetation and woodland cover although erosion is still active within the area. For mapping and monitoring this highly dynamic environment remote sensing techniques are extremely useful. One of the principal goals of the project 'Environmental Mapping and Monitoring of Iceland with Remote Sensing' (EMMIRS) is to use hyperspectral images and LiDAR data to classify and map the vegetation within the Hekla area. The data was collected in an aerial survey in summer 2015 by the Natural Environment Research Council (NERC), UK. The habitat type classification, currently being developed at the Icelandic Institute of Natural History and follows the structure of the EUNIS classification system, will be used for classifying the vegetation. The habitat map created by this new technique's outcome will be compared to the existent vegetation maps made by the conventional vegetation mapping method and the multispectral image classification techniques. In the field, vegetation cover, soil properties and spectral reflectance were measured within different habitat types. Special emphasis was on collecting data on vegetation and soil in the historical lavas from Hekla for assessing habitats forming over the millennia. A lava-chronosequence was established by measuring vegetation and soil in lavas

  19. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  20. Feature Point Extraction from the Local Frequency Map of an Image

    Directory of Open Access Journals (Sweden)

    Jesmin Khan

    2012-01-01

    Full Text Available We propose a novel technique for detecting rotation- and scale-invariant interest points from the local frequency representation of an image. Local or instantaneous frequency is the spatial derivative of the local phase, where the local phase of any signal can be found from its Hilbert transform. Local frequency estimation can detect edge, ridge, corner, and texture information at the same time, and it shows high values at those dominant features of an image. For each pixel, we select an appropriate width of the window for computing the derivative of the phase. In order to select the width of the window for any given pixel, we make use of the measure of the extent to which the phases, in the neighborhood of that pixel, are in the same direction. The local frequency map, thus obtained, is then thresholded by employing a global thresholding approach to detect the interest or feature points. Repeatability rate, a performance evaluation criterion for an interest point detector, is used to check the geometric stability of the proposed method under different transformations. We present simulation results of the detection of feature points from image utilizing the suggested technique and compare the proposed method with five existing approaches that yield good results. The results prove the efficacy of the proposed feature point detection algorithm. Moreover, in terms of repeatability rate; the results show that the performance of the proposed method with respect to different aspect is compatible with the existing methods.

  1. Mapping methane emissions using the airborne imaging spectrometer AVIRIS-NG

    Science.gov (United States)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Bue, B. D.; Green, R. O.

    2017-12-01

    The next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) has been used to survey large regions and map methane plumes with unambiguous identification of emission source locations. This capability is aided by real time detection and geolocation of gas plumes, permitting adaptive surveys and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in Colorado, New Mexico, and California. Hundreds of plumes were observed, reflecting emissions from the energy sector that include hydraulic fracturing, gas processing plants, tanks, pumpjacks, and pipeline leaks. In some cases, plumes observed by AVIRIS-NG resulted in mitigation. Additional examples will be shown for methane from dairy lagoons, landfills, natural emissions, as well as carbon dioxide from power plants and refineries. We describe the unique capabilities of airborne imaging spectrometers to augment other measurement techniques by efficiently surveying key regions for methane point sources and supporting timely assessment and mitigation. We summarize the outlook for near- and longer-term monitoring capabilities including future satellite systems. Figure caption. AVIRIS-NG true color image subset with superimposed methane plume showing retrieved gas concentrations. Plume extends 200 m downwind of the southern edge of the well pad. Google Earth imagery with finer spatial resolution is also included (red box), indicating that tanks in the inset scene as the source of emissions. Five wells are located at the center of this well pad and all use horizontal drilling to produce mostly natural gas.

  2. Image analysis for facility siting: a comparison of low- and high-altitude image interpretability for land use/land cover mapping

    International Nuclear Information System (INIS)

    Borella, H.M.; Estes, J.E.; Ezra, C.E.; Scepan, J.; Tinney, L.R.

    1982-01-01

    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both are-weighted and by-class accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs

  3. Mapping three-dimensional geological features from remotely-sensed images and digital elevation models

    Science.gov (United States)

    Morris, Kevin Peter

    Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line

  4. Using Landsat 8 Image Time Series for Crop Mapping in a Region of Cerrado, Brazil

    Science.gov (United States)

    Bendini, H.; Sanches, I. D.; Körting, T. S.; Fonseca, L. M. G.; Luiz, A. J. B.; Formaggio, A. R.

    2016-06-01

    The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification.

  5. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    Science.gov (United States)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    can be used to identify plume composition on a regional scale than this information would help emergency personnel prioritize evacuations, help government agencies formulate cleanup strategies, and help ecologists assess the potential damage to wetlands and wildlife. This work could be the start of a new application of hyperspectral data for world-wide monitoring of spills from space-based imaging spectrometers. AVIRIS data used to test our method were corrected for solar flux, atmospheric absorptions, and scattering using the Atmospheric CORrection Now (ACORN) radiative transfer algorithm and residual artifacts were removed using ground spectra of a concrete runway at the Gulfport Airport in Mississippi. The resulting apparent reflectance data were mapped for spectral signatures of pollution plumes and results will be presented.

  6. Mapping contact metamorphic aureoles in Extremadura, Spain, using Landsat thematic mapper images

    Science.gov (United States)

    Rowan, L.C.; Anton-Pacheco, C.; Brickey, D.W.; Kingston, M.J.; Payas, A.

    1987-01-01

    In the Extremadura region of western Spain, Ag, Pb, Zn, and Sn deposits occur in the pieces of late Hercynian granitic plutons and near the pluton contacts in late Proterozoic slate and metagraywacke that have been regionally metamorphosed to the green schist facies. The plutons generally are well exposed and have distinctive geomorphological expression and vegetation; poor exposures of the metasedimentary host rocks and extensive cultivation, however, make delineation of the contact aureoles difficult. Landsat Thematic Mapper (TM) images have been used to distinguish soil developed on the contact metamorphic rocks from soil formed on the stratigraphically equivalent slate-metagraywacke sequence. The mineral constituents of these soils are similar, except that muscovite is more common in the contact metamorphic soil; carbonaceous material is common in both soils. Contact metamorphic soil have lower reflectance, especially in the 1.6-micrometers wavelength region (TM 5), and weaker Al-OH, Mg-OH, and Fe3+ absorption features than do spectra of the slate-metagraywacke soil. The low-reflectance and subdued absorption features exhibited by the contact metamorphic soil spectra are attributed to the high absorption coefficient f the carbonaceous material caused by heating during emplacement of the granitic plutons. These spectral differences are evident in a TM 4/3, 4/5, 3/1 color-composite image. Initially, this image was used to outline the contact aureoles, but digital classification of the TM data was necessary for generating internally consistent maps of the distribution of the exposed contact metamorphic soil. In an August 1984, TM scene of the Caceras area, the plowed, vegetation-free fields were identified by their low TM 4/3 values. Then, ranges of TM 4/5 and 3/1 values were determine for selected plower fields within and outside the contact aureoles; TM 5 produced results similar to TM 4/5. Field evaluation, supported by X-ray diffraction and petrographic

  7. Chlorophyll Detection and Mapping of Shallow Water Impoundments Using Image Spectrometry

    International Nuclear Information System (INIS)

    Artigas, F.; Pechmann, I.; Marti, A.; Yao, N.; Pechmann, I.

    2008-01-01

    There exists a common perception that chlorophyll a concentrations in tidal coastal waters are unsuitable to be captured by remote sensing techniques because of high water turbidity. In this study, we use band index measurements to separate active chlorophyll pigments from other constituents in the water. Published single- and multiband spectral indices are used to establish a relationship between algal chlorophyll concentration and reflectance data. We find an index which is suitable to map chlorophyll gradients in the impoundments, ditches, and associated waterways of the Hackensack Meadow lands (NJ, USA). The resulting images clearly depict the spatial distribution of plant pigments and their relationship with the biological conditions of the waters in the estuary. Since these biological conditions are often determined by land usage, the methods in this paper provide a simple tool to address water quality management issues in fragmented urban estuaries.

  8. Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique

    International Nuclear Information System (INIS)

    Warot-Fonrose, B.; Houdellier, F.; Hytch, M.J.; Calmels, L.; Serin, V.; Snoeck, E.

    2008-01-01

    We present the quantitative measurement of inelastic intensity distributions in diffraction patterns with the aim of studying magnetic materials. The relevant theory based on the mixed dynamic form factor (MDFF) is outlined. Experimentally, the challenge is to obtain sufficient signal for core losses of 3d magnetic materials (in the 700-900 eV energy-loss range). We compare two experimental settings in diffraction mode, i.e. the parallel diffraction and the large-angle convergent-beam electron diffraction configurations, and demonstrate the interest of using a spherical aberration corrector. We show how the energy spectrum imaging (ESI) technique can be used to map the inelastic signal in a data cube of scattering angle and energy loss. The magnetic chiral dichroic signal is measured for a magnetite sample and compared with theory

  9. A Fingerprint Image Encryption Scheme Based on Hyperchaotic Rössler Map

    Directory of Open Access Journals (Sweden)

    F. Abundiz-Pérez

    2016-01-01

    Full Text Available Currently, biometric identifiers have been used to identify or authenticate users in a biometric system to increase the security in access control systems. Nevertheless, there are several attacks on the biometric system to steal and recover the user’s biometric trait. One of the most powerful attacks is extracting the fingerprint pattern when it is transmitted over communication lines between modules. In this paper, we present a novel fingerprint image encryption scheme based on hyperchaotic Rössler map to provide high security and secrecy in user’s biometric trait, avoid identity theft, and increase the robustness of the biometric system. A complete security analysis is presented to justify the secrecy of the biometric trait by using our proposed scheme at statistical level with 100% of NPCR, low correlation, and uniform histograms. Therefore, it can be used in secure biometric access control systems.

  10. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging

    International Nuclear Information System (INIS)

    Cooper, D M L; Chapman, L D; Carter, Y; Zhouping, W; Wu, Y; Panahifar, A; Duke, M J M; Doschak, M; Britz, H M; Bewer, B

    2012-01-01

    The bones of many terrestrial vertebrates, including humans, are continually altered through an internal process of turnover known as remodeling. This process plays a central role in bone adaptation and disease. The uptake of fluorescent tetracyclines within bone mineral is widely exploited as a means of tracking new tissue formation. While investigation of bone microarchitecture has undergone a dimensional shift from 2D to 3D in recent years, we lack a 3D equivalent to fluorescent labeling. In the current study we demonstrate the ability of synchrotron radiation dual energy K-edge subtraction (KES) imaging to map the 3D distribution of elemental strontium within rat vertebral samples. This approach has great potential for ex vivo analysis of preclinical models and human tissue samples. KES also represents a powerful tool for investigating the pharmokinetics of strontium-based drugs recently approved in many countries around the globe for the treatment of osteoporosis. (paper)

  11. Rapid multispectral endoscopic imaging system for near real-time mapping of the mucosa blood supply in the lung.

    Science.gov (United States)

    Fawzy, Yasser; Lam, Stephen; Zeng, Haishan

    2015-08-01

    We have developed a fast multispectral endoscopic imaging system that is capable of acquiring images in 18 optimized spectral bands spanning 400-760 nm by combining a customized light source with six triple-band filters and a standard color CCD camera. A method is developed to calibrate the spectral response of the CCD camera. Imaging speed of 15 spectral image cubes/second is achieved. A spectral analysis algorithm based on a linear matrix inversion approach is developed and implemented in a graphics processing unit (GPU) to map the mucosa blood supply in the lung in vivo. Clinical measurements on human lung patients are demonstrated.

  12. Metro Maps of Plant Disease Dynamics—Automated Mining of Differences Using Hyperspectral Images

    Science.gov (United States)

    Wahabzada, Mirwaes; Mahlein, Anne-Katrin; Bauckhage, Christian; Steiner, Ulrike; Oerke, Erich-Christian; Kersting, Kristian

    2015-01-01

    Understanding the response dynamics of plants to biotic stress is essential to improve management practices and breeding strategies of crops and thus to proceed towards a more sustainable agriculture in the coming decades. In this context, hyperspectral imaging offers a particularly promising approach since it provides non-destructive measurements of plants correlated with internal structure and biochemical compounds. In this paper, we present a cascade of data mining techniques for fast and reliable data-driven sketching of complex hyperspectral dynamics in plant science and plant phenotyping. To achieve this, we build on top of a recent linear time matrix factorization technique, called Simplex Volume Maximization, in order to automatically discover archetypal hyperspectral signatures that are characteristic for particular diseases. The methods were applied on a data set of barley leaves (Hordeum vulgare) diseased with foliar plant pathogens Pyrenophora teres, Puccinia hordei and Blumeria graminis hordei. Towards more intuitive visualizations of plant disease dynamics, we use the archetypal signatures to create structured summaries that are inspired by metro maps, i.e. schematic diagrams of public transport networks. Metro maps of plant disease dynamics produced on several real-world data sets conform to plant physiological knowledge and explicitly illustrate the interaction between diseases and plants. Most importantly, they provide an abstract and interpretable view on plant disease progression. PMID:25621489

  13. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    Science.gov (United States)

    Kostko, O.; Xu, B.; Jacobs, M. I.; Ahmed, M.

    2017-07-01

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied here to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. By scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.

  14. Metro maps of plant disease dynamics--automated mining of differences using hyperspectral images.

    Directory of Open Access Journals (Sweden)

    Mirwaes Wahabzada

    Full Text Available Understanding the response dynamics of plants to biotic stress is essential to improve management practices and breeding strategies of crops and thus to proceed towards a more sustainable agriculture in the coming decades. In this context, hyperspectral imaging offers a particularly promising approach since it provides non-destructive measurements of plants correlated with internal structure and biochemical compounds. In this paper, we present a cascade of data mining techniques for fast and reliable data-driven sketching of complex hyperspectral dynamics in plant science and plant phenotyping. To achieve this, we build on top of a recent linear time matrix factorization technique, called Simplex Volume Maximization, in order to automatically discover archetypal hyperspectral signatures that are characteristic for particular diseases. The methods were applied on a data set of barley leaves (Hordeum vulgare diseased with foliar plant pathogens Pyrenophora teres, Puccinia hordei and Blumeria graminis hordei. Towards more intuitive visualizations of plant disease dynamics, we use the archetypal signatures to create structured summaries that are inspired by metro maps, i.e. schematic diagrams of public transport networks. Metro maps of plant disease dynamics produced on several real-world data sets conform to plant physiological knowledge and explicitly illustrate the interaction between diseases and plants. Most importantly, they provide an abstract and interpretable view on plant disease progression.

  15. VALIDATION OF SPACEBORNE RADAR SURFACE WATER MAPPING WITH OPTICAL sUAS IMAGES

    Directory of Open Access Journals (Sweden)

    J. Li-Chee-Ming

    2015-08-01

    Full Text Available The Canada Centre for Remote Sensing (CCRS has over 40 years of experience with airborne and spaceborne sensors and is now starting to use small Unmanned Aerial Systems (sUAS to validate products from large coverage area sensors and create new methodologies for very high resolution products. Wetlands have several functions including water storage and retention which can reduce flooding and provide continuous flow for hydroelectric generation and irrigation for agriculture. Synthetic Aperture Radar is well suited as a tool for monitoring surface water by supplying acquisitions irrespective of cloud cover or time of day. Wetlands can be subdivided into three classes: open water, flooded vegetation and upland which can vary seasonally with time and water level changes. RADARSAT‐2 data from the Wide-Ultra Fine, Spotlight and Fine Quad-Pol modes has been used to map the open water in the Peace‐Athabasca Delta, Alberta using intensity thresholding. We also use spotlight modes for higher resolution and the fully polarimetric mode (FQ for polarimetric decomposition. Validation of these products will be done using a low altitude flying sUAS to generate optical georeferenced images. This project provides methodologies which could be used for flood mapping as well as ecological monitoring.

  16. Mapping Forest Species Composition Using Imaging Spectrometry and Airborne Laser Scanner Data

    Science.gov (United States)

    Torabzadeh, H.; Morsdorf, F.; Leiterer, R.; Schaepman, M. E.

    2013-09-01

    Accurate mapping of forest species composition is an important aspect of monitoring and management planning related to ecosystem functions and services associated with water refinement, carbon sequestration, biodiversity, and wildlife habitats. Although different vegetation species often have unique spectral signatures, mapping based on spectral reflectance properties alone is often an ill-posed problem, since the spectral signature is as well influenced by age, canopy gaps, shadows and background characteristics. Thus, reducing the unknown variation by knowing the structural parameters of different species should improve determination procedures. In this study we combine imaging spectrometry (IS) and airborne laser scanning (ALS) data of a mixed needle and broadleaf forest to differentiate tree species more accurately as single-instrument data could do. Since forest inventory data in dense forests involve uncertainties, we tried to refine them by using individual tree crowns (ITC) position and shape, which derived from ALS data. Comparison of the extracted spectra from original field data and the modified one shows how ALS-derived shape and position of ITCs can improve separablity of the different species. The spatially explicit information layers containing both the spectral and structural components from the IS and ALS datasets were then combined by using a non-parametric support vector machine (SVM) classifier.

  17. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  18. Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging

    Science.gov (United States)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui

    2014-03-01

    Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.

  19. Image Mapping and Visual Attention on the Sensory Ego-Sphere

    Science.gov (United States)

    Fleming, Katherine Achim; Peters, Richard Alan, II

    2012-01-01

    The Sensory Ego-Sphere (SES) is a short-term memory for a robot in the form of an egocentric, tessellated, spherical, sensory-motor map of the robot s locale. Visual attention enables fast alignment of overlapping images without warping or position optimization, since an attentional point (AP) on the composite typically corresponds to one on each of the collocated regions in the images. Such alignment speeds analysis of the multiple images of the area. Compositing and attention were performed two ways and compared: (1) APs were computed directly on the composite and not on the full-resolution images until the time of retrieval; and (2) the attentional operator was applied to all incoming imagery. It was found that although the second method was slower, it produced consistent and, thereby, more useful APs. The SES is an integral part of a control system that will enable a robot to learn new behaviors based on its previous experiences, and that will enable it to recombine its known behaviors in such a way as to solve related, but novel, task problems with apparent creativity. The approach is to combine sensory-motor data association and dimensionality reduction to learn navigation and manipulation tasks as sequences of basic behaviors that can be implemented with a small set of closed-loop controllers. Over time, the aggregate of behaviors and their transition probabilities form a stochastic network. Then given a task, the robot finds a path in the network that leads from its current state to the goal. The SES provides a short-term memory for the cognitive functions of the robot, association of sensory and motor data via spatio-temporal coincidence, direction of the attention of the robot, navigation through spatial localization with respect to known or discovered landmarks, and structured data sharing between the robot and human team members, the individuals in multi-robot teams, or with a C3 center.

  20. Near-Infrared Imaging for Spatial Mapping of Organic Content in Petroleum Source Rocks

    Science.gov (United States)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2017-12-01

    Natural gas from unconventional petroleum source rocks (shales) plays a key role in our transition towards sustainable low-carbon energy production. The potential for carbon storage (in adsorbed state) in these formations further aligns with efforts to mitigate climate change. Optimizing production and development from these resources requires knowledge of the hydro-thermo-mechanical properties of the rock, which are often strong functions of organic content. This work demonstrates the potential of near-infrared (NIR) spectral imaging in mapping the spatial distribution of organic content with O(100µm) resolution on cores that can span several hundred feet in depth (Mehmani et al., 2017). We validate our approach for the immature oil shale of the Green River Formation (GRF), USA, and show its applicability potential in other formations. The method is a generalization of a previously developed optical approach specialized to the GRF (Mehmani et al., 2016a). The implications of this work for spatial mapping of hydro-thermo-mechanical properties of excavated cores, in particular thermal conductivity, are discussed (Mehmani et al., 2016b). References:Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, H. Tchelepi, "Quantification of organic content in shales via near-infrared imaging: Green River Formation." Fuel, (2017). Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, F. Gelin, and H. Tchelepi. "Quantification of kerogen content in organic-rich shales from optical photographs." Fuel, (2016a). Mehmani, Y., A.K. Burnham, H. Tchelepi, "From optics to upscaled thermal conductivity: Green River oil shale." Fuel, (2016b).

  1. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment

    Energy Technology Data Exchange (ETDEWEB)

    Prior, Phillip; Roth, Bradley J [Department of Physics, Oakland University, Rochester, MI 48309 (United States)], E-mail: phil.prior@gmail.com

    2009-05-21

    Optical mapping is a commonly used technique to visualize the electrical activity in the heart. Recently, several groups have attempted to use the signals acquired in optical mapping to image the transmembrane potential in the heart, which would be particularly advantageous when studying the effects of defibrillation-type shocks throughout the wall of the heart. Our work presents an alternative imaging method that makes use of data obtained using multiple wavelengths and therefore multiple optical decay constants. A modified form of the diffusion equation Green's function for a semi-infinite slab of tissue is derived and used to relate the detected optical signals to the source of emission photons. Images using the optical signals are reconstructed using Gaussian quadrature and matrix inversion. Our results show that images can be obtained for source terms located below the tissue surface. Furthermore, we demonstrate that our reconstruction method's susceptibility to noise can be alleviated using sophisticated matrix inverse techniques, such as singular value decomposition. Sources that rapidly decay with depth or are highly localized in the image plane require more sophisticated techniques (e.g., regularization methods) to image the electrical activity in the heart. The work presented here demonstrates the feasibility of a new imaging technique of cardiac electrical activity using optical mapping.

  2. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.

    Science.gov (United States)

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J

    2017-10-01

    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. COMPREHENSIVE COMPARISON OF TWO IMAGE-BASED POINT CLOUDS FROM AERIAL PHOTOS WITH AIRBORNE LIDAR FOR LARGE-SCALE MAPPING

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2017-09-01

    Full Text Available The integration of computer vision and photogrammetry to generate three-dimensional (3D information from images has contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with high precision and accuracy to represent the real conditions of the earth surface. Apart from LiDAR point clouds, the image-based matching is also believed to have the ability to generate reliable and detailed point clouds from multiple-view images. In order to examine and analyze possible fusion of LiDAR and image-based matching for large-scale detailed mapping purposes, point clouds are generated by Semi Global Matching (SGM and by Structure from Motion (SfM. In order to conduct comprehensive and fair comparison, this study uses aerial photos and LiDAR data that were acquired at the same time. Qualitative and quantitative assessments have been applied to evaluate LiDAR and image-matching point clouds data in terms of visualization, geometric accuracy, and classification result. The comparison results conclude that LiDAR is the best data for large-scale mapping.

  4. Comprehensive Comparison of Two Image-Based Point Clouds from Aerial Photos with Airborne LIDAR for Large-Scale Mapping

    Science.gov (United States)

    Widyaningrum, E.; Gorte, B. G. H.

    2017-09-01

    The integration of computer vision and photogrammetry to generate three-dimensional (3D) information from images has contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with high precision and accuracy to represent the real conditions of the earth surface. Apart from LiDAR point clouds, the image-based matching is also believed to have the ability to generate reliable and detailed point clouds from multiple-view images. In order to examine and analyze possible fusion of LiDAR and image-based matching for large-scale detailed mapping purposes, point clouds are generated by Semi Global Matching (SGM) and by Structure from Motion (SfM). In order to conduct comprehensive and fair comparison, this study uses aerial photos and LiDAR data that were acquired at the same time. Qualitative and quantitative assessments have been applied to evaluate LiDAR and image-matching point clouds data in terms of visualization, geometric accuracy, and classification result. The comparison results conclude that LiDAR is the best data for large-scale mapping.

  5. The iMars WebGIS - Spatio-Temporal Data Queries and Single Image Map Web Services

    Science.gov (United States)

    Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Muller, Jan-Peter; van Gasselt, Stephan; Sidiropoulos, Panagiotis; Lanz-Kroechert, Julia

    2017-04-01

    Introduction: Web-based planetary image dissemination platforms usually show outline coverages of the data and offer querying for metadata as well as preview and download, e.g. the HRSC Mapserver (Walter & van Gasselt, 2014). Here we introduce a new approach for a system dedicated to change detection by simultanous visualisation of single-image time series in a multi-temporal context. While the usual form of presenting multi-orbit datasets is the merge of the data into a larger mosaic, we want to stay with the single image as an important snapshot of the planetary surface at a specific time. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs. Additionally we make use of the existing bundle-adjusted HRSC single images available at the PDS archives. A prototype demonstrating the presented features is available at http://imars.planet.fu-berlin.de. Multi-temporal database: In order to locate multiple coverage of images and select images based on spatio-temporal queries, we converge available coverage catalogs for various NASA imaging missions into a relational database management system with geometry support. We harvest available metadata entries during our processing pipeline using the Integrated Software for Imagers and Spectrometers (ISIS) software. Currently, this database contains image outlines from the MGS/MOC, MRO/CTX and the MO/THEMIS instruments with imaging dates ranging from 1996 to the present. For the MEx/HRSC data, we already maintain a database which we automatically update with custom software based on the VICAR environment. Web Map Service with time support: The MapServer software is connected to the database and provides Web Map Services (WMS) with time support based on the START_TIME image attribute. It allows temporal

  6. Tropical grassy biomes: linking ecology, human use and conservation.

    Science.gov (United States)

    Lehmann, Caroline E R; Parr, Catherine L

    2016-09-19

    Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  7. The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization

    Directory of Open Access Journals (Sweden)

    Torsten eRohlfing

    2012-12-01

    Full Text Available The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains created from high-resolution T1-weighted magnetic resonance (MR images of 19 rhesus macaque (Macaca mulatta animals. Combined with the comprehensive cortical and subcortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely-available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/.

  8. Mapping of oxygen tension and cell distribution in a hollow-fiber bioreactor using magnetic resonance imaging.

    Science.gov (United States)

    Williams, S N; Callies, R M; Brindle, K M

    1997-10-05

    We mapped the distribution of dissolved oxygen and mammalian cells in a hollow-fiber bioreactor (HFBR) using (19)F NMR T(1) relaxation time imaging measurements on an infused perfluorocarbon probe molecule and diffusion-weighted (1)H NMR imaging of water. This study shows how cell density influences dissolved oxygen concentration in the reactor and demonstrates that NMR can play an important role in defining the biochemical engineering parameters required for optimization of HFBR design and operation.

  9. Skin Parameter Map Retrieval from a Dedicated Multispectral Imaging System Applied to Dermatology/Cosmetology

    Science.gov (United States)

    2013-01-01

    In vivo quantitative assessment of skin lesions is an important step in the evaluation of skin condition. An objective measurement device can help as a valuable tool for skin analysis. We propose an explorative new multispectral camera specifically developed for dermatology/cosmetology applications. The multispectral imaging system provides images of skin reflectance at different wavebands covering visible and near-infrared domain. It is coupled with a neural network-based algorithm for the reconstruction of reflectance cube of cutaneous data. This cube contains only skin optical reflectance spectrum in each pixel of the bidimensional spatial information. The reflectance cube is analyzed by an algorithm based on a Kubelka-Munk model combined with evolutionary algorithm. The technique allows quantitative measure of cutaneous tissue and retrieves five skin parameter maps: melanin concentration, epidermis/dermis thickness, haemoglobin concentration, and the oxygenated hemoglobin. The results retrieved on healthy participants by the algorithm are in good accordance with the data from the literature. The usefulness of the developed technique was proved during two experiments: a clinical study based on vitiligo and melasma skin lesions and a skin oxygenation experiment (induced ischemia) with healthy participant where normal tissues are recorded at normal state and when temporary ischemia is induced. PMID:24159326

  10. A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Wenang Anurogo

    2017-06-01

    Full Text Available Aerial photogrammetry is one of the Alternative technologies for more detailed data, real time, fast and cheaper. Nowadays, many photogrammetric mapping methods have used UAV / unmanned drones or drones to retrieve and record data from an object in the earth. The application of drones in the field of geospatial science today is in great demand because of its relatively easy operation and relatively affordable cost compared to satellite systems especially high - resolution satellite imagery.  This research aims to determine the stage or overview of data retrieval process with DJI Phantom 4 (multi - rotor quad - copter drone with processing using third party software. This research also produces 2 - dimensional high resolution image data on the research area. Utilization of third party software (Agisoft PhotoScan making it easier to acquire and process aerial photogrammetric data. The results of aerial photogrammetric recording with a flying altitude of 70 meters obtained high resolution images with a spatial resolution of 2 inches / pixels.

  11. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Gertrudis de los Angeles; Alvarez Sanchez, Marilet; Jordan Gonzalez, Jose

    2010-01-01

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  12. Statistical mapping of maize bundle intensity at the stem scale using spatial normalisation of replicated images.

    Directory of Open Access Journals (Sweden)

    David Legland

    Full Text Available The cellular structure of plant tissues is a key parameter for determining their properties. While the morphology of cells can easily be described, few studies focus on the spatial distribution of different types of tissues within an organ. As plants have various shapes and sizes, the integration of several individuals for statistical analysis of tissues distribution is a difficult problem. The aim of this study is to propose a method that quantifies the average spatial organisation of vascular bundles within maize stems, by integrating information from replicated images. In order to compare observations made on stems of different sizes and shapes, a spatial normalisation strategy was used. A model of average stem contour was computed from the digitisation of several stem slab images. Point patterns obtained from individual stem slices were projected onto the average stem to normalise them. Group-wise analysis of the spatial distribution of vascular bundles was applied on normalised data through the construction of average intensity maps. A quantitative description of average bundle organisation was obtained, via a 3D model of bundle distribution within a typical maize internode. The proposed method is generic and could easily be extended to other plant organs or organisms.

  13. Skin parameter map retrieval from a dedicated multispectral imaging system applied to dermatology/cosmetology.

    Science.gov (United States)

    Jolivot, Romuald; Benezeth, Yannick; Marzani, Franck

    2013-01-01

    In vivo quantitative assessment of skin lesions is an important step in the evaluation of skin condition. An objective measurement device can help as a valuable tool for skin analysis. We propose an explorative new multispectral camera specifically developed for dermatology/cosmetology applications. The multispectral imaging system provides images of skin reflectance at different wavebands covering visible and near-infrared domain. It is coupled with a neural network-based algorithm for the reconstruction of reflectance cube of cutaneous data. This cube contains only skin optical reflectance spectrum in each pixel of the bidimensional spatial information. The reflectance cube is analyzed by an algorithm based on a Kubelka-Munk model combined with evolutionary algorithm. The technique allows quantitative measure of cutaneous tissue and retrieves five skin parameter maps: melanin concentration, epidermis/dermis thickness, haemoglobin concentration, and the oxygenated hemoglobin. The results retrieved on healthy participants by the algorithm are in good accordance with the data from the literature. The usefulness of the developed technique was proved during two experiments: a clinical study based on vitiligo and melasma skin lesions and a skin oxygenation experiment (induced ischemia) with healthy participant where normal tissues are recorded at normal state and when temporary ischemia is induced.

  14. Functional cine MR imaging for the detection and mapping of intraabdominal adhesions: method and surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Buhmann-Kirchhoff, Sonja; Reiser, Maximilian; Lienemann, Andreas [University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Department of Clinical Radiology, Munich (Germany); Lang, Reinhold; Steitz, Heinrich O.; Jauch, Karl W. [University Hospital Munich-Grosshadern, Department of Surgery, Munich (Germany); Kirchhoff, Chlodwig [University Hospital Munich-Innenstadt, Department of Surgery, Munich (Germany)

    2008-06-15

    The purpose of this study was to evaluate the presence and localization of intraabdominal adhesions using functional cine magnetic resonance imaging (MRI) and to correlate the MR findings with intraoperative results. In a retrospective study, patients who had undergone previous abdominal surgery with suspected intraabdominal adhesions were examined. A true fast imaging with steady state precession sequence in transverse/sagittal orientation was used for a section-by-section dynamic depiction of visceral slide on a 1.5-Tesla system. After MRI, all patients underwent anew surgery. A nine-segment abdominal map was used to document the location and type of the adhesions. The intraoperative results were taken as standard of reference. Ninety patients were enrolled. During surgery 71 adhesions were detected, MRI depicted 68 intraabdominal adhesions. The most common type of adhesion in MRI was found between the anterior abdominal wall and small bowel loops (n = 22, 32.5%) and between small bowel loops and pelvic organs (n = 14, 20.6%). Comparing MRI with the intraoperative findings, sensitivity varied between 31 and 75% with a varying specificity between 65 and 92% in the different segments leading to an overall MRI accuracy of 89%. Functional cine MRI proved to be a useful examination technique for the identification of intraabdominal adhesions in patients with acute or chronic pain and corresponding clinical findings providing accurate results. However, no differentiation for symptomatic versus asymptomatic adhesions is possible. (orig.)

  15. Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode.

    Science.gov (United States)

    Pan, Zongxu; Liu, Lei; Qiu, Xiaolan; Lei, Bin

    2017-07-05

    This study aims to detect vessels with lengths ranging from about 70 to 300 m, in Gaofen-3 (GF-3) SAR images with ultrafine strip-map (UFS) mode as fast as possible. Based on the analysis of the characteristics of vessels in GF-3 SAR imagery, an effective vessel detection method is proposed in this paper. Firstly, the iterative constant false alarm rate (CFAR) method is employed to detect the potential ship pixels. Secondly, the mean-shift operation is applied on each potential ship pixel to identify the candidate target region. During the mean-shift process, we maintain a selection matrix recording which pixels can be taken, and these pixels are called as the valid points of the candidate target. The l 1 norm regression is used to extract the principal axis and detect the valid points. Finally, two kinds of false alarms, the bright line and the azimuth ambiguity, are removed by comparing the valid area of the candidate target with a pre-defined value and computing the displacement between the true target and the corresponding replicas respectively. Experimental results on three GF-3 SAR images with UFS mode demonstrate the effectiveness and efficiency of the proposed method.

  16. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  17. Mapping Pyroclastic Flow Inundation Using Radar and Optical Satellite Images and Lahar Modeling

    Directory of Open Access Journals (Sweden)

    Chang-Wook Lee

    2018-01-01

    Full Text Available Sinabung volcano, located above the Sumatra subduction of the Indo-Australian plate under the Eurasian plate, became active in 2010 after about 400 years of quiescence. We use ALOS/PALSAR interferometric synthetic aperture radar (InSAR images to measure surface deformation from February 2007 to January 2011. We model the observed preeruption inflation and coeruption deflation using Mogi and prolate spheroid sources to infer volume changes of the magma chamber. We interpret that the inflation was due to magma accumulation in a shallow reservoir beneath Mount Sinabung and attribute the deflation due to magma withdrawal from the shallow reservoir during the eruption as well as thermoelastic compaction of erupted material. The pyroclastic flow extent during the eruption is then derived from the LAHARZ model based on the coeruption volume from InSAR modeling and compared to that derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ image. The pyroclastic flow inundation extents between the two different methods agree at about 86%, suggesting the capability of mapping pyroclastic flow inundation by combing radar and optical imagery as well as flow modeling.

  18. [Magnetic resonance imaging. Density equalizing mapping analysis of global research architecture].

    Science.gov (United States)

    Ohlendorf, D; Schwarze, B; Groneberg, D A; Schwarzer, M

    2015-09-01

    Despite the great medical importance, there is still no comprehensive scientometric analysis regarding the results of magnetic resonance imaging (MRI) and the development of the importance for the healthcare system. This paper evaluated and analyzed the entire research publication results on the topic of MRI for the period 1981-2007 based on scientometric methods and parameters. A scientometric analysis (database: ISI Web of Science 1981-2007, search terms MRI and magnetic resonance imaging) was performed. The following parameters were analyzed: number of publications, countries of publication, number of citations, citation rate and collaborations, using various analytical and display techniques, including density equalizing map projections. Most of the 49,122 publications on MRI could be attributed to the USA (32.5 %), which also has the most cooperative collaborations. Within Europe, Germany (10.3 %) is the country with the highest number of publications followed by the UK (9.3 %). The western industrialized nations dominate over the rest of the world in terms of scientific developments of MRI. The thematic focus of the publications lies in the fields of radiology and neuroscience. In addition to the journal Neurology most scientific articles were published in Magnetic Resonance in Medicine and Circulation. The results show that the current trend is continuing and the scientific interest in MRI is continuously increasing.

  19. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  20. Cerebral Metabolic Rate of Oxygen (CMRO2) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    Science.gov (United States)

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Gravitational self-organizing map-based seismic image classification with an adaptive spectral-textural descriptor

    Science.gov (United States)

    Hao, Yanling; Sun, Genyun

    2016-10-01

    Seismic image classification is of vital importance for extracting damage information and evaluating disaster losses. With the increasing availability of high resolution remote sensing images, automatic image classification offers a unique opportunity to accommodate the rapid damage mapping requirements. However, the diversity of disaster types and the lack of uniform statistical characteristics in seismic images increase the complexity of automated image classification. This paper presents a novel automatic seismic image classification approach by integrating an adaptive spectral-textural descriptor into gravitational self-organizing map (gSOM). In this approach, seismic image is first segmented into several objects based on mean shift (MS) method. These objects are then characterized explicitly by spectral and textural feature quantization histograms. To objectify the image object delineation adapt to various disaster types, an adaptive spectral-textural descriptor is developed by integrating the histograms automatically. Subsequently, these objects as classification units are represented by neurons in a self-organizing map and clustered by adjacency gravitation. By moving the neurons around the gravitational space and merging them according to the gravitation, the object-based gSOM is able to find arbitrary shape and determine the class number automatically. Taking advantage of the diversity of gSOM results, consensus function is then conducted to discover the most suitable classification result. To confirm the validity of the presented approach, three aerial seismic images in Wenchuan covering several disaster types are utilized. The obtained quantitative and qualitative experimental results demonstrated the feasibility and accuracy of the proposed seismic image classification method.

  2. Conserving the Brazilian semiarid (Caatinga) biome under climate change

    DEFF Research Database (Denmark)

    Oliveira, Guilherme de; Bastos Araujo, Miguel; Rangel, Thiago Fernado

    2012-01-01

    to assess changes in climate suitability across individual species ranges, ensemble forecasting was used based on seven bioclimatic envelope models, three atmosphere–ocean general circulation models, and two greenhouse emission gas scenarios for 2020, 2050, and 2080. We found that most species will gain...... additional threats to the biome’s biodiversity. Here, we ask if the remnants of natural vegetation in Caatinga biome, where endemic terrestrial vertebrate species occur, are likely to retain more climatic suitability under climate change scenarios than other less pristine areas of the biome. In order......The Caatinga is a semiarid biome of the northeast of Brazil with only 1 % of its territory currently conserved. The biome’s biodiversity is highly threatened due to exposure to land conversion for agricultural and cattle ranch. Climate forecasts predict increases in aridity, which could pose...

  3. Tropical grassy biomes: misunderstood, neglected, and under threat.

    Science.gov (United States)

    Parr, Catherine L; Lehmann, Caroline E R; Bond, William J; Hoffmann, William A; Andersen, Alan N

    2014-04-01

    Tropical grassy biomes (TGBs) are globally extensive, provide critical ecosystem services, and influence the earth-atmosphere system. Yet, globally applied biome definitions ignore vegetation characteristics that are critical to their functioning and evolutionary history. Hence, TGB identification is inconsistent and misinterprets the ecological processes governing vegetation structure, with cascading negative consequences for biodiversity. Here, we discuss threats linked to the definition of TGB, the Clean Development Mechanism (CDM) and Reducing Emissions from Deforestation and Forest Degradation schemes (REDD+), and enhanced atmospheric CO2, which may facilitate future state shifts. TGB degradation is insidious and less visible than in forested biomes. With human reliance on TGBs and their propensity for woody change, ecology and evolutionary history are fundamental to not only the identification of TGBs, but also their management for future persistence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging.

    Science.gov (United States)

    Mazhar, Amaan; Dell, Steven; Cuccia, David J; Gioux, Sylvain; Durkin, Anthony J; Frangioni, John V; Tromberg, Bruce J

    2010-01-01

    Spatial frequency-domain imaging (SFDI) utilizes multiple-frequency structured illumination and model-based computation to generate two-dimensional maps of tissue absorption and scattering properties. SFDI absorption data are measured at multiple wavelengths and used to fit for the tissue concentration of intrinsic chromophores in each pixel. This is done with a priori knowledge of the basis spectra of common tissue chromophores, such as oxyhemoglobin (ctO(2)Hb), deoxyhemoglobin (ctHHb), water (ctH(2)O), and bulk lipid. The quality of in vivo SFDI fits for the hemoglobin parameters ctO(2)Hb and ctHHb is dependent on wavelength selection, fitting parameters, and acquisition rate. The latter is critical because SFDI acquisition time is up to six times longer than planar two-wavelength multispectral imaging due to projection of multiple-frequency spatial patterns. Thus, motion artifact during in vivo measurements compromises the quality of the reconstruction. Optimal wavelength selection is examined through matrix decomposition of basis spectra, simulation of data, and dynamic in vivo measurements of a human forearm during cuff occlusion. Fitting parameters that minimize cross-talk from additional tissue chromophores, such as water and lipid, are determined. On the basis of this work, a wavelength pair of 670 nm∕850 nm is determined to be the optimal two-wavelength combination for in vivo hemodynamic tissue measurements provided that assumptions for water and lipid fractions are made in the fitting process. In our SFDI case study, wavelength optimization reduces acquisition time over 30-fold to 1.5s compared to 50s for a full 34-wavelength acquisition. The wavelength optimization enables dynamic imaging of arterial occlusions with improved spatial resolution due to reduction of motion artifacts.

  5. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    Science.gov (United States)

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  6. Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry—Examples Using Hyperspectral Infrared Imager (HyspIRI-Simulated Data

    Directory of Open Access Journals (Sweden)

    Joshua Michaels

    2011-07-01

    Full Text Available The Hyperspectral Infrared Imager (HyspIRI is a proposed NASA satellite remote sensing system combining a visible to shortwave infrared (VSWIR imaging spectrometer with over 200 spectral bands between 0.38 and 2.5 μm and an 8-band thermal infrared (TIR multispectral imager, both at 60 m spatial resolution. Short Wave Infrared (SWIR (2.0–2.5 μm simulation results are described here using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data in preparation for the future launch. The simulated data were used to assess the effect of the HyspIRI 60 m spatial resolution on the ability to identify and map minerals at hydrothermally altered and geothermal areas. Mineral maps produced using these data successfully detected and mapped a wide variety of characteristic minerals, including jarosite, alunite, kaolinite, dickite, muscovite-illite, montmorillonite, pyrophyllite, calcite, buddingtonite, and hydrothermal silica. Confusion matrix analysis of the datasets showed overall classification accuracy ranging from 70 to 92% for the 60 m HyspIRI simulated data relative to 15 m spatial resolution data. Classification accuracy was lower for similar minerals and smaller areas, which were not mapped well by the simulated 60 m HyspIRI data due to blending of similar signatures and spectral mixing with adjacent pixels. The simulations demonstrate that HyspIRI SWIR data, while somewhat limited by their relatively coarse spatial resolution, should still be useful for mapping hydrothermal/geothermal systems, and for many other geologic applications requiring mineral mapping.

  7. Image illumination enhancement with an objective no-reference measure of illumination assessment based on Gaussian distribution mapping

    Directory of Open Access Journals (Sweden)

    Gholamreza Anbarjafari

    2015-12-01

    Full Text Available Illumination problems have been an important concern in many image processing applications. The pattern of the histogram on an image introduces meaningful features; hence within the process of illumination enhancement, it is important not to destroy such information. In this paper we propose a method to enhance image illumination using Gaussian distribution mapping which also keeps the information laid on the pattern of the histogram on the original image. First a Gaussian distribution based on the mean and standard deviation of the input image will be calculated. Simultaneously a Gaussian distribution with the desired mean and standard deviation will be calculated. Then a cumulative distribution function of each of the Gaussian distributions will be calculated and used in order to map the old pixel value onto the new pixel value. Another important issue in the field of illumination enhancement is absence of a quantitative measure for the assessment of the illumination of an image. In this research work, a quantitative measure indicating the illumination state, i.e. contrast level and brightness of an image, is also proposed. The measure utilizes the estimated Gaussian distribution of the input image and the Kullback-Leibler Divergence (KLD between the estimated Gaussian and the desired Gaussian distributions to calculate the quantitative measure. The experimental results show the effectiveness and the reliability of the proposed illumination enhancement technique, as well as the proposed illumination assessment measure over conventional and state-of-the-art techniques.

  8. Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interface by Z-contrast imaging

    NARCIS (Netherlands)

    Chang, Hye Jung; Kalinin, Sergei V.; Morozovska, Anna N.; Huijben, Mark; Chu, Ying-Hao; Yu, Pu; Ramesh, Ramamoorthy; Eliseev, Evgeny A.; Svechnikov, George S.; Pennycook, Stephen J.; Borisevich, Albina Y.

    2011-01-01

    Direct atomic displacement mapping at ferroelectric interfaces by aberration corrected scanning transmission electron microscopy(STEM) (a-STEM image, b-corresponding displacement profile) is combined with Landau-Ginsburg-Devonshire theory to obtain the complete interface electrostatics in real

  9. Comparison between WorldView-2 and SPOT-5 images in mapping the bracken fern using the random forest algorithm

    Science.gov (United States)

    Odindi, John; Adam, Elhadi; Ngubane, Zinhle; Mutanga, Onisimo; Slotow, Rob

    2014-01-01

    Plant species invasion is known to be a major threat to socioeconomic and ecological systems. Due to high cost and limited extents of urban green spaces, high mapping accuracy is necessary to optimize the management of such spaces. We compare the performance of the new-generation WorldView-2 (WV-2) and SPOT-5 images in mapping the bracken fern [Pteridium aquilinum (L) kuhn] in a conserved urban landscape. Using the random forest algorithm, grid-search approaches based on out-of-bag estimate error were used to determine the optimal ntree and mtry combinations. The variable importance and backward feature elimination techniques were further used to determine the influence of the image bands on mapping accuracy. Additionally, the value of the commonly used vegetation indices in enhancing the classification accuracy was tested on the better performing image data. Results show that the performance of the new WV-2 bands was better than that of the traditional bands. Overall classification accuracies of 84.72 and 72.22% were achieved for the WV-2 and SPOT images, respectively. Use of selected indices from the WV-2 bands increased the overall classification accuracy to 91.67%. The findings in this study show the suitability of the new generation in mapping the bracken fern within the often vulnerable urban natural vegetation cover types.

  10. Identification of priority conservation areas and potential corridors for jaguars in the Caatinga biome, Brazil.

    Directory of Open Access Journals (Sweden)

    Ronaldo Gonçalves Morato

    Full Text Available The jaguar, Panthera onca, is a top predator with the extant population found within the Brazilian Caatinga biome now known to be on the brink of extinction. Designing new conservation units and potential corridors are therefore crucial for the long-term survival of the species within the Caatinga biome. Thus, our aims were: 1 to recognize suitable areas for jaguar occurrence, 2 to delineate areas for jaguar conservation (PJCUs, 3 to design corridors among priority areas, and 4 to prioritize PJCUs. A total of 62 points records of jaguar occurrence and 10 potential predictors were analyzed in a GIS environment. A predictive distributional map was obtained using Species Distribution Modeling (SDM as performed by the Maximum Entropy (Maxent algorithm. Areas equal to or higher than the median suitability value of 0.595 were selected as of high suitability for jaguar occurrence and named as Priority Jaguar Conservation Units (PJCU. Ten PJCUs with sizes varying from 23.6 km2 to 4,311.0 km2 were identified. Afterwards, we combined the response curve, as generated by SDM, and expert opinions to create a permeability matrix and to identify least cost corridors and buffer zones between each PJCU pair. Connectivity corridors and buffer zone for jaguar movement included an area of 8.884,26 km2 and the total corridor length is about 160.94 km. Prioritizing criteria indicated the PJCU representing c.a. 68.61% of the total PJCU area (PJCU # 1 as of high priority for conservation and connectivity with others PJCUs (PJCUs # 4, 5 and 7 desirable for the long term survival of the species. In conclusion, by using the jaguar as a focal species and combining SDM and expert opinion we were able to create a valid framework for practical conservation actions at the Caatinga biome. The same approach could be used for the conservation of other carnivores.

  11. Mathematical framework for optimizing the image processing of chest; Application of techniques of Super-Resolution (MR) imaging to map the influence of dose verification of IMRT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cortes Rodicio, J.; Jimenez Albericio, F. J.; Laliena Bielsa, V.; Canellas Anoz, M.; Millan Cebrian, E.; Hernandez Vitoria, A.; Garcia Romero, A.; Ortega Pardina, P.

    2011-07-01

    The techniques of super-resolution (SR) have been applied in many fields of image processing such as remote sensing, security cameras, medical imaging, etc., exploiting the information content of a set of images of the same phenomenon to treat to increase the sampling frequency end a high-resolution (HR). This requires that the point of capture is different in each picture so that there are sub-pixel displacement. Using these techniques has improved the resolution that provides a two dimensional array of detectors (Matrixx) in the verification of fluence maps IMRT treatments.

  12. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping].

    Science.gov (United States)

    Guan, Ji-Jing; Feng, Yan-Qiu

    2018-03-20

    To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R 2 ) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; Pbrain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.

  13. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  14. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  15. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy.

    Science.gov (United States)

    Dooley, Kathryn A; Lomax, Suzanne; Zeibel, Jason G; Miliani, Costanza; Ricciardi, Paola; Hoenigswald, Ann; Loew, Murray; Delaney, John K

    2013-09-07

    In situ chemical imaging techniques are being developed to provide information on the spatial distribution of artists' pigments used in polychrome works of art such as paintings. The new methods include reflectance imaging spectroscopy and X-ray fluorescence mapping. Results from these new methods have extended the knowledge obtained from site-specific chemical analyses widely in use. While these mapping methods have aided in determining the distribution of pigments, there is a growing interest to develop methods capable of identifying and mapping organic paint binders as well. Near infrared (NIR) reflectance spectroscopy has been extensively used in the remote sensing field as well as in the chemical industry to detect organic compounds. NIR spectroscopy provides a rapid method to assay organics by utilizing vibrational overtones and combination bands of fundamental absorptions that occur in the mid-IR. Here we explore the utility of NIR reflectance imaging spectroscopy to map organic binders in situ by examining a series of panel paintings known to have been painted using distemper (animal skin glue) and tempera (egg yolk) binders as determined by amino acid analysis of samples taken from multiple sites on the panels. In this report we demonstrate the success in identifying and mapping these binders by NIR reflectance imaging spectroscopy in situ. Three of the four panel paintings from Cosimo Tura's The Annunciation with Saint Francis and Saint Louis of Toulouse (ca. 1475) are imaged using a highly sensitive, line-scanning hyperspectral imaging camera. The results show an animal skin glue binder was used for the blue skies and blue robe of the Virgin Mary, and egg yolk tempera was used for the red robes and brown landscape. The mapping results show evidence for the use of both egg yolk and animal skin glue in the faces of the figures. The strongest absorption associated with lipidic egg yolk features visually correlates with areas that appear to have white

  16. La prosodia como identificador biométrico

    OpenAIRE

    Farrús i Cabeceran, Mireia

    2011-01-01

    La biometría tiene como objetivo el reconocimiento de personas mediante uno o más identificadores biométricos como la voz, la cara o las huellas dactilares, entre otros. Gracias a la buena aceptación social y el poco intrusismo en los individuos, la voz ha sido, tradicionalmente, uno de los identificadores más utilizados en los sistemas biométricos. Estos sistemas de reconocimiento basados en la voz utilizan, habitualmente, características relacionadas con el espectro de la voz. No obstante, ...

  17. A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping.

    Science.gov (United States)

    Kang, Han Gyu; Lee, Ho-Young; Kim, Kyeong Min; Song, Seong-Hyun; Hong, Gun Chul; Hong, Seong Jong

    2017-01-01

    The aim of this study is to integrate NIR, gamma, and visible imaging tools into a single endoscopic system to overcome the limitation of NIR using gamma imaging and to demonstrate the feasibility of endoscopic NIR/gamma/visible fusion imaging for sentinel lymph node (SLN) mapping with a small animal. The endoscopic NIR/gamma/visible imaging system consists of a tungsten pinhole collimator, a plastic focusing lens, a BGO crystal (11 × 11 × 2 mm 3 ), a fiber-optic taper (front = 11 × 11 mm 2 , end = 4 × 4 mm 2 ), a 122-cm long endoscopic fiber bundle, an NIR emission filter, a relay lens, and a CCD camera. A custom-made Derenzo-like phantom filled with a mixture of 99m Tc and indocyanine green (ICG) was used to assess the spatial resolution of the NIR and gamma images. The ICG fluorophore was excited using a light-emitting diode (LED) with an excitation filter (723-758 nm), and the emitted fluorescence photons were detected with an emission filter (780-820 nm) for a duration of 100 ms. Subsequently, the 99m Tc distribution in the phantom was imaged for 3 min. The feasibility of in vivo SLN mapping with a mouse was investigated by injecting a mixture of 99m Tc-antimony sulfur colloid (12 MBq) and ICG (0.1 mL) into the right paw of the mouse (C57/B6) subcutaneously. After one hour, NIR, gamma, and visible images were acquired sequentially. Subsequently, the dissected SLN was imaged in the same way as the in vivo SLN mapping. The NIR, gamma, and visible images of the Derenzo-like phantom can be obtained with the proposed endoscopic imaging system. The NIR/gamma/visible fusion image of the SLN showed a good correlation among the NIR, gamma, and visible images both for the in vivo and ex vivo imaging. We demonstrated the feasibility of the integrated NIR/gamma/visible imaging system using a single endoscopic fiber bundle. In future, we plan to investigate miniaturization of the endoscope head and simultaneous NIR/gamma/visible imaging with

  18. Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Peter P. J. Roosjen

    2017-04-01

    Full Text Available Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs are affected by this because of their relatively large field of view (FOV and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500–900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI and canopy cover. We fitted the Rahman–Pinty–Verstraete (RPV model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The Θ parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.

  19. SPECT image analysis using statistical parametric mapping in patients with Parkinson's disease.

    Science.gov (United States)

    Imon, Y; Matsuda, H; Ogawa, M; Kogure, D; Sunohara, N

    1999-10-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with Parkinson's disease using statistical parametric mapping (SPM). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 28 patients with Parkinson's disease and 48 age-matched healthy volunteers. The Parkinson's disease patients were divided into two groups, 16 patients with Hoehn and Yahr stage I or II and 12 patients with Hoehn and Yahr stage III or IV. We used the raw data (absolute rCBF parametric maps) and the adjusted rCBF images in relative flow distribution (normalization of global CBF for each subject to 50 mL/100 g/min with proportional scaling) to compare these groups with SPM. In patients with stage I or II Parkinson's disease, we found a diffuse decrease in absolute rCBF in the whole brain with sparing of the central gray matter, hippocampus and right lower temporal lobe compared with healthy volunteers. Adjusted rCBF increased in both putamina and the right hippocampus. In patients with stage III or IV disease, rCBF decreased throughout the whole brain. Adjusted rCBF increased bilaterally in the putamina, globi pallidi, hippocampi and cerebellar hemispheres (dentate nuclei) and in the left ventrolateral thalamus, right insula and right inferior temporal gyrus. SPM analysis showed that significant rCBF changes in Parkinson's disease accompanied disease progression and related to disease pathophysiology in the functional architecture of thalamocortex-basal ganglia circuits and related systems.

  20. Effects of registration error on parametric response map analysis: a simulation study using liver CT-perfusion images

    Science.gov (United States)

    Lausch, A.; Jensen, N. K. G.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To investigate the effects of registration error (RE) on parametric response map (PRM) analysis of pre and post-radiotherapy (RT) functional images. Methods: Arterial blood flow maps (ABF) were generated from the CT-perfusion scans of 5 patients with hepatocellular carcinoma. ABF values within each patient map were modified to produce seven new ABF maps simulating 7 distinct post-RT functional change scenarios. Ground truth PRMs were generated for each patient by comparing the simulated and original ABF maps. Each simulated ABF map was then deformed by different magnitudes of realistic respiratory motion in order to simulate RE. PRMs were generated for each of the deformed maps and then compared to the ground truth PRMs to produce estimates of RE-induced misclassification. Main findings: The percentage of voxels misclassified as decreasing, no change, and increasing, increased with RE For all patients, increasing RE was observed to increase the number of high post-RT ABF voxels associated with low pre-RT ABF voxels and vice versa. 3 mm of average tumour RE resulted in 18-45% tumour voxel misclassification rates. Conclusions: RE induced misclassification posed challenges for PRM analysis in the liver where registration accuracy tends to be lower. Quantitative understanding of the sensitivity of the PRM method to registration error is required if PRMs are to be used to guide radiation therapy dose painting techniques.

  1. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  2. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  3. Mapping of the Ronda peridotite massif (Spain) from AVIRIS spectro-imaging survey: A first attempt

    Science.gov (United States)

    Pinet, P. C.; Chabrillat, S.; Ceuleneer, G.

    1993-01-01

    In both AVIRIS and ISM data, through the use of mixing models, geological boundaries of the Ronda massif are identified with respect to the surrounding rocks. We can also yield first-order vegetation maps. ISM and AVIRIS instruments give consistent results. On the basis of endmember fraction images, it is then possible to discard areas highly vegetated or not belonging to the peridotite massif. Within the remaining part of the mosaic, spectro-mixing analysis reveals spectral variations in the peridotite massif between the well-exposed areas. Spatially organized units are depicted, related to differences in the relative depth of the absorption band at 1 micron, and it may be due to a different pyroxene content. At this stage, it is worth noting that, although mineralogical variations observed in the rocks are at a sub-pixel scale for the airborne analysis, we see an emerging spatial pattern in the distribution of spectral variations across the massif which might be prevailingly related to mineralogy. Although it is known from fieldwork that the Ronda peridotite massif exhibits mineralogical variations at local scale in the content of pyroxene, and at regional scale in different mineral facies, ranging from garnet-, to spinel- to plagioclase-lherzolites, no attempt has been done yet to produce a synoptic map relating the two scales of analysis. The present work is a first attempt to reach this objective, though a lot more work is still required. In particular, for the purpose of mineralogical interpretation, it is critical to relate the airborne observation to field work and laboratory spectra of Ronda rocks already obtained, with the use of image endmembers and associated reference endmembers. Also, the pretty rough linear mixing model used here is taken as a 'black-box' process which does not necessarily apply correctly to the physical situation at the sub-pixel level. One may think of using the ground-truth observations bearing on the sub-pixel statistical

  4. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  5. NIR spectroscopic imaging to map hemoglobin + myoglobin oxygenation, their concentration and optical pathlength across a beating pig heart during surgery.

    Science.gov (United States)

    Gussakovsky, Eugene; Yang, Yanmin; Rendell, John; Jilkina, Olga; Kupriyanov, Valery

    2012-02-01

    The purpose of this paper is to demonstrate that near-infrared (NIR) spectroscopic imaging can provide spatial distribution (maps) of the absolute concentration of hemoglobin + myoglobin, oxygen saturation parameter and optical pathlength, reporting on the biochemico-physiological status of a beating heart in vivo. The method is based on processing the NIR spectroscopic images employing a first-derivative approach. Blood-pressure-controlled gating compensated the effect of heart motion on the imaging. All the maps are available simultaneously and noninvasively at a spatial resolution in the submillimeter range and can be obtained in a couple of minutes. The equipment has no mechanical contact with the tissue, thereby leaving the heart unaffected during the measurement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cone-beam CT image contrast and attenuation-map linearity improvement (CALI) for brain stereotactic radiosurgery procedures

    Science.gov (United States)

    Hashemi, Sayed Masoud; Lee, Young; Eriksson, Markus; Nordström, Hâkan; Mainprize, James; Grouza, Vladimir; Huynh, Christopher; Sahgal, Arjun; Song, William Y.; Ruschin, Mark

    2017-03-01

    A Contrast and Attenuation-map (CT-number) Linearity Improvement (CALI) framework is proposed for cone-beam CT (CBCT) images used for brain stereotactic radiosurgery (SRS). The proposed framework is used together with our high spatial resolution iterative reconstruction algorithm and is tailored for the Leksell Gamma Knife ICON (Elekta, Stockholm, Sweden). The incorporated CBCT system in ICON facilitates frameless SRS planning and treatment delivery. The ICON employs a half-cone geometry to accommodate the existing treatment couch. This geometry increases the amount of artifacts and together with other physical imperfections causes image inhomogeneity and contrast reduction. Our proposed framework includes a preprocessing step, involving a shading and beam-hardening artifact correction, and a post-processing step to correct the dome/capping artifact caused by the spatial variations in x-ray energy generated by bowtie-filter. Our shading correction algorithm relies solely on the acquired projection images (i.e. no prior information required) and utilizes filtered-back-projection (FBP) reconstructed images to generate a segmented bone and soft-tissue map. Ideal projections are estimated from the segmented images and a smoothed version of the difference between the ideal and measured projections is used in correction. The proposed beam-hardening and dome artifact corrections are segmentation free. The CALI was tested on CatPhan, as well as patient images acquired on the ICON system. The resulting clinical brain images show substantial improvements in soft contrast visibility, revealing structures such as ventricles and lesions which were otherwise un-detectable in FBP-reconstructed images. The linearity of the reconstructed attenuation-map was also improved, resulting in more accurate CT#.

  7. BOREAS RSS-08 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales. BIOME-BGC is used to...

  8. BOREAS RSS-08 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    Data.gov (United States)

    National Aeronautics and Space Administration — BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales. BIOME-BGC is used to estimate...

  9. Temporal profiles of vegetation indices for characterizing grazing intensity on natural grasslands in Pampa biome

    Directory of Open Access Journals (Sweden)

    Amanda Heemann Junges

    2016-08-01

    Full Text Available ABSTRACT The Pampa biome is an important ecosystem in Brazil that is highly relevant to livestock production. The objective of this study was to analyze the potential use of vegetation indices to discriminate grazing intensities on natural grasslands in the Pampa biome. Moderate Resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI and Enhanced Vegetation Index (EVI images from Jan to Dec, 2000 to 2013 series, were analyzed for natural grassland experimental units managed under high (forage allowance of 5 ± 2 % live weight – LW, moderate (13 ± 5 % LW and low grazing intensity (19 ± 7 % LW. Regardless of intensity, the temporal profiles showed lower NDVI and EVI during winter, increased values in spring because of summer species regrowth, slightly decreased values in summer, especially in years when there is a water deficit, and increased values in the fall associated with the beginning of winter forage development. The average temporal profiles of moderate grazing intensity exhibited greater vegetation index values compared with low and high grazing intensities. The temporal profiles of less vegetation index were associated with lower green biomass accumulation caused by the negative impact of stocking rates on the leaf area index under high grazing intensity and a floristic composition with a predominance of tussocks under low grazing intensity. Vegetation indices can be used for distinguishing moderate grazing intensity from low and high intensities. The average EVI values can discriminate moderate grazing intensity during any season, and the NDVI values can discriminate moderate grazing intensity during spring and winter.

  10. Spot-5 multispectral image for 60-75 days of rice mapping

    International Nuclear Information System (INIS)

    Ramli, Mohd Amiruddin; Shariff, Abdul Rashid Mohamed; Bejo, Siti Khairunniza

    2014-01-01

    The objective of this study is to investigate the potential application of Spot-5 multispectral satellite data in monitoring rice cultivation areas in IADA (Integrated Agriculture Development Area) located at Kerian District, Perak Malaysia. Information of the rice cultivation areas is a global economic and environmental significance. Multi-spectral images acquired at high spatial resolution are an important tool, especially in agricultural applications. This paper addresses the relationship between normalize difference vegetation index (NDVI) and ancillary data acquired from Farmers Organization Authority (PPK) for 217 farmer's field in IADA Kerian. The results indicated that NDVI range 0.62 – 0.75 has a strong positive relationship with the ground survey area estimation with (r = 0.85; p <0.01) (r 2 = 0.722). The r 2 value of 0.722 indicated a statistically significant linear relationship between the rice area estimate using NDVI range 0.62 – 0.75 and on the ground surveyed data for 217 farmers' fields. The equation of unstandardized distribution can be described as Ŷ=0.0197+0.852x. The equation for standardized regression formula for this distribution is Ŷ= 0.850x. Thus, the results indicate that 60-75 days of rice area can be estimated from the following equation Ŷ=0.197+0.852x, where Ŷ is the predicted rice area and x is area calculated using NDVI range 0.62-0.75 in IADA Kerian Perak Malaysia. The results appear promising and rice mapping operations using SPOT-5 multispectral image data can be foreseen

  11. Multiscale mapping of species diversity under changed land use using imaging spectroscopy.

    Science.gov (United States)

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-07-01

    Land use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57% and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land use, and the lowest values were calculated for the agricultural land use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land use. The suggested framework of this study succeeded in quantifying land use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land use, especially under increasing environmental changes. © 2017 by the Ecological Society of America.

  12. Plasma bubble monitoring by TEC map and 630 nm airglow image

    Science.gov (United States)

    Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Ivo, A.; Gomes, V.; Paulino, I.; Medeiros, A. F.; Denardini, C. M.; Sant'Anna, N.; Shiokawa, K.

    2015-08-01

    Equatorial ionosphere plasma bubbles over the South American continent were successfully observed by mapping the total electron content (TECMAP) using data provided by ground-based GNSS receiver networks. The TECMAP could cover almost all of the continent within ~4000 km distance in longitude and latitude, monitoring TEC variability continuously with a time resolution of 10 min. Simultaneous observations of OI 630 nm all-sky image at Cachoeira Paulista (22.7°S, 45.0°W) and Cariri (7.4°S, 36.5°W) were used to compare the bubble structures. The spatial resolution of the TECMAP varied from 50 km to 1000 km, depending on the density of the observation sites. On the other hand, optical imaging has a spatial resolution better than 15 km, depicting the fine structure of the bubbles but covering a limited area (~1600 km diameter). TECMAP has an advantage in its spatial coverage and the continuous monitoring (day and night) form. The initial phase of plasma depletion in the post-sunset equatorial ionization anomaly (PS-EIA) trough region, followed by development of plasma bubbles in the crest region, could be monitored in a progressive way over the magnetic equator. In December 2013 to January 2014, periodically spaced bubble structures were frequently observed. The longitudinal spacing between the bubbles was around 600-800 km depending on the day. The periodic form of plasma bubbles may suggest a seeding process related to the solar terminator passage in the ionosphere.

  13. Evolution of seed dispersal in the Cerrado biome: ecological and phylogenetic considerations

    Directory of Open Access Journals (Sweden)

    Marcelo Kuhlmann

    2016-01-01

    Full Text Available ABSTRACT The investigation of the phylogeny of a group of organisms has the potential to identify ecological and evolutionary processes that have been occurring within a community. Seed dispersal is a key process in the life cycle of vegetation and reflects different reproductive strategies of plants to a set of ecological and evolutionary factors. Knowing the dispersal syndromes and fruits types of a plant community may help elucidate plant-animal interactions and colonization strategies of plants. We investigated dispersal syndromes and fruit types in Cerrado formations as a parameter for understanding the evolution of angiosperm reproductive strategies in this mega-diverse tropical biome. To do this we identified and mapped the distribution of different parameters associated with seed dispersal on a phylogeny of Cerrado angiosperms genera and tested the presence of phylogenetic signal. The results showed that there were strong relationships between fruit types, seed dispersal strategies and vegetation life forms and that these traits were closely related to angiosperms phylogeny and, together, contribute to the evolution of plants in the forest, savanna and grassland formations of the Cerrado biome.

  14. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    Science.gov (United States)

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above-