WorldWideScience

Sample records for biomedicinethrough structured organization

  1. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  2. Structural aspects of agent organizations

    NARCIS (Netherlands)

    D. Grossi; F. Dignum

    2009-01-01

    In this chapter we investigate how organizations can be represented as graphs endowed with formal semantics. We distinguish different dimensions of organizations. Each of these dimensions leads to a different structure in the organizational graph. By giving the graphs a formal semantics in Descripti

  3. Managing mechanistic and organic structure in health care organizations.

    Science.gov (United States)

    Olden, Peter C

    2012-01-01

    Managers at all levels in a health care organization must organize work to achieve the organization's mission and goals. This requires managers to decide the organization structure, which involves dividing the work among jobs and departments and then coordinating them all toward the common purpose. Organization structure, which is reflected in an organization chart, may range on a continuum from very mechanistic to very organic. Managers must decide how mechanistic versus how organic to make the entire organization and each of its departments. To do this, managers should carefully consider 5 factors for the organization and for each individual department: external environment, goals, work production, size, and culture. Some factors may push toward more mechanistic structure, whereas others may push in the opposite direction toward more organic structure. Practical advice can help managers at all levels design appropriate structure for their departments and organization.

  4. Gender Structure and Spatial Organization

    Directory of Open Access Journals (Sweden)

    Minoosh Sadoughianzadeh

    2013-11-01

    Full Text Available As a contribution to the widespread debate on the “gender reading” of the “built environment,” this article aims to situate the subject in a new context, the Iranian society. To depict the subject, two distinct traditional architectures of the region, associated with their respective socio-spatial organizations, have been comparatively explored: the “Introvert” and “Extrovert.” These two almost ageless “Introvert” and “Extrovert” architectures, evolved through centuries in different geographical parts of the country, are spatial patterns aptly illustrating how the “gender structure” of each social organization has contributed to the formation of the relevant “physical space” and, further, how the specific “gender relationships” are pertinently structured within each one of the two types of the spaces. Based on a systematic approach and through concentration on the macro-socio-spatial organization, this article is to explore the gender/space associated variations within either of the social systems they belong to. This perspective is particularly instrumental in pinpointing the Introvert and Extrovert architectures in the context of their social organizations and carefully scrutinizing “gender” and “space” categories as systematically integrated variables.

  5. 16 CFR 0.9 - Organization structure.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Organization structure. 0.9 Section 0.9 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.9 Organization structure. The Federal Trade Commission comprises the following principal...

  6. The Design of Project Management Structural Organization

    OpenAIRE

    Dumitru Constantinescu; Cristian Etegan

    2007-01-01

    The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with...

  7. Structure and Structure-activity Relationship of Functional Organic Molecules

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Research theme The group is made up of junior scientists from the State Key Laboratory of Elemento-organic Chemistry, Nankai University.The scientists focus their studis on the structure and structure-activity relationship of functional organic molecules not only because it has been the basis of their research, but also because the functional study of organic compounds is now a major scientific issue for organic chemists around the world.

  8. Psychodiagnosis of personality structure: psychotic personality organization.

    Science.gov (United States)

    Acklin, M W

    1992-06-01

    Recent developments in Rorschach psychology, including nomothetic approaches focused on scores, ratios, and indices and idiographic approaches focused on content emerging from psychoanalytic theory, offer the Rorschach clinician a rich and potent interpretive methodology. This article examines the structural diagnosis of personality organization with a focus on psychotic personality structure. Rorschach approaches to the differential diagnosis of psychotic personality organization are presented. The Rorschach is viewed as indispensible in the differential diagnosis of personality organization, especially in the so-called "borderline" cases.

  9. Getting from Organ- to Part- Structure

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Mortensen, Niels Henrik

    1997-01-01

    The paper gives definitions of organ and part and elaborate on the relations between organ, parts and production methods. The importance of the law of superimposed structures on part design is illustrated and a domain- and view concept is developed.The paper is a collective of overhead-copies, pu......The paper gives definitions of organ and part and elaborate on the relations between organ, parts and production methods. The importance of the law of superimposed structures on part design is illustrated and a domain- and view concept is developed.The paper is a collective of overhead...

  10. Structural Dynamics Within and Between Organizations.

    Science.gov (United States)

    Fombrun, Charles J.

    1986-01-01

    The concept of structure is recast as an instantaneous correspondence between an infrastructure, a sociostructure, and a superstructure--manifestations of collective life juxtaposed through technological solutions, political exchanges, and social interpretations involving organizations. Ultimately, structuring is a dialectical unfolding of…

  11. Predicting crystal structures of organic compounds.

    Science.gov (United States)

    Price, Sarah L

    2014-04-07

    Currently, organic crystal structure prediction (CSP) methods are based on searching for the most thermodynamically stable crystal structure, making various approximations in evaluating the crystal energy. The most stable (global minimum) structure provides a prediction of an experimental crystal structure. However, depending on the specific molecule, there may be other structures which are very close in energy. In this case, the other structures on the crystal energy landscape may be polymorphs, components of static or dynamic disorder in observed structures, or there may be no route to nucleating and growing these structures. A major reason for performing CSP studies is as a complement to solid form screening to see which alternative packings to the known polymorphs are thermodynamically feasible.

  12. Minerals with metal-organic framework structures

    Science.gov (United States)

    Huskić, Igor; Pekov, Igor V.; Krivovichev, Sergey V.; Friščić, Tomislav

    2016-01-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals. PMID:27532051

  13. Growth of pseudomorphic structures through organic epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyil, Sreejith Embekkat; Sassella, Adele; Borghesi, Alessandro [Department of Materials Science, Universita degli Studi di Milano Bicocca, Via R. Cozzi 53, I-20125 Milan (Italy); Campione, Marcello [Department of Earth and Environmental Sciences, Universita degli Studi di Milano Bicocca, Piazza della Scienza 4, I-20126 Milan (Italy); Su Genbo; He Youping [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002 (China); Chen Chenjia [Department of Physics, Peking University, Beijing 100871 (China)

    2012-12-14

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor {alpha}-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  14. Band structure engineering in organic semiconductors

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  15. Virtuous organization: A structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Majid Zamahani

    2013-02-01

    Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.

  16. Organic light emitting diodes with structured electrodes

    Science.gov (United States)

    Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.

    2012-12-04

    A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.

  17. Integral Design workshops: organization, structure and testing

    Directory of Open Access Journals (Sweden)

    Wim Zeiler

    2010-08-01

    Full Text Available The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences of the participants. The project was done in close cooperation with the professional societies with in the Dutch building design field. More than one hundred experienced professionals participated in the workshops. The workshops have become part of the permanent professional training program Dutch architectural society.

  18. Matrix Organizational Structure and Its Effects Upon Education Organizations.

    Science.gov (United States)

    Yates, James R.

    Applying matrix organizational structure to the organization of special education services is the focus of this paper. Beginning with a list of ways in which educational organizations differ from business or military organizations, the author warns that educators must be cautious when transferring organizational structures from other disciplines…

  19. Structural studies of ultrathin organic films

    Science.gov (United States)

    Yim, Hyun

    1998-11-01

    Ultrathin organic films have been a focus of research due to the growing interest in optoelectronics and molecular electronics. In both areas, it is believed that self-assembled (SA) films and Langmuir-Blodgett (LB) films may provide the desired control of order at the molecular level. The tethering of polyglutamate molecules to surfaces is of special interest due to nonlinear optical properties which can be achieved when the molecules are oriented. The tethering of poly(benzyl-L-glutamate) to silicon has been done by polymerization of benzyl-L-glutamate-N-carboxyanhydride using self-assembled monolayers with various concentrations of amino end groups as initiating layers. X-ray reflectivity results show that a minimum concentration of initiator sites on the surface is required. The second tethering system is a polystyrene brush. The polystyrene brush is expected to give strong sensitivity to solvent swelling. The structure of the polystyrene brush, which was chemically grafted to a substrate, in poor solvent and its change at different temperatures were investigated by neutron reflectometry. When temperature increases up to 30sp°C, both the thickness and roughness increase greatly, which indicates that the polystyrene brush changes from a collapsed state to a theta state. Hairy-rod polyimide molecules are of interest due to their interesting physical properties. Multilayer films of preformed polyimide molecules (6FDA-C18) have been obtained for the first time by the LB technique. The multilayer films do not display a distinctively periodic structure. Upon annealing for a few hours at 180sp°C, the structure relaxes slightly. The alkyl side chain substituted polyimides (BACBF/BPDA) can form metastable monolayers for which the pressure-area isotherms vary markedly with side chain length. For the polyimide with octadecyl side chains, a sharp reduction in zero pressure area occurs between 20 and 24sp°C, suggesting an important change in side chain mobility

  20. Organic superconductors with an incommensurate anion structure

    Directory of Open Access Journals (Sweden)

    Tadashi Kawamoto and Kazuo Takimiya

    2009-01-01

    Full Text Available Superconducting incommensurate organic composite crystals based on the methylenedithio-tetraselenafulvalene (MDT-TSF series donors, where the energy band filling deviates from the usual 3/4-filled, are reviewed. The incommensurate anion potential reconstructs the Fermi surface for both (MDT-TSF(AuI20.436 and (MDT-ST(I30.417 neither by the fundamental anion periodicity q nor by 2q, but by 3q, where MDT-ST is 5H-2-(1,3-dithiol-2-ylidene-1,3-diselena-4,6-dithiapentalene, and q is the reciprocal lattice vector of the anion lattice. The selection rule of the reconstructing vectors is associated with the magnitude of the incommensurate potential. The considerably large interlayer transfer integral and three-dimensional superconducting properties are due to the direct donor–donor interactions coming from the characteristic corrugated conducting sheet structure. The materials with high superconducting transition temperature, Tc, have large ratios of the observed cyclotron masses to the bare ones, which indicates that the strength of the many-body effect is the major determinant of Tc. (MDT-TS(AuI20.441 shows a metal–insulator transition at TMI=50 K, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene-1,3,4,6-tetrathiapentalene, and the insulating phase is an antiferromagnet with a high Néel temperature (TN=50 K and a high spin–flop field (Bsf=6.9 T. There is a possibility that this material is an incommensurate Mott insulator. Hydrostatic pressure suppresses the insulating state and induces superconductivity at Tc=3.2 K above 1.05 GPa, where Tc rises to the maximum, Tcmax=4.9 K at 1.27 GPa. This compound shows a usual temperature–pressure phase diagram, in which the superconducting phase borders on the antiferromagnetic insulating phase, despite the unusual band filling.

  1. Lexical and constructional organization of argument structure: a contrastive analysis

    DEFF Research Database (Denmark)

    Pedersen, Johan

    2009-01-01

    exclusive focus on lexicalization patterns. Contrastive analysis may provide insight into differing ways of organizing grammatical information. Construction grammar (CXG) suggests that clausal core information is organized by integrating at least two construction types: A) schematic constructions, B...... of constructional specificity at which the core information is organized. English (and presumably other Germanic languages to some extent) tends to organize principal clausal information in schematic argument structure constructions, lea­ving secondary information for lexical (verbal) specification. Spanish (and...... presumably other Romance languages to some extent) seems to organize principal clausal information lexically in verbal argument structure constructions, leaving secondary information for schematically organized specification....

  2. STRUCTURE OF WAVE FRONT AND ORGANIZATION CENTER IN EXCITABLE MEDIA

    Institute of Scientific and Technical Information of China (English)

    刘深泉

    2004-01-01

    With help of establishing the moving coordinate on the wave front surface and the perturbation analysis in the boundary layer, the structures of wave front and organization center in excitable media were studied. The eikonal equation of wave front surface and general equation of organization center were obtained. These eikonal equations reveal the wave front surfaces have structures of twisted scroll wave and Mobius band, the organization centers have structures of knotted and linked ring. These theoretical results not only explain the wave patterns of BZ ( Belousov-Zhabotinskii ) chemical reaction but also give several possibility structures of wave front surface and organization center in general excitable media.

  3. Organizations and the Media: Structures of Miscommunication.

    Science.gov (United States)

    Theus, Kathryn T.

    1993-01-01

    Surveys 140 randomly selected profit and nonprofit organizations covered in 7 newspapers, and interviews journalists and organizational respondents. Finds that systematic discrepancies between organizations and reporters on the salience, selection, and interpretation of news reports were more common for public sector mechanistic bureaucracies of…

  4. Demand structure and willingness to pay for organic dairy products

    DEFF Research Database (Denmark)

    Smed, Sinne

    2005-01-01

    This paper analyses if the introduction of a new and “low fat” organic variety of fluid milk has any effect on consumers’ valuation of organic milk in general and can rewind the stagnating trend in the demand for organic milk. In order to analyse this, the consumers’ purchasing structure was anal...

  5. Scale and structure of capitated physician organizations in California.

    Science.gov (United States)

    Rosenthal, M B; Frank, R G; Buchanan, J L; Epstein, A M

    2001-01-01

    Physician organizations in California broke new ground in the 1980s by accepting capitated contracts and taking on utilization management functions. In this paper we present new data that document the scale, structure, and vertical affiliations of physician organizations that accept capitation in California. We provide information on capitated enrollment, the share of revenue derived by physician organizations from capitation contracts, and the scope of risk sharing with health maintenance organizations (HMOs). Capitation contracts and risk sharing dominate payment arrangements with HMOs. Physician organizations appear to have responded to capitation by affiliating with hospitals and management companies, adopting hybrid organizational structures, and consolidating into larger entities.

  6. Structural Capability of an Organization toward Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa

    2016-01-01

    competitive advantage in the organizations is the innovation capability. The innovation capability is associated with other organizational capabilities, and many organizations have focused on the need to identify innovation capabilities.This research focuses on recognition of the structural aspect...... of innovation capability and proposes a conceptual framework based on a Qualitative Meta Synthesis of academic literature on organizations innovation capability. This is proposed for the development of the concept of innovation capability in the organizations and this paper includes an expert based validation...... Capability and Structural Capability. Also, it offers the most important components and indices which directly influence and are related to the structural capability of innovation capability....

  7. Structural Barriers: Redesigning Schools to Create Learning Organizations

    Science.gov (United States)

    Randeree, Ebrahim

    2006-01-01

    Purpose: The purpose of this paper is to focus on schools and address the structural dimensions of the organization as well as the hierarchical design of information flows between stakeholders. The paper highlights current structural barriers to creating learning organizations. Design/methodology/approach: This paper utilizes a conceptual model.…

  8. Structure and organization of primary care.

    NARCIS (Netherlands)

    Lember, M.; Cartier, T.; Bourgueil, Y.; Dedeu, T.; Hutchinson, A.; Kringos, D.

    2015-01-01

    The way primary care is structured establishes important conditions for both the process of care and its outcomes. In this chapter, the structure of primary care will be discussed according to three dimensions: governance, economic conditions and workforce development. Governance refers to the visi

  9. PLAN FOR PERFORMANCE ADMINISTRATION IN PYRAMIDAL STRUCTURE ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Domingo Alarcón Ortiz

    2013-11-01

    Full Text Available Performance administration has become a current strategy in evaluating management within organizations, but its implementation often lacks an action plan, resulting from the valuation of climate and leadership styles embedded in the culture of the organization. This paper proposes a model action plan for performance management, which has been implemented, executed and evaluated in pyramidal organizational structure organizations where a diagnosis of the cultural climate and leadership styles recurring in the organization have been previously made.

  10. The Temporal Organization of Syllabic Structure

    Science.gov (United States)

    Shaw, Jason A.

    2010-01-01

    This dissertation develops analytical tools which enable rigorous evaluation of competing syllabic parses on the basis of temporal patterns in speech production data. The data come from the articulographic tracking of fleshpoints on target speech organs, e.g., tongue, lips, jaw, in experiments with native speakers of American English and Moroccan…

  11. [Classification of organisms and structuralism in biology].

    Science.gov (United States)

    Vasil'eva, L I

    2001-01-01

    Structuralism in biology is the oldest trend oriented to the search for natural "laws of forms" comparable with laws of growth of crystal, was revived at the end of 20th century on the basis of structuralist thought in socio-humanitarian sciences. The development of principal ideas of the linguistic structuralism in some aspects is similar to that of biological systematics, especially concerning the relationships between "system" and "evolution". However, apart from this general similarity, biological structuralism is strongly focused on familiar problems of the origin of diversity in nature. In their striving for the renovation of existing views, biological structuralists oppose the neo-darwinism emphasizing the existence of "law of forms", that are independent on heredity and genetic "determinism". The trend to develop so-called "rational taxonomy" is also characteristic of biological structuralism but this attempt failed being connected neither with Darwin's historicism nor with Plato's typology.

  12. Technology and structure of nursing organizations.

    Science.gov (United States)

    Alexander, J W; Mark, B

    1990-04-01

    Theory building and theory application in nursing administration enable the nurse executive to work more effectively at the managerial task. Alexander and Mark apply a model that allows for comparison and contrast between various nursing units based on the nature of their work as assessed on the variables of technology and structure. In this model, technology is assessed on three dimensions: instability, variability, and uncertainty; and structure is assessed as to vertical participation, horizontal participation, and formalization. Cases studies clarify the model and show its application.

  13. Fluctuating structure of aqueous organic nanodroplets

    Science.gov (United States)

    Hrahsheh, Fawaz; Wilemski, Gerald

    2013-05-01

    Supercooled and nano-confined water occurs frequently as nanometer-sized aqueousorganic aerosol droplets that are ubiquitous in the atmosphere and in many industrial processes. Nanodroplet structure is important because it influences droplet growth and evaporation rates, heterogeneous reaction rates, and radiative properties. We used classical molecular dynamic simulations to study the structure of binary water-nonane and ternary water-butanol-nonane nanodroplets for several temperatures and droplet sizes. We found that nonspherical, phase-separated Russian Doll (RD) structures occur for water/nonane nanodroplets at all temperatures studied, 220K-300K. The RD structure consists of a nearly spherical water droplet partially wetted by a convex lens of nonane. We then studied the effects of butanol on the wetting of the water/butanol core-shell droplet by the nonane lens. At low concentrations, butanol acts as a surfactant to significantly enhance the wetability of the water droplet by nonane. At 250 K, with sufficient butanol and nonane, perfect wetting (thin film formation by nonane) occurs. Perfect wetting also occurs at higher temperatures, 270 K to 300 K, but this wetting state is progressively destabilized at higher temperature. All of the nanodroplets studied undergo distinct transitions between partial dewetting and perfect wetting states due to isothermal fluctuations in the local distribution of butanol on the surface of the water core. These fluctuations favor the wetted state at lower temperatures and the dewetted state at higher temperatures.

  14. Simulating Self-organization and Interference between Certain Hierarchical Structures.

    Science.gov (United States)

    Raczynski, Stanislaw

    2014-10-01

    A model of the dynamics and interactions between organizations with self-organizing hierarchical structures is presented for discrete events. The active objects of the model are individuals (people, organization members). The parameters of an individual are ability, corruption level, resources, and lust for power, among others. Three organizations are generated and interact with each other, attempting to gain more members and power. The individuals appear and disappear, due to a simple 'birth-and-death' process. If an individual disappears from the model, a corresponding reconfiguration in the hierarchical structure occurs. The organization's growth and macro-patterns are the result of the activities of the individuals. The aim of the simulation is to visualize the evolution of the organizations and the stability of the whole system. A 'steady state' for the model is rare; instead, in most parameter configurations, the model enters into oscillations.

  15. Structural organization of the mitochondrial respiratory chain.

    Science.gov (United States)

    Genova, Maria Luisa; Bianchi, Cristina; Lenaz, Giorgio

    2003-03-01

    Two models exist of the mitochondrial respiratory chain: the model of a random organization of the individual respiratory enzyme complexes and that of a super-complex assembly formed by stable association between the individual complexes. Recently Schägger, using digitonin solubilization and Blue Native PAGE produced new evidence of preferential associations, in particular a Complex I monomer with a Complex III dimer, and suggested a model of the respiratory chain (the respirasome) based on direct electron channelling between complexes. Discrimination between the two models is amenable to kinetic testing using flux control analysis. Experimental evidence obtained in beef heart SMP, according to the extension of the Metabolic Control Theory for pathways with metabolic channelling, showed that enzyme associations involving Complex I and Complex III take place in the respiratory chain while Complex IV seems to be randomly distributed, with cytochrome c behaving as a mobile component. Flux control analysis at anyone of the respiratory complexes involved in aerobic succinate oxidation indicated that Complex II and III are not functionally associated in a stable supercomplex. A critical appraisal of the solid-state model of the mitochondrial respiratory chain requires its reconciliation with previous biophysical and kinetic evidence that CoQ behaves as a homogeneous diffusible pool between all reducing enzyme and all oxidizing enzymes: the hypothesis can be advanced that both models (CoQ pool and supercomplexes) are true, by postulating that supercomplexes physiologically exist in equilibrium with isolated complexes depending on metabolic conditions of the cell.

  16. The structure and function of auditory chordotonal organs in insects.

    Science.gov (United States)

    Yack, Jayne E

    2004-04-15

    Insects are capable of detecting a broad range of acoustic signals transmitted through air, water, or solids. Auditory sensory organs are morphologically diverse with respect to their body location, accessory structures, and number of sensilla, but remarkably uniform in that most are innervated by chordotonal organs. Chordotonal organs are structurally complex Type I mechanoreceptors that are distributed throughout the insect body and function to detect a wide range of mechanical stimuli, from gross motor movements to air-borne sounds. At present, little is known about how chordotonal organs in general function to convert mechanical stimuli to nerve impulses, and our limited understanding of this process represents one of the major challenges to the study of insect auditory systems today. This report reviews the literature on chordotonal organs innervating insect ears, with the broad intention of uncovering some common structural specializations of peripheral auditory systems, and identifying new avenues for research. A general overview of chordotonal organ ultrastructure is presented, followed by a summary of the current theories on mechanical coupling and transduction in monodynal, mononematic, Type 1 scolopidia, which characteristically innervate insect ears. Auditory organs of different insect taxa are reviewed, focusing primarily on tympanal organs, and with some consideration to Johnston's and subgenual organs. It is widely accepted that insect hearing organs evolved from pre-existing proprioceptive chordotonal organs. In addition to certain non-neural adaptations for hearing, such as tracheal expansion and cuticular thinning, the chordotonal organs themselves may have intrinsic specializations for sound reception and transduction, and these are discussed. In the future, an integrated approach, using traditional anatomical and physiological techniques in combination with new methodologies in immunohistochemistry, genetics, and biophysics, will assist in

  17. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    Directory of Open Access Journals (Sweden)

    Bruno Pignataro

    2013-03-01

    Full Text Available This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions.

  18. Structural organization of DNA in chlorella viruses.

    Directory of Open Access Journals (Sweden)

    Timo Wulfmeyer

    Full Text Available Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm(-3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes.

  19. The Structural and Functional Organization of Cognition.

    Science.gov (United States)

    Snow, Peter J

    2016-01-01

    This article proposes that what have been historically and contemporarily defined as different domains of human cognition are served by one of four functionally- and structurally-distinct areas of the prefrontal cortex (PFC). Their contributions to human intelligence are as follows: (a) BA9, enables our emotional intelligence, engaging the psychosocial domain; (b) BA47, enables our practical intelligence, engaging the material domain; (c) BA46 (or BA46-9/46), enables our abstract intelligence, engaging the hypothetical domain; and (d) BA10, enables our temporal intelligence, engaging in planning within any of the other three domains. Given their unique contribution to human cognition, it is proposed that these areas be called the, social (BA9), material (BA47), abstract (BA46-9/46) and temporal (BA10) mind. The evidence that BA47 participates strongly in verbal and gestural communication suggests that language evolved primarily as a consequence of the extreme selective pressure for practicality; an observation supported by the functional connectivity between BA47 and orbital areas that negatively reinforce lying. It is further proposed that the abstract mind (BA46-9/46) is the primary seat of metacognition charged with creating adaptive behavioral strategies by generating higher-order concepts (hypotheses) from lower-order concepts originating from the other three domains of cognition.

  20. Demand structure and willingness to pay for organic dairy products

    DEFF Research Database (Denmark)

    Smed, Sinne

    2005-01-01

    This paper analyses if the introduction of a new and “low fat” organic variety of fluid milk has any effect on consumers’ valuation of organic milk in general and can rewind the stagnating trend in the demand for organic milk. In order to analyse this, the consumers’ purchasing structure...... was analysed and it was found that consumers first chose between different types of milk and secondly, decided of whether this milk was organic or conventional. Elasticities indicated a greater temporary flexibility in the demand structure and a permanent change of substitution patterns through...... the introduction of the new type of milk. The calculation of marginal Willingness to Pay show a temporary raise in consumers’ valuation of the organic quality attribute, but this was followed by a decline....

  1. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  2. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  3. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations

    OpenAIRE

    Xiao Li; Jiankang He; Weijie Zhang; Nan Jiang; Dichen Li

    2016-01-01

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, dep...

  4. E-learning and the Educational Organizations Structure Reengineering (EOSR

    Directory of Open Access Journals (Sweden)

    Osama Alshara

    2007-06-01

    Full Text Available There are many calls for innovative learning methods that utilize advanced technologies. However, we will raise fundamental questions that look deep into the future of the educational organization. Can the educational institute survive without adapting learning technologies? Would the educational institute succeed in adapting new learning technologies without changing its organizational structure and processes? We claim that the answer to both questions is no. Our research will present the need for edu-cational institutes to incorporate learning technologies and focuses on the demand for the educational organization structure reengineering as a basic requirement for the suc-cess of incorporating learning technologies. Our study ex-plores the faculty requirements and policies and procedures of educational institutes in the UAE.The paper concludes with some discussions on findings from a case study of the need of educational organization struc-ture reengineering as a basic requirement for incorporating learning technologies.

  5. The ascidian pigmented sensory organs: structures and developmental programs.

    Science.gov (United States)

    Esposito, R; Racioppi, C; Pezzotti, M R; Branno, M; Locascio, A; Ristoratore, F; Spagnuolo, A

    2015-01-01

    The recent advances on ascidian pigment sensory organ development and function represent a fascinating platform to get insight on the basic programs of chordate eye formation. This review aims to summarize current knowledge, at the structural and molecular levels, on the two main building blocks of ascidian light sensory organ, i.e. pigment cells and photoreceptor cells. The unique features of these structures (e.g., simplicity and well characterized cell lineage) are indeed making it possible to dissect the developmental programs at single cell resolution and will soon provide a panel of molecular tools to be exploited for a deep developmental and comparative-evolutionary analysis.

  6. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    OpenAIRE

    Kavulak, David Fredric Joel

    2010-01-01

    The major body of this work investigates how the chemical structure of conjugated polymers relates to the fundamental operating mechanism of organic photovoltaic devices. New conjugated polymers were characterized and their optical and electronic properties tested and correlated with their power conversion efficiencies as the active layer in polymer solar cells. From these experiments general structure/function relationships are drawn with an eye toward developing universal guidelines for con...

  7. Structural Origins of Scintillation: Metal Organic Frameworks as a Nanolaboratory

    Science.gov (United States)

    2016-06-01

    use. The results of this project provide fundamental insight into the electronic and structural features of novel scintillating materials known as...Energy/Work/Power electron volt (eV) 1.602 177 × 10 –19 joule (J) erg 1 × 10 –7 joule (J) kiloton (kt) (TNT equivalent) 4.184 × 10 12 joule (J...flexible structure, present unique advantages for radiation detection over existing organic scintillator materials . In addition, MOFs provide a

  8. Controlled Encapsulation of Functional Organic Molecules within Metal-Organic Frameworks: In Situ Crystalline Structure Transformation.

    Science.gov (United States)

    Guan, Jinju; Hu, Yu; Wang, Yu; Li, Hongfeng; Xu, Zhiling; Zhang, Tao; Wu, Peng; Zhang, Suoying; Xiao, Gengwu; Ji, Wenlan; Li, Linjie; Zhang, Meixuan; Fan, Yun; Li, Lin; Zheng, Bing; Zhang, Weina; Huang, Wei; Huo, Fengwei

    2017-01-23

    Functional organic molecules/metal-organic frameworks composites can be obtained by in situ crystalline structure transformation from ZIF-L to ZIF-8-L under double solvent conditions. Interestingly, the as-prepared molecules/ZIF-8-L composites with the leaf-like morphology exhibit good fluorescence properties and size selectivity in fluorescent quenchers due to the molecular sieving effect of the well-defined microporous ZIF-8-L.

  9. Effects of Discourse Structure Graphic Organizers on EFL Reading Comprehension

    Science.gov (United States)

    Jiang, Xiangying

    2012-01-01

    This study investigated the effects of a 16-week reading instruction program with discourse structure graphic organizers (DSGOs) on the development of English reading comprehension among college-level English as a Foreign Language (EFL) students. A total of 340 first and third semester students of non-English majors at a Chinese university…

  10. Twelve Tips for Organizing an Objective Structured Clinical Examination (OSCE).

    Science.gov (United States)

    Harden, R. M.

    1991-01-01

    Suggestions for organizing the objective structured clinical examination for medical students and physicians address selection of competencies to be evaluated, number, type, and duration of examination stations, use of examiners, clarity of instructions, test administration, resource requirements, interstation signals, and recordkeeping. (MSE)

  11. Self-organized structures in soft confined thin films

    Indian Academy of Sciences (India)

    Ashutosh Sharma

    2005-10-01

    We present a mini-review of our recent work on spontaneous, self-organized creation of mesostructures in soft materials like thin films of polymeric liquids and elastic solids. These very small scale, highly confined systems are inherently unstable and thus self-organize into ordered structures which can be exploited for MEMS, sensors, opto-electronic devices and a host of other nanotechnology applications. In particular, mesomechanics requires incorporation of intermolecular interactions and surface tension forces, which are usually inconsequential in classical macroscale mechanics. We point to some experiments and quasi-continuum simulations of self-organized structures in thin soft films which are germane not only to nanotechnology, but also to a spectrum of classical issues such as adhesion/debonding, wetting, coatings, tribology and membranes.

  12. Consumer knowledge structures with regards to organic foods

    DEFF Research Database (Denmark)

    Bredahl, Lone; Thøgersen, John; Dean, Moira

    2004-01-01

    This paper presents results of an empirical study conducted among European consumers to explore consumer knowledge structures with regard to organic foods and to identify the beliefs and the attribute-to-value chains that discriminate best among different consumer segments. Using means-end chain...... theory as the theoretical basis, the objectives of the study were met through carrying out laddering interviews with consumers in Germany, Great Britain, Denmark and Spain, using a Food-Related Lifestyle (FRL) segment-based approach and interviewing both organic and non-organic consumers. Respondents...... covered as subset of 13 FRL segments, with three or four segments represented per country. Pizza was used as stimuli, with two of four specified alternatives identified as organic (frozen pizza and ready-to-eat pizza). Results of the initial ranking procedure show product preferences to vary considerably...

  13. Lexical and constructional organization of argument structure: a contrastive analysis

    DEFF Research Database (Denmark)

    Pedersen, Johan

    2009-01-01

    exclusive focus on lexicalization patterns. Contrastive analysis may provide insight into differing ways of organizing grammatical information. Construction grammar (CXG) suggests that clausal core information is organized by integrating at least two construction types: A) schematic constructions, B......) lexical constructions (e.g. Croft 2001; Fillmore 1988; Goldberg 1995, 2006). In addition, clausal expressions are, according to some CXG-frameworks (e.g. Croft 2001), supposed to be built on language-specific construction types. I hypothesize that languages may differ according to the level...... of constructional specificity at which the core information is organized. English (and presumably other Germanic languages to some extent) tends to organize principal clausal information in schematic argument structure constructions, lea­ving secondary information for lexical (verbal) specification. Spanish (and...

  14. ORGANIC VS CONVENTIONAL: SOIL NEMATODE COMMUNITY STRUCTURE AND FUNCTION.

    Science.gov (United States)

    Kapp, C; Storey, S G; Malan, A P

    2014-01-01

    Global increases in human population are creating an ever-greater need for food production. Poor soil management practices have degraded soil to such an extent that rapidly improved management practices is the only way to ensure future food demands. In South Africa, deciduous fruit producers are realising the need for soil health, and for an increased understanding of the benefits of soil ecology, to ensure sustainable fruit production. This depends heavily on improved orchard management. Conventional farming relies on the addition of artificial fertilizers, and the application of chemicals, to prevent or minimise, the effects of the soil stages of pest insects, and of plant-parasitic nematodes. Currently, there is resistance toward conventional farming practices, which, it is believed, diminishes biodiversity within the soil. The study aimed to establish the soil nematode community structure and function in organically, and conventionally, managed deciduous fruit orchards. This was done by determining the abundance, the diversity, and the functionality of the naturally occurring free-living, and plant-parasitic, nematodes in deciduous fruit orchards in the Western Cape province of South Africa. The objective of the study was to form the basis for the use of nematodes as future indicators of soil health in deciduous fruit orchards. Orchards from neighbouring organic, and conventional, apricot farms, and from an organic apple orchard, were studied. All the nematodes were quantified, and identified, to family level. The five nematode-classified trophic groups were found at each site, while 14 families were identified in each orchard, respectively. Herbivores were dominant in all the orchards surveyed. Organic apples had the fewest herbivores and fungivores, with the highest number of carnivores. When comparing organic with conventional apricot orchards, higher numbers of plant-parasitic nematodes were found in the organic apricot orchards. The Maturity Index (MI

  15. Developmental changes in organization of structural brain networks.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  16. Developmental Changes in Organization of Structural Brain Networks

    Science.gov (United States)

    Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph

    2013-01-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607

  17. Structure and Properties of an Amorphous Metal-Organic Framework

    Science.gov (United States)

    Bennett, Thomas D.; Goodwin, Andrew L.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.; Barney, Emma R.; Soper, Alan K.; Bithell, Erica G.; Tan, Jin-Chong; Cheetham, Anthony K.

    2010-03-01

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300°C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400°C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  18. Structural diversity in serine derived homochiral metal organic frameworks

    Indian Academy of Sciences (India)

    Tanay Kundu; Rahul Banerjee

    2014-09-01

    Two new Zn(II) and Cd(II) based homochiral metal-organic frameworks (MOFs) [SerCdOAc and Zn(Ser)2] have been synthesized using pyridyl functionalized amino acid, viz., serine, as an organic linker. The SerCdOAc structure is three dimensional, while that of the Zn(Ser)2 is two dimensional. The polar voids of the corresponding MOFs are filled with solvent molecules (water in the case of SerCdOAc and methanol in the case of Zn(Ser)2). In both cases, metal centres, i.e., Zn(II) and Cd(II), are hexacoordinated. However, with a change in the solvent for synthesis, ligand coordinationmode and incorporation of additional coordinated anion resulted in a great change in the final MOF architecture. Herein, for the first time, we could achieve structural variety and synthesize MOFs composed of only metal ion and pyridyl functionalized amino acid linker.

  19. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2016-11-01

    Full Text Available Additive manufacturing (AM, sometimes called three-dimensional (3D printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  20. Quantitative analysis of cellular metabolic dissipative, self-organized structures

    OpenAIRE

    Ildefonso Martínez de la Fuente

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the ...

  1. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    Directory of Open Access Journals (Sweden)

    Pia Sundberg

    2014-07-01

    Full Text Available The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD, is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications.

  2. Differently Structured Advance Organizers Lead to Different Initial Schemata and Learning Outcomes

    Science.gov (United States)

    Gurlitt, Johannes; Dummel, Sebastian; Schuster, Silvia; Nuckles, Matthias

    2012-01-01

    Does the specific structure of advance organizers influence learning outcomes? In the first experiment, 48 psychology students were randomly assigned to three differently structured advance organizers: a well-structured, a well-structured and key-concept emphasizing, and a less structured advance organizer. These were followed by a sorting task, a…

  3. Long-term organic fertilization effect on chernozem structure

    Science.gov (United States)

    Słowińska-Jurkiewicz, A.; Bryk, M.; Medvedev, V. V.

    2013-01-01

    The objective of the study was to examine the structure of typical Ukrainian chernozem developed on loess, which (I) had been fertilized by standard crop rotation since 1912 with farm yard manure at the rate of 16 t ha-1 and (II) had not been fertilized with farm yard manure by sugar beet monoculture since 1929. After harvest of winter wheat and sugar beet, the samples of undisturbed structure were taken from 5 layers of both profiles: 0-8, 10-18, 20-28, 30-38, and 40-48 cm. The morphological analysis of the structure of the investigated chernozem revealed that the most visible differences between the soil structures of the two pedons occurred in their superficial layers. The 0-18 cm layer of the soil in the experiment I had an aggregate structure, whereas analogous layer of the soil in experiment II was much more compacted. Below about 30 cm from the ground level both pedons had very similar structure. For the soil in the experiment I an appropriate crop rotation and regular supplies of organic matter allowed for preservation of a favourable structure even in the upper layers - in contrast to the soil in the experiment II.

  4. Application of organic geochemistry to detect signatures of organic matter in the Haughton impact structure

    Science.gov (United States)

    Parnell, John; Lee, Pascal; Osinski, Gordon R.; Cockell, Charles S.

    2005-12-01

    Organic geochemistry applied to samples of bedrock and surface sediment from the Haughton impact structure detects a range of signatures representing the impact event and the transfer of organic matter from the crater bedrock to its erosion products. The bedrock dolomite contains hydrocarbon-bearing fluid inclusions which were incorporated before the impact event. Comparison of biomarker data from the hydrocarbons in samples inside and outside of the crater show the thermal signature of an impact. The occurrence of hydrocarbon inclusions in hydrothermal mineral samples shows that organic matter was mobilized and migrated in the immediate aftermath of the impact. The hydrocarbon signature was then transferred from bedrock to the crater-fill lacustrine deposits and present-day sediments in the crater, including wind-blown detritus in snow/ice. Separate signatures are detected from modern microbial life in crater rock and sediment samples. Signatures in Haughton crater samples are readily detectable because they include hydrocarbons generated by the burial of organic matter. This type of organic matter is not expected in crater samples on other planets, but the Haughton data show that, using very high resolution detection of organic compounds, any signature of primitive life in the crater rocks could be transferred to surface detritus and so extend the sampling medium.

  5. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  6. Organic synthetic environmental endocrine disruptors: structural classes and metabolic fate.

    Science.gov (United States)

    Schmidt, Jan; Peterlin-Mašič, Lucija

    2012-12-01

    Endocrine disruption is the modification of the endocrine system causing harmful effects in healthy subjects or their offspring. Physiological endocrine hormones act at very low plasma concentrations, and certain chemicals known as endocrine disrupting compounds (EDCs) are suspected of modifying endocrine function at similarly low concentrations. In our review we focus mainly on the structural classes of organic synthetic environmental endocrine disruptors and their common structural elements that enable them to interact with estrogen signalling. EDCs can affect estrogenic signalling directly through interaction with estrogen receptors (ERs) or indirectly through transcription factors such as the aryl hydrocarbon receptor (AhR) or by modulation of critical metabolic enzymes engaged in estrogen biosynthesis and metabolism. However, some structural elements can also pose a great risk of cytotoxicity and genotoxicity, especially after biotransformation to reactive metabolites.

  7. Organic matter and soil structure in the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  8. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    Directory of Open Access Journals (Sweden)

    Andrey M. Grishin

    2015-06-01

    Full Text Available Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  9. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway.

    Science.gov (United States)

    Grishin, Andrey M; Cygler, Miroslaw

    2015-06-12

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism-coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  10. Molecular orientation and electronic structure at organic heterojunction interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shu [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore (Singapore); Zhong, Jian Qiang; Wee, Andrew T.S. [Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Chen, Wei, E-mail: phycw@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); National University of Singapore (Suzhou) Research Institute, Suzhou (China)

    2015-10-01

    Highlights: • Molecular orientation at the organic heterojunction interfaces. • Energy level alignments at the organic heterojunction interfaces. • Gap-states mediated interfacial energy level alignment. - Abstract: Due to the highly anisotropic nature of π-conjugated molecules, the molecular orientation in organic thin films can significantly affect light absorption, charge transport, energy level alignment (ELA) and hence device performance. Synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy represents a powerful technique for probing molecular orientation. The aim of this review paper is to provide a balanced assessment on the investigation of molecular orientation at the organic–organic heterojunction (OOH) interface by NEXAFS, as well as the gap-states mediated orientation dependent energy level alignment at OOH interfaces. We highlight recent progress in elucidating molecular orientation at OOH interfaces dominated by various interfacial interactions, gap-states controlled orientation dependent energy level alignments at OOH interfaces, and the manipulations of molecular orientation and ELA in OOH.

  11. Lanthanides caged by the organic chelates; structural properties.

    Science.gov (United States)

    Smentek, Lidia

    2011-04-13

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  12. Study of organic solar cells with stacked bulk heterojunction structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-fang; XU Zheng; ZHAO Su-ling; ZHANG Fu-jun; LI Yan; WU Chun-yu; CHEN Yue-ning

    2008-01-01

    Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BILl cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV/Ag/MEH-PPV:ZnO/Al. The open circuit voltage (Voc) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV/A1). The short circuit current (Jsc) of a stacked cell is increased by about 1.6 times of that of individual one.

  13. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  14. Modern electronic structure theory and applications in organic chemistry

    CERN Document Server

    Davidson, ER

    1997-01-01

    This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is n

  15. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Directory of Open Access Journals (Sweden)

    Christian Lohse

    2014-10-01

    Full Text Available Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  16. Molecular structure and exciton dynamics in organic conjugated polymers

    Science.gov (United States)

    Thomas, Alan K.

    Intermolecular electronic interactions, dipole coupling and orbital overlap, caused by pi-pi stacking in organic conjugated polymers lead to unique structures and properties that can be harnessed for optoelectronic applications. These interactions define structure-function relationships in amorphous and aggregated forms of polymers in the solid state and determine their efficiencies and functionality in electronic devices, from transistors to solar cells. Organic polymer electronic device performance depends critically upon electronic coupling between monomer units -mediated by conformation and packing characteristics - that dictates electronic properties like conductivity and capacitance as well as electronic processes, such as charge carrier generation and transport. This dissertation demonstrates how electronic processes in conjugated polymers are mediated by subtle inter- and intra-chain electronic interactions imparted by the conformational degrees of freedom within their solid state structure and how this effects device performance. To initiate this investigation into structure-function relationships, an examination of nanoparticles representing two limiting aggregation states of the conjugated polymer poly(3-hexylthiophene) (P3HT) was conducted. These aggregates are defined by their predominate form of electronic coupling, inter- or intrachain, called H- and J-aggregates respectively. H- or J-aggregates of P3HT were embedded in an insulating matrix and time-resolved fluorescence intensity modulation spectroscopy was utilized to uncover the existence of efficient singlet-triplet quenching in J aggregates not present in H-aggregates. These studies were extended by examining P3HT H-and J-aggregates under applied electric fields in capacitor type devices using multiple time-resolved and steady-state spectroscopic techniques. These experiments reveal electronic couplings in J aggregates that shift excited state population towards a majority composed of long lived

  17. Similarities Between Biological and Social Networks in Their Structural Organization

    Science.gov (United States)

    Kahng, Byungnam; Lee, Deokjae; Kim, Pureun

    A branching tree is a tree that is generated through a multiplicative branching process starting from a root. A critical branching tree is a branching tree in which the mean branching number of each node is 1, so that the number of offspring neither decays to zero nor flourishes as the branching process goes on. Moreover, a scale-free branching tree is a branching tree in which the number of offspring is heterogeneous, and its distribution follows a power law. Here we examine three structures, two from biology (a phylogenetic tree and the skeletons of a yeast protein interaction network) and one from social science (a coauthorship network), and find that all these structures are scale-free critical branching trees. This suggests that evolutionary processes in such systems take place in bursts and in a self-organized manner.

  18. Structure and dynamics in self-organized C60 fullerenes.

    Science.gov (United States)

    Patnaik, Archita

    2007-01-01

    This manuscript on 'structure and dynamics in self-organized C60 fullerenes' has three sections dealing with: (A) pristine C60 aggregate structure and geometry in solvents of varying dielectric constant. Here, using positronium (Ps) as a fundamental probe which maps changes in the local electron density of the microenvironment, the onset concentration for stable C60 aggregate formation and its phase behavior is deduced from the specific interactions of the Ps atom with the surrounding. (B) A novel methanofullerene dyad, based on a hydrophobic (acceptor C60 moiety)-hydrophilic (bridge with benzene and ester functionalities)-hydrophobic (donor didodecyloxybenzene) network is chosen for investigation of characteristic self-assembly it undergoes leading to supramolecular aggregates. The pi-electronic amphiphile, necessitating a critical dielectric constant epsilon > or = 30 in binary THF-water mixtures, dictated the formation of bilayer vesicles as precursors for spherical fractal aggregates upon complete dyad extraction into a more polar water phase. (C) While the molecular orientation is dependent on the packing density, the ordering of the molecular arrangement, indispensable for self-assembly depends on the balance between the structures demanded by inter-molecular and molecule-substrate interactions. The molecular orientation in a monolayer affects the orientation in a multilayer, formed on the monolayer, suggesting the possibility of the latter to act as a template for controlling the structure of the three dimensionally grown self-assembled molecular aggregation. A systematic study on the electronic structure and orientation associated with C60 functionalized aminothiol self-assembled monolayers on Au(111) surface is presented using surface sensitive Ultra-Violet Photoelectron Spectroscopy (UPS) and C-K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The results revealed drastic modifications to d-band structure of Au(111) and the

  19. ORGANIZING SCENARIO VARIABLES BY APPLYING THE INTERPRETATIVE STRUCTURAL MODELING (ISM

    Directory of Open Access Journals (Sweden)

    Daniel Estima de Carvalho

    2009-10-01

    Full Text Available The scenario building method is a thought mode - taken to effect in an optimized, strategic manner - based on trends and uncertain events, concerning a large variety of potential results that may impact the future of an organization.In this study, the objective is to contribute towards a possible improvement in Godet and Schoemaker´s scenario preparation methods, by employing the Interpretative Structural Modeling (ISM as a tool for the analysis of variables.Given this is an exploratory theme, bibliographical research with tool definition and analysis, examples extraction from literature and a comparison exercise of referred methods, were undertaken.It was verified that ISM may substitute or complement the original tools for the analysis of variables of scenarios per Godet and Schoemaker’s methods, given the fact that it enables an in-depth analysis of relations between variables in a shorter period of time, facilitating both structuring and construction of possible scenarios.Key-words: Strategy. Future studies. Interpretative Structural Modeling.

  20. Social Capital in Organizations - Beyond Structure and Metaphor

    DEFF Research Database (Denmark)

    Waldstrøm, Christian

    2003-01-01

    . Secondly, it is necessary to determine whether social capital can or should be measured. Thirdly, the negative aspects of social capital should be explored and integrated into the existing research. Fourthly, the field between social capital of the individual and organizational social capital lacks......The importance and usefulness of social capital as a concept in the study of organizations have been established by a large body of research. The aim of this paper is to review the concept of social capital in an organizational context, and it identifies five main issues that need to be addressed...... in future research before social capital can move definitively beyond being merely a metaphor for advantage. First, the unresolved issue of causality is a barrier in the study of social structure and social capital alike, and hampers both measuring scales and implications drawn from empirical research...

  1. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    Science.gov (United States)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical

  2. Chemical-Structural Changes of Organic Matter in a Semi-Arid Soil After Organic Amendment

    Institute of Scientific and Technical Information of China (English)

    C.NICOL(A)S; G.MASCIANDARO; T.HERN(A)NDEZ; C.GARCIA

    2012-01-01

    A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil. The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.

  3. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  4. Orthographic structure versus morphological structure: principles of lexical organization in a given language.

    Science.gov (United States)

    Frost, Ram; Kugler, Tamar; Deutsch, Avital; Forster, Kenneth I

    2005-11-01

    Most models of visual word recognition in alphabetic orthographies assume that words are lexically organized according to orthographic similarity. Support for this is provided by form-priming experiments that demonstrate robust facilitation when primes and targets share similar sequences of letters. The authors examined form-orthographic priming effects in Hebrew, Arabic, and English. Hebrew and Arabic have an alphabetic writing system but a Semitic morphological structure. Hebrew morphemic units are composed of noncontiguous phonemic (and letter) sequences in a given word. Results demonstrate that form-priming effects in Hebrew or Arabic are unreliable, whereas morphological priming effects with minimal letter overlap are robust. Hebrew bilingual subjects, by contrast, showed robust form-priming effects with English material, suggesting that Semitic words are lexically organized by morphological rather than orthographic principles. The authors conclude that morphology can constrain lexical organization even in alphabetic orthographies and that visual processing of words is first determined by morphological characteristics.

  5. Structural organization of the inactive X chromosome in the mouse.

    Science.gov (United States)

    Giorgetti, Luca; Lajoie, Bryan R; Carter, Ava C; Attia, Mikael; Zhan, Ye; Xu, Jin; Chen, Chong Jian; Kaplan, Noam; Chang, Howard Y; Heard, Edith; Dekker, Job

    2016-07-28

    X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD

  6. Synthesis and structure determination of uranyl peroxide nanospheres in the presence of organic structure directing agents

    Science.gov (United States)

    Forbes, T. Z.; Burns, P. C.

    2007-12-01

    Recently, actinyl peroxide nanoclusters containing 20, 24, 28, or 32 actinyl polyhedra have been synthesized and their structures identified with single crystal X-ray diffraction [1]. Most nanomaterials are composed of main group elements or transition metals, therefore, these actinyl nanospheres may display vastly different chemical and physical properties due to the presence of filled f-orbitals. A major goal of our research group is to create novel actinyl materials, focusing on nano- and mesoporous materials. The original nanosphere syntheses were limited to inorganic crystallization agents, such as monovalent cations. Over the last decade, the use of organic compounds and surfactants have received increased attention as structure-directing agents for the generation of novel inorganic materials. Using structure-directing organic amines we have successfully synthesized and determined the structures of uranyl nanospheres containing 40 and 50 uranyl polyhedra. The topology of the skeletal U-50 nanosphere is identical to the C50Cl10 fullerene [2]. The topographical relationship between the actinyl nanospheres and fullerene or fullerene-like material may provide additional insight into stable configurations for lower fullerenes. [1] Burns et al., Actinyl peroxide nanospheres. Angewandte Chemie, International Edition, 2005. 44(14): p. 2135. [2] Xie et al., Capturing the Labile Fullerene[50] as C50Cl10. Science, (2004) 305(5671): p. 699.

  7. Resonance energy transfer in self-organized organic/inorganic dendrite structures

    Science.gov (United States)

    Melnikau, D.; Savateeva, D.; Lesnyak, V.; Gaponik, N.; Fernández, Y. Núnez; Vasilevskiy, M. I.; Costa, M. F.; Mochalov, K. E.; Oleinikov, V.; Rakovich, Y. P.

    2013-09-01

    Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7-1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i) J-aggregates are coupled to QDs by Förster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.

  8. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  9. Study on the local atomic structure of germanium in organic germanium compounds by EXAFS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic germanium compounds have been extensively applied in medicine as tonics,In this paper,the local structures of two organic germanium compounds,carboxyethylgermanium sesquioxide and polymeric germanium glutamate,were determined by EXAFS.The structure parameters including coordination numbers and bond lengths were reported,and possible structure patterns were discussed.

  10. Organic modification of layered silicates. Structural and thermal characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Prado, L.A.S. de A.; Schulte, K. [Polymer Composites, Denickstrasse 15, TU Hamburg-Harburg, D-21073 Hamburg (Germany); Karthikeyan, C.S.; Nunes, S.P. [Institute of Chemistry, GKSS Research Centre, Max-Planck Strasse 1, D-21502 Geesthacht (Germany); De Torriani, Iris L. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Cidade Universitaria Zeferino Vaz, CEP 13083-970, Campinas-SP (Brazil)

    2005-05-01

    Organic modification of natural and synthetic layered silicates namely montmorillonite and laponite is reported in this work. The modified silicates are being subsequently used in the preparation of nano-composite membranes based on ionomers for fuel cells application. Laponite, an entirely synthetic silicate, was modified using organosiloxanes containing imidazole groups. Two different strategies were adopted for modification: (a) swelling of the silicate in 2-butanone followed by functionalization using the siloxane at room temperature, (b) direct reaction between laponite and the organosiloxane in xylene at 120{sup o}C. Montmorillonite, a natural silicate, was supplied in the alkyl-ammonium form containing -OH groups. The modification of this silicate was conducted following the procedure (b). The structures of both plain and modified silicates were investigated by XRD showing that the interlayer distance (around 17A) was not affected during the functionalization of laponite. However, a noticeable increase in the interlayer distance from 18.0A to 24.5A was observed for the modified montmorillonite. This clearly shows the presence of polysiloxane chains in between the silicate layers. Further characterization showed that the modification of these silicates was in the range between 16% and 23% (molar percentage). TGA was done between 25 and 300{sup o}C in order to study the thermal degradation pattern of the silicates. The amount of adsorbed water could be determined from the results. The functionalization reduced the adsorption of water from 13.5% to 6.8% for laponite and from 8.5% to 4% for montmorillonite.

  11. Automatic Structure Determination of Organic Molecules: Principle and Implementation of the LSD Program

    Institute of Scientific and Technical Information of China (English)

    NUZILLARD,Jean-Marc

    2003-01-01

    The LSD (Logic for Structure Determination) program generates organic molecular structures from 1D and 2D NMR data without resorting to chemical shift databases. Its use in the resolution of natural product structure determination problems has been already reported in the literature. This paper describes how data and structures are internally represented and processed by LSD to build solution structures.

  12. Organic solid solution composed of two structurally similar porphyrins for organic solar cells.

    Science.gov (United States)

    Zhen, Yonggang; Tanaka, Hideyuki; Harano, Koji; Okada, Satoshi; Matsuo, Yutaka; Nakamura, Eiichi

    2015-02-18

    A solid solution of a 75:25 mixture of tetrabenzoporphyrin (BP) and dichloroacenaphtho[q]tribenzo[b,g,l]porphyrin (CABP) forms when they are generated in a matrix of (dimethyl(o-anisyl)silylmethyl)(dimethylphenylsilylmethyl)[60]fullerene. This solid solution provides structural and optoelectronic properties entirely different from those of either pristine compounds or a mixture at other blending ratios. The use of this BP:CABP solid solution for organic solar cell (OSC) devices resulted in a power conversion efficiency (PCE) value higher by 16 and 300% than the PCE values obtained for the devices using the single donor BP and CABP, respectively, in a planar heterojunction architecture. This increase originates largely from the increase in short circuit current density, and hence by enhanced charge carrier separation at the donor/acceptor interface, which was probably caused by suitable energy level for the solid solution state, where electronic coupling between the two porphyrins occurred. The results suggest that physical and chemical modulation in solid solution is beneficial as an operationally simple method to enhance OSC performance.

  13. Fabrication and characterization of materials and structures for hybrid organic-inorganic photonics

    Science.gov (United States)

    Haško, Daniel; Chovan, Jozef; Uherek, František

    2017-03-01

    Hybrid organic-inorganic integrated photonics integrate the organic material, as a part of active layer, with inorganic structure, and it is the organic component that extends the functionalities as compared to inorganic photonics. This paper presents the results of fabrication and characterization of inorganic and organic layers, as well as of hybrid organic-inorganic structures. Inorganic oxide and nitride materials and structures were grown using plasma enhanced chemical vapor deposition. As a substrate for tested organic layers and for preparation of multilayer structures, commercially available SiO2 created by thermal oxidation on Si was used. The hybrid organic-inorganic structures were prepared by spin coating of organic materials on SiO2/Si inorganic structures. As the basic photonics devices, the testing strip inorganic and organic waveguides were fabricated using reactive ion etching. The shape of fabricated testing waveguides was trapezoidal and etched structures were able to guide the radiation. The presented technology enabled to prepare hybrid organic-inorganic structures of comparable dimensions and shape. The fabricated waveguides dimensions and shape will be used for optimisation and design of new lithographic mask to prepare photonic components with required characteristics.

  14. Perceptual Organization of Visual Structure Requires a Flexible Learning Mechanism

    Science.gov (United States)

    Aslin, Richard N.

    2011-01-01

    Bhatt and Quinn (2011) provide a compelling and comprehensive review of empirical evidence that supports the operation of principles of perceptual organization in young infants. They also have provided a comprehensive list of experiences that could serve to trigger the learning of at least some of these principles of perceptual organization, and…

  15. THE EXTENT OF CLONAL STRUCTURE IN DIFFERENT LYMPHOID ORGANS

    NARCIS (Netherlands)

    HERMANS, MHA; WUBBENA, A; KROESE, FGM; HUNT, SV; COWAN, R; OPSTELTEN, D

    1992-01-01

    To gain insight into the clonal organization of lymphoid organs, we studied the distribution in situ of donor-derived cells in near-physiological chimeras. We introduced RT7b fetal liver cells into nonirradiated congenic RT7a neonatal rats. The chimerism 6-20 wk after injection ranged from 0.3 to 20

  16. Giddens' "structuration," Luhmann's "self-organization," and the operationalization of the dynamics of meaning

    CERN Document Server

    Leydesdorff, Loet

    2009-01-01

    Luhmann's social systems theory and Giddens' structuration theory of action share an emphasis on reflexivity, but focus on meaning along a divide between inter-human communication and intentful action as two different systems of reference. Recombining these two theories, simulations of interaction, organization, and self-organization of intentional communication can be distinguished by using algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific ar...

  17. Making a Self-feeding Structure by Assembly of Digital Organs

    Science.gov (United States)

    Cussat-Blanc, Sylvain; Luga, Hervé; Duthen, Yves

    In Nature, the intrinsic cooperation between organism's parts is capital. Most living systems are composed of organs, functional units specialized for specific actions. In our last research, we developed an evolutionary model able to generate artificial organs. This paper deals with the assembly of organs. We show, through experimentation, the development of an artificial organism composed of four digital organs able to produce a self-feeding organism. This kind of structure has applications in the mophogenetic-engineering of future nano and bio robots.

  18. Psychodiagnosis of personality structure. II: Borderline personality organization.

    Science.gov (United States)

    Acklin, M W

    1993-10-01

    The borderline conditions have been the focus of considerable debate and controversy for over 30 years. This article, second in a series of three articles focusing on Kernberg's (1975, 1984) psychostructural diagnosis of personality organization, examines Rorschach contributions to the description and diagnosis of borderline personality organization. Rorschach approaches integrating nomothetic and idiographic data are applied to borderline personality functioning and appraised in light of the Rorschach's contribution to the clarification of the controversial and poorly delineated borderline diagnosis.

  19. Organic Farm Structure by Category of Agricultural Use

    Directory of Open Access Journals (Sweden)

    Manuela Dora Orboi

    2015-10-01

    Full Text Available Organic production systems are based on specific and precise standards of production, pursuing the achievement of optimal agro-systems, easy to sustain in terms of social, environmental and economic. Organic production systems plays a dual social role, because, on the one hand provides for a specific market that is responding to consumer demand for organic products, and on the other hand delivers public goods, contributing to environmental protection, animal welfare and rural development. The main goal of organic agriculture is to optimize the health and productivity of interdependent communities of soil, plants, animals and humans, providing new guidance of agricultural diversification in a general context of protecting the environment and promoting the development of sustainable agriculture. In 2013, the continent with the largest organic cultivated surface was Australia / Oceania, over 17.3 million, up to 5 million hectares compared to 2011, followed by Europe with 11.4 mil. Ha, Latin America - 6.6 million ha, Asia - 3.4 million ha North America - 3.0 million ha and Africa - 1.2 million ha of the 43.1 million total hectares grown in organic management system, almost two thirds are permanent pastures (27 million hectares, followed by agricultural land area totaling 10.9 million ha (arable land - 7.7 million ha permanent crops - 3.2 million ha.

  20. Research on Structure Innovation of Agricultural Organization in China’s Southwestern Mountainous Regions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Taking agricultural organization in China’s southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China’s southwestern mountainous regions,we use related theoretical knowledge on economics and organization science,we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China’s southwestern mountainous regions over the past 30 years.Finally we draw several general conclusions regarding structure innovation of agricultural organization in China’s southwestern mountainous regions as follows:first,the structure innovation of agricultural organization,a gradual process,proceeds ceaselessly along with ongoing progress and development of agriculture,and in this process,farmers always play a fundamental role;second,the structure innovation of agricultural organization is affected by many factors,and government institutional arrangement and change in market conditions is undoubtedly the most critical factor;third,the probable evolving direction of structure innovation of agricultural organization includes internal differentiation of the same form of agricultural organization,association of different forms of agricultural organization,and emergence of other forms of agricultural organization.

  1. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-01-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and…

  2. Interracial Friendship and Structural Diversity: Trends for Greek, Religious, and Ethnic Student Organizations

    Science.gov (United States)

    Park, Julie J.; Kim, Young K.

    2013-01-01

    This article examines how peer interactions in college organizations (Greek, ethnic, and religious) affect interracial friendships, including whether peer interaction in student organizations mediates the relationship between structural diversity and interracial friendship. Involvement in ethnic student organizations was non-significant;…

  3. Lewis acidic metal catalysed organic transformations by designed multi-component structures and assemblies

    Indian Academy of Sciences (India)

    Afsar Ali; Amit P Singh; Rajeev Gupta

    2010-05-01

    This paper presents the recent developments in designing multi-component structures including metal-organic frameworks containing Lewis acidic metal ions. The emphasis has been given to understand the design elements adopted to synthesize such structures bearing Lewis acidic metal ion. Further, few important Lewis acidic metal catalysed organic transformation reactions have been discussed demonstrating the importance of such materials for practical purposes.

  4. Design of control adaptability system model for TV media organization structure

    Institute of Scientific and Technical Information of China (English)

    WANG Dong-dong; WANG Ya-lin; MA Tao

    2008-01-01

    To resolve the control adaptability problem of TV media in complex competitive environment, a con-trol system model of TV media organization structure was designed. Based on the designed system model for TV media organization structure, the relations among the main factors of the system constitution, missions, organi-zing decision entity, and carrying bodies were analyzed. By means of applying multi-objective decision method and complex control system theory, and combining the integration model of TV media organization structure, the basic model was concluded and the corresponding parameters were designed. The current organization process of TV media is analyzed by this model, which comes to the adaptability appearance with different parameters. The results indicate that the model can estimate current TV media organization structure for the chain appearance of communications and the correlation between platforms and policy-making agencies.

  5. Structural characteristics and development of ampullary organs in Acipenser naccarii.

    Science.gov (United States)

    Camacho, Susana; Ostos, Maria Del Valle; Llorente, José Ignacio; Sanz, Ana; García, Manuel; Domezain, Alberto; Carmona, Ramón

    2007-09-01

    Ampullary organs of Acipenser naccarii sturgeons were examined by optical and electronic microscopy (transmission electron microscopy and scanning electron microscopy) from hatching until 1 month later when the juvenile phase is completely established. It was observed that, when A. naccarii begins to feed actively, the ultrastructural characteristics of ampullary organs already correspond to those of adult animals. These organs may, therefore, be functional and, together with taste buds, facilitate food search after exhaustion of yolk sac food reserves. Mature ampullary organs of A. naccarii are formed by an ampulla that communicates with the exterior by means of a short channel. These ampullae correspond to the sensory portion of these receptors and are formed by two cell types: receptor cells and support cells. Receptor cells present a kinocilium on their free surface and establish ribbon synapses with axon nerve endings that arise from the underlying conjunctive tissue. Support cells enclose receptor cells, bear stereocilia and occasional cilia, and are of a secretory nature. The mucus associated with ampullary organs mainly comprises neutral mucopolysaccharides, whereas mucopolysaccharides are usually acid in other fish groups.

  6. Self-organization of muscle cell structure and function.

    Directory of Open Access Journals (Sweden)

    Anna Grosberg

    2011-02-01

    Full Text Available The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  7. Self-organization of muscle cell structure and function.

    Science.gov (United States)

    Grosberg, Anna; Kuo, Po-Ling; Guo, Chin-Lin; Geisse, Nicholas A; Bray, Mark-Anthony; Adams, William J; Sheehy, Sean P; Parker, Kevin Kit

    2011-02-01

    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  8. Studies on the Structure Evolvement of Organic Agricultural Industry in Taiwan and its Influential Factors

    Institute of Scientific and Technical Information of China (English)

    Xin; XU; Zheng; ZHANG; Li; KONG

    2014-01-01

    In order to study the development of organic agriculture in Taiwan in recent years,and based on relevant agriculture,economic and social statistics,the general scale of organic agriculture and industrial structure were treated with statistic analysis. Results suggest that the general scale of organic agriculture in Taiwan grew rapidly from 2004 to 2011. The certified organic farmers grew by 140. 59%,and the area with organic plantation grew by 302. 40%. The industrial structure has changed significantly as vegetables have become the No. 1 organic crop instead of rice. Besides of the four major crops,organic plantation has played an increasingly important role. Essential factors influencing the great-leap-forward development include the general trend of agricultural industrial structure adjustment,proliferation of management system and strategic opportunities brought by economic cycles.

  9. IMPLEMENTATION OF GREEN IT IN ORGANIZATIONS: A STRUCTURATIONAL VIEW

    Directory of Open Access Journals (Sweden)

    Décio Bittencourt Dolci

    2015-08-01

    Full Text Available Environmental sustainability has become increasingly important to businesses as a response to the rapid depletion of natural resources. Information Technology (IT in particular represents a meaningful part of the environmental issues that society has been facing. Therefore, Green IT emerges as a way of combining available resources and sustainable and economic policies, thus, generating benefits for both the environment and businesses. The purpose of this paper, hence, is to explain the dynamics of Green IT implementation in organizations in light of the structurationist view of technology. We conducted a case study research based on the cases of three Brazilian companies interested in this movement. Results provide a better understanding of the relationship among technology, individuals, and organization institutional properties, thus enhancing the role played by IT teams in institutionalizing the environmental dimension of sustainability in organizations.

  10. INMARSAT - The International Maritime Satellite Organization: Origins and structure

    Science.gov (United States)

    Doyle, S. E.

    1977-01-01

    The third session of the International Conference on the Establishment of an International Maritime Satellite System established the International Maritime Satellite Organization (INMARSAT) in 1976. Its main functions are to improve maritime communications via satellite, thereby facilitating more efficient emergency communications, ship management, and maritime public correspondence services. INMARSAT's aims are similar to those of the Intergovernmental Maritime Consultative Organization (IMCO), the main United Nations organization dealing with maritime affairs. The specific functions of INMARSAT have been established by an Intersessional Working Group (IWG) which met three times between general conference meetings. Initial investment shares for the creation of INMARSAT were shared by the United States (17%), the United Kingdom (12%), the U.S.S.R. (11%), Norway (9.50%), Japan (8.45%), Italy (4.37%), and France (3.50%).

  11. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  12. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  13. Structural organization of mammalian prions as probed by limited proteolysis

    Science.gov (United States)

    The GPI- transgenic mouse model was used to study the structure of GPI- prions. We obtained valuable information about the structure of prions by performing limited proteolysis of the GPI- prions and analyzing the results by mass spectrometry and Western blot. This information coupled with previous ...

  14. High-speed prediction of crystal structures for organic molecules

    Science.gov (United States)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  15. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    Science.gov (United States)

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  16. Organizing innovation within incumbent firms: structure enabling strategic autonomy

    NARCIS (Netherlands)

    Looy, van Bart; Visscher, Klaasjan

    2011-01-01

    In this paper we will discuss how large established firms can be effective in organizing innovation alongside their current business. We examine the trajectory of an incumbent firm in the telecommunication industry – Alcatel – which has been successful in exploring and exploiting the promises of bro

  17. Evaluating the impact of investments in information technology on structural inertia in health organizations.

    Science.gov (United States)

    Bewley, Lee W

    2010-01-01

    Structural inertia is the overall capacity of an organization to adapt within a market environment. This paper reviews the impact of healthcare investments in information management/information technology (IM/IT) on the strategic management concept of structural inertia. Research indicates that healthcare executives should consider the relative state of structural inertia for their firms and match them with potential IM/IT solutions. Additionally, organizations should favorably consider IM/IT solutions that are comparatively less complex.

  18. Expert system for elucidation of structures of organic compounds——Structural generator of ESESOC-II

    Institute of Scientific and Technical Information of China (English)

    胡昌玉; 许禄

    1995-01-01

    An expert system for the elucidation of the structures of organic compounds--ESESOC-IIhas been designed. It is composed of three parts: spectroscopic data analysis, structure generator, and evaluation of the candidate structures. The heart of ESESOC is the structure generator, as an integral part, which accepts the specific types of information, e.g. molecular formulae, substructure constraints, and produces an exhaustive and irredundant list of candidate structures. The scheme for the structural generation is given, in which the depth-first search strategy is used to fill the bonding adjacency matrix (BAM) and a new method is introduced to remove the duplicates.

  19. Molecular evolution, intracellular organization, and the quinary structure of proteins.

    OpenAIRE

    McConkey, E H

    1982-01-01

    High-resolution two-dimensional polyacrylamide gel electrophoresis shows that at least half of 370 denatured polypeptides from hamster cells and human cells are indistinguishable in terms of isoelectric points and molecular weights. Molecular evolution may have been more conservative for this set of proteins than sequence studies on soluble proteins have implied. This may be a consequence of complexities of intracellular organization and the numerous macromolecular interactions in which most ...

  20. Direct-writing organic three-dimensional nanofibrous structure

    Science.gov (United States)

    Wang, Han; Zheng, Gaofeng; Li, Wenwang; Wang, Xiang; Sun, Daoheng

    2011-02-01

    Direct-writing technology based on Near-Field Electrospinning (NFES) was used to fabricate an organic three-dimensional nanofibrous circle on the patterned silicon substrate. In NFES, straight jet without splitting and chaotic motion was utilized to direct-write orderly nanofiber. When the collector movement speed was lower than electrospinning rate, the relaxed nanofiber would be lead into the pendulum motion by the electrical field force and Coulomb repulsion force from the residual charges on the collector. When the relative air humidity is lower than 35%, individual nanofiber with larger elastic resistance would reveal a good self-assembly performance. Owing to the guidance of the electric field force at the edge of the micro-pattern, a nanofiber was deposited layer by layer to format a 3D nanofibrous circle on the top surface of the micro-pattern. The dimension scale of 3D nanofibrous circle was smaller than 30 µm. With the help of a microscope, a 3D nanofibrous circle can be deposited precisely on the strip micro-pattern with width of 4 µm. Furthermore, a 3D nanofibrous circle in different shapes can be obtained by using special micro-patterns. This organic three-dimensional nanofibrous circle has created a new aspect for the fabrication of organic micro/nanosystems.

  1. Cluster-induced desorption from metal organic surfaces: Structural effects

    Energy Technology Data Exchange (ETDEWEB)

    Delcorte, A., E-mail: arnaud.delcorte@uclouvain.be [Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Croix du Sud, B-1348 Louvain-la-Neuve (Belgium); Hoecke, E. van; Restrepo, O.A. [Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Croix du Sud, B-1348 Louvain-la-Neuve (Belgium)

    2013-05-15

    Molecular dynamics (MD) simulations are used to model the 10 keV bombardment of Au-nanoparticle (NP)-covered polymeric samples by Ga, C{sub 60} and Au{sub 400} projectiles, at normal incidence. While the presence of the Au-NPs tends to enhance the organic material emission upon Ga and Au{sub 400} bombardment, as a result of increased projectile stopping, it strongly reduces the organic emission upon C{sub 60} bombardment because of the projectile reflection. Our results show that these trends are valid for kDa polymers (which can be emitted intact) as well as for virtually infinite length chains (which require fragmentation), but that the polymer sputtered mass is consistently >3 times larger in the case of the kDa molecules for all impact points and projectiles. Using a series of samples, it is also shown that embedding the Au-NPs in the organic material leads to completely different results, with, upon C{sub 60} bombardment, the largest sputtered masses observed for impacts above the NPs. For Au{sub 400} bombardment, the burial of the Au-NPs leads to comparatively lower sputtered masses. These new results demonstrate the complexity of the sputtering of nanostructured hybrid materials by cluster projectiles and suggest various artifacts that should complicate the analysis and depth profiling of such materials.

  2. Determination of organic crystal structures by X ray powder diffraction

    CERN Document Server

    McBride, L

    2000-01-01

    The crystal structure of Ibuprofen has been solved from synchrotron X-ray powder diffraction data using a genetic algorithm (GA). The performance of the GA is improved by incorporating prior chemical information in the form of hard limits on the values that can be taken by the flexible torsion angles within the molecule. Powder X-ray diffraction data were collected for the anti-convulsant compounds remacemide, remacemide nitrate and remacemide acetate at 130 K on BM 16 at the X-ray European Synchrotron Radiation Facility (ESRF) at Grenoble. High quality crystal structures were obtained using data collected to a resolution of typically 1.5 A. The structure determinations were performed using a simulated annealing (SA) method and constrained Rietveld refinements for the structures converged to chi sup 2 values of 1.64, 1.84 and 1.76 for the free base, nitrate and acetate respectively. The previously unknown crystal structure of the drug famotidine Form B has been solved using X-ray powder diffraction data colle...

  3. Perceptual organization in computer vision - A review and a proposal for a classificatory structure

    Science.gov (United States)

    Sarkar, Sudeep; Boyer, Kim L.

    1993-01-01

    The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.

  4. Energy transfer in organic multilayer quantum well structure and its application to OLEDs

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wei; SONG Shu-fang; ZHAO Su-ling; XU Zheng

    2007-01-01

    We fabricate a series of samples and OLEDs with organic multilayer quantum well structure, which consist of alternate PBD and Alq3. Both PBD and Alq3 are electron-transporting materials, and PBD is used as potential barrier layer, while Alq3 is used as potential well layer and emitting layer. Compared with double-layer structure, the luminescent characteristics of organic samples and diodes with quantum well structure are investigated and the quantum well structure helps the energy transfer between well layer and barrier layer. The quantum well structure makes carriers disperse in the different well layers and then increases the number of excitons to enhance the efficiency of the recombination.

  5. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  6. Monitoring Scientific Developments from a Dynamic Perspective: Self-Organized Structuring To Map Neural Network Research.

    Science.gov (United States)

    Noyons, E. C. M.; van Raan, A. F. J.

    1998-01-01

    Using bibliometric mapping techniques, authors developed a methodology of self-organized structuring of scientific fields which was applied to neural network research. Explores the evolution of a data generated field structure by monitoring the interrelationships between subfields, the internal structure of subfields, and the dynamic features of…

  7. The relationship between family orientation, organization context, organization structure and firm performance

    NARCIS (Netherlands)

    Meijaard, J.; Uhlaner, L.M.

    2004-01-01

    This study focuses on the prediction of three firm performance indicators, sales growth, innovation performance and profitability, on a sample of small and medium-sized firms in the Netherlands. Predictions from agency theory and the resource based view of organizations lead to alternate hypotheses

  8. Microbial community structure affects marine dissolved organic matter composition

    Directory of Open Access Journals (Sweden)

    Elizabeth B Kujawinski

    2016-04-01

    Full Text Available Marine microbes are critical players in the global carbon cycle, affecting both the reduction of inorganic carbon and the remineralization of reduced organic compounds back to carbon dioxide. Members of microbial consortia all depend on marine dissolved organic matter (DOM and in turn, affect the molecules present in this heterogeneous pool. Our understanding of DOM produced by marine microbes is biased towards single species laboratory cultures or simplified field incubations, which exclude large phototrophs and protozoan grazers. Here we explore the interdependence of DOM composition and bacterial diversity in two mixed microbial consortia from coastal seawater: a whole water community and a <1.0-μm community dominated by heterotrophic bacteria. Each consortium was incubated with isotopically-labeled glucose for 9 days. Using stable-isotope probing techniques and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry, we show that the presence of organisms larger than 1.0-μm is the dominant factor affecting bacterial diversity and low-molecular-weight (<1000 Da DOM composition over this experiment. In the <1.0-μm community, DOM composition was dominated by compounds with lipid and peptide character at all time points, confirmed by fragmentation spectra with peptide-containing neutral losses. In contrast, DOM composition in the whole water community was nearly identical to that in the initial coastal seawater. These differences in DOM composition persisted throughout the experiment despite shifts in bacterial diversity, underscoring an unappreciated role for larger microorganisms in constraining DOM composition in the marine environment.

  9. Structural Characterization and Toxicity Prediction of Some Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    LIAO Li-Mia; LI Jian-Feng; WANG Bi

    2011-01-01

    A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.

  10. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  11. Flexible organic solar cells including efficiency enhancing grating structures

    Science.gov (United States)

    Melina de Oliveira Hansen, Roana; Liu, Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-04-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.

  12. Managing University IT Risks in Structured and Organized Environment

    Directory of Open Access Journals (Sweden)

    Sayef Sami Hassen

    2013-07-01

    Full Text Available In this digital era, most universities rely heavily on Information Technology (IT to process their information for better support of their visions and missions. However, with this reliance, IT is facing different types of risks under expansions and complexities as experienced by most universities these days. IT risk is not bounded to only information systems and security, but unbounded to encompass the risk to financial, strategic, technological, as well as reputational. All these types of risk are prevalent in universities and hence the need to implement an effective risk management process including but not limited to IT. The best opportunities for managing IT risks can be achieved through managing it within an integrated approach and not to be carried out separately from managing risks of the organization. Such approach ensures that IT is achieving the goals and objectives of the organization by providing a reasonable basis for strategic planning and improves decision making for top management based on risk management value. This study identifies the current implementation of risk management at one Malaysian university to face all risks. The main findings of this study are: (1 The majority of staff supports the fundamental objectives of risk management; (2 The necessity to improve and enhance some procedures of risk management at the university. This study provide recommendations and improvements in some procedures of risk management to increase the awareness of risk management among all the university staff.

  13. The Governance Structure and Performance of Agricultural Cooperative Economic Organizations in the Three Gorges Reservoir Area

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On the basis of questionnaire survey results of 100 agricultural cooperative economic organizations in Three Gorges Reservoir Area,this article uses the structural equation modeling as analysis tool to conduct empirical analysis of the governance structure and performance of agricultural cooperative economic organizations. The results show that the ownership structure has the most critical impact on the performance of cooperative organizations,and the impact coefficient is as high as 0.92; the importance of oversight mechanism is basically equivalent to that of the council structure for cooperative organizations,and the impact coefficient is 0.87 and 0.86,respectively,second only to the ownership structure; the size of members’ quit capacity also has a very important impact on the performance of organizations,with impact coefficient of 0.74. Thus,the problems influencing the performance of organizations,in the current governance structure of agricultural cooperative economic organizations in Three Gorges Reservoir Area,are pointed out. Finally,corresponding countermeasures are put forward.

  14. Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2010-11-16

    We derive the radial distribution function and the static structure factor for the particles in model nanoparticleorganic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R g is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood. © 2010 American Chemical Society.

  15. A novel organic-inorganic hybrid tandem solar cell with inverted structure

    Science.gov (United States)

    Bahrami, A.; Faez, R.

    2017-04-01

    A novel organic-inorganic hybrid tandem solar cell with inverted structure is proposed. This efficient double-junction hybrid tandem solar cell consists of a single-junction hydrogenated amorphous silicon (a-Si:H) subcell with n-i-p structure as front cell and a P3HT:PCBM organic subcell with inverted structure as back cell. In order to optimize the hybrid tandem cell, we have performed a simulation based on transfer matrix method. We have compared the characteristics of this novel structure with a conventional structure. As a result, a power conversion efficiency (PCE) of 6.1 and 24% improvement compared to the conventional hybrid tandem cell was achieved. We also discuss the high potential of this novel structure for realizing high-stability organic-inorganic hybrid photovoltaic devices.

  16. The impact of powder diffraction on the structural characterization of organic crystalline materials.

    Science.gov (United States)

    Tremayne, Maryjane

    2004-12-15

    The bulk properties of organic crystalline materials depend on their molecular and crystal structures but, as many of these materials cannot be prepared in a suitable form for conventional single-crystal diffraction studies, structural characterization and rationalization of these properties must be obtained from powder diffraction data. The recent development of direct-space structure solution methods has enabled the study of a wide range of organic materials using powder diffraction data, many of structural complexity only made tractable by these advances in methodology. These direct-space methods are based on a number of global optimization techniques including Monte Carlo, simulated annealing, genetic algorithm and differential evolution approaches. In this article, the implementation and relative efficiency and reliability of these methods are discussed, and their impact on the structural study of organic materials is illustrated by examples of polymorphic systems, pharmaceutical, pigment and polypeptide structures and compounds used in the study of intermolecular networks.

  17. Self-organization of punishment in structured populations

    CERN Document Server

    Perc, Matjaz

    2012-01-01

    Cooperation is crucial for the remarkable evolutionary success of the human species. Not surprisingly, some individuals are willing to bare additional costs in order to punish defectors. Current models assume that, once set, the fine and cost of punishment do not change over time. Here we show that relaxing this assumption by allowing players to adapt their sanctioning efforts in dependence on the success of cooperation can explain both, the spontaneous emergence of punishment, as well as its ability to deter defectors and those unwilling to punish them with globally negligible investments. By means of phase diagrams and the analysis of emerging spatial patterns, we demonstrate that adaptive punishment promotes public cooperation either through the invigoration of spatial reciprocity, the prevention of the emergence of cyclic dominance, or through the provision of competitive advantages to those that sanction antisocial behavior. Presented results indicate that the process of self-organization significantly e...

  18. Organization structure and the performance of hospital emergency services.

    Science.gov (United States)

    Georgopoulos, B S

    1985-07-01

    A comparative study of 30 hospital emergency departments (EDs) and nearly 1,500 individuals associated with them was conducted. Data were obtained from institutional records, physicians, patients, and other sources. The object was to investigate the relationship between the organization and performance of these health service systems. The study assessed the quality of medical care, the quality of nursing care, and the economic efficiency of hospital EDs. The results show substantial interinstitutional differences in these criteria. They also show a significant relationship between medical and nursing care, but not between the quality of care and economic efficiency. Differences in ED performance are related to medical staffing patterns, medical teaching affiliation, personnel training, scope of emergency services, number of patient visits processed, and hospital size and complexity. Not all of these variables, however, correlate positively with all three criteria of performance, nor are they equally important to each.

  19. Nanoscale Structure Of Organic Matter Explain Its Recalcitrance To Degradation

    Science.gov (United States)

    Spagnol, M.; Salati, S.; Papa, G.; Tambone, F.; Adani, F.

    2009-04-01

    Recalcitrance can be defined as the natural resistance of organic matter (OM) to microbial and enzymatic deconstruction (Himmel et al., 2007). The nature of OM recalcitrance remained not completely understood and more studies need above all to elucidate the role of the chemical topography of the OM at nanometer scale. Hydrolytic enzymes responsible of OM degradation have a molecular weight of 20-25 kD, corresponding to a size of about 4 nm, hardly penetrate into micropores (i.e. the pore having a diameter Foust, T.D. Sci. 2007, 315, 804-807. Chesson, A. In Driven by nature Plant Litter Quality and Decomposition. Cadisch, G.; Giller, K.E. Eds.; CAB International: Wallinford, UK 1997, pp 47-66. Zimmerman, A.R.; Goyne, K.W.; Chorover, J, Komarneni, S.; Brantley, S.L. Org Geochem. 2004, 35, 355-375.

  20. A comparison of the capital structures of nonprofit and proprietary health care organizations.

    Science.gov (United States)

    Trussel, John

    2012-01-01

    The relative amount of debt used by an organization is an important determination of the organization's likelihood of financial problems and its cost of capital. This study addresses whether or not there are any differences between proprietary and nonprofit health care organizations in terms of capital structure. Controlling for profitability, risk, growth, and size, analysis of covariance is used to determine whether or not proprietary and nonprofit health care organizations use the same amount of leverage in their capital structures. The results indicate that there is no difference in the amount of leverage between the two institutional types. Although nonprofit and proprietary organizations have unique financing mechanisms, these differences do not impact the relative amount of debt and equity in their capital structures.

  1. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    Science.gov (United States)

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  2. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  3. Cleave to Leave : Structural Insights into the Dynamic Organization of the Nuclear Pore Complex

    NARCIS (Netherlands)

    Dokudovskaya, Svetlana; Veenhoff, Liesbeth M.; Rout, Michael P.

    2002-01-01

    A detailed understanding of the fine structure of the nuclear pore complex has remained elusive. Now, studies on a small protein domain have shed light on the dynamic organization of this massive assembly.

  4. RNA structures, genomic organization and selection of recombinant HIV.

    Science.gov (United States)

    Simon-Loriere, Etienne; Rossolillo, Paola; Negroni, Matteo

    2011-01-01

    Recombination is an evolutionary mechanism intrinsic to the evolution of many RNA viruses. In retroviruses and notably in the case of HIV, recombination is so frequent that it can be considered as part of its mode of replication. This process not only plays a central role in shaping HIV genetic diversity worldwide, but has also been involved in immune escape and development of resistance to antiviral treatments. Recombination does not create new mutations in the existing genetic repertoire of the virus, but creates new combinations of pre-existing polymorphisms. The simultaneous insertion of multiple substitutions in a single replication cycle leaves little room for the progressive coevolution of regions of proteins, RNA or, more in general, genomes, to accommodate these drastic sequence changes. Therefore, recombination, while allowing the virus to rapidly explore larger sequence space than the slow accumulation of point mutations, also runs the risk of generating non functional viruses. Recombination is the consequence of a switch in the template used during reverse transcription and is promoted by the presence of structured regions in the genomic RNA template. In this review, we discuss new observations suggesting that the distribution of RNA structures along the HIV genome may enhance recombination rates in regions where the resultant progeny is less likely to be impaired, and could therefore maximize the evolutionary value of this source of genetic diversity.

  5. Spatial and dynamic organization of molecular structures in the cell nucleus

    NARCIS (Netherlands)

    Brouwer, Anne-Kee

    2010-01-01

    In this thesis we attempt to provide a better understanding of the principles that underlie the spatial dynamic organization of the cell nucleus. Chapter 1 reviews the current status of knowledge about the structural and functional organization of the cell nucleus. In chapter 2, the development of a

  6. Structuring the Administrative Organization of Local School Systems. Educational Research Service Circular No. 2.

    Science.gov (United States)

    American Association of School Administrators, Washington, DC.

    This paper is intended to assist school administrators in improving existing school organizations. It discusses the nature of organizations, provides indicators of reorganization timing, and discusses the task of reorganization. A matrix chart, used to analyze and compare different organizational structures, is provided with explanations.…

  7. [Structural models of simple sense organs by the example of first metazoans].

    Science.gov (United States)

    Aronova, M Z

    2009-01-01

    Basic variants of the evolutional program for formation of simple sensor system--structural models of gravitation receptor, organ of vision, chemoreceptor organ as well as of the nervous system at early stages of the metazoan phylogenesis--are considered from results of our own morphofunctional studies and literature data.

  8. The control structure of team-based organizations : A diagnostic model for empowerment

    NARCIS (Netherlands)

    Kuipers, Benjamin; de Witte, M.C.

    2005-01-01

    This article describes a diagnostic model for empowerment in team-based organizations that portrays four dimensions of the organization's control structure: the level of routine, the nature of expertise, the level of dependence and the line of command. The combined positions of the set of job regula

  9. Using Structure-Based Organic Chemistry Online Tutorials with Automated Correction for Student Practice and Review

    Science.gov (United States)

    O'Sullivan, Timothy P.; Hargaden, Gra´inne C.

    2014-01-01

    This article describes the development and implementation of an open-access organic chemistry question bank for online tutorials and assessments at University College Cork and Dublin Institute of Technology. SOCOT (structure-based organic chemistry online tutorials) may be used to supplement traditional small-group tutorials, thereby allowing…

  10. Self-organization of punishment in structured populations

    Science.gov (United States)

    Perc, Matjaž; Szolnoki, Attila

    2012-04-01

    Cooperation is crucial for the remarkable evolutionary success of the human species. Not surprisingly, some individuals are willing to bear additional costs in order to punish defectors. Current models assume that, once set, the fine and cost of punishment do not change over time. Here we show that relaxing this assumption by allowing players to adapt their sanctioning efforts in dependence on the success of cooperation can explain both the spontaneous emergence of punishment and its ability to deter defectors and those unwilling to punish them with globally negligible investments. By means of phase diagrams and the analysis of emerging spatial patterns, we demonstrate that adaptive punishment promotes public cooperation through the invigoration of spatial reciprocity, the prevention of the emergence of cyclic dominance, or the provision of competitive advantages to those that sanction antisocial behavior. The results presented indicate that the process of self-organization significantly elevates the effectiveness of punishment, and they reveal new mechanisms by means of which this fascinating and widespread social behavior could have evolved.

  11. Direct measurement of riverine particulate organic carbon age structure

    Science.gov (United States)

    Rosenheim, Brad E.; Galy, Valier

    2012-10-01

    Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.

  12. Cloud motions on Venus - Global structure and organization

    Science.gov (United States)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  13. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  14. Crystal Structure of Ethanolamine 5-Nitrosalicylic Acid Organic Adduct

    Institute of Scientific and Technical Information of China (English)

    金轶; 车云霞; 魏荣敏; 郑吉民

    2004-01-01

    The title adduct (C18H24N4O12, Mr = 488.41) crystallizes in monoclinic, space group P21/c with a = 4.0514(19), b = 25.193(11), c = 10.751(5)(A), β = 95.070(8)o, V = 1093.0(9)(A)3, Z = 4, Dc = 1.484 g/cm3, F(000) = 512, μ(MoKα) = 1.26 cm-1, T = 293 K, the final R = 0.0593 and wR = 0.0862 for 956 observed reflections with I > 2(I). The compound is a 1:1 adduct of ethanolamine and 5-nitrosalicylic acid. The nitrogen atom of ethanolamine is protonated. In this crystal there exist a number of hydrogen bonds which link the ethanolamine and 5-nitrosalicylic acid molecules to form a three-dimensional infinite network structure.

  15. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Science.gov (United States)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C60 fullerene. This was confirmed from fluorescence energy transfer studies. UV Vis studies further supported this observation that it is possible to selectively remove the C60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  16. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, C. N. [M.S. University of Baroda, Applied Chemistry Department, Faculty of Technology and Engineering (India)

    2005-01-15

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C{sub 60} fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C{sub 60} fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C{sub 60} fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C{sub 60} fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  17. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    Science.gov (United States)

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  18. Molar crown inner structural organization in Javanese Homo erectus.

    Science.gov (United States)

    Zanolli, Clément

    2015-01-01

    This contribution investigates the inner organizational pattern (tooth tissue proportions and enamel-dentine junction morphology) of seven Homo erectus permanent molar crowns from the late Lower-early Middle Pleistocene Kabuh Formation of the Sangiran Dome (Central Java, Indonesia). The previous study of their external characteristics confirmed the degree of time-related structural reduction occurred in Javanese H. erectus, and also revealed a combination of nonmetric features which are rare in the Lower and early Middle Pleistocene dental record, but more frequently found in recent humans. In accordance with their outer occlusal morphology, the specimens exhibit a set of derived internal features, such as thick to hyperthick enamel, an incomplete expression of the crest patterns at the enamel-dentine junction (EDJ) level, a sharp EDJ topography. As a whole, these features differ from those expressed in some penecontemporaneous specimens/samples representing African H. erectus/ergaster and H. heidelbergensis, as well as in Neanderthals, but occur in recent human populations. Further research in virtual dental paleoanthropology to be developed at macroregional scale would clarify the polarity and intensity of the intermittent exchanges between continental and insular Southeast Asia around the Lower to Middle Pleistocene boundary, as well as should shed light on the still poorly understood longitudinal evolutionary dynamics across continental Asia.

  19. Amylopectin molecular structure reflected in macromolecular organization of granular starch.

    Science.gov (United States)

    Vermeylen, Rudi; Goderis, Bart; Reynaers, Harry; Delcour, Jan A

    2004-01-01

    For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.

  20. Temperature Triggered Structural Transitions in Surfactant organized Self Assemblies

    Science.gov (United States)

    Rose, J. Linet; Balamurugan, S.; Sajeevan, Ajin C.; Sreejith, Lisa

    2011-10-01

    Preparation & characterization of tunable fluids is an emerging area with potential application in many fields. Surfactants self assemble in aqueous solution to give a rich variety of phase structures, the size and shape of which can be tuned by additives like salts, alcohols, amines, aromatics etc or external stimuli such as light, temperature etc. The addition of long chain aliphatic alcohol has significant influence on the surfactant aggregation, as it promotes morphological growth of micelles. The cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB) with nonanol in presence of potassium bromide (KBr) shows thermo tunable viscosity behaviour and optical switching behaviour. The solution is visually observed to transform from a turbid and less viscous phase at low temperature to clear and considerably viscous phase at high temperature. Temperature induced changes in turbidity and viscosity are consistent with the transition from vesicle to worm like micelle. It is also worth emphasizing that the transition is thermo reversible, so that vesicles that are disrupted into micelles upon heating can be reformed upon cooling. The thermo tunable transition from turbid to transparent state and the concomitant changes in viscosity are promising for the use in smart windows, monitoring of tumor growth or in other stimuli based application.

  1. Structural proteomics of minimal organisms: conservation ofprotein fold usage and evolutionary implications

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou

    2006-03-15

    Background: Determining the complete repertoire of proteinstructures for all soluble, globular proteins in a single organism hasbeen one of the major goals of several structural genomics projects inrecent years. Results: We report that this goal has nearly been reachedfor several "minimal organisms"--parasites or symbionts with reducedgenomes--for which over 95 percent of the soluble, globular proteins maynow be assigned folds, overall 3-D backbone structures. We analyze thestructures of these proteins as they relate to cellular functions, andcompare conservation off old usage between functional categories. We alsocompare patterns in the conservation off olds among minimal organisms andthose observed between minimal organisms and other bacteria. Conclusion:We find that proteins performing essential cellular functions closelyrelated to transcription and translation exhibit a higher degree ofconservation in fold usage than proteins in other functional categories.Folds related to transcription and translation functional categories werealso over represented in minimal organisms compared to otherbacteria.

  2. Near-unity mass accommodation coefficient of organic molecules of varying structure.

    Science.gov (United States)

    Julin, Jan; Winkler, Paul M; Donahue, Neil M; Wagner, Paul E; Riipinen, Ilona

    2014-10-21

    Atmospheric aerosol particles have a significant effect on global climate, air quality, and consequently human health. Condensation of organic vapors is a key process in the growth of nanometer-sized particles to climate relevant sizes. This growth is very sensitive to the mass accommodation coefficient α, a quantity describing the vapor uptake ability of the particles, but knowledge on α of atmospheric organics is lacking. In this work, we have determined α for four organic molecules with diverse structural properties: adipic acid, succinic acid, naphthalene, and nonane. The coefficients are studied using molecular dynamics simulations, complemented with expansion chamber measurements. Our results are consistent with α = 1 (indicating nearly perfect accommodation), regardless of the molecular structural properties, the phase state of the bulk condensed phase, or surface curvature. The results highlight the need for experimental techniques capable of resolving the internal structure of nanoparticles to better constrain the accommodation of atmospheric organics.

  3. Methods of biomedical optical imaging: from subcellular structures to tissues and organs

    Science.gov (United States)

    Turchin, I. V.

    2016-05-01

    Optical bioimaging methods have a wide range of applications in the life sciences, most notably including the molecular resolution study of subcellular structures, small animal molecular imaging, and structural and functional clinical diagnostics of tissue layers and organs. We review fluorescent microscopy, fluorescent macroscopy, optical coherence tomography, optoacoustic tomography, and optical diffuse spectroscopy and tomography from the standpoint of physical fundamentals, applications, and progress.

  4. An investigation on a production company via the scope of Mintzberg’s adhocratic organization structure

    Directory of Open Access Journals (Sweden)

    Kerem Toker

    2013-01-01

    Full Text Available Today, the importance of innovation for enterprises, increase each passing day. As a result of globalization, enterprises are under intense competitive pressure. They have to make innovation for increasing to market share or for protecting to it at least. Non-innovative firms lose their customers and their existence is face to threat from other innovative actors in the market. Therefore firms have to design their organization structure that encourage to innovation. Mintzberg’s adhocratic organization structure was investigated in this article.  Thus, its aim of this study leads to resemblance and diversity between theory and practice via of the theoretical knowledge.  As a result of study; high degree of similarity between the application and Mintzberg’s theory, which is related to adhocratic organization structure, has been identified.Keywords: Innovation, Organizational Structure, Mintzberg, Adhocracy, Media Sector

  5. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    Science.gov (United States)

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  6. Investigation of Multilayer Organic Insulation Structure on Surface Flashover Properties and Mechanism in Vacuum

    Institute of Scientific and Technical Information of China (English)

    LI Shengtao; HUANG Qifeng

    2013-01-01

    In order to further investigate the surface flashover mechanism in vacuum,the surface flashover and electric field distribution of multilayer organic insulation structure are studied and developed based on the previous studies.The samples ofmultilayer organic insulation structure are prepared by inserting multilayer organic composite material with different relative permittivity between the electrode and the dielectric.Two multilayer organic insulation structures are prepared in this study.One is the cylindrical samples,the other is 45° samples.The impulse (1.2/50 μs) and DC flashover voltages in vacuum are tested,and the electric field distributions of two insulation structures are analyzed by ANSYS.It is found that these two insulation structure could effectively improve the surface flashover performance in vacuum.The results indicate that the highest impulse first flashover voltage of cylindrical samples reaches 65 kV and increases by 25% under impulse voltage.The highest first flashover voltage of/c samples reaches 81 kV and increases by 32% under impulse voltage.The results of electric field simulation demonstrate that different mechanisms exist between 45° insulation structure and cylindrical structure.

  7. The Impact of the Demand for Integration in the Large Multi-Business Unit Firm on the IT Organization Structure

    Science.gov (United States)

    Larson, Eric Christopher

    2012-01-01

    Large, multi-business unit firms are decentralizing their overall corporate structures. At the same time, the structures of their IT organizations are becoming more centralized. This is contrary to current wisdom that the IT organization structure will mimic the structure of the corporation, all else being equal. Because the general business…

  8. Studying the operation characteristics and structure of vertical channel copper-phthalocyanine organic semiconductor transistor

    Institute of Scientific and Technical Information of China (English)

    ZHU Min; SONG Ming-xin; GUI Tai-long; WANG Xuan; YIN Jing-hua; WANG Dong-xing; ZHAO Hong

    2005-01-01

    The creation of Au/CuPc/Al/CuPc/structure is a perpendicular type electricity found in the channel of organic static induction transistor. In the following we analyze transistor operation characteristics and machine structural relation. The results express that the transistor drives the voltage low and has no-saturation currentvoltage characteristics. Its operation characteristics are dependant on gate bias voltage and the construction of the aluminum electrode.The vertical channel of organic static induction transistor (OSIT) , with structure of Au/CuPc/Al/CuPc/Cu, has been determined. According to the test results, the relation of its operation characteristics and device structure was analyzed. The results show that this transistor has a low driving voltage and unsaturation Ⅰ-Ⅴ characteristics. Its operation characteristics are dependant on gate bias voltage and the structure of the aluminum electrode.

  9. Formation of partially ordered organic planar systems based on the in situ control of their structural organization

    Science.gov (United States)

    Dyakova, Yu. A.; Marchenkova, M. A.

    2016-09-01

    The possibilities of significantly improving the quality of planar systems based on photoactive porphyrin-fullerene dyads, layers based on cytochrome c and cardiolipin, and lysozyme crystals and films using a complex of in situ X-ray methods and simulation are described. The potential of X-ray phase-sensitive and surface-sensitive methods developed by M.V. Koval'chuk and researchers from his school in monitoring all stages of synthesis of partially ordered organic structure is demonstrated. This approach shows its efficiency for in situ studies: starting from the formation of complexes in solutions up to the growth of protein films and crystals.

  10. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses.

    Science.gov (United States)

    Cadeddu, Andrea; Wylie, Elizabeth K; Jurczak, Janusz; Wampler-Doty, Matthew; Grzybowski, Bartosz A

    2014-07-28

    Methods of computational linguistics are used to demonstrate that a natural language such as English and organic chemistry have the same structure in terms of the frequency of, respectively, text fragments and molecular fragments. This quantitative correspondence suggests that it is possible to extend the methods of computational corpus linguistics to the analysis of organic molecules. It is shown that within organic molecules bonds that have highest information content are the ones that 1) define repeat/symmetry subunits and 2) in asymmetric molecules, define the loci of potential retrosynthetic disconnections. Linguistics-based analysis appears well-suited to the analysis of complex structural and reactivity patterns within organic molecules.

  11. Family Structure as a Correlate of Organized Sport Participation among Youth.

    Directory of Open Access Journals (Sweden)

    Rachel McMillan

    Full Text Available Organized sport is one way that youth participate in physical activity. There are disparities in organized sport participation by family-related factors. The purpose of this study was to determine whether non-traditional family structure and physical custody arrangements are associated with organized sport participation in youth, and if so whether this relationship is mediated by socioeconomic status. Data were from the 2009-10 Health Behaviour in School-aged Children survey, a nationally representative cross-section of Canadian youth in grades 6-10 (N = 21,201. Information on family structure was derived from three survey items that asked participants the number of adults they lived with, their relationship to these adults, and if applicable, how often they visited another parent outside their home. Participants were asked whether or not they were currently involved in an organized sport. Logistic regression was used to compare the odds of organized sport participation according to family structure. Bootstrap-based mediation analysis was used to assess mediation by perceived family wealth. The results indicated that by comparison to traditional families, boys and girls from reconstituted families with irregular visitation of a second parent, reconstituted families with regular visitation of a second parent, single-parent families with irregular visitation of a second parent, and single-parent families with regular visitation of a second parent were less likely to participate in organized sport than those from traditional families, with odds ratios ranging from 0.48 (95% confidence interval: 0.38-0.61 to 0.78 (95% confidence interval: 0.56-1.08. The relationship between family structure and organized sport was significantly mediated by perceived family wealth, although the magnitude of the mediation was modest (ie, <20% change in effect estimate. In conclusion, youth living in both single-parent and reconstituted families experienced significant

  12. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    Science.gov (United States)

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport.

  13. An Investigation on a Production Company via the Scope of Mintzberg’s Adhocratic Organization Structure

    Directory of Open Access Journals (Sweden)

    Yasin Cakirel

    2016-01-01

    Full Text Available Today, the importance of innovation for enterprises, increase each passing day. As a result of globalization, enterprises are under intense competitive pressure. They have to make innovation for increasing to market share or for protecting to it at least. Noninnovative firms lose their customers and their existence is face to threat from other innovative actors in the market. Therefore firms have to design their organization structure that encourage to innovation. Mintzberg’s adhocratic organization structure was investigated in this article. Thus, its aim of this study leads to resemblance and diversity between theory and practice via of the theoretical knowledge. As a result of study; high degree of similarity between the application and Mintzberg’s theory, which is related to adhocratic organization structure, has been identified.

  14. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    Science.gov (United States)

    Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C.

    2016-03-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references.

  15. Metal-organic extended 2D structures: Fe-PTCDA on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Lucia; Caillard, Renaud; MartIn-Gago, Jose A; Mendez, Javier [Grupo ESISNA, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), c/ Sor Juana Ines de la Cruz 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Pelaez, Samuel; Serena, Pedro A, E-mail: jmendez@icmm.csic.es [Grupo de Teoria y Simulacion de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), c/ Sor Juana Ines de la Cruz 3, Campus de Cantoblanco, E-28049 Madrid (Spain)

    2010-07-30

    In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules.

  16. The role of the organization structure in the diffusion of innovations.

    Science.gov (United States)

    Sáenz-Royo, Carlos; Gracia-Lázaro, Carlos; Moreno, Yamir

    2015-01-01

    Diffusion and adoption of innovations is a topic of increasing interest in economics, market research, and sociology. In this paper we investigate, through an agent based model, the dynamics of adoption of innovative proposals in different kinds of structures. We show that community structure plays an important role on the innovation diffusion, so that proposals are more likely to be accepted in homogeneous organizations. In addition, we show that the learning process of innovative technologies enhances their diffusion, thus resulting in an important ingredient when heterogeneous networks are considered. We also show that social pressure blocks the adoption process whatever the structure of the organization. These results may help to understand how different factors influence the diffusion and acceptance of innovative proposals in different communities and organizations.

  17. The role of the organization structure in the diffusion of innovations.

    Directory of Open Access Journals (Sweden)

    Carlos Sáenz-Royo

    Full Text Available Diffusion and adoption of innovations is a topic of increasing interest in economics, market research, and sociology. In this paper we investigate, through an agent based model, the dynamics of adoption of innovative proposals in different kinds of structures. We show that community structure plays an important role on the innovation diffusion, so that proposals are more likely to be accepted in homogeneous organizations. In addition, we show that the learning process of innovative technologies enhances their diffusion, thus resulting in an important ingredient when heterogeneous networks are considered. We also show that social pressure blocks the adoption process whatever the structure of the organization. These results may help to understand how different factors influence the diffusion and acceptance of innovative proposals in different communities and organizations.

  18. Investigation of organic films by atomic force microscopy: Structural, nanotribological and electrical properties

    Science.gov (United States)

    Qi, Yabing

    2011-11-01

    Atomic force microscopy (AFM) has found its applications in a wide range of research fields. In this review, we show by examples that atomic force microscopy is a powerful technique to investigate structural, mechanical and electrical properties of organic films. We start with an introduction of AFM instrumentation highlighting AFM developments that are of direct relevance to organic films. Next, we review AFM studies on organic films according to their preparation methods: self-assembly, the Langmuir-Blodgett technique, solution preparation, and thermal evaporation. In the discussion on self-assembled monolayers, we focus on aspects such as structural evolution, load-induced molecular tilting, annealing, and incorporation of conjugated groups. For solution prepared organic films, we stress annealing-induced structural evolution as well as the effects of phase separation/segregation. We also briefly summarize the progress of AFM investigation on Langmuir-Blodgett films and thermally evaporated organic films. We conclude the review by providing some thoughts for future exploration. In particular, atomic force microscopy combined with ultra-flat coplanar nano-electrodes provides a promising platform to isolate single or a small number of molecular features (e.g. vacancies, defects, grain boundaries) in organic films as well as to identify the role of these features at the nanometer scale.

  19. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank

    Science.gov (United States)

    Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.

    2017-01-01

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425

  20. Organic content influences sediment microbial fuel cell performance and community structure.

    Science.gov (United States)

    Zhao, Qing; Li, Ruying; Ji, Min; Ren, Zhiyong Jason

    2016-11-01

    This study constructed sediment microbial fuel cells (SMFCs) with different organic loadings without the amendment of external substrates, and it investigated how such variation affects electricity generation and microbial community structure. Results found sediment characteristics significantly influenced SMFC performance and appropriate organic content is important to maintain stable power outputs. SMFCs with loss of ignition (LOI) of 5% showed the most reliable performance in this study, while high organic content (LOI 10-16%) led to higher but very unstable voltage output because of biogas accumulation and worm activities. SMFCs with low organic content (1-3%) showed low power output. Different bacterial communities were found in SMFCs shown various power generation performance even those with similar organic contents. Thermodesulfovibrionaceae was found closely related to the system startup and Desulfobulbaceae showed great abundance in SMFCs with high power production.

  1. The small-world organization of large-scale brain systems and relationships with subcortical structures.

    Science.gov (United States)

    Koziol, Leonard F; Barker, Lauren A; Joyce, Arthur W; Hrin, Skip

    2014-01-01

    Brain structure and function is characterized by large-scale brain systems. However, each system has its own "small-world" organization, with sub-regions, or "hubs," that have varying degrees of specialization for certain cognitive and behavioral processes. This article describes this small-world organization, and the concepts of functional specialization and functional integration are defined and explained through practical examples. We also describe the development of large-scale brain systems and this small-world organization as a sensitive, protracted process, vulnerable to a variety of influences that generate neurodevelopmental disorders.

  2. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium.

    Directory of Open Access Journals (Sweden)

    Katie Brenner

    Full Text Available Microbial consortia constitute a majority of the earth's biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it self-organizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles.

  3. Structure and function of an inorganic-organic separator for electrochemical cells: Preliminary study

    Science.gov (United States)

    Bozek, J. M.

    1974-01-01

    The structure of a new separator material for electrochemical cells has been investigated. Investigation into details of the separator structure showed it to be multilayered and to consist mainly of a quasi-impervious organic skin, a porous region of mixed organic and inorganic material, and an area of nonuniformly treated substrate. The essential feature of the coating (slurry) is believed to be interconnected pores which allow ionic conductivity. The interconnected pores are believed to be formed by the interaction of the plasticizer and inorganic fibers. The major failure mode of silver zinc cells using such a separator (zinc nodules shorting adjacent plates) was investigated.

  4. Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances

    Science.gov (United States)

    Cocoyer, C.; Rocha, L.; Sicot, L.; Geffroy, B.; de Bettignies, R.; Sentein, C.; Fiorini-Debuisschert, C.; Raimond, P.

    2006-03-01

    Submicrometric periodic patterning of an organic solar cell surface is investigated in order to optimize the photovoltaic conversion efficiency of the device. Patterning is achieved using a single-step all-optical technique based on photoinduced mass transport in azopolymer films. The polymer film with a structured surface is used as a substrate for an organic solar cell based on a copper phthalocyanine/C60 heterojunction. The effect of periodic patterning is investigated through the solar-cell optical-absorption properties and external quantum efficiency measurements. The possibility to increase the short circuit current density and the corresponding photovoltaic conversion efficiency is evidenced with one-dimensional periodic structures.

  5. Autonomy and structure can enhance motivation of volunteers in sport organizations.

    Science.gov (United States)

    Hsu, Wei Ting; Wu, Kou Hsien; Wang, Yi Ching; Hsiao, Chia Huei; Wu, Hui Chin

    2013-12-01

    The goal was better understanding of the motivational factors of volunteers in non-profit sport organizations. The roles of two factors provided by supervisors to their subordinates were examined: autonomy support, i.e., the encouragement of self-initiation and emphasis on choice rather than control, and structure, i.e., the introduction of order, definite procedures, and rules. 489 sport volunteers (289 men, 200 women; M age = 31.2 yr., SD = 7.4) were administered questionnaires assessing their perceived autonomy support, structure, and motivation. Regression analysis indicated that perceived autonomy support predicted motivation. Structure also mediated the effect of perceived autonomy support on motivation. Supervisors of sport organizations should provide adequate structure for their volunteers.

  6. Family Structure as a Correlate of Organized Sport Participation among Youth.

    Science.gov (United States)

    McMillan, Rachel; McIsaac, Michael; Janssen, Ian

    2016-01-01

    Organized sport is one way that youth participate in physical activity. There are disparities in organized sport participation by family-related factors. The purpose of this study was to determine whether non-traditional family structure and physical custody arrangements are associated with organized sport participation in youth, and if so whether this relationship is mediated by socioeconomic status. Data were from the 2009-10 Health Behaviour in School-aged Children survey, a nationally representative cross-section of Canadian youth in grades 6-10 (N = 21,201). Information on family structure was derived from three survey items that asked participants the number of adults they lived with, their relationship to these adults, and if applicable, how often they visited another parent outside their home. Participants were asked whether or not they were currently involved in an organized sport. Logistic regression was used to compare the odds of organized sport participation according to family structure. Bootstrap-based mediation analysis was used to assess mediation by perceived family wealth. The results indicated that by comparison to traditional families, boys and girls from reconstituted families with irregular visitation of a second parent, reconstituted families with regular visitation of a second parent, single-parent families with irregular visitation of a second parent, and single-parent families with regular visitation of a second parent were less likely to participate in organized sport than those from traditional families, with odds ratios ranging from 0.48 (95% confidence interval: 0.38-0.61) to 0.78 (95% confidence interval: 0.56-1.08). The relationship between family structure and organized sport was significantly mediated by perceived family wealth, although the magnitude of the mediation was modest (ie, sport participation that was partially mediated by perceived family wealth.

  7. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  8. Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes.

    Science.gov (United States)

    Yamasaki, Ryota; Takatsuji, Yoshiyuki; Lienemann, Michael; Asakawa, Hitoshi; Fukuma, Takeshi; Linder, Markus; Haruyama, Tetsuya

    2014-11-01

    HFBI (derived from Trichoderma sp.) is a unique structural protein, which forms a self-organized monolayer at both air/water interface and water/solid interfaces in accurate two-dimensional ordered structures. We have taken advantage of the unique functionality of HFBI as a molecular carrier for preparation of ordered molecular phase on solid substrate surfaces. The HFBI molecular carrier can easily form ordered structures; however, the dense molecular layers form an electrochemical barrier between the electrode and solution phase. In this study, the electrochemical properties of HFBI self-organized membrane-covered electrodes were investigated. Wild-type HFBI has balanced positive and negative charges on its surface. Highly oriented pyrolytic graphite (HOPG) electrodes coated with HFBI molecules were investigated electrochemically. To improve the electrochemical properties of this HFBI-coated electrode, the two types of HFBI variants, with oppositely charged surfaces, were prepared genetically. All three types of HFBI-coated HOPG electrode perform electron transfer between the electrode and solution phase through the dense HFBI molecular layer. This is because the HFBI self-organized membrane has a honeycomb-like structure, with penetrating holes. In the cases of HFBI variants, the oppositely charged HFBI membrane phases shown opposite electrochemical behaviors in electrochemical impedance spectroscopy. HFBI is a molecule with a unique structure, and can easily form honeycomb-like structures on solid material surfaces such as electrodes. The molecular membrane phase can be used for electrochemical molecular interfaces.

  9. [Effects of nitrate on organic removal and microbial community structure in the sediments].

    Science.gov (United States)

    Liu, Jin; Deng, Dai-Yong; Sun, Guo-Ping; Liu, Yong-Ding; Xu, Mei-Ying

    2013-07-01

    The strategy promoted pollutant degradation and transformation under the anaerobic circumstance by adding nitrate as an electron acceptor has been widely used in sediment bioremediation. However, few literature reports on organic removal characteristics and microbial community responses in the contaminated river sediment under the nitrate reduction condition. Methods including the polar and non-polar chemical fractionation, relative abundance detection of organic matters by GC-MS were combined and applied to investigate organic removals and PCR-DGGE analysis was used for microbial community structures in sediment incubation systems with or without calcium nitrate addition. The results indicated that the addition of calcium nitrate could significantly enhance removal efficiencies of organic pollutants. The removal efficiency of total organic carbon (TOC) and the total peak area of organic matters in GC-MS were 47.25% and 29.55% which were higher than those of the control. The effect descending order of organic pollutants was: silicon materials > alkanes > polycyclic aromatic hydrocarbons > heterocyclic compounds > olefins > benzene homologues > polar compounds > phthalates > aldehydes and ketones > alkyl esters. And removal rates of silicon materials, the persistent organic pollutants, benzene homologues and heterocyclic compounds were 46.73%, 36.25%, 23.19% and 35.92% which were higher than those of the control. The PCR-DGGE profile of bacterial 16S rDNA V3 fragments showed obviously different microbial community structures between the treatment and the control systems. Blastn analysis revealed that sequences of 10 predominant bands from DGGE profile were closely related to Proteobacteria, Actinobacteria, Clostridia, Chloroflexi, Caldiserica and uncultured bacterium. The research findings provide some helpful scientific information for promoting organic pollutant removal of river sediment by nitrate reduction.

  10. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  11. Water Dynamics and Its Role in Structural Hysteresis of Dissolved Organic Matter.

    Science.gov (United States)

    Conte, Pellegrino; Kucerik, Jiri

    2016-03-01

    Knowledge of structural dynamics of dissolved organic matter (DOM) is of paramount importance for understanding DOM stability and role in the fate of solubilized organic and inorganic compounds (e.g., nutrients and pollutants), either in soils or aquatic systems. In this study, fast field cycling (FFC) (1)H NMR relaxometry was applied to elucidate structural dynamics of terrestrial DOM, represented by two structurally contrasting DOM models such as Suwanee River (SRFA) and Pahokee peat (PPFA) fulvic acids purchased by the International Humic Substance Society. Measurement of NMR relaxation rate of water protons in heating-cooling cycles revealed structural hysteresis in both fulvic acids. In particular, structural hysteresis was related to the delay in re-establishing water network around fulvic molecules as a result of temperature fluctuations. The experiments revealed that the structural temperature dependency and hysteresis were more pronounced in SRFA than in PPFA. This was attributed to the larger content of hydrogel-like structure in SRFA stabilized, at a larger extent, by H-bonds between carboxylic and phenolic groups. Moreover, results supported the view that terrestrial DOM consist of a hydrophobic rigid core surrounded by progressively assembling amphiphilic and polar molecules, which form an elastic structure that can mediate reactivity of the whole DOM.

  12. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    Science.gov (United States)

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors.

  13. Teaching Basic Science Environmentally, The Concept: The cell is basic unit of structure of most organisms.

    Science.gov (United States)

    Busch, Phyllis S.

    1985-01-01

    Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)

  14. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    NARCIS (Netherlands)

    Castricum, H.L.; Sah, A.; Geenevasen, J.A.J.; Kreiter, R.; Blank, D.H.A.; Vente, J.F.; ten Elshof, J.E.

    2008-01-01

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethox

  15. Preparation of Ferrierite Zeolite Membranes in the Absence of Organic Structure-directing Agents

    Institute of Scientific and Technical Information of China (English)

    Xiao Hui SU; Gang LI; Rui Sen LIN; Eiichi KIKUCHI; Masahiko MATSUKATA

    2006-01-01

    Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous α-alumina support. These membranes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and pervaporation tests.

  16. Structure of phase-separated ferroelectric/ semiconducting polymer blends for organic non-volatile memories

    NARCIS (Netherlands)

    Mcneill, C.R.; Asadi, K.; Watts, B.; Blom, P.W.M.; Leeuw, D.M. de

    2010-01-01

    The phase-separated structure of blends of the ferroelectric polymer P(VDF-TrFE) and the semiconducting polymer P3HT used in organic non-volatile memories is revealed with soft X-ray spectromicroscopy. These thin-film blends show a columnar morphology, with P3HT-rich columns enclosed in a continuous

  17. Method for analyzing structural changes of flexible metal-organic frameworks induced by adsorbates

    NARCIS (Netherlands)

    Dubbeldam, D.; Krishna, R.; Snurr, R.Q.

    2009-01-01

    Metal−organic frameworks (MOFs) have crystal structures that exhibit unusual flexibility. An extreme example is that of the "breathing MOF" MIL-53 that expands or shrinks to admit guest molecules like CO2 and water. We present a powerful simulation tool to quickly calculate unit cell shape and size

  18. Ethnically Diverse Students' Knowledge Structures in First-Semester Organic Chemistry

    Science.gov (United States)

    Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John

    2014-01-01

    Chemistry courses remain a challenge for many undergraduate students. In particular, first-semester organic chemistry has been labeled as a gatekeeper with high attrition rates, especially among students of color. Our study examines a key factor related to conceptual understanding in science and predictive of course outcomes-knowledge structures.…

  19. Material structure-composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells.

    Science.gov (United States)

    Troshin, Pavel A; Mukhacheva, Olga A; Goryachev, Andrey E; Dremova, Nadezhda N; Voylov, Dmitry; Ulbricht, Christoph; Egbe, Daniel A M; Sariciftci, Niyazi Serdar; Razumov, Vladimir F

    2012-10-01

    Conjugated PPV-PPE copolymer has been investigated in organic solar cells in combination with twelve different fullerene derivatives. It was shown that the length of solubilizing alkyl chains in the fullerene derivative structures correlates well with the performance of photovoltaic cells.

  20. Metal-Organic Frameworks with d-f Cyanide Bridges: Structural Diversity, Bonding Regime, and Magnetism

    NARCIS (Netherlands)

    M. Ferbinteanu; F. Cimpoesu; S. Tanase

    2015-01-01

    We present a selection of metal-organic frameworks based on d-f and f-f linkages, discussing their structural features and properties from experimental and theoretical viewpoints. We give an overview of our own synthetic and modeling methodologies, highlighting the complexity of the interdisciplinar

  1. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.;

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative...

  2. Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impacts on crystalline structures.

    Science.gov (United States)

    Gao, Jia; Jiang, Donglin

    2016-01-25

    We demonstrate the profound effects of spatially confined guest molecules in one-dimensional nanochannels on X-ray diffraction behaviors of covalent organic frameworks. Our results give insights into the abnormal X-ray diffraction patterns and suggest a novel molecular dynamic strategy for resolving crystalline structures.

  3. A Conceptual Framework of Corporate and Business Ethics across Organizations: Structures, Processes and Performance

    Science.gov (United States)

    Svensson, Goran; Wood, Greg

    2011-01-01

    Purpose: The objective of this paper is to introduce and describe a conceptual framework of corporate and business ethics across organizations in terms of ethical structures, ethical processes and ethical performance. Design/methodology/approach: A framework is outlined and positioned incorporating an ethical frame of reference in the field of…

  4. Performance Evaluation of Rural Cooperative Economic Organizations in Hunan Province Based on Structural Equation

    Institute of Scientific and Technical Information of China (English)

    Naman; YANG

    2015-01-01

    Using the method of structural equation and balanced scorecard,this paper establishes the evaluation indicators and evaluation model for the performance of 21 rural cooperative economic organizations in X City of Hunan Province,and analyzes the relationship between indicators and dimensions of performance evaluation indicators,in order to find the influencing factors,obstacles and successful experience concerning the development of rural cooperative economic organizations. According to model analysis and conclusions,this paper sets forth the recommendations for promoting the development of rural cooperative economic organizations in Hunan Province,in order to provide a scientific basis for the institutional design and mechanism innovation of rural cooperative economic organizations in Hunan Province.

  5. TERRITORIAL STRUCTURES AND THE POTENTIAL OF ROMANIA’S ORGANIC AGRICULTURAL HOLDINGS

    Directory of Open Access Journals (Sweden)

    Iulian ALECU

    2015-04-01

    Full Text Available The paper seeks to highlight the main issues that the implementation of organic agriculture in Romania has to face, at territorial and national level in regard to the situation of the vegetal and animal sector. The comparison of the percentages showed, on the one hand, a considerable organic potential at national level, and on the other hand, the necessity to embrace a different structure by means of organizational measures. The level of the used markers highlighted an increasing trend of organic agriculture, by means of the increase of the total area and of the areas in conversion. This can be achieved by increasing the average surface per holding and intensifying the average number of animals per organic agricultural holding, situations which at present, at national level, are associated with very noticeable variation forms.

  6. Estimation of Formation Enthalpies of Organic Pollutants from a New Structural Group Contribution Method

    Institute of Scientific and Technical Information of China (English)

    Mehdi Bagheri; Afshin Bakhtiari; Masoume Jaberi

    2013-01-01

    Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies.The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups.Using such an extended dataset comprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study.The new suggested collection of 12 functional groups and a simple linear regression lead to promising statistics of R2=0.958,Q2Loo =0.956,and δAEE=57 kJ·mol-1 for the whole dataset.Moreover,unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach.The resultant model needs no technical software/calculations,and thus can be easily applied by a non-specialist user.

  7. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  8. The Changing Needs for Higher Education Organizations Structure in Vietnam: Evidence from Japanese, Taiwanese, and Thai Universities

    Directory of Open Access Journals (Sweden)

    Minh-Quang Duong

    2013-02-01

    Full Text Available Organizational change is the process of changing the structure of the organization and the attitudes of members in the organization. During the last decade, both Vietnamese social and educational organizations have slowly changed in their organizational structure as a barrier to the development in the era of globalization and internationalization in Vietnam. This paper is an attempt to discuss the factors which affect Vietnamese higher educational organization. Discussions on the viewpoint of higher educational organization structure of Japan, Taiwan, and Thailand. Furthermore, this paper will contribute to improve educational management, and serve as a useful reference for future higher education’s school mergers.

  9. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function.

    Science.gov (United States)

    Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U

    2016-01-01

    A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

  10. Aligning the Band Structures of Polymorphic Molybdenum Oxides and Organic Emitters in Light-Emitting Diodes

    Science.gov (United States)

    Yun, Jongmin; Jang, Woosun; Lee, Taehun; Lee, Yonghyuk; Soon, Aloysius

    2017-02-01

    Heavy transition-metal oxides are widely studied for key applications in electronics and energy technologies. In cutting-edge organic-light-emitting-diode (OLED) devices, there remain scientific challenges to achieve an efficient transfer of charges between electrodes and the organic layer. Recently, polymorphic MoO3 has been actively investigated to exploit its unique high work-function values, especially for its use in the electrode buffer layer to effectively transfer the charges in OLED devices. However, no systematic fundamental studies of its electronic structure are available. Thus, in this study, we use first-principles density-functional theory to investigate both the crystal structure and the electronic structure of the MoO3 polymorphs, and we conclude with a simple perspective to screen the best candidate for OLED applications via a hole transport-barrier descriptor.

  11. Synthesis, Crystal Structure, and Comparative Study of a New Organic Material 3,4-Diaminobenzophenone Semihydrate

    Directory of Open Access Journals (Sweden)

    Tarek Ben Rhaiem

    2013-01-01

    Full Text Available The new organic 3,4-diaminobenzophenone semihydrate (34ABPH is grown by slow evaporation method. The compound crystallizes in the monoclinic space group: C2. The unit cell dimensions are (8 Å, (2 Å, (10 Å, and β = 99.40 (2° with . The crystal structure analysis reveals that the C13H12N2O molecules chains are organized into a double ribbon in the (b,c plane. The structural components interact by N–H⋯O and O–H⋯O hydrogen bonds, building up a two-dimensional network. The presence of functional groups in the molecular structure is confirmed by the Fourier transform infrared (FT-IR spectroscopy. Thermogravimetric analysis (TGA confirms the presence of the water molecule.

  12. Laser Control of Self-Organization Process in Microscopic Region and Fabrication of Fine Microporous Structure

    Directory of Open Access Journals (Sweden)

    Yukimasa Matsumura

    2012-01-01

    Full Text Available We present a controlling technique of microporous structure by laser irradiation during self-organization process. Self-organization process is fabrication method of microstructure. Polymer solution was dropped on the substrate at high humid condition. Water in air appears dropping air temperature below the dew point. The honeycomb structure with regularly aligned pores on the film was fabricated by attaching water droplets onto the solution surface. We demonstrate that it was possible to prevent forming pores at the region of laser irradiation and flat surface was fabricated. We also demonstrated that a combination structure with two pore sizes and flat surface was produced by a single laser-pulse irradiation. Our method is a unique microfabrication processing technique that combines the advantages of bottom-up and top-down techniques. This method is a promising technique that can be applied to produce for photonic crystals, biological cell culturing, surface science and electronics fields, and so forth.

  13. Covalent organic frameworks: a materials platform for structural and functional designs

    Science.gov (United States)

    Huang, Ning; Wang, Ping; Jiang, Donglin

    2016-10-01

    Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores. One important feature of COFs is that they are designable; that is, the geometry and dimensions of the building blocks can be controlled to direct the topological evolution of structural periodicity. The diversity of building blocks and covalent linkage topology schemes make COFs an emerging materials platform for structural control and functional design. Indeed, COF architectures offer confined molecular spaces for the interplay of photons, excitons, electrons, holes, ions and guest molecules, thereby exhibiting unique properties and functions. In this Review, we summarize the major progress in the field of COFs and recent achievements in developing new design principles and synthetic strategies. We highlight cutting-edge functional designs and identify fundamental issues that need to be addressed in conjunction with future research directions from chemistry, physics and materials perspectives.

  14. "Structuration" by Intellectual Organization: The Configuration of Knowledge in Relations among Structural Components in Networks of Science

    CERN Document Server

    Leydesdorff, Loet

    2010-01-01

    Using aggregated journal-journal citation networks, the measurement of the knowledge base in empirical systems is factor-analyzed in two cases of interdisciplinary developments during the period 1995-2005: (i) the development of nanotechnology in the natural sciences and (ii) the development of communication studies as an interdiscipline between social psychology and political science. The results are compared with a case of stable development: the citation networks of core journals in chemistry. These citation networks are intellectually organized by networks of expectations in the knowledge base at the specialty (that is, above-journal) level. This "structuration" of structural components (over time) can be measured as configurational information. The latter is compared with the Shannon-type information generated in the interactions among structural components: the difference between these two measures provides us with a measure for the redundancy generated by the specification of a model in the knowledge b...

  15. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.

    Science.gov (United States)

    Ooyama, Yousuke; Harima, Yutaka

    2012-12-21

    Dye-sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO(2), ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident-solar-light-to-electricity conversion efficiency and low cost of production. To develop high-performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light-harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch-making molecular design of organic dyes for high photovoltaic performance and long-term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.

  16. Structural and functional rich club organization of the brain in children and adults.

    Directory of Open Access Journals (Sweden)

    David S Grayson

    Full Text Available Recent studies using Magnetic Resonance Imaging (MRI have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  17. Self-assembly of metal-organic coordination structures on surfaces

    Science.gov (United States)

    Dong, Lei; Gao, Zi'Ang; Lin, Nian

    2016-08-01

    Metal-organic coordination structures are materials comprising reticular metal centers and organic linkers in which the two constituents bind with each other via metal-ligand coordination interaction. The underlying chemistry is more than a century old but has attracted tremendous attention in the last two decades owing to the rapidly development of metal-organic (or porous coordination) frameworks. These metal-coordination materials exhibit extraordinarily versatile topologies and many potential applications. Since 2002, this traditionally three-dimensional chemistry has been extended to two-dimensional space, that is, to synthesize metal-organic coordination structures directly on solid surfaces. This endeavor has made possible a wide range of so-called surface-confined metal-organic networks (SMONs) whose topology, composition, property and function can be tailored by applying the principle of rational design. The coordination chemistry manifests unique characteristics at the surfaces, and in turn the surfaces provide additional control for design structures and properties that are inaccessible in three-dimensional space. In this review, our goal is to comprehensively cover the progress made in the last 15 years in this rapidly developing field. The review summarizes (1) the experimental and theoretical techniques used in this field including scanning tunneling microscopy and spectroscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, density functional theory, and Monte Carlo and kinetic Monte Carlo simulation; (2) molecular ligands, metal atoms, substrates, and coordination motifs utilized for synthesizing SMON; (3) representative SMON structures with different topologies ranging from finite-size discrete clusters to one-dimensional chains, two-dimensional periodical frameworks and random networks; and (4) the properties and potential applications of SMONs. We conclude the review with some perspectives.

  18. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  19. Structure of sperm, spermatozeugmata and 'lateral organs' in the bivalve Arthritica (Galeommatoidea: Leptonidae)

    DEFF Research Database (Denmark)

    Jespersen, Åse; Lützen, Jørgen

    2009-01-01

    The position and structure of paired 'lateral organs' in the foot of Arthritica semen and Arthritica bifurca might indicate a chemosensory function. In both species part of the organ is also glandular. In A. semen the glandular epithelium is detached piecemeal and, probably by means of the foot......, is moved to and grafted upon the gills of the same individual. The transferred epithelia appear as disk-shaped actively secretory 'gill bodies' which, attached to the abfrontal side of the inner demibranch, replace the ordinary unciliated gill epithelium. The secretion is liberated into the suprabranchial...

  20. Imprinting the surface of mesoporous aluminosilicates using organic structure-directing agents

    Science.gov (United States)

    Sawant, Kaveri R.

    Combining the positive structural features of mesoporous materials and microporous zeolite aluminosilicates can lead to the synthesis and application of new materials useful for catalytic processes involving large organic reactant molecules. We used organic structure-directing agents (SDAs), typically used for the synthesis of zeolites, to imprint the surface of existing mesoporous materials to create novel materials with enhanced structural properties towards this aim: materials with large well-ordered pores allowing access to large reactants with strong accessible acid sites on the surface of the pores leading to stable and active catalysts. We developed new protocols for incorporating tetrapropyl ammonium and N,N,N-trimethyl-1-adamantylammonium, SDAs used for the synthesis of the zeolites ZSM-5 (MFI) and MCM-22 (MWW) respectively, into the walls of the siliceous mesoporous material SBA-15 by using a combination of an organic solvent (glycerol) and water, to form novel porous materials. We studied the evolution of the modified pore structure of the materials by a battery of characterization techniques. Results indicate that the new materials have well-ordered pores with significantly larger mesopore diameters and structurally modified thinner, denser pore walls. We carried out similar treatments and characterization on the aluminum containing form of SBA-15, Al-SBA-15, with high and low amounts of aluminum. Pair distribution function analysis was used to analyze the structural differences in the materials and catalytic test reactions such as cumene and n-hexane cracking to detect the presence of strong acid sites like the ones in ZSM-5. Results similar to the treatments on the all-silica materials, although promising, led to novel meso-micro aluminosilicate materials with limited increase in or no catalytic activity with reference to the test reactions employed. This led to the conclusion that the aluminum in the materials was merely a spectator and did not

  1. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Veronica; Lopes, Isabel [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rocha-Santos, Teresa [ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu (Portugal); Santos, Ana L. [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rasteiro, Graca M.; Antunes, Filipe [CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, Polo II, University of Coimbra, 3030-290 Coimbra (Portugal); Goncalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Gomes, Newton N.C.M., E-mail: gomesncm@ua.pt [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Pereira, Ruth [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal)

    2012-05-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6-V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO{sub 2}), titanium silicon oxide (TiSiO{sub 4}), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO{sub 2}, CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: Black-Right-Pointing-Pointer Organic and inorganic nanomaterials on soil microbial community. Black-Right-Pointing-Pointer Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. Black-Right-Pointing-Pointer All the organic nanomaterials, TiO{sub 2} and gold nanorods significantly affected the structural diversity.

  2. Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy

    Science.gov (United States)

    Nishida, Jun; Tamimi, Amr; Fei, Honghan; Pullen, Sonja; Ott, Sascha; Cohen, Seth M.; Fayer, Michael D.

    2014-01-01

    The structural elasticity of metal–organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer. PMID:25512539

  3. The influence of long term sound stress on histological structure of immune organs in broiler chickens

    Directory of Open Access Journals (Sweden)

    Žikić Dragan R.

    2010-01-01

    Full Text Available The aim of this paper was to examine the effect of different duration sound stress on immune organs of broiler chickens of different age. Nine groups, with 10 chickens in each group were included in experiment. The histological structure of bursa of Fabricius, thymus, and spleen were analyzed. The results indicated that the bursa of Fabricius, in relation to the other examined organs, was the most sensitive to this kind of stress. Histological changes of spleen and thymus were also observed, but less prominent except in chickens after more than 30 days of exposure to stress. According to our results, degree of histological changes of immune organs under the influence of sound stress depends on the length of exposure and age of chickens.

  4. Effects of organic enrichment on macrofauna community structure: an experimental approach

    Directory of Open Access Journals (Sweden)

    Rodrigo Riera

    2013-12-01

    Full Text Available The determination of the resilience of benthic assemblages is a capital issue for the off-shore aquaculture industry in its attempts to minimize environmental disturbances. Experimental studies are an important tool for the establishment of thresholds for macrofaunal assemblages inhabiting sandy seabeds. An experiment was conducted with three treatments (Control, 1x and 3x,in which organic load (fish pellets was added (1x (10 g of fish pellets and 3x (30 g. A reduction in abundance of individuals and species richness was found as between the control and organic-enriched treatments. Significant changes in assemblage structure were also found, mainly due to the decrease of the sensitive tanaid Apseudes talpa in organically-enriched treatments. AMBI and M-AMBI indices were calculated and a decrease of ecological status was observed in treatment 3x.

  5. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    Science.gov (United States)

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

  6. Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality

    Science.gov (United States)

    Ackerman, Jeremy D.; Keller, Kurtis; Fuchs, Henry

    2002-03-01

    Creation of accurate surface models of abdominal organs is essential for many developing technologies in medicine and surgery. One application we are working towards is augmented reality (AR) visualization for laparoscopic surgery. Our current system meets some, but not all, of the requirements. We use two custom built laparoscopes, a custom built miniature projector, a standard camera, and a standard video capture and processing card to implement a laparoscopic structured light range acquisition system. We will briefly show the custom hardware but will emphasize the structured light depth extraction techniques used for the unique properties of surfaces inside the body, particularly dealing with specular reflections. In early experiments, we studied the effectiveness of our algorithm in highly specular environments by creating range images acquired from fresh animal organs. These experiments used a large projector, open abdomens, and offline image processing. We report the results of experiments using our miniature projector, and on line processing.

  7. Course of organized structures in thermal plasma inside and outside argon plasma torch

    Science.gov (United States)

    Gruber, Jan; Sonsky, Jiri; Hlina, Jan

    2016-09-01

    Arc chamber of direct-current (dc) argon plasma torch and area just above the nozzle outside of this dc plasma torch were observed by hi-speed camera. System of reflecting mirrors and transparent silica arc chamber walls were used to obtain simultaneous records of both i) cathode area with electric arc inside the plasma torch and ii) nozzle exit with resulting plasma jet outside the plasma torch. Such experimental arrangement allowed us to track localized repeating patterns (organized structures) in the arc chamber and in the plasma flow. Identification of various organized structures - for different experimental conditions - according to their origin and typical development is presented in this paper. Impact of 300 Hz ripple in arc current was compared between different areas of the plasma. Additional simultaneous observation of plasma flow in the same system by series of photodiodes was used for verification of the results. The work was possible with institutional support RVO:61388998.

  8. Ion beam assisted deposition of organic molecules: a physical way to realize OLED structures

    Science.gov (United States)

    Moliton, André; Antony, Rémi; Troadec, David; Ratier, Bernard

    2000-05-01

    We demonstrate how the quantum efficiency of an organic light-emitting diode can be improved by a physical way based on the ion beam assisted deposition: the recombination current can be increased by an enhancement of the minority carrier injection while the total current can be decreased by generation of electron traps which reduced the majority current. The quantum efficiency of fluorescence can be also improved by a layer densification with a limitation of the nonradiative centers. As a result, the quantum efficiency of the structure ITO/Helium assisted Alq3/unassisted Alq3/Ca/Al is improved (by around a factor 10) in relation with a virgin structure.

  9. Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baoquan; Deng, Zhengtao; Yan, Hao; Cabrini, Stefano; Zuckermann, Ronald N.; Bokor, Jeffrey

    2010-03-17

    Here we demonstrate Au nanoparticle self-similar chain structure organized by triangle DNA origami with well-controlled orientation and <10 nm spacing. We show for the first time that a large DNA complex (origami) and multiple AuNP conjugates can be well-assembled and purified with reliable yields. The assembled structure could be used to generate high local-field enhancement. The same method can be used to precisely localize multiple components on a DNA template for potential applications in nanophotonic, nanomagnetic, and nanoelectronic devices.

  10. Doing the Organizational Tango: Symbiotic Relationship between Formal and Informal Organizational Structures for an Agile Organization

    Directory of Open Access Journals (Sweden)

    Irena Malgorzata Ali

    2016-04-01

    Full Text Available This paper reports on research with a broad objective to examine the relationship between two organizational entities, the formally structured organization and informal organizational structures, in a changing operational environment, more specifically during military deployments. The paper draws on organizational and complexity paradigms; based on empirical evidence obtained through qualitative techniques, it describes mechanisms that enable a symbiotic relationship between these two organizational structures in a complex operational landscape. Substantive findings provide insights into the dynamics of the interactions between these structures and illuminate the relationship between three enabling factors – accountability, responsible autonomy, and command and control arrangements – that need to be considered to fully exploit the strengths inherent in both formal and informal structures. Based on these findings, a model for enhancement of organizational agility in response to changes in a complex operational environment is described. The model is predicated on feedback and mutual adjustment of the organization, institution and individual through sensemaking; it illustrates the dynamic nature of interactions that are required for such a response.

  11. Controlled synthesis of organic nanophotonic materials with specific structures and compositions.

    Science.gov (United States)

    Cui, Qiu Hong; Zhao, Yong Sheng; Yao, Jiannian

    2014-10-29

    Organic nanomaterials have drawn great interest for their potential applications in high-speed miniaturized photonic integration due to their high photoluminescence quantum efficiency, structural processability, ultrafast photoresponse, and excellent property engineering. Based on the rational design on morphological and componential levels, a series of organic nanomaterials have been controllably synthesized in recent years, and their excitonic/photonic behaviors has been fine-tuned to steer the light flow for specific optical applications. This review presents a comprehensive summary of recent breakthroughs in the controlled synthesis of organic nanomaterials with specific structures and compositions, whose tunable photonic properties would provide a novel platform for multifunctional applications. First, we give a general overview of the tailored construction of novel nanostructures with various photonic properties. Then, we summarize the design and controllable synthesis of composite materials for the modulation of their functionalities. Subsequently, special emphasis is put on the fabrication of complex nanostructures towards wide applications in isolated photonic devices. We conclude with our personal viewpoints on the development directions in the novel design and controllable construction of organic nanomaterials for future applications in highly integrated photonic devices and chips.

  12. Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication.

    Science.gov (United States)

    Eberhard, M J B; Lang, D; Metscher, B; Pass, G; Picker, M D; Wolf, H

    2010-07-01

    Individuals of the insect order Mantophasmatodea use species-specific substrate vibration signals for mate recognition and location. In insects, substrate vibration is detected by mechanoreceptors in the legs, the scolopidial organs. In this study we give a first detailed overview of the structure, sensory sensitivity, and function of the leg scolopidial organs in two species of Mantophasmatodea and discuss their significance for vibrational communication. The structure and number of the organs are documented using light microscopy, SEM, and x-ray microtomography. Five scolopidial organs were found in each leg of male and female Mantophasmatodea: a femoral chordotonal organ, subgenual organ, tibial distal organ, tibio-tarsal scolopidial organ, and tarso-pretarsal scolopidial organ. The femoral chordotonal organ, consisting of two separate scoloparia, corresponds anatomically to the organ of a stonefly (Nemoura variegata) while the subgenual organ complex resembles the very sensitive organs of the cockroach Periplatena americana (Blattodea). Extracellular recordings from the leg nerve revealed that the leg scolopidial organs of Mantophasmatodea are very sensitive vibration receptors, especially for low-frequency vibrations. The dominant frequencies of the vibratory communication signals of Mantophasmatodea, acquired from an individual drumming on eight different substrates, fall in the frequency range where the scolopidial organs are most sensitive.

  13. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani

    2015-06-01

    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  14. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    Science.gov (United States)

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  15. Structure transformations of endocrine system organs during adaptation to increased radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Ermakova, O.V. [Institute of Biology, Komi Scientific Centre, Ural Division of Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2004-07-01

    It is well known that during ecological monitoring of contaminated territories registration of early abnormalities in an organism is hampered by man-caused influence of habitat. Under these circumstances study of both structural and functional changes in organs and tissues of rodents inhabiting radioactive contaminated territories is of great importance. Study of structural features of endocrine glands, hormones of which trigger the process of active adaptive changes in an organism, is very important in radioecological surveys. Basing on long-term study of voles we have determined that long-term living by rodents on the territories characterized by increased natural and artificial radioactivity (radium contaminated fields in the Komi Republic and 30-km zone of Chernobyl APS) substantially influences morpho-functional state of endocrine system organs, causing quantitative and qualitative changes. It is demonstrated that population processes modify biological consequences of small doze chronic ionizing radiation in habitat. We noticed the following: high heterogeneity of histological changes of thyroid gland and adrenal gland as a response to radioactive habitat contamination; disorder of interconnection among different links of endocrine system; dependence of radiation effects on gender, age, degree and character of radiation contamination of a habitat as well as duration of radioactive influence. We have got data on morphological characteristics of thyroid gland and adrenal gland during different phases of population amount of this kind of rodents. It was discovered that effectiveness of radiation influence is not the same during different periods of population cycle. Presence of voles on the territories characterized by increased radioactivity causes chronic tension of adrenal cortex (increasing of the organ mass, enlarging of thickness of zona fasciculata and zona reticularis). Destructive-necrotic processes combine with manifestation of reparative regeneration

  16. Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans.

    Science.gov (United States)

    Bertassoni, Luiz Eduardo; Stankoska, Katerina; Swain, Michael Vincent

    2012-02-01

    Dentin is a mineralized dental tissue underlying the outer enamel that has a peculiar micro morphology. It is composed of micrometer sized tubules that are surrounded by a highly mineralized structure, called peritubular dentin (PTD), and embedded in a collagen-rich matrix, named intertubular dentin. The PTD has been thought to be composed of a highly mineralized collagen-free organic matrix with unknown composition. Here we tested the hypothesis that proteoglycans and glycosaminoglycans, two important organic structural features found in dentin, are key participants in the microstructure and composition of the PTD. To test this hypothesis dentin blocks were demineralized with 10 vol% citric acid for 2 min and either digested with 1mg/ml TPCK-treated trypsin with 0.2 ammonium bicarbonate at pH 7.9 (TRY) or 0.1 U/mL C-ABC with 50mM Tris, 60mM sodium acetate and 0.02% bovine serum albumin at pH 8.0 (C-ABC). TRY is known to cleave the protein core of dentin proteoglycans, whereas C-ABC is expected to selectively remove glycosaminoglycans. All specimens were digested for 48 h in 37°C, dehydrated in ascending grades of acetone, immersed in HMDS, platinum coated and imaged using an FE-SEM. Images of demineralized dentin revealed a meshwork of noncollagenous fibrils protruding towards the tubule lumen following removal of the peritubular mineral and confirmed the lack of collagen in the peritubular matrix. Further, images revealed that the peritubular organic network originates from a sheet-like membrane covering the entire visible length of tubule, called lamina limitans. Confirming our initial hypothesis, after the digestion with C-ABC the organic network appeared to vanish, while the lamina limitans was preserved. This suggests that glycosaminoglycans are the main component of the PTD organic network. Following digestion with TRY, both the organic network and the lamina limitans disappeared, thus suggesting that the lamina limitans may be primarily composed of

  17. The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang; Venugopal, Vandavasi; Murray, Beverly; Rudenko, Gabby (Michigan)

    2014-10-02

    {alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha} carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.

  18. The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids

    Science.gov (United States)

    Terrones, Jeronimo; Windle, Alan H.; Elliott, James A.

    2014-10-01

    Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures.

  19. Structure Prediction Based on Hydrophobic to Hydrophilic Volume Ratios in Small Molecule Amphiphilic Organic Crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure type for the crystal of 4,4'-bis-(2-hydroxy-ethoxyl)-biphenyl 1 has been predicted by using the previously developed interfacial model for small organic molecules. Based on the calculated hydrophobic to hydrophilic volume of 1, this model predicts the crystal structure to be of lamellar or bicontinuous type, which has been confirmed by the X-ray single-crystal structure analysis (C20H26O6, monoclinic, P21/c, a = 16.084(1), b = 6.0103(4), c = 9.6410(7)(A), β = 103.014(2)°, V = 908.1(1)(A)3, Z = 2, Dc = 1.325 g/cm3, F(000)=388, μ = 0.097 mm-1, MoKα radiation, λ = 0.71073 (A), R = 0.0382 and wR = 0.0882 with I > 2σ(I) for 7121 reflections collected, 1852 unique reflections and 170 parameters). As predicted, the hydrophobic and hydrophilic portions of 1 form in the lamellae. The same interfacial model is applied to other amphilphilic small molecule organic systems for structural type prediction.

  20. Novel Threadlike Structures May Be Present on the Large Animal Organ Surface: Evidence in Swine Model

    Directory of Open Access Journals (Sweden)

    Kyoung-Hee Bae

    2013-01-01

    Full Text Available Background. The types of embryonic development probably provoke different paths of novel threadlike structure (NTS development. The authors hypothesized that NTS may be easily observed on the surface of swine intestines by using trypan blue staining method and visualization under an optical microscope. Methods. General anesthesia was administered to 2 Yorkshire pigs. The abdominal walls of the pigs were carefully dissected along the medial alba. NTSs were identified on organ surfaces under a stereoscopic microscope after trypan blue staining. Isolated NTS specimens obtained from the large intestine were subjected to 4′,6-diamidino-2-phenylindole (DAPI staining and observed using the polarized light microscopy to confirm whether the obtained structure fits the definition of NTS. Results. We found elastic, semitransparent threadlike structures (forming a network structure that had a milky-white color in situ and in vivo in swine large intestines. The samples showed distinct extinction of polarized light at every 90 degrees, and nucleus was shown to be rod shaped by DAPI staining, indicating that they meet the criteria of NTS. Conclusion. We used a swine model to demonstrate that NTS may be present on large animal organ surfaces. Our results may permit similar studies by using human specimens.

  1. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    Science.gov (United States)

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  2. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  3. Atypical depression in the structure of organic mental disorders (literature review

    Directory of Open Access Journals (Sweden)

    Leonov S.F.

    2014-09-01

    Full Text Available The review of literature presents current data on cli¬nical picture and diagnostics of atypical depression. Rubric “atypical depression” includes a variety of depressive states characterized by reactively caused changes of mood, sensitivity to interpersonal contacts, inverted vegetative and somatic symptoms such as increased appetite and hypersomnia. The article considers the place of atypical depression in the structure of organic mental disorders. Positions of foreign authors that produce atypical depression as a clinical entity in the structure of Bipolar affective disorder II type are represented, the views of other authors on the structure of atypical depression are considered. The analysis of national concept of non-circular depression is carried out. Questions of atypical affective conditions acquire special significance due to preparation of International Classification of Diseases of the 11th revision, because inclusion in it of Bipolar affective disorder II type, a manifestation of which is considered to be atypical depressions, is under discussion.

  4. Structural Analysis of Layered Polymer Crystals and Application to Photofunctional Materials Using Organic Intercalation

    Institute of Scientific and Technical Information of China (English)

    Shinya Oshita; Akikazu Matsumoto

    2005-01-01

    @@ 1Introduction We reported that layered polymer crystals are obtained by the topochemical polymerization of 1,3-diene monomers and provided as host material for organic intercalation[1]. For intercalation using various long-alkyl amines as the guest species, its reaction behavior, mechanism, characteristics, and potential to application have been clarified[2]. We also succeeded in the synthesis of several host layered polymer crystals with different tacticities and layer structures[3]. We describe here intercalation using various stereoregular poly(muconic acid)s (PMA) and n-alkylamines as the host and guest compounds, respectively. The reaction behavior and the layered structure of the obtained ammonium polymers are discussed from the viewpoint of stereochemical structure of the host polymers.

  5. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan

    2012-12-04

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  6. Chlorine adlayer-templated growth of a hybrid inorganic-organic layered structure on Au(111)

    Science.gov (United States)

    Rzeźnicka, I. I.; Horino, H.; Yagyu, K.; Suzuki, T.; Kajimoto, S.; Fukumura, H.

    2016-10-01

    Growth of a hybrid inorganic-organic layered structure on the Au(111) surface using a one-step solution growth is reported. The hybrid structure is consist of 4,4‧-bipyridine [4,4‧-BiPyH2]2 + cations, Cl anions and Au adatoms, provided from substrate by means of the adsorbate-induced surface phase transition of a surface reconstruction. Its surface and bulk structures were characterized by scanning tunneling microscopy (STM), secondary ion mass spectrometry (SIMS), and Raman spectroscopy. STM results reveal growth of the first [4,4‧-BiPyH2]2 + layer on top of the p(√{ 3} ×√{ 3})" separators=", R 30 ° chlorine overlayer formed on the Au(111) surface. These two layers are found to provide a platform for a following three-dimensional growth facilitated by hydrogen bonding, aurophilic and π-π stacking interactions.

  7. Organizing DNA origami tiles into larger structures using preformed scaffold frames.

    Science.gov (United States)

    Zhao, Zhao; Liu, Yan; Yan, Hao

    2011-07-13

    Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tile units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as "superorigami" or "origami of origami" to scale up DNA origami technology. First, this method uses a collection of bridge strands to prefold a single-stranded DNA scaffold into a loose framework. Subsequently, preformed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures.

  8. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex.

    Science.gov (United States)

    Chung, Wen-Hsiang; Craighead, John L; Chang, Wei-Hau; Ezeokonkwo, Chukwudi; Bareket-Samish, Avital; Kornberg, Roger D; Asturias, Francisco J

    2003-10-01

    The structure of an RNA polymerase II/general transcription factor TFIIF complex was determined by cryo-electron microscopy and single particle analysis. Density due to TFIIF was not concentrated in one area but rather was widely distributed across the surface of the polymerase. The largest subunit of TFIIF interacted with the dissociable Rpb4/Rpb7 polymerase subunit complex and with the mobile "clamp." The distribution of the second largest subunit of TFIIF was very similar to that previously reported for the sigma subunit in the bacterial RNA polymerase holoenzyme, consisting of a series of globular domains extending along the polymerase active site cleft. This result indicates that the second TFIIF subunit is a true structural homolog of the bacterial sigma factor and reveals an important similarity of the transcription initiation mechanism between bacteria and eukaryotes. The structure of the RNAPII/TFIIF complex suggests a model for the organization of a minimal transcription initiation complex.

  9. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  10. Self-Organized Growth, Structure, and Magnetism of Monatomic Transition-Metal Oxide Chains

    Science.gov (United States)

    Ferstl, Pascal; Hammer, Lutz; Sobel, Christopher; Gubo, Matthias; Heinz, Klaus; Schneider, M. Alexander; Mittendorfer, Florian; Redinger, Josef

    2016-07-01

    We report on the self-organized growth of monatomic transition-metal oxide chains of (3 ×1 ) periodicity and unusual M O2 stoichiometry (M =Ni , Co, Fe, Mn) on Ir(100). We analyze their structural and magnetic properties by means of quantitative LEED, STM, and density functional theory (DFT) calculations. LEED analyses reveal a fascinating common atomic structure in which the transition-metal atoms sit above a missing-row structure of the surface and are coupled to the substrate only via oxygen atoms. This structure is confirmed by DFT calculations with structural parameters deviating by less than 1.7 pm. The DFT calculations predict that the NiO2 chains are nonmagnetic, CoO2 chains are ferromagnetic, while FeO2 and MnO2 are antiferromagnetic. All structures show only weak magnetic interchain coupling. Further, we demonstrate the growth of oxide chains of binary alloys of Co and Ni or Fe on Ir(100), which allows us to produce well-controlled ensembles of ferromagnetic chains of different lengths separated by nonmagnetic or antiferromagnetic segments.

  11. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models.

    Science.gov (United States)

    Sereda, Valentin; Sawaya, Michael R; Lednev, Igor K

    2015-09-01

    Many different proteins undergo misfolding and self-assemble into amyloid fibrils, resulting in a range of neurodegenerative diseases. The limitations of conventional methods of structural biology for fibril characterization have led to the use of polarized Raman spectroscopy for obtaining quantitative structural information regarding the organization of amyloid fibrils. Herein, we report the orientation of selected chemical groups and secondary structure elements in aligned insulin fibrils, including β-sheets, which possess a high level of orientation in the cross-β core, and α-helices in the disordered portions of the fibrils. Strong orientation of disulfide bonds in amyloid fibrils was also revealed, indicating their association with the fibril core. The determined orientation of chemical groups provides strong constraints for modeling the overall structure of amyloid fibrils, including the core and disordered parts. The developed methodology allows for the validation of structural models proposed in the literature for amyloid fibrils. Specifically, the polarized Raman data obtained herein strongly agreed with two insulin fibril models (Jiménez et al., Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9196-9201 and Ivanova et al., Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18990-18995) yet revealed significant qualitative and quantitative differences. This work demonstrates the great potential of polarized Raman spectroscopy for structural characterization of anisotropic biological species.

  12. Pore - to - Core Modeling of Soil Organic Matter Decomposition in 3D Soil Structures

    Science.gov (United States)

    Falconer, R. E.; Battaia, G.; Baveye, P.; Otten, W.

    2013-12-01

    There is a growing body of literature supporting the need for microbial contributions to be considered explicitly in carbon-climate models. There is also overwhelming evidence that physical protection within aggregates can play a significant role in organic matter dynamics. Yet current models of soil organic matter dynamics divide soil organic matter into conceptual pools with distinct turnover times, assuming that a combination of biochemical and physical properties control decay without explicit description. Albeit robust in their application, such models are not capable to account for changes in soil structure or microbial populations, or accurately predict the effect of wetness or priming. A spatially explicit model is presented that accounts for microbial dynamics and physical processes, permitting consideration of the heterogeneity of the physical and chemical microenvironments at scales relevant for microbes. Exemplified for fungi, we investigate how micro-scale processes manifest at the core scale with particular emphasis on evolution of CO2 and biomass distribution. The microbial model is based upon previous (Falconer et al, 2012) and includes the following processes: uptake, translocation, recycling, enzyme production, growth, spread and respiration. The model is parameterised through a combination of literature data and parameter estimation (Cazelles et al., 2012).The Carbon model comprises two pools, particulate organic matter which through enzymatic activity is converted into dissolved organic matter. The microbial and carbon dynamics occur within a 3D soil structure obtained by X-ray CT. We show that CO2 is affected not only by the amount of Carbon in the soil but also by microbial dynamics, soil structure and the spatial distribution of OM. The same amount of OM can result in substantially different respiration rates, with surprisingly more CO2 with increased clustering of OM. We can explain this from the colony dynamics, production of enzymes and

  13. Effects of low dose acrylamide on the rat reproductive organs structure, fertility and gene integrity

    Institute of Scientific and Technical Information of China (English)

    Saleh Alkarim; Sufyan Elassouli; Soad Ali; Nasra Ayuob; Zaki Elassouli

    2015-01-01

    Objective:To assesses the effects of long term exposure to low dose of acrylamide (0.4 μg /g) in post-weaning Sprague-Dawley rats on the structure of the reproductive organ as well as DNA integrity. Methods:The histological changes in the male and female reproductive organs the morphological changes in sperms as well as the genotoxic effect of acrylamide were assessed. The effect acrylamide on pregnancy outcome was evaluated.Results:Testes of acrylamide-fed rats showed decreased number of seminiferous tubules containing mature sperms and degenerative changes in sperm germ cell layers. Some sperms of epididymal cauda showed head deformity. In female, acrylamide included cystic ovarian changes, degenerative changes of zona pelluida, granulosa cells and oocytes. Post implantation loss and decrease in the number of full term fetuses were detected. Resorption sites showed necrotic fetal tissue with vacuolation of amniotic cells.Conclusion:Acrylamide cause harmful effect on the reproductive organ structure, fertility and cause extensive DNA damage in peripheral blood lymphocytes.

  14. Low-cost replication of self-organized sub-micron structures into polymer films

    Directory of Open Access Journals (Sweden)

    H. Stenberg

    2015-02-01

    Full Text Available In this paper, the results of exploiting self-organized sub-micron polystyrene (PS wrinkle patterns possessing random orientation, in preparation of a nickel stamp for hot embossing purposes, are presented. Self-organized patterns were prepared employing a method in which a stiff cross-linked capping layer on the topmost part of the soft polystyrene layer was created by using reactive ion etching (RIE device with mild conditions and argon as a process gas, and the wrinkle formation was initiated thermally. Different surface patternings were obtained using silicon and stainless steel (SST wafers as substrates. Prepared Ni-stamps were employed in hot embossing of polycarbonate (PC and cyclo-olefin polymer (COP films, using a nano-imprinting process. The replication quality of the self-organized wrinkle structures in PC and COP films was monitored by comparing the shape and dimensions of the original and final surface structures. The hot embossed sub-micron scale features, originally formed on stainless steel substrate, were found to have influence on the optical properties of the PC and COP films by lowering their reflectances.

  15. "Just as the Structural Formula Does": Names, Diagrams, and the Structure of Organic Chemistry at the 1892 Geneva Nomenclature Congress.

    Science.gov (United States)

    Hepler-Smith, Evan

    2015-02-01

    At the Geneva Nomenclature Congress of 1892, some of the foremost organic chemists of the late nineteenth century crafted a novel relationship between chemical substances, chemical diagrams, and chemical names that has shaped practices of chemical representation ever since. During the 1880s, the French chemist Charles Friedel organised the nomenclature reform effort that culminated in the Geneva Congress; in the disorderly nomenclature of German synthetic chemistry, Friedel saw an opportunity to advance French national interests and his own pedagogical goals. Friedel and a group of close colleagues reconceived nomenclature as a unified field, in which all chemical names ought to relate clearly to one another and to the structure of the compounds they represented. The German chemist Adolf von Baeyer went a step farther, arguing for names that precisely and uniquely corresponded to the structural formula of each compound, tailored for use in chemical dictionaries and handbooks. Baeyer's vision prevailed at the Geneva Congress, which consequently codified rules for rigorously mapping structural formulas into names, resulting in names that faithfully represented the features of these diagrams but not always the chemical behaviour of the compounds themselves. This approach ultimately limited both the number of chemical compounds that the Geneva rules were able to encompass and the breadth of their application. However, the relationship between diagram and name established at the Geneva Congress became the foundation not only of subsequent systems of chemical nomenclature but of methods of organising information that have supported the modern chemical sciences.

  16. Kinetic, structural, and reaction engineering studies of inorganic-organic sol-gel copolymers

    Science.gov (United States)

    Rankin, Stephen Edward

    This work describes quantitative modeling of the kinetics of structure development during polymerization of alkoxysilanes. The modeling includes both deterministic chemical kinetics and stochastic simulation. Polycondensation is experimentally monitored mainly by 29Si nuclear magnetic resonance (NMR). For hydrolysis and polycondensation of (poly)methyl (poly)ethoxysilanes in homogeneous solution, three necessary modeling features are identified: (1) hydrolysis reversibility and rapidness leading to pseudoequilibrium, (2) condensation reactivity decreasing strongly as connectivity increases, and (3) extensive cyclization. Failure to model cyclization can lead to erroneous conclusions. The effects of organic substituents and solvent on polycondensation kinetics are examined by fitting a model with these features to 29Si NMR data. While organic substitution and the extents of hydrolysis and condensation of a silicon site affect the hydrolysis rate, these substituents do not affect hydrolysis equilibrium. Substitution at the reacting site also affects the magnitude but not the existence of a negative condensation substitution effect. Cyclization depends strongly on organic substitution. The deterministic kinetic model fit to NMR data provides direct information only about local structure development, not about the polymer size and shape distribution. To understand the structural implications of the kinetic trends found, this thesis presents kinetic Monte Carlo simulations of alkoxysilane polymerization. The simulations show that extensive cyclization plays a major role in predicting structural features such as the gelation point. Cyclization also causes the polymer structure to depend on monomer concentration---a feature absent from previous models. These simulations allow better agreement with experiment and will be useful in process design. For instance in coating operations, the simulations indicate that structure gradients appear and may cause excess shrinkage and

  17. Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity.

    Science.gov (United States)

    Khassanov, Artoem; Steinrück, Hans-Georg; Schmaltz, Thomas; Magerl, Andreas; Halik, Marcus

    2015-07-21

    Self-assembled monolayers (SAMs) have been established as crucial interlayers and electronically active layers in organic electronic devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), organic thin film transistors (OTFTs), and nonvolatile memories (NVMs). The use of self-assembling functionalized organic molecules is beneficial due to mainly three advantages compared with common thin film deposition approaches. (1) Molecular self-assembly occurs with surface selectivity, determined by the interaction between the functional anchor group of the organic molecules and the target surface. (2) The film thickness of the resulting layers is perfectly controllable on the angstrom scale, due to the self-terminating film formation to only a single molecular layer. And finally, (3) the wide variability in the chemical structure of such molecules enables different SAM functionalities for devices, ranging from electrical insulation to charge storage to charge transport. The SAM approach can be further expanded by employing several functionalized molecules to create mixed SAMs with consequently mixed properties. The function of SAMs in devices depends not only on the chemical structure of the molecules but also on their final arrangement and orientation on the surface. A reliable and nondestructive in-depth characterization of SAMs on nonconductive oxide surfaces is still challenging because of the very small thickness and the impracticality of methods such as scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In this Account, we illustrate how X-ray reflectivity (XRR) provides analytical access to major questions of SAM composition, morphology, and even formation by means of investigations of pure and mixed SAMs based on phosphonic acids (PAs) of various chain structures on flat alumina (AlOx) surfaces. XRR is an analytical method that provides access to spatially averaged structural depth profiles over a relatively

  18. Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    Directory of Open Access Journals (Sweden)

    Cimrová Vĕra

    2011-01-01

    Full Text Available Abstract Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV and short diffusion length (10 nm of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM, we perform morphologic and mechanical characterizations (nanoshaving of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii thin-film heterojunction of polypyrrole (PPy electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond.

  19. Structure and function of the elastic organ in the tibia of a tenebrionid beetle

    Science.gov (United States)

    Ichikawa, Toshio; Toh, Yoshihiro; Sakamoto, Hirofumi

    2016-06-01

    Many insects have a pair of claws on the tip of each foot (tarsus and pretarsus). The movement of the pretarsal claws is mediated by a long apodeme that originates from the claw retractor muscles in the femur. It is generally accepted that the pulling of the apodeme by the muscles flexes the claws to engage with a rough surface of a substrate, and the flexed claws return to their initial position by passive elastic forces within the tarso-pretarsal joint. We found that each tibia of the tenebrionid beetle Zophobas atratus had a chordal elastic organ that tied the apodeme to the distal end of the tibia and assisted the pulled apodeme to return smoothly. The elastic body of the elastic organ consists of a bundle of more than 1000 thin fibrils (0.3-1.5 μm in diameter) with a hairy yarn-shaped structure made by assemblies of intricately interwoven microfibers. Both ends of the fibrillar elastic body were supported by clusters of columnar cells. Ablation of the elastic organ often disturbed the rapid and smooth return of claws from a flexed position when the tarsal segments were forced to curve in order to increase the friction between the apodeme and surrounding tissues in the segments. The result suggests that rapid claw disengagement is an important step in each cycle of leg movements, and the elastic organ may have evolved to assist the reliable detachment of claws that engage tightly with the substrate when climbing or traversing inverted surfaces.

  20. Structure and applications of metal-organic framework based on cyanide and 3,5-dichloropyridine

    Science.gov (United States)

    Etaiw, Safaa El-din H.; El-bendary, Mohamed M.

    2013-06-01

    The reaction of the aqueous/acetonitrile solutions of K3[Cu(CN)4] and 3,5-dichloropyridine (3,5-dClpy), in the presence of Me3SnCl affords a new metal-organic framework (MOF), 3∞[(CuCN)2·(3,5-dClpy)2], 1. The structure of the MOF 1 was characterized by IR, UV-visible, TGA and X-ray single crystal analysis. The structure of MOF 1 consists of CuCN building blocks which are connected by CN group forming 1D-zig-zag chains. Each chain is bridged to another chain by hydrogen bonding organizing 2D-sheets. The structure of 1 is further close packed by hydrogen bonds, π-π stacking and lp-π interactions creating 3D-network. The emission spectra and the thermodynamic parameters from TGA of the MOF 1 were discussed. The MOF 1 was used as heterogeneous catalyst for the oxidative discoloration of methylene blue dye (MB) by dilute solution of hydrogen peroxide as oxidant. The in vitro cytotoxic activity has been evaluated against the human breast cancer cell lines MCF-7. The cytotoxic effect of the MOF 1 on the viability of MCF-7 cells was determined by MTT assay.

  1. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  2. Zr-based metal-organic frameworks: design, synthesis, structure, and applications.

    Science.gov (United States)

    Bai, Yan; Dou, Yibo; Xie, Lin-Hua; Rutledge, William; Li, Jian-Rong; Zhou, Hong-Cai

    2016-04-21

    Among the large family of metal-organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. Although this specific type of MOF is still in its early stage of development, significant progress has been made in recent years. Herein, advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications. Four synthesis strategies implemented in building and/or modifying Zr-MOFs as well as their scale-up preparation under green and industrially feasible conditions are illustrated first. Zr-MOFs with various structural types are then classified and discussed in terms of different Zr-based secondary building units and organic ligands. Finally, applications of Zr-MOFs in catalysis, molecule adsorption and separation, drug delivery, and fluorescence sensing, and as porous carriers are highlighted. Such a review based on a specific type of MOF is expected to provide guidance for the in-depth investigation of MOFs towards practical applications.

  3. Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms.

    Science.gov (United States)

    Balasco, Nicole; Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi

    2013-07-01

    It has been recently discovered that the connection of secondary structure elements (ββ-unit, βα- and αβ-units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222-227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222-227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β-hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well-known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.

  4. Natural evolution inspired design of light trapping structure in thin film organic solar cells

    Science.gov (United States)

    Wang, Chen; Yu, Shuangcheng; Chen, Wei; Sun, Cheng

    2013-09-01

    Light trapping has been developed to effectively enhance the efficiency of the thin film solar cell by extending the pathlength for light interacting with the active materials. Searching for optimal light trapping design requires a delicate balance among all the competing physical processes, including light refraction, reflection, and absorption. The existing design methods mainly depend on engineers' intuition to predefine the topology of the light-trapping structure. However, these methods are not capable of handling the topological variation in reaching the optimal design. In this work, a systematic approach based on Genetic Algorithm is introduced to design the scattering pattern for effective light trapping. Inspired by natural evolution, this method can gradually improve the performance of light trapping structure through iterative procedures, producing the most favorable structure with minimized reflection and substantial enhancement in light absorption. Both slot waveguide based solar cell and a more realistic organic solar with a scattering layer consisting of nano-scale patterned front layer is optimized to maximize absorption by strongly coupling incident sun light into the localized photonic modes supported by the multilayer system. Rigorous coupled wave analysis (RCWA) is implemented to evaluate the absorbance. The optimized slot waveguide cell achieves a broadband absorption efficiency of 48.1% and more than 3-fold increase over the Yablonovitch limit and the optimized realistic organic cell exhibits nearly 50% average absorbance over the solar spectrum with short circuit current density five times larger than the control case using planar ITO layer.

  5. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale.

    Science.gov (United States)

    Furukawa, Shuhei; Reboul, Julien; Diring, Stéphane; Sumida, Kenji; Kitagawa, Susumu

    2014-08-21

    The assembly of metal ions with organic ligands through the formation of coordination bonds gives crystalline framework materials, known as metal-organic frameworks (MOFs), which recently emerged as a new class of porous materials. Besides the structural designability of MOFs at the molecular length scale, the researchers in this field very recently made important advances in creating more complex architectures at the mesoscopic/macroscopic scale, in which MOF nanocrystals are used as building units to construct higher-order superstructures. The structuring of MOFs in such a hierarchical order certainly opens a new opportunity to improve the material performance via design of the physical form rather than altering the chemical component. This review highlights these superstructures and their applications by categorizing them into four dimensionalities, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) superstructures. Because the key issue for structuring of MOFs is to spatially control the nucleation process in desired locations, this review conceptually categorizes the available synthetic methodologies from the viewpoint of the reaction system.

  6. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    Science.gov (United States)

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  7. Probing the bonding and structures of metal-organic radicals with zero energy electrons

    Institute of Scientific and Technical Information of China (English)

    YANG DongSheng

    2012-01-01

    Metal-organic radicals are reactive and transient because of the existence of unpaired valence electrons,and thus the characterization of these open-shell systems is challenging.In our work,the radicals are synthesized by the reaction of bare metal atoms and organic ligands in a laser-vaporization supersonic molecular beam source and characterized with pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy.The molecular beam ZEKE technique routinely yields sub-meV spectral resolution and is a powerful means to study the molecular bonding and structures.This account presents several examples of single-photon ZEKE spectroscopic applications in determining metal binding modes and molecular conformations.

  8. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  9. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials.

    Science.gov (United States)

    Price, Sarah L; Leslie, Maurice; Welch, Gareth W A; Habgood, Matthew; Price, Louise S; Karamertzanis, Panagiotis G; Day, Graeme M

    2010-08-14

    Crystal structure prediction for organic molecules requires both the fast assessment of thousands to millions of crystal structures and the greatest possible accuracy in their relative energies. We describe a crystal lattice simulation program, DMACRYS, emphasizing the features that make it suitable for use in crystal structure prediction for pharmaceutical molecules using accurate anisotropic atom-atom model intermolecular potentials based on the theory of intermolecular forces. DMACRYS can optimize the lattice energy of a crystal, calculate the second derivative properties, and reduce the symmetry of the spacegroup to move away from a transition state. The calculated terahertz frequency k = 0 rigid-body lattice modes and elastic tensor can be used to estimate free energies. The program uses a distributed multipole electrostatic model (Q, t = 00,...,44s) for the electrostatic fields, and can use anisotropic atom-atom repulsion models, damped isotropic dispersion up to R(-10), as well as a range of empirically fitted isotropic exp-6 atom-atom models with different definitions of atomic types. A new feature is that an accurate model for the induction energy contribution to the lattice energy has been implemented that uses atomic anisotropic dipole polarizability models (alpha, t = (10,10)...(11c,11s)) to evaluate the changes in the molecular charge density induced by the electrostatic field within the crystal. It is demonstrated, using the four polymorphs of the pharmaceutical carbamazepine C(15)H(12)N(2)O, that whilst reproducing crystal structures is relatively easy, calculating the polymorphic energy differences to the accuracy of a few kJ mol(-1) required for applications is very demanding of assumptions made in the modelling. Thus DMACRYS enables the comparison of both known and hypothetical crystal structures as an aid to the development of pharmaceuticals and other speciality organic materials, and provides a tool to develop the modelling of the

  10. Self-organization of ULF electromagnetic wave structures in the shear flow driven dissipative ionosphere

    Directory of Open Access Journals (Sweden)

    G. Aburjania

    2014-08-01

    Full Text Available This work is devoted to investigation of nonlinear dynamics of planetary electromagnetic (EM ultra-low-frequency wave (ULFW structures in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow. Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. The shear flow driven wave perturbations effectively extract energy of the shear flow increasing own amplitude and energy. These perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation's front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortices transfer the trapped medium particles, energy and heat. Thus they represent structural elements of turbulence in the ionosphere.

  11. Lead and zinc in the structure of organic and mineral soil components

    Directory of Open Access Journals (Sweden)

    Larissa Kummer

    2013-04-01

    Full Text Available In addition to the more reactive forms, metals can occur in the structure of minerals, and the sum of all these forms defines their total contents in different soil fractions. The isomorphic substitution of heavy metals for example alters the dimensions of the unit cell and mineral size. This study proposed a method of chemical fractionation of heavy metals, using more powerful extraction methods, to remove the organic and different mineral phases completely. Soil samples were taken from eight soil profiles (0-10, 10-20 and 20-40 cm in a Pb mining and metallurgy area in Adrianópolis, Paraná, Brazil. The Pb and Zn concentrations were determined in the following fractions (complete phase removal in each sequential extraction: exchangeable; carbonates; organic matter; amorphous and crystalline Fe oxides; Al oxide, amorphous aluminosilicates and kaolinite; and residual fractions. The complete removal of organic matter and mineral phases in sequential extractions resulted in low participation of residual forms of Pb and Zn in the total concentrations of these metals in the soils: there was lower association of metals with primary and 2:1 minerals and refractory oxides. The powerful methods used here allow an identification of the complete metal-mineral associations, such as the occurrence of Pb and Zn in the structure of the minerals. The higher incidence of Zn than Pb in the structure of Fe oxides, due to isomorphic substitution, was attributed to a smaller difference between the ionic radius of Zn2+ and Fe3+.

  12. Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis.

    Science.gov (United States)

    Jakab, András; Kasprian, Gregor; Schwartz, Ernst; Gruber, Gerlinde Maria; Mitter, Christian; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2015-05-01

    Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter.

  13. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Thirumurugan, R., E-mail: singlecrystalxrd@gmail.com; Anitha, K., E-mail: singlecrystalxrd@gmail.com [School of Physics, Madurai Kamaraj University, Madurai-625021 (India)

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UV–vis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  14. Structural organization and morphometric parameters in system of excretory ducts of human labial glands

    OpenAIRE

    Pilyugin A.V.; Sherstuk O.A.; Deynega T.F.; Ivanchenko N.I.

    2008-01-01

    With the aim of conformity and structural features revealing and space organization of excretory ducts of small salivary glands system of human being, the histology of wall of labial excretory ducts is studied, morphometry of their major size is carried out (external diameter, space, width of wall). In the system of excretory ducts of labial gland of human being, the change of size of their external and internal diameter is revealed, which is seen on the cutting and 3-D models such local shar...

  15. Simultaneous transferring and reserving of solar energy as electrical energy in a single organic semiconductor structure

    Energy Technology Data Exchange (ETDEWEB)

    Sengor, T. [Yildiz Technical Univ., Istanbul (Turkey)

    1995-07-01

    Thin and thick films of a doped organic material, referred to as CHLOH, on a special pair of inorganic substrates are investigated experimentally. The final product simultaneously converts and stores radiated energy, such as solar energy. The stability and efficiency of the new thick film structure has been tested since 1984 and the results illustrate that it is useful as an alternative energy source. The other aspect of the material being investigated is the application of a thin CHLOH layer as an active element in optoelectronic devices.

  16. Self-organizing biochemical cycle in dynamic feedback with soil structure

    Science.gov (United States)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes

  17. Synthesis and Crystal Structure of a Magnesium Metal-organic Framework

    Institute of Scientific and Technical Information of China (English)

    WU Zhao-Feng; FENG Mei-Ling; HU Bing; HUANG Xiao-Ying; ZHAO Yu-Bao

    2011-01-01

    A magnesium metal organic framework, [N-H2(CH3)2][-N(CH3)4][Mgs(bpdc)3(O2CH)6]· 3H2O (1, bpdcH2 = 4,4'-biphenyldicarboxylic acid), has been solvothermally synthesized and structurally characterized. 1 crystallizes in the trigonal system, space group R-3, with a = 11.3427(3), c = 41.5662(18) A, V = 4631.3(3) A^3, Z = 3 and the final R = 0.0457. Its structure features a pillared-layered three-dimensional network with 8.21 A cavities, in which cationic [NH2(CH3)2]^+ or [N(CH3)4]^+ and lattice water molecules are located. Thermal stability of the title compound has also been investigated.

  18. Improve the operational stability of the inverted organic solar cells using bilayer metal oxide structure.

    Science.gov (United States)

    Chang, Jingjing; Lin, Zhenhua; Jiang, Changyun; Zhang, Jie; Zhu, Chunxiang; Wu, Jishan

    2014-11-12

    Operational stability is a big obstacle for the application of inverted organic solar cells (OSCs), however, less talked about in the research reports. Due to photoinduced degradation of the metal oxide interlayer, which can cause shunts generation and degeneration in ZnO interlayer, a significant degradation of open circuit voltage (Voc) and fill factor (FF) has been observed by in situ periodic measurements of the device current density-voltage (J-V) curves with light illumination. By combining TiOx and ZnO to form bilayer structures on ITO, the photovoltaic performance is improved and the photoinduced degradation is reduced. It was found that the device based on ZnO/TiOx bilayer structure achieved better operational stability as compared to that with ZnO or TiOx interlayer.

  19. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire.

    Science.gov (United States)

    Jahan, Maryam; Bao, Qiaoliang; Yang, Jia-Xiang; Loh, Kian Ping

    2010-10-20

    Graphene can be decorated with functional groups on either side of its basal plane, giving rise to a bifunctional nanoscale building block that can undergo face-to-face assembly. We demonstrate that benzoic acid-functionalized graphene (BFG) can act as a structure-directing template in influencing the crystal growth of metal-organic framework (MOF). BFG is also incorporated into MOF as framework linker. Because of the high density of carboxylic groups on benzoic acid-functionalized graphene, an unusual MOF nanowire that grows in the [220] direction was synthesized. The diameter of the nanowire correlates closely with the lateral dimensions of the BFG. The intercalation of graphene in MOF imparts new electrical properties such as photoelectric transport in the otherwise insulating MOF. The results point to the possibility of using functionalized graphene to synthesize a wide range of structural motifs in MOF with adjustable metrics and properties.

  20. Synthesis, structure, and magnetic properties of two novel lanthanide-organic frameworks

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two novel metal-organic frameworks, {[Eu(phen)(NDA)1.5(H2O)]}n ((1); NDA = 2,6-naphthalenedicarboxylate ions, phen = 1,10-phenanthroline) and {[Gd(phen)(NDA)1.5]·0.5H2NDA}n (2), have been synthesized under hydrothermal conditions. The structure analyses of 1 and 2 reveal that the two compounds belong to the triclinic system with space group P-1. Compound 1 features a 2D lattice structure while compound 2 displays a novel 3D architecture. The two frameworks were further characterized by elemental analyses, luminescent spectrua, and variable-temperature magnetic susceptibilities. The investigation of lumi-nescent property reveals that 1 exhibits characteristic red emission of Eu3+. Magnetic investigation suggests that the ferromagnetic coupling exists between adjacent Gd3+ in compound 2.

  1. Synthesis, structure, and masnetic properties of two novel lanthanide-organic frameworks

    Institute of Scientific and Technical Information of China (English)

    LI XiuHua; FANG Ming; ZHAO Bin

    2009-01-01

    Two novel metal-organic frameworks,{[Eu(phen)(NDA)1.5(H2O)]}n ((1);NDA = 2,6-naphthalenedicarboxylate ions,phen=1,10-phenanthroline) and {[Gd(phen)(NDA)1.5].0.5H2NDA}n (2),have been synthesized under hydrothermal conditions.The structure analyses of 1 and 2 reveal that the two compounds belong to the triclinic system with space group P-1.Compound 1 features a 2D lattice structure while compound 2 displays a novel 3D architecture.The two frameworks were further characterized by elemental analyses,luminescent spectrua,and variable-temperature magnetic susceptibilities.The investigation of luminescent property reveals that 1 exhibits characteristic red emission of Eu2+.Magnetic investigation suggests that the ferromagnetic coupling exists between adjacent Gd3+ in compound 2.

  2. The organization of mineral exploitation and the relationship to urban structures and local business development

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte; Jørgensen, Ulrik

    2013-01-01

    The paper explores relations between mining and urban structures as these are decisive for involving the local workforce and developing local businesses. A major challenge for Greenland is the on-going decoupling between existing settlements and the main export industry based on marine living...... resources. Because Greenland, as other Arctic regions, are structured in relatively isolated island economies with only modest trade between the settlements and no possibility of commuting, a number of settlements are left without substantial industrial base. Administration of the settlement becomes...... of the resources using immigrant and migrant labour, working intensively over a period of time, while living in shantytowns. Both local and international experiences show that such an organization of work life is not attractive for the population, and that it often provides significant human and social challenges...

  3. [Peculiarities of the structural-functional organization of motor neuropil of dragonfly thoracic ganglia].

    Science.gov (United States)

    Plotnikova, S I; Sviderskiĭ, V L; Gorelkin, V S

    2012-01-01

    The work considers the structural-functional relations existing in the motor neuropil of thoracic ganglia of dragonflies - the animals able to perform very complex and fast maneuvers in the flight. The motor neuropil in dragonflies is shown to be more differentiated than in the lees mobile insects, while motor nuclei in neuropil are more clearly outlined and closer to each other. There are revealed dendrites of motoneurons of pedal muscles (the middle nucleus), which are running into the anterior and posterior nuclei that contain dendrites of motoneurons of wing muscles. A possible role of such approaching is discussed for close functional interaction of wing and foot muscles, which is necessary to dragonflies during flight at their catching of large insects with aid of legs. Peculiarities are considered in structural organization of motoneurons of wing muscles dragonflies and locusts, which indicate the greater functional possibilities peculiar to motoneurons of the dragonflies motor apparatus.

  4. Understanding device-structure-induced variations in open-circuit voltage for organic photovoltaics.

    Science.gov (United States)

    Wang, Zhiping; Uemura, Yu; Zhou, Ying; Miyadera, Tetsuhiko; Azumi, Reiko; Yoshida, Yuji; Chikamatsu, Masayuki

    2015-05-27

    We investigate the structural influences on the device performance, especially on open-circuit voltage (V(OC)) in squaraine (SQ)/fullerene (C60) bilayer cells. Simply changing the SQ thickness could lead to 40% variation in V(OC) from 0.62 to 0.86 V. The ionization potential (IP) of SQ films and recombination at the anode surface as well as donor/acceptor (D/A) interface sensitively vary with film thicknesses, which account for the shifts in V(OC). The anode recombination can be effectively suppressed by preventing direct contact between C60 and the anode with a buffer layer, delivering an elevated V(OC). Through polarized infrared-multiple-angle incidence resolution spectroscopy measurement, the molecular structure of SQ films is found to gradually evolve from lying-down on indium-tin oxide substrates with noncentrosymmetric orientation at low thicknesses to random structure at high thicknesses. The different molecular orientation may yield different strengths of electronic coupling, which affects the charge-carrier recombination and thus V(OC). Moreover, the oriented SQ films would spontaneously compose aligned dipole moments at the D/A interface because of the strong dipolar effects in SQ molecules identified by density functional theory calculations, whereas no aligned interfacial dipole moment exists in the random structure. The resulting interfacial dipole moments would form an electric field at the D/A interface, leading to variations in the IP and thus impacting V(OC). Our findings demonstrate that V(OC) in organic photovoltaic cells is critically associated with the molecular orientation that affects the charge-carrier recombination and interfacial dipole alignment, which should be seriously taken into consideration for the design of organic molecules and optimization of the cell efficiency.

  5. Using operational and defined fractions to assess soil organic matter stabilization and structure

    Science.gov (United States)

    Horwath, W. R.

    2015-12-01

    Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate

  6. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs.

    Science.gov (United States)

    Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz

    2013-10-01

    The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs.

  7. "OrganicPad": An Interactive Freehand Drawing Application for Drawing Lewis Structures and the Development of Skills in Organic Chemistry

    Science.gov (United States)

    Cooper, Melanie M.; Grove, Nathaniel P.; Pargas, Roy; Bryfczynski, Sam P.; Gatlin, Todd

    2009-01-01

    Lewis structures are important for learning chemistry as they serve as an essential link between the structure of chemical compounds and their function. Unfortunately, the creation of valid Lewis structures remains an elusive goal for many students. In recent years, several web-based programs have been created that allow students to receive…

  8. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices.

    Science.gov (United States)

    van de Wiel, H J; Galagan, Y; van Lammeren, T J; de Riet, J F J; Gilot, J; Nagelkerke, M G M; Lelieveld, R H C A T; Shanmugam, S; Pagudala, A; Hui, D; Groen, W A

    2013-12-06

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

  9. Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liangbo; Zhu, Pan [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Meunier, Vincent, E-mail: meuniv@rpi.edu [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-05-14

    Recently synthesized two-dimensional covalent organic frameworks (COFs) exhibit high surface area, large pore size, and unique structural architectures, making them promising materials for various energy applications. Here, a total of nine COFs structures, including two deposited on a hexagonal boron nitride substrate, are investigated using density functional theory, quasi-particle many-body theory within the GW approximation, and an image charge model. The structures considered belong to two major families (thiophene-based COF-n (T-COF-n) and tetrakis (4-aminophenyl) porphyrin-x (TAPP-x)) differing from the presence of B—O or C=N linkers. While T-COF-n structures are shown to constitute planar networks, TAPP-x systems can display non-negligible corrugation due to the out-of-plane rotation of phenyl rings. We find that the electronic properties do not differ significantly when altering the chain molecules within each family. Many-body effects are shown to lead to large band-gap increase while the presence of the substrate yields appreciable reductions of the gaps, due to substrate polarization effects.

  10. Structure of the organic crystallite unit in coal as determined by X-ray diffraction

    Institute of Scientific and Technical Information of China (English)

    Song Dangyu; Yang Cunbei; Zhang Xiaokui; Su Xianbo; Zhang Xiaodong

    2011-01-01

    X-ray diffraction (XRD) was used to study the structure of the organic crystallite unit (La,Lc,d002) in coals collected from Henan and Shanxi Provinces,XRD patterns of coal were collected in a step-scan mode (0.1 °/step) over an angular range of 2-90° (2θ),allowing 8 s at each step.The structure of the crystallite unit was determined from the Scherrer equation and peak parameters deduced from whole pattern fitting.The results show that the structure of the crystallite unit in coal is mainly controlled by the coal rank.As the coal rank increases the average diameter of a coal crystallite unit (La) increases,the interlayer spacing (d002) decreases slightly,and the average height of a coal crystallite unit (Lc) increases at first but then decreases.A new diffraction peak from the crystallite unit in coal was found at a low scattering angle in the XRD pattern (2-10°).This suggests a structure with an inter-layer spacing from 1.9 to 2.8 nm exists in coal crystallites.

  11. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics.

    Science.gov (United States)

    Campbell, J Larry; Baba, Takashi

    2015-06-02

    Although lipids are critical components of many cellular assemblies and biological pathways, accurate descriptions of their molecular structures remain difficult to obtain. Many benchtop characterization methods require arduous and time-consuming procedures, and multiple assays are required whenever a new structural feature is probed. Here, we describe a new mass-spectrometry-based workflow for enhanced structural lipidomics that, in a single experiment, can yield almost complete structural information for a given glycerophospholipid (GPL) species. This includes the lipid's sum (Brutto) composition from the accurate mass measured for the intact lipid ion and the characteristic headgroup fragment, the regioisomer composition from fragment ions unique to the sn-1 and sn-2 positions, and the positions of carbon-carbon double bonds in the lipid acyl chains. Here, lipid ions are fragmented using electron impact excitation of ions from organics (EIEIO)--a technique where the singly charged lipid ions are irradiated by an electron beam, producing diagnostic product ions. We have evaluated this methodology on various lipid standards, as well as on a biological extract, to demonstrate this new method's utility.

  12. Re-evaluation of all-plastic organic dye laser with DFB structure fabricated using photoresists

    Science.gov (United States)

    Tsutsumi, Naoto; Nagi, Saori; Kinashi, Kenji; Sakai, Wataru

    2016-10-01

    Organic solid-state lasers (OSSLs) with distributed feedback structures can detect nanoscale materials and therefore offer an attractive sensing platform for biological and medical applications. Here we investigate the lasing characteristics, i.e., the threshold and slope efficiency, as a function of the grating depth in OSSL devices with distributed feedback (DFB) structure fabricated using photoresists. Two types of photoresists were used for the DFB structures: a negative photoresist, SU-8 2002, and a positive photoresist, ma-P 1275. The DFB structure was fabricated using a Lloyd-mirror configuration. The active layer was a rhodamine 6G-doped cellulose acetate waveguide. The threshold for the first order mode (m  = 1) was lower than that for the second and third order modes (m = 2, and 3). A low threshold of 27 μJ cm-2 pulse-1 (58 nJ) was obtained using SU-8 2002, with m = 1. The slope efficiency was evaluated as a function of grating depth for each mode and increased as the grating depth increased.

  13. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    Institute of Scientific and Technical Information of China (English)

    JIAO Juntao; XIAO Dengming; ZHAO Xiaoling; DENG Yunkun

    2016-01-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6).As the properties of gas are determined by the gas molecule structure,the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development.In this paper,we calculated the vertical electron affinity,molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths.By this method,we find part of the key properties of the molecule which are related to the electric strength,including the vertical electron affinity,the lowest unoccupied molecule orbit (LUMO) energy,molecule orbits distribution and negativeion system energy.We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method.

  14. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    Science.gov (United States)

    Jiao, Juntao; Xiao, Dengming; Zhao, Xiaoling; Deng, Yunkun

    2016-05-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method. supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)

  15. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato.

    Science.gov (United States)

    Bultema, Jelle B; Braun, Hans-Peter; Boekema, Egbert J; Kouril, Roman

    2009-01-01

    The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V(2)). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I+III(2), III(2)+IV(1), V(2), I+III(2)+IV(1) and I(2)+III(2) in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I(2)+III(2)+IV(2) supercomplex, could be determined in a coherent way. The maps also show that the I+III(2)+IV(1) supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I(2)+III(2)+IV(2) units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.

  16. Structure and dynamics of interfaces in organic and inorganic materials using atomic level simulation

    Science.gov (United States)

    Lee, Donghwa

    Interfaces in materials play a key role for industrial applications. The structures and dynamics at various interfaces including ferroelectric domain walls, gas-organic interface, organic-semiconductor interface and metal-gas interface are investigated with different atomic levels of simulation approaches. Ferroelectricity: Due to their unique ferroelectric and nonlinear optical properties, trigonal ferroelectrics such as LiNbO3 and LiTaO 3, are of wide interest for their potential applications in optoelectronics and nonlinear optics. The properties of these materials are heavily influenced by the shape of ferroelectric domains and domain walls. Therefore, investigation of the local structure and energetics of the ferroelectric domain walls and their interaction with defects on atomic scales, which is not clearly understood, is extremely important. The structure and energetics of ferroelectric domain walls in LiNbO 3 are examined using density functional theory (DFT) and molecular dynamics (MD) methods. The energetically favorable structures of 180° domain walls and the activation energy for domain wall motion are determined by atomic level simulations. The variation of polarization due to the presence of domain walls is also discussed. Defects can be pinned by domain walls. Various defects-domain walls interactions and the effects on domain wall motion are described using atomic level simulation methods. Although the structure of LiTaO3 is very similar with LiNbO3, it has been said experimentally that the shapes of domain walls are different with the presence of particular defects. Using both DFT and a newly developed interatomic potential for LiTaO 3, the differences in domain wall structure are understood in terms of the difference in energetics of domain walls between two materials. Polymerization: Surface polymerization by ion-assisted deposition (SPIAD) enables the control of thin film chemistry and morphology on the nanoscale during growth of conductive

  17. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    Science.gov (United States)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  18. Influence of organic modification on the structure and properties of polyurethane/sepiolite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hongxiang, E-mail: chenhx_916@hotmail.com [Hubei Key Laboratory of Coal Conversion and New Carbon Material, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, 947 Heping Road, 430081 Wuhan, Hubei (China); Zeng Danlin [Hubei Key Laboratory of Coal Conversion and New Carbon Material, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, 947 Heping Road, 430081 Wuhan, Hubei (China); Xiao Xiaoqin [College of Machinery and Automation, Wuhan University of Science and Technology, 430081 Wuhan (China); Zheng Maosheng [Institute of Condensed Physics and Materials, Northwest University, 710069 Xi' an (China); Ke Changmei; Li Yanjun [Hubei Key Laboratory of Coal Conversion and New Carbon Material, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, 947 Heping Road, 430081 Wuhan, Hubei (China)

    2011-01-25

    Research highlights: {yields} KH550 was the best among the three organic modifiers by comparing tensile properties, water resistance and swelling rate. {yields} FTIR revealed the strong interaction between KH550-Sp and the PU matrix. {yields} TEM revealed the compatibility of KH550-Sp and PU was improved. {yields} SEM confirmed the good dispersion of KH550-Sp in PU matrix. - Abstract: The polyurethane (PU) nanocomposites were prepared using organomodified sepiolite (organo-Sp) by in situ polymerization method. The clay was modified with three different organic modifiers such as {gamma}-aminopropyltriethoxylsilane (KH550), hexadecyltrimethylammonium bromide (CTAB) and lauric acid (LA). The morphology and the dispersion of organo-Sp in polyurethane were characterized by scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. The influence of organo-Sp on the tensile properties, water resistance and swelling rate of polyurethane composites was studied. The results showed the properties and structure of polyurethane nanocomposites were related to the kind of organic modifier.

  19. Organic-inorganic semiconductor hybrid systems. Structure, morphology, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    El Helou, Mira

    2012-08-22

    This dissertation addresses the preparation and characterization of hybrid semiconducting systems combining organic with inorganic materials. Characterization methods used included to determine the structure, morphology, and thermal stability comprised X-ray diffraction (XRD), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), and X-ray photoelectron spectroscopy (XPS). One organic-inorganic semiconducting system was pentacene (C{sub 22}H{sub 14}) and zinc oxide. This interface was investigated in detail for pentacene on an oxygen-terminated zinc oxide surface, i.e. ZnO(000 anti 1). An extended study on the promising p-n junction was carried out for pentacene on ZnO with different orientations which exhibit different chemical and structural characteristics: ZnO(000 anti 1), ZnO(0001), and ZnO(10 anti 10). Moreover, the organic crystal structure of pentacene was selectively tuned by carefully choosing the substrate temperature. This defined interface with a physisorbed pentacene layer on ZnO was characterized by optical absorption which depends on the temperature of the measured system, the pentacene film thickness, and the molecular orientation and packing. The high quality of the pentacene films allowed in one case to characterize the Davydov splitting by linear polarized light focused on a single crystallite. Another subject in the field of organic-inorganic hybrid materials comprised conjugated dithiols used as self-assembled monolayers (SAMs) for immobilizing semiconducting CdS nanoparticles (NPs) on Au substrates. It was demonstrated that an appropriate selection and preparation of the conjugated SAMs is crucial for building up a light-addressable potentiometric sensor with a sufficient efficiency. An optimized electron transfer was achieved with SAMs of long range ordering, high stability, and adequate conductivity. This was examined for different linkers and was best for stilbenedithiol immobilized in solution at higher temperatures. Due

  20. Real-Space Imaging of the Atomic Structure of Organic-Inorganic Perovskite.

    Science.gov (United States)

    Ohmann, Robin; Ono, Luis K; Kim, Hui-Seon; Lin, Haiping; Lee, Michael V; Li, Youyong; Park, Nam-Gyu; Qi, Yabing

    2015-12-30

    Organic-inorganic perovskite is a promising class of materials for photovoltaic applications and light emitting diodes. However, so far commercialization is still impeded by several drawbacks. Atomic-scale effects have been suggested to be possible causes, but an unequivocal experimental view at the atomic level is missing. Here, we present a low-temperature scanning tunneling microscopy study of single crystal methylammonium lead bromide CH3NH3PbBr3. Topographic images of the in situ cleaved perovskite surface reveal the real-space atomic structure. Compared to the bulk we observe modified arrangements of atoms and molecules on the surface. With the support of density functional theory we explain these by surface reconstruction and a substantial interplay of the orientation of the polar organic cations (CH3NH3)(+) with the position of the hosting anions. This leads to structurally and electronically distinct domains with ferroelectric and antiferroelectric character. We further demonstrate local probing of defects, which may also impact device performance.

  1. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    Science.gov (United States)

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  2. Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures

    Science.gov (United States)

    Gemini, Laura; Hashida, Masaki; Miyasaka, Yasuhiro; Inoue, Shunsuke; Limpouch, Jiri; Mocek, Tomas; Sakabe, Shuji

    2015-05-01

    Laser induced periodic surface structures (LIPSS) self-organized on Ti surface after irradiations by femtosecond laser beam composed by double pulses with a fixed time delay of 160 fs. The fluence of the first pulse (FPP), responsible for surface plasma formation, was varied in the range 10-50 mJ cm-2 and always kept below the LIPSS formation threshold fluence (FLIPSS) on Ti for 50-single-shots exposure. The fluence of the delayed pulse (FLP), responsible for LIPSS self-organization, was varied in the range 60-150 mJ cm-2 and always kept above FLIPSS. Regardless the specific fluence FLP of the delayed pulse, the interspace of the grating structures increases with the increase of FPP, that is an increase of the surface plasma density. This tendency suggests that a variation of the surface plasma density, due to a variation of FPP, actually leads to a modification of the grating features. Moreover, we observed that the LIPSS periodicities after double pulse exposures are in quite good agreement with data on LIPSS periodicities after single 160 fs pulse irradiations on Ti surface and with the curve predicted by the parametric decay model. This experimental result suggests that the preformed plasma might be produced in the rising edge of the temporal profile of the laser pulse.

  3. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.

    Science.gov (United States)

    Li, Xiumin; Small, Michael

    2012-06-01

    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.

  4. Structure Characterization and Properties of Metal-Surfactant Complexes Dispersed in Organic Solvents.

    Science.gov (United States)

    de la Iglesia, Pablo; Jaeger, Vance W; Xi, Yuyin; Pfaendtner, Jim; Pozzo, Lilo D

    2015-08-25

    This work describes the synthesis and characterization of metal-surfactant complexes. Dioctyl sulfosuccinate and dodecylbenzenesulfonate are associated with multivalent aluminum, iron, and vanadium ions using an ion exchange reaction. The metal complexes are dispersible in various organic solvents. In solvents with low polarity, the complexes form "inverse" macromolecular structures with multiple metal ions. In contrast, in alcohols, the complex size is reduced, showing a more disperse conformation. The metal and surfactant ions are still strongly bonded to each other in all the solvents probed. Small-angle X-ray and neutron scattering (SAXS and SANS) are used to characterize the structures. Simultaneous fitting of neutron and X-ray scattering spectra is performed in order to obtain an accurate description of the system. Scattering results are also validated by performing molecular dynamics (MD) simulations. The conductive and electrochemical properties of the complexes in solution are also evaluated. The dispersion of metal-organic complexes significantly increases electric conductivity, and some metal ions in the core of the complexes are shown to be electrochemically active in apolar solvents.

  5. Report on the sixth blind test of organic crystal structure prediction methods

    Science.gov (United States)

    Reilly, Anthony M.; Cooper, Richard I.; Adjiman, Claire S.; Bhattacharya, Saswata; Boese, A. Daniel; Brandenburg, Jan Gerit; Bygrave, Peter J.; Bylsma, Rita; Campbell, Josh E.; Car, Roberto; Case, David H.; Chadha, Renu; Cole, Jason C.; Cosburn, Katherine; Cuppen, Herma M.; Curtis, Farren; Day, Graeme M.; DiStasio Jr, Robert A.; Dzyabchenko, Alexander; van Eijck, Bouke P.; Elking, Dennis M.; van den Ende, Joost A.; Facelli, Julio C.; Ferraro, Marta B.; Fusti-Molnar, Laszlo; Gatsiou, Christina-Anna; Gee, Thomas S.; de Gelder, René; Ghiringhelli, Luca M.; Goto, Hitoshi; Grimme, Stefan; Guo, Rui; Hofmann, Detlef W. M.; Hoja, Johannes; Hylton, Rebecca K.; Iuzzolino, Luca; Jankiewicz, Wojciech; de Jong, Daniël T.; Kendrick, John; de Klerk, Niek J. J.; Ko, Hsin-Yu; Kuleshova, Liudmila N.; Li, Xiayue; Lohani, Sanjaya; Leusen, Frank J. J.; Lund, Albert M.; Lv, Jian; Ma, Yanming; Marom, Noa; Masunov, Artëm E.; McCabe, Patrick; McMahon, David P.; Meekes, Hugo; Metz, Michael P.; Misquitta, Alston J.; Mohamed, Sharmarke; Monserrat, Bartomeu; Needs, Richard J.; Neumann, Marcus A.; Nyman, Jonas; Obata, Shigeaki; Oberhofer, Harald; Oganov, Artem R.; Orendt, Anita M.; Pagola, Gabriel I.; Pantelides, Constantinos C.; Pickard, Chris J.; Podeszwa, Rafal; Price, Louise S.; Price, Sarah L.; Pulido, Angeles; Read, Murray G.; Reuter, Karsten; Schneider, Elia; Schober, Christoph; Shields, Gregory P.; Singh, Pawanpreet; Sugden, Isaac J.; Szalewicz, Krzysztof; Taylor, Christopher R.; Tkatchenko, Alexandre; Tuckerman, Mark E.; Vacarro, Francesca; Vasileiadis, Manolis; Vazquez-Mayagoitia, Alvaro; Vogt, Leslie; Wang, Yanchao; Watson, Rona E.; de Wijs, Gilles A.; Yang, Jack; Zhu, Qiang; Groom, Colin R.

    2016-01-01

    The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and ‘best practices’ for performing CSP calculations. All of the targets, apart from a single potentially disordered Z′ = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms. PMID:27484368

  6. Report on the sixth blind test of organic crystal structure prediction methods.

    Science.gov (United States)

    Reilly, Anthony M; Cooper, Richard I; Adjiman, Claire S; Bhattacharya, Saswata; Boese, A Daniel; Brandenburg, Jan Gerit; Bygrave, Peter J; Bylsma, Rita; Campbell, Josh E; Car, Roberto; Case, David H; Chadha, Renu; Cole, Jason C; Cosburn, Katherine; Cuppen, Herma M; Curtis, Farren; Day, Graeme M; DiStasio, Robert A; Dzyabchenko, Alexander; van Eijck, Bouke P; Elking, Dennis M; van den Ende, Joost A; Facelli, Julio C; Ferraro, Marta B; Fusti-Molnar, Laszlo; Gatsiou, Christina Anna; Gee, Thomas S; de Gelder, René; Ghiringhelli, Luca M; Goto, Hitoshi; Grimme, Stefan; Guo, Rui; Hofmann, Detlef W M; Hoja, Johannes; Hylton, Rebecca K; Iuzzolino, Luca; Jankiewicz, Wojciech; de Jong, Daniël T; Kendrick, John; de Klerk, Niek J J; Ko, Hsin Yu; Kuleshova, Liudmila N; Li, Xiayue; Lohani, Sanjaya; Leusen, Frank J J; Lund, Albert M; Lv, Jian; Ma, Yanming; Marom, Noa; Masunov, Artëm E; McCabe, Patrick; McMahon, David P; Meekes, Hugo; Metz, Michael P; Misquitta, Alston J; Mohamed, Sharmarke; Monserrat, Bartomeu; Needs, Richard J; Neumann, Marcus A; Nyman, Jonas; Obata, Shigeaki; Oberhofer, Harald; Oganov, Artem R; Orendt, Anita M; Pagola, Gabriel I; Pantelides, Constantinos C; Pickard, Chris J; Podeszwa, Rafal; Price, Louise S; Price, Sarah L; Pulido, Angeles; Read, Murray G; Reuter, Karsten; Schneider, Elia; Schober, Christoph; Shields, Gregory P; Singh, Pawanpreet; Sugden, Isaac J; Szalewicz, Krzysztof; Taylor, Christopher R; Tkatchenko, Alexandre; Tuckerman, Mark E; Vacarro, Francesca; Vasileiadis, Manolis; Vazquez-Mayagoitia, Alvaro; Vogt, Leslie; Wang, Yanchao; Watson, Rona E; de Wijs, Gilles A; Yang, Jack; Zhu, Qiang; Groom, Colin R

    2016-08-01

    The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

  7. Evaluation of planning dose accuracy in case of radiation treatment on inhomogeneous organ structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Yong; Lee, Jae Hee; Kwak, Yong Kook; Ha, Min Yong [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2013-09-15

    We are to find out the difference of calculated dose of treatment planning system (TPS) and measured dose in case of inhomogeneous organ structure. Inhomogeneous phantom is made with solid water phantom and cork plate. CT image of inhomogeneous phantom is acquired. Treatment plan is made with TPS (Pinnacle3 9.2. Royal Philips Electronics, Netherlands) and calculated dose of point of interest is acquired. Treatment plan was delivered in the inhomogeneous phantom by ARTISTE (Siemens AG, Germany) measured dose of each point of interest is obtained with Gafchromic EBT2 film (International Specialty Products, US) in the gap between solid water phantom or cork plate. To simulate lung cancer radiation treatment, artificial tumor target of paraffin is inserted in the cork volume of inhomogeneous phantom. Calculated dose and measured dose are acquired as above. In case of inhomogeneous phantom experiment, dose difference of calculated dose and measured dose is about -8.5% at solid water phantom-cork gap and about -7% lower in measured dose at cork-solid water phantom gap. In case of inhomogeneous phantom inserted paraffin target experiment, dose difference is about 5% lower in measured dose at cork-paraffin gap. There is no significant difference at same material gap in both experiments. Radiation dose at the gap between two organs with different electron density is significantly lower than calculated dose with TPS. Therefore, we must be aware of dose calculation error in TPS and great care is suggested in case of radiation treatment planning on inhomogeneous organ structure.

  8. Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks.

    Science.gov (United States)

    Dunne, Lawrence J; Manos, George

    2016-03-14

    Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks.

  9. Explaining the Relationship between Organizational Structure and Dimensions of Learning Organizations (Case study: Education Organization in Boroojerd County and the Related Departments

    Directory of Open Access Journals (Sweden)

    Javad Mehrabi

    2013-04-01

    Full Text Available The present survey has been conducted to explain the relationship between organizational structure and dimensions of learning organizations. It was conducted using descriptive-field method. The statistical population included employees of Education Organization in Borujerd County and the related departments. Sample volume was selected through random sampling method and was equal to 140 persons using Morgan table. Validity of the questionnaire was confirmed through content validity by professors and the clear-sighted. Its reliability was measured using pre-test and calculating Cronbach alpha. Pierson correlation coefficient, Friedman test and bi-nominal test using SPSS software were used for data analysis. Results of Pierson correlation coefficient test show there is a significant and negative relationship between organizational structure and fulfillment degree of learning organizations. This relationship is significant about all dimensions of learning organization. Given to results of Friedman test, the most important dimension of learning organizations is the component of team learning based on the viewpoint of employees of the Education Organization. According to results of bi-nominal test, there is only one variable in the statistical population and that is mental models. Also according to results of correlation coefficient matrix of research variables team learning and shared vision have the highest correlation.

  10. 网络信息组织中超文本链接的优化%Optimization of Hyperlink Structure in Network Information Organization

    Institute of Scientific and Technical Information of China (English)

    黄晓斌

    2003-01-01

    The article analyzes the structures and types of Web page hyperlinks, describes their characteristics and functions, and discusses how to optimize hyperlink structure in network information organization.

  11. A novel characterization of organic molecular crystal structures for the purpose of crystal engineering.

    Science.gov (United States)

    Thomas, Noel W

    2015-08-01

    A novel analytical approach is proposed for the characterization of organic molecular crystal structures where close packing is an important factor. It requires the identification of a unique reference axis within the crystal, along which three-dimensional space is divided into close-packed blocks (CPB) and junction zones (JZ). The degree of close packing along the reference axis is quantified by a two-dimensional packing function, ϕ2D, of symmetry determined by the space group. Values of ϕ2D reflect the degree of area-filling in planes perpendicular to this axis. The requirement of close packing within CPB allows the planar structures perpendicular to the reference axis to be analysed as tessellations of area-filling molecular-based cells (MBC), which are generally hexagonal. The form of these cells reflects the molecular shape in the cross-section, since their vertices are given by the centres of the voids between molecules. There are two basic types of MBC, Type 1, of glide or pseudo-glide symmetry, and Type 2, which is formed by lattice translations alone and generally requires a short unit-cell axis. MBC at layers of special symmetry are used to characterize the structures in terms of equivalent ellipses with parameters aell, bell and χell. The ratio aell/bell allows the established α, β, γ classification to be integrated into the current framework. The values of parameters aell and bell arising from all the structures considered, polynuclear aromatic hydrocarbons (PAH), substituted anthracenes and anthraquinones (SAA) and 2-benzyl-5-benzylidene (BBCP) are mapped onto a universal curve. The division of three-dimensional space into CPB and JZ is fundamentally useful for crystal engineering, since the structural perturbations brought about by substitution at hydrogen positions located within JZ are minimal. A contribution is also made to ongoing debate concerning the adoption of polar space groups, isomorphism and polymorphism.

  12. Chapter 5: Organizational structures suited to ISPRM's evolving role as an international non-governmental organization in official relation with the world health organization.

    Science.gov (United States)

    von Groote, Per M; Reinhardt, Jan D; Gutenbrunner, Christoph; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Stucki, Gerold

    2009-09-01

    International non-governmental organizations (NGOs) in official relation with the World Health Organization (WHO) face organizational challenges against the background of legitimate representation of their membership and accountable procedures within the organization. Moreover, challenges arise in the light of such an international NGO's civil societal mandate to help reach the "health-for-all" goals as defined by WHO and to facilitate the implementation of the United Nations (UN) Convention on the Rights of Persons with Disabilities. The objective of this paper is to examine how such an international NGO using the International Society of Physical and Rehabilitation Medicine (ISPRM) as a case in point can address these challenges. The specific aims are to analyse ISPRM's structures and procedures of internal organs and external relations and to develop solutions. These possible solutions will be presented as internal organizational scenarios and a yearly schedule of meetings closely aligned to that of WHO to facilitate an efficient internal and external interaction.

  13. Organizing DNA Origami Tiles Into Larger Structures Using Pre-formed Scaffold Frames

    Science.gov (United States)

    Zhao, Zhao; Liu, Yan; Yan, Hao

    2012-01-01

    Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tiles units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as ‘super-origami’ or ‘origami of origami’ to scale up DNA origami technology. First, this method uses a collection of bridge strands to pre-fold a single stranded DNA scaffold into a loose framework. Subsequently, pre-formed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures. PMID:21682348

  14. Improved efficiency in blue phosphorescent organic light-emitting diodes by the stepwise doping structure

    Science.gov (United States)

    Yang, Liping; Wang, Xiaoping; Kou, Zhiqi; Ji, Changyan

    2017-04-01

    The electro-optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the stepwise doping structure in the emitting layer (EML). A series of multi-EML devices with different doping concentration of blue dopant (FIrpic) are fabricated. The effect of the stepwise doping structure close to the electron transport layer is more obvious than that close to the hole transport layer. When the doping concentration increases gradually from the hole injection side to the electron injection side, the maximum values of the luminance, current and power efficiency can reach to 9745 cd/m2 (at 9 V), 32.0 cd/A and 25.1 lm/W in the device with the asymmetric tri-EML structure, which is improved by about 10% compared with that in the bi-EML device. When the number of the EML is four, the performance of the device becomes worse because of the interface effect resulting from different concentration of dopant.

  15. Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites

    Science.gov (United States)

    Orthous-Daunay, F.-R.; Quirico, E.; Beck, P.; Brissaud, O.; Dartois, E.; Pino, T.; Schmitt, B.

    2013-03-01

    Insoluble Organic Matter (IOM) found in primitive meteorites was formed in the Early Solar System and subsequently processed on the parent asteroids. The location, temporal sequence and processes of formation of this IOM are still a matter of debate. In particular, there is no consensus on the actual effect of post-accretional aqueous alteration processes on the chemical composition and structure of IOM. In the most primitive chondrites (types 1 and 2), these alterations have so far been either neglected or generically assigned to oxidation processes induced by fluid circulation. A series of IOM samples extracted from 14 chondrites with extensively documented post-accretional histories have been studied by infrared spectroscopy. Aqueous alteration shows no detectable effect on the chemical composition and structure of IOM within or across chondrite classes. Indeed, the most effective post-accretional process appears to be a high-temperature short-duration heating event and concerns essentially type 2 chondrites. In any case, post-accretional processes cannot account for all the chemical and structural variations of IOM. Chondrites from the CI, CR and CM classes accreted IOM precursors with moderately variable compositions, suggesting a chemical heterogeneity of the protosolar disk. The 3.4 μm band, and possibly its overtones and combinations in the near-infrared range, appear to be tracer(s) of the chemical class and possibly of surface heating processes triggered by impacts.

  16. Altered topological organization of white matter structural networks in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    Full Text Available OBJECTIVE: To investigate the topological alterations of the whole-brain white-matter (WM structural networks in patients with neuromyelitis optica (NMO. METHODS: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups. RESULTS: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri. CONCLUSION: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.

  17. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  18. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    Science.gov (United States)

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-05

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers.

  19. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    Science.gov (United States)

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  20. Scanning probe microscopy investigation of self-organized perylenetetracarboxdiimide nanostructures at surfaces: structural and electronic properties.

    Science.gov (United States)

    Palermo, Vincenzo; Liscio, Andrea; Gentilini, Desirée; Nolde, Fabian; Müllen, Klaus; Samorì, Paolo

    2007-01-01

    A scanning probe microscopy investigation of the self-organization and local electronic properties of spin-coated ultrathin films of N-alkyl substituted perylenetetracarboxdiimide (PDI) is described. By carefully balancing the interplay between molecule-molecule and molecule-substrate interactions, PDI is able to form highly ordered supramolecular architectures on flat surfaces from solution. On an electrically insulating yet highly polar surface (mica) PDI forms strongly anisotropic architectures with needlelike structures with lengths of up to a few micrometers. On a conductive yet apolar surface (highly oriented pyrolytic graphite), the competition between the strong molecule-substrate interactions and the intermolecular forces leads to the generation of more disordered structures. The local electronic properties of these architectures are studied by Kelvin probe force microscopy by estimating their surface potential (SP). Quantitative measurements of the SP are obtained by analyzing the experimentally estimated SP data with a computational model, which discriminates between the intrinsic SP and the effect of long-range tip-surface interactions. The SP of PDI aggregates depends on the structural order at the supramolecular level. Narrow needles of constant width reveal identical SPs independent of length. Wider needles with a polydisperse width distribution exhibit a greater SP.

  1. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy

    Science.gov (United States)

    Stolz, A.; Cho, E.; Dogheche, E.; Androussi, Y.; Troadec, D.; Pavlidis, D.; Decoster, D.

    2011-04-01

    The waveguide properties are reported for wide bandgap gallium nitride (GaN) structures grown by metal organic vapor phase epitaxy on sapphire using a AlN/GaN short period-superlattice (SPS) buffer layer system. A detailed optical characterization of GaN structures has been performed using the prism coupling technique in order to evaluate its properties and, in particular, the refractive index dispersion and the propagation loss. In order to identify the structural defects in the samples, we performed transmission electron microscopy analysis. The results suggest that AlN/GaN SPS plays a role in acting as a barrier to the propagation of threading dislocations in the active GaN epilayer; above this defective region, the dislocations density is remarkably reduced. The waveguide losses were reduced to a value around 0.65dB/cm at 1.55 μm, corresponding to the best value reported so far for a GaN-based waveguide.

  2. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    Science.gov (United States)

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process. PMID:23213357

  3. Seeking and Sharing Knowledge Using Social Media in an Organization: The Impact of Social Influence, Organization Structure and Social Capital

    Science.gov (United States)

    Schutz, Douglas M.

    2013-01-01

    The prolific use of social media tools such as blogs and wikis is leading several organizations to adopt these tools. However, success of social media depends on its use by employees to share and seek knowledge. Based on a unique data set obtained from a large multi-national corporation, I examined three different aspects of knowledge seeking and…

  4. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-01

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions.

  5. Pentagonal helices in a periodic metal-organic framework. Crystals as computers for discovering structures of minimal transitivity.

    Science.gov (United States)

    Li, Mian; Li, Dan; O'Keeffe, Michael; Su, Zhong-Min

    2015-08-07

    The structure of a recently-published metal-organic framework is deconstructed into its underlying net which is found to be of exceptional complexity. It is shown that this is because of local pentagonal symmetry and the structure is in fact the simplest possible (minimal transitivity) given that local symmetry.

  6. Organization of the rabbit vitreous body : Lamellae, Cloquet's channel and a novel structure, the 'alae canalis Cloqueti'

    NARCIS (Netherlands)

    Los, LI; van Luyn, MJA; Nieuwenhuis, P

    1999-01-01

    Even though the rabbit is a frequently used animal model for studies on Vitreous function and pathobiology, data on the structural organization of the rabbit Vitreous are scarce. The aim of the present study is to give a detailed description of rabbit vitreous structure in order to provide a basis f

  7. Structuring Job Related Information on the Intranet: An Experimental Comparison of Task vs. an Organization-Based Approach

    Science.gov (United States)

    Cozijn, Reinier; Maes, Alfons; Schackman, Didie; Ummelen, Nicole

    2007-01-01

    In this article, we present a usability experiment in which participants were asked to make intensive use of information on an intranet in order to execute job-related tasks. Participants had to work with one of two versions of an intranet: one with an organization-based hyperlink structure, and one with a task-based hyperlink structure.…

  8. Key Problems in Organizing and Structuring University Research in Vietnam: The Lack of an Effective Research "Behaviour Formalization" System

    Science.gov (United States)

    Nguyen, Huong Thi Lan; Meek, Vincent Lynn

    2016-01-01

    Structure and organization seems to be at the root of many of the questions raised about institutional behaviour; however, with respect to research on university capacity building, few studies have examined research organizational problems, particularly in developing countries. This study investigates academic reactions to the structure and…

  9. Guest driven structural transformation studies of a luminescent metal-organic framework

    Indian Academy of Sciences (India)

    Biplab Manna; Shweta Singh; Sujit K Ghosh

    2014-09-01

    A two-dimensional (2D) porous metal-organic framework (MOF) [{Zn2(L)4(OTf)4}.2(DCM).xG] (1 ⊃ G) (OTf = trifluoro methane sulfonate, DCM = Dichloromethane, L (1, 4-bis (4-pyridyl)-2, 3-diaza-1, 3-butadiene) synthesized at room temperature. Free guests DCM were encapsulated in the pores of the MOF. On air drying the MOF loses free DCM molecules and changed its structure in a crystal to crystal manner to produce compound 1 [{Zn(L)2(OTf)2}.XG](1). This guest-induced breathing of the framework was also supported from PXRD patterns. Solid state photoluminescence properties of the dynamicMOF were studied at room temperature.

  10. Impact of scaling to the resistive switching effect in organic polymer - based structures

    Science.gov (United States)

    Kotova, M. S.; Dronov, M. A.; Rzhevskiy, A. V.; Amitonov, S. V.; Dubinina, T. V.; Pushkarev, V. E.; Ryabova, L. I.; Khokhlov, D. R.

    2016-12-01

    The resistive switching effect has been studied in a set of organic polymer - based structures of a different composition and size scale from macro to micro. It is shown that scaling down reduces both the threshold switching voltage Vth and the respective effective electric field Eth. Furthermore, introduction of metal micro particles into a macro scale polymer matrix provides the same effect. Therefore the metal particle incorporation may be regarded as an alternative method of effective scaling, depending on an application. Switching speed of less than 15 ns, threshold voltage Vth (2 - 25) V, 105 cycle endurance, no significant moisture dependence and high retention time 3.5 months for scaled down samples aswell as for metal doped macro samples have been demonstrated. These characteristics are suitable for constructing memory devices. The switching effect mechanisms are discussed.

  11. Evolution of Organic Agriculture within Theoretical Frameworks of Structural Change and Transformation

    DEFF Research Database (Denmark)

    Rasmussen, Ole Horn

    theories, respectively. The role of our theoreticians is to respond to the research question as if they themselves are dealing with it in their theoretical works. We are well aware that in their own context they do not occupy themselves with the question; however, we force each theoretician to deal...... with the idea of organic agriculture, agricultural structural change and transformation. However, the search for an answer to the research question starts with a contribution with a fragmentary status. Marshall and the theory of externalities present a deepen of the Danish agricultural economists......, the theoretically point of departure of Cochrane is a neoclassical approach. The next agricultural economist is Chayanov. The contribution from Chayanov is like Veblen a core contribution to the thesis. Not only because he may treated as the founder of the theory of the family farm, but especially because...

  12. A randomly nano-structured scattering layer for transparent organic light emitting diodes.

    Science.gov (United States)

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-09-21

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.

  13. Spin Frustration in an Organic Radical Ion Salt Based on a Kagome-Coupled Chain Structure.

    Science.gov (United States)

    Postulka, Lars; Winter, Stephen M; Mihailov, Adam G; Mailman, Aaron; Assoud, Abdeljalil; Robertson, Craig M; Wolf, Bernd; Lang, Michael; Oakley, Richard T

    2016-08-31

    Electro-oxidation of the quinoidal bisdithiazole BT in dichloroethane in the presence of [Bu4N][GaBr4] affords the 1:1 radical ion salt [BT][GaBr4], crystals of which belong to the trigonal space group P3. The packing pattern of the radical cations provides a rare example of an organic kagome basket structure, with S = 1/2 radical ion chains located at the triangular corners of a trihexagonal lattice. Magnetic measurements over a wide temperature range from 30 mK to 300 K suggest strongly frustrated AFM interactions on the scale of J/kb ∼ 30 K, but reveal no anomalies that would be associated with magnetic order. These observations are discussed in terms of the symmetry allowed magnetic interactions within and between the frustrated layers.

  14. Thienoacene-fused pentalenes: Syntheses, structures, physical properties and applications for organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2014-11-27

    Three soluble and stable thienoacene-fused pentalene derivatives (1-3) with different π-conjugation lengths were synthesized. X-ray crystallographic analysis and density functional theory (DFT) calculations revealed their unique geometric and electronic structures due to the interaction between the aromatic thienoacene units and antiaromatic pentalene moiety. As a result, they all possess a small energy gap and show amphoteric redox behaviour. Time dependent (TD) DFT calculations were used to explain their unique electronic absorption spectra. These new compounds exhibited good thermal stability and ordered packing in solid state and thus their applications in organic field-effect transistors (OFETs) were also investigated. The highest field-effect hole mobility of 0.016, 0.036 and 0.001 cm2 V-1 s-1 was achieved for solution-processed thin films of 1-3, respectively.

  15. Electronic structure of planar-quasicycled organic molecules with intramolecular hydrogen bond

    Directory of Open Access Journals (Sweden)

    ALEXEI N. PANKRATOV

    2007-03-01

    Full Text Available By means of the HF/6-311G(d,p method, the electronic structure of the series of organic molecules, among which are malonaldehyde, acetylacetone, thiomalonaldehyde,’the derivatives of aniline 2-XC6H4NH2, phenol 2-XC6H4OH, benzenethiol 2-XC6H4SH (X = CHO, COOH, COO-, NO, NO2, OH, OCH3, SH, SCH3, F, Cl, Br, 8-hydroxyquinoline, 8-mercaptoquinoline, tropolone, has been studied. The intramolecular hydrogen bond (IHB has been established to lead to a local electron redistribution in quasicycle, and primarily to the electron density transfer between the direct IHB participants – from the hydrogen atom toward the proton-aceptor atom. On forming the IHB of the S–H···O type, the electron density in general decreases on the sulphohydryl hydrogen atom and increases on the sulphur atom.

  16. Structural Characterization and Infrared and Electrical Properties of the New Inorganic-Organic Hybrid Compound

    Directory of Open Access Journals (Sweden)

    A. Oueslati

    2013-01-01

    Full Text Available New inorganic-organic hybrid [(C3H74N]2Hg2Cl6 compound was obtained and characterised by single-crystal X-ray diffraction, infrared, and impedance spectroscopy. The latter crystallizes in the monoclinic system (space group C 2/c, with the following unit cell dimensions: (1 Å, (6 Å, (2 Å, and (2. Besides, its structure was solved using 84860 independent reflections leading to . Electrical properties of the material were studied using impedance spectroscopic technique at different temperatures in the frequency range of 209 Hz to 5 MHz. Detailed analysis of the impedance spectrum suggested that the electrical properties of the material are strongly temperature-dependent. The Nyquist plots clearly showed the presence of bulk and grain boundary effect in the compound.

  17. Shifts in Bacterial Community Structure in the Process of Composting of Organic Wastes

    Directory of Open Access Journals (Sweden)

    Polina Galitskaya

    2016-04-01

    Full Text Available Using 454 pyrosequencing, changes in the community structure of composting bacteria were estimated over 270 days. The compost contained the organic fraction of municipal solid waste, sawdust polluted by oil, and sewage sludge. All of these wastes are typical for a Russian city and they were obtained in Kazan (Tatarstan Republic, Russia. In the initial stage of composting, the taxa Lactobacialles, Rhodospiralles, Burkholderiales, and Xanthmonadales dominated in the compost. By the end of the thermophilic stage, the dominant species changed: typical compost inhabitants belonging to the taxa Flavobacteriales, Chitinophagaceae, and Bacterioidetes, as well as non-typical taxa Ectothiorhodospiraceae and Parvibaculum sp., were observed in the compost. The presence of the latter two taxa may be explained by the presence of oil-polluted sawdust in the composting mixture. In the later stage, the dominant taxa remained the same; however, their relative abundance declined.

  18. Bimolecular crystals with an intercalated structure improve poly(p-phenylenevinylene)-based organic photovoltaic cells.

    Science.gov (United States)

    Lim, Kyung-Geun; Park, Jun-Mo; Mangold, Hannah; Laquai, Frédéric; Choi, Tae-Lim; Lee, Tae-Woo

    2015-01-01

    The exciton dissociation, recombination, and charge transport of bulk heterojunction organic photovoltaic cells (OPVs) is influenced strongly by the nanomorphology of the blend, such as the grain size and the molecular packing. Although it is well known that polymers based on amorphous poly(p-phenylenevinylene) (PPV) have a fundamental limit to their efficiency because of low carrier mobility, which leads to increased recombination and unbalanced charge extraction, herein, we demonstrate that the issue can be overcome by forming bimolecular crystals of an amorphous PPV-based polymer:phenyl-C61 -butyric acid methyl ester (PCBM) intercalated structure. We used amorphous poly(2,5-dioctyloxy-p-phenylene vinylene-alt-2',5'-thienylene vinylene) (PPVTV), which has a simple chemical structure. A reasonably high power conversion efficiency (∼3.5 %) was obtained, although the material has an intrinsically amorphous structure and a relatively large band gap (2.0 eV). We demonstrate a correlation between a well-ordered bimolecular crystal of PPVTV:PCBM and an improved hole mobility of a PPVTV:PCBM film compared to a pristine PPVTV film by using 2 D grazing incidence XRD and space-charge-limited current measurements. Furthermore, we show that the bimolecular crystal structure in high-performance OPVs is related to an optimum molecular packing, which is influenced by the PPVTV:PCBM blending ratio, side-chain length, and molecular weight of the PPVTV polymer. Improved charge transport in PPVTV:PCBM bimolecular crystals leads to a fast sweep out of charges and thus suppression of nongeminate recombination under the operating conditions.

  19. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    Science.gov (United States)

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors

  20. Electronic structure calculations for the study of D-π-A organic sensitizers: Exploring polythiophene linkers

    Energy Technology Data Exchange (ETDEWEB)

    Climent, Clàudia [Departament de Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona (Spain); Casanova, David, E-mail: david.casanova@ehu.es [IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Euskadi, Spain, and Kimika Fakultea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Euskadi, Spain. (Spain)

    2013-09-23

    Highlights: • We study D-π-A dyes with polythiophene (Tn) or polycyclopentadithiophene (Cn) linkers. • Molecular geometry plays a crucial role in the photophysical properties of organic dyes. • Cn linkers induce lower transition energies and larger oscillator strengths than Tn separators. • We discuss a variety of computational tools to quantify the CT nature of electronic transitions. • We compute ground and excited state oxidation potentials with a long-range corrected functional. - Abstract: In this work we present a detailed study of the atomic and electronic structure of a collection of push–pull organic dyes for high-performance sensitized solar cells (DSSCs). We compare the computed photophysical properties of donor-bridge-acceptor (D-π-A) dyes with polythiophene (Tn) or polycyclopentadithiophene (Cn) conjugated linkers with up to four fused thiophene rings. Excitation energies to lowest excited singlet state have been rationalized by means of fragment and molecular orbitals. Vertical and adiabatic excitation energies are systematically lower for the Cn family and become smaller with the length of the molecular conjugation. We discuss a large variety of computational techniques for the characterization of the charge transfer (CT) nature of the electronic excitation. In addition to standard procedures to quantify CT character, we propose and explain several novel interaction based measures of CT. Finally, we have computed ground and excited state oxidation potentials (GSOP and ESOP) with long-range corrected (LRC) functional.

  1. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Khalaji, A. D., E-mail: alidkhalaji@yahoo.com [Golestan University, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Maddahi, E. [Iran University of Science & Technology, Ms.C Educated, Department of Chemistry (Iran, Islamic Republic of); Dusek, M.; Fejfarova, K. [Institute of Physics of the ASCR, v.v.i. (Czech Republic); Chow, T. J. [Academia Sinica, Institute of Chemistry (China)

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  2. Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes

    KAUST Repository

    Chisca, Stefan

    2015-01-01

    The preparation of crosslinked membranes with a zwitterionic structure based on a facile reaction between a newly synthesized copolyazole with free OH groups and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) is reported. The new OH-functionalized copolyazole is soluble in common organic solvents, such as tetrahydrofuran (THF), dimethylsulfoxide (DMSO), N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) and can be easily processed by phase inversion. After crosslinking with GPTMS, the membranes acquire high solvent resistance. We show the membrane performance and the influence of the crosslinking reaction conditions on the thermal stability, surface polarity, pore morphology, and solvent resistance. By using UV-spectroscopy we monitored the solvent resistance of the membranes in four aggressive solvents (THF, DMSO, DMF and NMP) for 30 days. After this time, only minor changes (less than 2%) were detected for membranes subjected to a crosslinking reaction for 6 hours or longer. Our data suggest that the novel crosslinked membranes can be used for industrial applications in wide harsh environments in the presence of organic solvents.

  3. Network catastrophe: self-organized patterns reveal both the instability and the structure of complex networks.

    Science.gov (United States)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-30

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of-how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description - of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  4. Beyond static structures: Putting forth REMD as a tool to solve problems in computational organic chemistry.

    Science.gov (United States)

    Petraglia, Riccardo; Nicolaï, Adrien; Wodrich, Matthew D; Ceriotti, Michele; Corminboeuf, Clemence

    2016-01-05

    Computational studies of organic systems are frequently limited to static pictures that closely align with textbook style presentations of reaction mechanisms and isomerization processes. Of course, in reality chemical systems are dynamic entities where a multitude of molecular conformations exists on incredibly complex potential energy surfaces (PES). Here, we borrow a computational technique originally conceived to be used in the context of biological simulations, together with empirical force fields, and apply it to organic chemical problems. Replica-exchange molecular dynamics (REMD) permits thorough exploration of the PES. We combined REMD with density functional tight binding (DFTB), thereby establishing the level of accuracy necessary to analyze small molecular systems. Through the study of four prototypical problems: isomer identification, reaction mechanisms, temperature-dependent rotational processes, and catalysis, we reveal new insights and chemistry that likely would be missed using static electronic structure computations. The REMD-DFTB methodology at the heart of this study is powered by i-PI, which efficiently handles the interface between the DFTB and REMD codes.

  5. Predicting reaction rate constants of ozone with organic compounds from radical structures

    Science.gov (United States)

    Yu, Xinliang; Yi, Bing; Wang, Xueye; Chen, Jianfang

    2012-05-01

    The reaction rate constants of ozone with organic compounds in the atmosphere were predicted by a quantitative structure-activity relationship (QSAR) model. Density functional theory (DFT) calculations, for the first time, were carried out on the radicals from organic compounds, at the UB3LYP level of theory with 6-31G(d) basis set. A set of quantum chemical descriptors calculated from the radicals, the energy of the highest occupied molecular orbital of beta spin states (EβHOMO), the molecular average polarizability (α), and the total energy (ET), were used to build the general QSAR model for aliphatic compounds, applying the genetic algorithm (GA) technique and support vector machine (SVM) regression. The root mean square errors (RMSE) are 0.680 for the training set (68 compounds), 0.777 for the validation set (36 compounds) and 0.709 for the test set (35 compounds). Investigated results indicate that the SVM model given here has good predictivity for aliphatic compounds.

  6. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    Science.gov (United States)

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  7. Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures

    Energy Technology Data Exchange (ETDEWEB)

    Gemini, Laura, E-mail: gemini@fzu.cz [Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011 (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto (Japan); FNSPE, Czech Technical University in Prague, Brehova 7, 11519 Prague (Czech Republic); HiLASE Centre, Institute of Physics, ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Hashida, Masaki; Miyasaka, Yasuhiro; Inoue, Shunsuke [Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011 (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto (Japan); Limpouch, Jiri [FNSPE, Czech Technical University in Prague, Brehova 7, 11519 Prague (Czech Republic); Mocek, Tomas [HiLASE Centre, Institute of Physics, ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Sakabe, Shuji [Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011 (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto (Japan)

    2015-05-01

    Highlights: • LIPSS self-formed on Ti surface upon irradiations by 25 double pulses. • A surface plasma density variation leads to a variation of LIPSS features. • Data from double pulse irradiations well agree with the parametric decay model. • Results confirm the formation of surface plasma during the ultra-short interaction. • Results support once again the validity of the parametric decay model. - Abstract: Laser induced periodic surface structures (LIPSS) self-organized on Ti surface after irradiations by femtosecond laser beam composed by double pulses with a fixed time delay of 160 fs. The fluence of the first pulse (F{sub PP}), responsible for surface plasma formation, was varied in the range 10–50 mJ cm{sup −2} and always kept below the LIPSS formation threshold fluence (F{sub LIPSS}) on Ti for 50-single-shots exposure. The fluence of the delayed pulse (F{sub LP}), responsible for LIPSS self-organization, was varied in the range 60–150 mJ cm{sup −2} and always kept above F{sub LIPSS}. Regardless the specific fluence F{sub LP} of the delayed pulse, the interspace of the grating structures increases with the increase of F{sub PP}, that is an increase of the surface plasma density. This tendency suggests that a variation of the surface plasma density, due to a variation of F{sub PP}, actually leads to a modification of the grating features. Moreover, we observed that the LIPSS periodicities after double pulse exposures are in quite good agreement with data on LIPSS periodicities after single 160 fs pulse irradiations on Ti surface and with the curve predicted by the parametric decay model. This experimental result suggests that the preformed plasma might be produced in the rising edge of the temporal profile of the laser pulse.

  8. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures.

    Science.gov (United States)

    Saibil, Helen R; Seybert, Anja; Habermann, Anja; Winkler, Juliane; Eltsov, Mikhail; Perkovic, Mario; Castaño-Diez, Daniel; Scheffer, Margot P; Haselmann, Uta; Chlanda, Petr; Lindquist, Susan; Tyedmers, Jens; Frangakis, Achilleas S

    2012-09-11

    Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.

  9. Structural Characterization and Reactivity of Pyrogenic Water-Soluble Organic Matter Derived from Biomass Combustion

    Science.gov (United States)

    Norwood, M. J.; Louchouarn, P.; Kuo, L.

    2011-12-01

    Combustion processes, whether from natural or anthropogenic origin, are major sources of particulate matter (PM), black carbon (BC), and volatile organic carbon to the atmosphere as well as soils and aquatic environments. The ubiquitous presence of biomass combustion by-products in atmospheric particles and soils could potentially lead to a large transfer of pyrogenic water-soluble organic matter (Pyr-WSOM) to the surface of watersheds and aquatic systems. In spite of this, there is a dearth of studies that have characterized the sources, and particularly the fate, of Pyr-WSOM to aquatic systems. In the present study, Pyr-WSOM was extracted from plant-derived chars (feedstocks: honey mesquite, cordgrass, and loblolly pine) produced at a range of temperatures (150-850C), and were then characterized using elemental analyses and ATR-FTIR. Low temperature (250C) Pyr-WSOM, extracted from honey mesquite and cordgrass biochars, were then incubated with aliquots of filtered water from the Trinity River (TX) for one month under dark conditions. Consistent with prior studies on combustion molecular markers such as anhydrosugars and methoxylated phenols, the total amount of dissolved organic carbon (DOC) released from biochars peaks around 200-250C and then decreases with increasing temperature of combustion. Elemental and structural analyses of biochar-derived WSOM reflect the selective solubility of certain functional groups. For example, despite the predominance of aromatic units and soot structures in biochars formed at high temperatures, such functionalities are not as predominant in their respective Pyr-WSOM. In addition, the high proportion of O-containing functionalities suggests that Pyr-WSOM may be more biodegradable than the particulate residues of biomass combustion. Indeed, low temperature Pyr-WSOM decomposed rapidly with half-lives ranging ~30 days for total DOC to 4-5 days for specific molecular markers of biomass combustion. These rapid turnover rates are in

  10. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.

    Science.gov (United States)

    Krali, Emiljana; Curry, Richard J

    2011-04-26

    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  11. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    Science.gov (United States)

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  12. Structural basis for integration of GluD receptors within synaptic organizer complexes.

    Science.gov (United States)

    Elegheert, Jonathan; Kakegawa, Wataru; Clay, Jordan E; Shanks, Natalie F; Behiels, Ester; Matsuda, Keiko; Kohda, Kazuhisa; Miura, Eriko; Rossmann, Maxim; Mitakidis, Nikolaos; Motohashi, Junko; Chang, Veronica T; Siebold, Christian; Greger, Ingo H; Nakagawa, Terunaga; Yuzaki, Michisuke; Aricescu, A Radu

    2016-07-15

    Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function.

  13. Solution growth of metal-organic complex CuTCNQ in small dimension interconnect structures

    Science.gov (United States)

    Demolliens, A.; Muller, Ch.; Müller, R.; Turquat, Ch.; Goux, L.; Deleruyelle, D.; Wouters, D. J.

    2010-11-01

    In this paper, we report two different elaboration routes to grow metal-organic complex CuTCNQ in liquid phase within small interconnect structures (i.e. via holes opened in SiO 2/SiC stack). The basic common idea relies on the formation of CuTCNQ material from the partial corrosion of a Cu bottom electrode by a TCNQ-based solution. The two solution growth methods are compared in terms of (i) via holes filling; (ii) local microstructure of CuTCNQ complex and (iii) quality of interface between CuTCNQ and copper metallic electrode. In the first route, in the reaction of the substrate with a TCNQ/copper salt solution in acetonitrile/toluene, a rapid formation of porous CuTCNQ complex is observed with an over-growth outside interconnect structures and many voids within via holes and at the interface with Cu layer. In contrast to this "mushroom-like" growth, the reaction of the substrate with a TCNQ solution in acetonitrile/2-butanone results in a "crystal-like" dense CuTCNQ complex within via holes and a CuTCNQ/Cu interface free of voids. In the latter case, satisfactory electrical performances are expected for future resistive switching memory devices.

  14. Structure and organization of the human thrombospondin 3 gene (THBS3)

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, K.W.; Long, G.L.; Bornstein, P. [Univ. of Washington, Seattle, WA (United States)] [and others

    1995-05-20

    The promoter/5{prime} flank sequence, cDNA sequence, and exon/intron structures of the human thrombospondin 3 (THBS3) gene have been determined. THBS3 cDNA clones were obtained by PCR amplification of human fetal lung cDNA using THBS3-specific primers. Analysis of cDNA and genomic sequences showed the THBS3 gene to be composed of 23 exons, 1 more than the number of exons in the previously characterized mouse TSP3 gene. The additional exon results from the division of mouse exon F into exons F1 and F2. The cDNA encodes a polypeptide of 956 amino acids that is highly acidic, with a clustering of acidic side chains in the third quarter of the polypeptide. This region corresponds to seven type III (Ca{sup 2+}-binding) repeats, a feature shared with other thrombospondins. In addition to these type III repeats, four type II (EGF-like) repeats and NH{sub 2}- and COOH-terminal domains are present in thrombospondin 3. The THBS3 and mouse TSP3 genes differ in intron sizes, but exon sequences and sizes and positions of insertion of introns are conserved to a high degree. The structural organization of the THBS3 gene is of interest because of its close proximity to that of metaxin, with which it shares a common promoter sequence, and to the gene encoding glucocerebrosidase, a deficiency in which causes Gaucher disease. 33 refs., 4 figs., 2 tabs.

  15. Hydrothermal Synthesis, Crystal Structure and Luminescent Properties of an Organically Templated 2-D Uranyl Sulfate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An organically templated 2-D uranyl sulfate, {(C2H8N)[(UO2)Cl(SO4)(H2O)]}n 1, has been hydrothermally synthesized . The crystal and molecular structures have been determined by X-ray crystallography method and spectral techniques. 1 belongs to mono- clinic, space group P21/c with a = 8.3545(17), b = 10.550(2), c = 12.370(3)(A), β = 102.64(3)°, V = 1063.9(4)(A)3, Mr = 464.64, Dc = 2.901 g/cm3, F(000) = 836, μ = 15.710 mm-1, Z = 4, the final R = 0.0286 and wR = 0.0685 for 10164 observed reflections with I > 2σ(I). 1 presents a two-dimensional layer-like structure constructed from infinite anionic [(UO2)Cl(H2O)(SO4)]- layers with [C2H8N]+ cations balancing the charge and a number of intermolecular hydrogen bonds (C-H…O and O-H…Cl) existing in the solid state. The fluorescence properties of 1 have also been discussed.

  16. The Thermotolerant Yeast Kluyveromyces marxianus Is a Useful Organism for Structural and Biochemical Studies of Autophagy.

    Science.gov (United States)

    Yamamoto, Hayashi; Shima, Takayuki; Yamaguchi, Masaya; Mochizuki, Yuh; Hoshida, Hisashi; Kakuta, Soichiro; Kondo-Kakuta, Chika; Noda, Nobuo N; Inagaki, Fuyuhiko; Itoh, Takehiko; Akada, Rinji; Ohsumi, Yoshinori

    2015-12-04

    Autophagy is a conserved degradation process in which autophagosomes are generated by cooperative actions of multiple autophagy-related (Atg) proteins. Previous studies using the model yeast Saccharomyces cerevisiae have provided various insights into the molecular basis of autophagy; however, because of the modest stability of several Atg proteins, structural and biochemical studies have been limited to a subset of Atg proteins, preventing us from understanding how multiple Atg proteins function cooperatively in autophagosome formation. With the goal of expanding the scope of autophagy research, we sought to identify a novel organism with stable Atg proteins that would be advantageous for in vitro analyses. Thus, we focused on a newly isolated thermotolerant yeast strain, Kluyveromyces marxianus DMKU3-1042, to utilize as a novel system elucidating autophagy. We developed experimental methods to monitor autophagy in K. marxianus cells, identified the complete set of K. marxianus Atg homologs, and confirmed that each Atg homolog is engaged in autophagosome formation. Biochemical and bioinformatic analyses revealed that recombinant K. marxianus Atg proteins have superior thermostability and solubility as compared with S. cerevisiae Atg proteins, probably due to the shorter primary sequences of KmAtg proteins. Furthermore, bioinformatic analyses showed that more than half of K. marxianus open reading frames are relatively short in length. These features make K. marxianus proteins broadly applicable as tools for structural and biochemical studies, not only in the autophagy field but also in other fields.

  17. Growth and structural analysis of an organic NLO compound: L-lysinium picrate

    Science.gov (United States)

    Arthi, D.; Ilango, E.; Mercina, M.; Jayaraman, D.; Joseph, V.

    2017-01-01

    L-lysinium picrate (LLP), an organic material, has been synthesized and grown by solution growth method. The crystal structure of the grown material was solved by single crystal X-ray diffraction analysis and it was found that the material belongs to triclinic system with space group P1. The transmission range of the crystal was measured in the range of 470-1100 nm with lower cut off wavelength at 470 nm using UV-vis-NIR absorption spectrum. The optical band gap of the grown material was found to establish the dielectric behavior of the material. The main functional groups present in the material were identified using FTIR spectral analysis. Thermal stability and decomposition range were studied by means of TGA and DTA analyses. The microstructure of the grown crystal was studied using SEM analysis. The various chemical environments of the protons and carbons were studied by 1H and 13C NMR spectroscopy to confirm the molecular structure of the grown crystal. NLO behavior was confirmed by Kurtz and Perry technique and SHG efficiency was estimated as 1.4 times that of standard KDP.

  18. Synthesis and Structural Characterization of Lithium-Based Metal−Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis; Borkowski, Lauren A.; Kim, Sun Jin; Parise, John B.; (IST-Korea); (SBU)

    2009-12-01

    Two lithium-based metal-organic frameworks, Li{sub 2}(C{sub 14}H{sub 8}O{sub 4}) [Li{sub 2}(4,4'-BPDC) [1]; ULMOF-2, UL = ultralight; BPDC = biphenyldicarboxylate]; space group P2{sub 1}/c, a = 12.758(2) {angstrom}, b = 5.142(4) {angstrom}, c = 8.00(2) {angstrom}, {beta} = 97.23{sup o}, V = 520.6(14) {angstrom}{sup 3} and Li{sub 2}(C{sub 14}H{sub 8}O{sub 6}S) [Li{sub 2}(4,4'-SDB) [2]; ULMOF-3, UL = ultralight; SDB = sulfonyldibenzoate], space group P2{sub 1}/n, a = 5.5480(11) {angstrom}, b = 23.450(5) {angstrom}, c = 10.320(2) {angstrom}, {beta} = 96.47(3){sup o}, V = 1334.1(5) {angstrom}3, were synthesized. Compounds 1 and 2 were synthesized by solvothermal methods and were characterized using single crystal X-ray diffraction. Structure 1 consists of layers of two-dimensional antifluorite related LiO motif connected by BPDC linkers, whereas structure 2 is constructed by a combination of tetrameric lithium polyhedral clusters connected by the sulfonyldibenzoate linker. The frameworks are stable up to 575 and 500 C, respectively, under N{sub 2} atmosphere.

  19. Synthesis, crystal structure, spectroscopic, thermal and dielectric properties of a novel semi-organic pentachloroantimonate (III)

    Science.gov (United States)

    Lahbib, Ikram; Rzaigui, Mohamed; Smirani, Wajda

    2016-09-01

    A new organic-inorganic hybrid material of formula (C10H15N2F)5(SbCl5)5.2H2O was synthesized and characterized by X-Ray diffraction analysis. It crystallizes in the monoclinic space group P21/c with the following unit cell parameters a = 15.819(4) Å, b = 17.685(3) Å, c = 30.529(4) Å, Z = 4 and V = 8540(3) Å3. The examination of the structure shows that the three-dimensional frameworks are produced by Nsbnd H⋯Cl, Nsbnd H⋯O, Csbnd H⋯Cl and Nsbnd H⋯F, Csbnd H⋯F hydrogen bonding and Cl⋯Cl interactions. IR, Raman and UV-Visible spectroscopies were also used to characterize this compound. In addition, the fluorescent properties of this compound have been investigated in the liquid state at room temperature. Differential scanning calorimetry (DSC) has revealed a structural phase transition of the order-disorder type around 370 K. Dielectric investigations revealed a step-wise change of the electric permittivity at Ttr characteristic of the crystal in the high-temperature phase. The evolution of dielectric constant as a function of temperature of the sample has been investigated in order to determine some related parameters. Measurements of AC conductivity as a function of frequency at different temperatures indicated a hopping conduction mechanism and/or reorientational motion.

  20. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.

    Science.gov (United States)

    Mardis, Kristy L; Webb, Jeremy N; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  1. Temporary fragmentation of a marginal lake and its effects on zooplankton community structure and organization.

    Science.gov (United States)

    Nadai, R; Henry, R

    2009-08-01

    A river lateral lake (Coqueiral Lake marginal to Paranapanema River in its mouth zone into Jurumirim Reservoir, São Paulo, Brazil) presented fragmentation into four small isolated bodies of water during a prolonged drought period, disrupting the link with the river. The aim of this work was to compare the temporal modifications on zooplankton community structure (total abundance, species richness, and diversity) in the four water bodies. Zooplankton samplings and abiotic factor measurements were made in two periods--during isolation phase of the lake in relation to river and after re-establishment of hydrologic connectivity. A concentration effect on zooplankton abundance was recorded with drought progression, but without significant modifications in species richness and diversity. When the river inundation pulse occurred, a reduction in total zooplankton density was observed due to the dilution effect and a significant increase in species richness and diversity was recorded. Lateral water influx from the river to the lacustrine environment acts as a temporary disturbance factor on the zooplankton community structure. Zooplankton species composition presented some modifications between the two periods. Zooplankton organism drift in water from the river to the lake, removal of individuals from the aquatic macrophytes, and eclosion of resting eggs from sediment are probable factors that can increase zooplankton species richness immediately after lateral pulse inundation with water by the river.

  2. Temporary fragmentation of a marginal lake and its effects on zooplankton community structure and organization

    Directory of Open Access Journals (Sweden)

    R. Nadai

    Full Text Available A river lateral lake (Coqueiral Lake marginal to Paranapanema River in its mouth zone into Jurumirim Reservoir, São Paulo, Brazil presented fragmentation into four small isolated bodies of water during a prolonged drought period, disrupting the link with the river. The aim of this work was to compare the temporal modifications on zooplankton community structure (total abundance, species richness, and diversity in the four water bodies. Zooplankton samplings and abiotic factor measurements were made in two periods - during isolation phase of the lake in relation to river and after re-establishment of hydrologic connectivity. A concentration effect on zooplankton abundance was recorded with drought progression, but without significant modifications in species richness and diversity. When the river inundation pulse occurred, a reduction in total zooplankton density was observed due to the dilution effect and a significant increase in species richness and diversity was recorded. Lateral water influx from the river to the lacustrine environment acts as a temporary disturbance factor on the zooplankton community structure. Zooplankton species composition presented some modifications between the two periods. Zooplankton organism drift in water from the river to the lake, removal of individuals from the aquatic macrophytes, and eclosion of resting eggs from sediment are probable factors that can increase zooplankton species richness immediately after lateral pulse inundation with water by the river.

  3. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    Energy Technology Data Exchange (ETDEWEB)

    Valous, N. A.; Delgado, A.; Sun, D.-W., E-mail: dawen.sun@ucd.ie [School of Biosystems Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland); Drakakis, K. [Complex and Adaptive Systems Laboratory, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland)

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  4. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?

    Science.gov (United States)

    Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane

    2009-03-01

    While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.

  5. Structural analysis of organic films by electron diffraction at high and low energy

    Science.gov (United States)

    Stevens, Michael Richard

    This dissertation concerns the importance of electron diffraction as a structural tool in the analysis of organic crystalline materials, focusing on those specimens for which X-ray analysis is insufficient. It extends the range of knowledge needed for solving common problems that occur in such analysis: sample preparation, damage processes, extraction of crystallographic phases, and specimen irregularities. This research reports the first direct measurement of electron beam damage in transmission for beam energies below the carbon-K edge and in part extends the research of Howie, Isaacson, Fryer, and others. Here, it is confirmed that a correlation exists between the carbon-K shell ionization and the damage cross section by direct measurement of spot fading in transmission at beam energies ranging from 200eV to 1000eV. The threshold in damage was directly measured confirming the hypothesis linking K shell ionization to damage in the aromatic specimens; however, for the aliphatic specimens, the threshold effects were not as significant, indicating the importance of other damage processes which are explained. Calculations based on the experimental data show a region of beam energy which may be utilized to image single molecules, in contradiction to previous theory. Utilizing energy filtering, Kohler mode, cryo-microscopy, and standard low-dose techniques, the structures of two organic specimens which could not be solved by X-ray are solved by electron diffraction. These specimens exhibited high sensitivity to the electron beam and were thought good candidates for the project. The first is a Diacetylene polymer 1,2 bis (10,12 tricosadiynoyl)-sn-glycero-3phosphocholine (DC89PC) with a large unit cell, here only a partial structure solution was possible by Direct Methods (DM) phasing and chemical modeling. The full solution will require new sample preparation techniques. Film bending was observed directly, and the resulting effects to the diffraction data are explained

  6. Patterson-function direct methods for structure determination of organic compounds from powder diffraction data. XVI.

    Science.gov (United States)

    Rius, Jordi

    2011-01-01

    A new type of direct methods (DM) called Patterson-function DM are presented that directly explore the Patterson instead of the modulus function. Since they work with the experimental intensities, they are particularly well suited for handling powder diffraction data. These methods are based on the maximization of the sum function S(P) ∝ ∑H(I(H)-)G(-H)(Φ) in terms of the Φ phases of the structure factors. The quantity accessible from the experiment is I(H), the equidistributed multiplet intensity of reflection H, and is the average intensity taken over all non-systematically absent reflections. G(-H)(Φ) is the calculated structure-factor amplitude of the squared structure that includes the positivity and the atomicity of the density function in its definition. The S(P) sum function can be optimized with the Patterson-function tangent formula (TF) using a variant of the S-FFT algorithm [Rius et al. (2007), Acta Cryst. A63, 131-134]. It is important that overlapped reflections also participate in the phase refinement, so that not only the resolved reflections but the whole pattern contribute decisively to the refinement. The increase in effective data resolution minimizes Fourier series termination effects and improves the accuracy of G(Φ). The Patterson-function TF has been applied to synchrotron powder data of various organic compounds. In all cases the molecules were easily identified in the respective Fourier maps. By way of illustration the method is applied to synchrotron powder data of a dimer formed by 30 symmetry-independent non-H atoms. Since single-crystal data may be regarded as overlap-free powder data, it is clear that Patterson-function DM can cope with powder and single-crystal data.

  7. The structure of reflection as the basis of the procedural organization of consciousness.

    Directory of Open Access Journals (Sweden)

    Karpov A.V.

    2015-07-01

    Full Text Available The relationship of consciousness to the reflexive processes is one of the fundamental problems in psychology. To date, however, many important aspects of this problem remain poorly understood. This article attempts a theoretical study of this problem. The subject of research is the interconnection between consciousness and reflexive processes and also the structure of these processes. This study presents theoretical and empirical materials revealing the interrelatedness of these two fundamental subjects of psychological research. In connection with this issue, I introduce a new methodology for psychological research, which I refer to as the metasystem approach. This approach is grounded in the claim that reflection is the basic procedural means of consciousness and is based on a heterarchical principle. This article proposes a new structural, polyprocess method for revealing the psychological nature of reflection and the contents of reflexive processes. I propose a new explanation for the basic properties of the psyche that underlie consciousness: self-sensitiveness (sensitivity to oneself. I theoretically prove the following proposition: reflection has a fundamental heterogeneity because its processes are localized on completely different hierarchical cognitive levels of personality. In addition, I show that in the structural organization of reflection as an integral process in relation to other (“secondary,” metacognitive processes, another basic principle is involved — the principle of hierarchy. The property of reflexivity (and the process of reflection as a procedural manifestation of this property should be understood as a species in relation to the more common attribute inherent in the psyche: self-sensitiveness. Elementary manifestations of this property have been observed for the simplest sensory processes.

  8. Heteromolecular metal–organic interfaces: Electronic and structural fingerprints of chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Stadtmüller, Benjamin; Schröder, Sonja [Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Jülich-Aachen Research Alliance (JARA) – Fundamentals of Future Information Technology, 52425 Jülich (Germany); Kumpf, Christian, E-mail: c.kumpf@fz-juelich.de [Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Jülich-Aachen Research Alliance (JARA) – Fundamentals of Future Information Technology, 52425 Jülich (Germany)

    2015-10-01

    Highlights: • We present a study of molecular donor–acceptor blends adsorbed on Ag(1 1 1). • Geometric and electronic structure of blends and pristine phases are compared. • The surface bonding of the acceptor is strengthened, that of the donor weakened. • But counter intuitively, the acceptor (donor) bond length becomes larger (smaller). • This contradiction is resolved by a model based on charge transfer via the surface. - Abstract: Beside the fact that they attract highest interest in the field of organic electronics, heteromolecular structures adsorbed on metal surfaces, in particular donor–acceptor blends, became a popular field in fundamental science, possibly since some surprising and unexpected behaviors were found for such systems. One is the apparent breaking of a rather fundamental rule in chemistry, namely that stronger chemical bonds go along with shorter bond lengths, as it is, e.g., well-known for the sequence from single to triple bonds. In this review we summarize the results of heteromolecular monolayer structures adsorbed on Ag(1 1 1), which – regarding this rule – behave in a counterintuitive way. The charge acceptor moves away from the substrate while its electronic structure indicates a stronger chemical interaction, indicated by a shift of the formerly lowest unoccupied molecular orbital toward higher binding energies. The donor behaves in the opposite way, it gives away charge, hence, electronically the bonding to the surface becomes weaker, but at the same time it also approaches the surface. It looks as if the concordant link between electronic and geometric structure was broken. But both effects can be explained by a substrate-mediated charge transfer from the donor to the acceptor. The charge reorganization going along with this transfer is responsible for both, the lifting-up of the acceptor molecule and the filling of its LUMO, and also for the reversed effects at the donor molecules. In the end, both molecules

  9. Structural properties of dissolved organic carbon in deep horizons of an arable soil.

    Science.gov (United States)

    Lavaud, A.; Croué, Jp; Berwick, L.; Steffens, M.; Chabbi, A.

    2010-05-01

    The objective of this work is to quantity the DOC that percolates in deep horizons of an arable soil, and to characterize the structural properties of the main fractions. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site-France. DOC collected using lysimeter plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. The hydrophilic fraction is purified according the protocol proposed by Aiken and Leenheer (1993). The isolated fractions were subjected to several characterization tools: UV/Vis, fluorescence EEM, HPSEC/UV/DOC, 13C NMR, 14C dating, FT-IR, pyrolysis, thermochemolysis and MSSV GC/MS. The DOC content ranged from 1 to 2.5 mg / L between winter and the middle of spring and then to 4-5 mg / L in summer time. For all isolated fractions HPSEC analyses indicated the predominance of low molecular structures with a low aromatic character. Fluorescence EEM confirmed the non-humic character of the DOM. 13C-NMR spectra showed that the aromatic character decreased from HPO to TPH, and HPI character. Molecular size follows the same trend. HPI DOM was found to be strongly enriched in carboxyl groups. The 14C concentration of the HPO fraction corresponds to an apparent calibrated age around AD 1500. For the same fraction isolated from the 0 - 30 cm horizon, the measured 14C concentration 131.9 pMC corresponds to that in the atmosphere around AD 1978. Significant input of terpenoid derived organic matter was confirmed in the HPO fraction of DOC

  10. Organization structure as a moderator of the relationship between procedural justice, interactional justice, perceived organizational support, and supervisory trust.

    Science.gov (United States)

    Ambrose, Maureen L; Schminke, Marshall

    2003-04-01

    Organizational justice researchers recognize the important role organization context plays in justice perceptions, yet few studies systematically examine contextual variables. This article examines how 1 aspect of context--organizational structure--affects the relationship between justice perceptions and 2 types of social exchange relationships, organizational and supervisory. The authors suggest that under different structural conditions, procedural and interactional justice will play differentially important roles in determining the quality of organizational social exchange (as evidenced by perceived organizational support [POS]) and supervisory social exchange (as evidenced by supervisory trust). In particular, the authors hypothesized that the relationship between procedural justice and POS would be stronger in mechanistic organizations and that the relationship between interactional justice and supervisory trust would be stronger in organic organizations. The authors' results support these hypotheses.

  11. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions

    Science.gov (United States)

    Henneberry, Yumiko K.; Kraus, Tamara E.C.; Nico, Peter S.; Horwath, William R.

    2012-01-01

    The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.

  12. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis.

    Science.gov (United States)

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Anna V; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-03-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.

  13. ``PROTON Sponges": a Rigid Organic Scaffold to Reveal the Quantum Structure of the Intramolecular Proton Bond

    Science.gov (United States)

    Deblase, Andrew F.; Johnson, Mark A.; Scerba, Michael T.; Bloom, Steven; Lectka, Thomas; Dudding, Travis

    2012-06-01

    Spectroscopic analysis of systems containing charged hydrogen bonds (e.g. the Zundel ion, {H}5{O}2+) in a vibrationally cold regime is useful in decongesting numerous anharmonic features common to room temperature measurements.[Roscioli, J. R.; et. al. Science 2007] This approach has been extended to conjugate acids of the ``Proton Sponge" family of organic compounds, which contain strong intramolecular hydrogen bonds between proton donor (D) and acceptor (A) groups at the 1- and 8-positions. By performing {H}_2/{D}_2 vibrational predissociation spectroscopy on cryogenically cooled ions, we explore how the proximity and spatial orientation of D and A moieties relates to the spectroscopic signature of the shared proton. In the cases studied ({D = Me2N-H+; A = OH, O(C=O)Ph}), we observe strong anharmonic couplings between the shared proton and dark states that persist at these cryogenic temperatures. This leads to intense NH stretching features throughout the nominal CH stretching region (2800-3000 {cm}-1). Isotopic substitution has verified that the oscillator strength of these broad features is driven by NH stretching. Furthermore, the study of A = O(C=O)Ph has provided a spectroscopic snapshot of the shared proton at work as an active catalytic moiety fostering ester hydrolysis by first order acylium fission ({AAC1}). This is apparent by the high frequency carbonyl stretch at 1792 {cm}-1, which is a consequence of the strong hydrogen bond to the ether-ester oxygen atom. Thus, these ``Proton Sponges" are useful model systems that unearth the quantum structure and reactivity of shared proton interactions in organic compounds.

  14. Mechanistic studies of the structure-photostability relationship of organic conjugated polymers

    Science.gov (United States)

    Sanow, Logan Paul

    Organic Conjugated polymers (CPs) are a subject of intense research for their application in organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), solid-state dye lasing, biological imaging and sensing, chemical sensing and remote sensing. CPs are key materials in the quest for more sustainable forms of renewable energy, making electronics more versatile and light weight, and increasing the functionality of everyday materials. For these applications and others that use CPs as the photoactive material, one of their main drawbacks is their susceptibility to photodegradation. Photodegradation occurs when the material is exposed to light leading to irreversible changes in the materials, most often resulting from photoxidation. These irreversible changes cause loss of mechanical, electronic and photophysical characteristics. For practical applications of CP devices, lifetime is as important as device efficiency. The following research is focused on studying the photodegradation mechanisms in various CPs to better understand the relationship between structure and stability, which may lead to the design of CPs which are more intrinsically photostable. To study how dependent photostability is on a polymer's chemical structure and frontier orbital energies, two series of CPs were studied. The first series contained two dicyano-substituted polyphenylenevinylene polymers with different side chains: poly(2,5-dioctyl-1,4-phenylene-1,2-dicyanovinylene) (C8-diCN-PPV) and poly(2,5-bis(decyloxy)-1,4-phenylene-1,2-dicyanovinylene) (RO-diCN-PPV). The second series included a well-known polymer, poly(3-hexylthiophene) (P3HT), and a newly synthesized CP, Poly(3,5-didodecyl-cyclopenta[2,1-b;3,4-b']dithiophen-4-one) (C6-CPDTO). The photodegradation mechanisms were studied through a combination of UV-Vis, PL, FTIR and NMR spectroscopy as well as gel permeation chromatography. There are two main degradation mechanisms that lead to photodegradation of CPs, the radical

  15. The role of fungi for carbon decomposition in soils of different structure and fresh organic matter content

    Science.gov (United States)

    Schmidt, Sonja; Chenu, Claire; Falconer, Ruth; Geradin, Cyril; Nunan, Naoise; Otten, Wilfred; Pouteau, Valerie

    2014-05-01

    Sequestration of C in soils has a major influence on climate change. Fungi play an important role in carbon decomposition and sequestration but the effect of soil structure and input of fresh organic matter (particulate organic matter POM) is still unclear. Fungi is predominant involved in cellulose decomposition and the priming effect (PE) where old SOM is decomposed by using fresh carbon as a source of energy. Information on how soil structure affects colonisation and decomposition of POM and SOM by fungi could help to get explain processes involved in carbon sequestration and CO2respiration. The objective of this study was to get a better understanding on the involvement of fungi in CO2 emissions arising from soils and to gain information on what factors in the soil are driving organic matter (OM) decomposition. Experimental data on fungal growth and carbon decomposition as affected by POM abundance and soil structure were obtained. Sterilised maize straw (1-2 mm2) and soil (

  16. Structural Basis by Which Alternative Splicing Modulates the Organizer Activity of FGF8 in the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Olsen,S.; Li, J.; Eliseenkova, A.; Ibrahimi, O.; Lao, Z.; Zhang, F.; Linhardt, R.; Joyner, A.; Mohammadi, M.

    2006-01-01

    Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the 'c' splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the 'b' isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8b{sup F32A} mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution.

  17. Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: synergistic effects and structural organization of active components

    Science.gov (United States)

    Ellert, O. G.; Tsodikov, M. V.; Nikolaev, S. A.; Novotortsev, V. M.

    2014-08-01

    The review is concerned with correlations between the synergistic effects and structural organization of the surface of bimetallic alloys that are used as active components of catalysts for selective hydrogenation of organic compounds and for CO oxidation in hydrogen-rich mixtures. Studies on the preparation of novel highly efficient catalysts using modern theoretical approaches, computer-assisted molecular design and original synthetic procedures are considered. It is shown that introduction of the second metal into the monometallic catalyst and subsequent formation of alloy particles with modified structure of the surface and near-surface layers leads to nonadditive enhancement of catalytic activity and/or selectivity. The bibliography includes 203 references.

  18. THE INFLUENCE OF THE INTEGRATED MODEL OF SOCIAL STRATIFICATION STRUCTURE ON THE PUBLIC PARTICIPATING NON-PROFIT ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Yu-Tien Huang

    2013-01-01

    Full Text Available The main body of social stratification structure in Taiwan is transformed with social mobility. By transforming the social stratification structure, the function of non-profit organizations is operating steadily. How does people’s awareness of social strata directly or indirectly influence the operation of non-profit organizations? How do non-profit organizations and governments respond to the transformation of social stratum compositions? And how promotion and policy marketing could guide the general public to be attentive and participate in the operations of non-profit organizations? These questions require in-depth investigation. This study bases on the experiments and concepts of fairness measurement in information integration theory to comprehend the integrated model of social stratification in the public. By means of analyzing the awareness and orientation of the public to the constitution of social stratification which lead the public to identify themselves with the visions of non-profit organizations and the motion of participating non-profit matters to provide the interrelated recommendations of proceeding non-profit matters to non-profit organizations and the government. Comparing the cognitive algebraic functions of input information and outcome information of various groups in the social strata, the only difference is that if the input information is education background and the outcome information profession prestige. Empirically, non-profit organizations promoting and encouraging people to engage in occupational aid related activities could find different methods available.

  19. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research.

    Science.gov (United States)

    Lee, Ki Song; Choe, Young Chan; Park, Sung Hee

    2015-10-01

    This study examined the structural variables affecting the environmental effects of organic farming compared to those of conventional farming. A meta-analysis based on 107 studies and 360 observations published from 1977 to 2012 compared energy efficiency (EE) and greenhouse gas emissions (GHGE) for organic and conventional farming. The meta-analysis systematically analyzed the results of earlier comparative studies and used logistic regression to identify the structural variables that contributed to differences in the effects of organic and conventional farming on the environment. The statistical evidence identified characteristics that differentiated the environmental effects of organic and conventional farming, which is controversial. The results indicated that data sources, sample size and product type significantly affected EE, whereas product type, cropping pattern and measurement unit significantly affected the GHGE of organic farming compared to conventional farming. Superior effects of organic farming on the environment were more likely to appear for larger samples, primary data rather than secondary data, monocropping rather than multicropping, and crops other than fruits and vegetables. The environmental effects of organic farming were not affected by the study period, geographic location, farm size, cropping pattern, or measurement method.

  20. Structural organization of the human neuronal nitric oxide synthase gene (NOS1).

    Science.gov (United States)

    Hall, A V; Antoniou, H; Wang, Y; Cheung, A H; Arbus, A M; Olson, S L; Lu, W C; Kau, C L; Marsden, P A

    1994-12-30

    Neuronal nitric oxide (NO) synthase, localized to human chromosome 12, uniquely participates in diverse biologic processes; neurotransmission, the regulation of body fluid homeostasis, neuroendocrine physiology, control of smooth muscle motility, sexual function, and myocyte/myoblast biology, among others. Restriction enzyme mapping, subcloning, and DNA sequence analysis of bacteriophage- and yeast artificial chromosome-derived human genomic DNA indicated that the mRNA for neuronal NO synthase is dispersed over a minimum of 160 kilobases of human genomic DNA. Analysis of intron-exon splice junctions predicted that the open reading frame is encoded by 28 exons, with translation initiation and termination in exon 2 and exon 29, respectively. Determination of transcription initiation sites in brain poly(A) RNA with primer extension analysis and RNase protection revealed a major start site 28 nucleotides downstream from a TATA box. Sequence inspection of 5'-flanking regions revealed potential cis-acting DNA elements: AP-2, TEF-1/MCBF, CREB/ATF/c-Fos, NRF-1, Ets, NF-1, and NF-kappa B-like sequences. Diversity appears to represent a major theme apparent upon analysis of human neuronal NO synthase mRNA transcripts. A microsatellite of the dinucleotide variety was detected within the 3'-untranslated region of exon 29. Multiple alleles were evident in normal individuals indicating the existence of allelic mRNA sequence variation. Characterization of variant human neuronal NO synthase cDNAs indicated the existence of casette exon 9/10 and exon 10 deletions as examples of structural mRNA diversity due to alternative splicing. The latter deletion of a 175-nucleotide exon introduces a frame-shift and premature stop codon indicating the potential existence of a novel NH2 terminus protein. In summary, analysis of the human neuronal NO synthase locus reveals a complex genomic organization and mRNA diversity that is both allelic and structural.

  1. Comparative organization of the claustrum: what does structure tell us about function?

    Directory of Open Access Journals (Sweden)

    Joan S Baizer

    2014-07-01

    Full Text Available The claustrum is a subcortical nucleus present in all placental mammals. Many anatomical studies have shown that its inputs are predominantly from the cerebral cortex and its outputs are back to the cortex. This connectivity thus suggests that the claustrum serves to amplify or facilitate information processing in the cerebral cortex. The size and the complexity of the cerebral cortex change dramatically over evolution. Rodents are lissencephalic, with few cortical areas, while many primates have a greatly expanded cortex and many cortical areas. This evolutionary diversity in the cerebral cortex raises several questions about the claustrum. Does its volume expand in coordination with the expansion of cortex and does it acquire new functions related to the new cortical functions? We have examined the organization of the claustrum in animals with large brains, including great apes and cetaceans. Our data suggest that the claustrum is not always a continuous structure. In monkeys and gorillas there are a few isolated islands of cells near the main body of the nucleus. In cetaceans, however, there are many isolated cell islands. These data suggest constraints on the possible function of the claustrum. Some authors propose that the claustrum has a more global role in perception or consciousness that requires intraclaustral integration of information. These theories postulate mechanisms like gap junctions between claustral cells or a syncytium to mediate intraclaustral processing. The presence of discontinuities in the structure of the claustrum, present but minimal in primates, but dramatically clear in cetaceans, argues against the proposed mechanisms of intraclaustral processing of information. The best interpretation of function, then, is that each functional subdivision of the claustrum simply contributes to the function of its cortical partner.

  2. Structural and Functional Diversity of Weed Species in Organic and Conventional Rice Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    S. Y. Mousawi Toghani

    2016-02-01

    Full Text Available Introduction Diversity reflects the complexity of a system and can maintain its sustainability. Higherdiversity, results in higher inherent complexity of agro-ecosystems and strengthen their processes. It is necessary to realize the spatial distribution and temporal properties of the biodiversity components in agro-ecosystems, for the conservation and optimal utilization. Since weeds as a complementary component of agro-ecosystems and are inseparable, so the study of species, their functional and structural diversity of them can play an important role in weed management and balance in ecological systems. Materials and Methods This study was performed to determine the effects of different management systems on structural, and functional diversity of paddy weeds in Mazandaran province. Three rice fields, ranged from 0.3 to 0.5 ha, were chosen for each management system. Samples were collected from three fields running under each selected management system (organic and conventional. Data (number of weed species and their density were randomly gathered from 9 quadrates (1m×1m per each field in four stages (tillering, stem elongation, grain filling and after harvest. The diversity, evenness, frequency and similarity indices for weeds were determined at genera and species level. Data analysis carried out through T-test and grouping performed via cluster analysis as hierarchy. Results and Discussion All monitored weeds can be classified into four plant family including cereals (Poaceae, sedges (Cyperaceae, plantain (Plantaginaceae and chicory (Asteraceae.Under conventional systems the values of weed diversity indices were higher during tillering and stem elongation compared with organic ones, and were lower during grain filling and after harvest stages. However indices of weed evenness showed contrary tendency. Both Sympson and Shanon-Wiener diversity indices, consist of two clusters in 76% similarity. Evenness indices of Kamargo and Smith

  3. Quantitative structure-activity relationships for nasal pungency thresholds of volatile organic compounds.

    Science.gov (United States)

    Hau, K M; Connell, D W; Richardson, B J

    1999-01-01

    A model was developed for describing the triggering of nasal pungency in humans, based on the partition of volatile organic compounds (VOCs) between the air phase and the biophase. Two partition parameters are used in the model: the water-air partition coefficient and the octanol-water partition coefficient. The model was validated using data from the literature, principally on alcohols, acetates and ketones. The model suggests that all test compounds, regardless of their chemical functional groups, bind to a common receptor site within the hydrophobic interior of the bilayer membrane of the trigeminal nerve endings. There is probably only a slight, non-specific interaction between the VOC molecule and the receptor molecule, whereas this type of non-specific interaction for the detection of odor is much stronger. In practical terms, the suggestion that all VOCs share a common irritation receptor site implies that nasal-pungency thresholds of individual VOCs may be additive. Quantitative structure-activity relationships (QSARs) for nasal-pungency thresholds were also developed from the model, which can be used to predict nasal-pungency thresholds of common VOCs. Although the present model does not offer additional precision over that of M.H. Abraham et al., 1996, Fundam. Appl. Toxicol. 31, 71-76, it requires fewer descriptors and offers a physiological basis to the QSAR. Another advantage of the present model is that it also provides a basis for comparison between the olfactory process and nasal pungency.

  4. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  5. Self-organizing numerical models of transient processes in water supply hydraulic structures of energy industries

    Directory of Open Access Journals (Sweden)

    N.V. Arefyev

    2013-10-01

    Full Text Available Currently, there is an increase of diversity in the design of complex hydraulic structures. Thus there is a need to establish adequate mathematical models and software with complete description of processes. These models should be focused on certain classes of problems, which statements may change during the simulation. So, in our opinion, so-called self-organizing simulation models are perspective, they adapt to changes in the operating practice of the objects that require rapid adjustments in the boundary conditions and the field of simulation. Results of development of self-adapting complexes of numerical models, permitting calculation of complex water passageway systems with varying flow regime on separate parts (discharge; movement on the dry bottom, provided hydraulic head in free-flow downstream tunnel etc.. Presented system traces the movement of modeling area boundaries (when filling and dumping water passage sections and chooses the appropriate boundary condition with changing flow regime on the border of modelling area of the flow (free-flowing weir – drowned weir.Given results of numerical simulation of real systems make it possible to consider proposed approach as efficient.

  6. Influence of structural fluctuations on lifetimes of adsorbate states at hybrid organic-semiconductor interfaces

    Science.gov (United States)

    Müller, M.; Sánchez-Portal, D.; Lin, H.; Fratesi, G.; Brivio, G. P.; Selloni, A.

    On the road towards a more realistic description of charge transfer processes at hybrid organic-semiconductor interfaces for photovoltaic applications we extend our first-principles scheme for the extraction of elastic linewidths to include the effects of structural fluctuations. Based on snapshots obtained from Car-Parinello molecular dynamics simulations at room temperature, we set up geometries in which dye molecules at interfaces are attached to a semi-infinite TiO2 substrate. The elastic linewidths are computed using a Green's function method. This effectively introduces the coupling to a continuum of states in the substrate. In particular we investigate catechol and isonicotinic acid on rutile(110) and anatase(101) at the level of semi-local density functional theory. We perform multiple calculations of linewidths and peak-positions associated with the adsorbate's frontier orbitals for different geometric configurations to obtain a time-averaged analysis of such physical properties. We compare the results from the considered systems to understand the effects of dynamics onto interfacial charge transfer and systematically assess the dependence of the extracted elastic lifetimes on the relative alignment between adsorbate and substrate states. This project has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 607323 [THINFACE].

  7. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  8. Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes.

    Science.gov (United States)

    Kamler, Jan F; Gray, Melissa M; Oh, Annie; Macdonald, David W

    2013-09-01

    We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyads in the low-density population. Home-range overlap of neighboring female dyads was significantly greater in the high compared to low-density population, whereas overlap within other dyads was similar between populations. Amount of home-range overlap between neighbors was positively correlated with genetic relatedness for all dyad-site combinations, except for female and male dyads in the low-density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high-density population, and overall exhibited a male-biased dispersal pattern. Our results indicated that genetic structure within populations of bat-eared foxes was sex-biased, and was interrelated to density and group sizes, as well as sex-biases in philopatry and dispersal distances. We conclude that a combination of male-biased dispersal rates, adult dispersals, and sex-biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae.

  9. Structure and logical organization of current studies in track and field sports

    Directory of Open Access Journals (Sweden)

    Bobrovnik V.I.

    2014-02-01

    Full Text Available Purpose: to develop a system of assessment and prediction of technical skill athletes-athletes. Material : the study involved 450 athletes qualifications. Results : in the process of preparing members of the Ukrainian national team implemented a system of assessment of mental state. It includes: a set of informative indicators biomechanical laws and their changes; biomechanical model of motor actions; technology operational biomechanical modeling, changes in the functional state of the viscoelastic properties of skeletal muscle vestibulomotornoy system and speed- force readiness, evaluation and prediction of physical condition of athletes qualified. And complex pedagogical tests and scorecards. For the evaluation of the functional state of the autonomic nervous, cardiovascular system, external respiration system by analyzing the electrocardiogram, heart rate variability, the definition of autonomic balance, state of the myocardium, cardiac arrhythmias, spirometric studies, system performance evaluation of the athlete in extreme conditions by identifying the type and properties of temperament, level of personal anxiety and psychological evaluation reliability athletes. Conclusions : the structure and logical organization of modern studies of different primary focus, based on the assessment of technical skills, physical fitness, functional and mental state of highly skilled athletes.

  10. Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle.

    Science.gov (United States)

    Ivanova, Elena P; Nguyen, Song Ha; Webb, Hayden K; Hasan, Jafar; Truong, Vi Khanh; Lamb, Robert N; Duan, Xiaofei; Tobin, Mark J; Mahon, Peter J; Crawford, Russell J

    2013-01-01

    The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) depth profiling and gas chromatography-mass spectrometry (GCMS), we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported.

  11. Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle.

    Directory of Open Access Journals (Sweden)

    Elena P Ivanova

    Full Text Available The molecular organization of the epicuticle (the outermost layer of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR, x-ray photoelectron spectroscopy (XPS depth profiling and gas chromatography-mass spectrometry (GCMS, we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported.

  12. Efficient Hybrid White Organic Light-Emitting Diodes for Application of Triplet Harvesting with Simple Structure

    CERN Document Server

    Hwang, Kyo Min; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Jwajin; Yoon, Seung Soo; Kim, Young Kwan

    2016-01-01

    In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with simple structure. All the hole transporting material and host in emitting layer (EML) of devices were utilized with same material by using N,N'-di-1-naphthalenyl-N,N'-diphenyl-[1,1':4',1":4",1"'-quaterphenyl]-4,4"'-diamine (4P-NPD) which were known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated three color with blue fluorescent and green, red phosphorescent materials. We was investigated the effect of triplet harvesting (TH) by exciton generation zone on simple hybrid WOLEDs. Characteristic of simple hybrid WOLEDs were dominant hole mobility, therefore exciton generation zone was expected in EML. Additionally, we was optimization thickness of hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. Simple hybrid WOLED exhibits maximum luminous efficiency of 29.3 cd/A and maximum external quantum efficiency of 11.2%. Commission Internatio...

  13. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yuankun [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    rate due to microheterogeneity. Effect of TiO2 doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 μs). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  14. Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations.

    Science.gov (United States)

    Egger, David A; Kronik, Leeor

    2014-08-07

    A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.

  15. Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Shuai, Zhigang, E-mail: zgshuai@tsinghua.edu.cn [MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing (China); Peng, Qian, E-mail: qpeng@iccas.ac.cn [Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing (China)

    2014-04-01

    Photo- or electro-excited states in polyatomic molecules, aggregates, and conjugated polymers are at the center of organic light-emitting diodes (OLEDs). These can decay radiatively or non-radiatively, determining the luminescence quantum efficiency of molecular materials. According to Kasha’s rule, light-emission is dictated by the lowest-lying excited state. For conjugated polymers, the electron correlation effect can lead the lowest-lying excited state to the even-parity 2A{sub g} state which is non-emissive. To understand the nature of the low-lying excited state structure, we developed the density matrix renormalization group (DMRG) theory and its symmetrization scheme for quantum chemistry applied to calculate the excited states structure. We found there are three types of 1B{sub u}/2A{sub g} crossover behaviors: with electron correlation strength U, with bond length alternation, and with conjugation length. These directly influence the light-emitting property. For the electro-excitation, carriers (electron and hole) are injected independently, forming both singlet and triplet excited bound states with statistically 25% and 75% portions, respectively. We found that the exciton formation rate can depend on spin manifold, and for conjugated polymers, the singlet exciton can have larger formation rate leading to the internal electroluminescence quantum efficiency larger than the 25% spin statistical limit. It is originated from the interchain electron correlation as well as intrachain lattice relaxation. For the dipole allowed emissive state, the radiative decay process via either spontaneous emission or stimulated emission can be computed from electronic structure plus vibronic couplings. The challenging issue lies in the non-radiative decay via non-adiabatic coupling and/or spin–orbit coupling. We developed a unified correlation function formalism for the excited state radiative and non-radiative decay rates. We emphasized the low-frequency mode mixing

  16. Synthesis and Structural Characterization of Carboxylate-Based Metal-Organic Frameworks and Coordination Networks

    Science.gov (United States)

    Calderone, Paul

    Coordination networks (CNs) and metal-organic frameworks (MOFs) are crystalline materials composed of metal ions linked by multifunctional organic ligands. From these connections, infinite arrays of one-, two-, or three-dimensional networks can be formed. Exploratory synthesis and research of novel CNs and MOFs is of current interest because of their many possible industrial applications including gas storage, catalysis, magnetism, and luminescence. A variety of metal centers and organic ligands can be used to synthesize MOFs and CNs under a range of reaction conditions, leading to extraordinary structural diversity. The characteristics of the metals and linkers, such as properties and coordination preferences, play the biggest role in determining the structure and properties of the resulting network. Thus, the choice of metal and linker is dictated by the desired traits of the target network. The pervasive use of transition metal centers in MOF synthesis stems from their well-known coordination behavior with carboxylate-based linkers, thus facilitating design strategies. Conversely, CNs and MOFs based on s-block and lanthanide metals are less studied because each group presents unique challenges to structure prediction. Lanthanide metals have variable coordination spheres capable of accommodating up to twelve atoms, while the bonding in s-block metals takes on a mainly ionic character. In spite of these obstacles, lanthanide and s-block CNs are worthwhile synthetic targets because of their unique properties. Interesting photoluminescent and sensing materials can be developed using lanthanide metals, whereas low atomic weight s-block metals may afford an advantage in gravimetric advantages for gas storage applications. The aim of this research was to expand the current understanding of carboxylate-based CN and MOF synthesis by varying the metals, solvents, and temperatures used. To this end, magnesium-based CNs were examined using a variety of aromatic carboxylate

  17. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    Science.gov (United States)

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  18. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  19. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    Science.gov (United States)

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  20. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    Science.gov (United States)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-11-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  1. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations.

    Science.gov (United States)

    Esperschütz, Jürgen; Gattinger, Andreas; Mäder, Paul; Schloter, Michael; Fliessbach, Andreas

    2007-07-01

    In this study the influence of different farming systems on microbial community structure was analyzed using soil samples from the DOK long-term field experiment in Switzerland, which comprises organic (BIODYN and BIOORG) and conventional (CONFYM and CONMIN) farming systems as well as an unfertilized control (NOFERT). We examined microbial communities in winter wheat plots at two different points in the crop rotation (after potatoes and after maize). Employing extended polar lipid analysis up to 244 different phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL) were detected. Higher concentrations of PLFA and PLEL in BIODYN and BIOORG indicated a significant influence of organic agriculture on microbial biomass. Farmyard manure (FYM) application consistently revealed the strongest, and the preceding crop the weakest, influence on domain-specific biomass, diversity indices and microbial community structures. Esterlinked PLFA from slowly growing bacteria (k-strategists) showed the strongest responses to long-term organic fertilization. Although the highest fungal biomass was found in the two organic systems of the DOK field trial, their contribution to the differentiation of community structures according to the management regime was relatively low. Prokaryotic communities responded most strongly to either conventional or organic farming management.

  2. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Susumu, E-mail: shou@sci.u-ryukyu.ac.jp [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Okuma, Koji; Inaoka, Takeshi [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Hamada, Ikutaro, E-mail: Hamada.Ikutaro@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan)

    2015-10-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  3. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River

    Science.gov (United States)

    Wang, Wenhui; Wang, Hui; Feng, Youzhi; Wang, Lei; Xiao, Xingji; Xi, Yunguan; Luo, Xue; Sun, Ruibo; Ye, Xianfeng; Huang, Yan; Zhang, Zhengguang; Cui, Zhongli

    2016-01-01

    Soil microorganisms play a crucial role in the biogeochemical cycling of nutrient elements and maintaining soil health. We aimed to investigate the response of bacteria communities to organic farming over different crops (rice, tea and vegetable) along the middle and lower reaches of the Yangtze River of China. Compared with conventional farming, organic farming significantly increased soil nutrients, soil enzyme activities, and bacterial richness and diversity. A Venn diagram and principal component analysis revealed that the soils with 3 different crops under organic farming have more number and percent of shared OTUs (operational taxonomic units), and shared a highly similar microbial community structure. Under organic farming, several predominant guilds and major bacterial lineages (Rhizobiales, Thiotrichaceae, Micromonosporaceae, Desulfurellaceae and Myxococcales) contributing to nutrient (C, N, S and P) cycling were enriched, whereas the relative abundances of acid and alkali resistant microorganisms (Acidobacteriaceae and Sporolactobacillaceae) were increased under conventional farming practices. Our results indicated that, for all three crops, organic farming have a more stable microflora and the uniformity of the bacterial community structure. Organic agriculture significantly increased the abundance of some nutrition-related bacteria, while reducing some of the abundance of acid and alkali resistant bacteria. PMID:27725750

  4. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River.

    Science.gov (United States)

    Wang, Wenhui; Wang, Hui; Feng, Youzhi; Wang, Lei; Xiao, Xingji; Xi, Yunguan; Luo, Xue; Sun, Ruibo; Ye, Xianfeng; Huang, Yan; Zhang, Zhengguang; Cui, Zhongli

    2016-10-11

    Soil microorganisms play a crucial role in the biogeochemical cycling of nutrient elements and maintaining soil health. We aimed to investigate the response of bacteria communities to organic farming over different crops (rice, tea and vegetable) along the middle and lower reaches of the Yangtze River of China. Compared with conventional farming, organic farming significantly increased soil nutrients, soil enzyme activities, and bacterial richness and diversity. A Venn diagram and principal component analysis revealed that the soils with 3 different crops under organic farming have more number and percent of shared OTUs (operational taxonomic units), and shared a highly similar microbial community structure. Under organic farming, several predominant guilds and major bacterial lineages (Rhizobiales, Thiotrichaceae, Micromonosporaceae, Desulfurellaceae and Myxococcales) contributing to nutrient (C, N, S and P) cycling were enriched, whereas the relative abundances of acid and alkali resistant microorganisms (Acidobacteriaceae and Sporolactobacillaceae) were increased under conventional farming practices. Our results indicated that, for all three crops, organic farming have a more stable microflora and the uniformity of the bacterial community structure. Organic agriculture significantly increased the abundance of some nutrition-related bacteria, while reducing some of the abundance of acid and alkali resistant bacteria.

  5. Probing Electronic, Structural, and Charge Transfer Properties of Organic Semiconductor/Inorganic Oxide Interfaces Using Field-Effect Transistors

    Science.gov (United States)

    Spalenka, Josef Wade

    Interfaces between organic semiconductors and inorganic oxides provide the functionality for devices including field-effect transistors (FETs) and organic photovoltaics. Organic FETs are sensitive to the physical structure and electronic properties of the few molecular layers of material at the interface between the semiconducting channel and the gate dielectric, and provide quantitative information such as the field-effect mobility of charge carriers and the concentration of trapped charge. In this thesis, FET interfaces between organic small-molecule semiconductors and SiO2, and donor/acceptor interfaces between organic small-molecules and the wide bandgap semiconductor ZnO are studied using electrical measurements of field-effect transistor devices. Monolayer-scale films of dihexyl sexithiophene are shown to have higher hole mobility than other monolayer organic semiconductors, and the origin of the high mobility is discussed. Studies of the crystal structure of the monolayer using X-ray structural probes and atomic force microscopy reveal the crystal structure is different in the monolayer regime compared to thicker films and bulk crystals. Progress and remaining challenges are discussed for in situ X-ray diffraction studies of the dynamic changes in the local crystal structure in organic monolayers due to charge carriers generated during the application of electric fields from the gate electrode in working FETs. Studies were conducted of light sensitive organic/inorganic interfaces that are modified with organic molecules grafted to the surface of ZnO nanoparticles and thin films. These interfaces are models for donor/acceptor interfaces in photovoltaics. The process of exciton dissociation at the donor/acceptor interface was sensitive to the insulating or semiconducting molecules grafted to the ZnO, and the photoinduced charge transfer process is measured by the threshold voltage shift of FETs during illumination. Charge transfer between light sensitive donor

  6. Organizational Structure, Authority and Protest: The Case of Union Organizing in the United States, 1990-2001

    Science.gov (United States)

    Martin, Andrew W.

    2007-01-01

    Robert Michels' famous "iron law of oligarchy" has come under criticism from scholars that question assumptions regarding the concentration of power within social movement organizations (SMOs). Despite such concerns, Michels' broader interests in organizational structure and power continue to be relevant for analyzing the goals and…

  7. Introducing Bond-Line Organic Structures in High School Biology: An Activity that Incorporates Pleasant-Smelling Molecules

    Science.gov (United States)

    Rios, Andro C.; French, Gerald

    2011-01-01

    Chemical education occurs in settings other than just the chemistry classroom. High school biology courses are frequently where students are introduced to organic molecules and their importance to cellular chemistry. However, structural representations are often intimidating because students have not been introduced to the language. As part of a…

  8. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures.

    Science.gov (United States)

    Liu, Xiao; Yi, Qiaolian; Han, Yongzhen; Liang, Zhenning; Shen, Chaohua; Zhou, Zhengyang; Sun, Jun-Liang; Li, Yizhi; Du, Wenbin; Cao, Rui

    2015-02-02

    A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods.

  9. Territorial Dioceses and Ethnic Episcopies in the Structure of the Church Organization of the First Bulgarian Kingdom (Canonical Aspects

    Directory of Open Access Journals (Sweden)

    Archpriest Alexander Zadornov

    2016-12-01

    Full Text Available The coexistence of ethnic and territorial principles in the structure of ecclesiastical organizations is a well known fact in church history. Both principles are equally legitimate from the point of view of canonical law. The “ethnic principle” was based on legal norms of the so-called 34th Apostolic Rule, and contrary to the opinion of scholars of the 19th century, it was still in use after the era of the Ecumenical Councils. This fact must be considered by students of the history of Church organizations in the First Bulgarian Kingdom, too. The observations regarding the structure of church organizations in Simeonic Bulgaria make it possible to assume the coexistence of ethnic and territorial principles of church organizations in his kingdom. As is known, Slavonic church schools were established in the southwestern part of the First Bulgarian Kingdom after 886. They were aimed at training the Slavonic clergy for the Slavonic church organization. In 893, the Bulgarian King Simeon was elevated to the throne, and a Slavonic eparchy headed by St. Clement of Ohrid was established in the southwestern territories of the First Bulgarian Kingdom. As a result, heterogeneous church organizations were established in the region, and church structures of ethnic and territorial types appeared. They differ from each other by the language of their church services. Old Church Slavonic must have been used as a liturgical language in the ethnic Slavonic eparchy. Since direct historical evidence for such heterogeneous church structure in the First Bulgarian Kingdom is absent, new interpretations of sources made on the basis of canonical law can be of importance for Slavonic studies.

  10. Six new inorganic–organic hybrids based on rigid triangular ligands: Syntheses, structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2016-01-15

    Six new inorganic–organic hybrids based on rigid triangular N-containing ligands, NaCu{sup I}{sub 2}(tib){sub 4}(H{sub 2}O){sub 4}[H{sub 2}PW{sup V}W{sup VI}{sub 11}O{sub 40}][H{sub 2}PW{sup VI}{sub 12}O{sub 40}]·6H{sub 2}O (1), Cu{sup II}{sub 3}(tib){sub 4}Cl{sub 4}[H{sub 2}PW{sup VI}{sub 12}O{sub 40}]{sub 2}·4H{sub 2}O (2), Co(tib){sub 2}[PW{sup V}{sub 3}W{sup VI}{sub 9}O{sub 38}]·5H{sub 2}O (3), Cu{sup II}{sub 3}(tib){sub 2}[P{sub 2}Mo{sup VI}{sub 5}O{sub 22}(O{sub 2})]·4H{sub 2}O (4), Mn(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (5) and Co(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (6) (tib=1,3,5-tris(1-imidazolyl)benzene, pytpy=4’-(4”-pyridyl)2,4’:6’,4”-terpyridine), have been hydrothermally synthesized. Single crystal X-ray diffraction studies revealed that compounds 1–4 display two-dimensional (2D) layered structures, and in compounds 1–3, the adjacent Keggin anions link with each other by W–O–W covalent interactions to form 1D inorganic chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. The compounds have been characterized by elemental analysis, powder X−ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric analyses. Moreover, the electrochemical and catalytic properties of compound 1 have been investigated as well. - Graphical abstract: Six new inorganic–organic hybrids based on rigid triangular N-containing ligands have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–4 display two-dimensional (2D) layers structure, and in compounds 1–3, the adjacent Keggin anions link with each other by W–O–W covalent interactions to form 1D inorganic Keggin anions chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. - Highlights: • MOFs

  11. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    Science.gov (United States)

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  12. Synthesis, crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; XUE Ming; XU JiaNing; ZHU GuangShan; QIU ShiLun

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H_2O) (1) and Co(QS)(H_2O)2 (2) (H2QS=8-hydroxylquinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  13. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  14. Volatile organic chemical emissions from structural insulated panel (SIP) materials and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.

    2003-09-01

    The emissions of volatile organic compounds (VOCs) from structural insulated panel (SIP) materials were investigated. Specimens of newly produced SIPs and associated panel adhesives were obtained from two relatively large manufacturers. Additionally, specimens of the oriented strand board (OSB) used as the inner and outer sheathing and the extruded polystyrene core for the SIP were obtained from one manufacturer. Using small-scale chambers, emissions of formaldehyde, acetaldehyde, acetic acid and other VOCs from SIPs, OSB and polystyrene were measured over a period of four months and from the adhesives over two months. SIP specimens overlaid by gypsum board panels were also tested over four months. The predominant VOCs emitted by the SIPs included acetic acid, pentanal, hexanal and styrene. The emissions of formaldehyde and acetaldehyde were relatively low. Acetic acid and the aldehydes derived from the OSB, while styrene derived from the polystyrene. One of the SIPs emitted toluene and methyl acetate. The adhesives primarily emitted a mixture of hydrocarbons. The emission rates of most VOCs from the SIP/gypsum board assemblies were approximately the same or higher than their respective emission rates from the unfinished SIPs. Modeling using VOC emission factors obtained for the SIP/gypsum board assemblies demonstrated the potential for SIP materials to degrade indoor air quality in houses. A field study to investigate VOC concentrations and emission rates in SIP houses relative to closely matched conventionally constructed houses is necessary to determine the actual impacts of SIPs. If significant impacts are observed, to it may be desirable to develop control measures to reduce the emissions of VOCs from SIPs, such as the substitution of lower emitting materials or the use of vapor diffusion barriers.

  15. Organization and Finance of China's Health Sector: Historical Antecedents for Macroeconomic Structural Adjustment.

    Science.gov (United States)

    Li, Hui; Hilsenrath, Peter

    2016-01-01

    China has exploded onto the world economy over the past few decades and is undergoing rapid transformation toward relatively more services. The health sector is an important part of this transition. This article provides a historical account of the development of health care in China since 1949. It also focuses on health insurance and macroeconomic structural adjustment to less saving and more consumption. In particular, the question of how health insurance impacts precautionary savings is considered. Multivariate analysis using data from 1990 to 2012 is employed. The household savings rate is the dependent variable in 3 models segmented for rural and urban populations. Independent variables include out-of-pocket health expenditures, health insurance payouts, housing expenditure, education expenditure, and consumption as a share of gross domestic product (GDP). Out-of-pocket health expenditures were positively correlated with household savings rates. But health insurance remains weak, and increased payouts by health insurers have not been associated with lower levels of household savings so far. Housing was positively correlated, whereas education had a negative association with savings rates. This latter finding was unexpected. Perhaps education is perceived as investment and a substitute for savings. China's shift toward a more service-oriented economy includes growing dependence on the health sector. Better health insurance is an important part of this evolution. The organization and finance of health care is integrally linked with macroeconomic policy in an environment constrained by prevailing institutional convention. Problems of agency relationships, professional hegemony, and special interest politics feature prominently, as they do elsewhere. China also has a dual approach to medicine relying heavily on providers of traditional Chinese medicine. Both of these segments will take part in China's evolution, adding another layer of complexity to policy.

  16. Distribution and structure of internal secretory reservoirs on the vegetative organs of Inula helenium L. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Aneta Sulborska

    2012-12-01

    Full Text Available The aim of the study was to investigate the structure and topography of endogenous secretory tissues of Inula helenium L. By using light and electron microscopy, morphological and anatomical observations of stems, leaves and rhizomes were made. It was shown that in the stems secretory cavities were situated in the vicinity of phloem and xylem bundles. The number of the reservoirs reached its maximum value (34 at shoot flowerig termination, whereas the cavities with the largest diameter were observed at full flowering stage (44.6 µm. In the leaf petioles and midribs, the reservoirs also accompanied the vascular bundles, and their number and size increased along with the growth of the assimilation organs. Observations of the cross sections of the rhizomes revealed the presence of several rings of secretory reservoirs. The measurements of the cavities showed that as a rule the reservoirs with a larger dimension were located in the phelloderm, whereas the smallest ones in the xylem area. The secretory cavities located in the stems and leaves developed by schizogenesis, whereas the rhizome reservoirs were probably formed schizolisygenously. The cells lining the reservoirs formed a one - four-layered epithelium. Observed in TEM, the secretory cells of the mature cavities located in the rhizomes were characterised by the presence of a large central vacuole, whereas the protoplast was largely degraded. Fibrous elements of osmophilic secretion and numerous different coloured vesicles could be distinguished in it. The cell walls formed, from the side of the reservoir lumen, ingrowths into the interior of the epithelial cells. Between the cell wall and the plasmalemma of the glandular cells, a brighter periplasmatic zone with secretory vesicles was observed.

  17. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  18. The influence of fibrous elastomer structure and porosity on matrix organization.

    Directory of Open Access Journals (Sweden)

    Jamie L Ifkovits

    Full Text Available Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus. The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate (PGS, with changes in fiber alignment (non-aligned (NA versus aligned (AL and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO. PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ∼3-240 kPa, failing within the range of properties (<300 kPa appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ∼90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ∼13% and ∼16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important

  19. Structural and property studies on metal–organic compounds with 3-D supramolecular network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian, E-mail: shiq@wzu.edu.cn

    2014-07-01

    Two carboxylato-bridged allomeric compounds, ([Cu{sub 2}(dbsa){sub 2}(hmt) (H{sub 2}O){sub 4}]{sub 1/2}·2H{sub 2}O){sub n} (1), ([Ni(dbsa)(H{sub 2}O){sub 2}]{sub 1/2}[Ni(dbsa)(hmt)(H{sub 2}O){sub 2}]{sub 1/2}·2H{sub 2}O){sub n} (2) (H{sub 2}dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J{sub 1}=−3.5 cm{sup −1}, J{sub 2}=−2.8 cm{sup −1} for 1, and g=2.1, J=−3.5 cm{sup −1} for 2. - Graphical abstract: Variable-temperature magnetic property studies of two 3-D supramolecular compounds reveal the existence of antiferromagnetic interactions between the metal ions, through the effective super-exchange media. - Highlights: • Two 3-D allomeric Cu(II) and Ni(II) metal–organic compounds have been prepared. • The 3-D networks were constructed by coordination bonds, weak interactions and hydrogen bond interactions. • There are antiferromagnetic super-exchange interactions between the metal ions.

  20. Efficiency enhancement due to self-organization of nano-structures in Cd(S, Te) solar cell material

    Science.gov (United States)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2014-03-01

    CdTe is one of the most important solar cell materials. Its energy gap is 1.44 eV, which is ideal for solar cell application. So far, conversion efficiency of 18.3 percent has been realized, but it is lower than the Shockley-Queisser limit. In this paper, we propose computational materials design for enhancing conversion efficiency by using self-organization in Cd(Te, S) alloy semiconductor. Firstly, we performed cluster expansion of total energy of the Cd(Te, S) system and simulated self-organization of nano-structures in Cd(Te, S) by using Monte Carlo method. It is found that layered structure becomes stable by applying strain during the crystal growth. The electronic structure of the self-organized layered structure was calculated by using the hybrid method (HSE06) implemented in the VASP code to derive optical absorption coefficient. By using the calculated absorption coefficient the efficiency limit was derived based on the Shockley-Queisser theory. It is shown that the efficiency limit does not change so much due to the nano-structure formation. However, our calculation shows spatial separation between photo-generated electrons and holes. This might enhance the efficiency due to the suppression of recombination.

  1. The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ

    Indian Academy of Sciences (India)

    Susan J Rehorek; Bruce T Firth; Mark N Hutchinson

    2000-06-01

    The vomeronasal organ is a poorly understood accessory olfactory organ, present in many tetrapods. In mammals, amphibians and lepidosaurian reptiles, it is an encapsulated structure with a central, fluid-filled lumen. The morphology of the lubricatory system of the vomeronasal organ (the source of this fluid) varies among classes, being either intrinsic (mammalian and caecilian amphibian vomeronasal glands) or extrinsic (anuran and urodele nasal glands). In the few squamate reptiles thus far examined, there are no submucosal vomeronasal glands. In this study, we examined the vomeronasal organs of several species of Australian squamates using histological, histochemical and ultrastructural techniques, with the goal of determining the morphology of the lubricatory system in the vomeronasal organ. Histochemically, the fluid within the vomeronasal organ of all squamates is mucoserous, though it is uncertain whether mucous and serous constituents constitute separate components. The vomeronasal organ produces few secretory granules intrinsically, implying an extrinsic source for the luminal fluid. Of three possible candidates, the Harderian gland is the most likely extrinsic source of this secretion.

  2. Highly Efficient Nondoped Organic Light Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter with Quantum-Well Structure.

    Science.gov (United States)

    Meng, Lingqiang; Wang, Hui; Wei, Xiaofang; Liu, Jianjun; Chen, Yongzhen; Kong, Xiangbin; Lv, Xiaopeng; Wang, Pengfei; Wang, Ying

    2016-08-17

    Highly efficiency nondoped thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs) with multiquantum wells structure were demonstrated. By using an emitting layer with seven quantum wells, the nondoped TADF OLEDs exhibit high efficiency with EQE of 22.6%, a current efficiency of 69 cd/A, and a power efficiency of 50 lm/W, which are higher than those of the conventional doped OLED and among the best of the TADF OLEDs. The high performance of the devices can be ascribed to effective confinement of the charges and excitons in the emission layer by the quantum well structure. The emission layer with multiquantum well structure is demonstrated to be cost effective for highly efficient nondoped TADF OLEDs and holds great potential for organic electronics.

  3. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T.; Percino, J. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, 72050, Puebla, Pue. (Mexico); Orlova, T. [Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre Dame, IN (United States); Vavilova, L. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  4. Study on organization transform of public organizations based on organization structure%基于组织结构的公共部门组织变革研究

    Institute of Scientific and Technical Information of China (English)

    汪朗峰; 伏玉林

    2013-01-01

    通过组织变革来提高组织收益是公共部门机构改革的重要课题.已有文献表明,因为无法描述组织的结构特征和公共事务的差异性,组织变革的研究正面临瓶颈.本文根据公共事务发生地区性和职能性特征,构建了描述公共事务多重多任务特征的概率模型,用于分析公共部门的组织结构特征,并从组织收益提高视角研究了组织变革.研究结果表明,基于公共部门组织结构进行的组织变革可以明显提高组织收益.相关结果可以为公共部门的机构改革提供组织变革方面的参考.%It' s an important subject for bureaucracy reform of public sectors to improve the organization' s gain through organizational structure change. Previous studies cannot give efficient methods for organization structure change because they cannot describe the organizational structure features and differences of public affairs. This paper described multiple & the multi-task features of public affairs, presented organizational structures of the public sector based on the probabilistic model, and optimized organizational structures by organizational gains. Mathematical analysis result shows that the organizations gains can be improved significantly based on the organizational structure change in the public sector. Results can be provided for reference to the organizational structure change for bureaucracy reform of public sector.

  5. Self-Organization of Temporal Structures — A Possible Solution for the Intervention Problem

    Science.gov (United States)

    von Lucadou, Walter

    2006-10-01

    -local correlations. The structure of the data, however, allows the conclusion, that all observed correlations can be considered as entanglement-correlations. The number of entanglement-correlations was significantly higher for the highly motivated group (data set 2) than for the unselected group of the exhibition participants (data set 3). The latter, however, where not completely unsuccessful: A subgroup who showed "innovative" behavior also showed significant entanglement-correlations. It could further be shown, that the structure of the matrix of entanglement-correlations is not stable in time and changes if the experiment is repeated. In comparison with previous correlation-experiments, no decline of the effect size was observed. These results are in agreement with the predictions of the "Weak Quantum Theory (WQT)" and the "Model of Pragmatic Information (MPI)". These models interpret the measured correlations as entanglement-correlations within a self-organizing, organizationally closed, psycho-physical system that exist during a certain time-interval (as long as the system is active). The entanglement-correlations cannot be considered as a causal influence (in the sense of a PK-Influence) and thus are called "micro-synchronicity". After a short introduction (1.), the question is discussed how non-local correlations can be created in psycho-physical systems (2.). In chapter (3.) the description of the experimental setting is given and the apparatus (4.) and randomness test of the random event generator (5.) are described. Additionally, an overview of the structure of the data is given (6.) and the analysis methods are described (7.). In chapter (8.) the experimental hypotheses are formulated and the results are reported (9.). After the discussion of the results (10.) the conclusions (11).) of the study are presented.

  6. Capturing neon - the first experimental structure of neon trapped within a metal-organic environment.

    Science.gov (United States)

    Wood, Peter A; Sarjeant, Amy A; Yakovenko, Andrey A; Ward, Suzanna C; Groom, Colin R

    2016-08-21

    Despite being the fifth most abundant element in the atmosphere, neon has never been observed in an organic or metal-organic environment. This study shows the adsorption of this highly unreactive element within such an environment and reveals the first crystallographic observation of an interaction between neon and a transition metal.

  7. Soil microbial community structure and target organisms under different fumigation treatments

    Science.gov (United States)

    Several high-value crop producers in California rely heavily on soil fumigants to control key diseases, nematodes, weeds and volunteer crops. Fumigants with broad biocidal activity can affect both target and non-target soil organisms. The ability of non-target soil organisms to recover after fumigat...

  8. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  9. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim;

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologou...... to those of other lipothrixviruses, a single tRNA(Lys) gene containing a 12-bp archaeal intron, and a 1,008-bp repeat-rich region near the center of the genome....

  10. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    Science.gov (United States)

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-04

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  11. Designing HR Organizational Structures in terms of the HR Business Partner Model Principles from the Perspective of Czech Organizations

    Directory of Open Access Journals (Sweden)

    Marek Stříteský

    2014-03-01

    Full Text Available This paper describes new trends related to the concepts contained in HR organizational structures within Czech organizations. In addition, it describes the specifics of the roles played by HR in those organizations which have transformed their HR departments in terms of the principles of the HR Business Partner Model, both in theory based on available resources, and at the practical level based on the results of primary examination. The goal of this paper is to present the key perceptions of the changes made in the HR structure within the organizations, as well as the impact of these changes on the effectiveness of the HR departments concerned. Another goal of the paper is to summarize the responsibilities of the newly created position known as the HR Business Partner in these organizations as well as the demands placed upon the personnel employed in the HR Business Partner role. The paper offers conclusions based on the results of both quantitative and qualitative surveys. It also contains a case study of one organization which has one of the best transformed HR departments, and whose services are classified, by internal clients, as being of high quality.

  12. Influence of molecular structure on the laser-induced plasma emission of the explosive RDX and organic polymers.

    Science.gov (United States)

    De Lucia, Frank C; Gottfried, Jennifer L

    2013-10-01

    A series of organic polymers and the military explosive cyclotrimethylenetrinitramine (RDX) were studied using the light emission from a femtosecond laser-induced plasma under an argon atmosphere. The relationship between the molecular structure and plasma emission was established by using the percentages of the atomic species (C, H, N, O) and bond types (C-C, C═C, C-N, and C≡N) in combination with the atomic/molecular emission intensities and decay rates. In contrast to previous studies of organic explosives in which C2 was primarily formed by recombination, for the organic materials in this study the percentage of C-C (and C═C) bonds was strongly correlated to the molecular C2 emission. Time-resolved emission spectra were collected to determine the lifetimes of the atomic and molecular species in the plasma. Observed differences in decay rates were attributed to the differences in both the molecular structure of the organic polymers or RDX and the chemical reactions that occur within the plasma. These differences could potentially be exploited to improve the discrimination of explosive residues on organic substrates with laser-induced breakdown spectroscopy.

  13. The impact of drying on structure of sedimentary organic matter in wetlands: Probing with native and amended polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Zucheng; Liu, Zhanfei; Liu, Min; Xu, Kehui; Mayer, Lawrence M

    2016-10-15

    Wetland sediments undergo dry-wet cycles that may change their structural properties and affect geochemical behavior of associated organic compounds. In this study, we examined the effect of drying on particle size distributions and the rapid (24h) sorption reactions of polycyclic aromatic hydrocarbons (PAHs) with salt marsh sediments in Nueces Delta, South Texas. Drying reduced the fraction of fine particles in organically richer sediments, indicating structural rearrangement of organic matter and mineral aggregates. Among the 16 EPA priority PAHs examined, dried sediment preferentially released 1.0-7.5% of phenanthrene, fluoranthene and pyrene to added seawater (solid: water mass ratio of 1/100) - significantly greater than release from sediments maintained in the wet state. On the other hand, drying also increased the affinity of sedimentary organic matter (SOM) for experimentally amended (deuterated) phenanthrene relative to continually wet sediments. Further, deuterated phenanthrene was even more effectively retained when it was added to wet sediment that was subsequently dried and rewetted. These apparently contradictory results can be reconciled and explained by SOM having a heterogeneous distribution of hydrophobic and hydrophilic zones - e.g., a zonal model. We propose that drying changed the orientation of amphiphilic SOM, exposing hydrophobic zones and promoting the release of some of their native PAHs to water. Freshly amended PAHs were only able to penetrate into the surface hydrophobic zone and/or deeper but rapidly accessible ("kinetic") zone in wet sediments due to the brief adsorption contact time. Subsequent drying presumably then induced structural changes in SOM that isolated these amended PAHs in sites inaccessible to water exchange in the next rewetting. These results provide insights into structural changes of SOM upon drying, and help predict the fate of compounds such as organic contaminants during drought/flood oscillations.

  14. The Impact of Structural Empowerment on Organizational Citizenship Behavior-Organization and Job Performance: A Mediating Role of Burnout

    Directory of Open Access Journals (Sweden)

    Hina Jaffery

    2015-10-01

    Full Text Available The banking sector employees are usually exposed to potential job burnout which impacts their employee performance. This study examined the impact of structural empowerment on organizational citizenship behavior-organization (henceforth, OCBO and job performance and further examined the mediating effect of job burnout in the relationships of structural empowerment, OCBO and job performance. In this study, data from 282 employees was taken from four banks: both public and private sectors. Two stage sampling technique was carried out to collect data. In the first stage probability cluster sampling and in the second stage convenience sampling was used. Different data analysis techniques like correlation, regression analysis, were used to test the four hypotheses of the study. Findings show that there are strong positive relationships of structural empowerment with OCBO and job performance. It has also proved that job burnout strongly mediates the relationship of structural empowerment and organizational citizenship-behavior (OCBO and weakly mediates the relationship between structural empowerment and job performance. The findings would help the HR executives of the organizations to formulate future development to combat the burnout and ensure effective overall performance of employees through structurally empowering them.

  15. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    Institute of Scientific and Technical Information of China (English)

    Jian-Huai Chen; Zhi-Jian Yao; Jiao-Long Qin; Rui Yan; Ling-Ling Hua; Qing Lu

    2016-01-01

    Background:Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD).Moreover,the exactly topological organization of networks underlying MDD remains unclear.This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients.Methods:The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls.The brain fractional anisotropy-weighted structural networks were constructed,and the global network and regional nodal metrics of the networks were explored by the complex network theory.Results:Compared with the healthy controls,the brain structural network of MDD patients showed an intact small-world topology,but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found.Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions.Conclusions:All these resulted in a less optimal topological organization of networks underlying MDD patients,including an impaired capability of local information processing,reduced centrality of some brain regions and limited capacity to integrate information across different regions.Thus,these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network.

  16. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato

    NARCIS (Netherlands)

    Bultema, Jelle B.; Braun, Hans-Peter; Boekema, Egbert J.; Kouril, Roman; Kouřil, Roman

    2009-01-01

    The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes 1 to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a

  17. Structural organization, nucleotide sequence, and regulation of the Haemophilus influenzae rec-1+ gene.

    Science.gov (United States)

    Zulty, J J; Barcak, G J

    1993-11-01

    The Haemophilus influenzae rec-1+ protein plays a central role in DNA metabolism, participating in general homologous recombination, recombinational (postreplication) DNA repair, and prophage induction. Although many H. influenzae rec-1 mutants have been phenotypically characterized, little is known about the rec-1+ gene at the molecular level. In this study, we present the genetic organization of the rec-1+ locus, the DNA sequence of rec-1+, and studies of the transcriptional regulation of rec-1+ during cellular assault by DNA-damaging agents and during the induction of competence for genetic transformation. Although little is known about promoter structure in H. influenzae, we identified a potential rec-1+ promoter that is identical in 11 of 12 positions to the bacterial sigma 70-dependent promoter consensus sequence. Results from a primer extension analysis revealed that the start site of rec-1+ transcription is centered 6 nucleotides downstream of this promoter. We identified potential DNA binding sites in the rec-1+ gene for LexA, integration host factor, and cyclic AMP receptor protein. We obtained evidence that at least one of the proposed cyclic AMP receptor protein binding sites is active in modulating rec-1+ transcription. This finding makes rec-1+ control circuitry novel among recA+ homologs. Two H. influenzae DNA uptake sequences that may function as a transcription termination signal were identified in inverted orientations at the end of the rec-1+ coding sequence. In addition, we report the first use of the Escherichia coli lacZ operon fusion technique in H. influenzae to study the transcriptional control of rec-1+. Our results indicate that rec-1+ is transcriptionally induced about threefold during DNA-damaging events. Furthermore, we show that rec-1+ can substitute for recA+ in E. coli to modulate SOS induction of dinB1 expression. Surprisingly, although 5% of the H. influenzae genome is in the form of single-stranded DNA during competence for

  18. Management-induced Soil Structure Degradation: Organic Matter Depletion and Tillage

    OpenAIRE

    Kay, B.D.; Munkholm, L.J.

    2004-01-01

    Soil structure is an important element of soil quality since changes in structural characteristics can cause changes in the ability of soil to fulfil different functions and services. Emphasis in this chapter is placed on the role of soil structure in biological productivity of agroecosystems. Combinations of management practices in which the extent of the degradation of soil structure caused by one practice is balanced or exceeded by the extent of regeneration by other practices will help su...

  19. Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes.

    Science.gov (United States)

    Han, Tae-Hee; Choi, Mi-Ri; Woo, Seong-Hoon; Min, Sung-Yong; Lee, Chang-Lyoul; Lee, Tae-Woo

    2012-03-15

    A highly efficient simplified organic light-emitting diode (OLED) with a molecularly controlled strategy to form near-perfect interfacial layer on top of the anode is demonstrated. A self-organized polymeric hole injection layer (HIL) is exploited increasing hole injection, electron blocking, and reducing exciton quenching near the electrode or conducting polymers; this HIL allows simplified OLED comprised a single small-molecule fluorescent layer to exhibits a high current efficiency (∼20 cd/A).

  20. Synthesis, Crystal Structure, and Characterization of a New Organic-Inorganic Hybrid Material:

    OpenAIRE

    Hela Ferjani; Habib Boughzala; Ahmed Driss

    2013-01-01

    The title compound is an organic-inorganic hybrid material. The single crystal X-ray diffraction investigation reveals that the studied compound crystallizes in the orthorhombic system, space group Pbca with the following lattice parameters:  (4) Å,  (3) Å,  (6) Å, and . The crystal lattice is composed of a discrete anion surrounded by piperazinium cations, chlorine anions, and water molecules. Complex hydrogen bonding interactions between , , organic cations, and water molecules form a thre...

  1. Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors.

    Science.gov (United States)

    DiBenedetto, Sara A; Frattarelli, David L; Facchetti, Antonio; Ratner, Mark A; Marks, Tobin J

    2009-08-12

    Organic field-effect transistor (OFETs) are fabricated using thin, vapor-deposited films of both the gate dielectric (vapor-deposited self-assembled nanodielectric, v-SAND) and the organic semiconductor. The nanoscopic self-assembled gate dielectrics are structurally organized via molecular precursor hydrogen-bonding interactions, followed by planarization with a vapor-deposited inorganic SiO(x) film. It is shown here that the metal-insulator-semiconductor (MIS) and OFET device electrical properties are sensitive to the v-SAND molecular dipolar orientation. In addition, alternating (organic/inorganic/organic/...) and nonalternating (1 organic layer + 1 inorganic layer) v-SAND microstructural arrangements are investigated, and the microstructures are correlated with MIS and OFET device characteristics. Films with alternating microstructures have larger capacitances than nonalternating films of the same thickness. However, they also have larger leakage currents, associated with the enhanced polarization of well-ordered dipolar films. For pentacene OFETs, the largest mobilities (approximately 3 cm(2)/(V s)) are associated with the high-capacitance nonalternating microstructure, and the lowest mobilities (approximately 0.5 cm(2)/(V s)) are associated with the alternating microstructure. v-SAND gated ambient-stable, n-type organic semiconductors show the opposite trends, where slightly greater OFET performance is observed with the lower-capacitance gate dielectric. For the p-type and one of the n-type v-SAND-based OFETs, the performance (under vacuum and ambient) is comparable to, or surpasses, that of previously reported devices using conventional SiO(2) as the gate dielectric. More importantly, the devices fabricated here operate at far lower voltages. These results indicate that v-SAND dielectrics are promising for future flexible organic electronics requiring low-temperature, solvent-free deposition conditions.

  2. Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.

    Science.gov (United States)

    Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-12-28

    Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN)4] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L)2[Pt(CN)4] thin films [L = H2O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe(2+) site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.

  3. sp(2)-sp(3) diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis.

    Science.gov (United States)

    Dewhurst, Rian D; Neeve, Emily C; Braunschweig, Holger; Marder, Todd B

    2015-06-14

    Despite the widespread use of organoborane reagents in organic synthesis and catalysis, a major challenge still remains: very few boron-centered nucleophiles exist for the direct construction of B-C bonds. Perhaps the most promising emerging solution to this problem is the use of sp(2)-sp(3) diboranes, in which one boron atom of a conventional diborane(4) is quaternised by either a neutral or anionic nucleophile. These compounds, either isolated or generated in situ, serve as relatively mild and convenient sources of the boryl anion [BR2](-) for use in organic synthesis and have already proven their efficacy in metal-free as well as metal-catalysed borylation reactions. This Feature article documents the history of sp(2)-sp(3) diborane synthesis, their properties and surprising structural variability, and their burgeoning utility in organic synthesis.

  4. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Herath, Lasantha; Møldrup, Per;

    2016-01-01

    no spatial autocorrelation was observed for them. Fungal Shannon diversity slightly increased from south to north, with spatial autocorrelation for distances larger than 100 m. The ratio of clay to organic carbon (n) was found to be the best predictor of bacterial richness and diversity indices. Neither...... organic carbon nor clay content was significantly correlated with fungal richness and diversity indices. For soil structural parameters, soil water retention in the pF range 5–6.8 (parameter B) was significantly correlated with both bacterial and fungal Shannon diversities. Amount of macropores (> 30 μm......) and total porosity (ϕ) were only significantly correlated with fungal Shannon diversity. These results suggest that variation in microbial communities is not random but strongly related with variations in organic carbon, clay content, and soil water characteristics at the field scale....

  5. Layered inorganic-organic hybrid with talc-like structure for cation removal at the solid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Badshah, Syed [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2013-01-20

    Graphical abstract: A lamellar inorganic-organic hybrid with talc-like structure has been synthesized through a single sol-gel step. Highlights: Black-Right-Pointing-Pointer New silylating agent isolated from acrylamide includes basic centers attached to enlarged chain. Black-Right-Pointing-Pointer Lamellar inorganic-organic talc-like structure has been synthesized through a single sol-gel step. Black-Right-Pointing-Pointer High basal distance accommodates the pendant chain in the cavities only in inclined disposition. Black-Right-Pointing-Pointer The pendant chain sorbs spontaneously and favorable cations as demonstrated by thermodynamic data. - Abstract: A new silylating agent N-((3-(3-(trimethoxysilyl)propylthio)propanamido)methyl)acrylamide synthesized from the reaction of N,N-methylenebisacrylamide and 3-mercaptopropyltrimethoxysilane yielded layered inorganic-organic talc-like magnesium phyllosilicate through the sol-gel process. Elemental analysis data based on sulfur demonstrated incorporation of 2.70 mmol g{sup -1} of organic moiety inside the lamellar cavities and the X-ray diffraction patterns confirmed the talc-like structure with a basal distance of 2.11 nm. Infrared spectroscopy, {sup 13}C and {sup 29}Si NMR in the solid state are in agreement with the presence of organic chains covalently bonded to the inorganic lamellar framework, as also supported by the presence of T{sup n} silicon species. Nitrogen, oxygen and sulfur basic centers sorb divalent lead, copper and cobalt cations with maximum capacity of 5.30, 3.82 and 1.60 mmol g{sup -1}. The thermodynamic data for cation/basic center interactions at the solid/liquid interface were determined through calorimetric titration with exothermic enthalpy, negative Gibbs energy and positive entropy, as expected for spontaneous and favorable reaction conditions.

  6. MOLECULAR DYNAMICS SIMULATION OF SELF-ORGANIZED STRUCTURE IN MICRO-PHASE SEPARATION OF NANO-SCALE FILM

    Institute of Scientific and Technical Information of China (English)

    Dexiang Tang; Wei Ge; Jinghai Li

    2004-01-01

    Self-organization in thin micro-films has shown potential for the production of microelements with specific structures and functions; however, little is known about its mechanism of formation. A 2-D molecular dynamics (MD)simulation on this process is carried out in this paper for films between two parallel walls (substrates) under different initial conditions. The films consist of two immiscible components (A and B). The simulation results in alternative columns perpendicular to the walls, which are rich either in A or in B molecules, respectively, apparently owing to their different interactions with the walls. The characteristic breadths of the columns depend on the distance between the two walls. By providing microscopic details of the self-organization processes and the resulted structures, MD simulation proves itself as a unique way for analyzing the dynamics of thin films.

  7. Synthesis and Structure-Property Relationships of Phosphole-Based π Systems and Their Applications in Organic Solar Cells.

    Science.gov (United States)

    Matano, Yoshihiro

    2015-06-01

    Phosphole is a chemically tunable heterole, and its π-conjugated derivatives are potential candidates for optoelectronic materials. This account describes recent developments in the synthesis and structure-property relationships of π-conjugated phosphole derivatives made by my research group. Thiophene-phosphole-styrene, phosphole-acetylene-arene, oligophosphole, polyphosphole, areno[c]phosphole, and phosphole-heterole π systems are synthesized using titanacycle-mediated metathesis and palladium-catalyzed cross-coupling reactions. The structural, optical, and electrochemical properties of selected compounds are discussed. Initial results on some applications of thiophene-phosphole copolymers, acenaphtho[c]phospholes, and amine-terthiophene-phosphole donor-π-acceptor dyes in organic solar cells are described. These results give valuable information and guidelines for designing new phosphorus-containing organic materials for molecular electronics.

  8. Giant Peltier Effect in Self-Organized Quasi-One-Dimensional Nano-Structure in Cu-Ni Alloy

    Science.gov (United States)

    Dang Vu, Nguyen; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2011-01-01

    Based upon ab initio electronic structure calculations by the Korringa-Kohn-Rostoker coherent potential approximation and Monte Carlo simulation of the two-dimensional spinodal nano-decomposition, we simulate the formation of a self-organized quasi-one-dimensional nano-structure (Konbu-Phase) under a layer-by-layer crystal growth condition of Cu-Ni alloy. We propose a new mechanism of the giant Peltier coefficient dramatically enhanced by the one-dimensional singular density of states in the Konbu-Phase in addition to the conventional Peltier cooling and the spin-entropy expansion cooling.

  9. Giant Peltier Effect in Self-Organized Quasi-One-Dimensional Nano-Structure in Cu--Ni Alloy

    Science.gov (United States)

    Vu, Nguyen Dang; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2011-01-01

    Based upon ab initio electronic structure calculations by the Korringa--Kohn--Rostoker coherent potential approximation and Monte Carlo simulation of the two-dimensional spinodal nano-decomposition, we simulate the formation of a self-organized quasi-one-dimensional nano-structure (Konbu-Phase) under a layer-by-layer crystal growth condition of Cu--Ni alloy. We propose a new mechanism of the giant Peltier coefficient dramatically enhanced by the one-dimensional singular density of states in the Konbu-Phase in addition to the conventional Peltier cooling and the spin-entropy expansion cooling.

  10. Influence of commercially available polyimide and formation conditions on the performance and structure of asymmetric polyimide organic solvent nanofiltration membranes

    OpenAIRE

    Lopes, Mafalda Pessoa

    2009-01-01

    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Química e Bioquímica This work covers experimental and theoretical research related to the impact of the polymer structure of commercially available polyimide and polyetherimides as well as the formation conditions on the performance and structure of polyimide Organic Solvent Nanofiltration membranes. The influence in some membrane formation parame...

  11. Hunger and satiation in the structure of temporal organization of impulse activity of masticatory muscles in rabbits.

    Science.gov (United States)

    Ignatova, Ju P; Kromin, A A

    2009-01-01

    Impulse activity of masticatory muscles, jaw elevators and depressors, during hunger, eating, and satiation was studied in chronic experiments on rabbits. The state of hunger is specifically reflected in the structure of temporal organization of impulse activity of proper masticatory muscles as a monomodal distribution of interpulse intervals and in activity of the mylohyoid muscle as bimodal distributions. Food intake induces reorganization of the temporal structure of impulse activity in both muscles manifesting in the form of similar bimodal patterns of distributions of interpulse intervals.

  12. Advanced Magnetic Resonance Techniques for the Structural Characterization of Aminoxyl Radicals and Their Inorganic-Organic Nanocomposite Systems.

    Science.gov (United States)

    Eckert, Hellmut

    2016-11-15

    Electron and nuclear spins are extremely sensitive probes of their local structural and dynamic surroundings. Their Zeeman energy levels are modified by different types of local magnetic and electric fields created by their structural environment, which influence their magnetic resonance condition. For this reason, electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spectroscopies have become extremely powerful tools of structural analysis, which are being widely used for the structural characterization of complex solids. Following a brief introduction into the basic theoretical foundations the most commonly used techniques and their application towards the structural characterization of paramagnetic solids based on aminoxyl radicals and their inorganic-organic nanocomposites will be described. Both ESR and NMR observables are useful for monitoring intermolecular interactions between unpaired electron spins, which are particularly important for the design of organically based ferromagnetic systems. ESR and NMR methods based on this effect can be used for monitoring the synthesis of polynitroxides and for evaluating the catalytic function of aminoxyl intercalation compounds. Finally, the sensitivity of ESR signals to motional dynamics can be exploited for characterizing molecule-surface interactions in nanocomposite systems. In the context of the latter work recently developed signal enhancement strategies are described, using polarization transfer from electron spins to nuclear spins for NMR spectroscopic detection.

  13. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Li, Zhina [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2014-09-30

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO{sub 2} or CeO{sub 2}), mixed abrasives ((PS + SiO{sub 2}) or (PS + CeO{sub 2})), core/shell composites (PS/SiO{sub 2} or PS/CeO{sub 2}), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate.

  14. Progress and perspectives of quantitative structure-activity relationships used for ecological risk assessment of toxic organic compounds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi- ronmental sciences show three features: application orientation, multidisciplinary integration, and in- telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.

  15. Progress and perspectives of quantitative structure-activity relationships used for ecological risk assessment of toxic organic compounds

    Institute of Scientific and Technical Information of China (English)

    CHEN JingWen; LI XueHua; YU HaiYing; WANG YaNan; QIAO XianLiang

    2008-01-01

    Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec-tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi-ronmental sciences show three features: application orientation, multidisciplinary integration, and in-telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.

  16. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland

    Science.gov (United States)

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-01-01

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm–printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro. PMID:27694985

  17. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland.

    Science.gov (United States)

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-10-03

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm-printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro.

  18. Structural organization of psychological defenses and coping strategies of preschool teachers with different levels of professional burnout

    Directory of Open Access Journals (Sweden)

    Тетяна Анатоліївна Колтунович

    2015-10-01

    Full Text Available The article deals with the actual problem of modern education system – preschool teachers’ professional burnout. Assumptions about the existence of the relationship between professional burnout, coping strategies and mechanisms of psychological defenses; about the determination of burnout at different stages of its formation according to the structural organization of coping and psychological defenses were empirically proven, and their leading and basic components were defined

  19. Organizing and Economic Mechanism for Optimization of Industrial Structure in Electric Power Industry of the Republic of Belarus

    Directory of Open Access Journals (Sweden)

    S. G. Morozov

    2011-01-01

    Full Text Available The paper reveals economic peculiar features of innovative and investment processes in electric power industry. A scheme of organizing and economic mechanism for optimization of the industrial structure in the Belarusian electric power industry has been given in the paper. Realization of the mechanism will promote to better economic efficiency of power generation in the Belarusian power system and diversification of fuel balance of electric power industry.

  20. One-hundred-nm-scale electronic structure and transport calculations of organic polymers on the K computer

    Science.gov (United States)

    Imachi, Hiroto; Yokoyama, Seiya; Kaji, Takami; Abe, Yukiya; Tada, Tomofumi; Hoshi, Takeo

    2016-12-01

    One-hundred-nm-scale electronic structure calculations were carried out on the K supercomputer by our original simulation code ELSES (http://www.elses.jp/) The present paper reports preliminary results of transport calculations for condensed organic polymers. Large-scale calculations are realized by novel massively parallel order-N algorithms. The transport calculations were carried out as a theoretical extension for the quantum wavepacket dynamics simulation. The method was applied to a single polymer chain and condensed polymers.

  1. Insight into structural organization and protein-protein interaction of non structural 3 (NS3) proteins from dengue serotypes.

    Science.gov (United States)

    Parida, Pratap; Yadav, R N S; Sarma, Kishore

    2014-01-01

    Dengue infections produce a distinct character of virus-induced intracellular membrane alterations which are associated with the viral replication machinery. Currently, the NS3 protein is being targeted for antiviral therapy against dengue. NS3 protein of dengue virus interacts with nuclear receptor binding protein (NRBP) of human causing cell trafficking between the Endoplasmic Reticulum (ER) and Golgi, which interacts with Rac3, a member of the Rho-GTPase family. No crystal structure of the NRBP is available for any species, thus limiting the complete understanding of structure- function relationships of this protein. The present study deals with the molecular modeling of the viral protein (NS3 of DENV1-4), the host protein (NRBP) and their interactions through protein-protein docking study. Theoretical threedimensional structures of the NRBP and NS3 were modeled using the Modeller 9v8, and the evaluated models were docked using GRAMM-X to study the mode of protein-protein interaction (NRBP as receptor and NS3 as ligand). The docked docking complexes were further evaluated for interaction analysis by the RosettaDock Server. Suface and interface residues were observed along with hydrogen and hydrophobic interaction. The conserved residues forming hydrogen interaction of NRBP with DENV1-4 serotypes were found to be GLN 305, SER 363 and GLN 379.

  2. THE IMPROVEMENT OF BUSINESS STABILITY THROUGH ORGANIZATION OF SHAREHOLDING STRUCTURED COMPANY

    Directory of Open Access Journals (Sweden)

    I.O. Botkin

    2009-09-01

    Full Text Available The investigation of the main point and peculiarities of shareholding structured companies building of one's country and abroad, allows us to classify that structures under different characteristics. Moreover, the forming of any type of integrated shareholding company connected with interaction between a company and its network. More than that, all corporate units can get some additional special advantages. In this case, the shareholding structuring of corporate units can be considered as a part of crisis management system of industrial enterprises.

  3. Estimation and Prediction of Bioconcentration Factors of Nonionic Organic Chemicals in Fish by Electrotopological State Indices and Structural Parameter

    Institute of Scientific and Technical Information of China (English)

    FENG Chang-Jun; YANG Wei-Hua; MU Lai-Long

    2008-01-01

    Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, a novel molecular structure parameter (G) is defined and calcu- lated for 165 molecules in this paper. En and G show good structural selectivity for organic molecules. G, a satisfactory relationship between bioconcentration factor (BCF) and En, is expressed as: lgBCF = -0.283 + 1.246G + 0.079E42 + 0.351E9 - 0.063E17 (n' = 122, R = 0.967, F = 425.636, s = 0.394), which could provide estimation and prediction for the lgBCF of nonionic organic chemicals. Furthermore, the model is examined to validate overall robustness with Jackknife tests, and the independent variables in model do not exist cross correlation with VIF. All these regression results show that the new parameter G and electrotopological state index have good rationality and efficiency. It is concluded that the En and G will be used widely in quantitative structure-property/activity relationship (QSPR/QSAR) research.

  4. Influence of meso-substituted tetraphenylporphyrin derivatives structure on their supramolecular organization in floating layers and Langmuir-Blodgett films.

    Science.gov (United States)

    Kazak, Alexandr V; Usol'tseva, Nadezhda V; Yudin, Sergey G; Sotsky, Valentin V; Semeikin, Alexandr S

    2012-12-11

    To study the influence of structure peculiarities of porphyrin derivatives on their supramolecular organization in thin films, 15 new meso-substituted tetraphenylporphyrin derivatives and their metal complexes with substituents (-OC(4)H(9) or -OC(16)H(33)) in para or ortho positions were studied. The films of the studied compounds were obtained by the Langmuir-Schaefer method. The behavior of porphyrin derivatives at the water-air interface was analyzed, and the conformity of the influence of molecular structure on supramolecular organization in floating layers and Langmuir-Blodgett films was defined. The absorption of these films over a wide spectral range was analyzed. The supramolecular organization of meso-substituted tetraphenylporphyrin derivatives was modeled and specified with the help of X-ray diffraction analysis. It was determined that the formation of monomolecular layers is typical for the compounds with short lateral substituents or without substituents. Tetraphenylporphyrins with extensive substituents can form a monolayer only when zinc is included in the molecular structure.

  5. Synthesis,structure and luminescence properties of metal-organic frameworks based on benzo-bis(imidazole)

    Institute of Scientific and Technical Information of China (English)

    YIN XinBo; SONG YuNa; WANG Yang; ZHANG LiJuan; LI QiaoWei

    2014-01-01

    Metal-organic frameworks(MOFs)constructed from conjugated organic ligands are candidates for hybrid photoactive materials with potential applications.Compared to that from the ligands only,the intensity and wavelength of the luminescence could be tuned after they were incorporated in extended framework.In this report,by using an organic ligand with azolate moiety,benzo-bis(imidazole)(H2BBI),we synthesized two new MOF structures.Framework 1([Co(H2BBI)(DMSO)2Cl2]n,DMSO=dimethyl sulfoxide),constructed from tetrahedral Co(II)and H2BBI,exhibits zigzag 1D structure.Meanwhile,framework 2([Cu2(H2BBI)3(DMSO)6(NO3)4]n),a layered structure with hcb topology,was assembled from tetragonal pyramidal Cu(II)and H2BBI.Furthermore,2 exhibits strong luminescence emission(ex=280 nm).A blue shift of 40 nm(from 359 nm to 319 nm)was observed in framework 2 compared to the free ligand,which could be explained by the ligand-to-metal charge transfer in the network.

  6. Mobilization and transport of soil colloids as influenced by texture, organic matter, and structure

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad

    was mainly seen as an impact on soil organic carbon. Results from the column leaching experiments from three sites likewise indicate that basic soil properties, such as the clay content, were the main drivers of colloid mobilization and transport. Effects of management and cropping system seemed secondary...... to measure soil dispersibility. Soils for this project were sampled from a wide variety of fields from five countries across different moisture and temperature regimes, with different contents of clay and organic carbon, and subjected to different management practices. The use of laser diffraction...... with this method gave a remarkably good correlation to basic soil parameters across all the investigated sites. The results indicate that the soil water, clay, and organic carbon contents are by far the most important drivers of colloid mobilization. The effect of management practices and cropping rotation...

  7. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Lelie' vre, S.A.; Weaver, V.M.; Nickerson, J.A.; Larabell, C.A.; Bhaumik, A.; Petersen, O.W.; Bissell, M.J.

    1998-08-14

    What determines the nuclear organization within a cell and whether this organization itself can impose cellular function within a tissue remains unknown. To explore the relationship between nuclear organization and tissue architecture and function, we used a model of human mammary epithelial cell acinar morphogenesis. When cultured within a reconstituted basement membrane (rBM), HMT-3522 cells form polarized and growth-arrested tissue-like acini with a central lumen and deposit an endogenous BM. We show that rBM-induced morphogenesis is accompanied by relocalization of the nuclear matrix proteins NuMA, splicing factor SRm160, and cell cycle regulator Rb. These proteins had distinct distribution patterns specific for proliferation, growth arrest, and acini formation, whereas the distribution of the nuclear lamina protein, lamin B, remained unchanged. NuMA relocalized to foci, which coalesced into larger assemblies as morphogenesis progressed. Perturbation of histone acetylation in the acini by trichostatin A treatment altered chromatin structure, disrupted NuMA foci, and induced cell proliferation. Moreover, treatment of transiently permeabilized acini with a NuMA antibody led to the disruption of NuMA foci, alteration of histone acetylation, activation of metalloproteases, and breakdown of the endogenous BM. These results experimentally demonstrate a dynamic interaction between the extracellular matrix, nuclear organization, and tissue phenotype. They further show that rather than passively ref lecting changes in gene expression, nuclear organization itself can modulate the cellular and tissue phenotype.

  8. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    Science.gov (United States)

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  9. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2012-11-01

    Full Text Available The capabilities of biosensors for bio-environmental monitoring have profound influences on medical, pharmaceutical, and environmental applications. This paper provides an overview on the background and applications of the state-of-the-art biosensors. Different types of biosensors are summarized and sensing mechanisms are discussed. A review of organic materials used in biosensors is given. Specifically, this review focuses on self-assembled monolayers (SAM due to their high sensitivity and high versatility. The kinetics, chemistry, and the immobilization strategies of biomolecules are discussed. Other representative organic materials, such as graphene, carbon nanotubes (CNTs, and conductive polymers are also introduced in this review.

  10. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge.

    Science.gov (United States)

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Wang, Guangce

    2016-11-01

    The effects of heat pretreatment on waste sludge hydrolysis were investigated in this study. Heat pretreatment was conducted at 65°C, 80°C, 100°C and 121°C for 5min, 10min, 15min, 20min, 25min and 30min. Not only analyzed the changes of SCOD (Soluble chemical oxygen demand), carbohydrate and protein, but also evaluated the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. The SCOD in DOM increased with pretreated temperatures. The optimal heat hydrolysis temperature and time were selected by further studying the biodegradable and non-biodegradable components. After treated at 80°C for 25min, the fluorescence intensity and percent fluorescence response (Pi,n) of easily biodegradable soluble microbial by-product substance were higher than others, and little non-biodegradable fulvic acid-like substance was accumulated.

  11. Surface enhanced raman scattering on tardigrada - Towards monitoring and imaging molecular structures in live cryptobiotic organisms

    DEFF Research Database (Denmark)

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak

    2013-01-01

    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering su....... This opens new avenues for exploring cryptobiosis by studying molecular changes in live cryptobiotic organisms....

  12. Auditing Information Structures in Organizations: A Review of Data Collection Techniques for Network Analysis

    NARCIS (Netherlands)

    Zwijze-Koning, Karen H.; Jong, de Menno D.T.

    2005-01-01

    Network analysis is one of the current techniques for investigating organizational communication. Despite the amount of how-to literature about using network analysis to assess information flows and relationships in organizations, little is known about the methodological strengths and weaknesses of

  13. Information Systems: How They Affect and Are Affected by Organization Structure

    Science.gov (United States)

    1992-03-01

    55 5. Agency and Transaction Cost Theories......................57 VI: CONCLUSIONS............................................... 60 LIST OF...disadvantage in operating those resources and it is cost prohibitive to obtain the resources necessary to compete. 5. Agency and Transaction Cost Theories...agency theory and the transaction cost theory. Agency costs are costs incurred as a result of discrepancies between the objectives of the organization

  14. A Comparative Analysis: The Structure and Function of Task-Oriented Communication within Complex Organizations.

    Science.gov (United States)

    McElreath, Mark P.

    The research presented in this paper demonstrates that Katz and Kahn's (1966) distinction between people-processing and object-processing organizations is a useful classification scheme that can help explain differences in organizational communication systems. To assess the usefulness of Katz and Kahn's scheme, data derived from a sample of more…

  15. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; a

    NARCIS (Netherlands)

    Heijboer, Amber; Berge, ten Hein F.M.; Ruiter, de Peter C.; Jørgensen, Helene Bracht; Kowalchuk, George A.; Bloem, Jaap

    2016-01-01

    Sustainable agriculture requires nutrient management options that lead to a profitable crop yield with relatively low nitrogen (N) losses to the environment. We studied whether the addition of contrasting organic amendments together with inorganic fertilizer can promote both requirements simultan

  16. The Albanian organization and organizational structure - the challenges of the adaptation to the dynamic reality

    Directory of Open Access Journals (Sweden)

    Ludmilla Shkurti

    2014-09-01

    Full Text Available There were 78,400 enterprises active in Albania in 2011, employing 180,800 people, of which 47% worked in 1,684 enterprises employing more than 20 people. These last enterprises represented 61 percent of the total turnover, and 75 percent of the total investments. These enterprises are predominantly in the industrial and construction sectors. Enterprises with 1-4 employees represent 91 percent of the total enterprises, and represent 14 percent of total turnover. Small enterprises are dominant in the service sector. Business in Albania is currently operating in a global environment, which has a great impact on the theory or practice of organizations, and also on the working behaviour of employees. This already complex environment, which is becoming increasingly dynamic, and growing competition, are also changing the way in which work is organized, as well as the solutions. Great opportunities are arising from a better understanding of Albanian contemporary organizations and the work environment. To take advantage of these opportunities, the trends regarding the relationship between organizational design and design work should be studied and identified. The aim is to identify the potential patterns and the current trends and tendencies in Albanian organization design, providing useful knowledge in the field of Albanian business practices, and future challenges for research in this direction.

  17. Social capital of organizations : from social structure to the management of corporate social capital

    NARCIS (Netherlands)

    Gabbay, Shaul M.; Leenders, Roger Th.A.J.

    2002-01-01

    Social capital in general and the study of social capital in the context of organizations has gained considerable attention in recent years. Despite the promise in the potency of the concept, its useful application suffers from the plethora of different definitions and approaches—both theoretical an

  18. Exploring the Structure and Task Dynamics of Terrorist Organizations Using Agent Based Modeling

    Science.gov (United States)

    2008-12-01

    policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release...Terrorist Networks, Agent Based Modeling, 2004 Madrid Attacks, Backcasting , Computational Organization Simulation 16. PRICE CODE 17. SECURITY...be understood in order to apply effective policies and practices to safeguard citizens, assets, and interests. For decades, terrorist cells have

  19. [Effects of stand structure regulation on soil labile organic carbon in Pinus elliottii plantation].

    Science.gov (United States)

    Tan, Gui-Xia; Liu, Yuan-Qiu; Li, Lian-Lian; Liu, Wu; Zan, Yu-Ting; Huo, Bing-Nan; He, Mu-Jiao

    2014-05-01

    Taking 21-year-old Pinus elliottii pure plantation as the control, effects of enrichment planting with broadleaf trees (Liquidambar fornosana) after thinning the conifer trees (P. elliottii) on soil labile organic carbon of different plantations, including 3-year-old, 6-year-old, 9-year-old P. elliottii and 21-year-old P. elliottii-L. fornosana mixed plantations, were investigated. The results showed that the contents of soil dissolved organic carbon (DOC), readily oxidizable organic carbon (ROC), and microbial biomass carbon (MBC) significantly increased in the 6-year-old and 9-year-old plantations compared with those in the 21-year-old P. elliottii pure plantation. Soil labile organic carbon contents in the 21-year-old P. elliottii-L. fornosana mixed plantation increased significantly than those in 3-year-old, 6-year-old, 9-year-old stands, and the DOC, ROC and MBC contents increased by 113.1%, 53.3% and 54.6%, respectively, compared with those in the 21-year-old P. elliottii pure plantation. The results suggested that replanting with broadleaf trees are an effective measure to improve the soil ecological function in pure P. elliottii plantation.

  20. Mechanism and kinetics of organic matter degradation based on particle structure variation during pig manure aerobic composting.

    Science.gov (United States)

    Ge, Jinyi; Huang, Guangqun; Huang, Jing; Zeng, Jianfei; Han, Lujia

    2015-07-15

    Characterization of the dynamic structure of composting particles may facilitate our understanding of the mechanisms of organic matter degradation during pig manure-wheat straw aerobic composting. In this study, changes in the size, shape, pores, chemical compositions, and crystal structures of pig manure particles during composting were investigated. The results showed that the median diameter (D50) decreased exponentially, while the particle aspect ratio and sphericity were unchanged, suggesting that particles were degraded uniformly along different radial directions. Pores had a mean diameter of 15-30 μm and were elliptical. The particle porosity increased linearly mainly because of hemicellulose degradation. Furthermore, the influence of particle structure variation on the first order rate constant (k) of organic matter degradation was corrected, which may facilitate the optimization of operation conditions. The k value was proportional to the reciprocal of D50 according to the specific surface area of particles, and it decreased with increased porosity due to the stabilized chemical compositions and crystal structures of particles. However, the applicability of these data to other composting materials should be verified.

  1. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization

    KAUST Repository

    Park, Youngjune

    2011-01-01

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.

  2. Ionothermal Synthesis of MnAPO-SOD Molecular Sieve without the Aid of Organic Structure-Directing Agents.

    Science.gov (United States)

    Liu, Hao; Tian, Zhijian; Wang, Lei; Wang, Yasong; Li, Dawei; Ma, Huaijun; Xu, Renshun

    2016-02-15

    An SOD-type metalloaluminophosphate molecular sieve (denoted as SOD-Mn) was ionothermally synthesized by introducing manganese(II) cations into the reaction mixture via MnO-acid or MnO2-reductant reactions. Composition and structure analyses results show that two kinds of manganese(II) cations exist in the SOD-Mn structure. Part of the manganese(II) cations isomorphously substitute the framework aluminum(III) with a substitution degree of ∼30%. The rest of the manganese(II) cations occupy a fraction of the sod cages in their hydrated forms. A comprehensive investigation of the synthesis parameters, crystal sizes, and crystallization kinetics indicates that the in situ released hydrated manganese(II) cations direct the formation of SOD-Mn. Such structure-directing effect may be inhibited by both the fluorination of manganese(II) cations and the water accumulation during crystallization. In the fluoride anion-containing reaction mixture with a low ionic liquid content, the crystallization process is strongly suppressed, and large SOD-Mn single crystals of over 200 μm in size are yielded. SOD-Mn is free from organics and shows improved thermal stability compared with metalloaluminophosphates synthesized by using organic structure-directing agents.

  3. Organic farming and landscape structure: effects on insect-pollinated plant diversity in intensively managed grasslands.

    Science.gov (United States)

    Power, Eileen F; Kelly, Daniel L; Stout, Jane C

    2012-01-01

    Parallel declines in insect-pollinated plants and their pollinators have been reported as a result of agricultural intensification. Intensive arable plant communities have previously been shown to contain higher proportions of self-pollinated plants compared to natural or semi-natural plant communities. Though intensive grasslands are widespread, it is not known whether they show similar patterns to arable systems nor whether local and/or landscape factors are influential. We investigated plant community composition in 10 pairs of organic and conventional dairy farms across Ireland in relation to the local and landscape context. Relationships between plant groups and local factors (farming system, position in field and soil parameters) and landscape factors (e.g. landscape complexity) were investigated. The percentage cover of unimproved grassland was used as an inverse predictor of landscape complexity, as it was negatively correlated with habitat-type diversity. Intensive grasslands (organic and conventional) contained more insect-pollinated forbs than non-insect pollinated forbs. Organic field centres contained more insect-pollinated forbs than conventional field centres. Insect-pollinated forb richness in field edges (but not field centres) increased with increasing landscape complexity (% unimproved grassland) within 1, 3, 4 and 5km radii around sites, whereas non-insect pollinated forb richness was unrelated to landscape complexity. Pollination systems within intensive grassland communities may be different from those in arable systems. Our results indicate that organic management increases plant richness in field centres, but that landscape complexity exerts strong influences in both organic and conventional field edges. Insect-pollinated forb richness, unlike that for non-insect pollinated forbs, showed positive relationships to landscape complexity reflecting what has been documented for bees and other pollinators. The insect-pollinated forbs, their

  4. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    Science.gov (United States)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  5. Tunable structural color in organisms and photonic materials for design of bioinspired materials.

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  6. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  7. Features of morpho-anatomic structure of vegetative organs of Sedum antiquum Omelcz et Zaverucha (Crassulaceae DC.

    Directory of Open Access Journals (Sweden)

    Valentyna Berezkina

    2015-05-01

    Full Text Available The study results of biological features and morpho-anatomical structure of vegetative organs of Sedum antiquum Omelcz et Zaverucha (Crassulaceae DC. are given. S. antiquum is Eastern Carpathian-Opillia rare endemic species. It is listed in the Red Book of Ukraine and in the European Red List of Animals and Plants and is endangered in world scale. As a result of study of morpho-anatomic structure of leaves and stems of S. antiquum the anisocytic type of stomata and presence of cuticle have been determined. It was ascertained that structure of leaves is adapted to the accumulation of significant water reserves and its further gradual use. Ecological and phytocenotic conditions of growth are studied too. S. antiquum has been determined here as petrophyte, calcephyl, and succulent ephemer. This rare species need protection and control of population state in all natural habitats.

  8. Self-organized criticality and coevolution of network structure and dynamics.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Hołyst, Janusz A

    2006-04-01

    We investigate, by numerical simulations, how the avalanche dynamics of the Bak-Tang-Wiesenfeld sandpile model can induce emergence of scale-free networks and how this emerging structure affects dynamics of the system.

  9. "Hot cores" in proteins: Comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms

    Directory of Open Access Journals (Sweden)

    Bossa Francesco

    2008-02-01

    Full Text Available Abstract Background A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures. Results The construction of two datasets was carried out so as to satisfy several restrictive criteria, such as minimum redundancy, resolution and R-value thresholds and lack of any structural defect in the collected structures. This approach allowed to quantify with relatively high precision the apolar contact area between interacting residues, reducing the uncertainty due to the position of atoms in the crystal structures, the redundancy of data and the size of the dataset. To identify the common core regions of these proteins, the study was focused on segments that conserve a similar main chain conformation in the structures analyzed, excluding the intervening regions whose structure differs markedly. The results indicated that hyperthermophilic proteins underwent a significant increase of the hydrophobic contact area contributed by those residues composing the alpha-helices of the structurally conserved regions. Conclusion This study indicates the decreased flexibility of alpha-helices in proteins core as a major factor contributing to the enhanced termostability of a number of hyperthermophilic proteins. This effect, in turn, may be due to an increased number of buried methyl groups in

  10. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  11. Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Zhou, Lei; Dong, Xiaoxuan; Zhou, Yun; Su, Wenming; Chen, Xiaolian; Zhu, Yufu; Shen, Su

    2015-12-01

    Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research.

  12. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  13. Crystal Structure and Band Gap Engineering in Polyoxometalate-Based Inorganic-Organic Hybrids.

    Science.gov (United States)

    Roy, Soumyabrata; Sarkar, Sumanta; Pan, Jaysree; Waghmare, Umesh V; Dhanya, R; Narayana, Chandrabhas; Peter, Sebastian C

    2016-04-04

    We have demonstrated engineering of the electronic band gap of the hybrid materials based on POMs (polyoxometalates), by controlling its structural complexity through variation in the conditions of synthesis. The pH- and temperature-dependent studies give a clear insight into how these experimental factors affect the overall hybrid structure and its properties. Our structural manipulations have been successful in effectively tuning the optical band gap and electronic band structure of this kind of hybrids, which can find many applications in the field of photovoltaic and semiconducting devices. We have also addressed a common crystallographic disorder observed in Keggin-ion (one type of heteropolyoxometalate [POMs])-based hybrid materials. Through a combination of crystallographic, spectroscopic, and theoretical analysis of four new POM-based hybrids synthesized with tactically varied reaction conditions, we trace the origin and nature of the disorder associated with it and the subtle local structural coordination involved in its core picture. While the crystallography yields a centrosymmetric structure with planar coordination of Si, our analysis with XPS, IR, and Raman spectroscopy reveals a tetrahedral coordination with broken inversion symmetry, corroborated by first-principles calculations.

  14. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    Science.gov (United States)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    identification and characterization of aromatic and condensed aromatic compounds in WSOC [2]. We proposed threshold values of Xc≥ 2.5000 and Xc≥ 2.7143 as ambiguous minimum criteria for the presence of aromatic structure and condensed aromatic compounds, respectively. The advantage of employing this parameter is that Xc would have a constant value for each proposed core structure regardless the degree of alkylation, and thus visual representation and structural interpretations of the spectra become advantageous for characterizing and comparing complex samples. Diesel particulate matter (DPM) and two atmospheric aerosols collected in the industrial area affected by biomass burning events were used to study the applicability of the proposed criteria for the improved identification of aromatic and condensed aromatic structures in complex mixtures in the FT-ICR mass spectra. References [1] Koch.BP, Dittmar.T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926-932 [2] Yassine.MM, Harir.M, Dabek-Zlotorzynska.E, Schmitt-Kopplin.Ph. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014. 28. 2445-2454

  15. Synthesis, Crystal Structure, and Characterization of a New Organic-Inorganic Hybrid Material:

    Directory of Open Access Journals (Sweden)

    Hela Ferjani

    2013-01-01

    Full Text Available The title compound is an organic-inorganic hybrid material. The single crystal X-ray diffraction investigation reveals that the studied compound crystallizes in the orthorhombic system, space group Pbca with the following lattice parameters:  (4 Å,  (3 Å,  (6 Å, and . The crystal lattice is composed of a discrete anion surrounded by piperazinium cations, chlorine anions, and water molecules. Complex hydrogen bonding interactions between , , organic cations, and water molecules form a three-dimensional network. Room temperature IR, Raman spectroscopy, and optical absorption of the title compound were recorded and analysed. The observed crystal morphology was compared to the simulated one using the Bravais-Friedel, Donnay-Harker model.

  16. Synthesis and Exploration of Ladder-Structured Large Aromatic Dianhydrides as Organic Cathodes for Rechargeable Lithium Batteries.

    Science.gov (United States)

    Zhang, Qichun; Xie, Jian; Chen, Wangqiao; Wang, Zilong; Kenneth Choo Wei Jie, Choo Wei Jie; Liu, Ming

    2017-02-21

    Comparing to anode materials in Li-ion batteries, the research on cathode materials is far behind and their capacities are much smaller. Thus, in order to address these issues, we believe that organic conjugated materials could be a solution. In this study, we demonstrate two non-polymeric dianhydrides with large aromatic structures: NDA-4N (naphthalenetetracarboxylicdianhydride with four nitrogen atoms) and PDA-4N (perylenetetracarboxylicdianhydride with four nitrogen atoms). Their electrochemical properties have been investigated between 2.0 and 3.9 V (vs. Li+/Li). Benefiting from multi-electron reactions, NDA-4N and PDA-4N could reversibly achieve 79.7% and 92.3% of their theoretical capacity, respectively. Further cycling reveals that organic compound with a relatively larger aromatic building block could be able to achieve a better stability, as an obvious 36.5% improvement of the capacity retention was obtained when the backbone was switched from naphthalene to perylene. This study proposes an opportunity to achieve promising small-molecule based cathode materials through tailoring organic structures.

  17. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    Directory of Open Access Journals (Sweden)

    Justina Sidlauskaite

    2015-01-01

    Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  18. Structural Evolution Induced by Interfacial Lattice Mismatch in Self-Organized YBa2Cu3O7-δ Nanocomposite Film.

    Science.gov (United States)

    Horide, Tomoya; Kametani, Fumitake; Yoshioka, Satoru; Kitamura, Takanori; Matsumoto, Kaname

    2017-02-28

    Intriguing properties of self-organized nanocomposites of perovskite oxides are usually derived from the complex interface of constituent material phases. A sophisticated control of such a system is required for a broad range of energy and device applications, which demand a comprehensive understanding of the interface at the atomic scale. Here, we visualized and theoretically modeled the highly elastically strained nanorod, the interface region with misfit dislocations and heterointerface distortion, and the matrix with strain-induced oxygen vacancies in the self-organized YBa2Cu3O7-δ nanocomposite films with Ba perovskite nanorods. Large misfit strain was elastically accommodated in the nanocomposites, but since the elastic strain was mainly accommodated by the nanorods, the concentration of strain-induced oxygen vacancies was small enough for the matrix to keep high critical temperature (>85 K). The interfacial bonding distorted the atomic structure of YBa2Cu3O7-δ, but the thickness of distortion was limited to a few unit cells (less than the coherence length) due to the electron screening. The effect of volume fraction on elastic strain and the electron screening are crucial for strong vortex pinning without significant degradation of both the elementary pinning force and critical temperature in the nanocomposites. Thus, we comprehensively clarified the self-organized nanocomposite structure for on-demand control of superconductivity and oxide functionality in the nanocomposite engineering of perovskite oxides.

  19. Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics

    OpenAIRE

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-01-01

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will b...

  20. A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations.

    Science.gov (United States)

    Chen, Qiang; Chang, Ze; Song, Wei-Chao; Song, Han; Song, Hai-Bin; Hu, Tong-Liang; Bu, Xian-He

    2013-10-25

    With H2 O or NH3 stimuli, the blue cobalt-based metal-organic framework (MOF) BP can reversibly transform to red RP. The removal/recovery of terephthalate ligands accompanied by the transformation leads to a gate effect, which allows the encapsulation and release of small solvent molecules under certain conditions. This is the first example of topology transformation from a self-penetrating to interpenetrating net in 3D MOFs.